Independent Submission                                  C. Filsfils, Ed.
Request for Comments: 8604                           Cisco Systems, Inc.
Category: Informational                                       S. Previdi
ISSN: 2070-1721                                      Huawei Technologies
                                                           G. Dawra, Ed.
                                                                LinkedIn
                                                           W. Henderickx
                                                                   Nokia
                                                               D. Cooper
                                                             CenturyLink
                                                               June 2019
        
Independent Submission                                  C. Filsfils, Ed.
Request for Comments: 8604                           Cisco Systems, Inc.
Category: Informational                                       S. Previdi
ISSN: 2070-1721                                      Huawei Technologies
                                                           G. Dawra, Ed.
                                                                LinkedIn
                                                           W. Henderickx
                                                                   Nokia
                                                               D. Cooper
                                                             CenturyLink
                                                               June 2019
        

Interconnecting Millions of Endpoints with Segment Routing

通过段路由互连数百万个端点

Abstract

摘要

This document describes an application of Segment Routing to scale the network to support hundreds of thousands of network nodes, and tens of millions of physical underlay endpoints. This use case can be applied to the interconnection of massive-scale Data Centers (DCs) and/or large aggregation networks. Forwarding tables of midpoint and leaf nodes only require a few tens of thousands of entries. This may be achieved by the inherently scaleable nature of Segment Routing and the design proposed in this document.

本文档描述了分段路由的应用,以扩展网络以支持数十万个网络节点和数千万个物理基线端点。此用例可应用于大规模数据中心(DCs)和/或大型聚合网络的互连。中点和叶节点的转发表只需要数万个条目。这可以通过分段布线的固有可伸缩性和本文件中提出的设计来实现。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not candidates for any level of Internet Standard; see Section 2 of RFC 7841.

这是对RFC系列的贡献,独立于任何其他RFC流。RFC编辑器已选择自行发布此文档,并且未声明其对实现或部署的价值。RFC编辑批准发布的文件不适用于任何级别的互联网标准;见RFC 7841第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8604.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问https://www.rfc-editor.org/info/rfc8604.

Copyright Notice

版权公告

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

版权(c)2019 IETF信托基金和被确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(https://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。

Table of Contents

目录

   1. Introduction ....................................................3
   2. Terminology .....................................................3
   3. Reference Design ................................................3
   4. Control Plane ...................................................5
   5. Illustration of the Scale .......................................5
   6. Design Options ..................................................6
      6.1. Segment Routing Global Block (SRGB) Size ...................6
      6.2. Redistribution of Routes for Agg Nodes .....................7
      6.3. Sizing and Hierarchy .......................................7
      6.4. Local Segments to Hosts/Servers ............................7
      6.5. Compressed SRTE Policies ...................................7
   7. Deployment Model ................................................8
   8. Benefits ........................................................8
      8.1. Simplified Operations ......................................8
      8.2. Inter-domain SLAs ..........................................8
      8.3. Scale ......................................................9
      8.4. ECMP .......................................................9
   9. IANA Considerations .............................................9
   10. Manageability Considerations ...................................9
   11. Security Considerations ........................................9
   12. Informative References .........................................9
   Acknowledgements ..................................................10
   Contributors ......................................................10
   Authors' Addresses ................................................11
        
   1. Introduction ....................................................3
   2. Terminology .....................................................3
   3. Reference Design ................................................3
   4. Control Plane ...................................................5
   5. Illustration of the Scale .......................................5
   6. Design Options ..................................................6
      6.1. Segment Routing Global Block (SRGB) Size ...................6
      6.2. Redistribution of Routes for Agg Nodes .....................7
      6.3. Sizing and Hierarchy .......................................7
      6.4. Local Segments to Hosts/Servers ............................7
      6.5. Compressed SRTE Policies ...................................7
   7. Deployment Model ................................................8
   8. Benefits ........................................................8
      8.1. Simplified Operations ......................................8
      8.2. Inter-domain SLAs ..........................................8
      8.3. Scale ......................................................9
      8.4. ECMP .......................................................9
   9. IANA Considerations .............................................9
   10. Manageability Considerations ...................................9
   11. Security Considerations ........................................9
   12. Informative References .........................................9
   Acknowledgements ..................................................10
   Contributors ......................................................10
   Authors' Addresses ................................................11
        
1. Introduction
1. 介绍

This document describes how Segment Routing (SR) can be used to interconnect millions of endpoints.

本文档描述了如何使用段路由(SR)互连数百万个端点。

2. Terminology
2. 术语

The following terms and abbreviations are used in this document:

本文件中使用了以下术语和缩写:

      Term          Definition
      -------------------------------------------------------------
      Agg           Aggregation
      BGP           Border Gateway Protocol
      DC            Data Center
      DCI           Data Center Interconnect
      ECMP          Equal-Cost Multipath
      FIB           Forwarding Information Base
      LDP           Label Distribution Protocol
      LFIB          Label Forwarding Information Base
      MPLS          Multiprotocol Label Switching
      PCE           Path Computation Element
      PCEP          Path Computation Element Communication Protocol
      PW            Pseudowire
      SLA           Service Level Agreement
      SR            Segment Routing
      SRTE Policy   Segment Routing Traffic Engineering Policy
      TE            Traffic Engineering
      TI-LFA        Topology Independent Loop-Free Alternate
        
      Term          Definition
      -------------------------------------------------------------
      Agg           Aggregation
      BGP           Border Gateway Protocol
      DC            Data Center
      DCI           Data Center Interconnect
      ECMP          Equal-Cost Multipath
      FIB           Forwarding Information Base
      LDP           Label Distribution Protocol
      LFIB          Label Forwarding Information Base
      MPLS          Multiprotocol Label Switching
      PCE           Path Computation Element
      PCEP          Path Computation Element Communication Protocol
      PW            Pseudowire
      SLA           Service Level Agreement
      SR            Segment Routing
      SRTE Policy   Segment Routing Traffic Engineering Policy
      TE            Traffic Engineering
      TI-LFA        Topology Independent Loop-Free Alternate
        
3. Reference Design
3. 参考设计

The network diagram below illustrates the reference network topology used in this document:

下面的网络图说明了本文档中使用的参考网络拓扑:

           +-------+ +--------+ +--------+ +-------+ +-------+
           A       DCI1       Agg1       Agg3      DCI3      Z
           |  DC1  | |   M1   | |   C    | |   M2  | |  DC2  |
           |       DCI2       Agg2       Agg4      DCI4      |
           +-------+ +--------+ +--------+ +-------+ +-------+
        
           +-------+ +--------+ +--------+ +-------+ +-------+
           A       DCI1       Agg1       Agg3      DCI3      Z
           |  DC1  | |   M1   | |   C    | |   M2  | |  DC2  |
           |       DCI2       Agg2       Agg4      DCI4      |
           +-------+ +--------+ +--------+ +-------+ +-------+
        

Figure 1: Reference Topology

图1:参考拓扑

The following apply to the reference topology above:

以下内容适用于上述参考拓扑:

o Independent ISIS-OSPF/SR instance in core (C) region.

o 核心(C)区域的独立ISIS-OSPF/SR实例。

o Independent ISIS-OSPF/SR instance in Metro1 (M1) region.

o Metro1(M1)地区的独立ISIS-OSPF/SR实例。

o Independent ISIS-OSPF/SR instance in Metro2 (M2) region.

o Metro2(M2)地区的独立ISIS-OSPF/SR实例。

o BGP/SR in DC1.

o DC1中的BGP/SR。

o BGP/SR in DC2.

o DC2中的BGP/SR。

o Agg routes (Agg1, Agg2, Agg3, Agg4) are redistributed from C to M (M1 and M2) and from M to DC domains.

o Agg路由(Agg1、Agg2、Agg3、Agg4)从C重新分配到M(M1和M2),从M重新分配到DC域。

o No other route is advertised or redistributed between regions.

o 没有其他路线在区域之间进行广告或重新分配。

o The same homogeneous Segment Routing Global Block (SRGB) is used throughout the domains (e.g., 16000-23999).

o 整个域(例如16000-23999)使用相同的同质段路由全局块(SRGB)。

o Unique SRGB sub-ranges are allocated to each metro (M) and core (C) domain:

o 为每个metro(M)和core(C)域分配唯一的SRGB子范围:

* The 16000-16999 range is allocated to the core (C) domain/region.

* 16000-16999范围分配给核心(C)域/区域。

* The 17000-17999 range is allocated to the M1 domain/region.

* 17000-17999范围分配给M1域/区域。

* The 18000-18999 range is allocated to the M2 domain/region.

* 18000-18999范围分配给M2域/区域。

* Specifically, the Agg1 router has Segment Identifier (SID) 16001 allocated, and the Agg2 router has SID 16002 allocated.

* 具体而言,Agg1路由器已分配段标识符(SID)16001,而Agg2路由器已分配SID 16002。

* Specifically, the Agg3 router has SID 16003 allocated, and the anycast SID for Agg3 and Agg4 is 16006.

* 具体而言,Agg3路由器已分配SID 16003,Agg3和Agg4的选播SID为16006。

* Specifically, the DCI3 router has SID 18003 allocated, and the anycast SID for DCI3 and DCI4 is 18006.

* 具体地说,DCI3路由器分配了SID 18003,DCI3和DCI4的选播SID为18006。

* Specifically, at the Agg1 router, the binding SID 4001 leads to DCI pair (DCI3, DCI4) via a specific low-latency path {16002, 16003, 18006}.

* 具体地说,在Agg1路由器上,绑定SID 4001经由特定的低延迟路径{160021600318006}导致DCI对(DCI3,DCI4)。

o The same SRGB sub-range is reused within each DC (DC1 and DC2) region for each DC (e.g., 20000-23999). Specifically, nodes A and Z both have SID 20001 allocated to them.

o 每个DC(如20000-23999)的每个DC(DC1和DC2)区域内重复使用相同的SRGB子范围。具体地说,节点A和Z都分配了SID 20001。

4. Control Plane
4. 控制平面

This section provides a high-level description of how a control plane could be implemented using protocol components already defined in other RFCs.

本节提供了如何使用其他RFC中已定义的协议组件实现控制平面的高级描述。

The mechanism through which SRTE Policies are defined, computed, and programmed in the source nodes is outside the scope of this document.

在源节点中定义、计算和编程SRTE策略的机制不在本文档的范围内。

Typically, a controller or a service orchestration system programs node A with a PW to a remote next-hop node Z with a given SLA contract (e.g., low-latency path, disjointness from a specific core plane, disjointness from a different PW service).

通常,控制器或服务编排系统使用给定SLA契约(例如,低延迟路径、与特定核心平面的分离、与不同PW服务的分离)将具有PW的节点a编程到远程下一跳节点Z。

Node A automatically detects that node Z is not reachable. It then automatically sends a PCEP request to an SR PCE for an SRTE policy that provides reachability information for node Z with the requested SLA.

节点A自动检测到节点Z不可访问。然后,它会自动向SR-PCE发送一个PCEP请求,以获取SRTE策略,该策略使用请求的SLA为节点Z提供可达性信息。

The SR PCE [RFC4655] is made of two components: a multi-domain topology and a computation engine. The multi-domain topology is continuously refreshed through BGP - Link State (BGP-LS) feeds [RFC7752] from each domain. The computation engine is designed to implement TE algorithms and provide output in SR Path format. Upon receiving the PCEP request [RFC5440], the SR PCE computes the requested path. The path is expressed through a list of segments (e.g., {16003, 18006, 20001}) and provided to node A.

SR PCE[RFC4655]由两部分组成:多域拓扑和计算引擎。多域拓扑通过来自每个域的BGP链路状态(BGP-LS)馈送[RFC7752]不断刷新。计算引擎设计用于实现TE算法并以SR路径格式提供输出。收到PCEP请求[RFC5440]后,SR PCE计算请求的路径。路径通过段列表(例如,{16003、18006、20001})表示,并提供给节点a。

The SR PCE logs the request as a stateful query and hence is able to recompute the path at each network topology change.

SR PCE将请求记录为有状态查询,因此能够在每次网络拓扑更改时重新计算路径。

Node A receives the PCEP reply with the path (expressed as a segment list). Node A installs the received SRTE policy in the data plane. Node A then automatically steers the PW into that SRTE policy.

节点A接收带有路径(表示为段列表)的PCEP应答。节点A在数据平面中安装收到的SRTE策略。节点A然后自动将PW引导到该SRTE策略中。

5. Illustration of the Scale
5. 比例尺图解

According to the reference topology shown in Figure 1, the following assumptions are made:

根据图1所示的参考拓扑,做出以下假设:

o There is one core domain, and there are 100 leaf (metro) domains.

o 有一个核心域,有100个叶子(metro)域。

o The core domain includes 200 nodes.

o 核心域包括200个节点。

o Two nodes connect each leaf (metro) domain. Each node connecting a leaf domain has a SID allocated. Each pair of nodes connecting a leaf domain also has a common anycast SID. This yields up to 300 prefix segments in total.

o 两个节点连接每个叶(metro)域。连接叶域的每个节点都分配了一个SID。连接叶域的每对节点也有一个公共选播SID。这将总共产生300个前缀段。

o A core node connects only one leaf domain.

o 核心节点仅连接一个叶域。

o Each leaf domain has 6,000 leaf-node segments. Each leaf node has 500 endpoints attached and thus 500 adjacency segments. This yields a total of 3 million endpoints for a leaf domain.

o 每个叶域有6000个叶节点段。每个叶节点有500个端点,因此有500个邻接段。这将为一个叶域产生总共300万个端点。

Based on the above, the network scaling numbers are as follows:

基于上述情况,网络规模数字如下:

o 6,000 leaf-node segments multiplied by 100 leaf domains: 600,000 nodes.

o 6000个叶节点段乘以100个叶域:600000个节点。

o 600,000 nodes multiplied by 500 endpoints: 300 million endpoints.

o 600000个节点乘以500个端点:3亿个端点。

The node scaling numbers are as follows:

节点缩放编号如下所示:

o Leaf-node segment scale: 6,000 leaf-node segments + 300 core-node segments + 500 adjacency segments = 6,800 segments.

o 叶节点分段比例:6000个叶节点分段+300个核心节点分段+500个相邻分段=6800个分段。

o Core-node segment scale: 6,000 leaf-domain segments + 300 core-domain segments = 6,300 segments.

o 核心节点段规模:6000个叶域段+300个核心域段=6300个段。

In the above calculations, the link-adjacency segments are not taken into account. These are local segments and, typically, less than 100 per node.

在上述计算中,未考虑连接相邻段。这些是本地段,通常每个节点少于100个。

It has to be noted that, depending on leaf-node FIB capabilities, leaf domains could be split into multiple smaller domains. In the above example, the leaf domains could be split into six smaller domains so that each leaf node only needs to learn 1,000 leaf-node segments + 300 core-node segments + 500 adjacency segments, yielding a total of 1,800 segments.

必须注意的是,根据叶节点FIB功能的不同,叶域可以划分为多个较小的域。在上面的示例中,叶域可以划分为六个较小的域,以便每个叶节点只需要学习1000个叶节点段+300个核心节点段+500个邻接段,从而产生总共1800个段。

6. Design Options
6. 设计选项

This section describes multiple design options to illustrate scale as described in the previous section.

本节介绍了多个设计选项,以说明上一节中所述的比例。

6.1. Segment Routing Global Block (SRGB) Size
6.1. 段路由全局块(SRGB)大小

In the simplified illustrations in this document, we picked a small homogeneous SRGB range of 16000-23999. In practice, a large-scale design would use a bigger range, such as 16000-80000 or even larger. A larger range provides allocations for various TE applications within a given domain.

在本文档的简化插图中,我们选择了16000-23999的小型同质SRGB范围。实际上,大规模设计将使用更大的范围,例如16000-80000甚至更大。更大的范围为给定域内的各种TE应用程序提供分配。

6.2. Redistribution of Routes for Agg Nodes
6.2. 为Agg节点重新分配路由

The operator might choose to not redistribute the routes for Agg nodes into the Metro/DC domains. In that case, more segments are required in order to express an inter-domain path.

运营商可能选择不将Agg节点的路由重新分配到Metro/DC域。在这种情况下,需要更多的段来表示域间路径。

For example, node A would use an SRTE Policy {DCI1, Agg1, Agg3, DCI3, Z} in order to reach Z instead of {Agg3, DCI3, Z} in the reference design.

例如,节点A将使用SRTE策略{DCI1,Agg1,Agg3,DCI3,Z}来达到Z,而不是参考设计中的{Agg3,DCI3,Z}。

6.3. Sizing and Hierarchy
6.3. 规模和层次结构

The operator is free to choose among a small number of larger leaf domains, a large number of small leaf domains, or a mix of small and large core/leaf domains.

操作员可以在少量较大的叶域、大量较小的叶域或小型和大型核心/叶域的混合中自由选择。

The operator is free to use a two-tier (Core/Metro) or three-tier (Core/Metro/DC) design.

运营商可以自由使用两层(Core/Metro)或三层(Core/Metro/DC)设计。

6.4. Local Segments to Hosts/Servers
6.4. 主机/服务器的本地段

Local segments can be programmed at any leaf node (e.g., node Z) in order to identify locally attached hosts (or Virtual Machines (VMs)). For example, if node Z has bound a local segment 40001 to a local host ZH1, then node A uses the following SRTE Policy in order to reach that host: {16006, 18006, 20001, 40001}. Such a local segment could represent the NID (Network Interface Device) in the context of the service provider access network, or a VM in the context of the DC network.

可以在任何叶节点(例如,节点Z)处编程本地段,以识别本地连接的主机(或虚拟机(VM))。例如,如果节点Z已将本地段40001绑定到本地主机ZH1,则节点a使用以下SRTE策略以到达该主机:{1600618006100014001}。这样的本地段可以表示服务提供商接入网络上下文中的NID(网络接口设备),或者表示DC网络上下文中的VM。

6.5. Compressed SRTE Policies
6.5. 压缩SRTE策略

As an example and according to Section 3, we assume that node A can reach node Z (e.g., with a low-latency SLA contract) via the SRTE policy that consists of the path Agg1, Agg2, Agg3, DCI3/4(anycast), Z. The path is represented by the segment list {16001, 16002, 16003, 18006, 20001}.

作为示例,根据第3节,我们假设节点A可以通过SRTE策略到达节点Z(例如,具有低延迟SLA契约),该策略由路径Agg1、Agg2、Agg3、DCI3/4(选播)、Z组成。路径由段列表{1600116002160031800620001}表示。

It is clear that the control-plane solution can install an SRTE Policy {16002, 16003, 18006} at Agg1, collect the binding SID allocated by Agg1 to that policy (e.g., 4001), and hence program node A with the compressed SRTE Policy {16001, 4001, 20001}.

很明显,控制平面解决方案可以在Agg1上安装SRTE策略{160021600318006},收集Agg1分配给该策略的绑定SID(例如4001),从而使用压缩的SRTE策略{1600140012001}对节点A进行编程。

From node A, 16001 leads to Agg1. Once at Agg1, 4001 leads to the DCI pair (DCI3, DCI4) via a specific low-latency path {16002, 16003, 18006}. Once at that DCI pair, 20001 leads to Z.

16001从节点A引出Agg1。一旦到达Agg1,4001通过特定的低延迟路径{160021600318006}通向DCI对(DCI3,DCI4)。一旦到达该DCI对,20001将通向Z。

Binding SIDs allocated to "intermediate" SRTE Policies achieve the compression of end-to-end SRTE Policies.

绑定分配给“中间”SRTE策略的SID可实现端到端SRTE策略的压缩。

The segment list {16001, 4001, 20001} expresses the same path as {16001, 16002, 16003, 18006, 20001} but with two less segments.

段列表{16001,4001,20001}表示与{16001,16002,16003,18006,20001}相同的路径,但少了两个段。

The binding SID also provides for inherent churn protection.

绑定SID还提供了固有的搅动保护。

When the core topology changes, the control plane can update the low-latency SRTE Policy from Agg1 to the DCI pair to DC2 without updating the SRTE Policy from A to Z.

当核心拓扑发生变化时,控制平面可以将低延迟SRTE策略从Agg1更新为DCI对,而无需将SRTE策略从A更新为Z。

7. Deployment Model
7. 部署模型

It is expected that this design will be used in "green field" deployments as well as interworking ("brown field") deployments with an MPLS design across multiple domains.

预计该设计将用于“绿色领域”部署以及跨多个域的MPLS设计的互通(“棕色领域”)部署。

8. Benefits
8. 利益

The design options illustrated in this document allow interconnections on a very large scale. Millions of endpoints across different domains can be interconnected.

本文件中说明的设计选项允许大规模互连。跨不同域的数百万个端点可以相互连接。

8.1. Simplified Operations
8.1. 简化操作

Two control-plane protocols not needed in this design are LDP and RSVP-TE. No new protocol has been introduced. The design leverages the core IP protocols ISIS, OSPF, BGP, and PCEP with straightforward SR extensions.

本设计中不需要的两个控制平面协议是LDP和RSVP-TE。没有引入新的协议。该设计利用了核心IP协议ISIS、OSPF、BGP和PCEP以及简单的SR扩展。

8.2. Inter-domain SLAs
8.2. 域间SLA

Fast reroute and resiliency are provided by TI-LFA with sub-50-ms fast reroute upon failure of a link, node, or Shared Risk Link Group (SRLG). TI-LFA is described in [SR-TI-LFA].

TI-LFA可在链路、节点或共享风险链路组(SRLG)发生故障时提供低于50毫秒的快速重路由和恢复能力。TI-LFA在[SR-TI-LFA]中描述。

The use of anycast SIDs also provides improved availability and resiliency.

anycast SID的使用还提高了可用性和恢复能力。

Inter-domain SLAs can be delivered (e.g., latency vs. cost-optimized paths, disjointness from backbone planes, disjointness from other services, disjointness between primary and backup paths).

可以提供域间SLA(例如,延迟与成本优化的路径、与主干平面的脱节、与其他服务的脱节、主路径和备份路径之间的脱节)。

Existing inter-domain solutions do not provide any support for SLA contracts. They just provide best-effort reachability across domains.

现有域间解决方案不支持SLA合同。它们只是提供跨域的最大努力可达性。

8.3. Scale
8.3. 规模

In addition to having eliminated the need for LDP and RSVP-TE, per-service midpoint states have also been removed from the network.

除了消除了LDP和RSVP-TE的需要外,还从网络中删除了每服务中点状态。

8.4. ECMP
8.4. ECMP

Each policy (intra-domain or inter-domain, with or without TE) is expressed as a list of segments. Since each segment is optimized for ECMP, the entire policy is optimized for ECMP. The benefit of an anycast prefix segment optimized for ECMP should also be considered (e.g., 16001 load-shares across any gateway from the M1 leaf domain to the Core and 16002 load-shares across any gateway from the Core to the M1 leaf domain).

每个策略(域内或域间,带或不带TE)都表示为段列表。由于每个段都针对ECMP进行了优化,因此整个策略都针对ECMP进行了优化。还应考虑为ECMP优化的选播前缀段的好处(例如,从M1叶域到核心的任何网关上的16001负载共享和从核心到M1叶域的任何网关上的16002负载共享)。

9. IANA Considerations
9. IANA考虑

This document has no IANA actions.

本文档没有IANA操作。

10. Manageability Considerations
10. 可管理性考虑

This document describes an application of SR over the MPLS data plane. SR does not introduce any changes in the MPLS data plane. The manageability considerations described in [RFC8402] apply to the MPLS data plane when used with SR.

本文档描述了SR在MPLS数据平面上的应用。SR不会在MPLS数据平面中引入任何更改。[RFC8402]中描述的可管理性注意事项适用于与SR一起使用时的MPLS数据平面。

11. Security Considerations
11. 安全考虑

This document does not introduce additional security requirements and mechanisms other than those described in [RFC8402].

除[RFC8402]中所述的安全要求和机制外,本文件不引入其他安全要求和机制。

12. Informative References
12. 资料性引用

[RFC4655] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path Computation Element (PCE)-Based Architecture", RFC 4655, DOI 10.17487/RFC4655, August 2006, <https://www.rfc-editor.org/info/rfc4655>.

[RFC4655]Farrel,A.,Vasseur,J.-P.,和J.Ash,“基于路径计算元素(PCE)的体系结构”,RFC 4655,DOI 10.17487/RFC4655,2006年8月<https://www.rfc-editor.org/info/rfc4655>.

[RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation Element (PCE) Communication Protocol (PCEP)", RFC 5440, DOI 10.17487/RFC5440, March 2009, <https://www.rfc-editor.org/info/rfc5440>.

[RFC5440]Vasseur,JP.,Ed.和JL。Le Roux主编,“路径计算元件(PCE)通信协议(PCEP)”,RFC 5440,DOI 10.17487/RFC5440,2009年3月<https://www.rfc-editor.org/info/rfc5440>.

[RFC7752] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and S. Ray, "North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP", RFC 7752, DOI 10.17487/RFC7752, March 2016, <https://www.rfc-editor.org/info/rfc7752>.

[RFC7752]Gredler,H.,Ed.,Medved,J.,Previdi,S.,Farrel,A.,和S.Ray,“使用BGP的链路状态和流量工程(TE)信息的北向分布”,RFC 7752,DOI 10.17487/RFC7752,2016年3月<https://www.rfc-editor.org/info/rfc7752>.

[RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L., Decraene, B., Litkowski, S., and R. Shakir, "Segment Routing Architecture", RFC 8402, DOI 10.17487/RFC8402, July 2018, <https://www.rfc-editor.org/info/rfc8402>.

[RFC8402]Filsfils,C.,Ed.,Previdi,S.,Ed.,Ginsberg,L.,Decarene,B.,Litkowski,S.,和R.Shakir,“段路由架构”,RFC 8402,DOI 10.17487/RFC8402,2018年7月<https://www.rfc-editor.org/info/rfc8402>.

[SR-TI-LFA] Litkowski, S., Bashandy, A., Filsfils, C., Decraene, B., Francois, P., Voyer, D., Clad, F., and P. Camarillo, "Topology Independent Fast Reroute using Segment Routing", Work in Progress, draft-ietf-rtgwg-segment-routing-ti-lfa-01, March 2019.

[SR-TI-LFA]Litkowski,S.,Bashandy,A.,Filsfils,C.,Decaene,B.,Francois,P.,Voyer,D.,Coad,F.,和P.Camarillo,“使用段路由的拓扑独立快速重路由”,正在进行中,草案-ietf-rtgwg-Segment-Routing-TI-LFA-012019年3月。

Acknowledgements

致谢

We would like to thank Giles Heron, Alexander Preusche, Steve Braaten, and Francis Ferguson for their contributions to the content of this document.

我们要感谢Giles Heron、Alexander Preusche、Steve Braaten和Francis Ferguson对本文件内容的贡献。

Contributors

贡献者

The following people substantially contributed to the editing of this document:

以下人员对本文件的编辑做出了重大贡献:

Dennis Cai Individual

丹尼斯·蔡个人

Tim Laberge Individual

蒂姆·拉贝奇个人

Steven Lin Google Inc.

史蒂芬·林谷歌公司。

Bruno Decraene Orange

布鲁诺橙

Luay Jalil Verizon

威瑞森公司

Jeff Tantsura Individual

Jeff Tantsura个人

Rob Shakir Google Inc.

罗伯夏吉尔谷歌公司。

Authors' Addresses

作者地址

Clarence Filsfils (editor) Cisco Systems, Inc. Brussels Belgium

Clarence Filsfils(编辑)思科系统公司比利时布鲁塞尔

   Email: cfilsfil@cisco.com
        
   Email: cfilsfil@cisco.com
        

Stefano Previdi Huawei Technologies

华为技术有限公司

   Email: stefano@previdi.net
        
   Email: stefano@previdi.net
        

Gaurav Dawra (editor) LinkedIn United States of America

Gaurav Dawra(编辑)美国LinkedIn

   Email: gdawra.ietf@gmail.com
        
   Email: gdawra.ietf@gmail.com
        

Wim Henderickx Nokia Copernicuslaan 50 Antwerp 2018 Belgium

Wim Henderickx诺基亚哥白尼50安特卫普2018比利时

   Email: wim.henderickx@nokia.com
        
   Email: wim.henderickx@nokia.com
        

Dave Cooper CenturyLink

戴夫库珀世纪链接

   Email: Dave.Cooper@centurylink.com
        
   Email: Dave.Cooper@centurylink.com