Internet Engineering Task Force (IETF)                   A. Sajassi, Ed.
Request for Comments: 8560                                      S. Salam
Category: Standards Track                                          Cisco
ISSN: 2070-1721                                             N. Del Regno
                                                                 Verizon
                                                              J. Rabadan
                                                                   Nokia
                                                                May 2019
        
Internet Engineering Task Force (IETF)                   A. Sajassi, Ed.
Request for Comments: 8560                                      S. Salam
Category: Standards Track                                          Cisco
ISSN: 2070-1721                                             N. Del Regno
                                                                 Verizon
                                                              J. Rabadan
                                                                   Nokia
                                                                May 2019
        

Seamless Integration of Ethernet VPN (EVPN) with Virtual Private LAN Service (VPLS) and Their Provider Backbone Bridge (PBB) Equivalents

以太网VPN(EVPN)与虚拟专用LAN服务(VPLS)及其提供商骨干网桥(PBB)等价物的无缝集成

Abstract

摘要

This document specifies mechanisms for backward compatibility of Ethernet VPN (EVPN) and Provider Backbone Bridge Ethernet VPN (PBB-EVPN) solutions with Virtual Private LAN Service (VPLS) and Provider Backbone Bridge VPLS (PBB-VPLS) solutions. It also provides mechanisms for the seamless integration of these two technologies in the same MPLS/IP network on a per-VPN-instance basis. Implementation of this document enables service providers to introduce EVPN/PBB-EVPN Provider Edges (PEs) in their brownfield deployments of VPLS/PBB-VPLS networks. This document specifies the control-plane and forwarding behavior needed for the auto-discovery of the following: 1) a VPN instance, 2) multicast and unicast operation, and 3) a Media Access Control (MAC) mobility operation. This enables seamless integration between EVPN and VPLS PEs as well as between PBB-VPLS and PBB-EVPN PEs.

本文档规定了以太网VPN(EVPN)和提供商主干网桥以太网VPN(PBB-EVPN)解决方案与虚拟专用LAN服务(VPLS)和提供商主干网桥VPLS(PBB-VPLS)解决方案的向后兼容性机制。它还提供了基于每个VPN实例在同一MPLS/IP网络中无缝集成这两种技术的机制。本文件的实施使服务提供商能够在其VPLS/PBB-VPLS网络的棕地部署中引入EVPN/PBB-EVPN提供商边缘(PE)。本文档指定了自动发现以下内容所需的控制平面和转发行为:1)VPN实例,2)多播和单播操作,以及3)媒体访问控制(MAC)移动操作。这使得EVPN和VPLS PE之间以及PBB-VPLS和PBB-EVPN PE之间能够无缝集成。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 7841第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8560.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问https://www.rfc-editor.org/info/rfc8560.

Copyright Notice

版权公告

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

版权(c)2019 IETF信托基金和被确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(https://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Specification of Requirements . . . . . . . . . . . . . .   4
     1.2.  Abbreviations . . . . . . . . . . . . . . . . . . . . . .   4
     1.3.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   6
   2.  Requirements  . . . . . . . . . . . . . . . . . . . . . . . .   6
   3.  VPLS Integration with EVPN  . . . . . . . . . . . . . . . . .   7
     3.1.  Capability Discovery  . . . . . . . . . . . . . . . . . .   7
     3.2.  Forwarding Setup and Unicast Operation  . . . . . . . . .   8
     3.3.  MAC Mobility  . . . . . . . . . . . . . . . . . . . . . .   9
     3.4.  Multicast Operation . . . . . . . . . . . . . . . . . . .  10
       3.4.1.  Ingress Replication . . . . . . . . . . . . . . . . .  10
       3.4.2.  P2MP Tunnel . . . . . . . . . . . . . . . . . . . . .  10
   4.  PBB-VPLS Integration with PBB-EVPN  . . . . . . . . . . . . .  10
     4.1.  Capability Discovery  . . . . . . . . . . . . . . . . . .  11
     4.2.  Forwarding Setup and Unicast Operation  . . . . . . . . .  11
     4.3.  MAC Mobility  . . . . . . . . . . . . . . . . . . . . . .  12
     4.4.  Multicast Operation . . . . . . . . . . . . . . . . . . .  12
       4.4.1.  Ingress Replication . . . . . . . . . . . . . . . . .  12
       4.4.2.  P2MP Tunnel: Inclusive Tree . . . . . . . . . . . . .  13
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  13
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  14
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  15
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16
        
   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Specification of Requirements . . . . . . . . . . . . . .   4
     1.2.  Abbreviations . . . . . . . . . . . . . . . . . . . . . .   4
     1.3.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   6
   2.  Requirements  . . . . . . . . . . . . . . . . . . . . . . . .   6
   3.  VPLS Integration with EVPN  . . . . . . . . . . . . . . . . .   7
     3.1.  Capability Discovery  . . . . . . . . . . . . . . . . . .   7
     3.2.  Forwarding Setup and Unicast Operation  . . . . . . . . .   8
     3.3.  MAC Mobility  . . . . . . . . . . . . . . . . . . . . . .   9
     3.4.  Multicast Operation . . . . . . . . . . . . . . . . . . .  10
       3.4.1.  Ingress Replication . . . . . . . . . . . . . . . . .  10
       3.4.2.  P2MP Tunnel . . . . . . . . . . . . . . . . . . . . .  10
   4.  PBB-VPLS Integration with PBB-EVPN  . . . . . . . . . . . . .  10
     4.1.  Capability Discovery  . . . . . . . . . . . . . . . . . .  11
     4.2.  Forwarding Setup and Unicast Operation  . . . . . . . . .  11
     4.3.  MAC Mobility  . . . . . . . . . . . . . . . . . . . . . .  12
     4.4.  Multicast Operation . . . . . . . . . . . . . . . . . . .  12
       4.4.1.  Ingress Replication . . . . . . . . . . . . . . . . .  12
       4.4.2.  P2MP Tunnel: Inclusive Tree . . . . . . . . . . . . .  13
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  13
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  14
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  15
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16
        
1. Introduction
1. 介绍

Virtual Private LAN Service (VPLS) and Provider Backbone Bridging VPLS (PBB-VPLS) are widely deployed Layer 2 VPN (L2VPN) technologies. Many service providers who are looking at adopting Ethernet VPN (EVPN) and Provider Backbone Bridging EVPN (PBB-EVPN) want to preserve their investments in the VPLS and PBB-VPLS networks. Hence, they require mechanisms by which EVPN and PBB-EVPN technologies can be introduced into their brownfield VPLS and PBB-VPLS networks without requiring any upgrades (software or hardware) to these networks. This document specifies procedures for the seamless integration of the two technologies in the same MPLS/IP network. Throughout this document, we use the term "(PBB-)EVPN" to correspond to both EVPN and PBB-EVPN, and we use the term "(PBB-)VPLS" to correspond to both VPLS and PBB-VPLS. This document specifies the control-plane and forwarding behavior needed for 1) auto-discovery of a VPN instance, 2) multicast and unicast operations, and 3) a MAC mobility operation. This enables seamless integration between (PBB-)EVPN Provider Edge (PE) devices and (PBB-)VPLS PEs.

虚拟专用局域网服务(VPLS)和提供商主干桥接VPLS(PBB-VPLS)是广泛部署的第二层VPN(L2VPN)技术。许多正在考虑采用以太网VPN(EVPN)和提供商主干桥接EVPN(PBB-EVPN)的服务提供商希望保留其在VPLS和PBB-VPLS网络中的投资。因此,他们需要将EVPN和PBB-EVPN技术引入其棕地VPLS和PBB-VPLS网络的机制,而无需对这些网络进行任何升级(软件或硬件)。本文件规定了在同一MPLS/IP网络中无缝集成这两种技术的程序。在本文件中,我们使用术语“(PBB-)EVPN”来对应EVPN和PBB-EVPN,并使用术语“(PBB-)VPLS”来对应VPLS和PBB-VPLS。本文档指定了1)VPN实例的自动发现、2)多播和单播操作以及3)MAC移动操作所需的控制平面和转发行为。这使得(PBB-)EVPN提供商边缘(PE)设备和(PBB-)VPLS PE之间能够无缝集成。

                            VPLS PE
                             +---+
                             |PE1|
                             +---+
                               /
        EVPN/VPLS PE  +---------------+   EVPN/VPLS PE
             +---+    |               |   +---+
             |PE4|----|    MPLS/IP    |---|PE5|
             +---+    |     Core      |   +---+
                      |               |
                      +---------------+
                        /        \
                     +---+     +---+
                     |PE2|     |PE3|
                     +---+     +---+
                   VPLS PE     VPLS PE
        
                            VPLS PE
                             +---+
                             |PE1|
                             +---+
                               /
        EVPN/VPLS PE  +---------------+   EVPN/VPLS PE
             +---+    |               |   +---+
             |PE4|----|    MPLS/IP    |---|PE5|
             +---+    |     Core      |   +---+
                      |               |
                      +---------------+
                        /        \
                     +---+     +---+
                     |PE2|     |PE3|
                     +---+     +---+
                   VPLS PE     VPLS PE
        

Figure 1: Seamless Integration of (PBB-)EVPN and (PBB-)VPLS

图1:(PBB-)EVPN和(PBB-)VPL的无缝集成

Section 2 provides the details of the requirements. Section 3 specifies procedures for the seamless integration of VPLS and EVPN networks. Section 4 specifies procedures for the seamless integration of PBB-VPLS and PBB-EVPN networks.

第2节提供了要求的详细信息。第3节规定了VPLS和EVPN网络无缝集成的程序。第4节规定了PBB-VPLS和PBB-EVPN网络无缝集成的程序。

It should be noted that the scenarios for both PBB-VPLS integration with EVPN and VPLS integration with PBB-EVPN are not covered in this document because there haven't been any requirements from service providers for these scenarios; deployments that employ PBB-VPLS

需要注意的是,本文件未涵盖PBB-VPLS与EVPN集成的场景以及VPLS与PBB-EVPN集成的场景,因为服务提供商对这些场景没有任何要求;使用PBB-VPL的部署

typically require PBB encapsulation for various reasons. Hence, it is expected that for those deployments, the evolution path would move from PBB-VPLS towards PBB-EVPN. Furthermore, the evolution path from VPLS is expected to move towards EVPN.

由于各种原因,通常需要PBB封装。因此,预计对于这些部署,演进路径将从PBB-VPLS转向PBB-EVPN。此外,VPLS的进化路径有望向EVPN方向发展。

The seamless integration solution described in this document has the following attributes:

本文档中描述的无缝集成解决方案具有以下属性:

- When ingress replication is used for multi-destination traffic delivery, the solution reduces the scope of MMRP (which is a soft-state protocol defined in Clause 10 of [IEEE.802.1Q]) to only that of existing VPLS PEs and uses the more robust BGP-based mechanism for multicast pruning among new EVPN PEs.

- 当入口复制用于多目的地流量交付时,该解决方案将MMRP(这是[IEEE.802.1Q]第10条中定义的软状态协议)的范围缩小为仅现有VPLS PE的范围,并使用更健壮的基于BGP的机制在新EVPN PE之间进行多播修剪。

- It is completely backward compatible.

- 它是完全向后兼容的。

- New PEs can leverage the extensive multihoming mechanisms and provisioning simplifications of (PBB-)EVPN:

- 新的PEs可以利用广泛的多主机制和(PBB-)EVPN的供应简化:

(a) Auto-sensing of Multihomed Networks (MHNs) / Multihomed Devices (MHDs)

(a) 多宿网络(MHN)/多宿设备(MHD)的自动传感

(b) Auto-discovery of redundancy groups

(b) 冗余组的自动发现

(c) Auto-provisioning of Designated Forwarder election and VLAN carving

(c) 自动设置指定的转发器选择和VLAN划分

1.1. Specification of Requirements
1.1. 需求说明

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“建议”、“不建议”、“可”和“可选”在所有大写字母出现时(如图所示)应按照BCP 14[RFC2119][RFC8174]所述进行解释。

1.2. Abbreviations
1.2. 缩写

B-MAC: Backbone MAC, e.g., the PE's MAC address

B-MAC:主干MAC,例如PE的MAC地址

C-MAC: Customer MAC, e.g., a host or CE's MAC address

C-MAC:客户MAC,例如主机或CE的MAC地址

CE: A Customer Edge device, e.g., a host, router, or switch

CE:客户边缘设备,例如主机、路由器或交换机

ES: Ethernet Segment -- refers to the set of Ethernet links that connects a customer site (device or network) to one or more PEs

ES:以太网段——指将客户站点(设备或网络)连接到一个或多个PE的一组以太网链路

FEC: Forwarding Equivalence Class

转发等价类

FIB: Forwarding Information Base -- an instantiation of a forwarding table on a MAC-VRF

FIB:转发信息库——MAC-VRF上转发表的实例

I-SID: Service Instance Identifier

I-SID:服务实例标识符

LSP: Label Switched Path

标签交换路径

MAC: Media Access Control

媒体访问控制

MAC-VRF: A Virtual Routing and Forwarding table for Media Access Control (MAC) addresses on an EVPN PE

MAC-VRF:EVPN PE上媒体访问控制(MAC)地址的虚拟路由和转发表

MHD: Multihomed Device

多宿设备

MHN: Multihomed Network

多宿网络

MP2P: Multipoint to Point -- an MP2P LSP typically refers to an LSP for unicast traffic as the result of a downstream-assigned label

MP2P:多点对点——MP2P LSP通常是指作为下游分配标签的结果的单播通信的LSP

P2MP: Point to Multipoint -- a P2MP LSP typically refers to an LSP for multicast traffic

P2MP:点对多点——P2MP LSP通常指用于多播通信的LSP

PBB: Provider Backbone Bridge

提供商主干网桥

(PBB-)EVPN: Both PBB-EVPN and EVPN -- this document uses this abbreviation when a given description applies to both technologies

(PBB-)EVPN:PBB-EVPN和EVPN——当给定的描述适用于这两种技术时,本文档使用此缩写

(PBB-)VPLS: Both PBB-VPLS and VPLS -- this document uses this abbreviation when a given description applies to both technologies

(PBB-)VPLS:PBB-VPLS和VPLS——当给定的描述适用于这两种技术时,本文档使用此缩写

PE: Provider Edge device

提供程序边缘设备

PW: Pseudowire

伪线

RIB: Routing Information Base -- an instantiation of a routing table on a MAC-VRF

RIB:路由信息库——MAC-VRF上路由表的实例

VSI: Virtual Switch Instance

虚拟交换机实例

VPLS: Virtual Private LAN Service

虚拟专用局域网服务

VPLS A-D: Virtual Private LAN Service with BGP-based auto-discovery as in [RFC6074]

VPLS A-D:具有基于BGP的自动发现的虚拟专用LAN服务,如[RFC6074]

1.3. Terminology
1.3. 术语

All-Active redundancy mode: When all PEs attached to an Ethernet segment are allowed to forward known unicast traffic to/from that Ethernet segment for a given VLAN, then the Ethernet segment is defined as operating in All-Active redundancy mode.

所有主动冗余模式:当允许连接到以太网段的所有PE将已知单播流量转发到给定VLAN的该以太网段或从该以太网段转发已知单播流量时,以太网段被定义为在所有主动冗余模式下运行。

Bridge table: An instantiation of a broadcast domain on a MAC-VRF (VPN Routing and Forwarding).

桥接表:MAC-VRF(VPN路由和转发)上广播域的实例。

Broadcast domain: In a bridged network, the broadcast domain corresponds to a Virtual LAN (VLAN), where a VLAN is typically represented by a single VLAN ID (VID) but can be represented by several VIDs where Shared VLAN Learning (SVL) is used, per [IEEE.802.1Q].

广播域:在桥接网络中,广播域对应于虚拟LAN(VLAN),其中VLAN通常由单个VLAN ID(VID)表示,但可以由多个VID表示,其中根据[IEEE.802.1Q],使用了共享VLAN学习(SVL)。

Ethernet Tag: An Ethernet Tag identifies a particular broadcast domain, e.g., a VLAN. An EVPN instance consists of one or more broadcast domains.

以太网标签:以太网标签标识特定的广播域,例如VLAN。EVPN实例由一个或多个广播域组成。

Single-Active redundancy mode: When only a single PE, among all the PEs attached to an Ethernet segment, is allowed to forward traffic to/from that Ethernet segment for a given VLAN, then the Ethernet segment is defined as operating in Single-Active redundancy mode.

单一主动冗余模式:当在连接到以太网段的所有PE中,只有一个PE被允许为给定VLAN向/从该以太网段转发流量时,以太网段被定义为在单一主动冗余模式下运行。

2. Requirements
2. 要求

The following are the key requirements for backward compatibility between (PBB-)EVPN and (PBB-)VPLS:

以下是(PBB-)EVPN和(PBB-)VPL之间向后兼容性的关键要求:

1. The solution must allow for staged migration towards (PBB-)EVPN on a site-by-site basis per VPN instance, e.g., new EVPN sites to be provisioned on (PBB-)EVPN Provider Edge devices (PEs).

1. 该解决方案必须允许在每个VPN实例上逐站点分阶段迁移到(PBB-)EVPN,例如,在(PBB-)EVPN提供商边缘设备(PE)上配置新的EVPN站点。

2. The solution must not require any changes to existing VPLS or PBB-VPLS PEs, not even a software upgrade.

2. 解决方案不得要求对现有VPL或PBB-VPLS PE进行任何更改,甚至不需要软件升级。

3. The solution must allow for the coexistence of PE devices running (PBB-)EVPN and (PBB-)VPLS for the same VPN instance and single-homed segments.

3. 该解决方案必须允许运行(PBB-)EVPN和(PBB-)VPLS的PE设备共存于同一VPN实例和单主网段。

4. The solution must support single-active redundancy of multihomed networks and multihomed devices for (PBB-)EVPN PEs.

4. 该解决方案必须支持(PBB-)EVPN PE的多宿网络和多宿设备的单主动冗余。

5. In cases of single-active redundancy, the participant VPN instances may span across both (PBB-)EVPN PEs and (PBB-)VPLS PEs as long as the MHD or MHN is connected to (PBB-)EVPN PEs.

5. 在单个活动冗余的情况下,只要MHD或MHN连接到(PBB-)EVPN PE,参与者VPN实例就可以跨越(PBB-)EVPN PE和(PBB-)VPLS PE。

6. Support of the All-Active redundancy mode across both (PBB-)EVPN PEs and (PBB-)VPLS PEs is outside the scope of this document. All-Active redundancy is not applicable to VPLS and PBB-VPLS. Therefore, when EVPN (or PBB-EVPN) PEs need to operate seamlessly with VPLS (or PBB-VPLS) PEs, they MUST use a redundancy mode that is applicable to VPLS (or PBB-VPLS). This redundancy mode is Single-Active.

6. 在(PBB-)EVPN PEs和(PBB-)VPLS PEs之间支持全主动冗余模式不在本文件范围内。所有主动冗余不适用于VPL和PBB-VPL。因此,当EVPN(或PBB-EVPN)PE需要与VPLS(或PBB-VPLS)PE无缝运行时,它们必须使用适用于VPLS(或PBB-VPLS)的冗余模式。此冗余模式为单激活模式。

These requirements collectively allow for the seamless insertion of (PBB-)EVPN technology into brownfield (PBB-)VPLS deployments.

这些要求共同允许将(PBB-)EVPN技术无缝插入棕地(PBB-)VPLS部署。

3. VPLS Integration with EVPN
3. VPLS与EVPN的集成

In order to support seamless integration with VPLS PEs, this document requires that VPLS PEs support VPLS A-D per [RFC6074], and it requires EVPN PEs to support both BGP EVPN routes per [RFC7432] and VPLS A-D per [RFC6074]. All the logic for seamless integration shall reside on the EVPN PEs. If a VPLS instance is set up without the use of VPLS A-D, it is still possible (but cumbersome) for EVPN PEs to integrate that VPLS instance by manually configuring pseudowires (PWs) to all the VPLS PEs in that instance (i.e., the integration is no longer seamless).

为了支持与VPLS PE的无缝集成,本文件要求VPLS PE根据[RFC6074]支持VPLS A-D,并且要求EVPN PE根据[RFC7432]支持BGP EVPN路由,根据[RFC6074]支持VPLS A-D。无缝集成的所有逻辑应位于EVPN PEs上。如果在不使用VPLS a-D的情况下设置VPLS实例,EVPN PE仍然可以(但很麻烦)通过手动将伪线(PWs)配置到该实例中的所有VPLS PE来集成该VPLS实例(即,集成不再是无缝的)。

3.1. Capability Discovery
3.1. 能力发现

The EVPN PEs MUST advertise both the BGP VPLS auto-discovery (A-D) route as well as the BGP EVPN Inclusive Multicast Ethernet Tag (IMET) route for a given VPN instance. The VPLS PEs only advertise the BGP VPLS A-D route, per the procedures specified in [RFC4761], [RFC4762] and [RFC6074]. The operator may decide to use the same Route Target (RT) to identify a VPN on both EVPN and VPLS networks. In this case, when a VPLS PE receives the EVPN IMET route, it MUST ignore it on the basis that it belongs to an unknown Subsequent Address Family Identifier (SAFI). However, the operator may choose to use two RTs -- one to identify the VPN on the VPLS network and another for the EVPN network -- and employ RT Constrain mechanisms [RFC4684] in order to prevent BGP EVPN routes from reaching the VPLS PEs.

EVPN PEs必须公布给定VPN实例的BGP VPLS自动发现(A-D)路由以及BGP EVPN包含多播以太网标记(IME)路由。根据[RFC4761]、[RFC4762]和[RFC6074]中规定的程序,VPLS PE仅公布BGP VPLS A-D路由。运营商可能决定使用相同的路由目标(RT)来识别EVPN和VPLS网络上的VPN。在这种情况下,当VPLS PE接收到EVPN IME路由时,它必须忽略它,因为它属于未知的后续地址族标识符(SAFI)。然而,运营商可以选择使用两个RTs——一个用于识别VPLS网络上的VPN,另一个用于EVPN网络——并采用RT约束机制[RFC4684],以防止BGP EVPN路由到达VPLS PEs。

When an EVPN PE receives both a VPLS A-D route as well as an EVPN IMET route from a given remote PE for the same VPN instance, it MUST give preference to the EVPN route for the purpose of discovery. This ensures that, at the end of the route exchanges, all EVPN-capable PEs discover other EVPN-capable PEs in addition to the VPLS-only PEs for that VPN instance. Furthermore, all the VPLS-only PEs will discover the EVPN PEs as if they were standard VPLS PEs. In other words, when the discovery phase is complete, the EVPN PEs will have discovered all the PEs in the VPN instance along with their associated

当EVPN PE从同一VPN实例的给定远程PE接收到VPLS a-D路由以及EVPN IME路由时,它必须优先选择EVPN路由以进行发现。这确保了在路由交换结束时,所有支持EVPN的PE除了该VPN实例的仅VPLS的PE之外,还能发现其他支持EVPN的PE。此外,所有仅限VPLS的PE将发现EVPN PE,就像它们是标准VPLS PE一样。换句话说,当发现阶段完成时,EVPN PE将已发现VPN实例中的所有PE及其关联的PE

capability (EVPN or VPLS-only), whereas the VPLS PEs will have discovered all the PEs in the VPN instance as if they were all VPLS-only PEs.

功能(仅限EVPN或VPLS),而VPLS PE将发现VPN实例中的所有PE,就好像它们都是仅限VPLS的PE一样。

3.2. Forwarding Setup and Unicast Operation
3.2. 转发设置和单播操作

The procedures for the forwarding state setup and unicast operation on the VPLS PE are per [RFC8077], [RFC4761], and [RFC4762].

VPLS PE上的转发状态设置和单播操作的过程符合[RFC8077]、[RFC4761]和[RFC4762]。

The procedures for forwarding state setup and unicast operation on the EVPN PE are as follows:

EVPN PE上的转发状态设置和单播操作步骤如下:

- The EVPN PE MUST establish a PW to each remote PE from which it has received only a VPLS A-D route for the corresponding VPN instance and MUST set up the label stack corresponding to the PW FEC. For seamless integration between EVPN and VPLS PEs, the PW that is set up between a pair of VPLS and EVPN PEs is between the VSI of the VPLS PE and the MAC-VRF of the EVPN PE.

- EVPN PE必须为每个远程PE建立一个PW,该远程PE仅接收到对应VPN实例的VPLS a-D路由,并且必须设置与PW FEC对应的标签堆栈。对于EVPN和VPLS PE之间的无缝集成,在一对VPLS和EVPN PE之间设置的PW位于VPLS PE的VSI和EVPN PE的MAC-VRF之间。

- The EVPN PE MUST set up the label stack corresponding to the MP2P VPN unicast FEC to any remote PE that has advertised an EVPN IMET route.

- EVPN PE必须设置与MP2P VPN单播FEC相对应的标签堆栈,该FEC发送到已通告EVPN IMET路由的任何远程PE。

- If an EVPN PE receives a VPLS A-D route from a given PE, it sets up a PW to that PE. If it then receives an EVPN IMET route from the same PE, the EVPN PE MUST bring that PW operationally down.

- 如果EVPN PE接收到来自给定PE的VPLS a-D路由,它将设置到该PE的PW。如果随后收到来自同一PE的EVPN IME路由,则EVPN PE必须使该PW运行下降。

- If an EVPN PE receives an EVPN IMET route followed by a VPLS A-D route from the same PE, then the EVPN PE will set up the PW but MUST keep it operationally down.

- 如果EVPN PE从同一PE接收到EVPN IME路由和VPLS a-D路由,则EVPN PE将设置PW,但必须使其在操作上处于关闭状态。

- In case VPLS A-D is not used in some VPLS PEs, the EVPN PEs need to be provisioned manually with PWs to those remote VPLS PEs for each VPN instance. In that case, if an EVPN PE receives an EVPN IMET route from a PE to which a PW exists, the EVPN PE MUST bring the PW operationally down.

- 如果某些VPLS PE中未使用VPLS A-D,则需要使用PWs为每个VPN实例的远程VPLS PE手动配置EVPN PE。在这种情况下,如果EVPN PE从存在PW的PE接收到EVPN IME路由,则EVPN PE必须使PW运行下降。

When the EVPN PE receives traffic over the VPLS PWs, it learns the associated C-MAC addresses in the data plane. The C-MAC addresses learned over these PWs MUST be injected into the bridge table of the associated MAC-VRF on that EVPN PE. The learned C-MAC addresses MAY also be injected into the RIB/FIB tables of the associated MAC-VRF on that EVPN PE. For seamless integration between EVPN and VPLS PEs, because these PWs belong to the same split-horizon group (see [RFC4761] and [RFC4762]) as the MP2P EVPN service tunnels, the C-MAC addresses learned and associated with the PWs MUST NOT be advertised in the control plane to any remote EVPN PEs. This is because every

当EVPN PE通过VPLS PWs接收通信量时,它在数据平面中学习相关的C-MAC地址。通过这些PWs学习到的C-MAC地址必须注入到该EVPN PE上相关MAC-VRF的桥接表中。还可将读入的C-MAC地址注入该EVPN PE上相关MAC-VRF的RIB/FIB表中。对于EVPN和VPLS PEs之间的无缝集成,由于这些PW属于与MP2P EVPN服务隧道相同的拆分地平线组(请参见[RFC4761]和[RFC4762]),因此,在控制平面中,不得向任何远程EVPN PEs播发与PWs相关联的C-MAC地址。这是因为

EVPN PE can send and receive traffic directly to/from every VPLS PE belonging to the same VPN instance; thus, every EVPN PE can learn the C-MAC addresses over the corresponding PWs directly.

EVPN PE可以直接向属于同一VPN实例的每个VPLS PE发送和接收流量;因此,每个EVPN PE可以通过相应的PWs直接学习C-MAC地址。

The C-MAC addresses learned over local Attachment Circuits (ACs) by an EVPN PE are learned in the data plane. For EVPN PEs, these C-MAC addresses MUST be injected into the corresponding MAC-VRF and advertised in the control plane using BGP EVPN routes. Furthermore, the C-MAC addresses learned in the control plane via the BGP EVPN routes sent by remote EVPN PEs are injected into the corresponding MAC-VRF table.

EVPN PE通过本地连接电路(ACs)学习的C-MAC地址在数据平面中学习。对于EVPN PEs,这些C-MAC地址必须注入到相应的MAC-VRF中,并使用BGP EVPN路由在控制平面中公布。此外,通过远程EVPN PE发送的BGP EVPN路由在控制平面中学习的C-MAC地址被注入到相应的MAC-VRF表中。

In case of a link failure in a single-active Ethernet segment, the EVPN PEs MUST perform both of the following tasks:

如果单个活动以太网段中出现链路故障,EVPN PEs必须执行以下两项任务:

1. send a BGP mass withdraw to the EVPN peers

1. 向EVPN对等方发送BGP质量撤回

2. follow existing VPLS MAC Flush procedures with the VPLS peers

2. 与VPLS对等方遵循现有的VPLS MAC刷新过程

3.3. MAC Mobility
3.3. MAC移动性

In EVPN, host addresses (C-MAC addresses) can move around among EVPN PEs or even between EVPN and VPLS PEs.

在EVPN中,主机地址(C-MAC地址)可以在EVPN PE之间移动,甚至在EVPN和VPLS PE之间移动。

When a C-MAC address moves from an EVPN PE to a VPLS PE, as soon as Broadcast, Unknown Unicast, and Multicast (BUM) traffic is initiated from that MAC address, it is flooded to all other PEs (both VPLS and EVPN PEs), and the receiving PEs update their MAC tables (VSI or MAC-VRF). The EVPN PEs do not advertise the C-MAC addresses learned over the PW to each other because every EVPN PE learns them directly over its associated PW to that VPLS PE. If only known unicast traffic is initiated from the moved C-MAC address toward a known C-MAC, the result can be the black-holing of traffic destined to the C-MAC that has moved until there is BUM traffic that has been originated with the moved C-MAC address as the source MAC address (e.g., as a result of the MAC age-out timer expiring). Such black-holing happens for traffic destined to the moved C-MAC from both EVPN and VPLS PEs and is typical for VPLS PEs.

当C-MAC地址从EVPN PE移动到VPLS PE时,一旦广播、未知单播和多播(BUM)流量从该MAC地址启动,它就会被淹没到所有其他PE(VPLS和EVPN PE),并且接收PE更新其MAC表(VSI或MAC-VRF)。EVPN PE不会相互公布通过PW学习到的C-MAC地址,因为每个EVPN PE直接通过其关联的PW将其学习到该VPLS PE。如果仅从移动的C-MAC地址向已知的C-MAC地址发起已知的单播通信量,则结果可能是目的地为已移动的C-MAC的通信量的黑眼,直到存在以移动的C-MAC地址作为源MAC地址发起的BUM通信量为止(例如,由于MAC超时计时器过期)。这种黑洞发生在从EVPN和VPLS PEs发送到移动的C-MAC的流量中,并且是VPLS PEs的典型情况。

When a C-MAC address moves from a VPLS PE to an EVPN PE, then as soon as any traffic is initiated from that C-MAC address, the C-MAC is learned and advertised in the BGP to other EVPN PEs, and the MAC mobility procedure is performed among EVPN PEs. For BUM traffic, both EVPN and VPLS PEs learn the new location of the moved C-MAC address; however, if there is only known unicast traffic, then only EVPN PEs learn the new location of the C-MAC that has moved and not VPLS PEs. This can result in the black-holing of traffic sent from VPLS PEs destined to the C-MAC that has moved until there is BUM

当C-MAC地址从VPLS-PE移动到EVPN-PE时,一旦从该C-MAC地址发起任何通信量,就在BGP中学习并向其他EVPN-PE播发C-MAC,并且在EVPN-PE之间执行MAC移动过程。对于BUM流量,EVPN和VPLS PEs都会学习移动的C-MAC地址的新位置;但是,如果只有已知的单播通信量,则只有EVPN PE了解已移动的C-MAC的新位置,而不是VPLS PE。这可能导致从VPLS PEs发送到C-MAC的通信量出现黑洞,该C-MAC已移动,直到出现BUM

traffic originated with the moved C-MAC address as the source MAC address (e.g., as a result of the MAC age-out timer expiring). Such black-holing happens for traffic destined to the moved C-MAC for only VPLS PEs but not for EVPN PEs and is typical for VPLS PEs.

以移动的C-MAC地址作为源MAC地址产生的通信量(例如,由于MAC过期计时器过期)。这种黑洞发生在只针对VPLS PEs而不针对EVPN PEs的目的地为移动C-MAC的流量上,并且对于VPLS PEs是典型的。

3.4. Multicast Operation
3.4. 多播操作
3.4.1. Ingress Replication
3.4.1. 入口复制

The procedures for multicast operation on the VPLS PE using ingress replication are per [RFC4761], [RFC4762], and [RFC7080].

根据[RFC4761]、[RFC4762]和[RFC7080],使用入口复制在VPLS PE上进行多播操作的步骤。

The procedures for multicast operation on the EVPN PE for ingress replication are as follows:

用于入口复制的EVPN PE上的多播操作步骤如下:

- The EVPN PE builds a replication sub-list to all the remote EVPN PEs per EVPN instance as the result of the exchange of the EVPN IMET routes per [RFC7432]. This will be referred to as sub-list A. It comprises MP2P service tunnels (for ingress replication) used for delivering EVPN BUM traffic [RFC7432].

- 作为根据[RFC7432]交换EVPN IME路由的结果,EVPN PE为每个EVPN实例的所有远程EVPN PE构建复制子列表。这将被称为子列表A。它包括用于提供EVPN BUM流量的MP2P服务隧道(用于入口复制)[RFC7432]。

- The EVPN PE builds a replication sub-list per VPLS instance to all the remote VPLS PEs. This will be referred to as sub-list B. It comprises PWs from the EVPN PE in question to all the remote VPLS PEs in the same VPLS instance.

- EVPN PE为所有远程VPLS PE构建每个VPLS实例的复制子列表。这将被称为子列表B。它包括从相关EVPN PE到同一VPLS实例中所有远程VPLS PE的PW。

The replication list, maintained per VPN instance, on a given EVPN PE will be the union of sub-list A and sub-list B. The EVPN PE MUST enable split horizon over all the entries in the replication list across both PWs and MP2P service tunnels.

给定EVPN PE上每个VPN实例维护的复制列表将是子列表a和子列表B的联合。EVPN PE必须在PWs和MP2P服务隧道中的复制列表中的所有条目上启用拆分地平线。

3.4.2. P2MP Tunnel
3.4.2. P2MP隧道

The procedures for multicast operation on the EVPN PEs using P2MP tunnels are outside of the scope of this document.

使用P2MP隧道在EVPN PE上进行多播操作的程序不在本文档的范围内。

4. PBB-VPLS Integration with PBB-EVPN
4. PBB-VPLS与PBB-EVPN的集成

In order to support seamless integration between PBB-VPLS and PBB-EVPN PEs, this document requires that PBB-VPLS PEs support VPLS A-D per [RFC6074] and PBB-EVPN PEs support both BGP EVPN routes per [RFC7432] and VPLS A-D per [RFC6074]. All the logic for this seamless integration shall reside on the PBB-EVPN PEs.

为了支持PBB-VPLS和PBB-EVPN PE之间的无缝集成,本文件要求PBB-VPLS PE根据[RFC6074]支持VPLS A-D,PBB-EVPN PE根据[RFC7432]支持BGP EVPN路由,根据[RFC6074]支持VPLS A-D。该无缝集成的所有逻辑应位于PBB-EVPN PEs上。

4.1. Capability Discovery
4.1. 能力发现

The procedures for capability discovery are per Section 3.1.

能力发现程序见第3.1节。

4.2. Forwarding Setup and Unicast Operation
4.2. 转发设置和单播操作

The procedures for forwarding state setup and unicast operation on the PBB-VPLS PE are per [RFC8077] and [RFC7080].

PBB-VPLS PE上的转发状态设置和单播操作的程序符合[RFC8077]和[RFC7080]。

The procedures for forwarding state setup and unicast operation on the PBB-EVPN PE are as follows:

PBB-EVPN PE上的转发状态设置和单播操作步骤如下:

- The PBB-EVPN PE MUST establish a PW to each remote PBB-VPLS PE from which it has received only a VPLS A-D route for the corresponding VPN instance and MUST set up the label stack corresponding to the PW FEC. For seamless integration between PBB-EVPN and PBB-VPLS PEs, the PW that is set up between a pair of PBB-VPLS and PBB-EVPN PEs is between the B-components of PBB-EVPN PE and PBB-VPLS PE per Section 4 of [RFC7041].

- PBB-EVPN PE必须为每个远程PBB-VPLS PE建立一个PW,从该远程PBB-VPLS PE只接收到对应VPN实例的VPLS a-D路由,并且必须设置对应于PW FEC的标签堆栈。对于PBB-EVPN和PBB-VPLS PE之间的无缝集成,根据[RFC7041]第4节,在一对PBB-VPLS和PBB-EVPN PE之间设置的PW位于PBB-EVPN PE和PBB-VPLS PE的B组件之间。

- The PBB-EVPN PE MUST set up the label stack corresponding to the MP2P VPN unicast FEC to any remote PBB-EVPN PE that has advertised an EVPN IMET route.

- PBB-EVPN PE必须设置与MP2P VPN单播FEC相对应的标签堆栈,该FEC发送到已通告EVPN IME路由的任何远程PBB-EVPN PE。

- If a PBB-EVPN PE receives a VPLS A-D route from a given PE, it sets up a PW to that PE. If it then receives an EVPN IMET route from the same PE, the PBB-EVPN PE MUST bring that PW operationally down.

- 如果PBB-EVPN PE接收到来自给定PE的VPLS a-D路由,它将设置到该PE的PW。如果随后接收到来自同一PE的EVPN IME路由,PBB-EVPN PE必须使该PW运行下降。

- If a PBB-EVPN PE receives an EVPN IMET route followed by a VPLS A-D route from the same PE, then the PBB-EVPN PE will set up the PW but MUST keep it operationally down.

- 如果PBB-EVPN PE从同一PE接收到EVPN IME路由和VPLS a-D路由,则PBB-EVPN PE将设置PW,但必须使其在操作上处于关闭状态。

- In case VPLS A-D is not used in some PBB-VPLS PEs, the PBB-EVPN PEs need to be provisioned manually with PWs to those remote PBB-VPLS PEs for each VPN instance. In that case, if a PBB-EVPN PE receives an EVPN IMET route from a PE to which a PW exists, the PBB-EVPN PE MUST bring the PW operationally down.

- 如果某些PBB-VPLS PE中未使用VPLS A-D,则需要使用PWs为每个VPN实例的远程PBB-VPLS PE手动配置PBB-EVPN PE。在这种情况下,如果PBB-EVPN PE从存在PW的PE接收到EVPN IME路由,则PBB-EVPN PE必须使PW运行下降。

- When the PBB-EVPN PE receives traffic over the PBB-VPLS PWs, it learns the associated B-MAC addresses in the data plane. The B-MAC addresses learned over these PWs MUST be injected into the bridge table of the associated MAC-VRF on that PBB-EVPN PE. The learned B-MAC addresses MAY also be injected into the RIB/FIB tables of the associated MAC-VRF on that BPP-EVPN PE. For seamless integration between PBB-EVPN and PBB-VPLS PEs, since these PWs belong to the same split-horizon group as the MP2P EVPN service tunnels, the B-MAC addresses learned and associated with

- 当PBB-EVPN PE通过PBB-VPLS PWs接收流量时,它在数据平面中学习相关的B-MAC地址。通过这些PWs学习到的B-MAC地址必须注入该PBB-EVPN PE上相关MAC-VRF的桥接表中。还可以将读入的B-MAC地址注入该BPP-EVPN PE上相关MAC-VRF的RIB/FIB表中。为了实现PBB-EVPN和PBB-VPLS PEs之间的无缝集成,由于这些PW与MP2P EVPN服务隧道属于同一个拆分地平线组,因此B-MAC地址与

the PWs MUST NOT be advertised in the control plane to any remote PBB-EVPN PEs. This is because every PBB-EVPN PE can send and receive traffic directly to/from every PBB-VPLS PE belonging to the same VPN instance.

PWs不得在控制平面上向任何远程PBB-EVPN PE播发。这是因为每个PBB-EVPN PE可以直接向/从属于同一VPN实例的每个PBB-VPLS PE发送和接收流量。

- The C-MAC addresses learned over local Attachment Circuits (ACs) by a PBB-EVPN PE are learned in the data plane. For PBB-EVPN PEs, these C-MAC addresses are learned in the I-component of PBB-EVPN PEs and are not advertised in the control plane, per [RFC7623].

- PBB-EVPN PE通过本地连接电路(ACs)读入的C-MAC地址在数据平面中读入。对于PBB-EVPN PE,根据[RFC7623],这些C-MAC地址在PBB-EVPN PE的I组件中学习,并且不在控制平面中公布。

- The B-MAC addresses learned in the control plane via the BGP EVPN routes sent by remote PBB-EVPN PEs are injected into the corresponding MAC-VRF table.

- 通过远程PBB-EVPN PE发送的BGP EVPN路由在控制平面中学习的B-MAC地址被注入到相应的MAC-VRF表中。

In case of a link failure in a single-active Ethernet segment, the PBB-EVPN PEs MUST perform both of the following tasks:

如果单个活动以太网段中出现链路故障,PBB-EVPN PEs必须执行以下两项任务:

1. send a BGP B-MAC withdraw message to the PBB-EVPN peers *or* MAC advertisement with the MAC Mobility extended community

1. 向具有MAC移动扩展社区的PBB-EVPN对等方*或*MAC广告发送BGP B-MAC撤回消息

2. follow existing VPLS MAC Flush procedures with the PBB-VPLS peers

2. 与PBB-VPLS对等方遵循现有的VPLS MAC刷新过程

4.3. MAC Mobility
4.3. MAC移动性

In PBB-EVPN, a given B-MAC address can be learned either over the BGP control plane from a remote PBB-EVPN PE or in the data plane over a PW from a remote PBB-VPLS PE. There is no mobility associated with B-MAC addresses in this context. Hence, when the same B-MAC address shows up behind both a remote PBB-VPLS PE as well as a PBB-EVPN PE, the local PE can deduce that it is an anomaly and SHOULD notify the operator.

在PBB-EVPN中,给定的B-MAC地址可以通过BGP控制平面从远程PBB-EVPN PE学习,也可以通过PW在数据平面从远程PBB-VPLS PE学习。在此上下文中,没有与B-MAC地址相关联的移动性。因此,当同一个B-MAC地址出现在远程PBB-VPLS PE和PBB-EVPN PE后面时,本地PE可以推断这是一个异常,并应通知操作员。

4.4. Multicast Operation
4.4. 多播操作
4.4.1. Ingress Replication
4.4.1. 入口复制

The procedures for multicast operation on the PBB-VPLS PE using ingress replication are per [RFC7041] and [RFC7080].

根据[RFC7041]和[RFC7080],使用入口复制在PBB-VPLS PE上进行多播操作的步骤。

The procedures for multicast operation on the PBB-EVPN PE for ingress replication are as follows:

用于入口复制的PBB-EVPN PE上的多播操作步骤如下:

- The PBB-EVPN PE builds a replication sub-list per I-SID to all the remote PBB-EVPN PEs in a given VPN instance as a result of the exchange of the EVPN IMET routes, as described in [RFC7623]. This will be referred to as sub-list A. It comprises MP2P service tunnels used for delivering PBB-EVPN BUM traffic.

- 作为交换EVPN IMET路由的结果,PBB-EVPN PE根据I-SID为给定VPN实例中的所有远程PBB-EVPN PE构建复制子列表,如[RFC7623]中所述。这将被称为子列表A。它包括用于提供PBB-EVPN BUM流量的MP2P服务隧道。

- The PBB-EVPN PE builds a replication sub-list per VPN instance to all the remote PBB-VPLS PEs. This will be referred to as sub-list B. It comprises PWs from the PBB-EVPN PE in question to all the remote PBB-VPLS PEs in the same VPN instance.

- PBB-EVPN PE为所有远程PBB-VPLS PE构建每个VPN实例的复制子列表。这将被称为子列表B。它包括从相关PBB-EVPN PE到同一VPN实例中所有远程PBB-VPLS PE的PW。

- The PBB-EVPN PE may further prune sub-list B on a per-I-SID basis by running MMRP (see Clause 10 of [IEEE.802.1Q]) over the PBB-VPLS network. This will be referred to as sub-list C. This list comprises a pruned set of the PWs in sub-list B.

- PBB-EVPN PE可通过在PBB-VPLS网络上运行MMRP(参见[IEEE.802.1Q]第10条),在每个I-SID的基础上进一步删减子列表B。这将被称为子列表C。该列表包含子列表B中经过修剪的PW集。

The replication list maintained per I-SID on a given PBB-EVPN PE will be the union of sub-list A and sub-list B if MMRP is not used and the union of sub-list A and sub-list C if MMRP is used. Note that the PE MUST enable split horizon over all the entries in the replication list, across both pseudowires and MP2P service tunnels.

如果未使用MMRP,则根据给定PBB-EVPN PE上的I-SID维护的复制列表将是子列表a和子列表B的并集,如果使用MMRP,则是子列表a和子列表C的并集。请注意,PE必须在复制列表中的所有条目上跨伪线和MP2P服务隧道启用拆分地平线。

4.4.2. P2MP Tunnel: Inclusive Tree
4.4.2. P2MP隧道:包含树

The procedures for multicast operation on the PBB-EVPN PEs using P2MP tunnels are outside of the scope of this document.

使用P2MP隧道在PBB-EVPN PE上进行多播操作的程序不在本文档的范围内。

5. Security Considerations
5. 安全考虑

All the security considerations in [RFC4761], [RFC4762], [RFC7080], [RFC7432], and [RFC7623] apply directly to this document because it leverages the control-plane and data-plane procedures described in those RFCs.

[RFC4761]、[RFC4762]、[RFC7080]、[RFC7432]和[RFC7623]中的所有安全注意事项直接适用于本文档,因为它利用了这些RFC中描述的控制平面和数据平面过程。

This document does not introduce any new security considerations beyond those of the above RFCs because the advertisements and processing of MAC addresses in BGP follow [RFC7432], and the processing of MAC addresses learned over PWs follows [RFC4761], [RFC4762], and [RFC7080].

除上述RFC外,本文件未引入任何新的安全注意事项,因为BGP中MAC地址的播发和处理遵循[RFC7432],而通过PWs了解的MAC地址的处理遵循[RFC4761]、[RFC4762]和[RFC7080]。

6. IANA Considerations
6. IANA考虑

This document has no IANA actions.

本文档没有IANA操作。

7. References
7. 工具书类
7.1. Normative References
7.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<https://www.rfc-editor.org/info/rfc2119>.

[RFC4761] Kompella, K., Ed. and Y. Rekhter, Ed., "Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling", RFC 4761, DOI 10.17487/RFC4761, January 2007, <https://www.rfc-editor.org/info/rfc4761>.

[RFC4761]Kompella,K.,Ed.和Y.Rekhter,Ed.,“使用BGP进行自动发现和信令的虚拟专用LAN服务(VPLS)”,RFC 4761,DOI 10.17487/RFC4761,2007年1月<https://www.rfc-editor.org/info/rfc4761>.

[RFC4762] Lasserre, M., Ed. and V. Kompella, Ed., "Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling", RFC 4762, DOI 10.17487/RFC4762, January 2007, <https://www.rfc-editor.org/info/rfc4762>.

[RFC4762]Lasserre,M.,Ed.和V.Kompella,Ed.,“使用标签分发协议(LDP)信令的虚拟专用LAN服务(VPLS)”,RFC 4762,DOI 10.17487/RFC4762,2007年1月<https://www.rfc-editor.org/info/rfc4762>.

[RFC6074] Rosen, E., Davie, B., Radoaca, V., and W. Luo, "Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)", RFC 6074, DOI 10.17487/RFC6074, January 2011, <https://www.rfc-editor.org/info/rfc6074>.

[RFC6074]Rosen,E.,Davie,B.,Radoaca,V.,和W.Luo,“第二层虚拟专用网络(L2VPN)中的资源调配、自动发现和信令”,RFC 6074,DOI 10.17487/RFC6074,2011年1月<https://www.rfc-editor.org/info/rfc6074>.

[RFC7041] Balus, F., Ed., Sajassi, A., Ed., and N. Bitar, Ed., "Extensions to the Virtual Private LAN Service (VPLS) Provider Edge (PE) Model for Provider Backbone Bridging", RFC 7041, DOI 10.17487/RFC7041, November 2013, <https://www.rfc-editor.org/info/rfc7041>.

[RFC7041]Balus,F.,Ed.,Sajassi,A.,Ed.,和N.Bitar,Ed.,“虚拟专用LAN服务(VPLS)提供商边缘(PE)模型的扩展,用于提供商主干网桥”,RFC 7041,DOI 10.17487/RFC7041,2013年11月<https://www.rfc-editor.org/info/rfc7041>.

[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A., Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February 2015, <https://www.rfc-editor.org/info/rfc7432>.

[RFC7432]Sajassi,A.,Ed.,Aggarwal,R.,Bitar,N.,Isaac,A.,Uttaro,J.,Drake,J.,和W.Henderickx,“基于BGP MPLS的以太网VPN”,RFC 7432,DOI 10.17487/RFC7432,2015年2月<https://www.rfc-editor.org/info/rfc7432>.

[RFC7623] Sajassi, A., Ed., Salam, S., Bitar, N., Isaac, A., and W. Henderickx, "Provider Backbone Bridging Combined with Ethernet VPN (PBB-EVPN)", RFC 7623, DOI 10.17487/RFC7623, September 2015, <https://www.rfc-editor.org/info/rfc7623>.

[RFC7623]Sajassi,A.,Ed.,Salam,S.,Bitar,N.,Isaac,A.,和W.Henderickx,“提供商主干桥接与以太网VPN(PBB-EVPN)相结合”,RFC 7623,DOI 10.17487/RFC7623,2015年9月<https://www.rfc-editor.org/info/rfc7623>.

[RFC8077] Martini, L., Ed. and G. Heron, Ed., "Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)", STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017, <https://www.rfc-editor.org/info/rfc8077>.

[RFC8077]Martini,L.,Ed.和G.Heron,Ed.,“使用标签分发协议(LDP)的伪线设置和维护”,STD 84,RFC 8077,DOI 10.17487/RFC8077,2017年2月<https://www.rfc-editor.org/info/rfc8077>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8174]Leiba,B.,“RFC 2119关键词中大写与小写的歧义”,BCP 14,RFC 8174,DOI 10.17487/RFC8174,2017年5月<https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References
7.2. 资料性引用

[IEEE.802.1Q] IEEE, "IEEE Standard for Local and Metropolitan Area Network -- Bridges and Bridged Networks", IEEE Standard 802.1Q, DOI 10.1109/IEEESTD.2018.8403927, July 2018.

[IEEE.802.1Q]IEEE,“局域网和城域网的IEEE标准——网桥和桥接网络”,IEEE标准802.1Q,DOI 10.1109/IEEESTD.2018.8403927,2018年7月。

[RFC4684] Marques, P., Bonica, R., Fang, L., Martini, L., Raszuk, R., Patel, K., and J. Guichard, "Constrained Route Distribution for Border Gateway Protocol/MultiProtocol Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual Private Networks (VPNs)", RFC 4684, DOI 10.17487/RFC4684, November 2006, <https://www.rfc-editor.org/info/rfc4684>.

[RFC4684]Marques,P.,Bonica,R.,Fang,L.,Martini,L.,Raszuk,R.,Patel,K.,和J.Guichard,“边界网关协议/多协议标签交换(BGP/MPLS)互联网协议(IP)虚拟专用网络(VPN)的受限路由分布”,RFC 4684,DOI 10.17487/RFC4684,2006年11月<https://www.rfc-editor.org/info/rfc4684>.

[RFC7080] Sajassi, A., Salam, S., Bitar, N., and F. Balus, "Virtual Private LAN Service (VPLS) Interoperability with Provider Backbone Bridges", RFC 7080, DOI 10.17487/RFC7080, December 2013, <https://www.rfc-editor.org/info/rfc7080>.

[RFC7080]Sajassi,A.,Salam,S.,Bitar,N.,和F.Balus,“虚拟专用局域网服务(VPLS)与提供商主干网桥的互操作性”,RFC 7080,DOI 10.17487/RFC70802013年12月<https://www.rfc-editor.org/info/rfc7080>.

Authors' Addresses

作者地址

Ali Sajassi (editor) Cisco

阿里·萨贾西(编辑)思科

   Email: sajassi@cisco.com
        
   Email: sajassi@cisco.com
        

Samer Salam Cisco

萨默萨拉姆思科

   Email: ssalam@cisco.com
        
   Email: ssalam@cisco.com
        

Nick Del Regno Verizon

尼克·德尔·雷格诺·威瑞森

   Email: nick.delregno@verizon.com
        
   Email: nick.delregno@verizon.com
        

Jorge Rabadan Nokia

豪尔赫·拉巴丹诺基亚

   Email: jorge.rabadan@nokia.com
        
   Email: jorge.rabadan@nokia.com