Internet Research Task Force (IRTF) D. McGrew Request for Comments: 8554 M. Curcio Category: Informational S. Fluhrer ISSN: 2070-1721 Cisco Systems April 2019
Internet Research Task Force (IRTF) D. McGrew Request for Comments: 8554 M. Curcio Category: Informational S. Fluhrer ISSN: 2070-1721 Cisco Systems April 2019
Leighton-Micali Hash-Based Signatures
基于Leighton-Michali哈希的签名
Abstract
摘要
This note describes a digital-signature system based on cryptographic hash functions, following the seminal work in this area of Lamport, Diffie, Winternitz, and Merkle, as adapted by Leighton and Micali in 1995. It specifies a one-time signature scheme and a general signature scheme. These systems provide asymmetric authentication without using large integer mathematics and can achieve a high security level. They are suitable for compact implementations, are relatively simple to implement, and are naturally resistant to side-channel attacks. Unlike many other signature systems, hash-based signatures would still be secure even if it proves feasible for an attacker to build a quantum computer.
本说明描述了一种基于加密哈希函数的数字签名系统,该系统是继Lamport、Diffie、Winternitz和Merkle在该领域的开创性工作之后,由Leighton和Micali于1995年改编而成的。它指定了一个一次性签名方案和一个通用签名方案。这些系统在不使用大整数数学的情况下提供非对称身份验证,并且可以实现高安全级别。它们适用于紧凑的实现,实现相对简单,并且自然能够抵抗侧通道攻击。与许多其他签名系统不同,基于散列的签名仍然是安全的,即使证明攻击者构建量子计算机是可行的。
This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF. This has been reviewed by many researchers, both in the research group and outside of it. The Acknowledgements section lists many of them.
本文件是IRTF加密论坛研究组(CFRG)的产品。研究小组内外的许多研究人员对此进行了审查。“确认”部分列出了其中的许多内容。
Status of This Memo
关于下段备忘
This document is not an Internet Standards Track specification; it is published for informational purposes.
本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。
This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-related research and development activities. These results might not be suitable for deployment. This RFC represents the consensus of the Crypto Forum Research Group of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are not candidates for any level of Internet Standard; see Section 2 of RFC 7841.
本文件是互联网研究工作组(IRTF)的产品。IRTF发布互联网相关研究和开发活动的结果。这些结果可能不适合部署。本RFC代表了互联网研究工作组(IRTF)加密论坛研究小组的共识。IRSG批准发布的文件不适用于任何级别的互联网标准;见RFC 7841第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8554.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问https://www.rfc-editor.org/info/rfc8554.
Copyright Notice
版权公告
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
版权(c)2019 IETF信托基金和被确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(https://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。
Table of Contents
目录
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. CFRG Note on Post-Quantum Cryptography . . . . . . . . . 5 1.2. Intellectual Property . . . . . . . . . . . . . . . . . . 6 1.2.1. Disclaimer . . . . . . . . . . . . . . . . . . . . . 6 1.3. Conventions Used in This Document . . . . . . . . . . . . 6 2. Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Data Types . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1. Operators . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2. Functions . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3. Strings of w-Bit Elements . . . . . . . . . . . . . . 8 3.2. Typecodes . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3. Notation and Formats . . . . . . . . . . . . . . . . . . 9 4. LM-OTS One-Time Signatures . . . . . . . . . . . . . . . . . 12 4.1. Parameters . . . . . . . . . . . . . . . . . . . . . . . 13 4.2. Private Key . . . . . . . . . . . . . . . . . . . . . . . 14 4.3. Public Key . . . . . . . . . . . . . . . . . . . . . . . 15 4.4. Checksum . . . . . . . . . . . . . . . . . . . . . . . . 15 4.5. Signature Generation . . . . . . . . . . . . . . . . . . 16 4.6. Signature Verification . . . . . . . . . . . . . . . . . 17 5. Leighton-Micali Signatures . . . . . . . . . . . . . . . . . 19 5.1. Parameters . . . . . . . . . . . . . . . . . . . . . . . 19 5.2. LMS Private Key . . . . . . . . . . . . . . . . . . . . . 20 5.3. LMS Public Key . . . . . . . . . . . . . . . . . . . . . 21 5.4. LMS Signature . . . . . . . . . . . . . . . . . . . . . . 22 5.4.1. LMS Signature Generation . . . . . . . . . . . . . . 23 5.4.2. LMS Signature Verification . . . . . . . . . . . . . 24 6. Hierarchical Signatures . . . . . . . . . . . . . . . . . . . 26 6.1. Key Generation . . . . . . . . . . . . . . . . . . . . . 29 6.2. Signature Generation . . . . . . . . . . . . . . . . . . 30 6.3. Signature Verification . . . . . . . . . . . . . . . . . 32 6.4. Parameter Set Recommendations . . . . . . . . . . . . . . 32 7. Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.1. Security String . . . . . . . . . . . . . . . . . . . . . 35
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. CFRG Note on Post-Quantum Cryptography . . . . . . . . . 5 1.2. Intellectual Property . . . . . . . . . . . . . . . . . . 6 1.2.1. Disclaimer . . . . . . . . . . . . . . . . . . . . . 6 1.3. Conventions Used in This Document . . . . . . . . . . . . 6 2. Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Data Types . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1. Operators . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2. Functions . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3. Strings of w-Bit Elements . . . . . . . . . . . . . . 8 3.2. Typecodes . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3. Notation and Formats . . . . . . . . . . . . . . . . . . 9 4. LM-OTS One-Time Signatures . . . . . . . . . . . . . . . . . 12 4.1. Parameters . . . . . . . . . . . . . . . . . . . . . . . 13 4.2. Private Key . . . . . . . . . . . . . . . . . . . . . . . 14 4.3. Public Key . . . . . . . . . . . . . . . . . . . . . . . 15 4.4. Checksum . . . . . . . . . . . . . . . . . . . . . . . . 15 4.5. Signature Generation . . . . . . . . . . . . . . . . . . 16 4.6. Signature Verification . . . . . . . . . . . . . . . . . 17 5. Leighton-Micali Signatures . . . . . . . . . . . . . . . . . 19 5.1. Parameters . . . . . . . . . . . . . . . . . . . . . . . 19 5.2. LMS Private Key . . . . . . . . . . . . . . . . . . . . . 20 5.3. LMS Public Key . . . . . . . . . . . . . . . . . . . . . 21 5.4. LMS Signature . . . . . . . . . . . . . . . . . . . . . . 22 5.4.1. LMS Signature Generation . . . . . . . . . . . . . . 23 5.4.2. LMS Signature Verification . . . . . . . . . . . . . 24 6. Hierarchical Signatures . . . . . . . . . . . . . . . . . . . 26 6.1. Key Generation . . . . . . . . . . . . . . . . . . . . . 29 6.2. Signature Generation . . . . . . . . . . . . . . . . . . 30 6.3. Signature Verification . . . . . . . . . . . . . . . . . 32 6.4. Parameter Set Recommendations . . . . . . . . . . . . . . 32 7. Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.1. Security String . . . . . . . . . . . . . . . . . . . . . 35
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 36 9. Security Considerations . . . . . . . . . . . . . . . . . . . 38 9.1. Hash Formats . . . . . . . . . . . . . . . . . . . . . . 39 9.2. Stateful Signature Algorithm . . . . . . . . . . . . . . 40 9.3. Security of LM-OTS Checksum . . . . . . . . . . . . . . . 41 10. Comparison with Other Work . . . . . . . . . . . . . . . . . 42 11. References . . . . . . . . . . . . . . . . . . . . . . . . . 43 11.1. Normative References . . . . . . . . . . . . . . . . . . 43 11.2. Informative References . . . . . . . . . . . . . . . . . 43 Appendix A. Pseudorandom Key Generation . . . . . . . . . . . . 45 Appendix B. LM-OTS Parameter Options . . . . . . . . . . . . . . 45 Appendix C. An Iterative Algorithm for Computing an LMS Public Key . . . . . . . . . . . . . . . . . . . . . . . . 47 Appendix D. Method for Deriving Authentication Path for a Signature . . . . . . . . . . . . . . . . . . . . . 48 Appendix E. Example Implementation . . . . . . . . . . . . . . . 49 Appendix F. Test Cases . . . . . . . . . . . . . . . . . . . . . 49 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 60 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 61
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 36 9. Security Considerations . . . . . . . . . . . . . . . . . . . 38 9.1. Hash Formats . . . . . . . . . . . . . . . . . . . . . . 39 9.2. Stateful Signature Algorithm . . . . . . . . . . . . . . 40 9.3. Security of LM-OTS Checksum . . . . . . . . . . . . . . . 41 10. Comparison with Other Work . . . . . . . . . . . . . . . . . 42 11. References . . . . . . . . . . . . . . . . . . . . . . . . . 43 11.1. Normative References . . . . . . . . . . . . . . . . . . 43 11.2. Informative References . . . . . . . . . . . . . . . . . 43 Appendix A. Pseudorandom Key Generation . . . . . . . . . . . . 45 Appendix B. LM-OTS Parameter Options . . . . . . . . . . . . . . 45 Appendix C. An Iterative Algorithm for Computing an LMS Public Key . . . . . . . . . . . . . . . . . . . . . . . . 47 Appendix D. Method for Deriving Authentication Path for a Signature . . . . . . . . . . . . . . . . . . . . . 48 Appendix E. Example Implementation . . . . . . . . . . . . . . . 49 Appendix F. Test Cases . . . . . . . . . . . . . . . . . . . . . 49 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 60 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 61
One-time signature systems, and general-purpose signature systems built out of one-time signature systems, have been known since 1979 [Merkle79], were well studied in the 1990s [USPTO5432852], and have benefited from renewed attention in the last decade. The characteristics of these signature systems are small private and public keys and fast signature generation and verification, but large signatures and moderately slow key generation (in comparison with RSA and ECDSA (Elliptic Curve Digital Signature Algorithm)). Private keys can be made very small by appropriate key generation, for example, as described in Appendix A. In recent years, there has been interest in these systems because of their post-quantum security and their suitability for compact verifier implementations.
一次签名系统和由一次签名系统构建的通用签名系统自1979年就已为人所知[Merkle79],在20世纪90年代得到了很好的研究[USPTO5432852],并在过去十年中再次受到关注。这些签名系统的特点是私钥和公钥较小,签名生成和验证速度较快,但签名较大,密钥生成速度较慢(与RSA和ECDSA(椭圆曲线数字签名算法)相比)。例如,如附录A所述,通过适当的密钥生成,私钥可以变得非常小。近年来,由于这些系统的后量子安全性及其适用于紧凑验证器实现,人们对它们产生了兴趣。
This note describes the Leighton and Micali adaptation [USPTO5432852] of the original Lamport-Diffie-Winternitz-Merkle one-time signature system [Merkle79] [C:Merkle87] [C:Merkle89a] [C:Merkle89b] and general signature system [Merkle79] with enough specificity to ensure interoperability between implementations.
本说明描述了Lamport Diffie Winternitz-Merkle一次性签名系统[Merkle79][C:Merkle87][C:Merkle89a][C:Merkle89b]和通用签名系统[Merkle79]的Leighton和Micali改编[USPTO5432852],具有足够的特殊性,以确保实现之间的互操作性。
A signature system provides asymmetric message authentication. The key-generation algorithm produces a public/private key pair. A message is signed by a private key, producing a signature, and a message/signature pair can be verified by a public key. A One-Time Signature (OTS) system can be used to sign one message securely but will become insecure if more than one is signed with the same public/
签名系统提供非对称消息身份验证。密钥生成算法生成公钥/私钥对。消息由私钥签名,生成签名,消息/签名对可由公钥验证。一次性签名(OTS)系统可用于安全地对一条消息进行签名,但如果使用同一公共密钥对多条消息进行签名,则该系统将变得不安全/
private key pair. An N-time signature system can be used to sign N or fewer messages securely. A Merkle-tree signature scheme is an N-time signature system that uses an OTS system as a component.
私钥对。N次签名系统可用于安全地对N条或更少的消息进行签名。Merkle树签名方案是使用OTS系统作为组件的N次签名系统。
In the Merkle scheme, a binary tree of height h is used to hold 2^h OTS key pairs. Each interior node of the tree holds a value that is the hash of the values of its two child nodes. The public key of the tree is the value of the root node (a recursive hash of the OTS public keys), while the private key of the tree is the collection of all the OTS private keys, together with the index of the next OTS private key to sign the next message with.
在Merkle方案中,高度为h的二叉树用于保存2^h OTS密钥对。树的每个内部节点都保存一个值,该值是其两个子节点的值的散列。树的公钥是根节点的值(OTS公钥的递归散列),而树的私钥是所有OTS私钥的集合,以及下一个OTS私钥的索引,用于签署下一条消息。
In this note, we describe the Leighton-Micali Signature (LMS) system (a variant of the Merkle scheme) with the Hierarchical Signature System (HSS) built on top of it that allows it to efficiently scale to larger numbers of signatures. In order to support signing a large number of messages on resource-constrained systems, the Merkle tree can be subdivided into a number of smaller trees. Only the bottommost tree is used to sign messages, while trees above that are used to sign the public keys of their children. For example, in the simplest case with two levels with both levels consisting of height h trees, the root tree is used to sign 2^h trees with 2^h OTS key pairs, and each second-level tree has 2^h OTS key pairs, for a total of 2^(2h) bottom-level key pairs, and so can sign 2^(2h) messages. The advantage of this scheme is that only the active trees need to be instantiated, which saves both time (for key generation) and space (for key storage). On the other hand, using a multilevel signature scheme increases the size of the signature as well as the signature verification time.
在本说明中,我们描述了Leighton-Micali签名(LMS)系统(Merkle方案的一种变体),其上构建了分层签名系统(HSS),使其能够有效地扩展到更大数量的签名。为了支持在资源受限的系统上对大量消息进行签名,可以将Merkle树细分为许多较小的树。只有最下面的树用于对消息进行签名,而上面的树用于对其子级的公钥进行签名。例如,在最简单的情况下,两个级别都由高度h树组成,根树用于为具有2^h OTS密钥对的2^h树签名,每个第二级树具有2^h OTS密钥对,总共有2^(2h)个底层密钥对,因此可以为2^(2h)消息签名。该方案的优点是只需要实例化活动树,这既节省了时间(用于密钥生成)又节省了空间(用于密钥存储)。另一方面,使用多级签名方案增加了签名的大小和签名验证时间。
This note is structured as follows. Notes on post-quantum cryptography are discussed in Section 1.1. Intellectual property issues are discussed in Section 1.2. The notation used within this note is defined in Section 3, and the public formats are described in Section 3.3. The Leighton-Micali One-Time Signature (LM-OTS) system is described in Section 4, and the LMS and HSS N-time signature systems are described in Sections 5 and 6, respectively. Sufficient detail is provided to ensure interoperability. The rationale for the design decisions is given in Section 7. The IANA registry for these signature systems is described in Section 8. Security considerations are presented in Section 9. Comparison with another hash-based signature algorithm (eXtended Merkle Signature Scheme (XMSS)) is in Section 10.
本说明的结构如下。第1.1节讨论了关于后量子密码术的注释。第1.2节讨论了知识产权问题。第3节定义了本注释中使用的符号,第3.3节描述了公共格式。第4节介绍了Leighton-Micali一次性签名(LM-OTS)系统,第5节和第6节分别介绍了LMS和HSS N次签名系统。提供了足够的细节以确保互操作性。第7节给出了设计决策的基本原理。第8节介绍了这些签名系统的IANA注册。第9节介绍了安全注意事项。与另一种基于散列的签名算法(扩展Merkle签名方案(XMSS))的比较见第10节。
This document represents the rough consensus of the CFRG.
本文件代表了CFRG的大致共识。
All post-quantum algorithms documented by the Crypto Forum Research Group (CFRG) are today considered ready for experimentation and further engineering development (e.g., to establish the impact of performance and sizes on IETF protocols). However, at the time of writing, we do not have significant deployment experience with such algorithms.
加密论坛研究小组(CFRG)记录的所有后量子算法如今被认为已准备好进行实验和进一步的工程开发(例如,确定性能和大小对IETF协议的影响)。然而,在撰写本文时,我们还没有使用此类算法的丰富部署经验。
Many of these algorithms come with specific restrictions, e.g., change of classical interface or less cryptanalysis of proposed parameters than established schemes. The CFRG has consensus that all documents describing post-quantum technologies include the above paragraph and a clear additional warning about any specific restrictions, especially as those might affect use or deployment of the specific scheme. That guidance may be changed over time via document updates.
这些算法中的许多都有特定的限制,例如,改变经典接口或对提议参数的密码分析少于已建立的方案。CFRG一致认为,所有描述后量子技术的文件都包括上述段落和关于任何特定限制的明确附加警告,特别是那些可能影响特定方案的使用或部署的限制。该指南可能会随着时间的推移通过文件更新进行更改。
Additionally, for LMS:
此外,对于LMS:
CFRG consensus is that we are confident in the cryptographic security of the signature schemes described in this document against quantum computers, given the current state of the research community's knowledge about quantum algorithms. Indeed, we are confident that the security of a significant part of the Internet could be made dependent on the signature schemes defined in this document, if developers take care of the following.
CFRG的共识是,鉴于研究界对量子算法的最新知识,我们对本文件中描述的签名方案针对量子计算机的密码安全性充满信心。事实上,我们相信,如果开发人员注意到以下几点,互联网的重要部分的安全性将取决于本文档中定义的签名方案。
In contrast to traditional signature schemes, the signature schemes described in this document are stateful, meaning the secret key changes over time. If a secret key state is used twice, no cryptographic security guarantees remain. In consequence, it becomes feasible to forge a signature on a new message. This is a new property that most developers will not be familiar with and requires careful handling of secret keys. Developers should not use the schemes described here except in systems that prevent the reuse of secret key states.
与传统的签名方案相比,本文中描述的签名方案是有状态的,这意味着密钥随时间而变化。如果两次使用密钥状态,则不会保留任何加密安全保证。因此,在新消息上伪造签名变得可行。这是一个大多数开发人员都不熟悉的新属性,需要仔细处理密钥。开发人员不应使用此处描述的方案,除非在防止重用密钥状态的系统中。
Note that the fact that the schemes described in this document are stateful also implies that classical APIs for digital signatures cannot be used without modification. The API MUST be able to handle a dynamic secret key state; that is, the API MUST allow the signature-generation algorithm to update the secret key state.
请注意,本文档中描述的方案是有状态的,这一事实也意味着不经修改就不能使用用于数字签名的经典API。API必须能够处理动态密钥状态;也就是说,API必须允许签名生成算法更新密钥状态。
This document is based on U.S. Patent 5,432,852, which was issued over twenty years ago and is thus expired.
本文件基于美国专利5432852,该专利于20多年前发布,因此已过期。
This document is not intended as legal advice. Readers are advised to consult with their own legal advisers if they would like a legal interpretation of their rights.
本文件不作为法律意见。如果读者希望获得对其权利的法律解释,建议他们咨询自己的法律顾问。
The IETF policies and processes regarding intellectual property and patents are outlined in [RFC8179] and at <https://datatracker.ietf.org/ipr/about>.
[RFC8179]和中概述了IETF关于知识产权和专利的政策和流程<https://datatracker.ietf.org/ipr/about>.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“建议”、“不建议”、“可”和“可选”在所有大写字母出现时(如图所示)应按照BCP 14[RFC2119][RFC8174]所述进行解释。
The LMS signing algorithm is stateful; it modifies and updates the private key as a side effect of generating a signature. Once a particular value of the private key is used to sign one message, it MUST NOT be used to sign another.
LMS签名算法是有状态的;它修改和更新私钥,作为生成签名的副作用。一旦私钥的特定值用于对一条消息进行签名,则不得将其用于对另一条消息进行签名。
The key-generation algorithm takes as input an indication of the parameters for the signature system. If it is successful, it returns both a private key and a public key. Otherwise, it returns an indication of failure.
密钥生成算法将签名系统的参数指示作为输入。如果成功,它将同时返回私钥和公钥。否则,它将返回故障指示。
The signing algorithm takes as input the message to be signed and the current value of the private key. If successful, it returns a signature and the next value of the private key, if there is such a value. After the private key of an N-time signature system has signed N messages, the signing algorithm returns the signature and an indication that there is no next value of the private key that can be used for signing. If unsuccessful, it returns an indication of failure.
签名算法将要签名的消息和私钥的当前值作为输入。如果成功,它将返回一个签名和私钥的下一个值(如果存在这样的值)。在N次签名系统的私钥对N条消息进行签名后,签名算法返回签名和私钥的下一个值不可用于签名的指示。如果失败,则返回失败指示。
The verification algorithm takes as input the public key, a message, and a signature; it returns an indication of whether or not the signature-and-message pair is valid.
验证算法以公钥、消息和签名作为输入;它返回签名和消息对是否有效的指示。
A message/signature pair is valid if the signature was returned by the signing algorithm upon input of the message and the private key corresponding to the public key; otherwise, the signature and message pair is not valid with probability very close to one.
如果签名算法在输入消息和公钥对应的私钥时返回签名,则消息/签名对有效;否则,签名和消息对是无效的,概率非常接近1。
Bytes and byte strings are the fundamental data types. A single byte is denoted as a pair of hexadecimal digits with a leading "0x". A byte string is an ordered sequence of zero or more bytes and is denoted as an ordered sequence of hexadecimal characters with a leading "0x". For example, 0xe534f0 is a byte string with a length of three. An array of byte strings is an ordered set, indexed starting at zero, in which all strings have the same length.
字节和字节字符串是基本的数据类型。单个字节表示为一对十六进制数字,前导为“0x”。字节字符串是零个或多个字节的有序序列,表示为带前导“0x”的十六进制字符的有序序列。例如,0xe534f0是长度为3的字节字符串。字节字符串数组是一个有序集,索引从零开始,其中所有字符串的长度相同。
Unsigned integers are converted into byte strings by representing them in network byte order. To make the number of bytes in the representation explicit, we define the functions u8str(X), u16str(X), and u32str(X), which take a nonnegative integer X as input and return one-, two-, and four-byte strings, respectively. We also make use of the function strTou32(S), which takes a four-byte string S as input and returns a nonnegative integer; the identity u32str(strTou32(S)) = S holds for any four-byte string S.
无符号整数通过按网络字节顺序表示来转换为字节字符串。为了明确表示中的字节数,我们定义了函数u8str(X)、u16str(X)和u32str(X),它们将非负整数X作为输入,并分别返回一个、两个和四个字节的字符串。我们还使用函数strTou32(S),它接受一个四字节字符串S作为输入,并返回一个非负整数;标识u32str(strTou32(S))=S适用于任何四字节字符串S。
When a and b are real numbers, mathematical operators are defined as follows:
当a和b是实数时,数学运算符的定义如下:
^ : a ^ b denotes the result of a raised to the power of b
^ : a ^ b denotes the result of a raised to the power of b
* : a * b denotes the product of a multiplied by b
* : a * b denotes the product of a multiplied by b
/ : a / b denotes the quotient of a divided by b
/ : a / b denotes the quotient of a divided by b
% : a % b denotes the remainder of the integer division of a by b (with a and b being restricted to integers in this case)
%:a%b表示a除以b的整数的余数(在这种情况下,a和b仅限于整数)
+ : a + b denotes the sum of a and b
+ : a + b denotes the sum of a and b
- : a - b denotes the difference of a and b
- :a-b表示a和b的差值
AND : a AND b denotes the bitwise AND of the two nonnegative integers a and b (represented in binary notation)
和:a和b表示两个非负整数a和b的按位AND(以二进制表示)
The standard order of operations is used when evaluating arithmetic expressions.
计算算术表达式时使用标准运算顺序。
When B is a byte and i is an integer, then B >> i denotes the logical right-shift operation by i bit positions. Similarly, B << i denotes the logical left-shift operation.
当B是字节,i是整数时,则B>>i通过i位位置表示逻辑右移操作。类似地,B<<i表示逻辑左移位操作。
If S and T are byte strings, then S || T denotes the concatenation of S and T. If S and T are equal-length byte strings, then S AND T denotes the bitwise logical and operation.
如果S和T是字节字符串,则S | | T表示S和T的串联。如果S和T是等长字节字符串,则S和T表示按位逻辑“与”运算。
The i-th element in an array A is denoted as A[i].
数组A中的第i个元素表示为[i]。
If r is a nonnegative real number, then we define the following functions:
如果r是非负实数,则我们定义以下函数:
ceil(r) : returns the smallest integer greater than or equal to r
ceil(r):返回大于或等于r的最小整数
floor(r) : returns the largest integer less than or equal to r
下限(r):返回小于或等于r的最大整数
lg(r) : returns the base-2 logarithm of r
lg(r):返回r的以2为底的对数
If S is a byte string, then byte(S, i) denotes its i-th byte, where the index starts at 0 at the left. Hence, byte(S, 0) is the leftmost byte of S, byte(S, 1) is the second byte from the left, and (assuming S is n bytes long) byte(S, n-1) is the rightmost byte of S. In addition, bytes(S, i, j) denotes the range of bytes from the i-th to the j-th byte, inclusive. For example, if S = 0x02040608, then byte(S, 0) is 0x02 and bytes(S, 1, 2) is 0x0406.
如果S是字节字符串,则字节(S,i)表示其第i个字节,其中索引从左侧的0开始。因此,字节(S,0)是S的最左边字节,字节(S,1)是从左边开始的第二个字节,字节(S,n-1)是S的最右边字节(S,n-1)。此外,字节(S,i,j)表示从第i个字节到第j个字节的字节范围。例如,如果S=0x02040608,则字节(S,0)为0x02,字节(S,1,2)为0x0406。
A byte string can be considered to be a string of w-bit unsigned integers; the correspondence is defined by the function coef(S, i, w) as follows:
字节字符串可以被认为是w位无符号整数的字符串;对应关系由函数coef(S,i,w)定义如下:
If S is a string, i is a positive integer, and w is a member of the set { 1, 2, 4, 8 }, then coef(S, i, w) is the i-th, w-bit value, if S is interpreted as a sequence of w-bit values. That is,
如果S是字符串,i是正整数,w是集合{1,2,4,8}的成员,那么coef(S,i,w)是第i,w位值,如果S被解释为w位值序列。就是,
coef(S, i, w) = (2^w - 1) AND ( byte(S, floor(i * w / 8)) >> (8 - (w * (i % (8 / w)) + w)) )
coef(S, i, w) = (2^w - 1) AND ( byte(S, floor(i * w / 8)) >> (8 - (w * (i % (8 / w)) + w)) )
For example, if S is the string 0x1234, then coef(S, 7, 1) is 0 and coef(S, 0, 4) is 1.
例如,如果S是字符串0x1234,那么coef(S,7,1)是0,coef(S,0,4)是1。
S (represented as bits) +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ ^ | coef(S, 7, 1)
S (represented as bits) +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ ^ | coef(S, 7, 1)
S (represented as four-bit values) +-----------+-----------+-----------+-----------+ | 1 | 2 | 3 | 4 | +-----------+-----------+-----------+-----------+ ^ | coef(S, 0, 4)
S (represented as four-bit values) +-----------+-----------+-----------+-----------+ | 1 | 2 | 3 | 4 | +-----------+-----------+-----------+-----------+ ^ | coef(S, 0, 4)
The return value of coef is an unsigned integer. If i is larger than the number of w-bit values in S, then coef(S, i, w) is undefined, and an attempt to compute that value MUST raise an error.
coef的返回值是无符号整数。如果i大于S中w位值的数量,则coef(S,i,w)未定义,并且尝试计算该值必须引发错误。
A typecode is an unsigned integer that is associated with a particular data format. The format of the LM-OTS, LMS, and HSS signatures and public keys all begin with a typecode that indicates the precise details used in that format. These typecodes are represented as four-byte unsigned integers in network byte order; equivalently, they are External Data Representation (XDR) enumerations (see Section 3.3).
类型码是与特定数据格式关联的无符号整数。LM-OTS、LMS和HSS签名和公钥的格式都以一个类型码开头,该类型码表示该格式中使用的精确细节。这些类型码以网络字节顺序表示为四字节无符号整数;等效地,它们是外部数据表示(XDR)枚举(见第3.3节)。
The signature and public key formats are formally defined in XDR to provide an unambiguous, machine-readable definition [RFC4506]. The private key format is not included as it is not needed for interoperability and an implementation MAY use any private key format. However, for clarity, we include an example of private key data in Test Case 2 of Appendix F. Though XDR is used, these formats
签名和公钥格式在XDR中正式定义,以提供明确的机器可读定义[RFC4506]。不包括私钥格式,因为互操作性不需要私钥格式,并且实现可以使用任何私钥格式。然而,为了清楚起见,我们在附录F的测试用例2中包含了一个私钥数据示例。尽管使用了XDR,但这些格式
are simple and easy to parse without any special tools. An illustration of the layout of data in these objects is provided below. The definitions are as follows:
简单且易于解析,无需任何特殊工具。下面提供了这些对象中数据布局的图示。定义如下:
/* one-time signatures */
/* one-time signatures */
enum lmots_algorithm_type { lmots_reserved = 0, lmots_sha256_n32_w1 = 1, lmots_sha256_n32_w2 = 2, lmots_sha256_n32_w4 = 3, lmots_sha256_n32_w8 = 4 };
enum lmots_algorithm_type { lmots_reserved = 0, lmots_sha256_n32_w1 = 1, lmots_sha256_n32_w2 = 2, lmots_sha256_n32_w4 = 3, lmots_sha256_n32_w8 = 4 };
typedef opaque bytestring32[32];
typedef不透明bytestring32[32];
struct lmots_signature_n32_p265 { bytestring32 C; bytestring32 y[265]; };
struct lmots_signature_n32_p265 { bytestring32 C; bytestring32 y[265]; };
struct lmots_signature_n32_p133 { bytestring32 C; bytestring32 y[133]; };
struct lmots_signature_n32_p133 { bytestring32 C; bytestring32 y[133]; };
struct lmots_signature_n32_p67 { bytestring32 C; bytestring32 y[67]; };
struct lmots_signature_n32_p67 { bytestring32 C; bytestring32 y[67]; };
struct lmots_signature_n32_p34 { bytestring32 C; bytestring32 y[34]; };
struct lmots_signature_n32_p34 { bytestring32 C; bytestring32 y[34]; };
union lmots_signature switch (lmots_algorithm_type type) { case lmots_sha256_n32_w1: lmots_signature_n32_p265 sig_n32_p265; case lmots_sha256_n32_w2: lmots_signature_n32_p133 sig_n32_p133; case lmots_sha256_n32_w4: lmots_signature_n32_p67 sig_n32_p67; case lmots_sha256_n32_w8: lmots_signature_n32_p34 sig_n32_p34; default: void; /* error condition */ };
union lmots_signature switch (lmots_algorithm_type type) { case lmots_sha256_n32_w1: lmots_signature_n32_p265 sig_n32_p265; case lmots_sha256_n32_w2: lmots_signature_n32_p133 sig_n32_p133; case lmots_sha256_n32_w4: lmots_signature_n32_p67 sig_n32_p67; case lmots_sha256_n32_w8: lmots_signature_n32_p34 sig_n32_p34; default: void; /* error condition */ };
/* hash-based signatures (hbs) */
/* hash-based signatures (hbs) */
enum lms_algorithm_type {
枚举lms_算法_类型{
lms_reserved = 0, lms_sha256_n32_h5 = 5, lms_sha256_n32_h10 = 6, lms_sha256_n32_h15 = 7, lms_sha256_n32_h20 = 8, lms_sha256_n32_h25 = 9 };
保留lms_=0,lms_sha256_n32_h5=5,lms_sha256_n32_h10=6,lms_sha256_n32_h15=7,lms_sha256_n32_h20=8,lms_sha256_n32_h25=9};
/* leighton-micali signatures (lms) */
/* leighton-micali signatures (lms) */
union lms_path switch (lms_algorithm_type type) { case lms_sha256_n32_h5: bytestring32 path_n32_h5[5]; case lms_sha256_n32_h10: bytestring32 path_n32_h10[10]; case lms_sha256_n32_h15: bytestring32 path_n32_h15[15]; case lms_sha256_n32_h20: bytestring32 path_n32_h20[20]; case lms_sha256_n32_h25: bytestring32 path_n32_h25[25]; default: void; /* error condition */ };
union lms_path switch (lms_algorithm_type type) { case lms_sha256_n32_h5: bytestring32 path_n32_h5[5]; case lms_sha256_n32_h10: bytestring32 path_n32_h10[10]; case lms_sha256_n32_h15: bytestring32 path_n32_h15[15]; case lms_sha256_n32_h20: bytestring32 path_n32_h20[20]; case lms_sha256_n32_h25: bytestring32 path_n32_h25[25]; default: void; /* error condition */ };
struct lms_signature { unsigned int q; lmots_signature lmots_sig; lms_path nodes; };
struct lms_signature { unsigned int q; lmots_signature lmots_sig; lms_path nodes; };
struct lms_key_n32 { lmots_algorithm_type ots_alg_type; opaque I[16]; opaque K[32]; };
struct lms_key_n32 { lmots_algorithm_type ots_alg_type; opaque I[16]; opaque K[32]; };
union lms_public_key switch (lms_algorithm_type type) { case lms_sha256_n32_h5: case lms_sha256_n32_h10: case lms_sha256_n32_h15: case lms_sha256_n32_h20: case lms_sha256_n32_h25: lms_key_n32 z_n32;
union lms_public_key switch (lms_algorithm_type type) { case lms_sha256_n32_h5: case lms_sha256_n32_h10: case lms_sha256_n32_h15: case lms_sha256_n32_h20: case lms_sha256_n32_h25: lms_key_n32 z_n32;
default: void; /* error condition */ };
default: void; /* error condition */ };
/* hierarchical signature system (hss) */
/* hierarchical signature system (hss) */
struct hss_public_key { unsigned int L; lms_public_key pub; };
struct hss_public_key { unsigned int L; lms_public_key pub; };
struct signed_public_key { lms_signature sig; lms_public_key pub; };
struct signed_public_key { lms_signature sig; lms_public_key pub; };
struct hss_signature { signed_public_key signed_keys<7>; lms_signature sig_of_message; };
struct hss_signature { signed_public_key signed_keys<7>; lms_signature sig_of_message; };
This section defines LM-OTS signatures. The signature is used to validate the authenticity of a message by associating a secret private key with a shared public key. These are one-time signatures; each private key MUST be used at most one time to sign any given message.
本节定义了LM-OTS签名。签名用于通过将秘密私钥与共享公钥关联来验证消息的真实性。这些是一次性签名;每个私钥最多只能用于一次对任何给定消息进行签名。
As part of the signing process, a digest of the original message is computed using the cryptographic hash function H (see Section 4.1), and the resulting digest is signed.
作为签名过程的一部分,使用加密哈希函数H(参见第4.1节)计算原始消息的摘要,并对生成的摘要进行签名。
In order to facilitate its use in an N-time signature system, the LM-OTS key generation, signing, and verification algorithms all take as input parameters I and q. The parameter I is a 16-byte string that indicates which Merkle tree this LM-OTS is used with. The parameter q is a 32-bit integer that indicates the leaf of the Merkle tree where the OTS public key appears. These parameters are used as part of the security string, as listed in Section 7.1. When the LM-OTS signature system is used outside of an N-time signature system, the value I MAY be used to differentiate this one-time signature from others; however, the value q MUST be set to the all-zero value.
为了便于在N次签名系统中使用,LM-OTS密钥生成、签名和验证算法都将I和q作为输入参数。参数I是一个16字节的字符串,用于指示此LM-OTS与哪个Merkle树一起使用。参数q是一个32位整数,表示OTS公钥出现的Merkle树的叶子。这些参数用作安全字符串的一部分,如第7.1节所列。当LM-OTS签名系统在N次签名系统之外使用时,值I可用于区分此一次性签名与其他签名;但是,值q必须设置为全零值。
The signature system uses the parameters n and w, which are both positive integers. The algorithm description also makes use of the internal parameters p and ls, which are dependent on n and w. These parameters are summarized as follows:
签名系统使用参数n和w,它们都是正整数。算法描述还利用了依赖于n和w的内部参数p和ls。这些参数总结如下:
n : the number of bytes of the output of the hash function.
n:哈希函数输出的字节数。
w : the width (in bits) of the Winternitz coefficients; that is, the number of bits from the hash or checksum that is used with a single Winternitz chain. It is a member of the set { 1, 2, 4, 8 }.
w:温特尼茨系数的宽度(位);也就是说,与单个Winternitz链一起使用的哈希或校验和的位数。它是集合{1,2,4,8}的一个成员。
p : the number of n-byte string elements that make up the LM-OTS signature. This is a function of n and w; the values for the defined parameter sets are listed in Table 1; it can also be computed by the algorithm given in Appendix B.
p:构成LM-OTS签名的n字节字符串元素数。这是n和w的函数;表1列出了定义参数集的值;它也可以通过附录B中给出的算法进行计算。
ls : the number of left-shift bits used in the checksum function Cksm (defined in Section 4.4).
ls:校验和函数Cksm中使用的左移位位数(定义见第4.4节)。
H : a second-preimage-resistant cryptographic hash function that accepts byte strings of any length and returns an n-byte string.
H:第二个抗预映像的加密哈希函数,它接受任意长度的字节字符串并返回一个n字节字符串。
For more background on the cryptographic security requirements for H, see Section 9.
有关H的加密安全要求的更多背景信息,请参见第9节。
The value of n is determined by the hash function selected for use as part of the LM-OTS algorithm; the choice of this value has a strong effect on the security of the system. The parameter w determines the length of the Winternitz chains computed as a part of the OTS signature (which involve 2^w - 1 invocations of the hash function); it has little effect on security. Increasing w will shorten the signature, but at a cost of a larger computation to generate and verify a signature. The values of p and ls are dependent on the choices of the parameters n and w, as described in Appendix B. Table 1 illustrates various combinations of n, w, p and ls, along with the resulting signature length.
n的值由选择用作LM-OTS算法一部分的散列函数确定;此值的选择对系统的安全性有很大影响。参数w确定作为OTS签名一部分计算的Winternitz链的长度(涉及2^w-1次哈希函数调用);它对安全几乎没有影响。增加w将缩短签名,但生成和验证签名的计算量会增加。p和ls的值取决于参数n和w的选择,如附录B所述。表1说明了n、w、p和ls的各种组合以及产生的签名长度。
The value of w describes a space/time trade-off; increasing the value of w will cause the signature to shrink (by decreasing the value of p) while increasing the amount of time needed to perform operations with it: generate the public key and generate and verify the signature. In general, the LM-OTS signature is 4+n*(p+1) bytes long, and public key generation will take p*(2^w - 1) + 1 hash computations (and signature generation and verification will take approximately half that on average).
w的值描述了空间/时间的权衡;增加w值将导致签名收缩(通过减少p值),同时增加使用它执行操作所需的时间量:生成公钥并生成和验证签名。一般来说,LM-OTS签名的长度为4+n*(p+1)字节,公钥生成需要进行p*(2^w-1)+1次散列计算(签名生成和验证平均需要大约一半的时间)。
+---------------------+--------+----+---+-----+----+---------+ | Parameter Set Name | H | n | w | p | ls | sig_len | +---------------------+--------+----+---+-----+----+---------+ | LMOTS_SHA256_N32_W1 | SHA256 | 32 | 1 | 265 | 7 | 8516 | | | | | | | | | | LMOTS_SHA256_N32_W2 | SHA256 | 32 | 2 | 133 | 6 | 4292 | | | | | | | | | | LMOTS_SHA256_N32_W4 | SHA256 | 32 | 4 | 67 | 4 | 2180 | | | | | | | | | | LMOTS_SHA256_N32_W8 | SHA256 | 32 | 8 | 34 | 0 | 1124 | +---------------------+--------+----+---+-----+----+---------+
+---------------------+--------+----+---+-----+----+---------+ | Parameter Set Name | H | n | w | p | ls | sig_len | +---------------------+--------+----+---+-----+----+---------+ | LMOTS_SHA256_N32_W1 | SHA256 | 32 | 1 | 265 | 7 | 8516 | | | | | | | | | | LMOTS_SHA256_N32_W2 | SHA256 | 32 | 2 | 133 | 6 | 4292 | | | | | | | | | | LMOTS_SHA256_N32_W4 | SHA256 | 32 | 4 | 67 | 4 | 2180 | | | | | | | | | | LMOTS_SHA256_N32_W8 | SHA256 | 32 | 8 | 34 | 0 | 1124 | +---------------------+--------+----+---+-----+----+---------+
Table 1
表1
Here SHA256 denotes the SHA-256 hash function defined in NIST standard [FIPS180].
这里SHA256表示NIST标准[FIPS180]中定义的SHA-256哈希函数。
The format of the LM-OTS private key is an internal matter to the implementation, and this document does not attempt to define it. One possibility is that the private key may consist of a typecode indicating the particular LM-OTS algorithm, an array x[] containing p n-byte strings, and the 16-byte string I and the 4-byte string q. This private key MUST be used to sign (at most) one message. The following algorithm shows pseudocode for generating a private key.
LM-OTS私钥的格式是实现的内部问题,本文档不尝试对其进行定义。一种可能性是私钥可能由表示特定LM-OTS算法的类型码、包含p n字节字符串的数组x[]以及16字节字符串I和4字节字符串q组成。此私钥必须用于签署(最多)一封邮件。以下算法显示用于生成私钥的伪代码。
Algorithm 0: Generating a Private Key
算法0:生成私钥
1. Retrieve the values of q and I (the 16-byte identifier of the LMS public/private key pair) from the LMS tree that this LM-OTS private key will be used with
1. 从该LM-OTS私钥将与之一起使用的LMS树中检索q和I(LMS公钥/私钥对的16字节标识符)的值
2. Set type to the typecode of the algorithm
2. 将type设置为算法的typecode
3. Set n and p according to the typecode and Table 1
3. 根据类型代码和表1设置n和p
4. Compute the array x as follows: for ( i = 0; i < p; i = i + 1 ) { set x[i] to a uniformly random n-byte string }
4. 按如下方式计算数组x:for(i=0;i<p;i=i+1){将x[i]设置为一致随机的n字节字符串}
5. Return u32str(type) || I || u32str(q) || x[0] || x[1] || ... || x[p-1]
5. 返回u32str(type)| I | | u32str(q)| | | x[0]| | | x[1]| |……|x[p-1]
An implementation MAY use a pseudorandom method to compute x[i], as suggested in [Merkle79], page 46. The details of the pseudorandom method do not affect interoperability, but the cryptographic strength
实现可以使用伪随机方法来计算x[i],如[Merkle79]第46页所述。伪随机方法的细节不会影响互操作性,但会影响密码强度
MUST match that of the LM-OTS algorithm. Appendix A provides an example of a pseudorandom method for computing the LM-OTS private key.
必须与LM-OTS算法匹配。附录A提供了用于计算LM-OTS私钥的伪随机方法的示例。
The LM-OTS public key is generated from the private key by iteratively applying the function H to each individual element of x, for 2^w - 1 iterations, then hashing all of the resulting values.
LM-OTS公钥是通过将函数H迭代应用于x的每个单独元素,进行2^w-1次迭代,然后散列所有结果值,从私钥生成的。
The public key is generated from the private key using the following algorithm, or any equivalent process.
使用以下算法或任何等效过程从私钥生成公钥。
Algorithm 1: Generating a One-Time Signature Public Key From a Private Key
算法1:从私钥生成一次性签名公钥
1. Set type to the typecode of the algorithm
1. 将type设置为算法的typecode
2. Set the integers n, p, and w according to the typecode and Table 1
2. 根据类型代码和表1设置整数n、p和w
3. Determine x, I, and q from the private key
3. 根据私钥确定x、I和q
4. Compute the string K as follows: for ( i = 0; i < p; i = i + 1 ) { tmp = x[i] for ( j = 0; j < 2^w - 1; j = j + 1 ) { tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp) } y[i] = tmp } K = H(I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1])
4. 按如下方式计算字符串K:for(i=0;i<p;i=i+1){tmp=x[i]for(j=0;j<2^w-1;j=j+1){tmp=H(i|u32str(q)| u16str(i)| u8str(j)| tmp}K=H(i| | u32str(q)| u16str(i)| | u124; u124str(j)| | | | | | tmp)}K=H(i)| u1240)1240 1240 | | | | | | | |
5. Return u32str(type) || I || u32str(q) || K
5. 返回u32str(类型)| | | | u32str(q)| | K
where D_PBLC is the fixed two-byte value 0x8080, which is used to distinguish the last hash from every other hash in this system.
其中D_PBLC是固定的两字节值0x8080,用于区分此系统中的最后一个散列和其他所有散列。
The public key is the value returned by Algorithm 1.
公钥是算法1返回的值。
A checksum is used to ensure that any forgery attempt that manipulates the elements of an existing signature will be detected. This checksum is needed because an attacker can freely advance any of the Winternitz chains. That is, if this checksum were not present, then an attacker who could find a hash that has every digit larger than the valid hash could replace it (and adjust the Winternitz
校验和用于确保能够检测到任何操纵现有签名元素的伪造企图。之所以需要此校验和,是因为攻击者可以自由推进任何Winternitz链。也就是说,如果该校验和不存在,则攻击者可以找到每一位都大于有效哈希值的哈希值来替换它(并调整Winternitz)
chains). The security property that the checksum provides is detailed in Section 9. The checksum function Cksm is defined as follows, where S denotes the n-byte string that is input to that function, and the value sum is a 16-bit unsigned integer:
链条)。校验和提供的安全属性在第9节中有详细说明。校验和函数Cksm定义如下,其中S表示输入到该函数的n字节字符串,值总和为16位无符号整数:
Algorithm 2: Checksum Calculation
算法2:校验和计算
sum = 0 for ( i = 0; i < (n*8/w); i = i + 1 ) { sum = sum + (2^w - 1) - coef(S, i, w) } return (sum << ls)
sum = 0 for ( i = 0; i < (n*8/w); i = i + 1 ) { sum = sum + (2^w - 1) - coef(S, i, w) } return (sum << ls)
ls is the parameter that shifts the significant bits of the checksum into the positions that will actually be used by the coef function when encoding the digits of the checksum. The actual ls parameter is a function of the n and w parameters; the values for the currently defined parameter sets are shown in Table 1. It is calculated by the algorithm given in Appendix B.
ls是将校验和的有效位移位到coef函数在编码校验和数字时实际使用的位置的参数。实际ls参数是n和w参数的函数;当前定义的参数集的值如表1所示。通过附录B中给出的算法计算。
Because of the left-shift operation, the rightmost bits of the result of Cksm will often be zeros. Due to the value of p, these bits will not be used during signature generation or verification.
由于左移位操作,Cksm结果的最右边的位通常为零。由于p的值,这些位在签名生成或验证期间不会使用。
The LM-OTS signature of a message is generated by doing the following in sequence: prepending the LMS key identifier I, the LMS leaf identifier q, the value D_MESG (0x8181), and the randomizer C to the message; computing the hash; concatenating the checksum of the hash to the hash itself; considering the resulting value as a sequence of w-bit values; and using each of the w-bit values to determine the number of times to apply the function H to the corresponding element of the private key. The outputs of the function H are concatenated together and returned as the signature. The pseudocode for this procedure is shown below.
通过依次执行以下操作生成消息的LM-OTS签名:将LMS密钥标识符I、LMS叶标识符q、值D_MESG(0x8181)和随机化器C前置到消息;计算散列;将哈希的校验和连接到哈希本身;将结果值视为w位值序列;以及使用每个w位值来确定将函数H应用于私钥的对应元素的次数。函数H的输出连接在一起并作为签名返回。此过程的伪代码如下所示。
Algorithm 3: Generating a One-Time Signature From a Private Key and a Message
算法3:从私钥和消息生成一次性签名
1. Set type to the typecode of the algorithm
1. 将type设置为算法的typecode
2. Set n, p, and w according to the typecode and Table 1
2. 根据类型代码和表1设置n、p和w
3. Determine x, I, and q from the private key
3. 根据私钥确定x、I和q
4. Set C to a uniformly random n-byte string
4. 将C设置为统一随机的n字节字符串
5. Compute the array y as follows: Q = H(I || u32str(q) || u16str(D_MESG) || C || message) for ( i = 0; i < p; i = i + 1 ) { a = coef(Q || Cksm(Q), i, w) tmp = x[i] for ( j = 0; j < a; j = j + 1 ) { tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp) } y[i] = tmp }
5. 按如下方式计算数组y:(I=0;I<p;I=I+1){a=coef(Q | Cksm(Q),I,w)tmp=x[I]的(j=0;j<a;j=j+1){tmp=H(I<p;I=I+1){I=coef(Q | Cksm(Q),I,w)tmp=x[I]
6. Return u32str(type) || C || y[0] || ... || y[p-1]
6. 返回u32str(type)| | C | | y[0]| | |……|y[p-1]
Note that this algorithm results in a signature whose elements are intermediate values of the elements computed by the public key algorithm in Section 4.3.
注意,该算法产生的签名的元素是第4.3节中公钥算法计算的元素的中间值。
The signature is the string returned by Algorithm 3. Section 3.3 formally defines the structure of the string as the lmots_signature union.
签名是算法3返回的字符串。第3.3节将字符串的结构正式定义为lmots_签名联合。
In order to verify a message with its signature (an array of n-byte strings, denoted as y), the receiver must "complete" the chain of iterations of H using the w-bit coefficients of the string resulting from the concatenation of the message hash and its checksum. This computation should result in a value that matches the provided public key.
为了验证带有签名的消息(n字节字符串的数组,表示为y),接收方必须使用消息散列及其校验和串联产生的字符串的w位系数“完成”H的迭代链。此计算应产生与提供的公钥匹配的值。
Algorithm 4a: Verifying a Signature and Message Using a Public Key
算法4a:使用公钥验证签名和消息
1. If the public key is not at least four bytes long, return INVALID.
1. 如果公钥长度不超过四个字节,则返回INVALID。
2. Parse pubtype, I, q, and K from the public key as follows: a. pubtype = strTou32(first 4 bytes of public key)
2. 从公钥解析pubtype、I、q和K,如下所示:a。pubtype=strTou32(公钥的前4个字节)
b. Set n according to the pubkey and Table 1; if the public key is not exactly 24 + n bytes long, return INVALID.
b. 根据pubkey和表1设置n;如果公钥的长度不完全为24+n字节,则返回INVALID。
c. I = next 16 bytes of public key
c. I=下一个16字节的公钥
d. q = strTou32(next 4 bytes of public key)
d. q=strTou32(公钥的下4个字节)
e. K = next n bytes of public key
e. K=公钥的下n个字节
3. Compute the public key candidate Kc from the signature, message, pubtype, and the identifiers I and q obtained from the public key, using Algorithm 4b. If Algorithm 4b returns INVALID, then return INVALID.
3. 使用算法4b,从签名、消息、pubtype以及从公钥获得的标识符I和q计算公钥候选Kc。如果算法4b返回INVALID,则返回INVALID。
4. If Kc is equal to K, return VALID; otherwise, return INVALID.
4. 如果Kc等于K,则返回有效值;否则,返回无效。
Algorithm 4b: Computing a Public Key Candidate Kc from a Signature, Message, Signature Typecode pubtype, and Identifiers I, q
算法4b:根据签名、消息、签名类型码pubtype和标识符I、q计算公钥候选Kc
1. If the signature is not at least four bytes long, return INVALID.
1. 如果签名长度不超过四个字节,则返回INVALID。
2. Parse sigtype, C, and y from the signature as follows: a. sigtype = strTou32(first 4 bytes of signature)
2. 从签名中解析sigtype、C和y,如下所示:a。sigtype=strTou32(签名的前4个字节)
b. If sigtype is not equal to pubtype, return INVALID.
b. 如果sigtype不等于pubtype,则返回INVALID。
c. Set n and p according to the pubtype and Table 1; if the signature is not exactly 4 + n * (p+1) bytes long, return INVALID.
c. 根据pubtype和表1设置n和p;如果签名长度不完全为4+n*(p+1)字节,则返回INVALID。
d. C = next n bytes of signature
d. C=签名的下n个字节
e. y[0] = next n bytes of signature y[1] = next n bytes of signature ... y[p-1] = next n bytes of signature
e. y[0]=签名的下一个n字节y[1]=签名的下一个n字节。。。y[p-1]=签名的下n个字节
3. Compute the string Kc as follows: Q = H(I || u32str(q) || u16str(D_MESG) || C || message) for ( i = 0; i < p; i = i + 1 ) { a = coef(Q || Cksm(Q), i, w) tmp = y[i] for ( j = a; j < 2^w - 1; j = j + 1 ) { tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp) } z[i] = tmp } Kc = H(I || u32str(q) || u16str(D_PBLC) || z[0] || z[1] || ... || z[p-1])
3. 以下是:Q=H(I(I(I(I(I(I(I(I(I(I(I)124124;)U(I(I(I(I(I(I(I)I(I=0)I(I(I)I(I(I)I(I(I(I(I)124)I(I(I(I(I)I(I(I(I(I(I(I)124)I(I(I(I(I(I(I)124)124)I(I(I(I(I(I(I(I(I(I(I)))))124;I(I(I(I(I(I(I(I(I(I(I(I(I)))))))124;I(I(I(I(I(I(I(I(I(I(I(I(I(I(I)124))))))))))))))))))))))124;I(I(I(I)Kc=H(I | | | u32str(Q)| | u16str(D | PBLC)| | z[0]| | z[1]| | | | z[p-1])
4. Return Kc.
4. 返回Kc。
The Leighton-Micali Signature (LMS) method can sign a potentially large but fixed number of messages. An LMS system uses two cryptographic components: a one-time signature method and a hash function. Each LMS public/private key pair is associated with a perfect binary tree, each node of which contains an m-byte value, where m is the output length of the hash function. Each leaf of the tree contains the value of the public key of an LM-OTS public/private key pair. The value contained by the root of the tree is the LMS public key. Each interior node is computed by applying the hash function to the concatenation of the values of its children nodes.
Leighton-Michali签名(LMS)方法可以对大量但固定数量的消息进行签名。LMS系统使用两个加密组件:一次性签名方法和哈希函数。每个LMS公钥/私钥对与一个完美二叉树相关联,其中每个节点包含一个m字节值,其中m是哈希函数的输出长度。树的每个叶包含LM-OTS公钥/私钥对的公钥值。树的根包含的值是LMS公钥。通过将哈希函数应用于其子节点的值的串联来计算每个内部节点。
Each node of the tree is associated with a node number, an unsigned integer that is denoted as node_num in the algorithms below, which is computed as follows. The root node has node number 1; for each node with node number N < 2^h (where h is the height of the tree), its left child has node number 2*N, while its right child has node number 2*N + 1. The result of this is that each node within the tree will have a unique node number, and the leaves will have node numbers 2^h, (2^h)+1, (2^h)+2, ..., (2^h)+(2^h)-1. In general, the j-th node at level i has node number 2^i + j. The node number can conveniently be computed when it is needed in the LMS algorithms, as described in those algorithms.
树的每个节点都与一个节点编号相关联,这是一个无符号整数,在下面的算法中表示为node_num,计算如下。根节点具有节点编号1;对于节点号N<2^h(其中h是树的高度)的每个节点,其左子节点号为2*N,而其右子节点号为2*N+1。这样做的结果是树中的每个节点都有一个唯一的节点号,叶子的节点号为2^h,(2^h)+1,(2^h)+2,…(2^h)+(2^h)-1。通常,第i级的第j个节点的节点号为2^i+j。当LMS算法中需要节点数时,可以方便地计算节点数,如这些算法中所述。
An LMS system has the following parameters:
LMS系统具有以下参数:
h : the height of the tree
h:树的高度
m : the number of bytes associated with each node
m:与每个节点关联的字节数
H : a second-preimage-resistant cryptographic hash function that accepts byte strings of any length and returns an m-byte string.
H:第二个抗预映像的加密哈希函数,它接受任意长度的字节字符串并返回m字节字符串。
There are 2^h leaves in the tree.
树上有两片叶子。
The overall strength of LMS signatures is governed by the weaker of the hash function used within the LM-OTS and the hash function used within the LMS system. In order to minimize the risk, these two hash functions SHOULD be the same (so that an attacker could not take advantage of the weaker hash function choice).
LMS签名的总体强度由LM-OTS中使用的哈希函数和LMS系统中使用的哈希函数中较弱的一个决定。为了将风险降至最低,这两个哈希函数应该相同(以便攻击者无法利用较弱的哈希函数选择)。
+--------------------+--------+----+----+ | Name | H | m | h | +--------------------+--------+----+----+ | LMS_SHA256_M32_H5 | SHA256 | 32 | 5 | | | | | | | LMS_SHA256_M32_H10 | SHA256 | 32 | 10 | | | | | | | LMS_SHA256_M32_H15 | SHA256 | 32 | 15 | | | | | | | LMS_SHA256_M32_H20 | SHA256 | 32 | 20 | | | | | | | LMS_SHA256_M32_H25 | SHA256 | 32 | 25 | +--------------------+--------+----+----+
+--------------------+--------+----+----+ | Name | H | m | h | +--------------------+--------+----+----+ | LMS_SHA256_M32_H5 | SHA256 | 32 | 5 | | | | | | | LMS_SHA256_M32_H10 | SHA256 | 32 | 10 | | | | | | | LMS_SHA256_M32_H15 | SHA256 | 32 | 15 | | | | | | | LMS_SHA256_M32_H20 | SHA256 | 32 | 20 | | | | | | | LMS_SHA256_M32_H25 | SHA256 | 32 | 25 | +--------------------+--------+----+----+
Table 2
表2
The format of the LMS private key is an internal matter to the implementation, and this document does not attempt to define it. One possibility is that it may consist of an array OTS_PRIV[] of 2^h LM-OTS private keys and the leaf number q of the next LM-OTS private key that has not yet been used. The q-th element of OTS_PRIV[] is generated using Algorithm 0 with the identifiers I, q. The leaf number q is initialized to zero when the LMS private key is created. The process is as follows:
LMS私钥的格式是实现的内部问题,本文档不尝试对其进行定义。一种可能性是,它可能由2^h LM-OTS私钥的OTS_PRIV[]数组和尚未使用的下一个LM-OTS私钥的叶编号q组成。OTS_PRIV[]的第q个元素是使用带有标识符I,q的算法0生成的。创建LMS私钥时,叶编号q初始化为零。程序如下:
Algorithm 5: Computing an LMS Private Key.
算法5:计算LMS私钥。
1. Determine h and m from the typecode and Table 2.
1. 根据类型代码和表2确定h和m。
2. Set I to a uniformly random 16-byte string.
2. 将I设置为均匀随机的16字节字符串。
3. Compute the array OTS_PRIV[] as follows: for ( q = 0; q < 2^h; q = q + 1) { OTS_PRIV[q] = LM-OTS private key with identifiers I, q }
3. 计算数组OTS_PRIV[]如下:对于(q=0;q<2^h;q=q+1){OTS_PRIV[q]=LM-OTS私钥,标识符为I,q}
4. q = 0
4. q=0
An LMS private key MAY be generated pseudorandomly from a secret value; in this case, the secret value MUST be at least m bytes long and uniformly random and MUST NOT be used for any other purpose than the generation of the LMS private key. The details of how this process is done do not affect interoperability; that is, the public key verification operation is independent of these details. Appendix A provides an example of a pseudorandom method for computing an LMS private key.
LMS私钥可以从秘密值伪随机生成;在这种情况下,秘密值必须至少为m字节长且均匀随机,并且不得用于除生成LMS私钥之外的任何其他目的。如何完成该过程的细节不会影响互操作性;也就是说,公钥验证操作独立于这些细节。附录A提供了用于计算LMS私钥的伪随机方法的示例。
The signature-generation logic uses q as the next leaf to use; hence, step 4 starts it off at the leftmost leaf. Because the signature process increments q after the signature operation, the first signature will have q=0.
签名生成逻辑使用q作为要使用的下一个叶;因此,第4步从最左边的叶子开始。因为签名过程在签名操作之后增加q,所以第一个签名的q=0。
An LMS public key is defined as follows, where we denote the public key final hash value (namely, the K value computed in Algorithm 1) associated with the i-th LM-OTS private key as OTS_PUB_HASH[i], with i ranging from 0 to (2^h)-1. Each instance of an LMS public/private key pair is associated with a balanced binary tree, and the nodes of that tree are indexed from 1 to 2^(h+1)-1. Each node is associated with an m-byte string. The string for the r-th node is denoted as T[r] and defined as
LMS公钥定义如下,其中我们将与第i个LM-OTS私钥相关联的公钥最终散列值(即,在算法1中计算的K值)表示为OTS_PUB_hash[i],i的范围为0到(2^h)-1。LMS公钥/私钥对的每个实例都与一个平衡二叉树相关联,该树的节点索引范围为1到2^(h+1)-1。每个节点都与一个m字节字符串相关联。第r个节点的字符串表示为T[r],定义为
if r >= 2^h: H(I||u32str(r)||u16str(D_LEAF)||OTS_PUB_HASH[r-2^h]) else H(I||u32str(r)||u16str(D_INTR)||T[2*r]||T[2*r+1])
if r >= 2^h: H(I||u32str(r)||u16str(D_LEAF)||OTS_PUB_HASH[r-2^h]) else H(I||u32str(r)||u16str(D_INTR)||T[2*r]||T[2*r+1])
where D_LEAF is the fixed two-byte value 0x8282 and D_INTR is the fixed two-byte value 0x8383, both of which are used to distinguish this hash from every other hash in this system.
其中,D_LEAF是固定的两字节值0x8282,D_INTR是固定的两字节值0x8383,这两个值都用于将此哈希与此系统中的其他哈希区分开来。
When we have r >= 2^h, then we are processing a leaf node (and thus hashing only a single LM-OTS public key). When we have r < 2^h, then we are processing an internal node -- that is, a node with two child nodes that we need to combine.
当r>=2^h时,我们正在处理一个叶节点(因此仅散列一个LM-OTS公钥)。当r<2^h时,我们处理的是一个内部节点——也就是说,一个节点有两个子节点,需要合并。
The LMS public key can be represented as the byte string
LMS公钥可以表示为字节字符串
u32str(type) || u32str(otstype) || I || T[1]
u32str(类型)| | u32str(otstype)| | I | | T[1]
Section 3.3 specifies the format of the type variable. The value otstype is the parameter set for the LM-OTS public/private key pairs used. The value I is the private key identifier and is the value used for all computations for the same LMS tree. The value T[1] can be computed via recursive application of the above equation or by any equivalent method. An iterative procedure is outlined in Appendix C.
第3.3节规定了类型变量的格式。值otstype是为所使用的LM-OTS公钥/私钥对设置的参数。值I是私钥标识符,是用于同一LMS树的所有计算的值。可通过递归应用上述方程或通过任何等效方法计算T[1]值。附录C中概述了迭代程序。
An LMS signature consists of
LMS签名由以下部分组成:
the number q of the leaf associated with the LM-OTS signature, as a four-byte unsigned integer in network byte order, an LM-OTS signature,
与LM-OTS签名关联的叶的编号q,作为网络字节顺序的四字节无符号整数,即LM-OTS签名,
a typecode indicating the particular LMS algorithm,
表示特定LMS算法的类型代码,
an array of h m-byte values that is associated with the path through the tree from the leaf associated with the LM-OTS signature to the root.
一个h m字节值数组,与从与LM-OTS签名关联的叶到根的树路径关联。
Symbolically, the signature can be represented as
从象征意义上讲,签名可以表示为
u32str(q) || lmots_signature || u32str(type) || path[0] || path[1] || path[2] || ... || path[h-1]
u32str(q)| lmots|u签名| | u32str(type)| | |路径[0]| | |路径[1]| |路径[2]| |……|路径[h-1]
Section 3.3 formally defines the format of the signature as the lms_signature structure. The array for a tree with height h will have h values and contains the values of the siblings of (that is, is adjacent to) the nodes on the path from the leaf to the root, where the sibling to node A is the other node that shares node A's parent. In the signature, 0 is counted from the bottom level of the tree, and so path[0] is the value of the node adjacent to leaf node q; path[1] is the second-level node that is adjacent to leaf node q's parent, and so on up the tree until we get to path[h-1], which is the value of the next-to-the-top-level node whose branch the leaf node q does not reside in.
第3.3节正式将签名格式定义为lms_签名结构。高度为h的树的数组将具有h值,并包含从叶到根的路径上节点的同级(即相邻节点)的值,其中节点a的同级是共享节点a父节点的另一个节点。在签名中,0从树的底层开始计数,因此路径[0]是与叶节点q相邻的节点的值;路径[1]是与叶节点q的父节点相邻的第二级节点,依此类推,直到到达路径[h-1],这是叶节点q不在其分支中的顶层节点旁边的值。
Below is a simple example of the authentication path for h=3 and q=2. The leaf marked OTS is the one-time signature that is used to sign the actual message. The nodes on the path from the OTS public key to the root are marked with a *, while the nodes that are used within the path array are marked with **. The values in the path array are those nodes that are siblings of the nodes on the path; path[0] is the leaf** node that is adjacent to the OTS public key (which is the start of the path); path[1] is the T[4]** node that is the sibling of the second node T[5]* on the path, and path[2] is the T[3]** node that is the sibling of the third node T[2]* on the path.
下面是h=3和q=2的身份验证路径的简单示例。标记为OTS的叶是用于对实际消息进行签名的一次性签名。OTS公钥到根目录路径上的节点用*标记,而路径数组中使用的节点用**标记。路径数组中的值是路径上节点的同级节点;路径[0]是与OTS公钥相邻的叶**节点(路径的起点);路径[1]是路径上第二个节点T[5]*的同级节点T[4]**节点,路径[2]是路径上第三个节点T[2]*的同级节点T[3]**节点。
Root | --------------------------------- | | T[2]* T[3]** | | ------------------ ----------------- | | | | T[4]** T[5]* T[6] T[7] | | | | --------- ---------- -------- --------- | | | | | | | | leaf leaf OTS leaf** leaf leaf leaf leaf
Root | --------------------------------- | | T[2]* T[3]** | | ------------------ ----------------- | | | | T[4]** T[5]* T[6] T[7] | | | | --------- ---------- -------- --------- | | | | | | | | leaf leaf OTS leaf** leaf leaf leaf leaf
The idea behind this authentication path is that it allows us to validate the OTS hash with using h path array values and hash computations. What the verifier does is recompute the hashes up the path; first, it hashes the given OTS and path[0] value, giving a tentative T[5]' value. Then, it hashes its path[1] and tentative T[5]' value to get a tentative T[2]' value. Then, it hashes that and the path[2] value to get a tentative Root' value. If that value is the known public key of the Merkle tree, then we can assume that the value T[2]' it got was the correct T[2] value in the original tree, and so the T[5]' value it got was the correct T[5] value in the original tree, and so the OTS public key is the same as in the original and, hence, is correct.
此身份验证路径背后的思想是,它允许我们使用h路径数组值和散列计算来验证OTS散列。验证器所做的是重新计算路径上的散列;首先,它散列给定的OTS和路径[0]值,给出一个暂定的T[5]值。然后,它散列其路径[1]和暂定T[5]'值,以获得暂定T[2]'值。然后,它将其与路径[2]值散列,以获得一个暂定的根值。如果该值是Merkle树的已知公钥,那么我们可以假设它得到的值T[2]是原始树中正确的T[2]值,因此它得到的值T[5]是原始树中正确的T[5]值,因此OTS公钥与原始树中相同,因此是正确的。
To compute the LMS signature of a message with an LMS private key, the signer first computes the LM-OTS signature of the message using the leaf number of the next unused LM-OTS private key. The leaf number q in the signature is set to the leaf number of the LMS private key that was used in the signature. Before releasing the signature, the leaf number q in the LMS private key MUST be incremented to prevent the LM-OTS private key from being used again. If the LMS private key is maintained in nonvolatile memory, then the implementation MUST ensure that the incremented value has been stored before releasing the signature. The issue this tries to prevent is a scenario where a) we generate a signature using one LM-OTS private key and release it to the application, b) before we update the nonvolatile memory, we crash, and c) we reboot and generate a second signature using the same LM-OTS private key. With two different signatures using the same LM-OTS private key, an attacker could potentially generate a forged signature of a third message.
要使用LMS私钥计算消息的LMS签名,签名者首先使用下一个未使用的LM-OTS私钥的叶编号计算消息的LM-OTS签名。签名中的叶编号q设置为签名中使用的LMS私钥的叶编号。在释放签名之前,必须增加LMS私钥中的叶编号q,以防止再次使用LM-OTS私钥。如果LMS私钥保存在非易失性存储器中,则实现必须确保在释放签名之前已存储递增的值。这试图防止的问题是:a)我们使用一个LM-OTS私钥生成签名并将其发布到应用程序;b)在更新非易失性内存之前,我们崩溃;c)我们重新启动并使用相同的LM-OTS私钥生成第二个签名。如果两个不同的签名使用相同的LM-OTS私钥,攻击者可能会生成第三条消息的伪造签名。
The array of node values in the signature MAY be computed in any way. There are many potential time/storage trade-offs that can be applied. The fastest alternative is to store all of the nodes of the tree and set the array in the signature by copying them; pseudocode to do so appears in Appendix D. The least storage-intensive alternative is to recompute all of the nodes for each signature. Note that the details of this procedure are not important for interoperability; it is not necessary to know any of these details in order to perform the signature-verification operation. The internal nodes of the tree need not be kept secret, and thus a node-caching scheme that stores only internal nodes can sidestep the need for strong protections.
签名中的节点值数组可以任何方式计算。可以应用许多潜在的时间/存储权衡。最快的替代方法是存储树的所有节点,并通过复制它们在签名中设置数组;这样做的伪代码出现在附录D中。存储密集度最低的替代方案是为每个签名重新计算所有节点。请注意,此过程的细节对于互操作性并不重要;为了执行签名验证操作,不需要知道这些细节中的任何一个。树的内部节点不需要保密,因此只存储内部节点的节点缓存方案可以避免对强保护的需要。
Several useful time/storage trade-offs are described in the "Small-Memory LM Schemes" section of [USPTO5432852].
[USPTO5432852]的“小内存LM方案”部分描述了几种有用的时间/存储权衡。
An LMS signature is verified by first using the LM-OTS signature verification algorithm (Algorithm 4b) to compute the LM-OTS public key from the LM-OTS signature and the message. The value of that public key is then assigned to the associated leaf of the LMS tree, and then the root of the tree is computed from the leaf value and the array path[] as described in Algorithm 6 below. If the root value matches the public key, then the signature is valid; otherwise, the signature verification fails.
首先使用LM-OTS签名验证算法(算法4b)验证LMS签名,以根据LM-OTS签名和消息计算LM-OTS公钥。然后将该公钥的值分配给LMS树的关联叶,然后根据叶值和数组路径[]计算树的根,如下面的算法6所述。如果根值与公钥匹配,则签名有效;否则,签名验证将失败。
Algorithm 6: LMS Signature Verification
算法6:LMS签名验证
1. If the public key is not at least eight bytes long, return INVALID.
1. 如果公钥长度不超过8个字节,则返回INVALID。
2. Parse pubtype, I, and T[1] from the public key as follows:
2. 从公钥解析pubtype、I和T[1],如下所示:
a. pubtype = strTou32(first 4 bytes of public key)
a. pubtype=strTou32(公钥的前4个字节)
b. ots_typecode = strTou32(next 4 bytes of public key)
b. ots_typecode=strTou32(公钥的下4个字节)
c. Set m according to pubtype, based on Table 2.
c. 根据表2,根据pubtype设置m。
d. If the public key is not exactly 24 + m bytes long, return INVALID.
d. 如果公钥的长度不是24+m字节,则返回INVALID。
e. I = next 16 bytes of the public key
e. I=公钥的下一个16字节
f. T[1] = next m bytes of the public key
f. T[1]=公钥的下一个m字节
3. Compute the LMS Public Key Candidate Tc from the signature, message, identifier, pubtype, and ots_typecode, using Algorithm 6a.
3. 使用算法6a从签名、消息、标识符、pubtype和ots_类型码计算LMS公钥候选Tc。
4. If Tc is equal to T[1], return VALID; otherwise, return INVALID.
4. 如果Tc等于T[1],则返回有效;否则,返回无效。
Algorithm 6a: Computing an LMS Public Key Candidate from a Signature, Message, Identifier, and Algorithm Typecodes
算法6a:根据签名、消息、标识符和算法类型码计算LMS公钥候选
1. If the signature is not at least eight bytes long, return INVALID.
1. 如果签名长度不超过8个字节,则返回INVALID。
2. Parse sigtype, q, lmots_signature, and path from the signature as follows:
2. 按如下方式解析签名的sigtype、q、lmots_签名和路径:
a. q = strTou32(first 4 bytes of signature)
a. q=strTou32(签名的前4个字节)
b. otssigtype = strTou32(next 4 bytes of signature)
b. otssigtype=strTou32(签名的下4个字节)
c. If otssigtype is not the OTS typecode from the public key, return INVALID.
c. 如果otssigtype不是公钥中的OTS类型代码,则返回INVALID。
d. Set n, p according to otssigtype and Table 1; if the signature is not at least 12 + n * (p + 1) bytes long, return INVALID.
d. 根据otssigtype和表1设置n、p;如果签名长度不超过12+n*(p+1)字节,则返回INVALID。
e. lmots_signature = bytes 4 through 7 + n * (p + 1) of signature
e. lmots_signature = bytes 4 through 7 + n * (p + 1) of signature
f. sigtype = strTou32(bytes 8 + n * (p + 1)) through 11 + n * (p + 1) of signature)
f. sigtype = strTou32(bytes 8 + n * (p + 1)) through 11 + n * (p + 1) of signature)
g. If sigtype is not the LM typecode from the public key, return INVALID.
g. 如果sigtype不是公钥中的LM typecode,则返回INVALID。
h. Set m, h according to sigtype and Table 2.
h. 根据sigtype和表2设置m、h。
i. If q >= 2^h or the signature is not exactly 12 + n * (p + 1) + m * h bytes long, return INVALID.
i. 如果q>=2^h或签名的长度不完全是12+n*(p+1)+m*h字节,则返回INVALID。
j. Set path as follows: path[0] = next m bytes of signature path[1] = next m bytes of signature ... path[h-1] = next m bytes of signature
j. 按如下方式设置路径:路径[0]=签名的下一个m字节路径[1]=签名的下一个m字节。。。路径[h-1]=下一个m字节的签名
3. Kc = candidate public key computed by applying Algorithm 4b to the signature lmots_signature, the message, and the identifiers I, q
3. Kc=通过将算法4b应用于签名lmots_签名、消息和标识符I、q而计算的候选公钥
4. Compute the candidate LMS root value Tc as follows: node_num = 2^h + q tmp = H(I || u32str(node_num) || u16str(D_LEAF) || Kc) i = 0 while (node_num > 1) { if (node_num is odd): tmp = H(I||u32str(node_num/2)||u16str(D_INTR)||path[i]||tmp) else: tmp = H(I||u32str(node_num/2)||u16str(D_INTR)||tmp||path[i]) node_num = node_num/2 i = i + 1 } Tc = tmp
4. 计算候选LMS根值Tc如下:节点(U U num=2^ h+q tmp=q tmp=h(I | | u32str(节点(U U num)124;| U U num)124;u16str(U U U U U U姆)124;u16str(节点(U U U U U U U U U U U U叶)124| |)| 124;u16str(D(DUU U U U U U U U叶)124124124|||||||\||;;|;;;;;;;;;; \124;)U(D(D U U U U U U U U叶)叶)124124124124124124124| | tmp | | path[I])node_num=node_num/2 I=I+1}Tc=tmp
5. Return Tc.
5. 返回Tc。
In scenarios where it is necessary to minimize the time taken by the public key generation process, the Hierarchical Signature System (HSS) can be used. This hierarchical scheme, which we describe in this section, uses the LMS scheme as a component. In HSS, we have a sequence of L LMS trees, where the public key for the first LMS tree is included in the public key of the HSS system, each LMS private key signs the next LMS public key, and the last LMS private key signs the actual message. For example, if we have a three-level hierarchy (L=3), then to sign a message, we would have:
在需要最小化公钥生成过程所花费时间的场景中,可以使用分层签名系统(HSS)。我们在本节中描述的分层方案使用LMS方案作为组件。在HSS中,我们有一系列L LMS树,其中第一个LMS树的公钥包含在HSS系统的公钥中,每个LMS私钥对下一个LMS公钥进行签名,最后一个LMS私钥对实际消息进行签名。例如,如果我们有一个三级层次结构(L=3),那么要对消息进行签名,我们需要:
The first LMS private key (level 0) signs a level 1 LMS public key.
第一个LMS私钥(级别0)对级别1 LMS公钥进行签名。
The second LMS private key (level 1) signs a level 2 LMS public key.
第二个LMS私钥(级别1)对级别2 LMS公钥进行签名。
The third LMS private key (level 2) signs the message.
第三个LMS私钥(级别2)对消息进行签名。
The root of the level 0 LMS tree is contained in the HSS public key.
0级LMS树的根包含在HSS公钥中。
To verify the LMS signature, we would verify all the signatures:
为了验证LMS签名,我们将验证所有签名:
We would verify that the level 1 LMS public key is correctly signed by the level 0 signature.
我们将验证1级LMS公钥是否由0级签名正确签名。
We would verify that the level 2 LMS public key is correctly signed by the level 1 signature.
我们将验证2级LMS公钥是否由1级签名正确签名。
We would verify that the message is correctly signed by the level 2 signature.
我们将验证消息是否由级别2签名正确签名。
We would accept the HSS signature only if all the signatures validated.
只有在所有签名都经过验证的情况下,我们才会接受HSS签名。
During the signature-generation process, we sign messages with the lowest (level L-1) LMS tree. Once we have used all the leafs in that tree to sign messages, we would discard it, generate a fresh LMS tree, and sign it with the next (level L-2) LMS tree (and when that is used up, recursively generate and sign a fresh level L-2 LMS tree).
在签名生成过程中,我们使用最低(L-1级)LMS树对消息进行签名。一旦我们使用了该树中的所有叶子对消息进行签名,我们将丢弃它,生成一个新的LMS树,并与下一个(级别L-2)LMS树进行签名(当该树用完时,递归地生成并签名一个新的级别L-2 LMS树)。
HSS, in essence, utilizes a tree of LMS trees. There is a single LMS tree at level 0 (the root). Each LMS tree (actually, the private key corresponding to the LMS tree) at level i is used to sign 2^h objects (where h is the height of trees at level i). If i < L-1, then each object will be another LMS tree (actually, the public key) at level i+1; if i = L-1, we've reached the bottom of the HSS tree, and so each object will be a message from the application. The HSS public key contains the public key of the LMS tree at the root, and an HSS signature is associated with a path from the root of the HSS tree to the leaf.
HSS本质上是利用LMS树的树。在级别0(根)处有一个LMS树。级别i的每个LMS树(实际上,与LMS树相对应的私钥)用于为2^h个对象签名(其中h是级别i的树的高度)。如果i<L-1,那么每个对象都将是i+1级的另一个LMS树(实际上是公钥);如果i=L-1,我们已经到达HSS树的底部,因此每个对象都是来自应用程序的消息。HSS公钥包含根LMS树的公钥,HSS签名与从HSS树的根到叶的路径相关联。
Compared to LMS, HSS has a much reduced public key generation time, as only the root tree needs to be generated prior to the distribution of the HSS public key. For example, an L=3 tree (with h=10 at each level) would have one level 0 LMS tree, 2^10 level 1 LMS trees (with each such level 1 public key signed by one of the 1024 level 0 OTS public keys), and 2^20 level 2 LMS trees. Only 1024 OTS public keys need to be computed to generate the HSS public key (as you need to compute only the level 0 LMS tree to compute that value; you can, of course, decide to compute the initial level 1 and level 2 LMS trees). In addition, the 2^20 level 2 LMS trees can jointly sign a total of over a billion messages. In contrast, a single LMS tree that could sign a billion messages would require a billion OTS public keys to be computed first (if h=30 were allowed in a supported parameter set).
与LMS相比,HSS的公钥生成时间大大缩短,因为在分发HSS公钥之前只需要生成根树。例如,一个L=3树(每个级别的h=10)将有一个0级LMS树、2^10个1级LMS树(每个1级公钥由1024个0级OTS公钥之一签名)和2^20个2级LMS树。生成HSS公钥只需要计算1024个OTS公钥(因为您只需要计算0级LMS树来计算该值;当然,您可以决定计算初始1级和2级LMS树)。此外,2^20 level 2 LMS树可以联合签署总计超过十亿条消息。相比之下,一个可以签署10亿条消息的LMS树需要首先计算10亿个OTS公钥(如果支持的参数集中允许h=30)。
Each LMS tree within the hierarchy is associated with a distinct LMS public key, private key, signature, and identifier. The number of levels is denoted as L and is between one and eight, inclusive. The following notation is used, where i is an integer between 0 and L-1 inclusive, and the root of the hierarchy is level 0:
层次结构中的每个LMS树都与不同的LMS公钥、私钥、签名和标识符相关联。级别数表示为L,介于1和8之间(包括1和8)。使用以下表示法,其中i是介于0和L-1(含)之间的整数,层次结构的根为0级:
prv[i] is the current LMS private key of the i-th level.
prv[i]是第i级的当前LMS私钥。
pub[i] is the current LMS public key of the i-th level, as described in Section 5.3.
pub[i]是第i级的当前LMS公钥,如第5.3节所述。
sig[i] is the LMS signature of public key pub[i+1] generated using the private key prv[i].
sig[i]是使用私钥prv[i]生成的公钥pub[i+1]的LMS签名。
It is expected that the above arrays are maintained for the course of the HSS key. The contents of the prv[] array MUST be kept private; the pub[] and sig[] array may be revealed should the implementation find that convenient.
预计上述阵列将在HSS密钥过程中进行维护。prv[]数组的内容必须保持私有;如果实现觉得方便,可能会显示pub[]和sig[]数组。
In this section, we say that an N-time private key is exhausted when it has generated N signatures; thus, it can no longer be used for signing.
在本节中,我们说,当一个N次私钥生成N个签名时,它将耗尽;因此,它不能再用于签名。
For i > 0, the values prv[i], pub[i], and (for all values of i) sig[i] will be updated over time as private keys are exhausted and replaced by newer keys.
对于i>0,值prv[i]、pub[i]和(对于i的所有值)sig[i]将随着时间的推移而更新,因为私钥耗尽并被较新的密钥替换。
When these key pairs are updated (or initially generated before the first message is signed), then the LMS key generation processes outlined in Sections 5.2 and 5.3 are performed. If the generated key pairs are for level i of the HSS hierarchy, then we store the public key in pub[i] and the private key in prv[i]. In addition, if i > 0, then we sign the generated public key with the LMS private key at level i-1, placing the signature into sig[i-1]. When the LMS key pair is generated, the key pair and the corresponding identifier MUST be generated independently of all other key pairs.
当这些密钥对被更新(或在第一条消息签名之前最初生成)时,则执行第5.2节和第5.3节中概述的LMS密钥生成过程。如果生成的密钥对用于HSS层次结构的级别i,那么我们将公钥存储在pub[i]中,私钥存储在prv[i]中。此外,如果i>0,那么我们在级别i-1使用LMS私钥对生成的公钥进行签名,将签名放入sig[i-1]。生成LMS密钥对时,必须独立于所有其他密钥对生成密钥对和相应的标识符。
HSS allows L=1, in which case the HSS public key and signature formats are essentially the LMS public key and signature formats, prepended by a fixed field. Since HSS with L=1 has very little overhead compared to LMS, all implementations MUST support HSS in order to maximize interoperability.
HSS允许L=1,在这种情况下,HSS公钥和签名格式基本上是LMS公钥和签名格式,前面有一个固定字段。由于L=1的HSS与LMS相比开销非常小,因此所有实现都必须支持HSS,以最大限度地提高互操作性。
We specifically allow different LMS levels to use different parameter sets. For example, the 0-th LMS public key (the root) may use the LMS_SHA256_M32_H15 parameter set, while the 1-th public key may use LMS_SHA256_M32_H10. There are practical reasons to allow this; for one, the signer may decide to store parts of the 0-th LMS tree (that it needs to construct while computing the public key) to accelerate later operations. As the 0-th tree is never updated, these internal nodes will never need to be recomputed. In addition, during the signature-generation operation, almost all the operations involved with updating the authentication path occur with the bottom (L-1th) LMS public key; hence, it may be useful to select the parameter set for that public key to have a shorter LMS tree.
我们特别允许不同的LMS级别使用不同的参数集。例如,第0个LMS公钥(根)可以使用LMS_SHA256_M32_H15参数集,而第1个公钥可以使用LMS_SHA256_M32_H10。允许这样做是有实际理由的;首先,签名者可以决定存储第0个LMS树的部分(在计算公钥时需要构造),以加速以后的操作。由于第0棵树永远不会更新,因此这些内部节点永远不需要重新计算。此外,在签名生成操作期间,几乎所有涉及更新认证路径的操作都使用底部(L-1th)LMS公钥发生;因此,为该公钥选择参数集以具有较短的LMS树可能是有用的。
A close reading of the HSS verification pseudocode shows that it would allow the parameters of the nontop LMS public keys to change over time; for example, the signer might initially have the 1-th LMS public key use the LMS_SHA256_M32_H10 parameter set, but when that tree is exhausted, the signer might replace it with an LMS public key that uses the LMS_SHA256_M32_H15 parameter set. While this would work with the example verification pseudocode, the signer MUST NOT change the parameter sets for a specific level. This prohibition is to support verifiers that may keep state over the course of several signature verifications.
仔细阅读HSS验证伪码表明,它将允许非顶级LMS公钥的参数随时间变化;例如,签名者最初可能会让第1个LMS公钥使用LMS_SHA256_M32_H10参数集,但当该树耗尽时,签名者可能会将其替换为使用LMS_SHA256_M32_H15参数集的LMS公钥。虽然这将适用于示例验证伪代码,但签名者不得更改特定级别的参数集。这项禁令是为了支持在多次签名验证过程中保持状态的验证者。
The public key of the HSS scheme consists of the number of levels L, followed by pub[0], the public key of the top level.
HSS方案的公钥由级别L的数量组成,然后是最高级别的公钥pub[0]。
The HSS private key consists of prv[0], ... , prv[L-1], along with the associated pub[0], ... pub[L-1] and sig[0], ..., sig[L-2] values. As stated earlier, the values of the pub[] and sig[] arrays need not be kept secret and may be revealed. The value of pub[0] does not change (and, except for the index q, the value of prv[0] need not change); however, the values of pub[i] and prv[i] are dynamic for i > 0 and are changed by the signature-generation algorithm.
HSS私钥由prv[0]、…、,prv[L-1],以及关联的发布[0]。。。pub[L-1]和sig[0],…,sig[L-2]值。如前所述,pub[]和sig[]数组的值不需要保密,可能会被泄露。pub[0]的值没有改变(并且,除了索引q之外,prv[0]的值不需要改变);但是,pub[i]和prv[i]的值在i>0时是动态的,并且会被签名生成算法更改。
During the key generation, the public and private keys are initialized. Here is some pseudocode that explains the key-generation logic:
在密钥生成过程中,将初始化公钥和私钥。下面是一些解释密钥生成逻辑的伪代码:
Algorithm 7: Generating an HSS Key Pair
算法7:生成HSS密钥对
1. Generate an LMS key pair, as specified in Sections 5.2 and 5.3, placing the private key into priv[0], and the public key into pub[0]
1. 按照第5.2节和第5.3节的规定,生成LMS密钥对,将私钥放入priv[0],将公钥放入pub[0]
2. For i = 1 to L-1 do { generate an LMS key pair, placing the private key into priv[i] and the public key into pub[i]
2. 对于i=1到L-1,生成LMS密钥对,将私钥放入priv[i],将公钥放入pub[i]
sig[i-1] = lms_signature( pub[i], priv[i-1] ) }
sig[i-1]=lms_签名(pub[i],priv[i-1]))
3. Return u32str(L) || pub[0] as the public key and the priv[], pub[], and sig[] arrays as the private key
3. 返回u32str(L)| | pub[0]作为公钥,返回priv[]、pub[]和sig[]数组作为私钥
In the above algorithm, each LMS public/private key pair generated MUST be generated independently.
在上述算法中,生成的每个LMS公钥/私钥对必须独立生成。
Note that the value of the public key does not depend on the execution of step 2. As a result, an implementation may decide to delay step 2 until later -- for example, during the initial signature-generation operation.
注意,公钥的值不取决于步骤2的执行。结果,实现可能决定将步骤2延迟到稍后——例如,在初始签名生成操作期间。
To sign a message using an HSS key pair, the following steps are performed:
要使用HSS密钥对对消息进行签名,请执行以下步骤:
If prv[L-1] is exhausted, then determine the smallest integer d such that all of the private keys prv[d], prv[d+1], ... , prv[L-1] are exhausted. If d is equal to zero, then the HSS key pair is exhausted, and it MUST NOT generate any more signatures. Otherwise, the key pairs for levels d through L-1 must be regenerated during the signature-generation process, as follows. For i from d to L-1, a new LMS public and private key pair with a new identifier is generated, pub[i] and prv[i] are set to those values, then the public key pub[i] is signed with prv[i-1], and sig[i-1] is set to the resulting value.
如果prv[L-1]耗尽,则确定最小整数d,使得所有私钥prv[d],prv[d+1],prv[L-1]已耗尽。如果d等于零,则HSS密钥对将耗尽,并且它不得生成任何更多的签名。否则,d级到L-1级的密钥对必须在签名生成过程中重新生成,如下所示。对于从d到L-1的i,生成具有新标识符的新LMS公钥和私钥对,pub[i]和prv[i]被设置为这些值,然后公钥pub[i]被prv[i-1]签名,并且sig[i-1]被设置为结果值。
The message is signed with prv[L-1], and the value sig[L-1] is set to that result.
消息用prv[L-1]签名,值sig[L-1]设置为该结果。
The value of the HSS signature is set as follows. We let signed_pub_key denote an array of octet strings, where signed_pub_key[i] = sig[i] || pub[i+1], for i between 0 and Nspk-1, inclusive, where Nspk = L-1 denotes the number of signed public keys. Then the HSS signature is u32str(Nspk) || signed_pub_key[0] || ... || signed_pub_key[Nspk-1] || sig[Nspk].
HSS签名的值设置如下。我们让signed_pub_key表示一个八位字符串数组,其中signed_pub_key[i]=sig[i]| pub[i+1],对于介于0和Nspk-1之间的i(包括0和Nspk-1),其中Nspk=L-1表示有符号公钥的数量。然后,HSS签名为u32str(Nspk)| | |签名|发布|密钥[0]| | | | |签名的发布密钥[Nspk-1]| | sig[Nspk]。
Note that the number of signed_pub_key elements in the signature is indicated by the value Nspk that appears in the initial four bytes of the signature.
请注意,签名中已签名的\u pub\u键元素的数量由签名的初始四个字节中出现的值Nspk表示。
Here is some pseudocode of the above logic:
下面是上述逻辑的一些伪代码:
Algorithm 8: Generating an HSS signature
算法8:生成HSS签名
1. If the message-signing key prv[L-1] is exhausted, regenerate that key pair, together with any parent key pairs that might be necessary.
1. 如果消息签名密钥prv[L-1]已用完,请重新生成该密钥对以及可能需要的任何父密钥对。
If the root key pair is exhausted, then the HSS key pair is exhausted and MUST NOT generate any more signatures.
如果根密钥对已用尽,则HSS密钥对已用尽,且不得再生成任何签名。
d = L while (prv[d-1].q == 2^(prv[d-1].h)) { d = d - 1 if (d == 0) return FAILURE } while (d < L) { create lms key pair pub[d], prv[d] sig[d-1] = lms_signature( pub[d], prv[d-1] ) d = d + 1 }
d = L while (prv[d-1].q == 2^(prv[d-1].h)) { d = d - 1 if (d == 0) return FAILURE } while (d < L) { create lms key pair pub[d], prv[d] sig[d-1] = lms_signature( pub[d], prv[d-1] ) d = d + 1 }
2. Sign the message. sig[L-1] = lms_signature( msg, prv[L-1] )
2. 在留言上签名。sig[L-1]=lms_签名(msg,prv[L-1])
3. Create the list of signed public keys. i = 0; while (i < L-1) { signed_pub_key[i] = sig[i] || pub[i+1] i = i + 1 }
3. 创建已签名公钥的列表。i=0;而(i<L-1){signed_pub_key[i]=sig[i]| pub[i+1]i=i+1}
4. Return u32str(L-1) || signed_pub_key[0] || ... || signed_pub_key[L-2] || sig[L-1]
4. 返回u32str(L-1)| | |签名|发布|键[0]| | | | |签名的发布密钥[L-2]|签名[L-1]
In the specific case of L=1, the format of an HSS signature is
在L=1的特定情况下,HSS签名的格式为
u32str(0) || sig[0]
u32str(0)| | sig[0]
In the general case, the format of an HSS signature is
在一般情况下,HSS签名的格式为
u32str(Nspk) || signed_pub_key[0] || ... || signed_pub_key[Nspk-1] || sig[Nspk]
u32str(Nspk)| | |签名|发布|键[0]| | | | |签名的公开密钥[Nspk-1]| | sig[Nspk]
which is equivalent to
这相当于
u32str(Nspk) || sig[0] || pub[1] || ... || sig[Nspk-1] || pub[Nspk] || sig[Nspk]
u32str(Nspk)| | sig[0]| | | pub[1]| | | | | | | |sig[Nspk-1]| | pub[Nspk]| | sig[Nspk]
To verify a signature S and message using the public key pub, perform the following steps:
要使用公钥发布验证签名和消息,请执行以下步骤:
The signature S is parsed into its components as follows:
签名S被解析为其组件,如下所示:
Nspk = strTou32(first four bytes of S) if Nspk+1 is not equal to the number of levels L in pub: return INVALID for (i = 0; i < Nspk; i = i + 1) { siglist[i] = next LMS signature parsed from S publist[i] = next LMS public key parsed from S } siglist[Nspk] = next LMS signature parsed from S
Nspk = strTou32(first four bytes of S) if Nspk+1 is not equal to the number of levels L in pub: return INVALID for (i = 0; i < Nspk; i = i + 1) { siglist[i] = next LMS signature parsed from S publist[i] = next LMS public key parsed from S } siglist[Nspk] = next LMS signature parsed from S
key = pub for (i = 0; i < Nspk; i = i + 1) { sig = siglist[i] msg = publist[i] if (lms_verify(msg, key, sig) != VALID): return INVALID key = msg } return lms_verify(message, key, siglist[Nspk])
key = pub for (i = 0; i < Nspk; i = i + 1) { sig = siglist[i] msg = publist[i] if (lms_verify(msg, key, sig) != VALID): return INVALID key = msg } return lms_verify(message, key, siglist[Nspk])
Since the length of an LMS signature cannot be known without parsing it, the HSS signature verification algorithm makes use of an LMS signature parsing routine that takes as input a string consisting of an LMS signature with an arbitrary string appended to it and returns both the LMS signature and the appended string. The latter is passed on for further processing.
由于不解析LMS签名就无法知道其长度,HSS签名验证算法利用LMS签名解析例程,该例程将LMS签名的字符串作为输入,该字符串由附加了任意字符串的LMS签名组成,并返回LMS签名和附加字符串。后者被转交进一步处理。
As for guidance as to the number of LMS levels and the size of each, any discussion of performance is implementation specific. In general, the sole drawback for a single LMS tree is the time it takes to generate the public key; as every LM-OTS public key needs to be generated, the time this takes can be substantial. For a two-level tree, only the top-level LMS tree and the initial bottom-level LMS tree need to be generated initially (before the first signature is generated); this will in general be significantly quicker.
至于LMS级别的数量和每个级别的大小,任何关于性能的讨论都是针对具体实施的。通常,单个LMS树的唯一缺点是生成公钥所需的时间;由于需要生成每个LM-OTS公钥,因此所需时间可能非常长。对于二级树,最初只需生成顶层LMS树和初始底层LMS树(在生成第一个签名之前);这通常会大大加快。
To give a general idea of the trade-offs available, we include some measurements taken with the LMS implementation available at <https://github.com/cisco/hash-sigs>, taken on a 3.3 GHz Xeon processor with threading enabled. We tried various parameter sets,
为了给出可用权衡的一般概念,我们在下面的示例中介绍了LMS实现的一些测量<https://github.com/cisco/hash-sigs>,在启用线程的3.3 GHz Xeon处理器上实现。我们尝试了各种参数集,
all with W=8 (which minimizes signature size, while increasing time). These are here to give a guideline as to what's possible; for the computational time, your mileage may vary, depending on the computing resources you have. The machine these tests were performed on does not have the SHA-256 extensions; you could possibly do significantly better.
都是W=8(这将最小化签名大小,同时增加时间)。这些都是在这里给什么是可能的指导方针;对于计算时间,您的里程可能会有所不同,这取决于您拥有的计算资源。执行这些测试的机器没有SHA-256扩展;你可能会做得更好。
+---------+------------+---------+-------------+ | ParmSet | KeyGenTime | SigSize | KeyLifetime | +---------+------------+---------+-------------+ | 15 | 6 sec | 1616 | 30 seconds | | | | | | | 20 | 3 min | 1776 | 16 minutes | | | | | | | 25 | 1.5 hour | 1936 | 9 hours | | | | | | | 15/10 | 6 sec | 3172 | 9 hours | | | | | | | 15/15 | 6 sec | 3332 | 12 days | | | | | | | 20/10 | 3 min | 3332 | 12 days | | | | | | | 20/15 | 3 min | 3492 | 1 year | | | | | | | 25/10 | 1.5 hour | 3492 | 1 year | | | | | | | 25/15 | 1.5 hour | 3652 | 34 years | +---------+------------+---------+-------------+
+---------+------------+---------+-------------+ | ParmSet | KeyGenTime | SigSize | KeyLifetime | +---------+------------+---------+-------------+ | 15 | 6 sec | 1616 | 30 seconds | | | | | | | 20 | 3 min | 1776 | 16 minutes | | | | | | | 25 | 1.5 hour | 1936 | 9 hours | | | | | | | 15/10 | 6 sec | 3172 | 9 hours | | | | | | | 15/15 | 6 sec | 3332 | 12 days | | | | | | | 20/10 | 3 min | 3332 | 12 days | | | | | | | 20/15 | 3 min | 3492 | 1 year | | | | | | | 25/10 | 1.5 hour | 3492 | 1 year | | | | | | | 25/15 | 1.5 hour | 3652 | 34 years | +---------+------------+---------+-------------+
Table 3
表3
ParmSet: this is the height of the Merkle tree(s); parameter sets listed as a single integer have L=1 and consist of a single Merkle tree of that height; parameter sets with L=2 are listed as x/y, with x being the height of the top-level Merkle tree and y being the bottom level.
ParmSet:这是Merkle树的高度;作为单个整数列出的参数集的L=1,由该高度的单个Merkle树组成;L=2的参数集列为x/y,x为顶层Merkle树的高度,y为底层。
KeyGenTime: the measured key-generation time; that is, the time needed to generate the public/private key pair.
KeyGenTime:测量的密钥生成时间;也就是说,生成公钥/私钥对所需的时间。
SigSize: the size of a signature (in bytes)
SigSize:签名的大小(以字节为单位)
KeyLifetime: the lifetime of a key, assuming we generated 1000 signatures per second. In practice, we're not likely to get anywhere close to 1000 signatures per second sustained; if you have a more appropriate figure for your scenario, this column is easy to recompute.
KeyLifetime:密钥的生存期,假设每秒生成1000个签名。实际上,我们不太可能每秒获得接近1000个签名;如果您有一个更适合您的场景的数字,那么此列很容易重新计算。
As for signature generation or verification times, those are moderately insensitive to the above parameter settings (except for the Winternitz setting and the number of Merkle trees for verification). Tests on the same machine (without multithreading) gave approximately 4 msec to sign a short message, 2.6 msec to verify; these tests used a two-level ParmSet; a single level would approximately halve the verification time. All times can be significantly improved (by perhaps a factor of 8) by using a parameter set with W=4; however, that also about doubles the signature size.
至于签名生成或验证时间,这些时间对上述参数设置不太敏感(Winternitz设置和用于验证的Merkle树的数量除外)。在同一台机器上进行的测试(无多线程)给出了大约4毫秒的短消息签名时间,2.6毫秒的验证时间;这些测试使用两级ParmSet;一个级别将使核查时间大约减少一半。通过使用W=4的参数集,可以显著改善所有时间(可能是8倍);然而,这也使签名大小增加了一倍左右。
The goal of this note is to describe the LM-OTS, LMS, and HSS algorithms following the original references and present the modern security analysis of those algorithms. Other signature methods are out of scope and may be interesting follow-on work.
本说明的目的是按照原始参考文献描述LM-OTS、LMS和HSS算法,并介绍这些算法的现代安全性分析。其他签名方法超出了范围,可能是有趣的后续工作。
We adopt the techniques described by Leighton and Micali to mitigate attacks that amortize their work over multiple invocations of the hash function.
我们采用Leighton和Micali所描述的技术来减轻攻击,这些攻击将他们的工作分摊到多次调用哈希函数上。
The values taken by the identifier I across different LMS public/ private key pairs are chosen randomly in order to improve security. The analysis of this method in [Fluhrer17] shows that we do not need uniqueness to ensure security; we do need to ensure that we don't have a large number of private keys that use the same I value. By randomly selecting 16-byte I values, the chance that, out of 2^64 private keys, 4 or more of them will use the same I value is negligible (that is, has probability less than 2^-128).
标识符I跨不同LMS公钥/私钥对获取的值是随机选择的,以提高安全性。[Fluhrer17]中对该方法的分析表明,我们不需要唯一性来确保安全性;我们确实需要确保没有大量使用相同I值的私钥。通过随机选择16字节I值,在2^64个私钥中,其中4个或更多私钥使用相同I值的可能性可以忽略不计(即,概率小于2^-128)。
The reason 16-byte I values were selected was to optimize the Winternitz hash-chain operation. With the current settings, the value being hashed is exactly 55 bytes long (for a 32-byte hash function), which SHA-256 can hash in a single hash-compression operation. Other hash functions may be used in future specifications; all the ones that we will be likely to support (SHA-512/256 and the various SHA-3 hashes) would work well with a 16-byte I value.
选择16字节I值的原因是为了优化Winternitz哈希链操作。在当前设置下,被散列的值正好是55字节长(对于32字节的散列函数),SHA-256可以在单个散列压缩操作中散列。其他散列函数可在将来的规范中使用;我们可能支持的所有类型(SHA-512/256和各种SHA-3散列)都可以使用16字节的I值。
The signature and public key formats are designed so that they are relatively easy to parse. Each format starts with a 32-bit enumeration value that indicates the details of the signature algorithm and provides all of the information that is needed in order to parse the format.
签名和公钥格式的设计使得它们相对容易解析。每种格式都以32位枚举值开始,该值指示签名算法的详细信息,并提供解析格式所需的所有信息。
The Checksum (Section 4.4) is calculated using a nonnegative integer "sum" whose width was chosen to be an integer number of w-bit fields such that it is capable of holding the difference of the total possible number of applications of the function H (as defined in the signing algorithm of Section 4.5) and the total actual number. In the case that the number of times H is applied is 0, the sum is (2^w - 1) * (8*n/w). Thus, for the purposes of this document, which describes signature methods based on H = SHA256 (n = 32 bytes) and w = { 1, 2, 4, 8 }, the sum variable is a 16-bit nonnegative integer for all combinations of n and w. The calculation uses the parameter ls defined in Section 4.1 and calculated in Appendix B, which indicates the number of bits used in the left-shift operation.
The Checksum (Section 4.4) is calculated using a nonnegative integer "sum" whose width was chosen to be an integer number of w-bit fields such that it is capable of holding the difference of the total possible number of applications of the function H (as defined in the signing algorithm of Section 4.5) and the total actual number. In the case that the number of times H is applied is 0, the sum is (2^w - 1) * (8*n/w). Thus, for the purposes of this document, which describes signature methods based on H = SHA256 (n = 32 bytes) and w = { 1, 2, 4, 8 }, the sum variable is a 16-bit nonnegative integer for all combinations of n and w. The calculation uses the parameter ls defined in Section 4.1 and calculated in Appendix B, which indicates the number of bits used in the left-shift operation.
To improve security against attacks that amortize their effort against multiple invocations of the hash function, Leighton and Micali introduced a "security string" that is distinct for each invocation of that function. Whenever this process computes a hash, the string being hashed will start with a string formed from the fields below. These fields will appear in fixed locations in the value we compute the hash of, and so we list where in the hash these fields would be present. The fields that make up this string are as follows:
为了提高对攻击的安全性,这些攻击会分散他们对哈希函数多次调用的精力,Leighton和Micali引入了一个“安全字符串”,该字符串对于该函数的每次调用都是不同的。每当此进程计算散列时,被散列的字符串将以以下字段形成的字符串开始。这些字段将出现在我们计算散列值的固定位置,因此我们列出这些字段在散列中的位置。组成此字符串的字段如下所示:
I A 16-byte identifier for the LMS public/private key pair. It MUST be chosen uniformly at random, or via a pseudorandom process, at the time that a key pair is generated, in order to minimize the probability that any specific value of I be used for a large number of different LMS private keys. This is always bytes 0-15 of the value being hashed.
I LMS公钥/私钥对的16字节标识符。在生成密钥对时,必须随机或通过伪随机过程均匀地选择该密钥,以最小化I的任何特定值用于大量不同LMS私钥的概率。这始终是散列值的0-15字节。
r In the LMS N-time signature scheme, the node number r associated with a particular node of a hash tree is used as an input to the hash used to compute that node. This value is represented as a 32-bit (four byte) unsigned integer in network byte order. Either r or q (depending on the domain-separation parameter) will be bytes 16-19 of the value being hashed.
r在LMS N时间签名方案中,与散列树的特定节点相关联的节点号r被用作用于计算该节点的散列的输入。此值表示为网络字节顺序的32位(四字节)无符号整数。r或q(取决于域分隔参数)将是散列值的字节16-19。
q In the LMS N-time signature scheme, each LM-OTS signature is associated with the leaf of a hash tree, and q is set to the leaf number. This ensures that a distinct value of q is used for each distinct LM-OTS public/private key pair. This value is represented as a 32-bit (four byte) unsigned integer in network byte order. Either r or q (depending on the domain-separation parameter) will be bytes 16-19 of the value being hashed.
q在LMS N时间签名方案中,每个LM-OTS签名都与哈希树的叶子相关联,并且q被设置为叶子编号。这可确保每个不同的LM-OTS公钥/私钥对使用不同的q值。此值表示为网络字节顺序的32位(四字节)无符号整数。r或q(取决于域分隔参数)将是散列值的字节16-19。
D A domain-separation parameter, which is a two-byte identifier that takes on different values in the different contexts in which the hash function is invoked. D occurs in bytes 20 and 21 of the value being hashed and takes on the following values:
D一个域分离参数,它是一个双字节标识符,在调用哈希函数的不同上下文中具有不同的值。D出现在被散列的值的字节20和21中,并采用以下值:
D_PBLC = 0x8080 when computing the hash of all of the iterates in the LM-OTS algorithm
计算LM-OTS算法中所有迭代的哈希时,D_PBLC=0x8080
D_MESG = 0x8181 when computing the hash of the message in the LM-OTS algorithms
在LM-OTS算法中计算消息哈希时,D_MESG=0x8181
D_LEAF = 0x8282 when computing the hash of the leaf of an LMS tree
计算LMS树的叶散列时,D_LEAF=0x8282
D_INTR = 0x8383 when computing the hash of an interior node of an LMS tree
计算LMS树内部节点的哈希时,D_INTR=0x8383
i A value between 0 and 264; this is used in the LM-OTS scheme when either computing the iterations of the Winternitz chain or using the suggested LM-OTS private key generation process. It is represented as a 16-bit (two-byte) unsigned integer in network byte order. If present, it occurs at bytes 20 and 21 of the value being hashed.
i值介于0和264之间;当计算Winternitz链的迭代次数或使用建议的LM-OTS私钥生成过程时,这在LM-OTS方案中使用。它表示为网络字节顺序的16位(两字节)无符号整数。如果存在,它出现在被散列的值的字节20和21处。
j In the LM-OTS scheme, j is the iteration number used when the private key element is being iteratively hashed. It is represented as an 8-bit (one byte) unsigned integer and is present if i is a value between 0 and 264. If present, it occurs at bytes 22 to 21+n of the value being hashed.
j在LM-OTS方案中,j是迭代散列私钥元素时使用的迭代数。它表示为一个8位(一字节)无符号整数,如果i是一个介于0和264之间的值,则存在该整数。如果存在,它出现在被散列的值的字节22到21+n处。
C An n-byte randomizer that is included with the message whenever it is being hashed to improve security. C MUST be chosen uniformly at random or via another unpredictable process. It is present if D=D_MESG, and it occurs at bytes 22 to 21+n of the value being hashed.
C一个n字节的随机化器,每当对消息进行哈希处理以提高安全性时,它都包含在消息中。C必须随机或通过另一个不可预测的过程统一选择。如果D=D_MESG,则存在该值,它出现在被散列值的字节22到21+n处。
IANA has created two registries: "LM-OTS Signatures", which includes all of the LM-OTS signatures as defined in Section 4, and "Leighton-Micali Signatures (LMS)" for LMS as defined in Section 5.
IANA已经创建了两个注册中心:“LM-OTS签名”,其中包括第4节中定义的所有LM-OTS签名,以及第5节中定义的LMS的“Leighton Micali签名(LMS)”。
Additions to these registries require that a specification be documented in an RFC or another permanent and readily available reference in sufficient detail that interoperability between independent implementations is possible [RFC8126]. IANA MUST verify that all applications for additions to these registries have first been reviewed by the IRTF Crypto Forum Research Group (CFRG).
对这些注册中心的补充要求规范记录在RFC或另一个永久且随时可用的参考文件中,并提供足够详细的信息,以确保独立实现之间的互操作性是可能的[RFC8126]。IANA必须验证所有加入这些注册的申请都已首先由IRTF加密论坛研究小组(CFRG)审查。
Each entry in either of the registries contains the following elements:
任一注册表中的每个条目都包含以下元素:
a short name (Name), such as "LMS_SHA256_M32_H10",
短名称(名称),如“LMS_SHA256_M32_H10”,
a positive number (Numeric Identifier), and
正数(数字标识符),以及
a Reference to a specification that completely defines the signature-method test cases that can be used to verify the correctness of an implementation.
对规范的引用,该规范完全定义了可用于验证实现正确性的签名方法测试用例。
The numbers between 0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF (decimal 4,294,967,295), inclusive, will not be assigned by IANA and are reserved for private use; no attempt will be made to prevent multiple sites from using the same value in different (and incompatible) ways [RFC8126].
0xDDDD(十进制数3722304989)和0xFFFFFFFF(十进制数4294967295)之间的数字将不由IANA分配,并保留供私人使用;不会试图阻止多个站点以不同(且不兼容)的方式使用相同的值[RFC8126]。
The initial contents of the "LM-OTS Signatures" registry are as follows.
“LM-OTS签名”注册表的初始内容如下所示。
+--------------------------+-----------+--------------------------+ | Name | Reference | Numeric Identifier | +--------------------------+-----------+--------------------------+ | Reserved | | 0x00000000 | | | | | | LMOTS_SHA256_N32_W1 | Section 4 | 0x00000001 | | | | | | LMOTS_SHA256_N32_W2 | Section 4 | 0x00000002 | | | | | | LMOTS_SHA256_N32_W4 | Section 4 | 0x00000003 | | | | | | LMOTS_SHA256_N32_W8 | Section 4 | 0x00000004 | | | | | | Unassigned | | 0x00000005 - 0xDDDDDDDC | | | | | | Reserved for Private Use | | 0xDDDDDDDD - 0xFFFFFFFF | +--------------------------+-----------+--------------------------+
+--------------------------+-----------+--------------------------+ | Name | Reference | Numeric Identifier | +--------------------------+-----------+--------------------------+ | Reserved | | 0x00000000 | | | | | | LMOTS_SHA256_N32_W1 | Section 4 | 0x00000001 | | | | | | LMOTS_SHA256_N32_W2 | Section 4 | 0x00000002 | | | | | | LMOTS_SHA256_N32_W4 | Section 4 | 0x00000003 | | | | | | LMOTS_SHA256_N32_W8 | Section 4 | 0x00000004 | | | | | | Unassigned | | 0x00000005 - 0xDDDDDDDC | | | | | | Reserved for Private Use | | 0xDDDDDDDD - 0xFFFFFFFF | +--------------------------+-----------+--------------------------+
Table 4
表4
The initial contents of the "Leighton Micali Signatures (LMS)" registry are as follows.
“Leighton Micali签名(LMS)”登记册的初始内容如下。
+--------------------------+-----------+--------------------------+ | Name | Reference | Numeric Identifier | +--------------------------+-----------+--------------------------+ | Reserved | | 0x0 - 0x4 | | | | | | LMS_SHA256_M32_H5 | Section 5 | 0x00000005 | | | | | | LMS_SHA256_M32_H10 | Section 5 | 0x00000006 | | | | | | LMS_SHA256_M32_H15 | Section 5 | 0x00000007 | | | | | | LMS_SHA256_M32_H20 | Section 5 | 0x00000008 | | | | | | LMS_SHA256_M32_H25 | Section 5 | 0x00000009 | | | | | | Unassigned | | 0x0000000A - 0xDDDDDDDC | | | | | | Reserved for Private Use | | 0xDDDDDDDD - 0xFFFFFFFF | +--------------------------+-----------+--------------------------+
+--------------------------+-----------+--------------------------+ | Name | Reference | Numeric Identifier | +--------------------------+-----------+--------------------------+ | Reserved | | 0x0 - 0x4 | | | | | | LMS_SHA256_M32_H5 | Section 5 | 0x00000005 | | | | | | LMS_SHA256_M32_H10 | Section 5 | 0x00000006 | | | | | | LMS_SHA256_M32_H15 | Section 5 | 0x00000007 | | | | | | LMS_SHA256_M32_H20 | Section 5 | 0x00000008 | | | | | | LMS_SHA256_M32_H25 | Section 5 | 0x00000009 | | | | | | Unassigned | | 0x0000000A - 0xDDDDDDDC | | | | | | Reserved for Private Use | | 0xDDDDDDDD - 0xFFFFFFFF | +--------------------------+-----------+--------------------------+
Table 5
表5
An IANA registration of a signature system does not constitute an endorsement of that system or its security.
签名系统的IANA注册不构成对该系统或其安全性的认可。
Currently, the two registries assign a disjoint set of values to the defined parameter sets. This coincidence is a historical accident; the correctness of the system does not depend on this. IANA is not required to maintain this situation.
目前,这两个注册中心为定义的参数集分配一组不相交的值。这一巧合是历史的偶然,;系统的正确性并不取决于此。IANA不需要维持这种情况。
The hash function H MUST have second preimage resistance: it must be computationally infeasible for an attacker that is given one message M to be able to find a second message M' such that H(M) = H(M').
散列函数H必须具有第二个前映像阻力:给定一条消息M的攻击者必须在计算上不可行,才能找到第二条消息M',使得H(M)=H(M')。
The security goal of a signature system is to prevent forgeries. A successful forgery occurs when an attacker who does not know the private key associated with a public key can find a message (distinct from all previously signed ones) and signature that is valid with that public key (that is, the Signature Verification algorithm applied to that signature and message and public key will return VALID). Such an attacker, in the strongest case, may have the ability to forge valid signatures for an arbitrary number of other messages.
签名系统的安全目标是防止伪造。如果不知道与公钥关联的私钥的攻击者可以找到消息(不同于所有以前签名的消息)和使用该公钥有效的签名(即,应用于该签名和消息的签名验证算法以及公钥将返回有效),则会发生成功伪造。在最严重的情况下,此类攻击者可能有能力伪造任意数量其他消息的有效签名。
LMS is provably secure in the random oracle model, as shown by [Katz16]. In addition, further analysis is done by [Fluhrer17], where the hash compression function (rather than the entire hash function) is considered to be a random oracle. Corollary 1 of the latter paper states:
LMS在随机oracle模型中是可证明安全的,如[Katz16]所示。此外,[Fluhrer17]还进行了进一步的分析,其中哈希压缩函数(而不是整个哈希函数)被视为随机预言。后一篇论文的推论1指出:
If we have no more than 2^64 randomly chosen LMS private keys, allow the attacker access to a signing oracle and a SHA-256 hash compression oracle, and allow a maximum of 2^120 hash compression computations, then the probability of an attacker being able to generate a single forgery against any of those LMS keys is less than 2^-129.
如果随机选择的LMS私钥不超过2^64,允许攻击者访问签名oracle和SHA-256哈希压缩oracle,并允许最多2^120次哈希压缩计算,则攻击者能够针对这些LMS密钥中的任何一个生成单个伪造的概率小于2^-129。
Many of the objects within the public key and the signature start with a typecode. A verifier MUST check each of these typecodes, and a verification operation on a signature with an unknown type, or a type that does not correspond to the type within the public key, MUST return INVALID. The expected length of a variable-length object can be determined from its typecode; if an object has a different length, then any signature computed from the object is INVALID.
公钥和签名中的许多对象都以类型码开头。验证器必须检查这些类型码中的每一个,对未知类型的签名或与公钥中的类型不对应的签名的验证操作必须返回无效。可变长度对象的预期长度可根据其类型代码确定;如果对象具有不同的长度,则从该对象计算的任何签名都是无效的。
The format of the inputs to the hash function H has the property that each invocation of that function has an input that is repeated by a small bounded number of other inputs (due to potential repeats of the I value). In particular, it will vary somewhere in the first 23 bytes of the value being hashed. This property is important for a proof of security in the random oracle model.
散列函数H的输入的格式具有这样的特性:该函数的每次调用都有一个输入,该输入由少量有界的其他输入重复(由于I值的潜在重复)。特别是,它将在被散列的值的前23个字节的某个地方发生变化。此属性对于随机oracle模型中的安全性证明非常重要。
The formats used during key generation and signing (including the recommended pseudorandom key-generation procedure in Appendix A) are as follows:
密钥生成和签名期间使用的格式(包括附录A中推荐的伪随机密钥生成程序)如下所示:
I || u32str(q) || u16str(i) || u8str(j) || tmp I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1] I || u32str(q) || u16str(D_MESG) || C || message I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[r-2^h] I || u32str(r) || u16str(D_INTR) || T[2*r] || T[2*r+1] I || u32str(q) || u16str(i) || u8str(0xff) || SEED
I || u32str(q) || u16str(i) || u8str(j) || tmp I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1] I || u32str(q) || u16str(D_MESG) || C || message I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[r-2^h] I || u32str(r) || u16str(D_INTR) || T[2*r] || T[2*r+1] I || u32str(q) || u16str(i) || u8str(0xff) || SEED
Each hash type listed is distinct; at locations 20 and 21 of the value being hashed, there exists either a fixed value D_PBLC, D_MESG, D_LEAF, D_INTR, or a 16-bit value i. These fixed values are distinct from each other and are large (over 32768), while the 16-bit values of i are small (currently no more than 265; possibly being slightly larger if larger hash functions are supported); hence, the range of possible values of i will not collide any of the D_PBLC, D_MESG,
列出的每个哈希类型都是不同的;在被散列的值的位置20和21处,存在固定值D_PBLC、D_MESG、D_LEAF、D_INTR或16位值i。这些固定值彼此不同且较大(超过32768),而i的16位值较小(目前不超过265;如果支持较大的散列函数,则可能稍大);因此,i的可能值范围不会与任何D_PBLC,D_MESG,
D_LEAF, D_INTR identifiers. The only other collision possibility is the Winternitz chain hash colliding with the recommended pseudorandom key-generation process; here, at location 22 of the value being hashed, the Winternitz chain function has the value u8str(j), where j is a value between 0 and 254, while location 22 of the recommended pseudorandom key-generation process has value 255.
D_LEAF,D_INTR标识符。唯一的其他冲突可能性是Winternitz链哈希与推荐的伪随机密钥生成过程冲突;这里,在被散列的值的位置22处,Winternitz链函数具有值u8str(j),其中j是介于0和254之间的值,而推荐的伪随机密钥生成过程的位置22具有值255。
For the Winternitz chaining function, D_PBLC, and D_MESG, the value of I || u32str(q) is distinct for each LMS leaf (or equivalently, for each q value). For the Winternitz chaining function, the value of u16str(i) || u8str(j) is distinct for each invocation of H for a given leaf. For D_PBLC and D_MESG, the input format is used only once for each value of q and, thus, distinctness is assured. The formats for D_INTR and D_LEAF are used exactly once for each value of r, which ensures their distinctness. For the recommended pseudorandom key-generation process, for a given value of I, q and j are distinct for each invocation of H.
对于Winternitz链函数、D|PBLC和D|MESG,I|u32str(q)的值对于每个LMS叶是不同的(或等效地,对于每个q值)。对于Winternitz链函数,对于给定叶的每次H调用,u16str(i)| | u8str(j)的值是不同的。对于D_PBLC和D_MESG,输入格式对于q的每个值仅使用一次,因此,确保了清晰度。D_INTR和D_LEAF的格式对于r的每个值只使用一次,这确保了它们的清晰性。对于推荐的伪随机密钥生成过程,对于给定的I值,q和j对于H的每次调用都是不同的。
The value of I is chosen uniformly at random from the set of all 128-bit strings. If 2^64 public keys are generated (and, hence, 2^64 random I values), there is a nontrivial probability of a duplicate (which would imply duplicate prefixes). However, there will be an extremely high probability there will not be a four-way collision (that is, any I value used for four distinct LMS keys; probability < 2^-132), and, hence, the number of repeats for any specific prefix will be limited to at most three. This is shown (in [Fluhrer17]) to have only a limited effect on the security of the system.
I的值从所有128位字符串集中均匀随机选择。如果生成了2^64个公钥(因此,生成了2^64个随机I值),则存在重复的概率(这意味着前缀重复)。然而,不存在四路冲突的概率极高(即,用于四个不同LMS密钥的任何I值;概率<2^-132),因此,任何特定前缀的重复次数将限制为最多三次。这显示(在[Fluhrer17]中)对系统安全性的影响有限。
The LMS signature system, like all N-time signature systems, requires that the signer maintain state across different invocations of the signing algorithm to ensure that none of the component one-time signature systems are used more than once. This section calls out some important practical considerations around this statefulness. These issues are discussed in greater detail in [STMGMT].
与所有N次签名系统一样,LMS签名系统要求签名者在签名算法的不同调用中保持状态,以确保没有一个组件一次性签名系统被多次使用。本节提出了围绕这种状态的一些重要的实际考虑。[STMGMT]对这些问题进行了更详细的讨论。
In a typical computing environment, a private key will be stored in nonvolatile media such as on a hard drive. Before it is used to sign a message, it will be read into an application's Random-Access Memory (RAM). After a signature is generated, the value of the private key will need to be updated by writing the new value of the private key into nonvolatile storage. It is essential for security that the application ensures that this value is actually written into that storage, yet there may be one or more memory caches between it and the application. Memory caching is commonly done in the file system and in a physical memory unit on the hard disk that is dedicated to that purpose. To ensure that the updated value is written to
在典型的计算环境中,私钥将存储在非易失性介质中,如硬盘驱动器上。在用于对消息签名之前,它将被读入应用程序的随机存取存储器(RAM)。生成签名后,需要通过将私钥的新值写入非易失性存储器来更新私钥的值。对于安全性来说,应用程序必须确保该值实际写入该存储器,但它与应用程序之间可能存在一个或多个内存缓存。内存缓存通常在文件系统和专用于该目的的硬盘上的物理内存单元中完成。确保将更新后的值写入
physical media, the application may need to take several special steps. In a POSIX environment, for instance, the O_SYNC flag (for the open() system call) will cause invocations of the write() system call to block the calling process until the data has been written to the underlying hardware. However, if that hardware has its own memory cache, it must be separately dealt with using an operating system or device-specific tool such as hdparm to flush the on-drive cache or turn off write caching for that drive. Because these details vary across different operating systems and devices, this note does not attempt to provide complete guidance; instead, we call the implementer's attention to these issues.
对于物理介质,应用程序可能需要采取几个特殊步骤。例如,在POSIX环境中,O_SYNC标志(用于open()系统调用)将导致write()系统调用的调用阻止调用过程,直到数据写入底层硬件。但是,如果该硬件有自己的内存缓存,则必须使用操作系统或特定于设备的工具(如hdparm)单独处理该硬件,以刷新驱动器上的缓存或关闭该驱动器的写缓存。由于这些细节因不同的操作系统和设备而异,本说明不试图提供完整的指导;相反,我们呼吁实现者注意这些问题。
When hierarchical signatures are used, an easy way to minimize the private key synchronization issues is to have the private key for the second-level resident in RAM only and never write that value into nonvolatile memory. A new second-level public/private key pair will be generated whenever the application (re)starts; thus, failures such as a power outage or application crash are automatically accommodated. Implementations SHOULD use this approach wherever possible.
当使用分层签名时,最小化私钥同步问题的简单方法是将第二级的私钥仅驻留在RAM中,并且永远不要将该值写入非易失性存储器。每当应用程序(重新)启动时,将生成新的二级公钥/私钥对;因此,诸如断电或应用程序崩溃之类的故障会自动适应。实现应该尽可能使用这种方法。
To show the security of LM-OTS checksum, we consider the signature y of a message with a private key x and let h = H(message) and c = Cksm(H(message)) (see Section 4.5). To attempt a forgery, an attacker may try to change the values of h and c. Let h' and c' denote the values used in the forgery attempt. If for some integer j in the range 0 to u, where u = ceil(8*n/w) is the size of the range that the checksum value can cover, inclusive,
为了显示LM OTS校验和的安全性,我们考虑带有私钥X的消息的签名Y,并让H=H(消息)和C=CKSM(H(消息))(见第4.5节)。若要尝试伪造,攻击者可能会尝试更改h和c的值。设h'和c'表示伪造企图中使用的值。如果对于0到u范围内的某个整数j,其中u=ceil(8*n/w)是校验和值可以覆盖的范围的大小,包括,
a' = coef(h', j, w),
a'=coef(h',j,w),
a = coef(h, j, w), and
a=系数(h,j,w),和
a' > a
a'>a'>
then the attacker can compute F^a'(x[j]) from F^a(x[j]) = y[j] by iteratively applying function F to the j-th term of the signature an additional (a' - a) times. However, as a result of the increased number of hashing iterations, the checksum value c' will decrease from its original value of c. Thus, a valid signature's checksum will have, for some number k in the range u to (p-1), inclusive,
然后,攻击者可以通过对签名的第j项再重复(a'-a)次应用函数F,从F^a(x[j])=y[j]计算F^a'(x[j])。但是,由于散列迭代次数的增加,校验和值c'将从其原始值c'减少。因此,对于u到(p-1)范围内的某个数字k,有效签名的校验和将具有:,
b' = coef(c', k, w),
b'=系数(c',k,w),
b = coef(c, k, w), and
b=系数(c,k,w),和
b' < b
b'<b
Due to the one-way property of F, the attacker cannot easily compute F^b'(x[k]) from F^b(x[k]) = y[k].
由于F的单向属性,攻击者无法从F^b(x[k])=y[k轻松计算F^b'(x[k])。
The eXtended Merkle Signature Scheme (XMSS) is similar to HSS in several ways [XMSS][RFC8391]. Both are stateful hash-based signature schemes, and both use a hierarchical approach, with a Merkle tree at each level of the hierarchy. XMSS signatures are slightly shorter than HSS signatures, for equivalent security and an equal number of signatures.
扩展Merkle签名方案(XMSS)在若干方面与HSS类似[XMSS][RFC8391]。两者都是基于状态哈希的签名方案,并且都使用层次方法,在层次结构的每一级都有一个Merkle树。XMSS签名略短于HSS签名,以实现同等安全性和相同数量的签名。
HSS has several advantages over XMSS. HSS operations are roughly four times faster than the comparable XMSS ones, when SHA256 is used as the underlying hash. This occurs because the hash operation done as a part of the Winternitz iterations dominates performance, and XMSS performs four compression-function invocations (two for the PRF, two for the F function) where HSS only needs to perform one. Additionally, HSS is somewhat simpler (as each hash invocation is just a prefix followed by the data being hashed).
HSS比XMS有几个优点。当使用SHA256作为底层哈希时,HSS操作的速度大约是可比XMSS操作的四倍。这是因为作为Winternitz迭代的一部分执行的哈希操作控制了性能,XMS执行四次压缩函数调用(两次用于PRF,两次用于F函数),其中HSS只需要执行一次。此外,HSS稍微简单一些(因为每个散列调用只是一个前缀,后跟被散列的数据)。
[FIPS180] National Institute of Standards and Technology, "Secure Hash Standard (SHS)", FIPS PUB 180-4, DOI 10.6028/NIST.FIPS.180-4, March 2012.
[FIPS180]国家标准与技术研究所,“安全哈希标准(SHS)”,FIPS PUB 180-4,DOI 10.6028/NIST.FIPS.180-42012年3月。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<https://www.rfc-editor.org/info/rfc2119>.
[RFC4506] Eisler, M., Ed., "XDR: External Data Representation Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May 2006, <https://www.rfc-editor.org/info/rfc4506>.
[RFC4506]艾斯勒,M.,编辑,“XDR:外部数据表示标准”,STD 67,RFC 4506,DOI 10.17487/RFC4506,2006年5月<https://www.rfc-editor.org/info/rfc4506>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/info/rfc8126>.
[RFC8126]Cotton,M.,Leiba,B.,和T.Narten,“在RFC中编写IANA考虑事项部分的指南”,BCP 26,RFC 8126,DOI 10.17487/RFC8126,2017年6月<https://www.rfc-editor.org/info/rfc8126>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8174]Leiba,B.,“RFC 2119关键词中大写与小写的歧义”,BCP 14,RFC 8174,DOI 10.17487/RFC8174,2017年5月<https://www.rfc-editor.org/info/rfc8174>.
[RFC8179] Bradner, S. and J. Contreras, "Intellectual Property Rights in IETF Technology", BCP 79, RFC 8179, DOI 10.17487/RFC8179, May 2017, <https://www.rfc-editor.org/info/rfc8179>.
[RFC8179]Bradner,S.和J.Contreras,“IETF技术中的知识产权”,BCP 79,RFC 8179,DOI 10.17487/RFC8179,2017年5月<https://www.rfc-editor.org/info/rfc8179>.
[USPTO5432852] Leighton, T. and S. Micali, "Large provably fast and secure digital signature schemes based on secure hash functions", U.S. Patent 5,432,852, July 1995.
[USPTO5432852]Leighton,T.和S.Micali,“基于安全哈希函数的大型可证明快速安全数字签名方案”,美国专利5432852,1995年7月。
[C:Merkle87] Merkle, R., "A Digital Signature Based on a Conventional Encryption Function", in Advances in Cryptology -- CRYPTO '87 Proceedings, Lecture Notes in Computer Science Vol. 293, DOI 10.1007/3-540-48184-2_32, 1988.
[C:Merkle87]Merkle,R.,“基于传统加密功能的数字签名”,载于《密码学的进展——加密'87论文集》,计算机科学第293卷讲稿,DOI 10.1007/3-540-48184-2_328;,1988年。
[C:Merkle89a] Merkle, R., "A Certified Digital Signature", in Advances in Cryptology -- CRYPTO '89 Proceedings, Lecture Notes in Computer Science Vol. 435, DOI 10.1007/0-387-34805-0_21, 1990.
[C:Merkle89a]Merkle,R.,“经认证的数字签名”,载于《密码学的进展--CRYPTO'89会议录》,计算机科学课堂讲稿第435卷,DOI 10.1007/0-387-34805-0呪,1990年。
[C:Merkle89b] Merkle, R., "One Way Hash Functions and DES", in Advances in Cryptology -- CRYPTO '89 Proceedings, Lecture Notes in Computer Science Vol. 435, DOI 10.1007/0-387-34805-0_40, 1990.
[C:Merkle89b]Merkle,R.,“单向散列函数和DES”,载于《密码学的进展——加密'89会议录》,计算机科学课堂讲稿第435卷,DOI 10.1007/0-387-34805-0(1990年)。
[Fluhrer17] Fluhrer, S., "Further Analysis of a Proposed Hash-Based Signature Standard", Cryptology ePrint Archive Report 2017/553, 2017, <https://eprint.iacr.org/2017/553>.
[Fluhrer17]Fluhrer,S.,“提议的基于散列的签名标准的进一步分析”,密码学ePrint存档报告2017/553,2017<https://eprint.iacr.org/2017/553>.
[Katz16] Katz, J., "Analysis of a Proposed Hash-Based Signature Standard", in SSR 2016: Security Standardisation Research (SSR) pp. 261-273, Lecture Notes in Computer Science Vol. 10074, DOI 10.1007/978-3-319-49100-4_12, 2016.
[Katz16]Katz,J.,“对提议的基于散列的签名标准的分析”,摘自SSR 2016:安全标准化研究(SSR)第261-273页,《计算机科学》第10074卷讲稿,DOI 10.1007/978-3-319-49100-4_12,2016。
[Merkle79] Merkle, R., "Secrecy, Authentication, and Public Key Systems", Technical Report No. 1979-1, Information Systems Laboratory, Stanford University, 1979, <http://www.merkle.com/papers/Thesis1979.pdf>.
[Merkle79]Merkle,R.,“保密、认证和公钥系统”,第1979-1号技术报告,斯坦福大学信息系统实验室,1979年<http://www.merkle.com/papers/Thesis1979.pdf>.
[RFC8391] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., and A. Mohaisen, "XMSS: eXtended Merkle Signature Scheme", RFC 8391, DOI 10.17487/RFC8391, May 2018, <https://www.rfc-editor.org/info/rfc8391>.
[RFC8391]Huelsing,A.,Butin,D.,Gazdag,S.,Rijneveld,J.,和A.Mohaisen,“XMSS:扩展Merkle签名方案”,RFC 8391,DOI 10.17487/RFC8391,2018年5月<https://www.rfc-editor.org/info/rfc8391>.
[STMGMT] McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S., Butin, D., and J. Buchmann, "State Management for Hash-Based Signatures.", in SSR 2016: Security Standardisation Research (SSR) pp. 244-260, Lecture Notes in Computer Science Vol. 10074, DOI 10.1007/978-3-319-49100-4_11, 2016.
[STMGMT]McGrew,D.,Kampanakis,P.,Fluhrer,S.,Gazdag,S.,Butin,D.,和J.Buchmann,“基于散列的签名的状态管理”,摘自SSR 2016:安全标准化研究(SSR)第244-260页,《计算机科学》第10074卷讲稿,DOI 10.1007/978-3-319-49100-4ⵠ,2016。
[XMSS] Buchmann, J., Dahmen, E., and , "XMSS -- A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions.", in PQCrypto 2011: Post-Quantum Cryptography pp. 117-129, Lecture Notes in Computer Science Vol. 7071, DOI 10.1007/978-3-642-25405-5_8, 2011.
[XMSS]Buchmann,J.,Dahmen,E.,和,“XMSS——一种基于最小安全假设的实用前向安全签名方案”,《PQCrypto 2011:后量子密码学》第117-129页,《计算机科学》第7071卷讲稿,DOI 10.1007/978-3-642-25405-5_8,2011。
An implementation MAY use the following pseudorandom process for generating an LMS private key.
实现可以使用以下伪随机过程来生成LMS私钥。
SEED is an m-byte value that is generated uniformly at random at the start of the process,
种子是一个m字节的值,在进程开始时统一随机生成,
I is the LMS key pair identifier,
I是LMS密钥对标识符,
q denotes the LMS leaf number of an LM-OTS private key,
q表示LM-OTS私钥的LMS叶数,
x_q denotes the x array of private elements in the LM-OTS private key with leaf number q,
x_q表示LM-OTS私钥中具有叶编号q的私有元素的x数组,
i is the index of the private key element, and
i是私钥元素的索引,并且
H is the hash function used in LM-OTS.
H是LM-OTS中使用的哈希函数。
The elements of the LM-OTS private keys are computed as:
LM-OTS私钥的元素计算如下:
x_q[i] = H(I || u32str(q) || u16str(i) || u8str(0xff) || SEED).
x|q[i]=H(i|u32str(q)| u16str(i)| u8str(0xff)|种子)。
This process stretches the m-byte random value SEED into a (much larger) set of pseudorandom values, using a unique counter in each invocation of H. The format of the inputs to H are chosen so that they are distinct from all other uses of H in LMS and LM-OTS. A careful reader will note that this is similar to the hash we perform when iterating through the Winternitz chain; however, in that chain, the iteration index will vary between 0 and 254 maximum (for W=8), while the corresponding value in this formula is 255. This algorithm is included in the proof of security in [Fluhrer17] and hence this method is safe when used within the LMS system; however, any other cryptographically secure method of generating private keys would also be safe.
该过程在每次调用H时使用一个唯一的计数器,将m字节随机值种子扩展为一组(更大)伪随机值。选择H的输入格式,使其与LMS和LM-OTS中H的所有其他用途不同。细心的读者会注意到,这与我们在遍历Winternitz链时执行的哈希相似;但是,在该链中,迭代索引的最大值将在0和254之间变化(对于W=8),而此公式中的对应值为255。该算法包含在[Fluhrer17]中的安全性证明中,因此该方法在LMS系统中使用时是安全的;然而,生成私钥的任何其他加密安全方法也将是安全的。
The LM-OTS one-time signature method uses several internal parameters, which are a function of the selected parameter set. These internal parameters include the following:
LM-OTS一次性签名方法使用多个内部参数,这些参数是所选参数集的函数。这些内部参数包括以下内容:
p This is the number of independent Winternitz chains used in the signature; it will be the number of w-bit digits needed to hold the n-bit hash (u in the below equations), along with the number of digits needed to hold the checksum (v in the below equations)
p这是签名中使用的独立Winternitz链的数量;它将是保持n位散列所需的w位位数(下式中的u),以及保持校验和所需的位数(下式中的v)
ls This is the size of the shift needed to move the checksum so that it appears in the checksum digits
ls这是移动校验和以使其出现在校验和数字中所需的移位大小
ls is needed because, while we express the checksum internally as a 16-bit value, we don't always express all 16 bits in the signature; for example, if w=4, we might use only the top 12 bits. Because we read the checksum in network order, this means that, without the shift, we'll use the higher-order bits (which may be always 0) and omit the lower-order bits (where the checksum value actually resides). This shift is here to ensure that the parts of the checksum we need to express (for security) actually contribute to the signature; when multiple such shifts are possible, we take the minimal value.
需要ls是因为,虽然我们在内部将校验和表示为16位值,但并不总是表示签名中的所有16位;例如,如果w=4,我们可能只使用前12位。因为我们以网络顺序读取校验和,这意味着,在没有移位的情况下,我们将使用高阶位(可能总是0),而忽略低阶位(校验和值实际驻留的位置)。这种转变是为了确保我们需要表达的校验和部分(为了安全)实际上有助于签名;当可能出现多个这样的移位时,我们取最小值。
The parameters ls and p are computed as follows:
参数ls和p的计算如下:
u = ceil(8*n/w) v = ceil((floor(lg((2^w - 1) * u)) + 1) / w) ls = 16 - (v * w) p = u + v
u = ceil(8*n/w) v = ceil((floor(lg((2^w - 1) * u)) + 1) / w) ls = 16 - (v * w) p = u + v
Here, u and v represent the number of w-bit fields required to contain the hash of the message and the checksum byte strings, respectively. And as the value of p is the number of w-bit elements of ( H(message) || Cksm(H(message)) ), it is also equivalently the number of byte strings that form the private key and the number of byte strings in the signature. The value 16 in the ls computation of ls corresponds to the 16-bit value used for the sum variable in Algorithm 2 in Section 4.4
这里,u和v分别表示包含消息哈希和校验和字节字符串所需的w位字段数。由于p的值是(H(message)| | Cksm(H(message))的w位元素的数量,因此它也等价于构成私钥的字节字符串的数量和签名中的字节字符串的数量。ls的ls计算中的值16对应于第4.4节算法2中用于求和变量的16位值
A table illustrating various combinations of n and w with the associated values of u, v, ls, and p is provided in Table 6.
表6中提供了一个表格,说明了n和w的各种组合以及u、v、ls和p的相关值。
+---------+------------+-----------+-----------+-------+------------+ | Hash | Winternitz | w-bit | w-bit | Left | Total | | Length | Parameter | Elements | Elements | Shift | Number of | | in | (w) | in Hash | in | (ls) | w-bit | | Bytes | | (u) | Checksum | | Elements | | (n) | | | (v) | | (p) | +---------+------------+-----------+-----------+-------+------------+ | 32 | 1 | 256 | 9 | 7 | 265 | | | | | | | | | 32 | 2 | 128 | 5 | 6 | 133 | | | | | | | | | 32 | 4 | 64 | 3 | 4 | 67 | | | | | | | | | 32 | 8 | 32 | 2 | 0 | 34 | +---------+------------+-----------+-----------+-------+------------+
+---------+------------+-----------+-----------+-------+------------+ | Hash | Winternitz | w-bit | w-bit | Left | Total | | Length | Parameter | Elements | Elements | Shift | Number of | | in | (w) | in Hash | in | (ls) | w-bit | | Bytes | | (u) | Checksum | | Elements | | (n) | | | (v) | | (p) | +---------+------------+-----------+-----------+-------+------------+ | 32 | 1 | 256 | 9 | 7 | 265 | | | | | | | | | 32 | 2 | 128 | 5 | 6 | 133 | | | | | | | | | 32 | 4 | 64 | 3 | 4 | 67 | | | | | | | | | 32 | 8 | 32 | 2 | 0 | 34 | +---------+------------+-----------+-----------+-------+------------+
Table 6
表6
The LMS public key can be computed using the following algorithm or any equivalent method. The algorithm uses a stack of hashes for data. It also makes use of a hash function with the typical init/update/final interface to hash functions; the result of the invocations hash_init(), hash_update(N[1]), hash_update(N[2]), ... , hash_update(N[n]), v = hash_final(), in that order, is identical to that of the invocation of H(N[1] || N[2] || ... || N[n]).
可以使用以下算法或任何等效方法计算LMS公钥。该算法对数据使用哈希堆栈。它还使用了一个哈希函数,该函数具有哈希函数的典型init/update/final接口;调用hash_init()、hash_update(N[1])、hash_update(N[2])、…、的结果,hash_update(N[N]),v=hash_final(),按照该顺序,与调用H(N[1]| | N[2]| |…| | N[N])的顺序相同。
Generating an LMS Public Key from an LMS Private Key
从LMS私钥生成LMS公钥
for ( i = 0; i < 2^h; i = i + 1 ) { r = i + num_lmots_keys; temp = H(I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[i]) j = i; while (j % 2 == 1) { r = (r - 1)/2; j = (j-1) / 2; left_side = pop(data stack); temp = H(I || u32str(r) || u16str(D_INTR) || left_side || temp) } push temp onto the data stack } public_key = pop(data stack)
for ( i = 0; i < 2^h; i = i + 1 ) { r = i + num_lmots_keys; temp = H(I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[i]) j = i; while (j % 2 == 1) { r = (r - 1)/2; j = (j-1) / 2; left_side = pop(data stack); temp = H(I || u32str(r) || u16str(D_INTR) || left_side || temp) } push temp onto the data stack } public_key = pop(data stack)
Note that this pseudocode expects that all 2^h leaves of the tree have equal depth -- that is, it expects num_lmots_keys to be a power of 2. The maximum depth of the stack will be h-1 elements -- that is, a total of (h-1)*n bytes; for the currently defined parameter sets, this will never be more than 768 bytes of data.
请注意,此伪代码期望树的所有2^h叶具有相同的深度——也就是说,它期望num_lmots_keys为2的幂。堆栈的最大深度将是h-1个元素——即,总共(h-1)*n个字节;对于当前定义的参数集,数据量永远不会超过768字节。
The LMS signature consists of u32str(q) || lmots_signature || u32str(type) || path[0] || path[1] || ... || path[h-1]. This appendix shows one method of constructing this signature, assuming that the implementation has stored the T[] array that was used to construct the public key. Note that this is not the only possible method; other methods exist that don't assume that you have the entire T[] array in memory. To construct a signature, you perform the following algorithm:
LMS签名由u32str(q)| lmots|U签名| | | u32str(类型)| |路径[0]| |路径[1]| | |路径[h-1]。本附录显示了构造此签名的一种方法,假设实现已存储用于构造公钥的T[]数组。注意,这不是唯一可能的方法;还有一些方法不假设您在内存中有整个t[]数组。要构造签名,请执行以下算法:
Generating an LMS Signature
生成LMS签名
1. Set type to the typecode of the LMS algorithm.
1. 将type设置为LMS算法的typecode。
2. Extract h from the typecode, according to Table 2.
2. 根据表2,从类型代码中提取h。
3. Create the LM-OTS signature for the message: ots_signature = lmots_sign(message, LMS_PRIV[q])
3. 为消息创建LM-OTS签名:OTS_签名=lmots_签名(消息,LMS_PRIV[q])
4. Compute the array path as follows: i = 0 r = 2^h + q while (i < h) { temp = (r / 2^i) xor 1 path[i] = T[temp] i = i + 1 }
4. 按如下方式计算数组路径:i=0r=2^h+q,而(i<h){temp=(r/2^i)xor 1path[i]=T[temp]i=i+1}
5. S = u32str(q) || ots_signature || u32str(type) || path[0] || path[1] || ... || path[h-1]
5. S=u32str(q)| ots|u签名| | u32str(type)| |路径[0]| | |路径[1]| | |路径[h-1]
6. q = q + 1
6. q=q+1
7. Return S.
7. 返回S。
Here "xor" is the bitwise exclusive-or operation, and / is integer division (that is, rounded down to an integer value).
这里“xor”是按位异或运算,和/或是整数除法(即向下舍入为整数值)。
An example implementation can be found online at <https://github.com/cisco/hash-sigs>.
一个示例实现可以在以下位置在线找到:<https://github.com/cisco/hash-sigs>.
This section provides test cases that can be used to verify or debug an implementation. This data is formatted with the name of the elements on the left and the hexadecimal value of the elements on the right. The concatenation of all of the values within a public key or signature produces that public key or signature, and values that do not fit within a single line are listed across successive lines.
本节提供可用于验证或调试实现的测试用例。此数据的格式为左侧元素的名称和右侧元素的十六进制值。公钥或签名中所有值的串联将生成该公钥或签名,不适合于一行的值将跨连续行列出。
Test Case 1 Public Key
测试用例1公钥
-------------------------------------------- HSS public key levels 00000002 -------------------------------------------- LMS type 00000005 # LM_SHA256_M32_H5 LMOTS type 00000004 # LMOTS_SHA256_N32_W8 I 61a5d57d37f5e46bfb7520806b07a1b8 K 50650e3b31fe4a773ea29a07f09cf2ea 30e579f0df58ef8e298da0434cb2b878 -------------------------------------------- --------------------------------------------
-------------------------------------------- HSS public key levels 00000002 -------------------------------------------- LMS type 00000005 # LM_SHA256_M32_H5 LMOTS type 00000004 # LMOTS_SHA256_N32_W8 I 61a5d57d37f5e46bfb7520806b07a1b8 K 50650e3b31fe4a773ea29a07f09cf2ea 30e579f0df58ef8e298da0434cb2b878 -------------------------------------------- --------------------------------------------
Test Case 1 Message
测试用例1消息
-------------------------------------------- Message 54686520706f77657273206e6f742064 |The powers not d| 656c65676174656420746f2074686520 |elegated to the | 556e6974656420537461746573206279 |United States by| 2074686520436f6e737469747574696f | the Constitutio| 6e2c206e6f722070726f686962697465 |n, nor prohibite| 6420627920697420746f207468652053 |d by it to the S| 74617465732c20617265207265736572 |tates, are reser| 76656420746f20746865205374617465 |ved to the State| 7320726573706563746976656c792c20 |s respectively, | 6f7220746f207468652070656f706c65 |or to the people| 2e0a |..| --------------------------------------------
-------------------------------------------- Message 54686520706f77657273206e6f742064 |The powers not d| 656c65676174656420746f2074686520 |elegated to the | 556e6974656420537461746573206279 |United States by| 2074686520436f6e737469747574696f | the Constitutio| 6e2c206e6f722070726f686962697465 |n, nor prohibite| 6420627920697420746f207468652053 |d by it to the S| 74617465732c20617265207265736572 |tates, are reser| 76656420746f20746865205374617465 |ved to the State| 7320726573706563746976656c792c20 |s respectively, | 6f7220746f207468652070656f706c65 |or to the people| 2e0a |..| --------------------------------------------
Test Case 1 Signature
测试用例1签名
-------------------------------------------- HSS signature Nspk 00000001 sig[0]: -------------------------------------------- LMS signature q 00000005 -------------------------------------------- LMOTS signature LMOTS type 00000004 # LMOTS_SHA256_N32_W8 C d32b56671d7eb98833c49b433c272586 bc4a1c8a8970528ffa04b966f9426eb9 y[0] 965a25bfd37f196b9073f3d4a232feb6 9128ec45146f86292f9dff9610a7bf95 y[1] a64c7f60f6261a62043f86c70324b770 7f5b4a8a6e19c114c7be866d488778a0 y[2] e05fd5c6509a6e61d559cf1a77a970de 927d60c70d3de31a7fa0100994e162a2 y[3] 582e8ff1b10cd99d4e8e413ef469559f 7d7ed12c838342f9b9c96b83a4943d16 y[4] 81d84b15357ff48ca579f19f5e71f184 66f2bbef4bf660c2518eb20de2f66e3b y[5] 14784269d7d876f5d35d3fbfc7039a46 2c716bb9f6891a7f41ad133e9e1f6d95 y[6] 60b960e7777c52f060492f2d7c660e14 71e07e72655562035abc9a701b473ecb y[7] c3943c6b9c4f2405a3cb8bf8a691ca51 d3f6ad2f428bab6f3a30f55dd9625563 y[8] f0a75ee390e385e3ae0b906961ecf41a e073a0590c2eb6204f44831c26dd768c y[9] 35b167b28ce8dc988a3748255230cef9 9ebf14e730632f27414489808afab1d1 y[10] e783ed04516de012498682212b078105 79b250365941bcc98142da13609e9768 y[11] aaf65de7620dabec29eb82a17fde35af 15ad238c73f81bdb8dec2fc0e7f93270 y[12] 1099762b37f43c4a3c20010a3d72e2f6 06be108d310e639f09ce7286800d9ef8 y[13] a1a40281cc5a7ea98d2adc7c7400c2fe 5a101552df4e3cccfd0cbf2ddf5dc677 y[14] 9cbbc68fee0c3efe4ec22b83a2caa3e4 8e0809a0a750b73ccdcf3c79e6580c15 y[15] 4f8a58f7f24335eec5c5eb5e0cf01dcf 4439424095fceb077f66ded5bec73b27 y[16] c5b9f64a2a9af2f07c05e99e5cf80f00 252e39db32f6c19674f190c9fbc506d8
-------------------------------------------- HSS signature Nspk 00000001 sig[0]: -------------------------------------------- LMS signature q 00000005 -------------------------------------------- LMOTS signature LMOTS type 00000004 # LMOTS_SHA256_N32_W8 C d32b56671d7eb98833c49b433c272586 bc4a1c8a8970528ffa04b966f9426eb9 y[0] 965a25bfd37f196b9073f3d4a232feb6 9128ec45146f86292f9dff9610a7bf95 y[1] a64c7f60f6261a62043f86c70324b770 7f5b4a8a6e19c114c7be866d488778a0 y[2] e05fd5c6509a6e61d559cf1a77a970de 927d60c70d3de31a7fa0100994e162a2 y[3] 582e8ff1b10cd99d4e8e413ef469559f 7d7ed12c838342f9b9c96b83a4943d16 y[4] 81d84b15357ff48ca579f19f5e71f184 66f2bbef4bf660c2518eb20de2f66e3b y[5] 14784269d7d876f5d35d3fbfc7039a46 2c716bb9f6891a7f41ad133e9e1f6d95 y[6] 60b960e7777c52f060492f2d7c660e14 71e07e72655562035abc9a701b473ecb y[7] c3943c6b9c4f2405a3cb8bf8a691ca51 d3f6ad2f428bab6f3a30f55dd9625563 y[8] f0a75ee390e385e3ae0b906961ecf41a e073a0590c2eb6204f44831c26dd768c y[9] 35b167b28ce8dc988a3748255230cef9 9ebf14e730632f27414489808afab1d1 y[10] e783ed04516de012498682212b078105 79b250365941bcc98142da13609e9768 y[11] aaf65de7620dabec29eb82a17fde35af 15ad238c73f81bdb8dec2fc0e7f93270 y[12] 1099762b37f43c4a3c20010a3d72e2f6 06be108d310e639f09ce7286800d9ef8 y[13] a1a40281cc5a7ea98d2adc7c7400c2fe 5a101552df4e3cccfd0cbf2ddf5dc677 y[14] 9cbbc68fee0c3efe4ec22b83a2caa3e4 8e0809a0a750b73ccdcf3c79e6580c15 y[15] 4f8a58f7f24335eec5c5eb5e0cf01dcf 4439424095fceb077f66ded5bec73b27 y[16] c5b9f64a2a9af2f07c05e99e5cf80f00 252e39db32f6c19674f190c9fbc506d8
y[17] 26857713afd2ca6bb85cd8c107347552 f30575a5417816ab4db3f603f2df56fb y[18] c413e7d0acd8bdd81352b2471fc1bc4f 1ef296fea1220403466b1afe78b94f7e y[19] cf7cc62fb92be14f18c2192384ebceaf 8801afdf947f698ce9c6ceb696ed70e9 y[20] e87b0144417e8d7baf25eb5f70f09f01 6fc925b4db048ab8d8cb2a661ce3b57a y[21] da67571f5dd546fc22cb1f97e0ebd1a6 5926b1234fd04f171cf469c76b884cf3 y[22] 115cce6f792cc84e36da58960c5f1d76 0f32c12faef477e94c92eb75625b6a37 y[23] 1efc72d60ca5e908b3a7dd69fef02491 50e3eebdfed39cbdc3ce9704882a2072 y[24] c75e13527b7a581a556168783dc1e975 45e31865ddc46b3c957835da252bb732 y[25] 8d3ee2062445dfb85ef8c35f8e1f3371 af34023cef626e0af1e0bc017351aae2 y[26] ab8f5c612ead0b729a1d059d02bfe18e fa971b7300e882360a93b025ff97e9e0 y[27] eec0f3f3f13039a17f88b0cf808f4884 31606cb13f9241f40f44e537d302c64a y[28] 4f1f4ab949b9feefadcb71ab50ef27d6 d6ca8510f150c85fb525bf25703df720 y[29] 9b6066f09c37280d59128d2f0f637c7d 7d7fad4ed1c1ea04e628d221e3d8db77 y[30] b7c878c9411cafc5071a34a00f4cf077 38912753dfce48f07576f0d4f94f42c6 y[31] d76f7ce973e9367095ba7e9a3649b7f4 61d9f9ac1332a4d1044c96aefee67676 y[32] 401b64457c54d65fef6500c59cdfb69a f7b6dddfcb0f086278dd8ad0686078df y[33] b0f3f79cd893d314168648499898fbc0 ced5f95b74e8ff14d735cdea968bee74 -------------------------------------------- LMS type 00000005 # LM_SHA256_M32_H5 path[0] d8b8112f9200a5e50c4a262165bd342c d800b8496810bc716277435ac376728d path[1] 129ac6eda839a6f357b5a04387c5ce97 382a78f2a4372917eefcbf93f63bb591 path[2] 12f5dbe400bd49e4501e859f885bf073 6e90a509b30a26bfac8c17b5991c157e path[3] b5971115aa39efd8d564a6b90282c316 8af2d30ef89d51bf14654510a12b8a14 path[4] 4cca1848cf7da59cc2b3d9d0692dd2a2 0ba3863480e25b1b85ee860c62bf5136 --------------------------------------------
y[17] 26857713afd2ca6bb85cd8c107347552 f30575a5417816ab4db3f603f2df56fb y[18] c413e7d0acd8bdd81352b2471fc1bc4f 1ef296fea1220403466b1afe78b94f7e y[19] cf7cc62fb92be14f18c2192384ebceaf 8801afdf947f698ce9c6ceb696ed70e9 y[20] e87b0144417e8d7baf25eb5f70f09f01 6fc925b4db048ab8d8cb2a661ce3b57a y[21] da67571f5dd546fc22cb1f97e0ebd1a6 5926b1234fd04f171cf469c76b884cf3 y[22] 115cce6f792cc84e36da58960c5f1d76 0f32c12faef477e94c92eb75625b6a37 y[23] 1efc72d60ca5e908b3a7dd69fef02491 50e3eebdfed39cbdc3ce9704882a2072 y[24] c75e13527b7a581a556168783dc1e975 45e31865ddc46b3c957835da252bb732 y[25] 8d3ee2062445dfb85ef8c35f8e1f3371 af34023cef626e0af1e0bc017351aae2 y[26] ab8f5c612ead0b729a1d059d02bfe18e fa971b7300e882360a93b025ff97e9e0 y[27] eec0f3f3f13039a17f88b0cf808f4884 31606cb13f9241f40f44e537d302c64a y[28] 4f1f4ab949b9feefadcb71ab50ef27d6 d6ca8510f150c85fb525bf25703df720 y[29] 9b6066f09c37280d59128d2f0f637c7d 7d7fad4ed1c1ea04e628d221e3d8db77 y[30] b7c878c9411cafc5071a34a00f4cf077 38912753dfce48f07576f0d4f94f42c6 y[31] d76f7ce973e9367095ba7e9a3649b7f4 61d9f9ac1332a4d1044c96aefee67676 y[32] 401b64457c54d65fef6500c59cdfb69a f7b6dddfcb0f086278dd8ad0686078df y[33] b0f3f79cd893d314168648499898fbc0 ced5f95b74e8ff14d735cdea968bee74 -------------------------------------------- LMS type 00000005 # LM_SHA256_M32_H5 path[0] d8b8112f9200a5e50c4a262165bd342c d800b8496810bc716277435ac376728d path[1] 129ac6eda839a6f357b5a04387c5ce97 382a78f2a4372917eefcbf93f63bb591 path[2] 12f5dbe400bd49e4501e859f885bf073 6e90a509b30a26bfac8c17b5991c157e path[3] b5971115aa39efd8d564a6b90282c316 8af2d30ef89d51bf14654510a12b8a14 path[4] 4cca1848cf7da59cc2b3d9d0692dd2a2 0ba3863480e25b1b85ee860c62bf5136 --------------------------------------------
LMS public key LMS type 00000005 # LM_SHA256_M32_H5 LMOTS type 00000004 # LMOTS_SHA256_N32_W8 I d2f14ff6346af964569f7d6cb880a1b6 K 6c5004917da6eafe4d9ef6c6407b3db0 e5485b122d9ebe15cda93cfec582d7ab -------------------------------------------- final_signature: -------------------------------------------- LMS signature q 0000000a -------------------------------------------- LMOTS signature LMOTS type 00000004 # LMOTS_SHA256_N32_W8 C 0703c491e7558b35011ece3592eaa5da 4d918786771233e8353bc4f62323185c y[0] 95cae05b899e35dffd71705470620998 8ebfdf6e37960bb5c38d7657e8bffeef y[1] 9bc042da4b4525650485c66d0ce19b31 7587c6ba4bffcc428e25d08931e72dfb y[2] 6a120c5612344258b85efdb7db1db9e1 865a73caf96557eb39ed3e3f426933ac y[3] 9eeddb03a1d2374af7bf771855774562 37f9de2d60113c23f846df26fa942008 y[4] a698994c0827d90e86d43e0df7f4bfcd b09b86a373b98288b7094ad81a0185ac y[5] 100e4f2c5fc38c003c1ab6fea479eb2f 5ebe48f584d7159b8ada03586e65ad9c y[6] 969f6aecbfe44cf356888a7b15a3ff07 4f771760b26f9c04884ee1faa329fbf4 y[7] e61af23aee7fa5d4d9a5dfcf43c4c26c e8aea2ce8a2990d7ba7b57108b47dabf y[8] beadb2b25b3cacc1ac0cef346cbb90fb 044beee4fac2603a442bdf7e507243b7 y[9] 319c9944b1586e899d431c7f91bcccc8 690dbf59b28386b2315f3d36ef2eaa3c y[10] f30b2b51f48b71b003dfb08249484201 043f65f5a3ef6bbd61ddfee81aca9ce6 y[11] 0081262a00000480dcbc9a3da6fbef5c 1c0a55e48a0e729f9184fcb1407c3152 y[12] 9db268f6fe50032a363c9801306837fa fabdf957fd97eafc80dbd165e435d0e2 y[13] dfd836a28b354023924b6fb7e48bc0b3 ed95eea64c2d402f4d734c8dc26f3ac5 y[14] 91825daef01eae3c38e3328d00a77dc6 57034f287ccb0f0e1c9a7cbdc828f627 y[15] 205e4737b84b58376551d44c12c3c215 c812a0970789c83de51d6ad787271963
LMS public key LMS type 00000005 # LM_SHA256_M32_H5 LMOTS type 00000004 # LMOTS_SHA256_N32_W8 I d2f14ff6346af964569f7d6cb880a1b6 K 6c5004917da6eafe4d9ef6c6407b3db0 e5485b122d9ebe15cda93cfec582d7ab -------------------------------------------- final_signature: -------------------------------------------- LMS signature q 0000000a -------------------------------------------- LMOTS signature LMOTS type 00000004 # LMOTS_SHA256_N32_W8 C 0703c491e7558b35011ece3592eaa5da 4d918786771233e8353bc4f62323185c y[0] 95cae05b899e35dffd71705470620998 8ebfdf6e37960bb5c38d7657e8bffeef y[1] 9bc042da4b4525650485c66d0ce19b31 7587c6ba4bffcc428e25d08931e72dfb y[2] 6a120c5612344258b85efdb7db1db9e1 865a73caf96557eb39ed3e3f426933ac y[3] 9eeddb03a1d2374af7bf771855774562 37f9de2d60113c23f846df26fa942008 y[4] a698994c0827d90e86d43e0df7f4bfcd b09b86a373b98288b7094ad81a0185ac y[5] 100e4f2c5fc38c003c1ab6fea479eb2f 5ebe48f584d7159b8ada03586e65ad9c y[6] 969f6aecbfe44cf356888a7b15a3ff07 4f771760b26f9c04884ee1faa329fbf4 y[7] e61af23aee7fa5d4d9a5dfcf43c4c26c e8aea2ce8a2990d7ba7b57108b47dabf y[8] beadb2b25b3cacc1ac0cef346cbb90fb 044beee4fac2603a442bdf7e507243b7 y[9] 319c9944b1586e899d431c7f91bcccc8 690dbf59b28386b2315f3d36ef2eaa3c y[10] f30b2b51f48b71b003dfb08249484201 043f65f5a3ef6bbd61ddfee81aca9ce6 y[11] 0081262a00000480dcbc9a3da6fbef5c 1c0a55e48a0e729f9184fcb1407c3152 y[12] 9db268f6fe50032a363c9801306837fa fabdf957fd97eafc80dbd165e435d0e2 y[13] dfd836a28b354023924b6fb7e48bc0b3 ed95eea64c2d402f4d734c8dc26f3ac5 y[14] 91825daef01eae3c38e3328d00a77dc6 57034f287ccb0f0e1c9a7cbdc828f627 y[15] 205e4737b84b58376551d44c12c3c215 c812a0970789c83de51d6ad787271963
y[16] 327f0a5fbb6b5907dec02c9a90934af5 a1c63b72c82653605d1dcce51596b3c2 y[17] b45696689f2eb382007497557692caac 4d57b5de9f5569bc2ad0137fd47fb47e y[18] 664fcb6db4971f5b3e07aceda9ac130e 9f38182de994cff192ec0e82fd6d4cb7 y[19] f3fe00812589b7a7ce51544045643301 6b84a59bec6619a1c6c0b37dd1450ed4 y[20] f2d8b584410ceda8025f5d2d8dd0d217 6fc1cf2cc06fa8c82bed4d944e71339e y[21] ce780fd025bd41ec34ebff9d4270a322 4e019fcb444474d482fd2dbe75efb203 y[22] 89cc10cd600abb54c47ede93e08c114e db04117d714dc1d525e11bed8756192f y[23] 929d15462b939ff3f52f2252da2ed64d 8fae88818b1efa2c7b08c8794fb1b214 y[24] aa233db3162833141ea4383f1a6f120b e1db82ce3630b3429114463157a64e91 y[25] 234d475e2f79cbf05e4db6a9407d72c6 bff7d1198b5c4d6aad2831db61274993 y[26] 715a0182c7dc8089e32c8531deed4f74 31c07c02195eba2ef91efb5613c37af7 y[27] ae0c066babc69369700e1dd26eddc0d2 16c781d56e4ce47e3303fa73007ff7b9 y[28] 49ef23be2aa4dbf25206fe45c20dd888 395b2526391a724996a44156beac8082 y[29] 12858792bf8e74cba49dee5e8812e019 da87454bff9e847ed83db07af3137430 y[30] 82f880a278f682c2bd0ad6887cb59f65 2e155987d61bbf6a88d36ee93b6072e6 y[31] 656d9ccbaae3d655852e38deb3a2dcf8 058dc9fb6f2ab3d3b3539eb77b248a66 y[32] 1091d05eb6e2f297774fe6053598457c c61908318de4b826f0fc86d4bb117d33 y[33] e865aa805009cc2918d9c2f840c4da43 a703ad9f5b5806163d7161696b5a0adc -------------------------------------------- LMS type 00000005 # LM_SHA256_M32_H5 path[0] d5c0d1bebb06048ed6fe2ef2c6cef305 b3ed633941ebc8b3bec9738754cddd60 path[1] e1920ada52f43d055b5031cee6192520 d6a5115514851ce7fd448d4a39fae2ab path[2] 2335b525f484e9b40d6a4a969394843b dcf6d14c48e8015e08ab92662c05c6e9 path[3] f90b65a7a6201689999f32bfd368e5e3 ec9cb70ac7b8399003f175c40885081a path[4] 09ab3034911fe125631051df0408b394 6b0bde790911e8978ba07dd56c73e7ee
y[16] 327f0a5fbb6b5907dec02c9a90934af5 a1c63b72c82653605d1dcce51596b3c2 y[17] b45696689f2eb382007497557692caac 4d57b5de9f5569bc2ad0137fd47fb47e y[18] 664fcb6db4971f5b3e07aceda9ac130e 9f38182de994cff192ec0e82fd6d4cb7 y[19] f3fe00812589b7a7ce51544045643301 6b84a59bec6619a1c6c0b37dd1450ed4 y[20] f2d8b584410ceda8025f5d2d8dd0d217 6fc1cf2cc06fa8c82bed4d944e71339e y[21] ce780fd025bd41ec34ebff9d4270a322 4e019fcb444474d482fd2dbe75efb203 y[22] 89cc10cd600abb54c47ede93e08c114e db04117d714dc1d525e11bed8756192f y[23] 929d15462b939ff3f52f2252da2ed64d 8fae88818b1efa2c7b08c8794fb1b214 y[24] aa233db3162833141ea4383f1a6f120b e1db82ce3630b3429114463157a64e91 y[25] 234d475e2f79cbf05e4db6a9407d72c6 bff7d1198b5c4d6aad2831db61274993 y[26] 715a0182c7dc8089e32c8531deed4f74 31c07c02195eba2ef91efb5613c37af7 y[27] ae0c066babc69369700e1dd26eddc0d2 16c781d56e4ce47e3303fa73007ff7b9 y[28] 49ef23be2aa4dbf25206fe45c20dd888 395b2526391a724996a44156beac8082 y[29] 12858792bf8e74cba49dee5e8812e019 da87454bff9e847ed83db07af3137430 y[30] 82f880a278f682c2bd0ad6887cb59f65 2e155987d61bbf6a88d36ee93b6072e6 y[31] 656d9ccbaae3d655852e38deb3a2dcf8 058dc9fb6f2ab3d3b3539eb77b248a66 y[32] 1091d05eb6e2f297774fe6053598457c c61908318de4b826f0fc86d4bb117d33 y[33] e865aa805009cc2918d9c2f840c4da43 a703ad9f5b5806163d7161696b5a0adc -------------------------------------------- LMS type 00000005 # LM_SHA256_M32_H5 path[0] d5c0d1bebb06048ed6fe2ef2c6cef305 b3ed633941ebc8b3bec9738754cddd60 path[1] e1920ada52f43d055b5031cee6192520 d6a5115514851ce7fd448d4a39fae2ab path[2] 2335b525f484e9b40d6a4a969394843b dcf6d14c48e8015e08ab92662c05c6e9 path[3] f90b65a7a6201689999f32bfd368e5e3 ec9cb70ac7b8399003f175c40885081a path[4] 09ab3034911fe125631051df0408b394 6b0bde790911e8978ba07dd56c73e7ee
Test Case 2 Private Key
测试用例2私钥
-------------------------------------------- (note: procedure in Appendix A is used) Top level LMS tree SEED 558b8966c48ae9cb898b423c83443aae 014a72f1b1ab5cc85cf1d892903b5439 I d08fabd4a2091ff0a8cb4ed834e74534 Second level LMS tree SEED a1c4696e2608035a886100d05cd99945 eb3370731884a8235e2fb3d4d71f2547 I 215f83b7ccb9acbcd08db97b0d04dc2b -------------------------------------------- --------------------------------------------
-------------------------------------------- (note: procedure in Appendix A is used) Top level LMS tree SEED 558b8966c48ae9cb898b423c83443aae 014a72f1b1ab5cc85cf1d892903b5439 I d08fabd4a2091ff0a8cb4ed834e74534 Second level LMS tree SEED a1c4696e2608035a886100d05cd99945 eb3370731884a8235e2fb3d4d71f2547 I 215f83b7ccb9acbcd08db97b0d04dc2b -------------------------------------------- --------------------------------------------
Test Case 2 Public Key
测试用例2公钥
-------------------------------------------- HSS public key levels 00000002 -------------------------------------------- LMS type 00000006 # LM_SHA256_M32_H10 LMOTS type 00000003 # LMOTS_SHA256_N32_W4 I d08fabd4a2091ff0a8cb4ed834e74534 K 32a58885cd9ba0431235466bff9651c6 c92124404d45fa53cf161c28f1ad5a8e -------------------------------------------- --------------------------------------------
-------------------------------------------- HSS public key levels 00000002 -------------------------------------------- LMS type 00000006 # LM_SHA256_M32_H10 LMOTS type 00000003 # LMOTS_SHA256_N32_W4 I d08fabd4a2091ff0a8cb4ed834e74534 K 32a58885cd9ba0431235466bff9651c6 c92124404d45fa53cf161c28f1ad5a8e -------------------------------------------- --------------------------------------------
Test Case 2 Message
测试用例2消息
-------------------------------------------- Message 54686520656e756d65726174696f6e20 |The enumeration | 696e2074686520436f6e737469747574 |in the Constitut| 696f6e2c206f66206365727461696e20 |ion, of certain | 7269676874732c207368616c6c206e6f |rights, shall no| 7420626520636f6e7374727565642074 |t be construed t| 6f2064656e79206f7220646973706172 |o deny or dispar| 616765206f7468657273207265746169 |age others retai| 6e6564206279207468652070656f706c |ned by the peopl| 652e0a |e..| --------------------------------------------
-------------------------------------------- Message 54686520656e756d65726174696f6e20 |The enumeration | 696e2074686520436f6e737469747574 |in the Constitut| 696f6e2c206f66206365727461696e20 |ion, of certain | 7269676874732c207368616c6c206e6f |rights, shall no| 7420626520636f6e7374727565642074 |t be construed t| 6f2064656e79206f7220646973706172 |o deny or dispar| 616765206f7468657273207265746169 |age others retai| 6e6564206279207468652070656f706c |ned by the peopl| 652e0a |e..| --------------------------------------------
Test Case 2 Signature
测试用例2签名
-------------------------------------------- HSS signature Nspk 00000001 sig[0]: -------------------------------------------- LMS signature q 00000003 -------------------------------------------- LMOTS signature LMOTS type 00000003 # LMOTS_SHA256_N32_W4 C 3d46bee8660f8f215d3f96408a7a64cf 1c4da02b63a55f62c666ef5707a914ce y[0] 0674e8cb7a55f0c48d484f31f3aa4af9 719a74f22cf823b94431d01c926e2a76 y[1] bb71226d279700ec81c9e95fb11a0d10 d065279a5796e265ae17737c44eb8c59 y[2] 4508e126a9a7870bf4360820bdeb9a01 d9693779e416828e75bddd7d8c70d50a y[3] 0ac8ba39810909d445f44cb5bb58de73 7e60cb4345302786ef2c6b14af212ca1 y[4] 9edeaa3bfcfe8baa6621ce88480df237 1dd37add732c9de4ea2ce0dffa53c926 y[5] 49a18d39a50788f4652987f226a1d481 68205df6ae7c58e049a25d4907edc1aa y[6] 90da8aa5e5f7671773e941d805536021 5c6b60dd35463cf2240a9c06d694e9cb y[7] 54e7b1e1bf494d0d1a28c0d31acc7516 1f4f485dfd3cb9578e836ec2dc722f37 y[8] ed30872e07f2b8bd0374eb57d22c614e 09150f6c0d8774a39a6e168211035dc5 y[9] 2988ab46eaca9ec597fb18b4936e66ef 2f0df26e8d1e34da28cbb3af75231372 y[10] 0c7b345434f72d65314328bbb030d0f0 f6d5e47b28ea91008fb11b05017705a8 y[11] be3b2adb83c60a54f9d1d1b2f476f9e3 93eb5695203d2ba6ad815e6a111ea293 y[12] dcc21033f9453d49c8e5a6387f588b1e a4f706217c151e05f55a6eb7997be09d y[13] 56a326a32f9cba1fbe1c07bb49fa04ce cf9df1a1b815483c75d7a27cc88ad1b1 y[14] 238e5ea986b53e087045723ce16187ed a22e33b2c70709e53251025abde89396 y[15] 45fc8c0693e97763928f00b2e3c75af3 942d8ddaee81b59a6f1f67efda0ef81d y[16] 11873b59137f67800b35e81b01563d18 7c4a1575a1acb92d087b517a8833383f
-------------------------------------------- HSS signature Nspk 00000001 sig[0]: -------------------------------------------- LMS signature q 00000003 -------------------------------------------- LMOTS signature LMOTS type 00000003 # LMOTS_SHA256_N32_W4 C 3d46bee8660f8f215d3f96408a7a64cf 1c4da02b63a55f62c666ef5707a914ce y[0] 0674e8cb7a55f0c48d484f31f3aa4af9 719a74f22cf823b94431d01c926e2a76 y[1] bb71226d279700ec81c9e95fb11a0d10 d065279a5796e265ae17737c44eb8c59 y[2] 4508e126a9a7870bf4360820bdeb9a01 d9693779e416828e75bddd7d8c70d50a y[3] 0ac8ba39810909d445f44cb5bb58de73 7e60cb4345302786ef2c6b14af212ca1 y[4] 9edeaa3bfcfe8baa6621ce88480df237 1dd37add732c9de4ea2ce0dffa53c926 y[5] 49a18d39a50788f4652987f226a1d481 68205df6ae7c58e049a25d4907edc1aa y[6] 90da8aa5e5f7671773e941d805536021 5c6b60dd35463cf2240a9c06d694e9cb y[7] 54e7b1e1bf494d0d1a28c0d31acc7516 1f4f485dfd3cb9578e836ec2dc722f37 y[8] ed30872e07f2b8bd0374eb57d22c614e 09150f6c0d8774a39a6e168211035dc5 y[9] 2988ab46eaca9ec597fb18b4936e66ef 2f0df26e8d1e34da28cbb3af75231372 y[10] 0c7b345434f72d65314328bbb030d0f0 f6d5e47b28ea91008fb11b05017705a8 y[11] be3b2adb83c60a54f9d1d1b2f476f9e3 93eb5695203d2ba6ad815e6a111ea293 y[12] dcc21033f9453d49c8e5a6387f588b1e a4f706217c151e05f55a6eb7997be09d y[13] 56a326a32f9cba1fbe1c07bb49fa04ce cf9df1a1b815483c75d7a27cc88ad1b1 y[14] 238e5ea986b53e087045723ce16187ed a22e33b2c70709e53251025abde89396 y[15] 45fc8c0693e97763928f00b2e3c75af3 942d8ddaee81b59a6f1f67efda0ef81d y[16] 11873b59137f67800b35e81b01563d18 7c4a1575a1acb92d087b517a8833383f
y[17] 05d357ef4678de0c57ff9f1b2da61dfd e5d88318bcdde4d9061cc75c2de3cd47 y[18] 40dd7739ca3ef66f1930026f47d9ebaa 713b07176f76f953e1c2e7f8f271a6ca y[19] 375dbfb83d719b1635a7d8a138919579 44b1c29bb101913e166e11bd5f34186f y[20] a6c0a555c9026b256a6860f4866bd6d0 b5bf90627086c6149133f8282ce6c9b3 y[21] 622442443d5eca959d6c14ca8389d12c 4068b503e4e3c39b635bea245d9d05a2 y[22] 558f249c9661c0427d2e489ca5b5dde2 20a90333f4862aec793223c781997da9 y[23] 8266c12c50ea28b2c438e7a379eb106e ca0c7fd6006e9bf612f3ea0a454ba3bd y[24] b76e8027992e60de01e9094fddeb3349 883914fb17a9621ab929d970d101e45f y[25] 8278c14b032bcab02bd15692d21b6c5c 204abbf077d465553bd6eda645e6c306 y[26] 5d33b10d518a61e15ed0f092c3222628 1a29c8a0f50cde0a8c66236e29c2f310 y[27] a375cebda1dc6bb9a1a01dae6c7aba8e bedc6371a7d52aacb955f83bd6e4f84d y[28] 2949dcc198fb77c7e5cdf6040b0f84fa f82808bf985577f0a2acf2ec7ed7c0b0 y[29] ae8a270e951743ff23e0b2dd12e9c3c8 28fb5598a22461af94d568f29240ba28 y[30] 20c4591f71c088f96e095dd98beae456 579ebbba36f6d9ca2613d1c26eee4d8c y[31] 73217ac5962b5f3147b492e8831597fd 89b64aa7fde82e1974d2f6779504dc21 y[32] 435eb3109350756b9fdabe1c6f368081 bd40b27ebcb9819a75d7df8bb07bb05d y[33] b1bab705a4b7e37125186339464ad8fa aa4f052cc1272919fde3e025bb64aa8e y[34] 0eb1fcbfcc25acb5f718ce4f7c2182fb 393a1814b0e942490e52d3bca817b2b2 y[35] 6e90d4c9b0cc38608a6cef5eb153af08 58acc867c9922aed43bb67d7b33acc51 y[36] 9313d28d41a5c6fe6cf3595dd5ee63f0 a4c4065a083590b275788bee7ad875a7 y[37] f88dd73720708c6c6c0ecf1f43bbaada e6f208557fdc07bd4ed91f88ce4c0de8 y[38] 42761c70c186bfdafafc444834bd3418 be4253a71eaf41d718753ad07754ca3e y[39] ffd5960b0336981795721426803599ed 5b2b7516920efcbe32ada4bcf6c73bd2 y[40] 9e3fa152d9adeca36020fdeeee1b7395 21d3ea8c0da497003df1513897b0f547
y[17] 05d357ef4678de0c57ff9f1b2da61dfd e5d88318bcdde4d9061cc75c2de3cd47 y[18] 40dd7739ca3ef66f1930026f47d9ebaa 713b07176f76f953e1c2e7f8f271a6ca y[19] 375dbfb83d719b1635a7d8a138919579 44b1c29bb101913e166e11bd5f34186f y[20] a6c0a555c9026b256a6860f4866bd6d0 b5bf90627086c6149133f8282ce6c9b3 y[21] 622442443d5eca959d6c14ca8389d12c 4068b503e4e3c39b635bea245d9d05a2 y[22] 558f249c9661c0427d2e489ca5b5dde2 20a90333f4862aec793223c781997da9 y[23] 8266c12c50ea28b2c438e7a379eb106e ca0c7fd6006e9bf612f3ea0a454ba3bd y[24] b76e8027992e60de01e9094fddeb3349 883914fb17a9621ab929d970d101e45f y[25] 8278c14b032bcab02bd15692d21b6c5c 204abbf077d465553bd6eda645e6c306 y[26] 5d33b10d518a61e15ed0f092c3222628 1a29c8a0f50cde0a8c66236e29c2f310 y[27] a375cebda1dc6bb9a1a01dae6c7aba8e bedc6371a7d52aacb955f83bd6e4f84d y[28] 2949dcc198fb77c7e5cdf6040b0f84fa f82808bf985577f0a2acf2ec7ed7c0b0 y[29] ae8a270e951743ff23e0b2dd12e9c3c8 28fb5598a22461af94d568f29240ba28 y[30] 20c4591f71c088f96e095dd98beae456 579ebbba36f6d9ca2613d1c26eee4d8c y[31] 73217ac5962b5f3147b492e8831597fd 89b64aa7fde82e1974d2f6779504dc21 y[32] 435eb3109350756b9fdabe1c6f368081 bd40b27ebcb9819a75d7df8bb07bb05d y[33] b1bab705a4b7e37125186339464ad8fa aa4f052cc1272919fde3e025bb64aa8e y[34] 0eb1fcbfcc25acb5f718ce4f7c2182fb 393a1814b0e942490e52d3bca817b2b2 y[35] 6e90d4c9b0cc38608a6cef5eb153af08 58acc867c9922aed43bb67d7b33acc51 y[36] 9313d28d41a5c6fe6cf3595dd5ee63f0 a4c4065a083590b275788bee7ad875a7 y[37] f88dd73720708c6c6c0ecf1f43bbaada e6f208557fdc07bd4ed91f88ce4c0de8 y[38] 42761c70c186bfdafafc444834bd3418 be4253a71eaf41d718753ad07754ca3e y[39] ffd5960b0336981795721426803599ed 5b2b7516920efcbe32ada4bcf6c73bd2 y[40] 9e3fa152d9adeca36020fdeeee1b7395 21d3ea8c0da497003df1513897b0f547
y[41] 94a873670b8d93bcca2ae47e64424b74 23e1f078d9554bb5232cc6de8aae9b83 y[42] fa5b9510beb39ccf4b4e1d9c0f19d5e1 7f58e5b8705d9a6837a7d9bf99cd1338 y[43] 7af256a8491671f1f2f22af253bcff54 b673199bdb7d05d81064ef05f80f0153 y[44] d0be7919684b23da8d42ff3effdb7ca0 985033f389181f47659138003d712b5e y[45] c0a614d31cc7487f52de8664916af79c 98456b2c94a8038083db55391e347586 y[46] 2250274a1de2584fec975fb09536792c fbfcf6192856cc76eb5b13dc4709e2f7 y[47] 301ddff26ec1b23de2d188c999166c74 e1e14bbc15f457cf4e471ae13dcbdd9c y[48] 50f4d646fc6278e8fe7eb6cb5c94100f a870187380b777ed19d7868fd8ca7ceb y[49] 7fa7d5cc861c5bdac98e7495eb0a2cee c1924ae979f44c5390ebedddc65d6ec1 y[50] 1287d978b8df064219bc5679f7d7b264 a76ff272b2ac9f2f7cfc9fdcfb6a5142 y[51] 8240027afd9d52a79b647c90c2709e06 0ed70f87299dd798d68f4fadd3da6c51 y[52] d839f851f98f67840b964ebe73f8cec4 1572538ec6bc131034ca2894eb736b3b y[53] da93d9f5f6fa6f6c0f03ce43362b8414 940355fb54d3dfdd03633ae108f3de3e y[54] bc85a3ff51efeea3bc2cf27e1658f178 9ee612c83d0f5fd56f7cd071930e2946 y[55] beeecaa04dccea9f97786001475e0294 bc2852f62eb5d39bb9fbeef75916efe4 y[56] 4a662ecae37ede27e9d6eadfdeb8f8b2 b2dbccbf96fa6dbaf7321fb0e701f4d4 y[57] 29c2f4dcd153a2742574126e5eaccc77 686acf6e3ee48f423766e0fc466810a9 y[58] 05ff5453ec99897b56bc55dd49b99114 2f65043f2d744eeb935ba7f4ef23cf80 y[59] cc5a8a335d3619d781e7454826df720e ec82e06034c44699b5f0c44a8787752e y[60] 057fa3419b5bb0e25d30981e41cb1361 322dba8f69931cf42fad3f3bce6ded5b y[61] 8bfc3d20a2148861b2afc14562ddd27f 12897abf0685288dcc5c4982f8260268 y[62] 46a24bf77e383c7aacab1ab692b29ed8 c018a65f3dc2b87ff619a633c41b4fad y[63] b1c78725c1f8f922f6009787b1964247 df0136b1bc614ab575c59a16d089917b y[64] d4a8b6f04d95c581279a139be09fcf6e 98a470a0bceca191fce476f9370021cb
y[41] 94a873670b8d93bcca2ae47e64424b74 23e1f078d9554bb5232cc6de8aae9b83 y[42] fa5b9510beb39ccf4b4e1d9c0f19d5e1 7f58e5b8705d9a6837a7d9bf99cd1338 y[43] 7af256a8491671f1f2f22af253bcff54 b673199bdb7d05d81064ef05f80f0153 y[44] d0be7919684b23da8d42ff3effdb7ca0 985033f389181f47659138003d712b5e y[45] c0a614d31cc7487f52de8664916af79c 98456b2c94a8038083db55391e347586 y[46] 2250274a1de2584fec975fb09536792c fbfcf6192856cc76eb5b13dc4709e2f7 y[47] 301ddff26ec1b23de2d188c999166c74 e1e14bbc15f457cf4e471ae13dcbdd9c y[48] 50f4d646fc6278e8fe7eb6cb5c94100f a870187380b777ed19d7868fd8ca7ceb y[49] 7fa7d5cc861c5bdac98e7495eb0a2cee c1924ae979f44c5390ebedddc65d6ec1 y[50] 1287d978b8df064219bc5679f7d7b264 a76ff272b2ac9f2f7cfc9fdcfb6a5142 y[51] 8240027afd9d52a79b647c90c2709e06 0ed70f87299dd798d68f4fadd3da6c51 y[52] d839f851f98f67840b964ebe73f8cec4 1572538ec6bc131034ca2894eb736b3b y[53] da93d9f5f6fa6f6c0f03ce43362b8414 940355fb54d3dfdd03633ae108f3de3e y[54] bc85a3ff51efeea3bc2cf27e1658f178 9ee612c83d0f5fd56f7cd071930e2946 y[55] beeecaa04dccea9f97786001475e0294 bc2852f62eb5d39bb9fbeef75916efe4 y[56] 4a662ecae37ede27e9d6eadfdeb8f8b2 b2dbccbf96fa6dbaf7321fb0e701f4d4 y[57] 29c2f4dcd153a2742574126e5eaccc77 686acf6e3ee48f423766e0fc466810a9 y[58] 05ff5453ec99897b56bc55dd49b99114 2f65043f2d744eeb935ba7f4ef23cf80 y[59] cc5a8a335d3619d781e7454826df720e ec82e06034c44699b5f0c44a8787752e y[60] 057fa3419b5bb0e25d30981e41cb1361 322dba8f69931cf42fad3f3bce6ded5b y[61] 8bfc3d20a2148861b2afc14562ddd27f 12897abf0685288dcc5c4982f8260268 y[62] 46a24bf77e383c7aacab1ab692b29ed8 c018a65f3dc2b87ff619a633c41b4fad y[63] b1c78725c1f8f922f6009787b1964247 df0136b1bc614ab575c59a16d089917b y[64] d4a8b6f04d95c581279a139be09fcf6e 98a470a0bceca191fce476f9370021cb
y[65] c05518a7efd35d89d8577c990a5e1996 1ba16203c959c91829ba7497cffcbb4b y[66] 294546454fa5388a23a22e805a5ca35f 956598848bda678615fec28afd5da61a -------------------------------------------- LMS type 00000006 # LM_SHA256_M32_H10 path[0] b326493313053ced3876db9d23714818 1b7173bc7d042cefb4dbe94d2e58cd21 path[1] a769db4657a103279ba8ef3a629ca84e e836172a9c50e51f45581741cf808315 path[2] 0b491cb4ecbbabec128e7c81a46e62a6 7b57640a0a78be1cbf7dd9d419a10cd8 path[3] 686d16621a80816bfdb5bdc56211d72c a70b81f1117d129529a7570cf79cf52a path[4] 7028a48538ecdd3b38d3d5d62d262465 95c4fb73a525a5ed2c30524ebb1d8cc8 path[5] 2e0c19bc4977c6898ff95fd3d310b0ba e71696cef93c6a552456bf96e9d075e3 path[6] 83bb7543c675842bafbfc7cdb88483b3 276c29d4f0a341c2d406e40d4653b7e4 path[7] d045851acf6a0a0ea9c710b805cced46 35ee8c107362f0fc8d80c14d0ac49c51 path[8] 6703d26d14752f34c1c0d2c4247581c1 8c2cf4de48e9ce949be7c888e9caebe4 path[9] a415e291fd107d21dc1f084b11582082 49f28f4f7c7e931ba7b3bd0d824a4570 -------------------------------------------- LMS public key LMS type 00000005 # LM_SHA256_M32_H5 LMOTS type 00000004 # LMOTS_SHA256_N32_W8 I 215f83b7ccb9acbcd08db97b0d04dc2b K a1cd035833e0e90059603f26e07ad2aa d152338e7a5e5984bcd5f7bb4eba40b7 -------------------------------------------- final_signature: -------------------------------------------- LMS signature q 00000004 -------------------------------------------- LMOTS signature LMOTS type 00000004 # LMOTS_SHA256_N32_W8 C 0eb1ed54a2460d512388cad533138d24 0534e97b1e82d33bd927d201dfc24ebb y[0] 11b3649023696f85150b189e50c00e98 850ac343a77b3638319c347d7310269d y[1] 3b7714fa406b8c35b021d54d4fdada7b 9ce5d4ba5b06719e72aaf58c5aae7aca
y[65] c05518a7efd35d89d8577c990a5e1996 1ba16203c959c91829ba7497cffcbb4b y[66] 294546454fa5388a23a22e805a5ca35f 956598848bda678615fec28afd5da61a -------------------------------------------- LMS type 00000006 # LM_SHA256_M32_H10 path[0] b326493313053ced3876db9d23714818 1b7173bc7d042cefb4dbe94d2e58cd21 path[1] a769db4657a103279ba8ef3a629ca84e e836172a9c50e51f45581741cf808315 path[2] 0b491cb4ecbbabec128e7c81a46e62a6 7b57640a0a78be1cbf7dd9d419a10cd8 path[3] 686d16621a80816bfdb5bdc56211d72c a70b81f1117d129529a7570cf79cf52a path[4] 7028a48538ecdd3b38d3d5d62d262465 95c4fb73a525a5ed2c30524ebb1d8cc8 path[5] 2e0c19bc4977c6898ff95fd3d310b0ba e71696cef93c6a552456bf96e9d075e3 path[6] 83bb7543c675842bafbfc7cdb88483b3 276c29d4f0a341c2d406e40d4653b7e4 path[7] d045851acf6a0a0ea9c710b805cced46 35ee8c107362f0fc8d80c14d0ac49c51 path[8] 6703d26d14752f34c1c0d2c4247581c1 8c2cf4de48e9ce949be7c888e9caebe4 path[9] a415e291fd107d21dc1f084b11582082 49f28f4f7c7e931ba7b3bd0d824a4570 -------------------------------------------- LMS public key LMS type 00000005 # LM_SHA256_M32_H5 LMOTS type 00000004 # LMOTS_SHA256_N32_W8 I 215f83b7ccb9acbcd08db97b0d04dc2b K a1cd035833e0e90059603f26e07ad2aa d152338e7a5e5984bcd5f7bb4eba40b7 -------------------------------------------- final_signature: -------------------------------------------- LMS signature q 00000004 -------------------------------------------- LMOTS signature LMOTS type 00000004 # LMOTS_SHA256_N32_W8 C 0eb1ed54a2460d512388cad533138d24 0534e97b1e82d33bd927d201dfc24ebb y[0] 11b3649023696f85150b189e50c00e98 850ac343a77b3638319c347d7310269d y[1] 3b7714fa406b8c35b021d54d4fdada7b 9ce5d4ba5b06719e72aaf58c5aae7aca
y[2] 057aa0e2e74e7dcfd17a0823429db629 65b7d563c57b4cec942cc865e29c1dad y[3] 83cac8b4d61aacc457f336e6a10b6632 3f5887bf3523dfcadee158503bfaa89d y[4] c6bf59daa82afd2b5ebb2a9ca6572a60 67cee7c327e9039b3b6ea6a1edc7fdc3 y[5] df927aade10c1c9f2d5ff446450d2a39 98d0f9f6202b5e07c3f97d2458c69d3c y[6] 8190643978d7a7f4d64e97e3f1c4a08a 7c5bc03fd55682c017e2907eab07e5bb y[7] 2f190143475a6043d5e6d5263471f4ee cf6e2575fbc6ff37edfa249d6cda1a09 y[8] f797fd5a3cd53a066700f45863f04b6c 8a58cfd341241e002d0d2c0217472bf1 y[9] 8b636ae547c1771368d9f317835c9b0e f430b3df4034f6af00d0da44f4af7800 y[10] bc7a5cf8a5abdb12dc718b559b74cab9 090e33cc58a955300981c420c4da8ffd y[11] 67df540890a062fe40dba8b2c1c548ce d22473219c534911d48ccaabfb71bc71 y[12] 862f4a24ebd376d288fd4e6fb06ed870 5787c5fedc813cd2697e5b1aac1ced45 y[13] 767b14ce88409eaebb601a93559aae89 3e143d1c395bc326da821d79a9ed41dc y[14] fbe549147f71c092f4f3ac522b5cc572 90706650487bae9bb5671ecc9ccc2ce5 y[15] 1ead87ac01985268521222fb9057df7e d41810b5ef0d4f7cc67368c90f573b1a y[16] c2ce956c365ed38e893ce7b2fae15d36 85a3df2fa3d4cc098fa57dd60d2c9754 y[17] a8ade980ad0f93f6787075c3f680a2ba 1936a8c61d1af52ab7e21f416be09d2a y[18] 8d64c3d3d8582968c2839902229f85ae e297e717c094c8df4a23bb5db658dd37 y[19] 7bf0f4ff3ffd8fba5e383a48574802ed 545bbe7a6b4753533353d73706067640 y[20] 135a7ce517279cd683039747d218647c 86e097b0daa2872d54b8f3e508598762 y[21] 9547b830d8118161b65079fe7bc59a99 e9c3c7380e3e70b7138fe5d9be255150 y[22] 2b698d09ae193972f27d40f38dea264a 0126e637d74ae4c92a6249fa103436d3 y[23] eb0d4029ac712bfc7a5eacbdd7518d6d 4fe903a5ae65527cd65bb0d4e9925ca2 y[24] 4fd7214dc617c150544e423f450c99ce 51ac8005d33acd74f1bed3b17b7266a4 y[25] a3bb86da7eba80b101e15cb79de9a207 852cf91249ef480619ff2af8cabca831
y[2] 057aa0e2e74e7dcfd17a0823429db629 65b7d563c57b4cec942cc865e29c1dad y[3] 83cac8b4d61aacc457f336e6a10b6632 3f5887bf3523dfcadee158503bfaa89d y[4] c6bf59daa82afd2b5ebb2a9ca6572a60 67cee7c327e9039b3b6ea6a1edc7fdc3 y[5] df927aade10c1c9f2d5ff446450d2a39 98d0f9f6202b5e07c3f97d2458c69d3c y[6] 8190643978d7a7f4d64e97e3f1c4a08a 7c5bc03fd55682c017e2907eab07e5bb y[7] 2f190143475a6043d5e6d5263471f4ee cf6e2575fbc6ff37edfa249d6cda1a09 y[8] f797fd5a3cd53a066700f45863f04b6c 8a58cfd341241e002d0d2c0217472bf1 y[9] 8b636ae547c1771368d9f317835c9b0e f430b3df4034f6af00d0da44f4af7800 y[10] bc7a5cf8a5abdb12dc718b559b74cab9 090e33cc58a955300981c420c4da8ffd y[11] 67df540890a062fe40dba8b2c1c548ce d22473219c534911d48ccaabfb71bc71 y[12] 862f4a24ebd376d288fd4e6fb06ed870 5787c5fedc813cd2697e5b1aac1ced45 y[13] 767b14ce88409eaebb601a93559aae89 3e143d1c395bc326da821d79a9ed41dc y[14] fbe549147f71c092f4f3ac522b5cc572 90706650487bae9bb5671ecc9ccc2ce5 y[15] 1ead87ac01985268521222fb9057df7e d41810b5ef0d4f7cc67368c90f573b1a y[16] c2ce956c365ed38e893ce7b2fae15d36 85a3df2fa3d4cc098fa57dd60d2c9754 y[17] a8ade980ad0f93f6787075c3f680a2ba 1936a8c61d1af52ab7e21f416be09d2a y[18] 8d64c3d3d8582968c2839902229f85ae e297e717c094c8df4a23bb5db658dd37 y[19] 7bf0f4ff3ffd8fba5e383a48574802ed 545bbe7a6b4753533353d73706067640 y[20] 135a7ce517279cd683039747d218647c 86e097b0daa2872d54b8f3e508598762 y[21] 9547b830d8118161b65079fe7bc59a99 e9c3c7380e3e70b7138fe5d9be255150 y[22] 2b698d09ae193972f27d40f38dea264a 0126e637d74ae4c92a6249fa103436d3 y[23] eb0d4029ac712bfc7a5eacbdd7518d6d 4fe903a5ae65527cd65bb0d4e9925ca2 y[24] 4fd7214dc617c150544e423f450c99ce 51ac8005d33acd74f1bed3b17b7266a4 y[25] a3bb86da7eba80b101e15cb79de9a207 852cf91249ef480619ff2af8cabca831
y[26] 25d1faa94cbb0a03a906f683b3f47a97 c871fd513e510a7a25f283b196075778 y[27] 496152a91c2bf9da76ebe089f4654877 f2d586ae7149c406e663eadeb2b5c7e8 y[28] 2429b9e8cb4834c83464f079995332e4 b3c8f5a72bb4b8c6f74b0d45dc6c1f79 y[29] 952c0b7420df525e37c15377b5f09843 19c3993921e5ccd97e097592064530d3 y[30] 3de3afad5733cbe7703c5296263f7734 2efbf5a04755b0b3c997c4328463e84c y[31] aa2de3ffdcd297baaaacd7ae646e44b5 c0f16044df38fabd296a47b3a838a913 y[32] 982fb2e370c078edb042c84db34ce36b 46ccb76460a690cc86c302457dd1cde1 y[33] 97ec8075e82b393d542075134e2a17ee 70a5e187075d03ae3c853cff60729ba4 -------------------------------------------- LMS type 00000005 # LM_SHA256_M32_H5 path[0] 4de1f6965bdabc676c5a4dc7c35f97f8 2cb0e31c68d04f1dad96314ff09e6b3d path[1] e96aeee300d1f68bf1bca9fc58e40323 36cd819aaf578744e50d1357a0e42867 path[2] 04d341aa0a337b19fe4bc43c2e79964d 4f351089f2e0e41c7c43ae0d49e7f404 path[3] b0f75be80ea3af098c9752420a8ac0ea 2bbb1f4eeba05238aef0d8ce63f0c6e5 path[4] e4041d95398a6f7f3e0ee97cc1591849 d4ed236338b147abde9f51ef9fd4e1c1
y[26] 25d1faa94cbb0a03a906f683b3f47a97 c871fd513e510a7a25f283b196075778 y[27] 496152a91c2bf9da76ebe089f4654877 f2d586ae7149c406e663eadeb2b5c7e8 y[28] 2429b9e8cb4834c83464f079995332e4 b3c8f5a72bb4b8c6f74b0d45dc6c1f79 y[29] 952c0b7420df525e37c15377b5f09843 19c3993921e5ccd97e097592064530d3 y[30] 3de3afad5733cbe7703c5296263f7734 2efbf5a04755b0b3c997c4328463e84c y[31] aa2de3ffdcd297baaaacd7ae646e44b5 c0f16044df38fabd296a47b3a838a913 y[32] 982fb2e370c078edb042c84db34ce36b 46ccb76460a690cc86c302457dd1cde1 y[33] 97ec8075e82b393d542075134e2a17ee 70a5e187075d03ae3c853cff60729ba4 -------------------------------------------- LMS type 00000005 # LM_SHA256_M32_H5 path[0] 4de1f6965bdabc676c5a4dc7c35f97f8 2cb0e31c68d04f1dad96314ff09e6b3d path[1] e96aeee300d1f68bf1bca9fc58e40323 36cd819aaf578744e50d1357a0e42867 path[2] 04d341aa0a337b19fe4bc43c2e79964d 4f351089f2e0e41c7c43ae0d49e7f404 path[3] b0f75be80ea3af098c9752420a8ac0ea 2bbb1f4eeba05238aef0d8ce63f0c6e5 path[4] e4041d95398a6f7f3e0ee97cc1591849 d4ed236338b147abde9f51ef9fd4e1c1
Acknowledgements
致谢
Thanks are due to Chirag Shroff, Andreas Huelsing, Burt Kaliski, Eric Osterweil, Ahmed Kosba, Russ Housley, Philip Lafrance, Alexander Truskovsky, Mark Peruzel, and Jim Schaad for constructive suggestions and valuable detailed review. We especially acknowledge Jerry Solinas, Laurie Law, and Kevin Igoe, who pointed out the security benefits of the approach of Leighton and Micali [USPTO5432852], Jonathan Katz, who gave us security guidance, and Bruno Couillard and Jim Goodman for an especially thorough review.
感谢Chirag Shroff、Andreas Huelsing、Burt Kaliski、Eric Osterweil、Ahmed Kosba、Russ Housley、Philip Lafrance、Alexander Truskovsky、Mark Peruzel和Jim Schaad提出的建设性建议和宝贵的详细审查。我们特别感谢Jerry Solinas、Laurie Law和Kevin Igoe,他们指出了Leighton和Michali[USPTO5432852]方法的安全优势,乔纳森·卡茨(Jonathan Katz)为我们提供了安全指导,布鲁诺·库拉德(Bruno Couillard)和吉姆·古德曼(Jim Goodman)进行了特别彻底的审查。
Authors' Addresses
作者地址
David McGrew Cisco Systems 13600 Dulles Technology Drive Herndon, VA 20171 United States of America
David McGrew Cisco Systems美国弗吉尼亚州赫恩登市杜勒斯技术大道13600号,邮编20171
Email: mcgrew@cisco.com
Email: mcgrew@cisco.com
Michael Curcio Cisco Systems 7025-2 Kit Creek Road Research Triangle Park, NC 27709-4987 United States of America
Michael Curcio Cisco Systems 7025-2美国北卡罗来纳州Kit Creek Road研究三角公园,邮编:27709-4987
Email: micurcio@cisco.com
Email: micurcio@cisco.com
Scott Fluhrer Cisco Systems 170 West Tasman Drive San Jose, CA United States of America
Scott Fluhrer Cisco Systems美国加利福尼亚州圣何塞市西塔斯曼大道170号
Email: sfluhrer@cisco.com
Email: sfluhrer@cisco.com