Internet Engineering Task Force (IETF) D. Kumar Request for Comments: 8532 Cisco Category: Standards Track M. Wang ISSN: 2070-1721 Q. Wu, Ed. Huawei R. Rahman S. Raghavan Cisco April 2019
Internet Engineering Task Force (IETF) D. Kumar Request for Comments: 8532 Cisco Category: Standards Track M. Wang ISSN: 2070-1721 Q. Wu, Ed. Huawei R. Rahman S. Raghavan Cisco April 2019
Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications
用于管理使用无连接通信的操作、管理和维护(OAM)协议的通用数据模型
Abstract
摘要
This document presents a base YANG Data model for the management of Operations, Administration, and Maintenance (OAM) protocols that use connectionless communications. The data model is defined using the YANG data modeling language, as specified in RFC 7950. It provides a technology-independent abstraction of key OAM constructs for OAM protocols that use connectionless communication. The base model presented here can be extended to include technology-specific details.
本文档提供了一个基本数据模型,用于管理使用无连接通信的操作、管理和维护(OAM)协议。按照RFC 7950中的规定,使用YANG数据建模语言定义数据模型。它为使用无连接通信的OAM协议提供了关键OAM结构的独立于技术的抽象。这里介绍的基本模型可以扩展到包含特定于技术的细节。
There are two key benefits of this approach: First, it leads to uniformity between OAM protocols. Second, it supports both nested OAM workflows (i.e., performing OAM functions at the same level or different levels through a unified interface) as well as interactive OAM workflows (i.e., performing OAM functions at the same level through a unified interface).
这种方法有两个关键好处:第一,它导致OAM协议之间的一致性。其次,它支持嵌套的OAM工作流(即通过统一接口在同一级别或不同级别执行OAM功能)和交互式OAM工作流(即通过统一接口在同一级别执行OAM功能)。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 7841第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8532.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问https://www.rfc-editor.org/info/rfc8532.
Copyright Notice
版权公告
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
版权(c)2019 IETF信托基金和被确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(https://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Conventions Used in This Document . . . . . . . . . . . . . . 4 2.1. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 4 2.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 5 2.3. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 5 3. Overview of the Connectionless OAM Model . . . . . . . . . . 5 3.1. TP Address . . . . . . . . . . . . . . . . . . . . . . . 6 3.2. Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3. OAM Neighboring Test Points . . . . . . . . . . . . . . . 7 3.4. Test Point Location Information . . . . . . . . . . . . . 8 3.5. Test Point Locations . . . . . . . . . . . . . . . . . . 8 3.6. Path Discovery Data . . . . . . . . . . . . . . . . . . . 8 3.7. Continuity Check Data . . . . . . . . . . . . . . . . . . 9 3.8. OAM Data Hierarchy . . . . . . . . . . . . . . . . . . . 9 4. LIME Time Types YANG Module . . . . . . . . . . . . . . . . . 12 5. Connectionless OAM YANG Module . . . . . . . . . . . . . . . 15 6. Connectionless Model Applicability . . . . . . . . . . . . . 44 6.1. BFD Extension . . . . . . . . . . . . . . . . . . . . . . 45 6.1.1. Augment Method . . . . . . . . . . . . . . . . . . . 45 6.1.2. Schema Mount . . . . . . . . . . . . . . . . . . . . 47 6.2. LSP Ping Extension . . . . . . . . . . . . . . . . . . . 49 6.2.1. Augment Method . . . . . . . . . . . . . . . . . . . 49 6.2.2. Schema Mount . . . . . . . . . . . . . . . . . . . . 50 7. Security Considerations . . . . . . . . . . . . . . . . . . . 52 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 54 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1. Normative References . . . . . . . . . . . . . . . . . . 54 9.2. Informative References . . . . . . . . . . . . . . . . . 56 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 58 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 59
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Conventions Used in This Document . . . . . . . . . . . . . . 4 2.1. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 4 2.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 5 2.3. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 5 3. Overview of the Connectionless OAM Model . . . . . . . . . . 5 3.1. TP Address . . . . . . . . . . . . . . . . . . . . . . . 6 3.2. Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3. OAM Neighboring Test Points . . . . . . . . . . . . . . . 7 3.4. Test Point Location Information . . . . . . . . . . . . . 8 3.5. Test Point Locations . . . . . . . . . . . . . . . . . . 8 3.6. Path Discovery Data . . . . . . . . . . . . . . . . . . . 8 3.7. Continuity Check Data . . . . . . . . . . . . . . . . . . 9 3.8. OAM Data Hierarchy . . . . . . . . . . . . . . . . . . . 9 4. LIME Time Types YANG Module . . . . . . . . . . . . . . . . . 12 5. Connectionless OAM YANG Module . . . . . . . . . . . . . . . 15 6. Connectionless Model Applicability . . . . . . . . . . . . . 44 6.1. BFD Extension . . . . . . . . . . . . . . . . . . . . . . 45 6.1.1. Augment Method . . . . . . . . . . . . . . . . . . . 45 6.1.2. Schema Mount . . . . . . . . . . . . . . . . . . . . 47 6.2. LSP Ping Extension . . . . . . . . . . . . . . . . . . . 49 6.2.1. Augment Method . . . . . . . . . . . . . . . . . . . 49 6.2.2. Schema Mount . . . . . . . . . . . . . . . . . . . . 50 7. Security Considerations . . . . . . . . . . . . . . . . . . . 52 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 54 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1. Normative References . . . . . . . . . . . . . . . . . . 54 9.2. Informative References . . . . . . . . . . . . . . . . . 56 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 58 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 59
Operations, Administration, and Maintenance (OAM) are important networking functions that allow operators to:
运营、管理和维护(OAM)是重要的网络功能,允许运营商:
1. monitor network communications (i.e., reachability verification and Continuity Check)
1. 监控网络通信(即可达性验证和连续性检查)
2. troubleshoot failures (i.e., fault verification and localization)
2. 故障排除(即故障验证和定位)
3. monitor service-level agreements and performance (i.e., performance management)
3. 监控服务级别协议和性能(即性能管理)
An overview of OAM tools is presented in [RFC7276].
[RFC7276]中介绍了OAM工具的概述。
Ping and Traceroute (see [RFC792] and [RFC4443]) are respectively well-known fault verification and isolation tools for IP networks. Over the years, different technologies have developed similar toolsets for equivalent purposes.
Ping和Traceroute(参见[RFC792]和[RFC4443])分别是用于IP网络的著名故障验证和隔离工具。多年来,不同的技术已经开发出类似的工具集,用于相同的目的。
The different sets of OAM tools may support both connection-oriented or connectionless technologies. In connection-oriented technologies, a connection is established prior to the transmission of data. After the connection is established, no additional control information such as signaling or operations and maintenance information is required to transmit the actual user data. In connectionless technologies, data is typically sent between communicating endpoints without prior arrangement, but control information is required to identify the destination (e.g., [G.800] and [RFC7276]). The YANG data model for OAM protocols using connection-oriented communications is specified in [RFC8531].
不同的OAM工具集可能支持面向连接或无连接的技术。在面向连接的技术中,连接是在数据传输之前建立的。建立连接后,传输实际用户数据不需要额外的控制信息,如信令或操作和维护信息。在无连接技术中,数据通常在通信端点之间发送,无需事先安排,但需要控制信息来识别目的地(例如,[g.800]和[RFC7276])。[RFC8531]中规定了使用面向连接通信的OAM协议的数据模型。
This document defines a base YANG data model for OAM protocols that use connectionless communications. The data model is defined using the YANG data modeling language [RFC7950]. This generic YANG data model for connectionless OAM includes only configuration and state data. It can be used in conjunction with the data retrieval method model described in [RFC8533], which focuses on the data retrieval procedures such as RPC, or it can be used independently of this data retrieval method model.
本文档为使用无连接通信的OAM协议定义了一个基本数据模型。使用YANG数据建模语言[RFC7950]定义数据模型。这种用于无连接OAM的通用数据模型只包括配置和状态数据。它可以与[RFC8533]中描述的数据检索方法模型结合使用,该模型侧重于RPC等数据检索过程,也可以独立于此数据检索方法模型使用。
The following terms are defined in [RFC6241] and are used in this specification:
[RFC6241]中定义了以下术语,并在本规范中使用:
o client
o 客户
o configuration data
o 配置数据
o server
o 服务器
o state data
o 状态数据
The following terms are defined in [RFC7950] and are used in this specification:
[RFC7950]中定义了以下术语,并在本规范中使用:
o augment
o 加强
o data model
o 数据模型
o data node
o 数据节点
The terminology for describing YANG data models is found in [RFC7950].
描述YANG数据模型的术语见[RFC7950]。
BFD - Bidirectional Forwarding Detection [RFC5880].
BFD-双向转发检测[RFC5880]。
RPC - Remote Procedure Call [RFC1831].
RPC-远程过程调用[RFC1831]。
DSCP - Differentiated Services Code Point.
DSCP-区分服务代码点。
VRF - Virtual Routing and Forwarding [RFC4382].
虚拟路由和转发[RFC4382]。
OWAMP - One-Way Active Measurement Protocol [RFC4656].
OWAMP-单向主动测量协议[RFC4656]。
TWAMP - Two-Way Active Measurement Protocol [RFC5357].
TWAMP-双向主动测量协议[RFC5357]。
AS - Autonomous System.
AS-自治系统。
LSP - Label Switched Path.
标签交换路径。
TE - Traffic Engineering.
交通工程。
MPLS - Multiprotocol Label Switching.
多协议标签交换。
NI - Network Instance.
网络实例。
PTP - Precision Time Protocol [IEEE.1588v2].
精确时间协议[IEEE.1588v2]。
NTP - Network Time Protocol [RFC5905].
NTP-网络时间协议[RFC5905]。
MAC - Media Access Control.
媒体访问控制。
MAC address - Address for the data-link layer interface.
MAC地址—数据链路层接口的地址。
TP - Test Point. The TP is a functional entity that is defined at a node in the network and can initiate and/or react to OAM diagnostic tests. This document focuses on the data-plane functionality of TPs.
TP-测试点。TP是在网络中的节点上定义的功能实体,可以启动和/或响应OAM诊断测试。本文档重点介绍TPs的数据平面功能。
RPC operation - A specific Remote Procedure Call.
RPC操作-特定的远程过程调用。
CC - A Continuity Check [RFC7276] is used to verify that a destination is reachable and therefore also referred to as reachability verification.
CC-连续性检查[RFC7276]用于验证目的地是否可到达,因此也称为可达性验证。
Tree diagrams used in this document follow the notation defined in [RFC8340].
本文档中使用的树形图遵循[RFC8340]中定义的符号。
The YANG data model for OAM protocols that use connectionless communications has been split into two modules:
使用无连接通信的OAM协议的数据模型分为两个模块:
o The "ietf-lime-time-types" module provides common definitions such as Time-related data types and Timestamp-related data types.
o “ietf lime time types”模块提供通用定义,如与时间相关的数据类型和与时间戳相关的数据类型。
o The "ietf-connectionless-oam" module defines technology-independent abstraction of key OAM constructs for OAM protocols that use connectionless communication.
o “ietf无连接oam”模块为使用无连接通信的oam协议定义关键oam结构的独立于技术的抽象。
The "ietf-connectionless-oam" module augments the "/networks/network/ node" path defined in the "ietf-network" module [RFC8345] with the 'test-point-locations' grouping defined in Section 3.5. The network nodes in the "/networks/network/node" path are used to describe the network hierarchies and the inventory of nodes contained in a network.
“ietf无连接oam”模块使用第3.5节中定义的“测试点位置”分组来扩充“ietf网络”模块[RFC8345]中定义的“/网络/网络/节点”路径。“/networks/network/node”路径中的网络节点用于描述网络层次结构和网络中包含的节点清单。
Under the 'test-point-locations' grouping, each test point location is chosen based on the 'tp-location-type' leaf, which, when chosen, leads to a container that includes a list of 'test-point-locations'.
在“测试点位置”分组下,根据“tp位置类型”叶选择每个测试点位置,当选择该叶时,将导致包含“测试点位置”列表的容器。
Each 'test-point-locations' list includes a 'test-point-location-info' grouping. The 'test-point-location-info' grouping includes:
每个“测试点位置”列表包括一个“测试点位置信息”分组。“测试点位置信息”分组包括:
o 'tp-technology' grouping,
o “tp技术”分组,
o 'tp-tools' grouping, and
o “tp工具”分组,以及
o 'connectionless-oam-tps' grouping.
o “无连接oam tps”分组。
The groupings of 'tp-address' and 'tp-address-ni' are kept out of the 'test-point-location-info' grouping to make it addressing agnostic and allow varied composition. Depending upon the choice of the 'tp-location-type' (determined by the 'tp-address-ni'), each container differs in its composition of 'test-point-locations', while the 'test-point-location-info' is a common aspect of every 'test-point-locations'.
“tp地址”和“tp地址ni”的分组被排除在“测试点位置信息”分组之外,以使其寻址不可知,并允许不同的组合。根据“tp位置类型”(由“tp地址ni”确定)的选择,每个容器的“测试点位置”组成各不相同,“测试点位置信息”是每个“测试点位置”的共同方面。
The 'tp-address-ni' grouping is used to describe the corresponding network instance. The 'tp-technology' grouping indicates OAM technology details. The 'connectionless-oam-tps' grouping is used to describe the relationship of one test point with other test points. The 'tp-tools' grouping describes the OAM tools supported.
“tp address ni”分组用于描述相应的网络实例。“tp技术”分组表示OAM技术的详细信息。“无连接oam tps”分组用于描述一个测试点与其他测试点的关系。“tp工具”分组描述了支持的OAM工具。
In addition, at the top of the model, there is an 'cc-oper-data' container for session statistics. A grouping is also defined for common session statistics, and these are only applicable for proactive OAM sessions (see Section 3.2).
此外,在模型的顶部,有一个用于会话统计的“cc oper data”容器。还为公共会话统计信息定义了分组,这些统计信息仅适用于主动式OAM会话(请参见第3.2节)。
With connectionless OAM protocols, the TP address can be one of the following types:
对于无连接OAM协议,TP地址可以是以下类型之一:
o MAC address [RFC6136] at the data-link layer for TPs
o TPs数据链路层的MAC地址[RFC6136]
o IPv4 or IPv6 address at the IP layer for TPs
o TPs IP层的IPv4或IPv6地址
o TP-attribute identifying a TP associated with an application-layer function
o 标识与应用层功能关联的TP的TP属性
o Router-id to represent the device or node, which is commonly used to identify nodes in routing and other control-plane protocols [RFC8294].
o 表示设备或节点的路由器id,通常用于标识路由协议和其他控制平面协议中的节点[RFC8294]。
To define a forwarding treatment of a test packet, the 'tp-address' grouping needs to be associated with additional parameters, e.g., DSCP for IP or Traffic Class [RFC5462] for MPLS. In the generic
为了定义测试数据包的转发处理,“tp地址”分组需要与附加参数相关联,例如,IP的DSCP或MPLS的流量类别[RFC5462]。在一般情况下
connectionless OAM YANG data model, these parameters are not explicitly configured. The model user can add corresponding parameters according to their requirements.
在无连接的OAM数据模型中,未显式配置这些参数。模型用户可根据需要增加相应的参数。
The different OAM tools may be used in one of two basic types of activation: proactive and on-demand. Proactive OAM refers to OAM actions that are carried out continuously to permit proactive reporting of faults. The proactive OAM method requires persistent configuration. On-demand OAM refers to OAM actions that are initiated via manual intervention for a limited time to carry out specific diagnostics. The on-demand OAM method requires only transient configuration (e.g., [RFC7276] and [G.8013]). In connectionless OAM, the 'session-type' grouping is defined to indicate which kind of activation will be used by the current session.
不同的OAM工具可用于两种基本激活类型之一:主动激活和按需激活。主动OAM是指持续执行的OAM操作,以允许主动报告故障。主动OAM方法需要持久配置。按需OAM是指在有限的时间内通过手动干预启动的OAM操作,以执行特定的诊断。按需OAM方法只需要瞬态配置(例如,[RFC7276]和[g.8013])。在无连接OAM中,定义了“会话类型”分组,以指示当前会话将使用哪种激活。
In connectionless OAM, the tools attribute is used to describe a toolset for fault detection and isolation. In addition, it can serve as a constraint condition when the base model is extended to a specific OAM technology. For example, to fulfill the ICMP PING configuration, the "../coam:continuity-check" leaf should be set to "true", and then the LIME base model should be augmented with details specific to ICMP PING.
在无连接OAM中,tools属性用于描述用于故障检测和隔离的工具集。此外,当基本模型扩展到特定的OAM技术时,它可以作为约束条件。例如,为了实现ICMP PING配置,“./coam:continuity check”叶应设置为“true”,然后石灰基模型应增加特定于ICMP PING的细节。
Given that typical network communication stacks have a multi-layer architecture, the set of associated OAM protocols has also a multi-layer structure; each communication layer in the stack may have its own OAM protocol [RFC7276] that may also be linked to a specific administrative domain. Management of these OAM protocols will necessitate associated test points in the nodes accessible by appropriate management domains. Accordingly, a given network interface may actually present several test points.
鉴于典型的网络通信栈具有多层架构,相关联的OAM协议集也具有多层结构;堆栈中的每个通信层可以有自己的OAM协议[RFC7276],该协议也可以链接到特定的管理域。这些OAM协议的管理将需要相应管理域访问的节点中的相关测试点。因此,一个给定的网络接口实际上可能存在几个测试点。
Each OAM test point may have an associated list of neighboring test points that are in other layers up and down the protocol stack for the same interface and are therefore related to the current test point. This allows users to easily navigate between related neighboring layers to efficiently troubleshoot a defect. In this model, the 'position' leaf defines the relative position of the neighboring test point corresponding to the current test point, and it is provided to allow correlation of faults at different locations. If there is one neighboring test point placed before the current test point, the 'position' leaf is set to -1. If there is one neighboring
每个OAM测试点可以具有相邻测试点的关联列表,这些相邻测试点位于同一接口的协议栈上下的其他层中,因此与当前测试点相关。这允许用户轻松地在相关相邻层之间导航,以有效地排除缺陷。在该模型中,“位置”叶定义了与当前测试点对应的相邻测试点的相对位置,并提供该叶以允许不同位置的故障关联。如果在当前测试点之前放置了一个相邻测试点,“位置”叶设置为-1。如果有一个邻居
test point placed after the current test point, the 'position' leaf is set to 1. If there is no neighboring test point placed before or after the current test point, the 'position' leaf is set to 0.
放置在当前测试点之后的测试点,“位置”叶设置为1。如果在当前测试点之前或之后没有放置相邻测试点,“位置”叶设置为0。
+-- oam-neighboring-tps* [index] +-- index? uint16 +-- position? int8 +-- (tp-location)? +--:(mac-address) | +-- mac-address-location? yang:mac-address +--:(ipv4-address) | +-- ipv4-address-location? inet:ipv4-address +--:(ipv6-address) | +-- ipv6-address-location? inet:ipv6-address +--:(as-number) | +-- as-number-location? inet:as-number +--:(router-id) +-- router-id-location? rt:router-id
+-- oam-neighboring-tps* [index] +-- index? uint16 +-- position? int8 +-- (tp-location)? +--:(mac-address) | +-- mac-address-location? yang:mac-address +--:(ipv4-address) | +-- ipv4-address-location? inet:ipv4-address +--:(ipv6-address) | +-- ipv6-address-location? inet:ipv6-address +--:(as-number) | +-- as-number-location? inet:as-number +--:(router-id) +-- router-id-location? rt:router-id
This is a generic grouping for Test Point Location Information (i.e., 'test-point-location-info' grouping). It provides details of Test Point Location using the 'tp-technology', 'tp-tools', and 'oam-neighboring-tps' groupings, all of which are defined above.
这是测试点位置信息的通用分组(即“测试点位置信息”分组)。它使用上面定义的“tp技术”、“tp工具”和“oam相邻tps”分组提供测试点位置的详细信息。
This is a generic grouping for Test Point Locations. 'tp-location-type' leaf is used to define location types -- for example, 'ipv4-location-type', 'ipv6-location-type', etc. Container is defined under each location type containing a list keyed to a test point address, Test Point Location Information defined in the section above, and network instance name (e.g., VRF instance name) if required.
这是测试点位置的通用分组。”tp location type“leaf”用于定义位置类型——例如,“ipv4位置类型”、“ipv6位置类型”等。容器在每个位置类型下定义,其中包含键入测试点地址的列表、上面部分中定义的测试点位置信息,以及网络实例名称(如VRF实例名称)(如果需要)。
This is a generic grouping for the path discovery data model that can be retrieved by any data retrieval method, including RPC operations. Path discovery data output from methods, includes 'src-test-point' container, 'dst-test-point' container, 'sequence-number' leaf, 'hop-cnt' leaf, session statistics of various kinds, and information related to path verification and path trace. Path discovery includes data to be retrieved on a 'per-hop' basis via a list of 'path-trace-info-list' items which includes information such as 'timestamp' grouping, 'ingress-intf-name', 'egress-intf-name', and 'app-meta-data'. The path discovery data model is made generic enough to allow
这是路径发现数据模型的通用分组,可由任何数据检索方法(包括RPC操作)检索。从方法输出的路径发现数据,包括“src测试点”容器、“dst测试点”容器、“序列号”叶、“跃点cnt”叶、各种会话统计信息以及与路径验证和路径跟踪相关的信息。路径发现包括通过“路径跟踪信息列表”项列表以“每跳”方式检索的数据,该列表包括“时间戳”分组、“入口intf名称”、“出口intf名称”和“应用程序元数据”等信息。路径发现数据模型的通用性足以允许
different methods of data retrieval. None of the fields are made mandatory for that reason. Note that a set of retrieval methods are defined in [RFC8533].
不同的数据检索方法。因此,所有字段都不是必需的。请注意,[RFC8533]中定义了一组检索方法。
This is a generic grouping for the Continuity Check data model that can be retrieved by any data retrieval methods including RPC operations. Continuity Check data output from methods, includes 'src-test-point' container, 'dst-test-point' container, 'sequence-number' leaf, 'hop-cnt' leaf, and session statistics of various kinds. The Continuity Check data model is made generic enough to allow different methods of data retrieval. None of the fields are made mandatory for that reason. Noted that a set of retrieval methods are defined in [RFC8533].
这是连续性检查数据模型的通用分组,可由任何数据检索方法(包括RPC操作)检索。从方法输出的连续性检查数据,包括“src测试点”容器、“dst测试点”容器、“序列号”叶、“跃点cnt”叶以及各种会话统计信息。连续性检查数据模型的通用性足以允许不同的数据检索方法。因此,所有字段都不是必需的。注意,[RFC8533]中定义了一组检索方法。
The complete data hierarchy related to the OAM YANG data model is presented below.
与OAM YANG数据模型相关的完整数据层次结构如下所示。
module: ietf-connectionless-oam +--ro cc-session-statistics-data {continuity-check}? +--ro cc-session-statistics* [type] +--ro type identityref +--ro cc-ipv4-sessions-statistics | +--ro cc-session-statistics | +--ro session-count? uint32 | +--ro session-up-count? uint32 | +--ro session-down-count? uint32 | +--ro session-admin-down-count? uint32 +--ro cc-ipv6-sessions-statistics +--ro cc-session-statistics +--ro session-count? uint32 +--ro session-up-count? uint32 +--ro session-down-count? uint32 +--ro session-admin-down-count? uint32 augment /nd:networks/nd:network/nd:node: +--rw tp-location-type? identityref +--rw ipv4-location-type | +--rw test-point-ipv4-location-list | +--rw test-point-locations* [ipv4-location ni] | +--rw ipv4-location inet:ipv4-address | +--rw ni routing-instance-ref | +--rw (technology)? | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools
module: ietf-connectionless-oam +--ro cc-session-statistics-data {continuity-check}? +--ro cc-session-statistics* [type] +--ro type identityref +--ro cc-ipv4-sessions-statistics | +--ro cc-session-statistics | +--ro session-count? uint32 | +--ro session-up-count? uint32 | +--ro session-down-count? uint32 | +--ro session-admin-down-count? uint32 +--ro cc-ipv6-sessions-statistics +--ro cc-session-statistics +--ro session-count? uint32 +--ro session-up-count? uint32 +--ro session-down-count? uint32 +--ro session-admin-down-count? uint32 augment /nd:networks/nd:network/nd:node: +--rw tp-location-type? identityref +--rw ipv4-location-type | +--rw test-point-ipv4-location-list | +--rw test-point-locations* [ipv4-location ni] | +--rw ipv4-location inet:ipv4-address | +--rw ni routing-instance-ref | +--rw (technology)? | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools
| | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw ipv6-location-type | +--rw test-point-ipv6-location-list | +--rw test-point-locations* [ipv6-location ni] | +--rw ipv6-location inet:ipv6-address | +--rw ni routing-instance-ref | +--rw (technology)? | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw mac-location-type | +--rw test-point-mac-address-location-list | +--rw test-point-locations* [mac-address-location] | +--rw mac-address-location yang:mac-address | +--rw (technology)?
| | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw ipv6-location-type | +--rw test-point-ipv6-location-list | +--rw test-point-locations* [ipv6-location ni] | +--rw ipv6-location inet:ipv6-address | +--rw ni routing-instance-ref | +--rw (technology)? | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw mac-location-type | +--rw test-point-mac-address-location-list | +--rw test-point-locations* [mac-address-location] | +--rw mac-address-location yang:mac-address | +--rw (technology)?
| | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw group-as-number-location-type | +--rw test-point-as-number-location-list | +--rw test-point-locations* [as-number-location] | +--rw as-number-location inet:as-number | +--rw ni? routing-instance-ref | +--rw (technology)? | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw group-router-id-location-type +--rw test-point-system-info-location-list
| | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw group-as-number-location-type | +--rw test-point-as-number-location-list | +--rw test-point-locations* [as-number-location] | +--rw as-number-location inet:as-number | +--rw ni? routing-instance-ref | +--rw (technology)? | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw group-router-id-location-type +--rw test-point-system-info-location-list
+--rw test-point-locations* [router-id-location] +--rw router-id-location rt:router-id +--rw ni? routing-instance-ref +--rw (technology)? | +--:(technology-null) | +--rw tech-null? empty +--rw tp-tools | +--rw continuity-check boolean | +--rw path-discovery boolean +--rw root? <anydata> +--rw oam-neighboring-tps* [index] +--rw index uint16 +--rw position? int8 +--rw (tp-location)? +--:(mac-address) | +--rw mac-address-location? yang:mac-address +--:(ipv4-address) | +--rw ipv4-address-location? inet:ipv4-address +--:(ipv6-address) | +--rw ipv6-address-location? inet:ipv6-address +--:(as-number) | +--rw as-number-location? inet:as-number +--:(router-id) +--rw router-id-location? rt:router-id
+--rw test-point-locations* [router-id-location] +--rw router-id-location rt:router-id +--rw ni? routing-instance-ref +--rw (technology)? | +--:(technology-null) | +--rw tech-null? empty +--rw tp-tools | +--rw continuity-check boolean | +--rw path-discovery boolean +--rw root? <anydata> +--rw oam-neighboring-tps* [index] +--rw index uint16 +--rw position? int8 +--rw (tp-location)? +--:(mac-address) | +--rw mac-address-location? yang:mac-address +--:(ipv4-address) | +--rw ipv4-address-location? inet:ipv4-address +--:(ipv6-address) | +--rw ipv6-address-location? inet:ipv6-address +--:(as-number) | +--rw as-number-location? inet:as-number +--:(router-id) +--rw router-id-location? rt:router-id
<CODE BEGINS> file "ietf-lime-time-types@2019-04-16.yang"
<CODE BEGINS> file "ietf-lime-time-types@2019-04-16.yang"
module ietf-lime-time-types { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-lime-time-types"; prefix lime;
module ietf-lime-time-types { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-lime-time-types"; prefix lime;
organization "IETF LIME Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/lime> WG List: <mailto:lmap@ietf.org>
organization "IETF LIME Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/lime> WG List: <mailto:lmap@ietf.org>
Editor: Qin Wu <bill.wu@huawei.com>"; description "This module provides time-related definitions used by the data models written for Layer Independent OAM Management in the Multi-Layer Environment (LIME). This module defines identities but no schema tree elements.
艺术经纬:秦武<比尔。wu@huawei.com>“说明”此模块提供了为多层环境(LIME)中的层独立OAM管理而编写的数据模型所使用的与时间相关的定义。此模块定义标识,但不定义架构树元素。
Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.
版权(c)2019 IETF信托基金和被认定为代码作者的人员。版权所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).
根据IETF信托有关IETF文件的法律规定第4.c节规定的简化BSD许可证中包含的许可条款,允许以源代码和二进制格式重新分发和使用,无论是否修改(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8532; see the RFC itself for full legal notices.";
此模块的此版本是RFC 8532的一部分;有关完整的法律通知,请参见RFC本身。“;
revision 2019-04-16 { description "Initial version."; reference "RFC 8532: Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"; }
revision 2019-04-16 { description "Initial version."; reference "RFC 8532: Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"; }
/*** Collection of common types related to time ***/ /*** Time unit identity ***/
/*** Collection of common types related to time ***/ /*** Time unit identity ***/
identity time-unit-type { description "Time unit type."; }
identity time-unit-type { description "Time unit type."; }
identity hours { base time-unit-type; description "Time unit in hours."; }
identity hours { base time-unit-type; description "Time unit in hours."; }
identity minutes { base time-unit-type; description "Time unit in minutes."; }
identity minutes { base time-unit-type; description "Time unit in minutes."; }
identity seconds { base time-unit-type; description "Time unit in seconds."; }
identity seconds { base time-unit-type; description "Time unit in seconds."; }
identity milliseconds { base time-unit-type; description "Time unit in milliseconds."; }
identity milliseconds { base time-unit-type; description "Time unit in milliseconds."; }
identity microseconds { base time-unit-type; description "Time unit in microseconds."; }
identity microseconds { base time-unit-type; description "Time unit in microseconds."; }
identity nanoseconds { base time-unit-type; description "Time unit in nanoseconds."; }
identity nanoseconds { base time-unit-type; description "Time unit in nanoseconds."; }
/*** Timestamp format Identity ***/
/*** Timestamp format Identity ***/
identity timestamp-type { description "Base identity for Timestamp Type."; }
identity timestamp-type { description "Base identity for Timestamp Type."; }
identity truncated-ptp { base timestamp-type; description "Identity for 64-bit short-format PTP timestamp."; }
identity truncated-ptp { base timestamp-type; description "Identity for 64-bit short-format PTP timestamp."; }
identity truncated-ntp { base timestamp-type; description "Identity for 32-bit short-format NTP timestamp."; }
identity truncated-ntp { base timestamp-type; description "Identity for 32-bit short-format NTP timestamp."; }
identity ntp64 { base timestamp-type; description "Identity for 64-bit NTP timestamp."; }
identity ntp64 { base timestamp-type; description "Identity for 64-bit NTP timestamp."; }
identity icmp { base timestamp-type; description "Identity for 32-bit ICMP timestamp."; }
identity icmp { base timestamp-type; description "Identity for 32-bit ICMP timestamp."; }
identity ptp80 { base timestamp-type; description "Identity for 80-bit PTP timestamp."; } }
identity ptp80 { base timestamp-type; description "Identity for 80-bit PTP timestamp."; } }
<CODE ENDS>
<代码结束>
This module imports the Core YANG Derived Types definition ("ietf-yang-types" module) and Internet-Specific Derived Types definitions ("ietf-inet-types" module) from [RFC6991], the "ietf-routing-types" module from [RFC8294], the "ietf-interfaces" module from [RFC8343], the "ietf-network" module from [RFC8345], the "ietf-network-instance" module from [RFC8529], and the "ietf-lime-time-types" module in Section 4. This module references [IEEE.1588v1], [IEEE.1588v2], [RFC8029], and additional RFCs cited elsewhere in this document.
该模块从[RFC6991]导入核心YANG派生类型定义(“ietf YANG类型”模块)和互联网特定派生类型定义(“ietf inet类型”模块),从[RFC8294]导入“ietf路由类型”模块,从[RFC8343]导入“ietf接口”模块,从[RFC8345]导入“ietf网络”模块,导入“ietf网络实例”[RFC8529]中的模块,以及第4节中的“ietf石灰时间类型”模块。本模块参考了[IEEE.1588v1]、[IEEE.1588v2]、[RFC8029]以及本文件其他地方引用的其他RFC。
<CODE BEGINS> file "ietf-connectionless-oam@2019-04-16.yang"
<CODE BEGINS> file "ietf-connectionless-oam@2019-04-16.yang"
module ietf-connectionless-oam { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-connectionless-oam"; prefix cl-oam;
module ietf-connectionless-oam { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-connectionless-oam"; prefix cl-oam;
import ietf-yang-schema-mount { prefix yangmnt; } import ietf-network { prefix nd; } import ietf-yang-types { prefix yang; } import ietf-interfaces { prefix if; } import ietf-inet-types { prefix inet; } import ietf-network-instance { prefix ni; } import ietf-routing-types { prefix rt; }
import ietf-yang-schema-mount { prefix yangmnt; } import ietf-network { prefix nd; } import ietf-yang-types { prefix yang; } import ietf-interfaces { prefix if; } import ietf-inet-types { prefix inet; } import ietf-network-instance { prefix ni; } import ietf-routing-types { prefix rt; }
import ietf-lime-time-types { prefix lime; }
import ietf-lime-time-types { prefix lime; }
organization "IETF LIME Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/lime> WG List: <mailto:lmap@ietf.org>
organization "IETF LIME Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/lime> WG List: <mailto:lmap@ietf.org>
Deepak Kumar <dekumar@cisco.com> Qin Wu <bill.wu@huawei.com> Srihari Raghavan <srihari@cisco.com> Michael Wang <wangzitao@huawei.com> Reshad Rahman <rrahman@cisco.com>"; description "This YANG module defines the generic configuration, data model, and statistics for OAM protocols using connectionless communications, described in a protocol independent manner. It is assumed that each protocol maps corresponding abstracts to its native format. Each protocol may extend the YANG data model defined here to include protocol specific extensions.
迪帕克库马尔<dekumar@cisco.com>秦武<比尔。wu@huawei.com>斯利哈里·拉哈万<srihari@cisco.com>迈克尔·王<wangzitao@huawei.com>雷沙德·拉赫曼<rrahman@cisco.com>“说明”此模块定义了使用无连接通信的OAM协议的通用配置、数据模型和统计信息,以协议独立的方式描述。假设每个协议都将相应的摘要映射到其本机格式。每个协议都可以扩展此处定义的YANG数据模型,以包括特定于协议的扩展。
Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.
版权(c)2019 IETF信托基金和被认定为代码作者的人员。版权所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).
根据IETF信托有关IETF文件的法律规定第4.c节规定的简化BSD许可证中包含的许可条款,允许以源代码和二进制格式重新分发和使用,无论是否修改(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8532; see the RFC itself for full legal notices.";
此模块的此版本是RFC 8532的一部分;有关完整的法律通知,请参见RFC本身。“;
revision 2019-04-16 { description "Base model for Connectionless Operations, Administration, and Maintenance (OAM)."; reference "RFC 8532: Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"; }
revision 2019-04-16 { description "Base model for Connectionless Operations, Administration, and Maintenance (OAM)."; reference "RFC 8532: Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"; }
feature connectionless {
无连接特征{
description "This feature indicates that the OAM solution is connectionless."; }
description "This feature indicates that the OAM solution is connectionless."; }
feature continuity-check { description "This feature indicates that the server supports executing a Continuity Check OAM command and returning a response. Servers that do not advertise this feature will not support executing Continuity Check commands or the RPC operation model for Continuity Check commands."; }
feature continuity-check { description "This feature indicates that the server supports executing a Continuity Check OAM command and returning a response. Servers that do not advertise this feature will not support executing Continuity Check commands or the RPC operation model for Continuity Check commands."; }
feature path-discovery { description "This feature indicates that the server supports executing a path discovery OAM command and returning a response. Servers that do not advertise this feature will not support executing path discovery commands or the RPC operation model for path discovery commands."; }
feature path-discovery { description "This feature indicates that the server supports executing a path discovery OAM command and returning a response. Servers that do not advertise this feature will not support executing path discovery commands or the RPC operation model for path discovery commands."; }
feature ptp-long-format { description "This feature indicates that the timestamp is PTP long format."; }
feature ptp-long-format { description "This feature indicates that the timestamp is PTP long format."; }
feature ntp-short-format { description "This feature indicates that the timestamp is NTP short format."; }
feature ntp-short-format { description "This feature indicates that the timestamp is NTP short format."; }
feature icmp-timestamp { description "This feature indicates that the timestamp is ICMP timestamp."; }
feature icmp-timestamp { description "This feature indicates that the timestamp is ICMP timestamp."; }
identity traffic-type { description "This is the base identity of the traffic type, which includes IPv4, IPv6, etc."; }
identity traffic-type { description "This is the base identity of the traffic type, which includes IPv4, IPv6, etc."; }
identity ipv4 { base traffic-type; description
identity ipv4 { base traffic-type; description
"identity for IPv4 traffic type."; }
"identity for IPv4 traffic type."; }
identity ipv6 { base traffic-type; description "identity for IPv6 traffic type."; }
identity ipv6 { base traffic-type; description "identity for IPv6 traffic type."; }
identity address-attribute-types { description "This is the base identity of the address attribute types, which are Generic IPv4/IPv6 Prefix, BGP Labeled IPv4/IPv6 Prefix, Tunnel ID, PW ID, VPLS VE ID, etc. (See RFC 8029 for details.)"; }
identity address-attribute-types { description "This is the base identity of the address attribute types, which are Generic IPv4/IPv6 Prefix, BGP Labeled IPv4/IPv6 Prefix, Tunnel ID, PW ID, VPLS VE ID, etc. (See RFC 8029 for details.)"; }
typedef address-attribute-type { type identityref { base address-attribute-types; } description "Target address attribute type."; }
typedef address-attribute-type { type identityref { base address-attribute-types; } description "Target address attribute type."; }
typedef percentage { type decimal64 { fraction-digits 5; range "0..100"; } description "Percentage."; }
typedef percentage { type decimal64 { fraction-digits 5; range "0..100"; } description "Percentage."; }
typedef routing-instance-ref { type leafref { path "/ni:network-instances/ni:network-instance/ni:name"; } description "This type is used for leafs that reference a routing instance configuration."; }
typedef routing-instance-ref { type leafref { path "/ni:network-instances/ni:network-instance/ni:name"; } description "This type is used for leafs that reference a routing instance configuration."; }
grouping cc-session-statistics { description "Grouping for session statistics."; container cc-session-statistics { description "CC session counters.";
grouping cc-session-statistics { description "Grouping for session statistics."; container cc-session-statistics { description "CC session counters.";
leaf session-count { type uint32; default "0"; description "Number of Continuity Check sessions. A value of zero indicates that no session count is sent."; } leaf session-up-count { type uint32; default "0"; description "Number of sessions that are up. A value of zero indicates that no up session count is sent."; } leaf session-down-count { type uint32; default "0"; description "Number of sessions that are down. A value of zero indicates that no down session count is sent."; } leaf session-admin-down-count { type uint32; default "0"; description "Number of sessions that are admin-down. A value of zero indicates that no admin- down session count is sent."; } } }
leaf session-count { type uint32; default "0"; description "Number of Continuity Check sessions. A value of zero indicates that no session count is sent."; } leaf session-up-count { type uint32; default "0"; description "Number of sessions that are up. A value of zero indicates that no up session count is sent."; } leaf session-down-count { type uint32; default "0"; description "Number of sessions that are down. A value of zero indicates that no down session count is sent."; } leaf session-admin-down-count { type uint32; default "0"; description "Number of sessions that are admin-down. A value of zero indicates that no admin- down session count is sent."; } } }
grouping session-packet-statistics { description "Grouping for statistics per session packet."; container session-packet-statistics { description "Statistics per session packet."; leaf rx-packet-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of received OAM packets.
grouping session-packet-statistics { description "Grouping for statistics per session packet."; container session-packet-statistics { description "Statistics per session packet."; leaf rx-packet-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of received OAM packets.
The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf tx-packet-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of transmitted OAM packets. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf rx-bad-packet { type uint32 { range "0..4294967295"; } default "0"; description "Total number of received bad OAM packets. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf tx-packet-failed { type uint32 { range "0..4294967295"; } default "0"; description "Total number of OAM packets that failed when sent. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } } }
The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf tx-packet-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of transmitted OAM packets. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf rx-bad-packet { type uint32 { range "0..4294967295"; } default "0"; description "Total number of received bad OAM packets. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf tx-packet-failed { type uint32 { range "0..4294967295"; } default "0"; description "Total number of OAM packets that failed when sent. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } } }
grouping cc-per-session-statistics { description "Grouping for per-session statistics."; container cc-per-session-statistics { description "Per-session statistics."; leaf create-time { type yang:date-and-time; description "Time and date when session is created."; } leaf last-down-time { type yang:date-and-time; description "Time and date of the last time session was down."; } leaf last-up-time { type yang:date-and-time; description "Time and date of the last time session was up."; } leaf down-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of Continuity Check sessions down. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf admin-down-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of Continuity Check sessions admin down. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } uses session-packet-statistics;
grouping cc-per-session-statistics { description "Grouping for per-session statistics."; container cc-per-session-statistics { description "Per-session statistics."; leaf create-time { type yang:date-and-time; description "Time and date when session is created."; } leaf last-down-time { type yang:date-and-time; description "Time and date of the last time session was down."; } leaf last-up-time { type yang:date-and-time; description "Time and date of the last time session was up."; } leaf down-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of Continuity Check sessions down. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf admin-down-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of Continuity Check sessions admin down. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } uses session-packet-statistics;
} }
} }
grouping session-error-statistics { description "Grouping for per-session error statistics."; container session-error-statistics { description "Per-session error statistics."; leaf packet-loss-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of received packet drops. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf loss-ratio { type percentage; description "Loss ratio of the packets. Expressed as percentage of packets lost with respect to packets sent."; } leaf packet-reorder-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of received packets that were reordered. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf packets-out-of-seq-count { type uint32 { range "0..4294967295"; } description "Total count of packets received out of sequence. The value of count will be set to zero (0)
grouping session-error-statistics { description "Grouping for per-session error statistics."; container session-error-statistics { description "Per-session error statistics."; leaf packet-loss-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of received packet drops. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf loss-ratio { type percentage; description "Loss ratio of the packets. Expressed as percentage of packets lost with respect to packets sent."; } leaf packet-reorder-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of received packets that were reordered. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf packets-out-of-seq-count { type uint32 { range "0..4294967295"; } description "Total count of packets received out of sequence. The value of count will be set to zero (0)
on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf packets-dup-count { type uint32 { range "0..4294967295"; } description "Total count of received packet duplicates. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } } }
on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf packets-dup-count { type uint32 { range "0..4294967295"; } description "Total count of received packet duplicates. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } } }
grouping session-delay-statistics { description "Grouping for delay statistics per session."; container session-delay-statistics { description "Session delay summarized information. By default, a one-way measurement protocol (e.g., OWAMP) is used to measure delay. When a two-way measurement protocol (e.g., TWAMP) is used instead, it can be indicated using the protocol-id defined in RPC operation of retrieval methods for connectionless OAM (RFC 8533), i.e., set protocol-id as OWAMP. Note that only one measurement protocol for delay is specified for interoperability reasons."; leaf time-unit-value { type identityref { base lime:time-unit-type; } default "lime:milliseconds"; description "Time units, where the options are s, ms, ns, etc."; } leaf min-delay-value { type uint32; description "Minimum delay value observed."; } leaf max-delay-value {
grouping session-delay-statistics { description "Grouping for delay statistics per session."; container session-delay-statistics { description "Session delay summarized information. By default, a one-way measurement protocol (e.g., OWAMP) is used to measure delay. When a two-way measurement protocol (e.g., TWAMP) is used instead, it can be indicated using the protocol-id defined in RPC operation of retrieval methods for connectionless OAM (RFC 8533), i.e., set protocol-id as OWAMP. Note that only one measurement protocol for delay is specified for interoperability reasons."; leaf time-unit-value { type identityref { base lime:time-unit-type; } default "lime:milliseconds"; description "Time units, where the options are s, ms, ns, etc."; } leaf min-delay-value { type uint32; description "Minimum delay value observed."; } leaf max-delay-value {
type uint32; description "Maximum delay value observed."; } leaf average-delay-value { type uint32; description "Average delay value observed."; } } }
type uint32; description "Maximum delay value observed."; } leaf average-delay-value { type uint32; description "Average delay value observed."; } } }
grouping session-jitter-statistics { description "Grouping for per session jitter statistics."; container session-jitter-statistics { description "Summarized information about session jitter. By default, jitter is measured using IP Packet Delay Variation (IPDV) as defined in RFC 3393. When the other measurement method is used instead (e.g., Packet Delay Variation used in ITU-T Recommendation Y.1540, it can be indicated using protocol-id-meta-data defined in RPC operation of retrieval methods for connectionless OAM (RFC 8533). Note that only one measurement method for jitter is specified for interoperability reasons."; leaf unit-value { type identityref { base lime:time-unit-type; } default "lime:milliseconds"; description "Time units, where the options are s, ms, ns, etc."; } leaf min-jitter-value { type uint32; description "Minimum jitter value observed."; } leaf max-jitter-value { type uint32; description "Maximum jitter value observed."; } leaf average-jitter-value { type uint32; description "Average jitter value observed.";
grouping session-jitter-statistics { description "Grouping for per session jitter statistics."; container session-jitter-statistics { description "Summarized information about session jitter. By default, jitter is measured using IP Packet Delay Variation (IPDV) as defined in RFC 3393. When the other measurement method is used instead (e.g., Packet Delay Variation used in ITU-T Recommendation Y.1540, it can be indicated using protocol-id-meta-data defined in RPC operation of retrieval methods for connectionless OAM (RFC 8533). Note that only one measurement method for jitter is specified for interoperability reasons."; leaf unit-value { type identityref { base lime:time-unit-type; } default "lime:milliseconds"; description "Time units, where the options are s, ms, ns, etc."; } leaf min-jitter-value { type uint32; description "Minimum jitter value observed."; } leaf max-jitter-value { type uint32; description "Maximum jitter value observed."; } leaf average-jitter-value { type uint32; description "Average jitter value observed.";
} } }
} } }
grouping session-path-verification-statistics { description "Grouping for path verification statistics per session."; container session-path-verification-statistics { description "OAM path verification statistics per session."; leaf verified-count { type uint32 { range "0..4294967295"; } description "Total number of OAM packets that went through a path as intended. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf failed-count { type uint32 { range "0..4294967295"; } description "Total number of OAM packets that went through an unintended path. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } } }
grouping session-path-verification-statistics { description "Grouping for path verification statistics per session."; container session-path-verification-statistics { description "OAM path verification statistics per session."; leaf verified-count { type uint32 { range "0..4294967295"; } description "Total number of OAM packets that went through a path as intended. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf failed-count { type uint32 { range "0..4294967295"; } description "Total number of OAM packets that went through an unintended path. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } } }
grouping session-type { description "This object indicates which kind of activation will be used by the current session."; leaf session-type { type enumeration { enum proactive { description "The current session is a proactive session.";
grouping session-type { description "This object indicates which kind of activation will be used by the current session."; leaf session-type { type enumeration { enum proactive { description "The current session is a proactive session.";
} enum on-demand { description "The current session is an on-demand session."; } } default "on-demand"; description "Indicate which kind of activation will be used by the current session."; } }
} enum on-demand { description "The current session is an on-demand session."; } } default "on-demand"; description "Indicate which kind of activation will be used by the current session."; } }
identity tp-address-technology-type { description "Test point address type."; }
identity tp-address-technology-type { description "Test point address type."; }
identity mac-address-type { base tp-address-technology-type; description "MAC address type."; }
identity mac-address-type { base tp-address-technology-type; description "MAC address type."; }
identity ipv4-address-type { base tp-address-technology-type; description "IPv4 address type."; }
identity ipv4-address-type { base tp-address-technology-type; description "IPv4 address type."; }
identity ipv6-address-type { base tp-address-technology-type; description "IPv6 address type."; }
identity ipv6-address-type { base tp-address-technology-type; description "IPv6 address type."; }
identity tp-attribute-type { base tp-address-technology-type; description "Test point attribute type."; }
identity tp-attribute-type { base tp-address-technology-type; description "Test point attribute type."; }
identity router-id-address-type { base tp-address-technology-type; description "System ID address type."; }
identity router-id-address-type { base tp-address-technology-type; description "System ID address type."; }
identity as-number-address-type { base tp-address-technology-type; description "AS number address type."; }
identity as-number-address-type { base tp-address-technology-type; description "AS number address type."; }
identity route-distinguisher-address-type { base tp-address-technology-type; description "Route Distinguisher address type."; }
identity route-distinguisher-address-type { base tp-address-technology-type; description "Route Distinguisher address type."; }
grouping tp-address { leaf tp-location-type { type identityref { base tp-address-technology-type; } mandatory true; description "Test point address type."; } container mac-address { when "derived-from-or-self(../tp-location-type," + "'cl-oam:mac-address-type')" { description "MAC address type."; } leaf mac-address { type yang:mac-address; mandatory true; description "MAC address."; } description "MAC address based TP addressing."; } container ipv4-address { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv4-address-type')" { description "IPv4 address type."; } leaf ipv4-address { type inet:ipv4-address; mandatory true; description "IPv4 address."; }
grouping tp-address { leaf tp-location-type { type identityref { base tp-address-technology-type; } mandatory true; description "Test point address type."; } container mac-address { when "derived-from-or-self(../tp-location-type," + "'cl-oam:mac-address-type')" { description "MAC address type."; } leaf mac-address { type yang:mac-address; mandatory true; description "MAC address."; } description "MAC address based TP addressing."; } container ipv4-address { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv4-address-type')" { description "IPv4 address type."; } leaf ipv4-address { type inet:ipv4-address; mandatory true; description "IPv4 address."; }
description "IP address based TP addressing."; } container ipv6-address { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv6-address-type')" { description "IPv6 address type."; } leaf ipv6-address { type inet:ipv6-address; mandatory true; description "IPv6 address."; } description "IPv6 address based TP addressing."; } container tp-attribute { when "derived-from-or-self(../tp-location-type," + "'cl-oam:tp-attribute-type')" { description "Test point attribute type."; } leaf tp-attribute-type { type address-attribute-type; description "Test point type."; } choice tp-attribute-value { description "Test point value."; case ip-prefix { leaf ip-prefix { type inet:ip-prefix; description "Generic IPv4/IPv6 prefix. See Sections 3.2.13 and 3.2.14 of RFC 8029."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case bgp { leaf bgp { type inet:ip-prefix; description "BGP Labeled IPv4/IPv6 Prefix. See Sections
description "IP address based TP addressing."; } container ipv6-address { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv6-address-type')" { description "IPv6 address type."; } leaf ipv6-address { type inet:ipv6-address; mandatory true; description "IPv6 address."; } description "IPv6 address based TP addressing."; } container tp-attribute { when "derived-from-or-self(../tp-location-type," + "'cl-oam:tp-attribute-type')" { description "Test point attribute type."; } leaf tp-attribute-type { type address-attribute-type; description "Test point type."; } choice tp-attribute-value { description "Test point value."; case ip-prefix { leaf ip-prefix { type inet:ip-prefix; description "Generic IPv4/IPv6 prefix. See Sections 3.2.13 and 3.2.14 of RFC 8029."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case bgp { leaf bgp { type inet:ip-prefix; description "BGP Labeled IPv4/IPv6 Prefix. See Sections
3.2.11 and 3.2.12 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case tunnel { leaf tunnel-interface { type uint32; description "Basic IPv4/IPv6 Tunnel ID. See Sections 3.2.3 and 3.2.4 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures."; } } case pw { leaf remote-pe-address { type inet:ip-address; description "Remote PE address. See Section 3.2.8 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } leaf pw-id { type uint32; description "Pseudowire ID is a non-zero 32-bit ID. See Sections 3.2.8 and 3.2.9 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case vpls { leaf route-distinguisher { type rt:route-distinguisher; description "Route Distinguisher is an 8-octet identifier used to distinguish information about various L2VPNs advertised by a node."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; }
3.2.11 and 3.2.12 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case tunnel { leaf tunnel-interface { type uint32; description "Basic IPv4/IPv6 Tunnel ID. See Sections 3.2.3 and 3.2.4 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures."; } } case pw { leaf remote-pe-address { type inet:ip-address; description "Remote PE address. See Section 3.2.8 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } leaf pw-id { type uint32; description "Pseudowire ID is a non-zero 32-bit ID. See Sections 3.2.8 and 3.2.9 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case vpls { leaf route-distinguisher { type rt:route-distinguisher; description "Route Distinguisher is an 8-octet identifier used to distinguish information about various L2VPNs advertised by a node."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; }
leaf sender-ve-id { type uint16; description "Sender's VE ID. The VE ID (VPLS Edge Identifier) is a 2-octet identifier."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } leaf receiver-ve-id { type uint16; description "Receiver's VE ID. The VE ID (VPLS Edge Identifier) is a 2-octet identifier."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case mpls-mldp { choice root-address { description "Root address choice."; case ip-address { leaf source-address { type inet:ip-address; description "IP address."; } leaf group-ip-address { type inet:ip-address; description "Group IP address."; } } case vpn { leaf as-number { type inet:as-number; description "The AS number that identifies an Autonomous System."; } } case global-id { leaf lsp-id { type string; description "LSP ID is an identifier of a LSP
leaf sender-ve-id { type uint16; description "Sender's VE ID. The VE ID (VPLS Edge Identifier) is a 2-octet identifier."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } leaf receiver-ve-id { type uint16; description "Receiver's VE ID. The VE ID (VPLS Edge Identifier) is a 2-octet identifier."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case mpls-mldp { choice root-address { description "Root address choice."; case ip-address { leaf source-address { type inet:ip-address; description "IP address."; } leaf group-ip-address { type inet:ip-address; description "Group IP address."; } } case vpn { leaf as-number { type inet:as-number; description "The AS number that identifies an Autonomous System."; } } case global-id { leaf lsp-id { type string; description "LSP ID is an identifier of a LSP
within a MPLS network."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } } } } description "Test Point Attribute Container."; } container system-info { when "derived-from-or-self(../tp-location-type," + "'cl-oam:router-id-address-type')" { description "System ID address type."; } leaf router-id { type rt:router-id; description "Router ID assigned to this node."; } description "Router ID container."; } description "TP Address."; }
within a MPLS network."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } } } } description "Test Point Attribute Container."; } container system-info { when "derived-from-or-self(../tp-location-type," + "'cl-oam:router-id-address-type')" { description "System ID address type."; } leaf router-id { type rt:router-id; description "Router ID assigned to this node."; } description "Router ID container."; } description "TP Address."; }
grouping tp-address-ni { description "Test point address with VRF."; leaf ni { type routing-instance-ref; description "The ni is used to describe virtual resource partitioning that may be present on a network device. An example of a common industry term for virtual resource partitioning is 'VRF instance'."; } uses tp-address; }
grouping tp-address-ni { description "Test point address with VRF."; leaf ni { type routing-instance-ref; description "The ni is used to describe virtual resource partitioning that may be present on a network device. An example of a common industry term for virtual resource partitioning is 'VRF instance'."; } uses tp-address; }
grouping connectionless-oam-tps { list oam-neighboring-tps { key "index"; leaf index {
grouping connectionless-oam-tps { list oam-neighboring-tps { key "index"; leaf index {
type uint16 { range "0..65535"; } description "Index of a list of neighboring test points in layers up and down the stack for the same interface that are related to the current test point."; } leaf position { type int8 { range "-1..1"; } default "0"; description "The position of the neighboring test point relative to the current test point. Level 0 indicates a test point corresponding to a specific index in the same layer as the current test point. -1 means there is a test point corresponding to a specific index in the test point down the stack, and +1 means there is a test point corresponding to a specific index in the test point up the stack."; } choice tp-location { case mac-address { leaf mac-address-location { type yang:mac-address; description "MAC address."; } description "MAC address based TP addressing."; } case ipv4-address { leaf ipv4-address-location { type inet:ipv4-address; description "IPv4 address."; } description "IP address based TP addressing."; } case ipv6-address { leaf ipv6-address-location { type inet:ipv6-address; description "IPv6 address."; }
type uint16 { range "0..65535"; } description "Index of a list of neighboring test points in layers up and down the stack for the same interface that are related to the current test point."; } leaf position { type int8 { range "-1..1"; } default "0"; description "The position of the neighboring test point relative to the current test point. Level 0 indicates a test point corresponding to a specific index in the same layer as the current test point. -1 means there is a test point corresponding to a specific index in the test point down the stack, and +1 means there is a test point corresponding to a specific index in the test point up the stack."; } choice tp-location { case mac-address { leaf mac-address-location { type yang:mac-address; description "MAC address."; } description "MAC address based TP addressing."; } case ipv4-address { leaf ipv4-address-location { type inet:ipv4-address; description "IPv4 address."; } description "IP address based TP addressing."; } case ipv6-address { leaf ipv6-address-location { type inet:ipv6-address; description "IPv6 address."; }
description "IPv6 address based TP addressing."; } case as-number { leaf as-number-location { type inet:as-number; description "AS number location."; } description "AS number for point-to-multipoint OAM."; } case router-id { leaf router-id-location { type rt:router-id; description "System ID location."; } description "System ID."; } description "TP location."; } description "List of neighboring test points in the same layer that are related to current test point. If the neighboring test point is placed after the current test point, the position is specified as +1. If the neighboring test point is placed before the current test point, the position is specified as -1; if no neighboring test points are placed before or after the current test point in the same layer, the position is specified as 0."; } description "List of neighboring test points related to connectionless OAM."; }
description "IPv6 address based TP addressing."; } case as-number { leaf as-number-location { type inet:as-number; description "AS number location."; } description "AS number for point-to-multipoint OAM."; } case router-id { leaf router-id-location { type rt:router-id; description "System ID location."; } description "System ID."; } description "TP location."; } description "List of neighboring test points in the same layer that are related to current test point. If the neighboring test point is placed after the current test point, the position is specified as +1. If the neighboring test point is placed before the current test point, the position is specified as -1; if no neighboring test points are placed before or after the current test point in the same layer, the position is specified as 0."; } description "List of neighboring test points related to connectionless OAM."; }
grouping tp-technology { choice technology { default "technology-null"; case technology-null { description "This is a placeholder when no technology is needed."; leaf tech-null { type empty; description "There is no technology to be defined.";
grouping tp-technology { choice technology { default "technology-null"; case technology-null { description "This is a placeholder when no technology is needed."; leaf tech-null { type empty; description "There is no technology to be defined.";
} } description "Technology choice."; } description "OAM technology."; }
} } description "Technology choice."; } description "OAM technology."; }
grouping tp-tools { description "Test point OAM toolset."; container tp-tools { leaf continuity-check { type boolean; mandatory true; description "A flag indicating whether or not the Continuity Check function is supported."; reference "RFC 792: INTERNET CONTROL MESSAGE PROTOCOL RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 5880: Bidirectional Forwarding Detection RFC 5881: BFD for IPv4 and IPv6 RFC 5883: BFD for Multihop Paths RFC 5884: BFD for MPLS Label Switched Paths RFC 5885: BFD for PW VCCV RFC 6450: Multicast Ping Protocol RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } leaf path-discovery { type boolean; mandatory true; description "A flag indicating whether or not the path discovery function is supported."; reference "RFC 792: INTERNET CONTROL MESSAGE PROTOCOL RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 4884: Extended ICMP to Support Multi-Part Messages RFC 5837: Extending ICMP for Interface and Next-Hop Identification RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; }
grouping tp-tools { description "Test point OAM toolset."; container tp-tools { leaf continuity-check { type boolean; mandatory true; description "A flag indicating whether or not the Continuity Check function is supported."; reference "RFC 792: INTERNET CONTROL MESSAGE PROTOCOL RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 5880: Bidirectional Forwarding Detection RFC 5881: BFD for IPv4 and IPv6 RFC 5883: BFD for Multihop Paths RFC 5884: BFD for MPLS Label Switched Paths RFC 5885: BFD for PW VCCV RFC 6450: Multicast Ping Protocol RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } leaf path-discovery { type boolean; mandatory true; description "A flag indicating whether or not the path discovery function is supported."; reference "RFC 792: INTERNET CONTROL MESSAGE PROTOCOL RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 4884: Extended ICMP to Support Multi-Part Messages RFC 5837: Extending ICMP for Interface and Next-Hop Identification RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; }
description "Container for test point OAM toolset."; } }
description "Container for test point OAM toolset."; } }
grouping test-point-location-info { uses tp-technology; uses tp-tools; anydata root { yangmnt:mount-point "root"; description "Root for models supported per test point."; } uses connectionless-oam-tps; description "Test point location."; }
grouping test-point-location-info { uses tp-technology; uses tp-tools; anydata root { yangmnt:mount-point "root"; description "Root for models supported per test point."; } uses connectionless-oam-tps; description "Test point location."; }
grouping test-point-locations { description "Group of test point locations."; leaf tp-location-type { type identityref { base tp-address-technology-type; } description "Test point location type."; } container ipv4-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv4-address-type')" { description "When test point location type is equal to IPv4 address."; } container test-point-ipv4-location-list { list test-point-locations { key "ipv4-location ni"; leaf ipv4-location { type inet:ipv4-address; description "IPv4 address."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance"; }
grouping test-point-locations { description "Group of test point locations."; leaf tp-location-type { type identityref { base tp-address-technology-type; } description "Test point location type."; } container ipv4-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv4-address-type')" { description "When test point location type is equal to IPv4 address."; } container test-point-ipv4-location-list { list test-point-locations { key "ipv4-location ni"; leaf ipv4-location { type inet:ipv4-address; description "IPv4 address."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance"; }
uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "Container for IPv4 location types."; } container ipv6-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv6-address-type')" { description "When test point location is equal to IPv6 address."; } container test-point-ipv6-location-list { list test-point-locations { key "ipv6-location ni"; leaf ipv6-location { type inet:ipv6-address; description "IPv6 address."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "ipv6 location type container."; } container mac-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:mac-address-type')" { description "When test point location type is equal to MAC address."; }
uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "Container for IPv4 location types."; } container ipv6-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv6-address-type')" { description "When test point location is equal to IPv6 address."; } container test-point-ipv6-location-list { list test-point-locations { key "ipv6-location ni"; leaf ipv6-location { type inet:ipv6-address; description "IPv6 address."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "ipv6 location type container."; } container mac-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:mac-address-type')" { description "When test point location type is equal to MAC address."; }
container test-point-mac-address-location-list { list test-point-locations { key "mac-address-location"; leaf mac-address-location { type yang:mac-address; description "MAC address."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "Container for MAC address location types."; } container group-as-number-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:as-number-address-type')" { description "When test point location type is equal to AS number."; } container test-point-as-number-location-list { list test-point-locations { key "as-number-location"; leaf as-number-location { type inet:as-number; description "AS number for point-to-multipoint OAM."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description
container test-point-mac-address-location-list { list test-point-locations { key "mac-address-location"; leaf mac-address-location { type yang:mac-address; description "MAC address."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "Container for MAC address location types."; } container group-as-number-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:as-number-address-type')" { description "When test point location type is equal to AS number."; } container test-point-as-number-location-list { list test-point-locations { key "as-number-location"; leaf as-number-location { type inet:as-number; description "AS number for point-to-multipoint OAM."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description
"Container for AS number location types."; } container group-router-id-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:router-id-address-type')" { description "When test point location type is equal to system-info."; } container test-point-system-info-location-list { list test-point-locations { key "router-id-location"; leaf router-id-location { type rt:router-id; description "System ID."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "Container for system ID location types."; } }
"Container for AS number location types."; } container group-router-id-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:router-id-address-type')" { description "When test point location type is equal to system-info."; } container test-point-system-info-location-list { list test-point-locations { key "router-id-location"; leaf router-id-location { type rt:router-id; description "System ID."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "Container for system ID location types."; } }
augment "/nd:networks/nd:network/nd:node" { description "Augments the /networks/network/node path defined in the ietf-network module (RFC 8345) with test-point-locations grouping."; uses test-point-locations; }
augment "/nd:networks/nd:network/nd:node" { description "Augments the /networks/network/node path defined in the ietf-network module (RFC 8345) with test-point-locations grouping."; uses test-point-locations; }
grouping timestamp { description "Grouping for timestamp."; leaf timestamp-type { type identityref {
grouping timestamp { description "Grouping for timestamp."; leaf timestamp-type { type identityref {
base lime:timestamp-type; } description "Type of timestamp, such as Truncated PTP or NTP."; } container timestamp-64bit { when "derived-from-or-self(../timestamp-type," + "'lime:truncated-ptp')" + "or derived-from-or-self(../timestamp-type," + "'lime:ntp64')" { description "Only applies when PTP truncated or 64-bit NTP timestamp."; } leaf timestamp-sec { type uint32; description "Absolute timestamp in seconds as per IEEE 1588v2 or seconds part in 64-bit NTP timestamp."; } leaf timestamp-nanosec { type uint32; description "Fractional part in nanoseconds as per IEEE 1588v2 or fractional part in 64-bit NTP timestamp."; } description "Container for 64-bit timestamp. The Network Time Protocol (NTP) 64-bit timestamp format is defined in RFC 5905. The PTP truncated timestamp format is defined in IEEE 1588v1."; reference "RFC 5905: Network Time Protocol Version 4: Protocol and Algorithms Specification IEEE 1588v1: IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems Version 1"; } container timestamp-80bit { when "derived-from-or-self(../timestamp-type, 'lime:ptp80')" { description "Only applies when 80-bit PTP timestamp."; } if-feature "ptp-long-format"; leaf timestamp-sec { type uint64 { range "0..281474976710655"; } description "48-bit timestamp in seconds as per IEEE 1588v2.";
base lime:timestamp-type; } description "Type of timestamp, such as Truncated PTP or NTP."; } container timestamp-64bit { when "derived-from-or-self(../timestamp-type," + "'lime:truncated-ptp')" + "or derived-from-or-self(../timestamp-type," + "'lime:ntp64')" { description "Only applies when PTP truncated or 64-bit NTP timestamp."; } leaf timestamp-sec { type uint32; description "Absolute timestamp in seconds as per IEEE 1588v2 or seconds part in 64-bit NTP timestamp."; } leaf timestamp-nanosec { type uint32; description "Fractional part in nanoseconds as per IEEE 1588v2 or fractional part in 64-bit NTP timestamp."; } description "Container for 64-bit timestamp. The Network Time Protocol (NTP) 64-bit timestamp format is defined in RFC 5905. The PTP truncated timestamp format is defined in IEEE 1588v1."; reference "RFC 5905: Network Time Protocol Version 4: Protocol and Algorithms Specification IEEE 1588v1: IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems Version 1"; } container timestamp-80bit { when "derived-from-or-self(../timestamp-type, 'lime:ptp80')" { description "Only applies when 80-bit PTP timestamp."; } if-feature "ptp-long-format"; leaf timestamp-sec { type uint64 { range "0..281474976710655"; } description "48-bit timestamp in seconds as per IEEE 1588v2.";
} leaf timestamp-nanosec { type uint32; description "Fractional part in nanoseconds as per IEEE 1588v2."; } description "Container for 80-bit timestamp."; } container ntp-timestamp-32bit { when "derived-from-or-self(../timestamp-type," + "'lime:truncated-ntp')" { description "Only applies when 32-bit NTP short-format timestamp."; } if-feature "ntp-short-format"; leaf timestamp-sec { type uint16; description "Timestamp in seconds as per short-format NTP."; } leaf timestamp-nanosec { type uint16; description "Truncated fractional part in 16-bit NTP timestamp."; } description "Container for 32-bit timestamp RFC5905."; reference "RFC 5905: Network Time Protocol Version 4: Protocol and Algorithms Specification."; } container icmp-timestamp-32bit { when "derived-from-or-self(../timestamp-type, 'lime:icmp')" { description "Only applies when ICMP timestamp."; } if-feature "icmp-timestamp"; leaf timestamp-millisec { type uint32; description "Timestamp in milliseconds for ICMP timestamp."; } description "Container for 32-bit timestamp. See RFC 792 for ICMP timestamp format."; } }
} leaf timestamp-nanosec { type uint32; description "Fractional part in nanoseconds as per IEEE 1588v2."; } description "Container for 80-bit timestamp."; } container ntp-timestamp-32bit { when "derived-from-or-self(../timestamp-type," + "'lime:truncated-ntp')" { description "Only applies when 32-bit NTP short-format timestamp."; } if-feature "ntp-short-format"; leaf timestamp-sec { type uint16; description "Timestamp in seconds as per short-format NTP."; } leaf timestamp-nanosec { type uint16; description "Truncated fractional part in 16-bit NTP timestamp."; } description "Container for 32-bit timestamp RFC5905."; reference "RFC 5905: Network Time Protocol Version 4: Protocol and Algorithms Specification."; } container icmp-timestamp-32bit { when "derived-from-or-self(../timestamp-type, 'lime:icmp')" { description "Only applies when ICMP timestamp."; } if-feature "icmp-timestamp"; leaf timestamp-millisec { type uint32; description "Timestamp in milliseconds for ICMP timestamp."; } description "Container for 32-bit timestamp. See RFC 792 for ICMP timestamp format."; } }
grouping path-discovery-data { description "Data output from nodes related to path discovery."; container src-test-point { description "Source test point."; uses tp-address-ni; } container dest-test-point { description "Destination test point."; uses tp-address-ni; } leaf sequence-number { type uint64; default "0"; description "Sequence number in data packets. A value of zero indicates that no sequence number is sent."; } leaf hop-cnt { type uint8; default "0"; description "Hop count. A value of zero indicates that no hop count is sent."; } uses session-packet-statistics; uses session-error-statistics; uses session-delay-statistics; uses session-jitter-statistics; container path-verification { description "Optional information related to path verification."; leaf flow-info { type string; description "Information that refers to the flow."; } uses session-path-verification-statistics; } container path-trace-info { description "Optional per-hop path trace information about test points. The path trace information list typically has a single element for per-hop cases such as path-discovery RPC operation but allows a list of hop-related information for other types of data retrieval methods.";
grouping path-discovery-data { description "Data output from nodes related to path discovery."; container src-test-point { description "Source test point."; uses tp-address-ni; } container dest-test-point { description "Destination test point."; uses tp-address-ni; } leaf sequence-number { type uint64; default "0"; description "Sequence number in data packets. A value of zero indicates that no sequence number is sent."; } leaf hop-cnt { type uint8; default "0"; description "Hop count. A value of zero indicates that no hop count is sent."; } uses session-packet-statistics; uses session-error-statistics; uses session-delay-statistics; uses session-jitter-statistics; container path-verification { description "Optional information related to path verification."; leaf flow-info { type string; description "Information that refers to the flow."; } uses session-path-verification-statistics; } container path-trace-info { description "Optional per-hop path trace information about test points. The path trace information list typically has a single element for per-hop cases such as path-discovery RPC operation but allows a list of hop-related information for other types of data retrieval methods.";
list path-trace-info-list { key "index"; description "Path trace information list."; leaf index { type uint32; description "Trace information index."; } uses tp-address-ni; uses timestamp; leaf ingress-intf-name { type if:interface-ref; description "Ingress interface name."; } leaf egress-intf-name { type if:interface-ref; description "Egress interface name."; } leaf queue-depth { type uint32; description "Length of the queue of the interface from where the packet is forwarded out. The queue depth could be the current number of memory buffers used by the queue, and a packet can consume one or more memory buffers, thus constituting device-level information."; } leaf transit-delay { type uint32; description "Time in nanoseconds that the packet spent transiting a node."; } leaf app-meta-data { type uint64; description "Application-specific data added by node."; } } } }
list path-trace-info-list { key "index"; description "Path trace information list."; leaf index { type uint32; description "Trace information index."; } uses tp-address-ni; uses timestamp; leaf ingress-intf-name { type if:interface-ref; description "Ingress interface name."; } leaf egress-intf-name { type if:interface-ref; description "Egress interface name."; } leaf queue-depth { type uint32; description "Length of the queue of the interface from where the packet is forwarded out. The queue depth could be the current number of memory buffers used by the queue, and a packet can consume one or more memory buffers, thus constituting device-level information."; } leaf transit-delay { type uint32; description "Time in nanoseconds that the packet spent transiting a node."; } leaf app-meta-data { type uint64; description "Application-specific data added by node."; } } } }
grouping continuity-check-data { description "Continuity Check data output from nodes.";
grouping continuity-check-data { description "Continuity Check data output from nodes.";
container src-test-point { description "Source test point."; uses tp-address-ni; leaf egress-intf-name { type if:interface-ref; description "Egress interface name."; } } container dest-test-point { description "Destination test point."; uses tp-address-ni; leaf ingress-intf-name { type if:interface-ref; description "Ingress interface name."; } } leaf sequence-number { type uint64; default "0"; description "Sequence number in data packets. A value of zero indicates that no sequence number is sent."; } leaf hop-cnt { type uint8; default "0"; description "Hop count. A value of zero indicates that no hop count is sent."; } uses session-packet-statistics; uses session-error-statistics; uses session-delay-statistics; uses session-jitter-statistics; }
container src-test-point { description "Source test point."; uses tp-address-ni; leaf egress-intf-name { type if:interface-ref; description "Egress interface name."; } } container dest-test-point { description "Destination test point."; uses tp-address-ni; leaf ingress-intf-name { type if:interface-ref; description "Ingress interface name."; } } leaf sequence-number { type uint64; default "0"; description "Sequence number in data packets. A value of zero indicates that no sequence number is sent."; } leaf hop-cnt { type uint8; default "0"; description "Hop count. A value of zero indicates that no hop count is sent."; } uses session-packet-statistics; uses session-error-statistics; uses session-delay-statistics; uses session-jitter-statistics; }
container cc-session-statistics-data { if-feature "continuity-check"; config false; list cc-session-statistics { key "type"; leaf type { type identityref { base traffic-type;
container cc-session-statistics-data { if-feature "continuity-check"; config false; list cc-session-statistics { key "type"; leaf type { type identityref { base traffic-type;
} description "Type of traffic."; } container cc-ipv4-sessions-statistics { when "../type = 'ipv4'" { description "Only applies when traffic type is IPv4."; } description "CC ipv4 sessions."; uses cc-session-statistics; } container cc-ipv6-sessions-statistics { when "../type = 'ipv6'" { description "Only applies when traffic type is IPv6."; } description "CC IPv6 sessions."; uses cc-session-statistics; } description "List of CC session statistics data."; } description "CC operational information."; } }
} description "Type of traffic."; } container cc-ipv4-sessions-statistics { when "../type = 'ipv4'" { description "Only applies when traffic type is IPv4."; } description "CC ipv4 sessions."; uses cc-session-statistics; } container cc-ipv6-sessions-statistics { when "../type = 'ipv6'" { description "Only applies when traffic type is IPv6."; } description "CC IPv6 sessions."; uses cc-session-statistics; } description "List of CC session statistics data."; } description "CC operational information."; } }
<CODE ENDS>
<代码结束>
The "ietf-connectionless-oam" module defined in this document provides a technology-independent abstraction of key OAM constructs for OAM protocols that use connectionless communication. This module can be further extended to include technology-specific details, e.g., adding new data nodes with technology-specific functions and parameters into proper anchor points of the base model, so as to develop a technology-specific connectionless OAM model.
本文档中定义的“ietf无连接oam”模块为使用无连接通信的oam协议提供了关键oam结构的独立于技术的抽象。该模块可以进一步扩展以包括特定于技术的细节,例如,将具有特定于技术的功能和参数的新数据节点添加到基本模型的适当锚定点中,从而开发特定于技术的无连接OAM模型。
This section demonstrates the usability of the connectionless YANG OAM data model to various connectionless OAM technologies, e.g., BFD and LSP ping. Note that, in this section, several snippets of technology-specific model extensions are presented for illustrative purposes. The complete model extensions should be worked on in the working groups of the respective protocols.
本节演示了无连接OAM数据模型对各种无连接OAM技术的可用性,例如BFD和LSP ping。请注意,在本节中,为了便于说明,将介绍一些特定于技术的模型扩展片段。完整的模型扩展应在各自协议的工作组中进行。
RFC 7276 defines BFD as a connection-oriented protocol. It is used to monitor a connectionless protocol in the case of basic BFD for IP.
RFC 7276将BFD定义为面向连接的协议。它用于在IP基本BFD的情况下监视无连接协议。
The following sections show how the "ietf-connectionless-oam" module can be extended to cover BFD technology. For this purpose, a set of extensions are introduced such as the technology-type extension and test-point attributes extension.
以下各节说明如何扩展“ietf无连接oam”模块以涵盖BFD技术。为此,引入了一组扩展,例如技术类型扩展和测试点属性扩展。
Note that a dedicated BFD YANG data model [BFD-YANG] is also standardized. Augmentation of the "ietf-connectionless-oam" module with BFD-specific details provides an alternative approach with a unified view of management information across various OAM protocols. The BFD-specific details can be the grouping defined in the BFD model, thereby avoiding duplication of effort.
请注意,专用BFD-YANG数据模型[BFD-YANG]也是标准化的。“ietf无连接oam”模块与BFD特定细节的扩展提供了一种替代方法,可以跨各种oam协议统一查看管理信息。BFD特定的细节可以是BFD模型中定义的分组,从而避免重复工作。
No BFD technology type has been defined in the "ietf-connectionless-oam" module. Therefore, a technology-type extension is required in the module extension.
“ietf无连接oam”模块中未定义BFD技术类型。因此,模块扩展中需要技术类型扩展。
The snippet below depicts an example of adding the "bfd" type as an augment to the "ietf-connectionless-oam" module:
下面的代码片段描述了添加“bfd”类型作为“ietf无连接oam”模块的扩充的示例:
augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations/coam:technology" { leaf bfd{ type string; } }
augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations/coam:technology" { leaf bfd{ type string; } }
To support BFD, the "ietf-connectionless-oam" module can be extended by adding specific parameters into the "test-point-locations" list and/or adding a new location type such as "BFD over MPLS TE" under "location-type".
为了支持BFD,“ietf无连接oam”模块可以通过在“测试点位置”列表中添加特定参数和/或在“位置类型”下添加新的位置类型(如“BFD over MPLS TE”)来扩展。
6.1.1.2.1. Define and Insert New Nodes into Corresponding test-point-location
6.1.1.2.1. 定义新节点并将其插入相应的测试点位置
In the "ietf-connectionless-oam" module, multiple "test-point-location" lists are defined under the "location-type" choice node. Therefore, to derive a model for some BFD technologies (such as IP single-hop, IP multihop, etc.), data nodes for BFD-specific details need to be added to the corresponding "test-point-locations" list. In this section, some groupings that are defined in [BFD-YANG] are reused as follows.
在“ietf无连接oam”模块中,“位置类型”选择节点下定义了多个“测试点位置”列表。因此,为了推导某些BFD技术(如IP单跳、IP多跳等)的模型,需要将BFD特定细节的数据节点添加到相应的“测试点位置”列表中。在本节中,[BFD-YANG]中定义的一些分组被重用如下。
The snippet below shows how the "ietf-connectionless-oam" module can be extended to support "BFD IP Single-Hop":
下面的代码段显示了如何扩展“ietf无连接oam”模块以支持“BFD IP单跳”:
augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations" { container session-cfg { description "BFD IP single-hop session configuration"; list sessions { key "interface dest-addr"; description "List of IP single-hop sessions"; leaf interface { type if:interface-ref; description "Interface on which the BFD session is running."; } leaf dest-addr { type inet:ip-address; description "IP address of the peer"; } uses bfd:bfd-grouping-common-cfg-parms; uses bfd:bfd-grouping-echo-cfg-parms; } } }
augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations" { container session-cfg { description "BFD IP single-hop session configuration"; list sessions { key "interface dest-addr"; description "List of IP single-hop sessions"; leaf interface { type if:interface-ref; description "Interface on which the BFD session is running."; } leaf dest-addr { type inet:ip-address; description "IP address of the peer"; } uses bfd:bfd-grouping-common-cfg-parms; uses bfd:bfd-grouping-echo-cfg-parms; } } }
Similar augmentations can be defined to support other BFD technologies such as BFD IP Multihop, BFD over MPLS, etc.
可以定义类似的扩展来支持其他BFD技术,如BFD IP多跳、BFD over MPLS等。
In the "ietf-connectionless-oam" module, If there is no appropriate "location-type" case that can be extended, a new "location-type" case can be defined and inserted into the "location-type" choice node.
在“ietf无连接oam”模块中,如果没有可扩展的适当“位置类型”案例,则可以定义新的“位置类型”案例并将其插入“位置类型”选择节点。
Therefore, there is flexibility -- the module user can add "location-type" to support other types of test point that are not defined in the "ietf-connectionless-oam" module. In this section, a new "location-type" case is added, and some groupings that are defined in [BFD-YANG] are reused as follows.
因此,具有灵活性——模块用户可以添加“位置类型”,以支持“ietf无连接oam”模块中未定义的其他类型的测试点。在本节中,添加了一个新的“位置类型”案例,并按如下方式重用[BFD-YANG]中定义的一些分组。
The snippet below shows how the "ietf-connectionless-oam" module can be extended to support "BFD over MPLS-TE":
下面的代码段显示了如何扩展“ietf无连接oam”模块以支持“通过MPLS-TE的BFD”:
augment "/nd:networks/nd:network/nd:node/coam:location-type"{ case te-location{ list test-point-location-list{ key "tunnel-name"; leaf tunnel-name{ type leafref{ path "/te:te/te:tunnels/te:tunnel/te:name"; } description "Point to a TE instance."; } uses bfd:bfd-grouping-common-cfg-parms; uses bfd-mpls:bfd-encap-cfg; } } }
augment "/nd:networks/nd:network/nd:node/coam:location-type"{ case te-location{ list test-point-location-list{ key "tunnel-name"; leaf tunnel-name{ type leafref{ path "/te:te/te:tunnels/te:tunnel/te:name"; } description "Point to a TE instance."; } uses bfd:bfd-grouping-common-cfg-parms; uses bfd-mpls:bfd-encap-cfg; } } }
Similar augmentations can be defined to support other BFD technologies such as BFD over LAG, etc.
可以定义类似的增强来支持其他BFD技术,如BFD过滞后等。
An alternative method is using the schema mount mechanism [RFC8528] in the "ietf-connectionless-oam" module. Within the "test-point-locations" list, a "root" attribute is defined to provide a mount point for models that will be added onto per "test-point-locations". Therefore, the "ietf-connectionless-oam" module can provide a place in the node hierarchy where other OAM YANG data models can be attached, without any special extension in the "ietf-connectionless-oam" YANG data module [RFC8528]. Note that the limitation of the schema mount method is that it's not allowed to specify certain modules that are required to be mounted under a mount point.
另一种方法是在“ietf无连接oam”模块中使用模式装载机制[RFC8528]。在“测试点位置”列表中,定义了一个“根”属性,为将添加到每个“测试点位置”的模型提供一个装载点。因此,“ietf无连接oam”模块可以在节点层次结构中提供一个可以连接其他oam YANG数据模型的位置,而无需在“ietf无连接oam”YANG数据模块中进行任何特殊扩展[RFC8528]。请注意,模式装载方法的限制是不允许指定需要在装载点下装载的某些模块。
The snippet below depicts the definition of the "root" attribute.
下面的代码片段描述了“root”属性的定义。
anydata root { yangmnt:mount-point root; description "Root for models that are supported per test point"; }
anydata root { yangmnt:mount-point root; description "Root for models that are supported per test point"; }
The following section shows how the "ietf-connectionless-oam" module can use schema mount to support BFD technology.
以下部分说明“ietf无连接oam”模块如何使用模式装载来支持BFD技术。
To support BFD technology, "ietf-bfd-ip-sh" and "ietf-bfd-ip-mh" YANG modules might be populated in the "schema-mounts" container:
为了支持BFD技术,“ietf BFD ip sh”和“ietf BFD ip mh”模块可以填充在“模式装载”容器中:
<schema-mounts xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount"> <mount-point> <module> ietf-connectionless-oam </module> <name>root</name> <use-schema> <name>root</name> </use-schema> </mount-point> <schema> <name>root</name> <module> <name>ietf-bfd-ip-sh </name> <revision>2016-07-04</revision> <namespace> urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh </namespace> <conformance-type>implement</conformance-type> </module> <module> <name>ietf-bfd-ip-mh</name> <revision> 2016-07-04</revision> <namespace> urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh </namespace> <conformance-type>implement</conformance-type> </module> </schema> </schema-mounts>
<schema-mounts xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount"> <mount-point> <module> ietf-connectionless-oam </module> <name>root</name> <use-schema> <name>root</name> </use-schema> </mount-point> <schema> <name>root</name> <module> <name>ietf-bfd-ip-sh </name> <revision>2016-07-04</revision> <namespace> urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh </namespace> <conformance-type>implement</conformance-type> </module> <module> <name>ietf-bfd-ip-mh</name> <revision> 2016-07-04</revision> <namespace> urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh </namespace> <conformance-type>implement</conformance-type> </module> </schema> </schema-mounts>
and the "ietf-connectionless-oam" module might have:
“ietf无连接oam”模块可能有:
<ietf-connectionless-oam uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam"> ...... <test-point-locations> <ipv4-location>192.0.2.1</ipv4-location> ...... <root> <ietf-bfd-ip-sh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh"> <ip-sh> foo ...... </ip-sh> </ietf-bfd-ip-sh> <ietf-bfd-ip-mh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh"> <ip-mh> foo ...... </ip-mh> </ietf-bfd-ip-mh> </root> </test-point-locations> </ietf-connectionless-oam>
<ietf-connectionless-oam uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam"> ...... <test-point-locations> <ipv4-location>192.0.2.1</ipv4-location> ...... <root> <ietf-bfd-ip-sh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh"> <ip-sh> foo ...... </ip-sh> </ietf-bfd-ip-sh> <ietf-bfd-ip-mh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh"> <ip-mh> foo ...... </ip-mh> </ietf-bfd-ip-mh> </root> </test-point-locations> </ietf-connectionless-oam>
The following sections show how the "ietf-connectionless-oam" module can be extended to support LSP ping technology. For this purpose, a set of extensions are introduced such as the "technology-type" extension and the test-point "attributes" extension.
以下各节说明如何扩展“ietf无连接oam”模块以支持LSP ping技术。为此,引入了一组扩展,例如“技术类型”扩展和测试点“属性”扩展。
Note that an LSP Ping YANG data model is being specified [LSP-PING-YANG]. As with BFD, users can choose to use the "ietf-connectionless-oam" as the basis and augment the "ietf-connectionless-oam" model with details specific to LSP Ping in the model extension to provide a unified view across different technologies. The details that are specific to LSP Ping can be the grouping defined in the LSP ping model to avoid duplication of effort.
请注意,正在指定LSP Ping-YANG数据模型[LSP-Ping-YANG]。与BFD一样,用户可以选择使用“ietf无连接oam”作为基础,并在模型扩展中增加“ietf无连接oam”模型,其中包含特定于LSP Ping的细节,以提供跨不同技术的统一视图。特定于LSP Ping的细节可以是LSP Ping模型中定义的分组,以避免重复工作。
No LSP Ping technology type has been defined in the "ietf-connectionless-oam" module. Therefore, a technology-type extension is required in the module extension.
“ietf无连接oam”模块中未定义LSP Ping技术类型。因此,模块扩展中需要技术类型扩展。
The snippet below depicts an example of augmenting "ietf-connectionless-oam" with "lsp-ping" type:
下面的代码片段描述了使用“lsp ping”类型扩充“ietf无连接oam”的示例:
augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations/coam:technology" { leaf lsp-ping{ type string; } }
augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations/coam:technology" { leaf lsp-ping{ type string; } }
To support LSP Ping, the "ietf-connectionless-oam" module can be extended and parameters specific to LSP Ping can be defined and put on the "test-point-locations" list.
为了支持LSP Ping,可以扩展“ietf无连接oam”模块,并且可以定义特定于LSP Ping的参数,并将其放在“测试点位置”列表中。
Users can reuse the attributes or groupings that are defined in [LSP-PING-YANG] as follows:
用户可以重用[LSP-PING-YANG]中定义的属性或分组,如下所示:
The snippet below depicts an example of augmenting the "test-point-locations" list with LSP Ping attributes:
下面的代码片段描述了使用LSP Ping属性扩充“测试点位置”列表的示例:
augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations" { list lsp-ping { key "lsp-ping-name"; leaf lsp-ping-name { type string { length "1..31"; } mandatory "true"; description "LSP Ping test name."; ...... }
augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations" { list lsp-ping { key "lsp-ping-name"; leaf lsp-ping-name { type string { length "1..31"; } mandatory "true"; description "LSP Ping test name."; ...... }
An alternative method is using the schema mount mechanism [RFC8528] in the "ietf-connectionless-oam" module. Within the "test-point-locations" list, a "root" attribute is defined to provide a mounted point for models mounted per "test-point-locations". Therefore, the "ietf-connectionless-oam" model can provide a place in the node
另一种方法是在“ietf无连接oam”模块中使用模式装载机制[RFC8528]。在“测试点位置”列表中,定义了“根”属性,为按照“测试点位置”安装的模型提供安装点。因此,“ietf无连接oam”模型可以在节点中提供位置
hierarchy where other OAM YANG data models can be attached, without any special extension in the "ietf-connectionless-oam" YANG data module [RFC8528]. Note that the limitation of the schema mount method is that it's not allowed to specify certain modules that are required to be mounted under a mount point.
可连接其他OAM YANG数据模型的层次结构,无需在“ietf无连接OAM”YANG数据模块中进行任何特殊扩展[RFC8528]。请注意,模式装载方法的限制是不允许指定需要在装载点下装载的某些模块。
The snippet below depicts the definition of "root" attribute.
下面的代码片段描述了“根”属性的定义。
anydata root { yangmnt:mount-point root; description "Root for models supported per test point"; }
anydata root { yangmnt:mount-point root; description "Root for models supported per test point"; }
The following section shows how the "ietf-connectionless-oam" module can use schema mount to support LSP Ping technology.
以下部分说明“ietf无连接oam”模块如何使用模式装载来支持LSP Ping技术。
To support LSP Ping technology, the "ietf-lsp-ping" YANG module [LSP-PING-YANG] might be populated in the "schema-mounts" container:
为了支持LSP Ping技术,“ietf LSP Ping”YANG模块[LSP-Ping-YANG]可以填充在“模式装载”容器中:
<schema-mounts xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount"> <mount-point> <module> ietf-connectionless-oam </module> <name>root</name> <use-schema> <name>root</name> </use-schema> </mount-point> <schema> <name>root</name> <module> <name>ietf-lsp-ping </name> <revision>2016-03-18</revision> <namespace> urn:ietf:params:xml:ns:yang: ietf-lsp-ping </namespace> <conformance-type>implement</conformance-type> </module> </schema> </schema-mounts>
<schema-mounts xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount"> <mount-point> <module> ietf-connectionless-oam </module> <name>root</name> <use-schema> <name>root</name> </use-schema> </mount-point> <schema> <name>root</name> <module> <name>ietf-lsp-ping </name> <revision>2016-03-18</revision> <namespace> urn:ietf:params:xml:ns:yang: ietf-lsp-ping </namespace> <conformance-type>implement</conformance-type> </module> </schema> </schema-mounts>
and the "ietf-connectionless-oam" module might have:
“ietf无连接oam”模块可能有:
<ietf-connectionless-oam uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam"> ...... <test-point-locations> <ipv4-location> 192.0.2.1</ipv4-location> ...... <root> <ietf-lsp-ping uri="urn:ietf:params:xml:ns:yang:ietf-lsp-ping"> <lsp-pings> foo ...... </lsp-pings> </ietf-lsp-ping> </root> </test-point-locations> </ietf-connectionless-oam>
<ietf-connectionless-oam uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam"> ...... <test-point-locations> <ipv4-location> 192.0.2.1</ipv4-location> ...... <root> <ietf-lsp-ping uri="urn:ietf:params:xml:ns:yang:ietf-lsp-ping"> <lsp-pings> foo ...... </lsp-pings> </ietf-lsp-ping> </root> </test-point-locations> </ietf-connectionless-oam>
The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].
本文档中指定的模块为数据定义了一个模式,该模式旨在通过网络管理协议(如NETCONF[RFC6241]或restcconf[RFC8040])进行访问。最低的NETCONF层是安全传输层,实现安全传输的强制要求是安全Shell(SSH)[RFC6242]。最低的RESTCONF层是HTTPS,实现安全传输的强制层是TLS[RFC8446]。
The NETCONF Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.
NETCONF配置访问控制模型(NACM)[RFC8341]提供了将特定NETCONF或RESTCONF用户的访问限制为所有可用NETCONF或RESTCONF协议操作和内容的预配置子集的方法。
There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:
此模块中定义了许多可写/可创建/可删除的数据节点(即,默认为config true)。在某些网络环境中,这些数据节点可能被认为是敏感的。对这些数据节点的写入操作(如编辑配置)如果没有适当的保护,可能会对网络操作产生负面影响。这些是子树和数据节点及其敏感性/漏洞:
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv4- location-type/cl-oam:test-point-ipv4-location-list/cl-oam:test- point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv4- location-type/cl-oam:test-point-ipv4-location-list/cl-oam:test- point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv6- location-type/cl-oam:test-point-ipv6-location-list/cl-oam:test- point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv6- location-type/cl-oam:test-point-ipv6-location-list/cl-oam:test- point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:mac- location-type/cl-oam:test-point-mac-address-location-list/cl- oam:test-point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:mac- location-type/cl-oam:test-point-mac-address-location-list/cl- oam:test-point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group- as-number-location-type/cl-oam:test-point-as-number-location-list/ cl-oam:test-point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group- as-number-location-type/cl-oam:test-point-as-number-location-list/ cl-oam:test-point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group- router-id-location-type/cl-oam:test-point-system-info-location- list/cl-oam:test-point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group- router-id-location-type/cl-oam:test-point-system-info-location- list/cl-oam:test-point-locations/
Unauthorized access to any of these lists can adversely affect OAM management system handling of end-to-end OAM and coordination of OAM within underlying network layers. This may lead to inconsistent configuration, reporting, and presentation for the OAM mechanisms used to manage the network.
未经授权访问这些列表中的任何一个都会对OAM管理系统处理端到端OAM以及底层网络层内OAM的协调产生不利影响。这可能导致用于管理网络的OAM机制的配置、报告和表示不一致。
Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:
在某些网络环境中,此模块中的某些可读数据节点可能被视为敏感或易受攻击。因此,控制对这些数据节点的读取访问(例如,通过get、get config或通知)非常重要。这些是子树和数据节点及其敏感性/漏洞:
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down- count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down- count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count//
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count//
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down- count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down- count/
This document registers URIs in the "IETF XML Registry" [RFC3688]. Following the format in [RFC3688], the following registrations have been made.
本文档在“IETF XML注册表”[RFC3688]中注册URI。按照[RFC3688]中的格式,进行了以下注册。
URI: urn:ietf:params:xml:ns:yang:ietf-lime-time-types Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
URI:urn:ietf:params:xml:ns:yang:ietf石灰时间类型注册人联系人:IESG。XML:不适用;请求的URI是一个XML命名空间。
URI: urn:ietf:params:xml:ns:yang:ietf-connectionless-oam Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
URI:urn:ietf:params:xml:ns:yang:ietf无连接oam注册人联系人:IESG。XML:不适用;请求的URI是一个XML命名空间。
This document registers two YANG modules in the "YANG Module Names" registry [RFC6020].
本文件在“阳模块名称”注册表[RFC6020]中注册了两个阳模块。
Name: ietf-lime-time-types Namespace: urn:ietf:params:xml:ns:yang:ietf-lime-time-types Prefix: lime Reference: RFC 8532
Name: ietf-lime-time-types Namespace: urn:ietf:params:xml:ns:yang:ietf-lime-time-types Prefix: lime Reference: RFC 8532
Name: ietf-connectionless-oam Namespace: urn:ietf:params:xml:ns:yang:ietf-connectionless-oam Prefix: cl-oam Reference: RFC 8532
Name: ietf-connectionless-oam Namespace: urn:ietf:params:xml:ns:yang:ietf-connectionless-oam Prefix: cl-oam Reference: RFC 8532
[RFC792] Postel, J., "Internet Control Message Protocol", RFC 792, September 1981.
[RFC792]Postel,J.,“互联网控制消息协议”,RFC7921981年9月。
[RFC1831] Srinivasan, R., "RPC: Remote Procedure Call Protocol Specification Version 2", RFC 1831, DOI 10.17487/RFC1831, August 1995, <https://www.rfc-editor.org/info/rfc1831>.
[RFC1831]Srinivasan,R.,“RPC:远程过程调用协议规范版本2”,RFC 1831,DOI 10.17487/RFC18311995年8月<https://www.rfc-editor.org/info/rfc1831>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.
[RFC3688]Mealling,M.,“IETF XML注册表”,BCP 81,RFC 3688,DOI 10.17487/RFC3688,2004年1月<https://www.rfc-editor.org/info/rfc3688>.
[RFC4382] Nadeau, T., Ed. and H. van der Linde, Ed., "MPLS/BGP Layer 3 Virtual Private Network (VPN) Management Information Base", RFC 4382, DOI 10.17487/RFC4382, February 2006, <https://www.rfc-editor.org/info/rfc4382>.
[RFC4382]Nadeau,T.,Ed.和H.van der Linde,Ed.,“MPLS/BGP第3层虚拟专用网络(VPN)管理信息库”,RFC 4382,DOI 10.17487/RFC4382,2006年2月<https://www.rfc-editor.org/info/rfc4382>.
[RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", STD 89, RFC 4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-editor.org/info/rfc4443>.
[RFC4443]Conta,A.,Deering,S.和M.Gupta,Ed.“互联网协议版本6(IPv6)规范的互联网控制消息协议(ICMPv6)”,STD 89,RFC 4443,DOI 10.17487/RFC4443,2006年3月<https://www.rfc-editor.org/info/rfc4443>.
[RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M. Zekauskas, "A One-way Active Measurement Protocol (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006, <https://www.rfc-editor.org/info/rfc4656>.
[RFC4656]Shalunov,S.,Teitelbaum,B.,Karp,A.,Boote,J.,和M.Zekauskas,“单向主动测量协议(OWAMP)”,RFC 4656,DOI 10.17487/RFC4656,2006年9月<https://www.rfc-editor.org/info/rfc4656>.
[RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J. Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", RFC 5357, DOI 10.17487/RFC5357, October 2008, <https://www.rfc-editor.org/info/rfc5357>.
[RFC5357]Hedayat,K.,Krzanowski,R.,Morton,A.,Yum,K.,和J.Babiarz,“双向主动测量协议(TWAMP)”,RFC 5357,DOI 10.17487/RFC5357,2008年10月<https://www.rfc-editor.org/info/rfc5357>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010, <https://www.rfc-editor.org/info/rfc5880>.
[RFC5880]Katz,D.和D.Ward,“双向转发检测(BFD)”,RFC 5880,DOI 10.17487/RFC5880,2010年6月<https://www.rfc-editor.org/info/rfc5880>.
[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010, <https://www.rfc-editor.org/info/rfc5905>.
[RFC5905]Mills,D.,Martin,J.,Ed.,Burbank,J.,和W.Kasch,“网络时间协议版本4:协议和算法规范”,RFC 5905,DOI 10.17487/RFC59052010年6月<https://www.rfc-editor.org/info/rfc5905>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.
[RFC6241]Enns,R.,Ed.,Bjorklund,M.,Ed.,Schoenwaeld,J.,Ed.,和A.Bierman,Ed.,“网络配置协议(NETCONF)”,RFC 6241,DOI 10.17487/RFC6241,2011年6月<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>.
[RFC6242]Wasserman,M.“在安全外壳上使用NETCONF协议(SSH)”,RFC 6242,DOI 10.17487/RFC6242,2011年6月<https://www.rfc-editor.org/info/rfc6242>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.
[RFC6991]Schoenwaeld,J.,Ed.,“常见杨数据类型”,RFC 6991,DOI 10.17487/RFC69911913年7月<https://www.rfc-editor.org/info/rfc6991>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.
[RFC7950]Bjorklund,M.,Ed.“YANG 1.1数据建模语言”,RFC 7950,DOI 10.17487/RFC7950,2016年8月<https://www.rfc-editor.org/info/rfc7950>.
[RFC8029] Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N., Aldrin, S., and M. Chen, "Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures", RFC 8029, DOI 10.17487/RFC8029, March 2017, <https://www.rfc-editor.org/info/rfc8029>.
[RFC8029]Kompella,K.,Swallow,G.,Pignataro,C.,Ed.,Kumar,N.,Aldrin,S.,和M.Chen,“检测多协议标签交换(MPLS)数据平面故障”,RFC 8029,DOI 10.17487/RFC8029,2017年3月<https://www.rfc-editor.org/info/rfc8029>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.
[RFC8040]Bierman,A.,Bjorklund,M.,和K.Watsen,“RESTCONF协议”,RFC 8040,DOI 10.17487/RFC8040,2017年1月<https://www.rfc-editor.org/info/rfc8040>.
[RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger, "Common YANG Data Types for the Routing Area", RFC 8294, DOI 10.17487/RFC8294, December 2017, <https://www.rfc-editor.org/info/rfc8294>.
[RFC8294]Liu,X.,Qu,Y.,Lindem,A.,Hopps,C.,和L.Berger,“路由区域的常见YANG数据类型”,RFC 8294,DOI 10.17487/RFC82942017年12月<https://www.rfc-editor.org/info/rfc8294>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>.
[RFC8341]Bierman,A.和M.Bjorklund,“网络配置访问控制模型”,STD 91,RFC 8341,DOI 10.17487/RFC8341,2018年3月<https://www.rfc-editor.org/info/rfc8341>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>.
[RFC8343]Bjorklund,M.,“用于接口管理的YANG数据模型”,RFC 8343,DOI 10.17487/RFC8343,2018年3月<https://www.rfc-editor.org/info/rfc8343>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N., Ananthakrishnan, H., and X. Liu, "A YANG Data Model for Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March 2018, <https://www.rfc-editor.org/info/rfc8345>.
[RFC8345]Clemm,A.,Medved,J.,Varga,R.,Bahadur,N.,Ananthakrishnan,H.,和X.Liu,“网络拓扑的杨数据模型”,RFC 8345,DOI 10.17487/RFC83452018年3月<https://www.rfc-editor.org/info/rfc8345>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.
[RFC8446]Rescorla,E.“传输层安全(TLS)协议版本1.3”,RFC 8446,DOI 10.17487/RFC8446,2018年8月<https://www.rfc-editor.org/info/rfc8446>.
[RFC8529] Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X. Liu, "YANG Model for Network Instances", RFC 8529, DOI 10.17487/RFC8529, March 2019, <https://www.rfc-editor.org/info/rfc8529>.
[RFC8529]Berger,L.,Hopps,C.,Lindem,A.,Bogdanovic,D.,和X.Liu,“网络实例的杨模型”,RFC 8529,DOI 10.17487/RFC85292019年3月<https://www.rfc-editor.org/info/rfc8529>.
[BFD-YANG] Rahman, R., Zheng, L., Jethanandani, M., Networks, J., and G. Mirsky, "YANG Data Model for Bidirectional Forwarding Detection (BFD)", Work in Progress, draft-ietf-bfd-yang-17, August 2018.
[BFD-YANG]Rahman,R.,Zheng,L.,Jethanandani,M.,Networks,J.,和G.Mirsky,“双向转发检测(BFD)的YANG数据模型”,正在进行的工作,草稿-ietf-BFD-YANG-172018年8月。
[G.800] "Unified functional architecture of transport networks", ITU-T Recommendation G.800, 2016.
[G.800]“传输网络的统一功能架构”,ITU-T建议G.800,2016年。
[G.8013] "OAM functions and mechanisms for Ethernet based networks", ITU-T Recommendation G.8013/Y.1731, 2013.
[G.8013]“基于以太网的网络的OAM功能和机制”,ITU-T建议G.8013/Y.17311913。
[IEEE.1588v1] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems Version 1", IEEE Std 1588, 2002.
[IEEE.1588v1]“网络化测量和控制系统精确时钟同步协议的IEEE标准第1版”,IEEE Std 1588,2002年。
[IEEE.1588v2] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems Version 2", IEEE Std 1588, 2008.
[IEEE.1588v2]“用于网络测量和控制系统的精确时钟同步协议的IEEE标准版本2”,IEEE Std 15881008。
[LSP-PING-YANG] Zheng, L., Zheng, G., Mirsky, G., Rahman, R., and F. Iqbal, "YANG Data Model for LSP-Ping", Work in Progress, draft-zheng-mpls-lsp-ping-yang-cfg-10, January 2019.
[LSP-PING-YANG]Zheng,L.,Zheng,G.,Mirsky,G.,Rahman,R.,和F.Iqbal,“LSP-PING的YANG数据模型”,正在进行的工作,草稿-Zheng-mpls-LSP-PING-YANG-cfg-10,2019年1月。
[RFC5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic Class" Field", RFC 5462, DOI 10.17487/RFC5462, February 2009, <https://www.rfc-editor.org/info/rfc5462>.
[RFC5462]Andersson,L.和R.Asati,“多协议标签交换(MPLS)标签堆栈条目:“EXP”字段重命名为“流量类”字段”,RFC 5462,DOI 10.17487/RFC5462,2009年2月<https://www.rfc-editor.org/info/rfc5462>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.
[RFC6020]Bjorklund,M.,Ed.“YANG-网络配置协议的数据建模语言(NETCONF)”,RFC 6020,DOI 10.17487/RFC6020,2010年10月<https://www.rfc-editor.org/info/rfc6020>.
[RFC6136] Sajassi, A., Ed. and D. Mohan, Ed., "Layer 2 Virtual Private Network (L2VPN) Operations, Administration, and Maintenance (OAM) Requirements and Framework", RFC 6136, DOI 10.17487/RFC6136, March 2011, <https://www.rfc-editor.org/info/rfc6136>.
[RFC6136]Sajassi,A.,Ed.和D.Mohan,Ed.,“第二层虚拟专用网络(L2VPN)运营、管理和维护(OAM)要求和框架”,RFC 6136,DOI 10.17487/RFC6136,2011年3月<https://www.rfc-editor.org/info/rfc6136>.
[RFC7276] Mizrahi, T., Sprecher, N., Bellagamba, E., and Y. Weingarten, "An Overview of Operations, Administration, and Maintenance (OAM) Tools", RFC 7276, DOI 10.17487/RFC7276, June 2014, <https://www.rfc-editor.org/info/rfc7276>.
[RFC7276]Mizrahi,T.,Sprecher,N.,Bellagamba,E.,和Y.Weingarten,“运营、管理和维护(OAM)工具概述”,RFC 7276,DOI 10.17487/RFC72762014年6月<https://www.rfc-editor.org/info/rfc7276>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.
[RFC8340]Bjorklund,M.和L.Berger,编辑,“杨树图”,BCP 215,RFC 8340,DOI 10.17487/RFC8340,2018年3月<https://www.rfc-editor.org/info/rfc8340>.
[RFC8528] Bjorklund, M. and L. Lhotka, "YANG Schema Mount", RFC 8528, DOI 10.17487/RFC8528, March 2019, <https://www.rfc-editor.org/info/rfc8528>.
[RFC8528]Bjorklund,M.和L.Lhotka,“阳模式山”,RFC 8528,DOI 10.17487/RFC85282019年3月<https://www.rfc-editor.org/info/rfc8528>.
[RFC8531] Kumar, D., Wu, Q., and M. Wang, "Generic YANG Data Model for Connection-Oriented Operations, Administration, and Maintenance (OAM) Protocols", RFC 8531, DOI 10.17487/RFC8531, April 2019, <https://www.rfc-editor.org/info/rfc8531>.
[RFC8531]Kumar,D.,Wu,Q.,和M.Wang,“面向连接的操作、管理和维护(OAM)协议的通用YANG数据模型”,RFC 8531,DOI 10.17487/RFC85312019年4月<https://www.rfc-editor.org/info/rfc8531>.
[RFC8533] Kumar, D., Wang, M., Wu, Q., Ed., Rahman, R., and S. Raghavan, " A YANG Data Model for Retrieval Methods for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications", RFC 8533, DOI 10.17487/RFC8533, April 2019.
[RFC8533]Kumar,D.,Wang,M.,Wu,Q.,Ed.,Rahman,R.,和S.Raghavan,“使用无连接通信管理操作、管理和维护(OAM)协议的检索方法的YANG数据模型”,RFC 8533,DOI 10.17487/RFC8533,2019年4月。
Acknowledgments
致谢
The authors of this document would like to thank Elwyn Davies, Alia Atlas, Brian E. Carpenter, Greg Mirsky, Adam Roach, Alissa Cooper, Eric Rescorla, Ben Campbell, Benoit Claise, Kathleen Moriarty, Carlos Pignataro, and others for their substantive review and comments, and proposals to stabilize and improve the document.
本文件的作者要感谢Elwyn Davies、Alia Atlas、Brian E.Carpenter、Greg Mirsky、Adam Roach、Alissa Cooper、Eric Rescorla、Ben Campbell、Benoit Claise、Kathleen Moriarty、Carlos Pignataro和其他人的实质性审查和评论,以及稳定和改进本文件的建议。
Authors' Addresses
作者地址
Deepak Kumar CISCO Systems 510 McCarthy Blvd Milpitas, CA 95035 United States of America
美国加利福尼亚州米尔皮塔斯麦卡锡大道510号迪帕克·库马尔思科系统公司,邮编95035
Email: dekumar@cisco.com
Email: dekumar@cisco.com
Michael Wang Huawei Technologies, Co., Ltd 101 Software Avenue, Yuhua District Nanjing 210012 China
中国南京雨花区软件大道101号麦可王华为技术有限公司210012
Email: wangzitao@huawei.com
Email: wangzitao@huawei.com
Qin Wu (editor) Huawei 101 Software Avenue, Yuhua District Nanjing, Jiangsu 210012 China
秦武(编辑)中国江苏省南京市雨花区华为软件大道101号210012
Email: bill.wu@huawei.com
Email: bill.wu@huawei.com
Reshad Rahman Cisco Systems 2000 Innovation Drive Kanata, Ontario K2K 3E8 Canada
Reshad Rahman Cisco Systems 2000加拿大安大略省卡纳塔创新大道K2K 3E8
Email: rrahman@cisco.com
Email: rrahman@cisco.com
Srihari Raghavan Cisco Systems Tril Infopark Sez, Ramanujan IT City Neville Block, 2nd floor, Old Mahabalipuram Road Chennai, Tamil Nadu 600113 India
印度泰米尔纳德邦钦奈旧马哈巴利普兰路纳威街区2楼拉曼努扬IT城内维尔区思科系统Tril Infopark经济特区斯利哈里·拉哈万600113
Email: srihari@cisco.com
Email: srihari@cisco.com