Internet Engineering Task Force (IETF) T. Chown Request for Comments: 8504 Jisc BCP: 220 J. Loughney Obsoletes: 6434 Intel Category: Best Current Practice T. Winters ISSN: 2070-1721 UNH-IOL January 2019
Internet Engineering Task Force (IETF) T. Chown Request for Comments: 8504 Jisc BCP: 220 J. Loughney Obsoletes: 6434 Intel Category: Best Current Practice T. Winters ISSN: 2070-1721 UNH-IOL January 2019
IPv6 Node Requirements
IPv6节点要求
Abstract
摘要
This document defines requirements for IPv6 nodes. It is expected that IPv6 will be deployed in a wide range of devices and situations. Specifying the requirements for IPv6 nodes allows IPv6 to function well and interoperate in a large number of situations and deployments.
本文档定义了IPv6节点的要求。预计IPv6将在各种设备和情况下部署。通过指定IPv6节点的要求,IPv6可以在大量情况和部署中正常运行和互操作。
This document obsoletes RFC 6434, and in turn RFC 4294.
本文件淘汰了RFC 6434,进而淘汰了RFC 4294。
Status of This Memo
关于下段备忘
This memo documents an Internet Best Current Practice.
本备忘录记录了互联网最佳实践。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 7841.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关BCP的更多信息,请参见RFC 7841第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8504.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问https://www.rfc-editor.org/info/rfc8504.
Copyright Notice
版权公告
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
版权(c)2019 IETF信托基金和被确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(https://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Scope of This Document . . . . . . . . . . . . . . . . . 4 1.2. Description of IPv6 Nodes . . . . . . . . . . . . . . . . 5 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 5 3. Abbreviations Used in This Document . . . . . . . . . . . . . 5 4. Sub-IP Layer . . . . . . . . . . . . . . . . . . . . . . . . 5 5. IP Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5.1. Internet Protocol Version 6 - RFC 8200 . . . . . . . . . 6 5.2. Support for IPv6 Extension Headers . . . . . . . . . . . 7 5.3. Protecting a Node from Excessive Extension Header Options 8 5.4. Neighbor Discovery for IPv6 - RFC 4861 . . . . . . . . . 9 5.5. SEcure Neighbor Discovery (SEND) - RFC 3971 . . . . . . . 11 5.6. IPv6 Router Advertisement Flags Option - RFC 5175 . . . . 11 5.7. Path MTU Discovery and Packet Size . . . . . . . . . . . 11 5.7.1. Path MTU Discovery - RFC 8201 . . . . . . . . . . . . 11 5.7.2. Minimum MTU Considerations . . . . . . . . . . . . . 12 5.8. ICMP for the Internet Protocol Version 6 (IPv6) - RFC 4443 . . . . . . . . . . . . . . . . . . . . . . . . 12 5.9. Default Router Preferences and More-Specific Routes - RFC 4191 . . . . . . . . . . . . . . . . . . . . . . . . 12 5.10. First-Hop Router Selection - RFC 8028 . . . . . . . . . . 12 5.11. Multicast Listener Discovery (MLD) for IPv6 - RFC 3810 . 13 5.12. Explicit Congestion Notification (ECN) - RFC 3168 . . . . 13 6. Addressing and Address Configuration . . . . . . . . . . . . 13 6.1. IP Version 6 Addressing Architecture - RFC 4291 . . . . . 13 6.2. Host Address Availability Recommendations . . . . . . . . 13 6.3. IPv6 Stateless Address Autoconfiguration - RFC 4862 . . . 14 6.4. Privacy Extensions for Address Configuration in IPv6 - RFC 4941 . . . . . . . . . . . . . . . . . . . . . . . . 15
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Scope of This Document . . . . . . . . . . . . . . . . . 4 1.2. Description of IPv6 Nodes . . . . . . . . . . . . . . . . 5 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 5 3. Abbreviations Used in This Document . . . . . . . . . . . . . 5 4. Sub-IP Layer . . . . . . . . . . . . . . . . . . . . . . . . 5 5. IP Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5.1. Internet Protocol Version 6 - RFC 8200 . . . . . . . . . 6 5.2. Support for IPv6 Extension Headers . . . . . . . . . . . 7 5.3. Protecting a Node from Excessive Extension Header Options 8 5.4. Neighbor Discovery for IPv6 - RFC 4861 . . . . . . . . . 9 5.5. SEcure Neighbor Discovery (SEND) - RFC 3971 . . . . . . . 11 5.6. IPv6 Router Advertisement Flags Option - RFC 5175 . . . . 11 5.7. Path MTU Discovery and Packet Size . . . . . . . . . . . 11 5.7.1. Path MTU Discovery - RFC 8201 . . . . . . . . . . . . 11 5.7.2. Minimum MTU Considerations . . . . . . . . . . . . . 12 5.8. ICMP for the Internet Protocol Version 6 (IPv6) - RFC 4443 . . . . . . . . . . . . . . . . . . . . . . . . 12 5.9. Default Router Preferences and More-Specific Routes - RFC 4191 . . . . . . . . . . . . . . . . . . . . . . . . 12 5.10. First-Hop Router Selection - RFC 8028 . . . . . . . . . . 12 5.11. Multicast Listener Discovery (MLD) for IPv6 - RFC 3810 . 13 5.12. Explicit Congestion Notification (ECN) - RFC 3168 . . . . 13 6. Addressing and Address Configuration . . . . . . . . . . . . 13 6.1. IP Version 6 Addressing Architecture - RFC 4291 . . . . . 13 6.2. Host Address Availability Recommendations . . . . . . . . 13 6.3. IPv6 Stateless Address Autoconfiguration - RFC 4862 . . . 14 6.4. Privacy Extensions for Address Configuration in IPv6 - RFC 4941 . . . . . . . . . . . . . . . . . . . . . . . . 15
6.5. Stateful Address Autoconfiguration (DHCPv6) - RFC 3315 . 16 6.6. Default Address Selection for IPv6 - RFC 6724 . . . . . . 16 7. DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 8. Configuring Non-address Information . . . . . . . . . . . . . 17 8.1. DHCP for Other Configuration Information . . . . . . . . 17 8.2. Router Advertisements and Default Gateway . . . . . . . . 17 8.3. IPv6 Router Advertisement Options for DNS Configuration - RFC 8106 . . . . . . . . . . . . . . . . 17 8.4. DHCP Options versus Router Advertisement Options for Host Configuration . . . . . . . . . . . . . . . . . . . . . . 18 9. Service Discovery Protocols . . . . . . . . . . . . . . . . . 18 10. IPv4 Support and Transition . . . . . . . . . . . . . . . . . 18 10.1. Transition Mechanisms . . . . . . . . . . . . . . . . . 19 10.1.1. Basic Transition Mechanisms for IPv6 Hosts and Routers - RFC 4213 . . . . . . . . . . . . . . . . . 19 11. Application Support . . . . . . . . . . . . . . . . . . . . . 19 11.1. Textual Representation of IPv6 Addresses - RFC 5952 . . 19 11.2. Application Programming Interfaces (APIs) . . . . . . . 19 12. Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . 20 13. Security . . . . . . . . . . . . . . . . . . . . . . . . . . 20 13.1. Requirements . . . . . . . . . . . . . . . . . . . . . . 22 13.2. Transforms and Algorithms . . . . . . . . . . . . . . . 22 14. Router-Specific Functionality . . . . . . . . . . . . . . . . 22 14.1. IPv6 Router Alert Option - RFC 2711 . . . . . . . . . . 22 14.2. Neighbor Discovery for IPv6 - RFC 4861 . . . . . . . . . 22 14.3. Stateful Address Autoconfiguration (DHCPv6) - RFC 3315 . 23 14.4. IPv6 Prefix Length Recommendation for Forwarding - BCP 198 . . . . . . . . . . . . . . . . . . . . . . . . 23 15. Constrained Devices . . . . . . . . . . . . . . . . . . . . . 23 16. IPv6 Node Management . . . . . . . . . . . . . . . . . . . . 24 16.1. Management Information Base (MIB) Modules . . . . . . . 24 16.1.1. IP Forwarding Table MIB . . . . . . . . . . . . . . 24 16.1.2. Management Information Base for the Internet Protocol (IP) . . . . . . . . . . . . . . . . . . . 24 16.1.3. Interface MIB . . . . . . . . . . . . . . . . . . . 24 16.2. YANG Data Models . . . . . . . . . . . . . . . . . . . . 25 16.2.1. IP Management YANG Model . . . . . . . . . . . . . . 25 16.2.2. Interface Management YANG Model . . . . . . . . . . 25 17. Security Considerations . . . . . . . . . . . . . . . . . . . 25 18. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 25 19. References . . . . . . . . . . . . . . . . . . . . . . . . . 25 19.1. Normative References . . . . . . . . . . . . . . . . . . 25 19.2. Informative References . . . . . . . . . . . . . . . . . 32 Appendix A. Changes from RFC 6434 . . . . . . . . . . . . . . . 38 Appendix B. Changes from RFC 4294 to RFC 6434 . . . . . . . . . 39 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 41 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 42
6.5. Stateful Address Autoconfiguration (DHCPv6) - RFC 3315 . 16 6.6. Default Address Selection for IPv6 - RFC 6724 . . . . . . 16 7. DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 8. Configuring Non-address Information . . . . . . . . . . . . . 17 8.1. DHCP for Other Configuration Information . . . . . . . . 17 8.2. Router Advertisements and Default Gateway . . . . . . . . 17 8.3. IPv6 Router Advertisement Options for DNS Configuration - RFC 8106 . . . . . . . . . . . . . . . . 17 8.4. DHCP Options versus Router Advertisement Options for Host Configuration . . . . . . . . . . . . . . . . . . . . . . 18 9. Service Discovery Protocols . . . . . . . . . . . . . . . . . 18 10. IPv4 Support and Transition . . . . . . . . . . . . . . . . . 18 10.1. Transition Mechanisms . . . . . . . . . . . . . . . . . 19 10.1.1. Basic Transition Mechanisms for IPv6 Hosts and Routers - RFC 4213 . . . . . . . . . . . . . . . . . 19 11. Application Support . . . . . . . . . . . . . . . . . . . . . 19 11.1. Textual Representation of IPv6 Addresses - RFC 5952 . . 19 11.2. Application Programming Interfaces (APIs) . . . . . . . 19 12. Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . 20 13. Security . . . . . . . . . . . . . . . . . . . . . . . . . . 20 13.1. Requirements . . . . . . . . . . . . . . . . . . . . . . 22 13.2. Transforms and Algorithms . . . . . . . . . . . . . . . 22 14. Router-Specific Functionality . . . . . . . . . . . . . . . . 22 14.1. IPv6 Router Alert Option - RFC 2711 . . . . . . . . . . 22 14.2. Neighbor Discovery for IPv6 - RFC 4861 . . . . . . . . . 22 14.3. Stateful Address Autoconfiguration (DHCPv6) - RFC 3315 . 23 14.4. IPv6 Prefix Length Recommendation for Forwarding - BCP 198 . . . . . . . . . . . . . . . . . . . . . . . . 23 15. Constrained Devices . . . . . . . . . . . . . . . . . . . . . 23 16. IPv6 Node Management . . . . . . . . . . . . . . . . . . . . 24 16.1. Management Information Base (MIB) Modules . . . . . . . 24 16.1.1. IP Forwarding Table MIB . . . . . . . . . . . . . . 24 16.1.2. Management Information Base for the Internet Protocol (IP) . . . . . . . . . . . . . . . . . . . 24 16.1.3. Interface MIB . . . . . . . . . . . . . . . . . . . 24 16.2. YANG Data Models . . . . . . . . . . . . . . . . . . . . 25 16.2.1. IP Management YANG Model . . . . . . . . . . . . . . 25 16.2.2. Interface Management YANG Model . . . . . . . . . . 25 17. Security Considerations . . . . . . . . . . . . . . . . . . . 25 18. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 25 19. References . . . . . . . . . . . . . . . . . . . . . . . . . 25 19.1. Normative References . . . . . . . . . . . . . . . . . . 25 19.2. Informative References . . . . . . . . . . . . . . . . . 32 Appendix A. Changes from RFC 6434 . . . . . . . . . . . . . . . 38 Appendix B. Changes from RFC 4294 to RFC 6434 . . . . . . . . . 39 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 41 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 42
This document defines common functionality required by both IPv6 hosts and routers. Many IPv6 nodes will implement optional or additional features, but this document collects and summarizes requirements from other published Standards Track documents in one place.
本文档定义了IPv6主机和路由器所需的通用功能。许多IPv6节点将实现可选或附加功能,但本文档将从一个地方的其他已发布标准跟踪文档中收集和总结需求。
This document tries to avoid discussion of protocol details and references RFCs for this purpose. This document is intended to be an applicability statement and to provide guidance as to which IPv6 specifications should be implemented in the general case and which specifications may be of interest to specific deployment scenarios. This document does not update any individual protocol document RFCs.
本文件试图避免讨论协议细节和参考RFC。本文档旨在作为适用性声明,并就一般情况下应实施哪些IPv6规范以及特定部署场景可能感兴趣的规范提供指导。本文件不更新任何单独的协议文件RFC。
Although this document points to different specifications, it should be noted that in many cases, the granularity of a particular requirement will be smaller than a single specification, as many specifications define multiple, independent pieces, some of which may not be mandatory. In addition, most specifications define both client and server behavior in the same specification, while many implementations will be focused on only one of those roles.
尽管本文件指向不同的规范,但应注意,在许多情况下,特定需求的粒度将小于单个规范,因为许多规范定义了多个独立的部分,其中一些可能不是强制性的。此外,大多数规范在同一规范中定义了客户机和服务器行为,而许多实现只关注其中一个角色。
This document defines a minimal level of requirement needed for a device to provide useful Internet service and considers a broad range of device types and deployment scenarios. Because of the wide range of deployment scenarios, the minimal requirements specified in this document may not be sufficient for all deployment scenarios. It is perfectly reasonable (and indeed expected) for other profiles to define additional or stricter requirements appropriate for specific usage and deployment environments. As an example, this document does not mandate that all clients support DHCP, but some deployment scenarios may deem it appropriate to make such a requirement. As another example, NIST has defined profiles for specialized requirements for IPv6 in target environments (see [USGv6]).
本文档定义了设备提供有用互联网服务所需的最低要求,并考虑了广泛的设备类型和部署场景。由于部署场景范围广泛,本文档中指定的最低要求可能不足以满足所有部署场景。对于其他概要文件来说,定义适用于特定使用和部署环境的附加或更严格的要求是完全合理的(事实上也是预期的)。例如,本文档并不强制要求所有客户端都支持DHCP,但某些部署场景可能认为提出这样的要求是合适的。另一个例子是,NIST为目标环境中IPv6的特殊要求定义了配置文件(见[USGv6])。
As it is not always possible for an implementer to know the exact usage of IPv6 in a node, an overriding requirement for IPv6 nodes is that they should adhere to Jon Postel's Robustness Principle: "Be conservative in what you do, be liberal in what you accept from others" [RFC793].
由于实施者并不总是可能知道IPv6在节点中的确切用法,因此IPv6节点的首要要求是,它们应该遵守Jon Postel的健壮性原则:“做事要保守,接受别人的意见要自由”[RFC793]。
IPv6 covers many specifications. It is intended that IPv6 will be deployed in many different situations and environments. Therefore, it is important to develop requirements for IPv6 nodes to ensure interoperability.
IPv6涵盖了许多规范。IPv6将被部署在许多不同的情况和环境中。因此,制定IPv6节点需求以确保互操作性非常重要。
From "Internet Protocol, Version 6 (IPv6) Specification" [RFC8200], we have the following definitions:
根据“互联网协议,第6版(IPv6)规范”[RFC8200],我们有以下定义:
IPv6 node - a device that implements IPv6. IPv6 router - a node that forwards IPv6 packets not explicitly addressed to itself. IPv6 host - any IPv6 node that is not a router.
IPv6节点—实现IPv6的设备。IPv6路由器-转发未显式寻址到自身的IPv6数据包的节点。IPv6主机-任何不是路由器的IPv6节点。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“建议”、“不建议”、“可”和“可选”在所有大写字母出现时(如图所示)应按照BCP 14[RFC2119][RFC8174]所述进行解释。
AH Authentication Header DAD Duplicate Address Detection ESP Encapsulating Security Payload ICMP Internet Control Message Protocol IKE Internet Key Exchange MIB Management Information Base MLD Multicast Listener Discovery MTU Maximum Transmission Unit NA Neighbor Advertisement NBMA Non-Broadcast Multi-Access ND Neighbor Discovery NS Neighbor Solicitation NUD Neighbor Unreachability Detection PPP Point-to-Point Protocol
AH认证报头DAD重复地址检测ESP封装安全负载ICMP Internet控制消息协议IKE Internet密钥交换MIB管理信息库MLD多播侦听器发现MTU最大传输单元NA邻居广告NBMA非广播多址ND邻居发现NS邻居请求NUD邻居不可达性检测PPP点到点协议
An IPv6 node MUST include support for one or more IPv6 link-layer specifications. Which link-layer specifications an implementation should include will depend upon what link layers are supported by the hardware available on the system. It is possible for a conformant IPv6 node to support IPv6 on some of its interfaces and not on others.
IPv6节点必须支持一个或多个IPv6链路层规范。实现应包括哪些链路层规范将取决于系统上可用硬件支持哪些链路层。一致性IPv6节点可以在其某些接口上而不是在其他接口上支持IPv6。
As IPv6 is run over new Layer 2 technologies, it is expected that new specifications will be issued. We list here some of the Layer 2 technologies for which an IPv6 specification has been developed. It is provided for informational purposes only and may not be complete.
由于IPv6在新的第2层技术上运行,预计将发布新的规范。我们在这里列出了一些已经制定了IPv6规范的第2层技术。本文件仅供参考,可能不完整。
- Transmission of IPv6 Packets over Ethernet Networks [RFC2464]
- 通过以太网传输IPv6数据包[RFC2464]
- Transmission of IPv6 Packets over Frame Relay Networks Specification [RFC2590]
- 通过帧中继网络传输IPv6数据包规范[RFC2590]
- Transmission of IPv6 Packets over IEEE 1394 Networks [RFC3146]
- 通过IEEE 1394网络传输IPv6数据包[RFC3146]
- Transmission of IPv6, IPv4, and Address Resolution Protocol (ARP) Packets over Fibre Channel [RFC4338]
- 通过光纤通道传输IPv6、IPv4和地址解析协议(ARP)数据包[RFC4338]
- Transmission of IPv6 Packets over IEEE 802.15.4 Networks [RFC4944]
- 通过IEEE 802.15.4网络传输IPv6数据包[RFC4944]
- Transmission of IPv6 via the IPv6 Convergence Sublayer over IEEE 802.16 Networks [RFC5121]
- 通过IEEE 802.16网络上的IPv6汇聚子层传输IPv6[RFC5121]
- IP version 6 over PPP [RFC5072]
- PPP上的IP版本6[RFC5072]
In addition to traditional physical link layers, it is also possible to tunnel IPv6 over other protocols. Examples include:
除了传统的物理链路层之外,还可以通过其他协议对IPv6进行隧道传输。例子包括:
- Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs) [RFC4380]
- Teredo:通过网络地址转换(NAT)在UDP上隧道IPv6[RFC4380]
- Basic Transition Mechanisms for IPv6 Hosts and Routers (see Section 3 of [RFC4213])
- IPv6主机和路由器的基本转换机制(见[RFC4213]第3节)
The Internet Protocol version 6 is specified in [RFC8200]. This specification MUST be supported.
[RFC8200]中指定了Internet协议版本6。必须支持此规范。
The node MUST follow the packet transmission rules in RFC 8200.
节点必须遵循RFC 8200中的数据包传输规则。
All conformant IPv6 implementations MUST be capable of sending and receiving IPv6 packets; forwarding functionality MAY be supported. Nodes MUST always be able to send, receive, and process Fragment headers.
所有一致的IPv6实现必须能够发送和接收IPv6数据包;可能支持转发功能。节点必须始终能够发送、接收和处理片段头。
IPv6 nodes MUST not create overlapping fragments. Also, when reassembling an IPv6 datagram, if one or more of its constituent fragments is determined to be an overlapping fragment, the entire datagram (and any constituent fragments) MUST be silently discarded. See [RFC5722] for more information.
IPv6节点不得创建重叠片段。此外,在重新组装IPv6数据报时,如果确定其一个或多个组成片段是重叠片段,则必须悄悄地丢弃整个数据报(以及任何组成片段)。有关更多信息,请参阅[RFC5722]。
As recommended in [RFC8021], nodes MUST NOT generate atomic fragments, i.e., where the fragment is a whole datagram. As per [RFC6946], if a receiving node reassembling a datagram encounters an atomic fragment, it should be processed as a fully reassembled packet, and any other fragments that match this packet should be processed independently.
正如[RFC8021]中所建议的,节点不得生成原子片段,即片段是整个数据报。根据[RFC6946],如果重新组装数据报的接收节点遇到原子片段,则应将其作为完全重新组装的数据包进行处理,并且应独立处理与此数据包匹配的任何其他片段。
To mitigate a variety of potential attacks, nodes SHOULD avoid using predictable Fragment Identification values in Fragment headers, as discussed in [RFC7739].
为了减轻各种潜在的攻击,节点应该避免在片段头中使用可预测的片段标识值,如[RFC7739]中所述。
All nodes SHOULD support the setting and use of the IPv6 Flow Label field as defined in the IPv6 Flow Label specification [RFC6437]. Forwarding nodes such as routers and load distributors MUST NOT depend only on Flow Label values being uniformly distributed. It is RECOMMENDED that source hosts support the flow label by setting the Flow Label field for all packets of a given flow to the same value chosen from an approximation to a discrete uniform distribution.
所有节点都应支持IPv6流标签规范[RFC6437]中定义的IPv6流标签字段的设置和使用。转发节点(如路由器和负载分配器)不能仅依赖于均匀分布的流标签值。建议源主机通过将给定流的所有数据包的流标签字段设置为从离散均匀分布近似值中选择的相同值来支持流标签。
RFC 8200 specifies extension headers and the processing for these headers.
RFC 8200指定扩展标头以及对这些标头的处理。
Extension headers (except for the Hop-by-Hop Options header) are not processed, inserted, or deleted by any node along a packet's delivery path, until the packet reaches the node (or each of the set of nodes, in the case of multicast) identified in the Destination Address field of the IPv6 header.
扩展标头(逐跳选项标头除外)不会由任何节点沿数据包的传递路径进行处理、插入或删除,直到数据包到达IPv6标头的目标地址字段中标识的节点(或多播情况下的每个节点集)。
Any unrecognized extension headers or options MUST be processed as described in RFC 8200. Note that where Section 4 of RFC 8200 refers to the action to be taken when a Next Header value in the current header is not recognized by a node, that action applies whether the value is an unrecognized extension header or an unrecognized upper-layer protocol (ULP).
必须按照RFC 8200中的说明处理任何无法识别的扩展标题或选项。注意,当RFC 8200的第4节提到当节点无法识别当前报头中的下一个报头值时要采取的措施时,无论该值是未识别的扩展报头还是未识别的上层协议(ULP),该措施都适用。
An IPv6 node MUST be able to process these extension headers. An exception is Routing Header type 0 (RH0), which was deprecated by [RFC5095] due to security concerns and which MUST be treated as an unrecognized routing type.
IPv6节点必须能够处理这些扩展标头。路由头类型0(RH0)是一个例外,出于安全考虑,[RFC5095]不推荐该类型,必须将其视为无法识别的路由类型。
Further, [RFC7045] adds specific requirements for the processing of extension headers, in particular that any forwarding node along an IPv6 packet's path, which forwards the packet for any reason, SHOULD do so regardless of any extension headers that are present.
此外,[RFC7045]还增加了扩展报头处理的具体要求,特别是沿IPv6数据包路径的任何转发节点(出于任何原因转发数据包)都应该这样做,而不管存在任何扩展报头。
As per RFC 8200, when a node fragments an IPv6 datagram, it MUST include the entire IPv6 Header Chain in the first fragment. The Per-Fragment headers MUST consist of the IPv6 header plus any extension headers that MUST be processed by nodes en route to the destination, that is, all headers up to and including the Routing header if present, else the Hop-by-Hop Options header if present, else no extension headers. On reassembly, if the first fragment does not include all headers through an upper-layer header, then that fragment SHOULD be discarded and an ICMP Parameter Problem, Code 3, message SHOULD be sent to the source of the fragment, with the Pointer field set to zero. See [RFC7112] for a discussion of why oversized IPv6 Extension Header Chains are avoided.
根据RFC 8200,当节点对IPv6数据报进行分段时,它必须在第一个分段中包含整个IPv6头链。每个片段头必须由IPv6头加上节点在路由到目的地的过程中必须处理的任何扩展头组成,也就是说,路由头(如果存在)之前的所有头(包括路由头),否则逐跳选项头(如果存在),否则无扩展头。在重新组装时,如果第一个片段不包括通过上层标头的所有标头,则应丢弃该片段,并将ICMP参数问题代码3消息发送到片段源,指针字段设置为零。请参阅[RFC7112]了解避免超大IPv6扩展头链的原因。
Defining new IPv6 extension headers is not recommended, unless there are no existing IPv6 extension headers that can be used by specifying a new option for that IPv6 extension header. A proposal to specify a new IPv6 extension header MUST include a detailed technical explanation of why an existing IPv6 extension header can not be used for the desired new function, and in such cases, it needs to follow the format described in Section 8 of RFC 8200. For further background reading on this topic, see [RFC6564].
不建议定义新的IPv6扩展标头,除非通过为该IPv6扩展标头指定新选项,没有可使用的现有IPv6扩展标头。指定新IPv6扩展标头的提案必须包括详细的技术说明,说明现有IPv6扩展标头无法用于所需新功能的原因,在这种情况下,需要遵循RFC 8200第8节中描述的格式。有关此主题的更多背景资料,请参阅[RFC6564]。
As per RFC 8200, end hosts are expected to process all extension headers, destination options, and hop-by-hop options in a packet. Given that the only limit on the number and size of extension headers is the MTU, the processing of received packets could be considerable. It is also conceivable that a long chain of extension headers might be used as a form of denial-of-service attack. Accordingly, a host may place limits on the number and sizes of extension headers and options it is willing to process.
根据RFC 8200,终端主机需要处理数据包中的所有扩展头、目标选项和逐跳选项。鉴于对扩展头的数量和大小的唯一限制是MTU,对接收到的数据包的处理可能是相当大的。还可以想象,一长串扩展头可能被用作拒绝服务攻击的一种形式。因此,主机可能会限制其愿意处理的扩展头和选项的数量和大小。
A host MAY limit the number of consecutive PAD1 options in destination options or hop-by-hop options to 7. In this case, if there are more than 7 consecutive PAD1 options present, the packet MAY be silently discarded. The rationale is that if padding of 8 or more bytes is required, then the PADN option SHOULD be used.
主机可以将目标选项或逐跳选项中的连续PAD1选项数限制为7。在这种情况下,如果存在超过7个连续的PAD1选项,则分组可以被静默地丢弃。其基本原理是,如果需要填充8个或更多字节,则应使用PADN选项。
A host MAY limit the number of bytes in a PADN option to be less than 8. In such a case, if a PADN option is present that has a length greater than 7, the packet SHOULD be silently discarded. The rationale for this guideline is that the purpose of padding is for alignment and 8 bytes is the maximum alignment used in IPv6.
主机可以将PADN选项中的字节数限制为小于8。在这种情况下,如果存在长度大于7的PADN选项,则该数据包应被静默丢弃。本指南的基本原理是,填充用于对齐,8字节是IPv6中使用的最大对齐。
A host MAY disallow unknown options in destination options or hop-by-hop options. This SHOULD be configurable where the default is to accept unknown options and process them per [RFC8200]. If a packet
主机可能不允许目标选项或逐跳选项中的未知选项。这应该是可配置的,默认情况下是接受未知选项并按照[RFC8200]进行处理。如果一个包
with unknown options is received and the host is configured to disallow them, then the packet SHOULD be silently discarded.
如果接收到未知选项,并且主机被配置为不允许这些选项,则数据包应被静默丢弃。
A host MAY impose a limit on the maximum number of non-padding options allowed in the destination options and hop-by-hop extension headers. If this feature is supported, the maximum number SHOULD be configurable, and the default value SHOULD be set to 8. The limits for destination options and hop-by-hop options may be separately configurable. If a packet is received and the number of destination or hop-by-hop options exceeds the limit, then the packet SHOULD be silently discarded.
主机可能会对目标选项和逐跳扩展标头中允许的非填充选项的最大数量施加限制。如果支持此功能,则应可配置最大数量,默认值应设置为8。目的地选项和逐跳选项的限制可以单独配置。如果接收到一个数据包,并且目的地或逐跳选项的数量超过限制,则该数据包应被静默丢弃。
A host MAY impose a limit on the maximum length of Destination Options or Hop-by-Hop Options extension headers. This value SHOULD be configurable, and the default is to accept options of any length. If a packet is received and the length of the Destination or Hop-by-Hop Options extension header exceeds the length limit, then the packet SHOULD be silently discarded.
主机可能会对目标选项或逐跳选项扩展头的最大长度施加限制。该值应该是可配置的,默认值是接受任何长度的选项。如果接收到数据包,且目的地或逐跳选项扩展头的长度超过长度限制,则应悄悄丢弃该数据包。
Neighbor Discovery is defined in [RFC4861]; the definition was updated by [RFC5942]. Neighbor Discovery MUST be supported with the noted exceptions below. RFC 4861 states:
[RFC4861]中定义了邻居发现;定义由[RFC5942]更新。必须支持邻居发现,但注意以下例外情况。RFC 4861指出:
Unless specified otherwise (in a document that covers operating IP over a particular link type) this document applies to all link types. However, because ND uses link-layer multicast for some of its services, it is possible that on some link types (e.g., Non-Broadcast Multi-Access (NBMA) links), alternative protocols or mechanisms to implement those services will be specified (in the appropriate document covering the operation of IP over a particular link type). The services described in this document that are not directly dependent on multicast, such as Redirects, Next-hop determination, Neighbor Unreachability Detection, etc., are expected to be provided as specified in this document. The details of how one uses ND on NBMA links are addressed in [RFC2491].
除非另有规定(在涉及特定链路类型上的操作IP的文件中),否则本文件适用于所有链路类型。然而,由于ND对其某些服务使用链路层多播,因此在某些链路类型(例如,非广播多址(NBMA)链路)上,可能会指定实现这些服务的替代协议或机制(在涵盖特定链路类型上的IP操作的适当文档中)。本文档中描述的不直接依赖于多播的服务,例如重定向、下一跳确定、邻居不可达性检测等,预期将按照本文档中的规定提供。关于如何在NBMA链路上使用ND的详细信息,请参见[RFC2491]。
Some detailed analysis of Neighbor Discovery follows:
邻居发现的一些详细分析如下:
Router Discovery is how hosts locate routers that reside on an attached link. Hosts MUST support Router Discovery functionality.
路由器发现是主机如何定位驻留在连接链路上的路由器。主机必须支持路由器发现功能。
Prefix Discovery is how hosts discover the set of address prefixes that define which destinations are on-link for an attached link. Hosts MUST support Prefix Discovery.
前缀发现是主机如何发现一组地址前缀,这些地址前缀定义了连接的链路上的目的地。主机必须支持前缀发现。
Hosts MUST also implement Neighbor Unreachability Detection (NUD) for all paths between hosts and neighboring nodes. NUD is not required for paths between routers. However, all nodes MUST respond to unicast Neighbor Solicitation (NS) messages.
主机还必须对主机和相邻节点之间的所有路径实施邻居不可达性检测(NUD)。路由器之间的路径不需要NUD。但是,所有节点都必须响应单播邻居请求(NS)消息。
[RFC7048] discusses NUD, in particular cases where it behaves too impatiently. It states that if a node transmits more than a certain number of packets, then it SHOULD use the exponential backoff of the retransmit timer, up to a certain threshold point.
[RFC7048]讨论了NUD,特别是在其行为过于不耐烦的情况下。它指出,如果一个节点发送的数据包超过一定数量,那么它应该使用重传计时器的指数退避,直到达到一定的阈值点。
Hosts MUST support the sending of Router Solicitations and the receiving of Router Advertisements (RAs). The ability to understand individual RA options is dependent on supporting the functionality making use of the particular option.
主机必须支持发送路由器请求和接收路由器广告(RAs)。理解单个RA选项的能力取决于支持使用特定选项的功能。
[RFC7559] discusses packet loss resiliency for Router Solicitations and requires that nodes MUST use a specific exponential backoff algorithm for retransmission of Router Solicitations.
[RFC7559]讨论了路由器请求的丢包恢复能力,并要求节点必须使用特定的指数退避算法来重新传输路由器请求。
All nodes MUST support the sending and receiving of Neighbor Solicitation (NS) and Neighbor Advertisement (NA) messages. NS and NA messages are required for Duplicate Address Detection (DAD).
所有节点必须支持邻居请求(NS)和邻居公告(NA)消息的发送和接收。重复地址检测(DAD)需要NS和NA消息。
Hosts SHOULD support the processing of Redirect functionality. Routers MUST support the sending of Redirects, though not necessarily for every individual packet (e.g., due to rate limiting). Redirects are only useful on networks supporting hosts. In core networks dominated by routers, Redirects are typically disabled. The sending of Redirects SHOULD be disabled by default on routers intended to be deployed on core networks. They MAY be enabled by default on routers intended to support hosts on edge networks.
主机应支持重定向功能的处理。路由器必须支持发送重定向,但不一定针对每个数据包(例如,由于速率限制)。重定向仅在支持主机的网络上有用。在由路由器主导的核心网络中,重定向通常被禁用。默认情况下,应在拟部署在核心网络上的路由器上禁用重定向发送。默认情况下,它们可以在用于支持边缘网络上主机的路由器上启用。
As specified in [RFC6980], nodes MUST NOT employ IPv6 fragmentation for sending any of the following Neighbor Discovery and SEcure Neighbor Discovery messages: Neighbor Solicitation, Neighbor Advertisement, Router Solicitation, Router Advertisement, Redirect, or Certification Path Solicitation. Nodes MUST silently ignore any of these messages on receipt if fragmented. See RFC 6980 for details and motivation.
如[RFC6980]中所述,节点不得使用IPv6碎片发送以下任何邻居发现和安全邻居发现消息:邻居请求、邻居通告、路由器请求、路由器通告、重定向或认证路径请求。节点必须在收到这些消息时以静默方式忽略这些消息中的任何一条。有关详细信息和动机,请参见RFC 6980。
"IPv6 Host-to-Router Load Sharing" [RFC4311] includes additional recommendations on how to select from a set of available routers. [RFC4311] SHOULD be supported.
“IPv6主机到路由器负载共享”[RFC4311]包括关于如何从一组可用路由器中进行选择的其他建议。应支持[RFC4311]。
SEND [RFC3971] and Cryptographically Generated Addresses (CGAs) [RFC3972] provide a way to secure the message exchanges of Neighbor Discovery. SEND has the potential to address certain classes of spoofing attacks, but it does not provide specific protection for threats from off-link attackers.
SEND[RFC3971]和加密生成地址(CGA)[RFC3972]提供了一种保护邻居发现的消息交换的方法。SEND有可能解决某些类型的欺骗攻击,但它不提供针对脱离链接攻击者威胁的特定保护。
There have been relatively few implementations of SEND in common operating systems and platforms since its publication in 2005; thus, deployment experience remains very limited to date.
自2005年发布以来,通用操作系统和平台中的SEND实现相对较少;因此,迄今为止的部署经验仍然非常有限。
At this time, support for SEND is considered optional. Due to the complexity in deploying SEND and its heavyweight provisioning, its deployment is only likely to be considered where nodes are operating in a particularly strict security environment.
此时,对发送的支持被认为是可选的。由于部署SEND及其重量级资源调配的复杂性,只有当节点在特别严格的安全环境中运行时,才可能考虑部署SEND。
Router Advertisements include an 8-bit field of single-bit Router Advertisement flags. The Router Advertisement Flags Option extends the number of available flag bits by 48 bits. At the time of this writing, 6 of the original 8 single-bit flags have been assigned, while 2 remain available for future assignment. No flags have been defined that make use of the new option; thus, strictly speaking, there is no requirement to implement the option today. However, implementations that are able to pass unrecognized options to a higher-level entity that may be able to understand them (e.g., a user-level process using a "raw socket" facility) MAY take steps to handle the option in anticipation of a future usage.
路由器广告包括一个8位的单位路由器广告标志字段。路由器广告标志选项将可用标志位的数量扩展48位。在撰写本文时,原始8个单位标志中的6个已分配,而2个仍可用于将来的分配。没有定义使用新选项的标志;因此,严格地说,目前没有实施该方案的要求。但是,能够将无法识别的选项传递给能够理解这些选项的更高级别实体(例如,使用“原始套接字”功能的用户级进程)的实现可能会采取步骤来处理该选项,以预测未来的使用情况。
"Path MTU Discovery for IP version 6" [RFC8201] SHOULD be supported. From [RFC8200]:
应支持“IP版本6的路径MTU发现”[RFC8201]。从[RFC8200]:
It is strongly recommended that IPv6 nodes implement Path MTU Discovery [RFC8201], in order to discover and take advantage of path MTUs greater than 1280 octets. However, a minimal IPv6 implementation (e.g., in a boot ROM) may simply restrict itself to sending packets no larger than 1280 octets, and omit implementation of Path MTU Discovery.
强烈建议IPv6节点实现路径MTU发现[RFC8201],以便发现并利用大于1280个八位字节的路径MTU。然而,最小IPv6实现(例如,在引导ROM中)可能仅限于发送不大于1280个八位字节的数据包,而忽略路径MTU发现的实现。
The rules in [RFC8200] and [RFC5722] MUST be followed for packet fragmentation and reassembly.
必须遵循[RFC8200]和[RFC5722]中的规则进行数据包分段和重新组装。
As described in RFC 8201, nodes implementing Path MTU Discovery and sending packets larger than the IPv6 minimum link MTU are susceptible to problematic connectivity if ICMPv6 messages are blocked or not transmitted. For example, this will result in connections that complete the TCP three-way handshake correctly but then hang when data is transferred. This state is referred to as a black-hole connection [RFC2923]. Path MTU Discovery relies on ICMPv6 Packet Too Big (PTB) to determine the MTU of the path (and thus these MUST NOT be filtered, as per the recommendation in [RFC4890]).
如RFC 8201中所述,如果ICMPv6消息被阻止或未传输,则实现路径MTU发现和发送大于IPv6最小链路MTU的数据包的节点容易出现连接问题。例如,这将导致连接正确完成TCP三方握手,但在传输数据时挂起。这种状态称为黑洞连接[RFC2923]。路径MTU发现依赖于ICMPv6数据包太大(PTB)来确定路径的MTU(因此,根据[RFC4890]中的建议,这些数据包不能被过滤)。
An alternative to Path MTU Discovery defined in RFC 8201 can be found in [RFC4821], which defines a method for Packetization Layer Path MTU Discovery (PLPMTUD) designed for use over paths where delivery of ICMPv6 messages to a host is not assured.
可以在[RFC4821]中找到RFC 8201中定义的路径MTU发现的替代方法,该方法定义了一种用于分组层路径MTU发现(PLPMTUD)的方法,该方法设计用于无法确保将ICMPv6消息传递到主机的路径。
While an IPv6 link MTU can be set to 1280 bytes, it is recommended that for IPv6 UDP in particular, which includes DNS operation, the sender use a large MTU if they can, in order to avoid gratuitous fragmentation-caused packet drops.
虽然IPv6链路MTU可以设置为1280字节,但建议特别是对于IPv6 UDP(包括DNS操作),发送方在可能的情况下使用大型MTU,以避免因数据包丢失而造成的不必要的碎片。
ICMPv6 [RFC4443] MUST be supported. "Extended ICMP to Support Multi-Part Messages" [RFC4884] MAY be supported.
必须支持ICMPv6[RFC4443]。可能支持“支持多部分消息的扩展ICMP”[RFC4884]。
"Default Router Preferences and More-Specific Routes" [RFC4191] provides support for nodes attached to multiple (different) networks, each providing routers that advertise themselves as default routers via Router Advertisements. In some scenarios, one router may provide connectivity to destinations that the other router does not, and choosing the "wrong" default router can result in reachability failures. In order to resolve this scenario, IPv6 nodes MUST implement [RFC4191] and SHOULD implement the Type C host role defined in RFC 4191.
“默认路由器首选项和更具体的路由”[RFC4191]为连接到多个(不同)网络的节点提供支持,每个节点都提供通过路由器广告作为默认路由器进行广告的路由器。在某些情况下,一个路由器可能提供到另一个路由器不提供的目的地的连接,并且选择“错误”的默认路由器可能导致可达性故障。为了解决这种情况,IPv6节点必须实现[RFC4191],并且应该实现RFC 4191中定义的C类型主机角色。
In multihomed scenarios, where a host has more than one prefix, each allocated by an upstream network that is assumed to implement BCP 38 ingress filtering, the host may have multiple routers to choose from.
在多宿场景中,主机具有多个前缀,每个前缀由假定实施BCP 38入口过滤的上游网络分配,主机可以有多个路由器可供选择。
Hosts that may be deployed in such multihomed environments SHOULD follow the guidance given in [RFC8028].
可能部署在此类多主机环境中的主机应遵循[RFC8028]中给出的指导。
Nodes that need to join multicast groups MUST support MLDv2 [RFC3810]. MLD is needed by any node that is expected to receive and process multicast traffic; in particular, MLDv2 is required for support for source-specific multicast (SSM) as per [RFC4607].
需要加入多播组的节点必须支持MLDv2[RFC3810]。任何期望接收和处理多播业务的节点都需要MLD;特别是,根据[RFC4607],需要MLDv2来支持源特定多播(SSM)。
Previous versions of this specification only required MLDv1 [RFC2710] to be implemented on all nodes. Since participation of any MLDv1-only nodes on a link require that all other nodes on the link then operate in version 1 compatibility mode, the requirement to support MLDv2 on all nodes was upgraded to a MUST. Further, SSM is now the preferred multicast distribution method, rather than Any-Source Multicast (ASM).
本规范的早期版本仅要求在所有节点上实现MLDv1[RFC2710]。由于链路上任何仅MLDv1节点的参与要求链路上的所有其他节点随后在版本1兼容模式下运行,因此在所有节点上支持MLDv2的要求升级为必须。此外,SSM现在是首选的多播分发方法,而不是任何源多播(ASM)。
Note that Neighbor Discovery (as used on most link types -- see Section 5.4) depends on multicast and requires that nodes join Solicited Node multicast addresses.
请注意,邻居发现(在大多数链路类型上使用——请参见第5.4节)依赖于多播,并要求节点加入请求的节点多播地址。
An ECN-aware router sets a mark in the IP header in order to signal impending congestion, rather than dropping a packet. The receiver of the packet echoes the congestion indication to the sender, which can then reduce its transmission rate as if it detected a dropped packet.
感知ECN的路由器在IP报头中设置一个标记,以表示即将发生的拥塞,而不是丢弃数据包。数据包的接收方向发送方回显拥塞指示,发送方随后可以降低其传输速率,就像它检测到丢弃的数据包一样。
Nodes SHOULD support ECN [RFC3168] by implementing an interface for the upper layer to access and by setting the ECN bits in the IP header. The benefits of using ECN are documented in [RFC8087].
节点应通过实现上层访问的接口和在IP报头中设置ECN位来支持ECN[RFC3168]。[RFC8087]中记录了使用ECN的好处。
The IPv6 Addressing Architecture [RFC4291] MUST be supported.
必须支持IPv6寻址体系结构[RFC4291]。
The current IPv6 Address Architecture is based on a 64-bit boundary for subnet prefixes. The reasoning behind this decision is documented in [RFC7421].
当前的IPv6地址体系结构基于子网前缀的64位边界。该决定背后的原因记录在[RFC7421]中。
Implementations MUST also support the multicast flag updates documented in [RFC7371].
实现还必须支持[RFC7371]中记录的多播标志更新。
Hosts may be configured with addresses through a variety of methods, including Stateless Address Autoconfiguration (SLAAC), DHCPv6, or manual configuration.
主机可以通过多种方法配置地址,包括无状态地址自动配置(SLAAC)、DHCPv6或手动配置。
[RFC7934] recommends that networks provide general-purpose end hosts with multiple global IPv6 addresses when they attach, and it describes the benefits of and the options for doing so. Routers SHOULD support [RFC7934] for assigning multiple addresses to a host. A host SHOULD support assigning multiple addresses as described in [RFC7934].
[RFC7934]建议网络在连接时为通用终端主机提供多个全局IPv6地址,并介绍了这样做的好处和选项。路由器应支持[RFC7934]为主机分配多个地址。主机应支持分配[RFC7934]中所述的多个地址。
Nodes SHOULD support the capability to be assigned a prefix per host as documented in [RFC8273]. Such an approach can offer improved host isolation and enhanced subscriber management on shared network segments.
节点应支持按照[RFC8273]中的说明为每个主机分配前缀的功能。这种方法可以在共享网段上提供改进的主机隔离和增强的订户管理。
Hosts MUST support IPv6 Stateless Address Autoconfiguration. It is RECOMMENDED, as described in [RFC8064], that unless there is a specific requirement for Media Access Control (MAC) addresses to be embedded in an Interface Identifier (IID), nodes follow the procedure in [RFC7217] to generate SLAAC-based addresses, rather than use [RFC4862]. Addresses generated using the method described in [RFC7217] will be the same whenever a given device (re)appears on the same subnet (with a specific IPv6 prefix), but the IID will vary on each subnet visited.
主机必须支持IPv6无状态地址自动配置。如[RFC8064]中所述,建议节点按照[RFC7217]中的程序生成基于SLAAC的地址,而不是使用[RFC4862],除非对嵌入在接口标识符(IID)中的媒体访问控制(MAC)地址有特殊要求。使用[RFC7217]中描述的方法生成的地址在给定设备(re)出现在同一子网上时(具有特定IPv6前缀)将是相同的,但访问的每个子网上的IID将不同。
Nodes that are routers MUST be able to generate link-local addresses as described in [RFC4862].
作为路由器的节点必须能够生成[RFC4862]中所述的链路本地地址。
From RFC 4862:
从RFC 4862:
The autoconfiguration process specified in this document applies only to hosts and not routers. Since host autoconfiguration uses information advertised by routers, routers will need to be configured by some other means. However, it is expected that routers will generate link-local addresses using the mechanism described in this document. In addition, routers are expected to successfully pass the Duplicate Address Detection procedure described in this document on all addresses prior to assigning them to an interface.
本文档中指定的自动配置过程仅适用于主机,而不适用于路由器。由于主机自动配置使用路由器公布的信息,因此需要通过其他方式配置路由器。然而,预计路由器将使用本文档中描述的机制生成链路本地地址。此外,在将路由器分配给接口之前,路由器应成功通过本文档中描述的所有地址的重复地址检测程序。
All nodes MUST implement Duplicate Address Detection. Quoting from Section 5.4 of RFC 4862:
所有节点都必须实现重复地址检测。引用RFC 4862第5.4节:
Duplicate Address Detection MUST be performed on all unicast addresses prior to assigning them to an interface, regardless of whether they are obtained through stateless autoconfiguration, DHCPv6, or manual configuration, with the following exceptions [noted therein].
在将所有单播地址分配给接口之前,必须对其执行重复地址检测,无论这些地址是通过无状态自动配置、DHCPv6还是手动配置获得的,但以下例外情况[在此处注明]。
"Optimistic Duplicate Address Detection (DAD) for IPv6" [RFC4429] specifies a mechanism to reduce delays associated with generating addresses via Stateless Address Autoconfiguration [RFC4862]. RFC 4429 was developed in conjunction with Mobile IPv6 in order to reduce the time needed to acquire and configure addresses as devices quickly move from one network to another, and it is desirable to minimize transition delays. For general purpose devices, RFC 4429 remains optional at this time.
“IPv6的乐观重复地址检测(DAD)”[RFC4429]指定了一种机制,用于减少与通过无状态地址自动配置生成地址相关的延迟[RFC4862]。RFC 4429是与移动IPv6一起开发的,目的是在设备从一个网络快速移动到另一个网络时,减少获取和配置地址所需的时间,并尽可能减少转换延迟。对于通用设备,RFC 4429此时仍然是可选的。
[RFC7527] discusses enhanced DAD and describes an algorithm to automate the detection of looped-back IPv6 ND messages used by DAD. Nodes SHOULD implement this behavior where such detection is beneficial.
[RFC7527]讨论了增强型DAD,并描述了自动检测DAD使用的环回IPv6 ND消息的算法。节点应该在这种检测有益的地方实现这种行为。
A node using Stateless Address Autoconfiguration [RFC4862] to form a globally unique IPv6 address that uses its MAC address to generate the IID will see that the IID remains the same on any visited network, even though the network prefix part changes. Thus, it is possible for a third-party device to track the activities of the node they communicate with, as that node moves around the network. Privacy Extensions for Stateless Address Autoconfiguration [RFC4941] address this concern by allowing nodes to configure an additional temporary address where the IID is effectively randomly generated. Privacy addresses are then used as source addresses for new communications initiated by the node.
使用无状态地址自动配置[RFC4862]形成全局唯一IPv6地址(使用其MAC地址生成IID)的节点将看到IID在任何访问的网络上保持不变,即使网络前缀部分发生变化。因此,当节点在网络中移动时,第三方设备可以跟踪与其通信的节点的活动。无状态地址自动配置的隐私扩展[RFC4941]通过允许节点在有效随机生成IID的情况下配置额外的临时地址来解决此问题。然后,隐私地址被用作节点发起的新通信的源地址。
General issues regarding privacy issues for IPv6 addressing are discussed in [RFC7721].
[RFC7721]中讨论了有关IPv6寻址隐私问题的一般问题。
RFC 4941 SHOULD be supported. In some scenarios, such as dedicated servers in a data center, it provides limited or no benefit, or it may complicate network management. Thus, devices implementing this specification MUST provide a way for the end user to explicitly enable or disable the use of such temporary addresses.
应支持RFC 4941。在某些情况下,例如数据中心中的专用服务器,它提供的好处有限或没有好处,或者可能使网络管理复杂化。因此,实现本规范的设备必须为最终用户提供明确启用或禁用此类临时地址的方法。
Note that RFC 4941 can be used independently of traditional SLAAC or independently of SLAAC that is based on RFC 7217.
注意,RFC 4941可独立于传统SLAAC或基于RFC 7217的SLAAC使用。
Implementers of RFC 4941 should be aware that certain addresses are reserved and should not be chosen for use as temporary addresses. Consult "Reserved IPv6 Interface Identifiers" [RFC5453] for more details.
RFC4941的实现者应该知道某些地址是保留的,不应该被选为临时地址。有关更多详细信息,请参阅“保留IPv6接口标识符”[RFC5453]。
DHCPv6 [RFC3315] can be used to obtain and configure addresses. In general, a network may provide for the configuration of addresses through SLAAC, DHCPv6, or both. There will be a wide range of IPv6 deployment models and differences in address assignment requirements, some of which may require DHCPv6 for stateful address assignment. Consequently, all hosts SHOULD implement address configuration via DHCPv6.
DHCPv6[RFC3315]可用于获取和配置地址。通常,网络可通过SLAAC、DHCPv6或两者提供地址配置。IPv6部署模式和地址分配要求将有广泛的差异,其中一些可能需要DHCPv6进行有状态地址分配。因此,所有主机都应该通过DHCPv6实现地址配置。
In the absence of observed Router Advertisement messages, IPv6 nodes MAY initiate DHCP to obtain IPv6 addresses and other configuration information, as described in Section 5.5.2 of [RFC4862].
如[RFC4862]第5.5.2节所述,在没有观察到的路由器广告消息的情况下,IPv6节点可以启动DHCP以获取IPv6地址和其他配置信息。
Where devices are likely to be carried by users and attached to multiple visited networks, DHCPv6 client anonymity profiles SHOULD be supported as described in [RFC7844] to minimize the disclosure of identifying information. Section 5 of RFC 7844 describes operational considerations on the use of such anonymity profiles.
如果设备可能由用户携带并连接到多个访问过的网络,则应支持[RFC7844]中所述的DHCPv6客户端匿名配置文件,以尽量减少识别信息的泄露。RFC 7844第5节描述了使用此类匿名配置文件的操作注意事项。
IPv6 nodes will invariably have multiple addresses configured simultaneously and thus will need to choose which addresses to use for which communications. The rules specified in the Default Address Selection for IPv6 document [RFC6724] MUST be implemented. [RFC8028] updates Rule 5.5 from [RFC6724]; implementations SHOULD implement this rule.
IPv6节点总是同时配置多个地址,因此需要选择用于哪些通信的地址。必须执行IPv6文档[RFC6724]的默认地址选择中指定的规则。[RFC8028]从[RFC6724]更新规则5.5;实现应该实现这个规则。
DNS is described in [RFC1034], [RFC1035], [RFC3363], and [RFC3596]. Not all nodes will need to resolve names; those that will never need to resolve DNS names do not need to implement resolver functionality. However, the ability to resolve names is a basic infrastructure capability on which applications rely, and most nodes will need to provide support. All nodes SHOULD implement stub-resolver [RFC1034] functionality, as in Section 5.3.1 of [RFC1034], with support for:
DNS在[RFC1034]、[RFC1035]、[RFC3363]和[RFC3596]中进行了描述。并非所有节点都需要解析名称;那些永远不需要解析DNS名称的服务器不需要实现解析程序功能。但是,解析名称的能力是应用程序所依赖的一项基本基础设施能力,大多数节点都需要提供支持。所有节点应实现存根解析器[RFC1034]功能,如[RFC1034]第5.3.1节所述,并支持:
- AAAA type Resource Records [RFC3596];
- AAAA型资源记录[RFC3596];
- reverse addressing in ip6.arpa using PTR records [RFC3596]; and
- ip6.arpa中使用PTR记录的反向寻址[RFC3596];和
- Extension Mechanisms for DNS (EDNS(0)) [RFC6891] to allow for DNS packet sizes larger than 512 octets.
- DNS(EDNS(0))[RFC6891]的扩展机制,允许DNS数据包大小大于512个八位字节。
Those nodes are RECOMMENDED to support DNS security extensions [RFC4033] [RFC4034] [RFC4035].
建议这些节点支持DNS安全扩展[RFC4033][RFC4034][RFC4035]。
A6 Resource Records [RFC2874] are classified as Historic per [RFC6563]. These were defined with Experimental status in [RFC3363].
A6资源记录[RFC2874]根据[RFC6563]分类为历史记录。这些在[RFC3363]中以实验状态定义。
DHCP [RFC3315] specifies a mechanism for IPv6 nodes to obtain address configuration information (see Section 6.5) and to obtain additional (non-address) configuration. If a host implementation supports applications or other protocols that require configuration that is only available via DHCP, hosts SHOULD implement DHCP. For specialized devices on which no such configuration need is present, DHCP may not be necessary.
DHCP[RFC3315]为IPv6节点指定了一种机制,用于获取地址配置信息(参见第6.5节)和获取附加(非地址)配置。如果主机实现支持需要仅通过DHCP进行配置的应用程序或其他协议,则主机应实现DHCP。对于不需要此类配置的专用设备,可能不需要DHCP。
An IPv6 node can use the subset of DHCP (described in [RFC3736]) to obtain other configuration information.
IPv6节点可以使用DHCP的子集(如[RFC3736]所述)来获取其他配置信息。
If an IPv6 node implements DHCP, it MUST implement the DNS options [RFC3646] as most deployments will expect that these options are available.
如果IPv6节点实现DHCP,则必须实现DNS选项[RFC3646],因为大多数部署都希望这些选项可用。
There is no defined DHCPv6 Gateway option.
没有定义的DHCPv6网关选项。
Nodes using the Dynamic Host Configuration Protocol for IPv6 (DHCPv6) are thus expected to determine their default router information and on-link prefix information from received Router Advertisements.
因此,使用IPv6动态主机配置协议(DHCPv6)的节点需要从接收到的路由器广告中确定其默认路由器信息和链路上前缀信息。
Router Advertisement options have historically been limited to those that are critical to basic IPv6 functionality. Originally, DNS configuration was not included as an RA option, and DHCP was the recommended way to obtain DNS configuration information. Over time, the thinking surrounding such an option has evolved. It is now generally recognized that few nodes can function adequately without having access to a working DNS resolver; thus, a Standards Track document has been published to provide this capability [RFC8106].
路由器广告选项历来仅限于对基本IPv6功能至关重要的选项。最初,DNS配置不包括在RA选项中,建议使用DHCP获取DNS配置信息。随着时间的推移,围绕这一选择的思维已经演变。现在人们普遍认识到,很少有节点能够在不访问工作DNS解析器的情况下充分发挥作用;因此,已经发布了一份标准跟踪文档来提供此功能[RFC8106]。
Implementations MUST include support for the DNS RA option [RFC8106].
实施必须包括对DNS RA选项[RFC8106]的支持。
8.4. DHCP Options versus Router Advertisement Options for Host Configuration
8.4. 主机配置的DHCP选项与路由器播发选项
In IPv6, there are two main protocol mechanisms for propagating configuration information to hosts: RAs and DHCP. RA options have been restricted to those deemed essential for basic network functioning and for which all nodes are configured with exactly the same information. Examples include the Prefix Information Options, the MTU option, etc. On the other hand, DHCP has generally been preferred for configuration of more general parameters and for parameters that may be client specific. Generally speaking, however, there has been a desire to define only one mechanism for configuring a given option, rather than defining multiple (different) ways of configuring the same information.
在IPv6中,有两种主要的协议机制用于向主机传播配置信息:RAs和DHCP。RA选项仅限于那些被认为对基本网络功能至关重要且所有节点都配置了完全相同的信息的选项。示例包括前缀信息选项、MTU选项等。另一方面,DHCP通常优先用于配置更通用的参数和可能特定于客户端的参数。但是,一般来说,人们希望只定义一种配置给定选项的机制,而不是定义配置相同信息的多种(不同)方式。
One issue with having multiple ways to configure the same information is that interoperability suffers if a host chooses one mechanism but the network operator chooses a different mechanism. For "closed" environments, where the network operator has significant influence over what devices connect to the network and thus what configuration mechanisms they support, the operator may be able to ensure that a particular mechanism is supported by all connected hosts. In more open environments, however, where arbitrary devices may connect (e.g., a Wi-Fi hotspot), problems can arise. To maximize interoperability in such environments, hosts would need to implement multiple configuration mechanisms to ensure interoperability.
使用多种方式配置相同信息的一个问题是,如果主机选择一种机制,而网络运营商选择另一种机制,则互操作性会受到影响。对于“封闭”环境,网络运营商对连接到网络的设备以及它们支持的配置机制具有重大影响,运营商可以确保所有连接的主机都支持特定机制。然而,在更开放的环境中,任意设备可能连接(例如Wi-Fi热点),可能会出现问题。为了最大限度地提高此类环境中的互操作性,主机需要实现多种配置机制以确保互操作性。
Multicast DNS (mDNS) and DNS-based Service Discovery (DNS-SD) are described in [RFC6762] and [RFC6763], respectively. These protocols, often collectively referred to as the 'Bonjour' protocols after their naming by Apple, provide the means for devices to discover services within a local link and, in the absence of a unicast DNS service, to exchange naming information.
[RFC6762]和[RFC6763]中分别描述了多播DNS(MDN)和基于DNS的服务发现(DNS-SD)。这些协议在苹果公司命名后通常统称为“Bonjour”协议,为设备提供了在本地链路中发现服务的手段,并在没有单播DNS服务的情况下交换命名信息。
Where devices are to be deployed in networks where service discovery would be beneficial, e.g., for users seeking to discover printers or display devices, mDNS and DNS-SD SHOULD be supported.
如果将设备部署在服务发现有益的网络中,例如,对于寻求发现打印机或显示设备的用户,应支持MDN和DNS-SD。
IPv6 nodes MAY support IPv4.
IPv6节点可能支持IPv4。
10.1.1. Basic Transition Mechanisms for IPv6 Hosts and Routers - RFC 4213
10.1.1. IPv6主机和路由器的基本转换机制-RFC 4213
If an IPv6 node implements dual stack and tunneling, then [RFC4213] MUST be supported.
如果IPv6节点实现双堆栈和隧道,则必须支持[RFC4213]。
Software that allows users and operators to input IPv6 addresses in text form SHOULD support "A Recommendation for IPv6 Address Text Representation" [RFC5952].
允许用户和运营商以文本形式输入IPv6地址的软件应支持“IPv6地址文本表示建议”[RFC5952]。
There are a number of IPv6-related APIs. This document does not mandate the use of any, because the choice of API does not directly relate to on-the-wire behavior of protocols. Implementers, however, would be advised to consider providing a common API or reviewing existing APIs for the type of functionality they provide to applications.
有许多与IPv6相关的API。本文档不强制使用任何API,因为API的选择与协议的在线行为没有直接关系。然而,实施者将被建议考虑提供一个通用API或审查现有API以提供给应用程序的功能类型。
"Basic Socket Interface Extensions for IPv6" [RFC3493] provides IPv6 functionality used by typical applications. Implementers should note that RFC 3493 has been picked up and further standardized by the Portable Operating System Interface (POSIX) [POSIX].
“IPv6基本套接字接口扩展”[RFC3493]提供典型应用程序使用的IPv6功能。实施者应该注意到,RFC3493已经被便携式操作系统接口(POSIX)[POSIX]接受并进一步标准化。
"Advanced Sockets Application Program Interface (API) for IPv6" [RFC3542] provides access to advanced IPv6 features needed by diagnostic and other more specialized applications.
“用于IPv6的高级套接字应用程序编程接口(API)”[RFC3542]提供对诊断和其他更专业应用程序所需的高级IPv6功能的访问。
"IPv6 Socket API for Source Address Selection" [RFC5014] provides facilities that allow an application to override the default Source Address Selection rules of [RFC6724].
“用于源地址选择的IPv6套接字API”[RFC5014]提供了允许应用程序重写[RFC6724]的默认源地址选择规则的功能。
"Socket Interface Extensions for Multicast Source Filters" [RFC3678] provides support for expressing source filters on multicast group memberships.
“多播源筛选器的套接字接口扩展”[RFC3678]支持在多播组成员身份上表示源筛选器。
"Extension to Sockets API for Mobile IPv6" [RFC4584] provides application support for accessing and enabling Mobile IPv6 [RFC6275] features.
“移动IPv6套接字API扩展”[RFC4584]为访问和启用移动IPv6[RFC6275]功能提供应用程序支持。
Mobile IPv6 [RFC6275] and associated specifications [RFC3776] [RFC4877] allow a node to change its point of attachment within the Internet, while maintaining (and using) a permanent address. All communication using the permanent address continues to proceed as expected even as the node moves around. The definition of Mobile IP includes requirements for the following types of nodes:
移动IPv6[RFC6275]和相关规范[RFC3776][RFC4877]允许节点在保持(和使用)永久地址的同时更改其在Internet内的连接点。即使节点四处移动,使用永久地址的所有通信也会继续按预期进行。移动IP的定义包括对以下类型节点的要求:
- mobile nodes
- 移动节点
- correspondent nodes with support for route optimization
- 支持路由优化的对应节点
- home agents
- 国内代理
- all IPv6 routers
- 所有IPv6路由器
At the present time, Mobile IP has seen only limited implementation and no significant deployment, partly because it originally assumed an IPv6-only environment rather than a mixed IPv4/IPv6 Internet. Additional work has been done to support mobility in mixed-mode IPv4 and IPv6 networks [RFC5555].
目前,移动IP的实施有限,部署也不重要,部分原因是它最初假定的环境仅为IPv6,而不是IPv4/IPv6混合互联网。为支持混合模式IPv4和IPv6网络中的移动性,已经做了额外的工作[RFC5555]。
More usage and deployment experience is needed with mobility before any specific approach can be recommended for broad implementation in all hosts and routers. Consequently, Mobility Support in IPv6 [RFC6275], Mobile IPv6 Support for Dual Stack Hosts and Routers [RFC5555], and associated standards (such as Mobile IPv6 with IKEv2 and IPsec [RFC4877]) are considered a MAY at this time.
在建议在所有主机和路由器中广泛实施任何特定方法之前,需要更多的移动性使用和部署经验。因此,IPv6中的移动性支持[RFC6275]、双栈主机和路由器的移动IPv6支持[RFC5555]以及相关标准(例如带有IKEv2和IPsec的移动IPv6[RFC4877])此时被视为可能。
IPv6 for 3GPP [RFC7066] lists a snapshot of required IPv6 functionalities at the time the document was published that would need to be implemented, going above and beyond the recommendations in this document. Additionally, a 3GPP IPv6 Host MAY implement [RFC7278] to deliver IPv6 prefixes on the LAN link.
IPv6 for 3GPP[RFC7066]列出了在发布文档时需要实现的IPv6功能的快照,超出了本文档中的建议。此外,3GPP IPv6主机可实现[RFC7278]以在LAN链路上传送IPv6前缀。
This section describes the security specification for IPv6 nodes.
本节介绍IPv6节点的安全规范。
Achieving security in practice is a complex undertaking. Operational procedures, protocols, key distribution mechanisms, certificate management approaches, etc., are all components that impact the level of security actually achieved in practice. More importantly, deficiencies or a poor fit in any one individual component can significantly reduce the overall effectiveness of a particular security approach.
在实践中实现安全是一项复杂的任务。操作过程、协议、密钥分发机制、证书管理方法等都是影响实际实现的安全级别的组件。更重要的是,任何单个组件中的缺陷或不匹配都会显著降低特定安全方法的总体有效性。
IPsec can provide either end-to-end security between nodes or channel security (for example, via a site-to-site IPsec VPN), making it possible to provide secure communication for all (or a subset of) communication flows at the IP layer between pairs of Internet nodes. IPsec has two standard operating modes: Tunnel-mode and Transport-mode. In Tunnel-mode, IPsec provides network-layer security and protects an entire IP packet by encapsulating the original IP packet and then prepending a new IP header. In Transport-mode, IPsec provides security for the transport layer (and above) by encapsulating only the transport-layer (and above) portion of the IP packet (i.e., without adding a second IP header).
IPsec可以提供节点之间的端到端安全性或通道安全性(例如,通过站点到站点的IPsec VPN),从而可以在互联网节点对之间的IP层为所有(或子集)通信流提供安全通信。IPsec有两种标准操作模式:隧道模式和传输模式。在隧道模式下,IPsec提供网络层安全性,并通过封装原始IP数据包,然后预先添加新的IP报头来保护整个IP数据包。在传输模式下,IPsec通过仅封装IP数据包的传输层(及以上)部分(即,不添加第二个IP报头)为传输层(及以上)提供安全性。
Although IPsec can be used with manual keying in some cases, such usage has limited applicability and is not recommended.
虽然在某些情况下,IPsec可以与手动键控一起使用,但这种用法的适用性有限,不推荐使用。
A range of security technologies and approaches proliferate today (e.g., IPsec, Transport Layer Security (TLS), Secure SHell (SSH), TLS VPNS, etc.). No single approach has emerged as an ideal technology for all needs and environments. Moreover, IPsec is not viewed as the ideal security technology in all cases and is unlikely to displace the others.
如今,一系列安全技术和方法层出不穷(例如,IPsec、传输层安全(TLS)、安全外壳(SSH)、TLS VPN等)。没有任何一种方法能够成为满足所有需求和环境的理想技术。此外,IPsec并非在所有情况下都被视为理想的安全技术,也不太可能取代其他安全技术。
Previously, IPv6 mandated implementation of IPsec and recommended the key-management approach of IKE. RFC 6434 updated that recommendation by making support of the IPsec architecture [RFC4301] a SHOULD for all IPv6 nodes, and this document retains that recommendation. Note that the IPsec Architecture requires the implementation of both manual and automatic key management (e.g., Section 4.5 of RFC 4301). Currently, the recommended automated key-management protocol to implement is IKEv2 [RFC7296].
以前,IPv6强制实施IPsec,并推荐IKE的密钥管理方法。RFC 6434更新了该建议,将IPsec体系结构[RFC4301]作为所有IPv6节点的支持,本文档保留了该建议。请注意,IPsec体系结构需要实现手动和自动密钥管理(例如,RFC 4301第4.5节)。目前,建议实施的自动密钥管理协议是IKEv2[RFC7296]。
This document recognizes that there exists a range of device types and environments where approaches to security other than IPsec can be justified. For example, special-purpose devices may support only a very limited number or type of applications, and an application-specific security approach may be sufficient for limited management or configuration capabilities. Alternatively, some devices may run on extremely constrained hardware (e.g., sensors) where the full IPsec Architecture is not justified.
本文档认识到存在一系列设备类型和环境,在这些设备类型和环境中,除IPsec之外的安全方法是合理的。例如,专用设备可能只支持数量或类型非常有限的应用程序,并且特定于应用程序的安全方法可能足以满足有限的管理或配置能力。或者,一些设备可能运行在极度受限的硬件(例如,传感器)上,其中完整的IPsec架构是不合理的。
Because most common platforms now support IPv6 and have it enabled by default, IPv6 security is an issue for networks that are ostensibly IPv4 only; see [RFC7123] for guidance on this area.
由于大多数常见的平台现在都支持IPv6,并且默认启用了IPv6,因此IPv6安全性对于表面上只支持IPv4的网络来说是一个问题;请参阅[RFC7123]以了解该领域的指导。
"Security Architecture for the Internet Protocol" [RFC4301] SHOULD be supported by all IPv6 nodes. Note that the IPsec Architecture requires the implementation of both manual and automatic key management (e.g., Section 4.5 of [RFC4301]). Currently, the default automated key-management protocol to implement is IKEv2. As required in [RFC4301], IPv6 nodes implementing the IPsec Architecture MUST implement ESP [RFC4303] and MAY implement AH [RFC4302].
所有IPv6节点都应支持“Internet协议的安全体系结构”[RFC4301]。请注意,IPsec体系结构需要实现手动和自动密钥管理(例如,[RFC4301]第4.5节)。目前,要实现的默认自动密钥管理协议是IKEv2。按照[RFC4301]中的要求,实现IPsec体系结构的IPv6节点必须实现ESP[RFC4303],并且可以实现AH[RFC4302]。
The current set of mandatory-to-implement algorithms for the IPsec Architecture are defined in Cryptographic Algorithm Implementation Requirements for ESP and AH [RFC8221]. IPv6 nodes implementing the IPsec Architecture MUST conform to the requirements in [RFC8221]. Preferred cryptographic algorithms often change more frequently than security protocols. Therefore, implementations MUST allow for migration to new algorithms, as RFC 8221 is replaced or updated in the future.
在ESP和AH的加密算法实现要求[RFC8221]中定义了IPsec体系结构的当前强制算法集。实现IPsec体系结构的IPv6节点必须符合[RFC8221]中的要求。首选加密算法的更改频率通常高于安全协议。因此,实现必须允许迁移到新算法,因为RFC 8221将在将来被替换或更新。
The current set of mandatory-to-implement algorithms for IKEv2 are defined in Cryptographic Algorithm Implementation Requirements for ESP and AH [RFC8247]. IPv6 nodes implementing IKEv2 MUST conform to the requirements in [RFC8247] and/or any future updates or replacements to [RFC8247].
在ESP和AH的加密算法实现要求[RFC8247]中定义了实现IKEv2算法的当前强制集合。实现IKEv2的IPv6节点必须符合[RFC8247]中的要求和/或[RFC8247]的任何未来更新或替换。
This section defines general host considerations for IPv6 nodes that act as routers. Currently, this section does not discuss detailed routing-specific requirements. For the case of typical home routers, [RFC7084] defines basic requirements for customer edge routers.
本节定义了充当路由器的IPv6节点的一般主机注意事项。目前,本节不讨论详细的路由特定要求。对于典型的家庭路由器,[RFC7084]定义了客户边缘路由器的基本要求。
The IPv6 Router Alert option [RFC2711] is an optional IPv6 Hop-by-Hop Header that is used in conjunction with some protocols (e.g., RSVP [RFC2205] or Multicast Listener Discovery (MLDv2) [RFC3810]). The Router Alert option will need to be implemented whenever such protocols that mandate its use are implemented. See Section 5.11.
IPv6路由器警报选项[RFC2711]是可选的IPv6逐跳报头,与某些协议(例如,RSVP[RFC2205]或多播侦听器发现(MLDv2)[RFC3810])一起使用。路由器警报选项需要在执行此类协议时执行。见第5.11节。
Sending Router Advertisements and processing Router Solicitations MUST be supported.
必须支持发送路由器广告和处理路由器请求。
Section 7 of [RFC6275] includes some mobility-specific extensions to Neighbor Discovery. Routers SHOULD implement Sections 7.3 and 7.5, even if they do not implement home agent functionality.
[RFC6275]的第7节包括对邻居发现的一些特定于移动性的扩展。路由器应实现第7.3节和第7.5节,即使它们没有实现归属代理功能。
A single DHCP server ([RFC3315] or [RFC4862]) can provide configuration information to devices directly attached to a shared link, as well as to devices located elsewhere within a site. Communication between a client and a DHCP server located on different links requires the use of DHCP relay agents on routers.
单个DHCP服务器([RFC3315]或[RFC4862])可以向直接连接到共享链路的设备以及位于站点内其他位置的设备提供配置信息。客户端和位于不同链路上的DHCP服务器之间的通信需要在路由器上使用DHCP中继代理。
In simple deployments, consisting of a single router and either a single LAN or multiple LANs attached to the single router, together with a WAN connection, a DHCP server embedded within the router is one common deployment scenario (e.g., [RFC7084]). There is no need for relay agents in such scenarios.
在简单部署中,由单个路由器和连接到单个路由器的单个LAN或多个LAN以及WAN连接组成,嵌入路由器中的DHCP服务器是一种常见的部署场景(例如,[RFC7084])。在这种情况下,不需要中继代理。
In more complex deployment scenarios, such as within enterprise or service provider networks, the use of DHCP requires some level of configuration, in order to configure relay agents, DHCP servers, etc. In such environments, the DHCP server might even be run on a traditional server, rather than as part of a router.
在更复杂的部署场景中,例如在企业或服务提供商网络中,DHCP的使用需要某种级别的配置,以便配置中继代理、DHCP服务器等。在这种环境中,DHCP服务器甚至可能在传统服务器上运行,而不是作为路由器的一部分。
Because of the wide range of deployment scenarios, support for DHCP server functionality on routers is optional. However, routers targeted for deployment within more complex scenarios (as described above) SHOULD support relay agent functionality. Note that "Basic Requirements for IPv6 Customer Edge Routers" [RFC7084] requires implementation of a DHCPv6 server function in IPv6 Customer Edge (CE) routers.
由于部署场景的广泛性,在路由器上支持DHCP服务器功能是可选的。但是,针对更复杂场景(如上所述)部署的路由器应支持中继代理功能。请注意,“IPv6客户边缘路由器的基本要求”[RFC7084]要求在IPv6客户边缘(CE)路由器中实现DHCPv6服务器功能。
Forwarding nodes MUST conform to BCP 198 [RFC7608]; thus, IPv6 implementations of nodes that may forward packets MUST conform to the rules specified in Section 5.1 of [RFC4632].
转发节点必须符合BCP 198[RFC7608];因此,可能转发数据包的节点的IPv6实现必须符合[RFC4632]第5.1节中规定的规则。
The focus of this document is general IPv6 nodes. In this section, we briefly discuss considerations for constrained devices.
本文档的重点是通用IPv6节点。在本节中,我们将简要讨论受约束设备的注意事项。
In the case of constrained nodes, with limited CPU, memory, bandwidth or power, support for certain IPv6 functionality may need to be considered due to those limitations. While the requirements of this document are RECOMMENDED for all nodes, including constrained nodes, compromises may need to be made in certain cases. Where such
对于CPU、内存、带宽或电源有限的受限节点,由于这些限制,可能需要考虑对某些IPv6功能的支持。虽然本文件的要求适用于所有节点,包括受约束的节点,但在某些情况下可能需要做出妥协。在哪里
compromises are made, the interoperability of devices should be strongly considered, particularly where this may impact other nodes on the same link, e.g., only supporting MLDv1 will affect other nodes.
如果做出妥协,则应充分考虑设备的互操作性,尤其是在可能影响同一链路上的其他节点的情况下,例如,仅支持MLDv1将影响其他节点。
The IETF 6LowPAN (IPv6 over Low-Power Wireless Personal Area Network) WG produced six RFCs, including a general overview and problem statement [RFC4919] (the means by which IPv6 packets are transmitted over IEEE 802.15.4 networks [RFC4944] and ND optimizations for that medium [RFC6775]).
IETF 6LowPAN(低功率无线个人区域网络上的IPv6)工作组产生了六个RFC,包括一般概述和问题陈述[RFC4919](通过IEEE 802.15.4网络传输IPv6数据包的方式[RFC4944]和该介质的ND优化[RFC6775])。
IPv6 nodes that are battery powered SHOULD implement the recommendations in [RFC7772].
电池供电的IPv6节点应执行[RFC7772]中的建议。
Network management MAY be supported by IPv6 nodes. However, for IPv6 nodes that are embedded devices, network management may be the only possible way of controlling these nodes.
IPv6节点可能支持网络管理。但是,对于作为嵌入式设备的IPv6节点,网络管理可能是控制这些节点的唯一可能方式。
Existing network management protocols include SNMP [RFC3411], NETCONF [RFC6241], and RESTCONF [RFC8040].
现有的网络管理协议包括SNMP[RFC3411]、NETCONF[RFC6241]和RESTCONF[RFC8040]。
The obsoleted status of various IPv6-specific MIB modules is clarified in [RFC8096].
[RFC8096]中阐明了各种IPv6特定MIB模块的淘汰状态。
The following two MIB modules SHOULD be supported by nodes that support an SNMP agent.
支持SNMP代理的节点应支持以下两个MIB模块。
The IP Forwarding Table MIB [RFC4292] SHOULD be supported by nodes that support an SNMP agent.
支持SNMP代理的节点应支持IP转发表MIB[RFC4292]。
The IP MIB [RFC4293] SHOULD be supported by nodes that support an SNMP agent.
支持SNMP代理的节点应支持IP MIB[RFC4293]。
The Interface MIB [RFC2863] SHOULD be supported by nodes that support an SNMP agent.
支持SNMP代理的节点应支持接口MIB[RFC2863]。
The following YANG data models SHOULD be supported by nodes that support a NETCONF or RESTCONF agent.
支持NETCONF或RESTCONF代理的节点应支持以下数据模型。
The IP Management YANG Model [RFC8344] SHOULD be supported by nodes that support NETCONF or RESTCONF.
支持NETCONF或RESTCONF的节点应支持IP管理模型[RFC8344]。
The Interface Management YANG Model [RFC8343] SHOULD be supported by nodes that support NETCONF or RESTCONF.
支持NETCONF或RESTCONF的节点应支持接口管理模型[RFC8343]。
This document does not directly affect the security of the Internet, beyond the security considerations associated with the individual protocols.
除了与各个协议相关的安全考虑因素外,本文件不会直接影响互联网的安全性。
Security is also discussed in Section 13 above.
上文第13节也讨论了安全问题。
This document has no IANA actions.
本文档没有IANA操作。
[RFC1034] Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987, <https://www.rfc-editor.org/info/rfc1034>.
[RFC1034]Mockapetris,P.,“域名-概念和设施”,STD 13,RFC 1034,DOI 10.17487/RFC1034,1987年11月<https://www.rfc-editor.org/info/rfc1034>.
[RFC1035] Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, November 1987, <https://www.rfc-editor.org/info/rfc1035>.
[RFC1035]Mockapetris,P.,“域名-实现和规范”,STD 13,RFC 1035,DOI 10.17487/RFC1035,1987年11月<https://www.rfc-editor.org/info/rfc1035>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<https://www.rfc-editor.org/info/rfc2119>.
[RFC2710] Deering, S., Fenner, W., and B. Haberman, "Multicast Listener Discovery (MLD) for IPv6", RFC 2710, DOI 10.17487/RFC2710, October 1999, <https://www.rfc-editor.org/info/rfc2710>.
[RFC2710]Deering,S.,Fenner,W.,和B.Haberman,“IPv6的多播侦听器发现(MLD)”,RFC 2710,DOI 10.17487/RFC2710,1999年10月<https://www.rfc-editor.org/info/rfc2710>.
[RFC2711] Partridge, C. and A. Jackson, "IPv6 Router Alert Option", RFC 2711, DOI 10.17487/RFC2711, October 1999, <https://www.rfc-editor.org/info/rfc2711>.
[RFC2711]帕特里奇,C.和A.杰克逊,“IPv6路由器警报选项”,RFC 2711,DOI 10.17487/RFC27111999年10月<https://www.rfc-editor.org/info/rfc2711>.
[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000, <https://www.rfc-editor.org/info/rfc2863>.
[RFC2863]McCloghrie,K.和F.Kastenholz,“接口组MIB”,RFC 2863,DOI 10.17487/RFC2863,2000年6月<https://www.rfc-editor.org/info/rfc2863>.
[RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of Explicit Congestion Notification (ECN) to IP", RFC 3168, DOI 10.17487/RFC3168, September 2001, <https://www.rfc-editor.org/info/rfc3168>.
[RFC3168]Ramakrishnan,K.,Floyd,S.,和D.Black,“向IP添加显式拥塞通知(ECN)”,RFC 3168,DOI 10.17487/RFC3168,2001年9月<https://www.rfc-editor.org/info/rfc3168>.
[RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July 2003, <https://www.rfc-editor.org/info/rfc3315>.
[RFC3315]Droms,R.,Ed.,Bound,J.,Volz,B.,Lemon,T.,Perkins,C.,和M.Carney,“IPv6的动态主机配置协议(DHCPv6)”,RFC 3315,DOI 10.17487/RFC3315,2003年7月<https://www.rfc-editor.org/info/rfc3315>.
[RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, RFC 3411, DOI 10.17487/RFC3411, December 2002, <https://www.rfc-editor.org/info/rfc3411>.
[RFC3411]Harrington,D.,Presohn,R.,和B.Wijnen,“描述简单网络管理协议(SNMP)管理框架的体系结构”,STD 62,RFC 3411,DOI 10.17487/RFC34112002年12月<https://www.rfc-editor.org/info/rfc3411>.
[RFC3596] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi, "DNS Extensions to Support IP Version 6", STD 88, RFC 3596, DOI 10.17487/RFC3596, October 2003, <https://www.rfc-editor.org/info/rfc3596>.
[RFC3596]Thomson,S.,Huitema,C.,Ksinant,V.,和M.Souissi,“支持IP版本6的DNS扩展”,STD 88,RFC 3596,DOI 10.17487/RFC3596,2003年10月<https://www.rfc-editor.org/info/rfc3596>.
[RFC3736] Droms, R., "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6", RFC 3736, DOI 10.17487/RFC3736, April 2004, <https://www.rfc-editor.org/info/rfc3736>.
[RFC3736]Droms,R.,“IPv6的无状态动态主机配置协议(DHCP)服务”,RFC 3736,DOI 10.17487/RFC3736,2004年4月<https://www.rfc-editor.org/info/rfc3736>.
[RFC3810] Vida, R., Ed. and L. Costa, Ed., "Multicast Listener Discovery Version 2 (MLDv2) for IPv6", RFC 3810, DOI 10.17487/RFC3810, June 2004, <https://www.rfc-editor.org/info/rfc3810>.
[RFC3810]Vida,R.,Ed.和L.Costa,Ed.,“IPv6的多播侦听器发现版本2(MLDv2)”,RFC 3810,DOI 10.17487/RFC3810,2004年6月<https://www.rfc-editor.org/info/rfc3810>.
[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security Introduction and Requirements", RFC 4033, DOI 10.17487/RFC4033, March 2005, <https://www.rfc-editor.org/info/rfc4033>.
[RFC4033]Arends,R.,Austein,R.,Larson,M.,Massey,D.,和S.Rose,“DNS安全介绍和要求”,RFC 4033,DOI 10.17487/RFC4033,2005年3月<https://www.rfc-editor.org/info/rfc4033>.
[RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Resource Records for the DNS Security Extensions", RFC 4034, DOI 10.17487/RFC4034, March 2005, <https://www.rfc-editor.org/info/rfc4034>.
[RFC4034]Arends,R.,Austein,R.,Larson,M.,Massey,D.,和S.Rose,“DNS安全扩展的资源记录”,RFC 4034,DOI 10.17487/RFC4034,2005年3月<https://www.rfc-editor.org/info/rfc4034>.
[RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Protocol Modifications for the DNS Security Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005, <https://www.rfc-editor.org/info/rfc4035>.
[RFC4035]Arends,R.,Austein,R.,Larson,M.,Massey,D.,和S.Rose,“DNS安全扩展的协议修改”,RFC 4035,DOI 10.17487/RFC4035,2005年3月<https://www.rfc-editor.org/info/rfc4035>.
[RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms for IPv6 Hosts and Routers", RFC 4213, DOI 10.17487/RFC4213, October 2005, <https://www.rfc-editor.org/info/rfc4213>.
[RFC4213]Nordmark,E.和R.Gilligan,“IPv6主机和路由器的基本转换机制”,RFC 4213,DOI 10.17487/RFC4213,2005年10月<https://www.rfc-editor.org/info/rfc4213>.
[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, DOI 10.17487/RFC4291, February 2006, <https://www.rfc-editor.org/info/rfc4291>.
[RFC4291]Hinden,R.和S.Deering,“IP版本6寻址体系结构”,RFC 4291,DOI 10.17487/RFC42912006年2月<https://www.rfc-editor.org/info/rfc4291>.
[RFC4292] Haberman, B., "IP Forwarding Table MIB", RFC 4292, DOI 10.17487/RFC4292, April 2006, <https://www.rfc-editor.org/info/rfc4292>.
[RFC4292]Haberman,B.,“IP转发表MIB”,RFC 4292,DOI 10.17487/RFC42922006年4月<https://www.rfc-editor.org/info/rfc4292>.
[RFC4293] Routhier, S., Ed., "Management Information Base for the Internet Protocol (IP)", RFC 4293, DOI 10.17487/RFC4293, April 2006, <https://www.rfc-editor.org/info/rfc4293>.
[RFC4293]Routhier,S.,Ed.“互联网协议(IP)的管理信息库”,RFC 4293,DOI 10.17487/RFC4293,2006年4月<https://www.rfc-editor.org/info/rfc4293>.
[RFC4301] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, DOI 10.17487/RFC4301, December 2005, <https://www.rfc-editor.org/info/rfc4301>.
[RFC4301]Kent,S.和K.Seo,“互联网协议的安全架构”,RFC 4301,DOI 10.17487/RFC4301,2005年12月<https://www.rfc-editor.org/info/rfc4301>.
[RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, DOI 10.17487/RFC4303, December 2005, <https://www.rfc-editor.org/info/rfc4303>.
[RFC4303]Kent,S.,“IP封装安全有效载荷(ESP)”,RFC 4303,DOI 10.17487/RFC4303,2005年12月<https://www.rfc-editor.org/info/rfc4303>.
[RFC4311] Hinden, R. and D. Thaler, "IPv6 Host-to-Router Load Sharing", RFC 4311, DOI 10.17487/RFC4311, November 2005, <https://www.rfc-editor.org/info/rfc4311>.
[RFC4311]Hinden,R.和D.Thaler,“IPv6主机到路由器负载共享”,RFC 4311,DOI 10.17487/RFC4311,2005年11月<https://www.rfc-editor.org/info/rfc4311>.
[RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", STD 89, RFC 4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-editor.org/info/rfc4443>.
[RFC4443]Conta,A.,Deering,S.和M.Gupta,Ed.“互联网协议版本6(IPv6)规范的互联网控制消息协议(ICMPv6)”,STD 89,RFC 4443,DOI 10.17487/RFC4443,2006年3月<https://www.rfc-editor.org/info/rfc4443>.
[RFC4607] Holbrook, H. and B. Cain, "Source-Specific Multicast for IP", RFC 4607, DOI 10.17487/RFC4607, August 2006, <https://www.rfc-editor.org/info/rfc4607>.
[RFC4607]Holbrook,H.和B.Cain,“IP的源特定多播”,RFC 4607,DOI 10.17487/RFC4607,2006年8月<https://www.rfc-editor.org/info/rfc4607>.
[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August 2006, <https://www.rfc-editor.org/info/rfc4632>.
[RFC4632]Fuller,V.和T.Li,“无类域间路由(CIDR):互联网地址分配和聚合计划”,BCP 122,RFC 4632,DOI 10.17487/RFC4632,2006年8月<https://www.rfc-editor.org/info/rfc4632>.
[RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, DOI 10.17487/RFC4861, September 2007, <https://www.rfc-editor.org/info/rfc4861>.
[RFC4861]Narten,T.,Nordmark,E.,Simpson,W.,和H.Soliman,“IP版本6(IPv6)的邻居发现”,RFC 4861,DOI 10.17487/RFC48612007年9月<https://www.rfc-editor.org/info/rfc4861>.
[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address Autoconfiguration", RFC 4862, DOI 10.17487/RFC4862, September 2007, <https://www.rfc-editor.org/info/rfc4862>.
[RFC4862]Thomson,S.,Narten,T.和T.Jinmei,“IPv6无状态地址自动配置”,RFC 4862,DOI 10.17487/RFC4862,2007年9月<https://www.rfc-editor.org/info/rfc4862>.
[RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007, <https://www.rfc-editor.org/info/rfc4941>.
[RFC4941]Narten,T.,Draves,R.,和S.Krishnan,“IPv6中无状态地址自动配置的隐私扩展”,RFC 4941,DOI 10.17487/RFC49411907年9月<https://www.rfc-editor.org/info/rfc4941>.
[RFC5095] Abley, J., Savola, P., and G. Neville-Neil, "Deprecation of Type 0 Routing Headers in IPv6", RFC 5095, DOI 10.17487/RFC5095, December 2007, <https://www.rfc-editor.org/info/rfc5095>.
[RFC5095]Abley,J.,Savola,P.,和G.Neville Neil,“IPv6中0型路由头的弃用”,RFC 5095,DOI 10.17487/RFC5095,2007年12月<https://www.rfc-editor.org/info/rfc5095>.
[RFC5453] Krishnan, S., "Reserved IPv6 Interface Identifiers", RFC 5453, DOI 10.17487/RFC5453, February 2009, <https://www.rfc-editor.org/info/rfc5453>.
[RFC5453]Krishnan,S.,“保留IPv6接口标识符”,RFC 5453,DOI 10.17487/RFC5453,2009年2月<https://www.rfc-editor.org/info/rfc5453>.
[RFC5722] Krishnan, S., "Handling of Overlapping IPv6 Fragments", RFC 5722, DOI 10.17487/RFC5722, December 2009, <https://www.rfc-editor.org/info/rfc5722>.
[RFC5722]Krishnan,S.,“重叠IPv6片段的处理”,RFC 5722,DOI 10.17487/RFC5722,2009年12月<https://www.rfc-editor.org/info/rfc5722>.
[RFC5790] Liu, H., Cao, W., and H. Asaeda, "Lightweight Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Version 2 (MLDv2) Protocols", RFC 5790, DOI 10.17487/RFC5790, February 2010, <https://www.rfc-editor.org/info/rfc5790>.
[RFC5790]Liu,H.,Cao,W.,和H.Asaeda,“轻量级Internet组管理协议版本3(IGMPv3)和多播侦听器发现版本2(MLDv2)协议”,RFC 5790,DOI 10.17487/RFC5790,2010年2月<https://www.rfc-editor.org/info/rfc5790>.
[RFC5942] Singh, H., Beebee, W., and E. Nordmark, "IPv6 Subnet Model: The Relationship between Links and Subnet Prefixes", RFC 5942, DOI 10.17487/RFC5942, July 2010, <https://www.rfc-editor.org/info/rfc5942>.
[RFC5942]Singh,H.,Beebee,W.和E.Nordmark,“IPv6子网模型:链路和子网前缀之间的关系”,RFC 5942,DOI 10.17487/RFC5942,2010年7月<https://www.rfc-editor.org/info/rfc5942>.
[RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6 Address Text Representation", RFC 5952, DOI 10.17487/RFC5952, August 2010, <https://www.rfc-editor.org/info/rfc5952>.
[RFC5952]Kawamura,S.和M.Kawashima,“IPv6地址文本表示的建议”,RFC 5952,DOI 10.17487/RFC5952,2010年8月<https://www.rfc-editor.org/info/rfc5952>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.
[RFC6241]Enns,R.,Ed.,Bjorklund,M.,Ed.,Schoenwaeld,J.,Ed.,和A.Bierman,Ed.,“网络配置协议(NETCONF)”,RFC 6241,DOI 10.17487/RFC6241,2011年6月<https://www.rfc-editor.org/info/rfc6241>.
[RFC6437] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme, "IPv6 Flow Label Specification", RFC 6437, DOI 10.17487/RFC6437, November 2011, <https://www.rfc-editor.org/info/rfc6437>.
[RFC6437]Amante,S.,Carpenter,B.,Jiang,S.,和J.Rajahalme,“IPv6流标签规范”,RFC 6437,DOI 10.17487/RFC6437,2011年11月<https://www.rfc-editor.org/info/rfc6437>.
[RFC6564] Krishnan, S., Woodyatt, J., Kline, E., Hoagland, J., and M. Bhatia, "A Uniform Format for IPv6 Extension Headers", RFC 6564, DOI 10.17487/RFC6564, April 2012, <https://www.rfc-editor.org/info/rfc6564>.
[RFC6564]Krishnan,S.,Woodyatt,J.,Kline,E.,Hoagland,J.,和M.Bhatia,“IPv6扩展头的统一格式”,RFC 6564,DOI 10.17487/RFC6564,2012年4月<https://www.rfc-editor.org/info/rfc6564>.
[RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown, "Default Address Selection for Internet Protocol Version 6 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012, <https://www.rfc-editor.org/info/rfc6724>.
[RFC6724]Thaler,D.,Ed.,Draves,R.,Matsumoto,A.,和T.Chown,“互联网协议版本6(IPv6)的默认地址选择”,RFC 6724,DOI 10.17487/RFC67242012年9月<https://www.rfc-editor.org/info/rfc6724>.
[RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762, DOI 10.17487/RFC6762, February 2013, <https://www.rfc-editor.org/info/rfc6762>.
[RFC6762]Cheshire,S.和M.Krochmal,“多播DNS”,RFC 6762,DOI 10.17487/RFC6762,2013年2月<https://www.rfc-editor.org/info/rfc6762>.
[RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013, <https://www.rfc-editor.org/info/rfc6763>.
[RFC6763]Cheshire,S.和M.Krocmal,“基于DNS的服务发现”,RFC 6763,DOI 10.17487/RFC6763,2013年2月<https://www.rfc-editor.org/info/rfc6763>.
[RFC6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C. Bormann, "Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)", RFC 6775, DOI 10.17487/RFC6775, November 2012, <https://www.rfc-editor.org/info/rfc6775>.
[RFC6775]Shelby,Z.,Ed.,Chakrabarti,S.,Nordmark,E.,和C.Bormann,“低功率无线个人区域网络(6LoWPANs)上IPv6邻居发现优化”,RFC 6775,DOI 10.17487/RFC67752012年11月<https://www.rfc-editor.org/info/rfc6775>.
[RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms for DNS (EDNS(0))", STD 75, RFC 6891, DOI 10.17487/RFC6891, April 2013, <https://www.rfc-editor.org/info/rfc6891>.
[RFC6891]Damas,J.,Graff,M.,和P.Vixie,“DNS的扩展机制(EDNS(0)),STD 75,RFC 6891,DOI 10.17487/RFC68911913年4月<https://www.rfc-editor.org/info/rfc6891>.
[RFC6946] Gont, F., "Processing of IPv6 "Atomic" Fragments", RFC 6946, DOI 10.17487/RFC6946, May 2013, <https://www.rfc-editor.org/info/rfc6946>.
[RFC6946]Gont,F.,“IPv6原子片段的处理”,RFC 6946,DOI 10.17487/RFC6946,2013年5月<https://www.rfc-editor.org/info/rfc6946>.
[RFC7045] Carpenter, B. and S. Jiang, "Transmission and Processing of IPv6 Extension Headers", RFC 7045, DOI 10.17487/RFC7045, December 2013, <https://www.rfc-editor.org/info/rfc7045>.
[RFC7045]Carpenter,B.和S.Jiang,“IPv6扩展头的传输和处理”,RFC 7045,DOI 10.17487/RFC70452013年12月<https://www.rfc-editor.org/info/rfc7045>.
[RFC7048] Nordmark, E. and I. Gashinsky, "Neighbor Unreachability Detection Is Too Impatient", RFC 7048, DOI 10.17487/RFC7048, January 2014, <https://www.rfc-editor.org/info/rfc7048>.
[RFC7048]Nordmark,E.和I.Gashinsky,“邻居不可达性检测太不耐烦”,RFC 7048,DOI 10.17487/RFC7048,2014年1月<https://www.rfc-editor.org/info/rfc7048>.
[RFC7112] Gont, F., Manral, V., and R. Bonica, "Implications of Oversized IPv6 Header Chains", RFC 7112, DOI 10.17487/RFC7112, January 2014, <https://www.rfc-editor.org/info/rfc7112>.
[RFC7112]Gont,F.,Manral,V.,和R.Bonica,“超大IPv6头链的影响”,RFC 7112,DOI 10.17487/RFC7112,2014年1月<https://www.rfc-editor.org/info/rfc7112>.
[RFC7217] Gont, F., "A Method for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address Autoconfiguration (SLAAC)", RFC 7217, DOI 10.17487/RFC7217, April 2014, <https://www.rfc-editor.org/info/rfc7217>.
[RFC7217]Gont,F.“使用IPv6无状态地址自动配置(SLAAC)生成语义不透明接口标识符的方法”,RFC 7217,DOI 10.17487/RFC72172014年4月<https://www.rfc-editor.org/info/rfc7217>.
[RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T. Kivinen, "Internet Key Exchange Protocol Version 2 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October 2014, <https://www.rfc-editor.org/info/rfc7296>.
[RFC7296]Kaufman,C.,Hoffman,P.,Nir,Y.,Eronen,P.,和T.Kivinen,“互联网密钥交换协议版本2(IKEv2)”,STD 79,RFC 7296,DOI 10.17487/RFC72962014年10月<https://www.rfc-editor.org/info/rfc7296>.
[RFC7527] Asati, R., Singh, H., Beebee, W., Pignataro, C., Dart, E., and W. George, "Enhanced Duplicate Address Detection", RFC 7527, DOI 10.17487/RFC7527, April 2015, <https://www.rfc-editor.org/info/rfc7527>.
[RFC7527]Asati,R.,Singh,H.,Beebee,W.,Pignataro,C.,Dart,E.,和W.George,“增强的重复地址检测”,RFC 7527,DOI 10.17487/RFC7527,2015年4月<https://www.rfc-editor.org/info/rfc7527>.
[RFC7559] Krishnan, S., Anipko, D., and D. Thaler, "Packet-Loss Resiliency for Router Solicitations", RFC 7559, DOI 10.17487/RFC7559, May 2015, <https://www.rfc-editor.org/info/rfc7559>.
[RFC7559]Krishnan,S.,Anipko,D.,和D.Thaler,“路由器请求的丢包恢复能力”,RFC 7559,DOI 10.17487/RFC7559,2015年5月<https://www.rfc-editor.org/info/rfc7559>.
[RFC7608] Boucadair, M., Petrescu, A., and F. Baker, "IPv6 Prefix Length Recommendation for Forwarding", BCP 198, RFC 7608, DOI 10.17487/RFC7608, July 2015, <https://www.rfc-editor.org/info/rfc7608>.
[RFC7608]Boucadair,M.,Petrescu,A.,和F.Baker,“转发的IPv6前缀长度建议”,BCP 198,RFC 7608,DOI 10.17487/RFC7608,2015年7月<https://www.rfc-editor.org/info/rfc7608>.
[RFC8021] Gont, F., Liu, W., and T. Anderson, "Generation of IPv6 Atomic Fragments Considered Harmful", RFC 8021, DOI 10.17487/RFC8021, January 2017, <https://www.rfc-editor.org/info/rfc8021>.
[RFC8021]Gont,F.,Liu,W.和T.Anderson,“被认为有害的IPv6原子碎片的产生”,RFC 8021,DOI 10.17487/RFC8021,2017年1月<https://www.rfc-editor.org/info/rfc8021>.
[RFC8028] Baker, F. and B. Carpenter, "First-Hop Router Selection by Hosts in a Multi-Prefix Network", RFC 8028, DOI 10.17487/RFC8028, November 2016, <https://www.rfc-editor.org/info/rfc8028>.
[RFC8028]Baker,F.和B.Carpenter,“多前缀网络中主机的第一跳路由器选择”,RFC 8028,DOI 10.17487/RFC8028,2016年11月<https://www.rfc-editor.org/info/rfc8028>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.
[RFC8040]Bierman,A.,Bjorklund,M.,和K.Watsen,“RESTCONF协议”,RFC 8040,DOI 10.17487/RFC8040,2017年1月<https://www.rfc-editor.org/info/rfc8040>.
[RFC8064] Gont, F., Cooper, A., Thaler, D., and W. Liu, "Recommendation on Stable IPv6 Interface Identifiers", RFC 8064, DOI 10.17487/RFC8064, February 2017, <https://www.rfc-editor.org/info/rfc8064>.
[RFC8064]Gont,F.,Cooper,A.,Thaler,D.,和W.Liu,“关于稳定IPv6接口标识符的建议”,RFC 8064,DOI 10.17487/RFC8064,2017年2月<https://www.rfc-editor.org/info/rfc8064>.
[RFC8106] Jeong, J., Park, S., Beloeil, L., and S. Madanapalli, "IPv6 Router Advertisement Options for DNS Configuration", RFC 8106, DOI 10.17487/RFC8106, March 2017, <https://www.rfc-editor.org/info/rfc8106>.
[RFC8106]Jeong,J.,Park,S.,Beloeil,L.,和S.Madanapalli,“DNS配置的IPv6路由器广告选项”,RFC 8106,DOI 10.17487/RFC8106,2017年3月<https://www.rfc-editor.org/info/rfc8106>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8174]Leiba,B.,“RFC 2119关键词中大写与小写的歧义”,BCP 14,RFC 8174,DOI 10.17487/RFC8174,2017年5月<https://www.rfc-editor.org/info/rfc8174>.
[RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-editor.org/info/rfc8200>.
[RFC8200]Deering,S.和R.Hinden,“互联网协议,第6版(IPv6)规范”,STD 86,RFC 8200,DOI 10.17487/RFC8200,2017年7月<https://www.rfc-editor.org/info/rfc8200>.
[RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed., "Path MTU Discovery for IP version 6", STD 87, RFC 8201, DOI 10.17487/RFC8201, July 2017, <https://www.rfc-editor.org/info/rfc8201>.
[RFC8201]McCann,J.,Deering,S.,Mogul,J.,和R.Hinden,编辑,“IP版本6的路径MTU发现”,STD 87,RFC 8201,DOI 10.17487/RFC8201,2017年7月<https://www.rfc-editor.org/info/rfc8201>.
[RFC8221] Wouters, P., Migault, D., Mattsson, J., Nir, Y., and T. Kivinen, "Cryptographic Algorithm Implementation Requirements and Usage Guidance for Encapsulating Security Payload (ESP) and Authentication Header (AH)", RFC 8221, DOI 10.17487/RFC8221, October 2017, <https://www.rfc-editor.org/info/rfc8221>.
[RFC8221]Wouters,P.,Migault,D.,Mattsson,J.,Nir,Y.,和T.Kivinen,“封装安全有效载荷(ESP)和身份验证头(AH)的密码算法实现要求和使用指南”,RFC 8221,DOI 10.17487/RFC8221,2017年10月<https://www.rfc-editor.org/info/rfc8221>.
[RFC8247] Nir, Y., Kivinen, T., Wouters, P., and D. Migault, "Algorithm Implementation Requirements and Usage Guidance for the Internet Key Exchange Protocol Version 2 (IKEv2)", RFC 8247, DOI 10.17487/RFC8247, September 2017, <https://www.rfc-editor.org/info/rfc8247>.
[RFC8247]Nir,Y.,Kivinen,T.,Wouters,P.,和D.Migault,“互联网密钥交换协议版本2(IKEv2)的算法实现要求和使用指南”,RFC 8247,DOI 10.17487/RFC8247,2017年9月<https://www.rfc-editor.org/info/rfc8247>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>.
[RFC8343]Bjorklund,M.,“用于接口管理的YANG数据模型”,RFC 8343,DOI 10.17487/RFC8343,2018年3月<https://www.rfc-editor.org/info/rfc8343>.
[RFC8344] Bjorklund, M., "A YANG Data Model for IP Management", RFC 8344, DOI 10.17487/RFC8344, March 2018, <https://www.rfc-editor.org/info/rfc8344>.
[RFC8344]Bjorklund,M.,“知识产权管理的杨氏数据模型”,RFC 8344,DOI 10.17487/RFC8344,2018年3月<https://www.rfc-editor.org/info/rfc8344>.
[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, DOI 10.17487/RFC0793, September 1981, <https://www.rfc-editor.org/info/rfc793>.
[RFC793]Postel,J.,“传输控制协议”,标准7,RFC 793,DOI 10.17487/RFC0793,1981年9月<https://www.rfc-editor.org/info/rfc793>.
[RFC2205] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, DOI 10.17487/RFC2205, September 1997, <https://www.rfc-editor.org/info/rfc2205>.
[RFC2205]Braden,R.,Ed.,Zhang,L.,Berson,S.,Herzog,S.,和S.Jamin,“资源保留协议(RSVP)——版本1功能规范”,RFC 2205,DOI 10.17487/RFC2205,1997年9月<https://www.rfc-editor.org/info/rfc2205>.
[RFC2464] Crawford, M., "Transmission of IPv6 Packets over Ethernet Networks", RFC 2464, DOI 10.17487/RFC2464, December 1998, <https://www.rfc-editor.org/info/rfc2464>.
[RFC2464]克劳福德,M.,“通过以太网传输IPv6数据包”,RFC 2464,DOI 10.17487/RFC2464,1998年12月<https://www.rfc-editor.org/info/rfc2464>.
[RFC2491] Armitage, G., Schulter, P., Jork, M., and G. Harter, "IPv6 over Non-Broadcast Multiple Access (NBMA) networks", RFC 2491, DOI 10.17487/RFC2491, January 1999, <https://www.rfc-editor.org/info/rfc2491>.
[RFC2491]Armitage,G.,Schulter,P.,Jork,M.,和G.Harter,“非广播多址(NBMA)网络上的IPv6”,RFC 2491,DOI 10.17487/RFC24911999年1月<https://www.rfc-editor.org/info/rfc2491>.
[RFC2590] Conta, A., Malis, A., and M. Mueller, "Transmission of IPv6 Packets over Frame Relay Networks Specification", RFC 2590, DOI 10.17487/RFC2590, May 1999, <https://www.rfc-editor.org/info/rfc2590>.
[RFC2590]Conta,A.,Malis,A.,和M.Mueller,“通过帧中继网络传输IPv6数据包规范”,RFC 2590,DOI 10.17487/RFC2590,1999年5月<https://www.rfc-editor.org/info/rfc2590>.
[RFC2874] Crawford, M. and C. Huitema, "DNS Extensions to Support IPv6 Address Aggregation and Renumbering", RFC 2874, DOI 10.17487/RFC2874, July 2000, <https://www.rfc-editor.org/info/rfc2874>.
[RFC2874]Crawford,M.和C.Huitema,“支持IPv6地址聚合和重新编号的DNS扩展”,RFC 2874,DOI 10.17487/RFC2874,2000年7月<https://www.rfc-editor.org/info/rfc2874>.
[RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery", RFC 2923, DOI 10.17487/RFC2923, September 2000, <https://www.rfc-editor.org/info/rfc2923>.
[RFC2923]Lahey,K.,“路径MTU发现的TCP问题”,RFC 2923,DOI 10.17487/RFC2923,2000年9月<https://www.rfc-editor.org/info/rfc2923>.
[RFC3146] Fujisawa, K. and A. Onoe, "Transmission of IPv6 Packets over IEEE 1394 Networks", RFC 3146, DOI 10.17487/RFC3146, October 2001, <https://www.rfc-editor.org/info/rfc3146>.
[RFC3146]Fujisawa,K.和A.Onoe,“通过IEEE 1394网络传输IPv6数据包”,RFC 3146,DOI 10.17487/RFC3146,2001年10月<https://www.rfc-editor.org/info/rfc3146>.
[RFC3363] Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T. Hain, "Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name System (DNS)", RFC 3363, DOI 10.17487/RFC3363, August 2002, <https://www.rfc-editor.org/info/rfc3363>.
[RFC3363]Bush,R.,Durand,A.,Fink,B.,Gudmundsson,O.,和T.Hain,“在域名系统(DNS)中代表互联网协议版本6(IPv6)地址”,RFC 3363,DOI 10.17487/RFC3363,2002年8月<https://www.rfc-editor.org/info/rfc3363>.
[RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W. Stevens, "Basic Socket Interface Extensions for IPv6", RFC 3493, DOI 10.17487/RFC3493, February 2003, <https://www.rfc-editor.org/info/rfc3493>.
[RFC3493]Gilligan,R.,Thomson,S.,Bound,J.,McCann,J.,和W.Stevens,“IPv6的基本套接字接口扩展”,RFC 3493,DOI 10.17487/RFC3493,2003年2月<https://www.rfc-editor.org/info/rfc3493>.
[RFC3542] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei, "Advanced Sockets Application Program Interface (API) for IPv6", RFC 3542, DOI 10.17487/RFC3542, May 2003, <https://www.rfc-editor.org/info/rfc3542>.
[RFC3542]Stevens,W.,Thomas,M.,Nordmark,E.,和T.Jinmei,“IPv6的高级套接字应用程序接口(API)”,RFC 3542,DOI 10.17487/RFC3542,2003年5月<https://www.rfc-editor.org/info/rfc3542>.
[RFC3646] Droms, R., Ed., "DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3646, DOI 10.17487/RFC3646, December 2003, <https://www.rfc-editor.org/info/rfc3646>.
[RFC3646]Droms,R.,Ed.“IPv6动态主机配置协议(DHCPv6)的DNS配置选项”,RFC 3646,DOI 10.17487/RFC3646,2003年12月<https://www.rfc-editor.org/info/rfc3646>.
[RFC3678] Thaler, D., Fenner, B., and B. Quinn, "Socket Interface Extensions for Multicast Source Filters", RFC 3678, DOI 10.17487/RFC3678, January 2004, <https://www.rfc-editor.org/info/rfc3678>.
[RFC3678]Thaler,D.,Fenner,B.,和B.Quinn,“多播源筛选器的套接字接口扩展”,RFC 3678,DOI 10.17487/RFC3678,2004年1月<https://www.rfc-editor.org/info/rfc3678>.
[RFC3776] Arkko, J., Devarapalli, V., and F. Dupont, "Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents", RFC 3776, DOI 10.17487/RFC3776, June 2004, <https://www.rfc-editor.org/info/rfc3776>.
[RFC3776]Arkko,J.,Devarapalli,V.,和F.Dupont,“使用IPsec保护移动节点和归属代理之间的移动IPv6信令”,RFC 3776,DOI 10.17487/RFC3776,2004年6月<https://www.rfc-editor.org/info/rfc3776>.
[RFC3971] Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander, "SEcure Neighbor Discovery (SEND)", RFC 3971, DOI 10.17487/RFC3971, March 2005, <https://www.rfc-editor.org/info/rfc3971>.
[RFC3971]Arkko,J.,Ed.,Kempf,J.,Zill,B.,和P.Nikander,“安全邻居发现(SEND)”,RFC 3971,DOI 10.17487/RFC3971,2005年3月<https://www.rfc-editor.org/info/rfc3971>.
[RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)", RFC 3972, DOI 10.17487/RFC3972, March 2005, <https://www.rfc-editor.org/info/rfc3972>.
[RFC3972]Aura,T.,“加密生成地址(CGA)”,RFC 3972,DOI 10.17487/RFC3972,2005年3月<https://www.rfc-editor.org/info/rfc3972>.
[RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191, November 2005, <https://www.rfc-editor.org/info/rfc4191>.
[RFC4191]Draves,R.and D.Thaler,“默认路由器首选项和更具体的路由”,RFC 4191,DOI 10.17487/RFC4191,2005年11月<https://www.rfc-editor.org/info/rfc4191>.
[RFC4294] Loughney, J., Ed., "IPv6 Node Requirements", RFC 4294, DOI 10.17487/RFC4294, April 2006, <https://www.rfc-editor.org/info/rfc4294>.
[RFC4294]Loughney,J.,编辑,“IPv6节点要求”,RFC 4294,DOI 10.17487/RFC4294,2006年4月<https://www.rfc-editor.org/info/rfc4294>.
[RFC4302] Kent, S., "IP Authentication Header", RFC 4302, DOI 10.17487/RFC4302, December 2005, <https://www.rfc-editor.org/info/rfc4302>.
[RFC4302]Kent,S.,“IP认证头”,RFC 4302,DOI 10.17487/RFC4302,2005年12月<https://www.rfc-editor.org/info/rfc4302>.
[RFC4338] DeSanti, C., Carlson, C., and R. Nixon, "Transmission of IPv6, IPv4, and Address Resolution Protocol (ARP) Packets over Fibre Channel", RFC 4338, DOI 10.17487/RFC4338, January 2006, <https://www.rfc-editor.org/info/rfc4338>.
[RFC4338]DeSanti,C.,Carlson,C.,和R.Nixon,“通过光纤通道传输IPv6,IPv4和地址解析协议(ARP)数据包”,RFC 4338,DOI 10.17487/RFC4338,2006年1月<https://www.rfc-editor.org/info/rfc4338>.
[RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)", RFC 4380, DOI 10.17487/RFC4380, February 2006, <https://www.rfc-editor.org/info/rfc4380>.
[RFC4380]Huitema,C.,“Teredo:通过网络地址转换(NAT)通过UDP传输IPv6”,RFC 4380,DOI 10.17487/RFC4380,2006年2月<https://www.rfc-editor.org/info/rfc4380>.
[RFC4429] Moore, N., "Optimistic Duplicate Address Detection (DAD) for IPv6", RFC 4429, DOI 10.17487/RFC4429, April 2006, <https://www.rfc-editor.org/info/rfc4429>.
[RFC4429]Moore,N.,“IPv6的乐观重复地址检测(DAD)”,RFC 4429,DOI 10.17487/RFC4429,2006年4月<https://www.rfc-editor.org/info/rfc4429>.
[RFC4584] Chakrabarti, S. and E. Nordmark, "Extension to Sockets API for Mobile IPv6", RFC 4584, DOI 10.17487/RFC4584, July 2006, <https://www.rfc-editor.org/info/rfc4584>.
[RFC4584]Chakrabarti,S.和E.Nordmark,“移动IPv6套接字API的扩展”,RFC 4584,DOI 10.17487/RFC4584,2006年7月<https://www.rfc-editor.org/info/rfc4584>.
[RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007, <https://www.rfc-editor.org/info/rfc4821>.
[RFC4821]Mathis,M.和J.Heffner,“打包层路径MTU发现”,RFC 4821,DOI 10.17487/RFC4821,2007年3月<https://www.rfc-editor.org/info/rfc4821>.
[RFC4877] Devarapalli, V. and F. Dupont, "Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture", RFC 4877, DOI 10.17487/RFC4877, April 2007, <https://www.rfc-editor.org/info/rfc4877>.
[RFC4877]Devarapalli,V.和F.Dupont,“使用IKEv2的移动IPv6操作和修订的IPsec架构”,RFC 4877,DOI 10.17487/RFC4877,2007年4月<https://www.rfc-editor.org/info/rfc4877>.
[RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro, "Extended ICMP to Support Multi-Part Messages", RFC 4884, DOI 10.17487/RFC4884, April 2007, <https://www.rfc-editor.org/info/rfc4884>.
[RFC4884]Bonica,R.,Gan,D.,Tappan,D.,和C.Pignataro,“扩展ICMP以支持多部分消息”,RFC 4884,DOI 10.17487/RFC4884,2007年4月<https://www.rfc-editor.org/info/rfc4884>.
[RFC4890] Davies, E. and J. Mohacsi, "Recommendations for Filtering ICMPv6 Messages in Firewalls", RFC 4890, DOI 10.17487/RFC4890, May 2007, <https://www.rfc-editor.org/info/rfc4890>.
[RFC4890]Davies,E.和J.Mohacsi,“防火墙中过滤ICMPv6消息的建议”,RFC 4890,DOI 10.17487/RFC4890,2007年5月<https://www.rfc-editor.org/info/rfc4890>.
[RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals", RFC 4919, DOI 10.17487/RFC4919, August 2007, <https://www.rfc-editor.org/info/rfc4919>.
[RFC4919]Kushalnagar,N.,黑山,G.和C.Schumacher,“低功率无线个人区域网络(6LoWPANs)上的IPv6:概述,假设,问题陈述和目标”,RFC 4919,DOI 10.17487/RFC4919,2007年8月<https://www.rfc-editor.org/info/rfc4919>.
[RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007, <https://www.rfc-editor.org/info/rfc4944>.
[RFC4944]黑山,G.,Kushalnagar,N.,Hui,J.,和D.Culler,“通过IEEE 802.15.4网络传输IPv6数据包”,RFC 4944,DOI 10.17487/RFC4944,2007年9月<https://www.rfc-editor.org/info/rfc4944>.
[RFC5014] Nordmark, E., Chakrabarti, S., and J. Laganier, "IPv6 Socket API for Source Address Selection", RFC 5014, DOI 10.17487/RFC5014, September 2007, <https://www.rfc-editor.org/info/rfc5014>.
[RFC5014]Nordmark,E.,Chakrabarti,S.,和J.Laganier,“用于源地址选择的IPv6套接字API”,RFC 5014,DOI 10.17487/RFC5014,2007年9月<https://www.rfc-editor.org/info/rfc5014>.
[RFC5072] Varada, S., Ed., Haskins, D., and E. Allen, "IP Version 6 over PPP", RFC 5072, DOI 10.17487/RFC5072, September 2007, <https://www.rfc-editor.org/info/rfc5072>.
[RFC5072]Varada,S.,Ed.,Haskins,D.,和E.Allen,“PPP上的IP版本6”,RFC 5072,DOI 10.17487/RFC5072,2007年9月<https://www.rfc-editor.org/info/rfc5072>.
[RFC5121] Patil, B., Xia, F., Sarikaya, B., Choi, JH., and S. Madanapalli, "Transmission of IPv6 via the IPv6 Convergence Sublayer over IEEE 802.16 Networks", RFC 5121, DOI 10.17487/RFC5121, February 2008, <https://www.rfc-editor.org/info/rfc5121>.
[RFC5121]Patil,B.,Xia,F.,Sarikaya,B.,Choi,JH.,和S.Madanapalli,“通过IEEE 802.16网络上的IPv6聚合子层传输IPv6”,RFC 5121,DOI 10.17487/RFC5121,2008年2月<https://www.rfc-editor.org/info/rfc5121>.
[RFC5555] Soliman, H., Ed., "Mobile IPv6 Support for Dual Stack Hosts and Routers", RFC 5555, DOI 10.17487/RFC5555, June 2009, <https://www.rfc-editor.org/info/rfc5555>.
[RFC5555]Soliman,H.,Ed.,“双栈主机和路由器的移动IPv6支持”,RFC 5555,DOI 10.17487/RFC5555,2009年6月<https://www.rfc-editor.org/info/rfc5555>.
[RFC6275] Perkins, C., Ed., Johnson, D., and J. Arkko, "Mobility Support in IPv6", RFC 6275, DOI 10.17487/RFC6275, July 2011, <https://www.rfc-editor.org/info/rfc6275>.
[RFC6275]Perkins,C.,Ed.,Johnson,D.,和J.Arkko,“IPv6中的移动支持”,RFC 6275,DOI 10.17487/RFC6275,2011年7月<https://www.rfc-editor.org/info/rfc6275>.
[RFC6563] Jiang, S., Conrad, D., and B. Carpenter, "Moving A6 to Historic Status", RFC 6563, DOI 10.17487/RFC6563, March 2012, <https://www.rfc-editor.org/info/rfc6563>.
[RFC6563]Jiang,S.,Conrad,D.,和B.Carpenter,“将A6推向历史地位”,RFC 6563,DOI 10.17487/RFC6563,2012年3月<https://www.rfc-editor.org/info/rfc6563>.
[RFC6980] Gont, F., "Security Implications of IPv6 Fragmentation with IPv6 Neighbor Discovery", RFC 6980, DOI 10.17487/RFC6980, August 2013, <https://www.rfc-editor.org/info/rfc6980>.
[RFC6980]Gont,F.,“IPv6分段与IPv6邻居发现的安全影响”,RFC 6980,DOI 10.17487/RFC6980,2013年8月<https://www.rfc-editor.org/info/rfc6980>.
[RFC7066] Korhonen, J., Ed., Arkko, J., Ed., Savolainen, T., and S. Krishnan, "IPv6 for Third Generation Partnership Project (3GPP) Cellular Hosts", RFC 7066, DOI 10.17487/RFC7066, November 2013, <https://www.rfc-editor.org/info/rfc7066>.
[RFC7066]Korhonen,J.,Ed.,Arkko,J.,Ed.,Savolainen,T.,和S.Krishnan,“第三代合作伙伴关系项目(3GPP)蜂窝主机的IPv6”,RFC 7066,DOI 10.17487/RFC7066,2013年11月<https://www.rfc-editor.org/info/rfc7066>.
[RFC7084] Singh, H., Beebee, W., Donley, C., and B. Stark, "Basic Requirements for IPv6 Customer Edge Routers", RFC 7084, DOI 10.17487/RFC7084, November 2013, <https://www.rfc-editor.org/info/rfc7084>.
[RFC7084]Singh,H.,Beebee,W.,Donley,C.,和B.Stark,“IPv6客户边缘路由器的基本要求”,RFC 7084,DOI 10.17487/RFC7084,2013年11月<https://www.rfc-editor.org/info/rfc7084>.
[RFC7123] Gont, F. and W. Liu, "Security Implications of IPv6 on IPv4 Networks", RFC 7123, DOI 10.17487/RFC7123, February 2014, <https://www.rfc-editor.org/info/rfc7123>.
[RFC7123]Gont,F.和W.Liu,“IPv6对IPv4网络的安全影响”,RFC 7123,DOI 10.17487/RFC71232014年2月<https://www.rfc-editor.org/info/rfc7123>.
[RFC7278] Byrne, C., Drown, D., and A. Vizdal, "Extending an IPv6 /64 Prefix from a Third Generation Partnership Project (3GPP) Mobile Interface to a LAN Link", RFC 7278, DOI 10.17487/RFC7278, June 2014, <https://www.rfc-editor.org/info/rfc7278>.
[RFC7278]Byrne,C.,Durke,D.,和A.Vizdal,“将IPv6/64前缀从第三代合作伙伴项目(3GPP)移动接口扩展到LAN链路”,RFC 7278,DOI 10.17487/RFC7278,2014年6月<https://www.rfc-editor.org/info/rfc7278>.
[RFC7371] Boucadair, M. and S. Venaas, "Updates to the IPv6 Multicast Addressing Architecture", RFC 7371, DOI 10.17487/RFC7371, September 2014, <https://www.rfc-editor.org/info/rfc7371>.
[RFC7371]Boucadair,M.和S.Venaas,“IPv6多播寻址体系结构的更新”,RFC 7371,DOI 10.17487/RFC7371,2014年9月<https://www.rfc-editor.org/info/rfc7371>.
[RFC7421] Carpenter, B., Ed., Chown, T., Gont, F., Jiang, S., Petrescu, A., and A. Yourtchenko, "Analysis of the 64-bit Boundary in IPv6 Addressing", RFC 7421, DOI 10.17487/RFC7421, January 2015, <https://www.rfc-editor.org/info/rfc7421>.
[RFC7421]Carpenter,B.,Ed.,Chown,T.,Gont,F.,Jiang,S.,Petrescu,A.,和A.Yourtchenko,“IPv6寻址中64位边界的分析”,RFC 7421,DOI 10.17487/RFC7421,2015年1月<https://www.rfc-editor.org/info/rfc7421>.
[RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy Considerations for IPv6 Address Generation Mechanisms", RFC 7721, DOI 10.17487/RFC7721, March 2016, <https://www.rfc-editor.org/info/rfc7721>.
[RFC7721]Cooper,A.,Gont,F.,和D.Thaler,“IPv6地址生成机制的安全和隐私考虑”,RFC 7721,DOI 10.17487/RFC7721,2016年3月<https://www.rfc-editor.org/info/rfc7721>.
[RFC7739] Gont, F., "Security Implications of Predictable Fragment Identification Values", RFC 7739, DOI 10.17487/RFC7739, February 2016, <https://www.rfc-editor.org/info/rfc7739>.
[RFC7739]Gont,F.,“可预测碎片识别值的安全影响”,RFC 7739,DOI 10.17487/RFC7739,2016年2月<https://www.rfc-editor.org/info/rfc7739>.
[RFC7772] Yourtchenko, A. and L. Colitti, "Reducing Energy Consumption of Router Advertisements", BCP 202, RFC 7772, DOI 10.17487/RFC7772, February 2016, <https://www.rfc-editor.org/info/rfc7772>.
[RFC7772]Yourtchenko,A.和L.Coletti,“降低路由器广告的能耗”,BCP 202,RFC 7772,DOI 10.17487/RFC7772,2016年2月<https://www.rfc-editor.org/info/rfc7772>.
[RFC7844] Huitema, C., Mrugalski, T., and S. Krishnan, "Anonymity Profiles for DHCP Clients", RFC 7844, DOI 10.17487/RFC7844, May 2016, <https://www.rfc-editor.org/info/rfc7844>.
[RFC7844]Huitema,C.,Mrugalski,T.,和S.Krishnan,“DHCP客户端的匿名配置文件”,RFC 7844,DOI 10.17487/RFC7844,2016年5月<https://www.rfc-editor.org/info/rfc7844>.
[RFC7934] Colitti, L., Cerf, V., Cheshire, S., and D. Schinazi, "Host Address Availability Recommendations", BCP 204, RFC 7934, DOI 10.17487/RFC7934, July 2016, <https://www.rfc-editor.org/info/rfc7934>.
[RFC7934]Coletti,L.,Cerf,V.,Cheshire,S.,和D.Schinazi,“主机地址可用性建议”,BCP 204,RFC 7934,DOI 10.17487/RFC79342016年7月<https://www.rfc-editor.org/info/rfc7934>.
[RFC8087] Fairhurst, G. and M. Welzl, "The Benefits of Using Explicit Congestion Notification (ECN)", RFC 8087, DOI 10.17487/RFC8087, March 2017, <https://www.rfc-editor.org/info/rfc8087>.
[RFC8087]Fairhurst,G.和M.Welzl,“使用显式拥塞通知(ECN)的好处”,RFC 8087,DOI 10.17487/RFC8087,2017年3月<https://www.rfc-editor.org/info/rfc8087>.
[RFC8096] Fenner, B., "The IPv6-Specific MIB Modules Are Obsolete", RFC 8096, DOI 10.17487/RFC8096, April 2017, <https://www.rfc-editor.org/info/rfc8096>.
[RFC8096]Fenner,B.,“特定于IPv6的MIB模块已过时”,RFC 8096,DOI 10.17487/RFC8096,2017年4月<https://www.rfc-editor.org/info/rfc8096>.
[RFC8273] Brzozowski, J. and G. Van de Velde, "Unique IPv6 Prefix per Host", RFC 8273, DOI 10.17487/RFC8273, December 2017, <https://www.rfc-editor.org/info/rfc8273>.
[RFC8273]Brzowski,J.和G.Van de Velde,“每台主机的唯一IPv6前缀”,RFC 8273,DOI 10.17487/RFC8273,2017年12月<https://www.rfc-editor.org/info/rfc8273>.
[POSIX] IEEE, "Information Technology -- Portable Operating System Interface (POSIX(R)) Base Specifications, Issue 7", IEEE Std 1003.1-2017, DOI: 10.1109/IEEESTD.2018.8277153, January 2018, <https://ieeexplore.ieee.org/document/8277153>.
[POSIX]IEEE,“信息技术——便携式操作系统接口(POSIX(R))基本规范,第7期”,IEEE标准1003.1-2017,DOI:10.1109/IEEESTD.2018.8277153,2018年1月<https://ieeexplore.ieee.org/document/8277153>.
[USGv6] National Institute of Standards and Technology, "A Profile for IPv6 in the U.S. Government - Version 1.0", NIST SP500-267, July 2008, <https://www.nist.gov/programs-projects/usgv6-program>.
[USGv6]美国国家标准与技术研究所,“美国政府IPv6概况-1.0版”,NIST SP500-267,2008年7月<https://www.nist.gov/programs-projects/usgv6-program>.
There have been many editorial clarifications as well as significant additions and updates. While this section highlights some of the changes, readers should not rely on this section for a comprehensive list of all changes.
有许多编辑澄清,以及重要的补充和更新。虽然本节重点介绍了一些更改,但读者不应依赖本节获取所有更改的综合列表。
1. Restructured sections.
1. 重组的部门。
2. Added 6LoWPAN to link layers as it has some deployment.
2. 添加6LoWPAN链接层,因为它有一些部署。
3. Removed the Downstream-on-Demand (DoD) IPv6 Profile as it hasn't been updated.
3. 已删除下游按需(DoD)IPv6配置文件,因为它尚未更新。
4. Updated MLDv2 support to a MUST since nodes are restricted if MLDv1 is used.
4. 必须更新MLDv2支持,因为如果使用MLDv1,节点将受到限制。
5. Required DNS RA options so SLAAC-only devices can get DNS; RFC 8106 is a MUST.
5. 所需的DNS RA选项,以便只有SLAAC设备才能获得DNS;RFC8106是必须的。
6. Required RFC 3646 DNS Options for DHCPv6 implementations.
6. DHCPv6实施所需的RFC 3646 DNS选项。
7. Added RESTCONF and NETCONF as possible options to network management.
7. 添加了RESTCONF和NETCONF作为网络管理的可能选项。
8. Added a section on constrained devices.
8. 添加了关于受约束设备的部分。
9. Added text on RFC 7934 to address availability to hosts (SHOULD).
9. 在RFC 7934上添加了文本,以解决主机可用性(应)。
10. Added text on RFC 7844 for anonymity profiles for DHCPv6 clients.
10. 在RFC 7844上添加了DHCPv6客户端匿名配置文件的文本。
11. Added mDNS and DNS-SD as updated service discovery.
11. 添加了MDN和DNS-SD作为更新的服务发现。
12. Added RFC 8028 as a SHOULD as a method for solving a multi-prefix network.
12. 添加RFC 8028作为解决多前缀网络的方法。
13. Added ECN RFC 3168 as a SHOULD.
13. 应添加ECN RFC 3168。
14. Added reference to RFC 7123 for security over IPv4-only networks.
14. 增加了对RFC 7123的参考,以确保仅IPv4网络的安全性。
15. Removed Jumbograms (RFC 2675) as they aren't deployed.
15. 已删除未部署的巨型程序(RFC 2675)。
16. Updated obsoleted RFCs to the new version of the RFC, including RFCs 2460, 1981, 7321, and 4307.
16. 将废弃的RFC更新为RFC的新版本,包括RFC 2460、1981、7321和4307。
17. Added RFC 7772 for power consumptions considerations.
17. 增加了RFC 7772,以考虑功耗。
18. Added why /64 boundaries for more detail -- RFC 7421.
18. 添加了why/64边界以了解更多细节——RFC 7421。
19. Added a unique IPv6 prefix per host to support currently deployed IPv6 networks.
19. 为每个主机添加了唯一的IPv6前缀,以支持当前部署的IPv6网络。
20. Clarified RFC 7066 was a snapshot for 3GPP.
20. 澄清RFC 7066是3GPP的快照。
21. Updated RFC 4191 as a MUST and the Type C Host as a SHOULD as they help solve multi-prefix problems.
21. 必须更新RFC 4191,必须更新C型主机,因为它们有助于解决多前缀问题。
22. Removed IPv6 over ATM since there aren't many deployments.
22. 已删除ATM上的IPv6,因为部署不多。
23. Added a note in Section 6.6 for Rule 5.5 from RFC 6724.
23. 在RFC 6724第6.6节中添加了规则5.5的注释。
24. Added MUST for BCP 198 for forwarding IPv6 packets.
24. 添加了BCP 198转发IPv6数据包的必备项。
25. Added a reference to RFC 8064 for stable address creation.
25. 添加了对RFC 8064的引用以创建稳定的地址。
26. Added text on the protection from excessive extension header options.
26. 添加了关于防止扩展标题选项过多的文本。
27. Added text on the dangers of 1280 MTU UDP, especially with regard to DNS traffic.
27. 添加了关于1280 MTU UDP的危险性的文本,特别是关于DNS流量。
28. Added text to clarify RFC 8200 behavior for unrecognized extension headers or unrecognized ULPs.
28. 添加文本,以澄清无法识别的扩展标题或无法识别的ULP的RFC 8200行为。
29. Removed dated email addresses from design team acknowledgements for [RFC4294].
29. 从[RFC4294]的设计团队确认函中删除注明日期的电子邮件地址。
There have been many editorial clarifications as well as significant additions and updates. While this section highlights some of the changes, readers should not rely on this section for a comprehensive list of all changes.
有许多编辑澄清,以及重要的补充和更新。虽然本节重点介绍了一些更改,但读者不应依赖本节获取所有更改的综合列表。
1. Updated the Introduction to indicate that this document is an applicability statement and is aimed at general nodes.
1. 更新了简介,表明本文件是适用性声明,针对一般节点。
2. Significantly updated the section on mobility protocols; added references and downgraded previous SHOULDs to MAYs.
2. 大幅更新了关于移动协议的章节;添加引用并将以前的should降级为MAYs。
3. Changed the Sub-IP Layer section to just list relevant RFCs, and added some more RFCs.
3. 将子IP层部分更改为仅列出相关RFC,并添加了更多RFC。
4. Added a section on SEND (it is a MAY).
4. 增加了关于发送的部分(这是一个五月)。
5. Revised the section on Privacy Extensions [RFC4941] to add more nuance to the recommendation.
5. 修改了隐私扩展部分[RFC4941],为建议增加了更多细微差别。
6. Completely revised the IPsec/IKEv2 section, downgrading the overall recommendation to a SHOULD.
6. 完全修改了IPsec/IKEv2部分,将总体建议降级为“应”。
7. Upgraded recommendation of DHCPv6 to a SHOULD.
7. 将DHCPv6的建议升级为应。
8. Added a background section on DHCP versus RA options, added a SHOULD recommendation for DNS configuration via RAs (RFC 6106), and cleaned up the DHCP recommendations.
8. 添加了关于DHCP与RA选项的背景部分,添加了通过RAs进行DNS配置的建议(RFC 6106),并清理了DHCP建议。
9. Added the recommendation that routers implement Sections 7.3 and 7.5 of [RFC6275].
9. 增加了路由器执行[RFC6275]第7.3节和第7.5节的建议。
10. Added a pointer to subnet clarification document [RFC5942].
10. 添加了指向子网澄清文档[RFC5942]的指针。
11. Added text that "IPv6 Host-to-Router Load Sharing" [RFC4311] SHOULD be implemented.
11. 添加了应实现“IPv6主机到路由器负载共享”[RFC4311]的文本。
12. Added reference to [RFC5722] (Overlapping Fragments), and made it a MUST to implement.
12. 添加了对[RFC5722](重叠片段)的引用,并使其成为必须实现的。
13. Made "A Recommendation for IPv6 Address Text Representation" [RFC5952] a SHOULD.
13. 提出了“IPv6地址文本表示的建议”[RFC5952]A。
14. Removed the mention of delegation name (DNAME) from the discussion about [RFC3363].
14. 从关于[RFC3363]的讨论中删除了对代表团名称(DNAME)的提及。
15. Numerous updates to reflect newer versions of IPv6 documents, including [RFC3596], [RFC4213], [RFC4291], and [RFC4443].
15. 大量更新以反映IPv6文档的更新版本,包括[RFC3596]、[RFC4213]、[RFC4291]和[RFC4443]。
16. Removed discussion of "Managed" and "Other" flags in RAs. There is no consensus at present on how to process these flags, and discussion of their semantics was removed in the most recent update of Stateless Address Autoconfiguration [RFC4862].
16. 删除了对RAs中“托管”和“其他”标志的讨论。目前还没有关于如何处理这些标志的共识,在最近更新的无状态地址自动配置[RFC4862]中删除了对其语义的讨论。
17. Added many more references to optional IPv6 documents.
17. 添加了更多对可选IPv6文档的引用。
18. Made "A Recommendation for IPv6 Address Text Representation" [RFC5952] a SHOULD.
18. 提出了“IPv6地址文本表示的建议”[RFC5952]A。
19. Updated the MLD section to include reference to Lightweight MLD [RFC5790].
19. 更新了MLD部分,包括对轻型MLD[RFC5790]的引用。
20. Added a SHOULD recommendation for "Default Router Preferences and More-Specific Routes" [RFC4191].
20. 增加了“默认路由器首选项和更具体路由”的建议[RFC4191]。
21. Made "IPv6 Flow Label Specification" [RFC6437] a SHOULD.
21. 应制定“IPv6流标签规范”[RFC6437]a。
Acknowledgments
致谢
o Acknowledgments (Current Document)
o 确认(当前文档)
The authors would like to thank Brian Carpenter, Dave Thaler, Tom Herbert, Erik Kline, Mohamed Boucadair, and Michayla Newcombe for their contributions and many members of the 6man WG for the inputs they gave.
作者要感谢Brian Carpenter、Dave Thaler、Tom Herbert、Erik Kline、Mohamed Boucadair和Michayla Newcombe的贡献,感谢6man工作组的许多成员提供的投入。
o Authors and Acknowledgments from RFC 6434
o 作者和来自RFC 6434的确认
RFC 6434 was authored by Ed Jankiewicz, John Loughney, and Thomas Narten.
RFC6434由Ed Jankiewicz、John Loughney和Thomas Narten撰写。
The authors of RFC 6434 thank Hitoshi Asaeda, Brian Carpenter, Tim Chown, Ralph Droms, Sheila Frankel, Sam Hartman, Bob Hinden, Paul Hoffman, Pekka Savola, Yaron Sheffer, and Dave Thaler for their comments. In addition, the authors thank Mark Andrews for comments and corrections on DNS text and Alfred Hoenes for tracking the updates to various RFCs.
RFC6434的作者感谢Asaeda Hitoshi、Brian Carpenter、Tim Chown、Ralph Droms、Sheila Frankel、Sam Hartman、Bob Hinden、Paul Hoffman、Pekka Savola、Yaron Sheffer和Dave Thaler的评论。此外,作者感谢马克·安德鲁斯对DNS文本的评论和更正,以及阿尔弗雷德·霍恩斯对各种RFC更新的跟踪。
o Authors and Acknowledgments from RFC 4294
o 作者和来自RFC 4294的确认
RFC 4294 was written by the IPv6 Node Requirements design team, which had the following members: Jari Arkko, Marc Blanchet, Samita Chakrabarti, Alain Durand, Gerard Gastaud, Jun-ichiro Itojun Hagino, Atsushi Inoue, Masahiro Ishiyama, John Loughney, Rajiv Raghunarayan, Shoichi Sakane, Dave Thaler, and Juha Wiljakka.
RFC 4294是由IPv6节点需求设计团队编写的,该团队有以下成员:贾里·阿尔科、马克·布兰切特、萨米塔·查克拉巴蒂、阿兰·杜兰德、杰拉德·加斯托、伊藤俊一郎·哈吉诺、井上春树、石山正彦、约翰·洛尼、拉吉夫·拉古纳良、萨坎昭一、戴夫·泰勒和朱哈·威尔贾卡。
The authors of RFC 4294 thank Ran Atkinson, Jim Bound, Brian Carpenter, Ralph Droms, Christian Huitema, Adam Machalek, Thomas Narten, Juha Ollila, and Pekka Savola for their comments.
RFC 4294的作者感谢Ran Atkinson、Jim Bound、Brian Carpenter、Ralph Droms、Christian Huitema、Adam Machalek、Thomas Narten、Juha Ollila和Pekka Savola的评论。
Authors' Addresses
作者地址
Tim Chown Jisc Lumen House, Library Avenue Harwell Oxford, Didcot OX11 0SG United Kingdom
Tim Chown Jisc Lumen House,牛津哈维尔图书馆大道,英国迪科特OX11 0SG
Email: tim.chown@jisc.ac.uk
Email: tim.chown@jisc.ac.uk
John Loughney Intel Santa Clara, CA United States of America
美国加利福尼亚州圣克拉拉市英特尔公司John Loughney
Email: john.loughney@gmail.com
Email: john.loughney@gmail.com
Timothy Winters University of New Hampshire, Interoperability Lab (UNH-IOL) Durham, NH United States of America
新罕布什尔大学,互操作实验室(UH-IOL)达勒姆,美利坚合众国
Email: twinters@iol.unh.edu
Email: twinters@iol.unh.edu