Internet Engineering Task Force (IETF) J. Ahlberg, Ed. Request for Comments: 8432 Ericsson AB Category: Informational M. Ye, Ed. ISSN: 2070-1721 Huawei Technologies X. Li NEC Laboratories Europe LM. Contreras Telefonica I+D CJ. Bernardos Universidad Carlos III de Madrid October 2018
Internet Engineering Task Force (IETF) J. Ahlberg, Ed. Request for Comments: 8432 Ericsson AB Category: Informational M. Ye, Ed. ISSN: 2070-1721 Huawei Technologies X. Li NEC Laboratories Europe LM. Contreras Telefonica I+D CJ. Bernardos Universidad Carlos III de Madrid October 2018
A Framework for Management and Control of Microwave and Millimeter Wave Interface Parameters
微波和毫米波接口参数的管理和控制框架
Abstract
摘要
The unification of control and management of microwave radio link interfaces is a precondition for seamless multi-layer networking and automated network provisioning and operation.
微波无线电链路接口控制和管理的统一是无缝多层网络和自动化网络供应和操作的先决条件。
This document describes the required characteristics and use cases for control and management of radio link interface parameters using a YANG data model.
本文件描述了使用YANG数据模型控制和管理无线链路接口参数所需的特性和用例。
The purpose is to create a framework to identify the necessary information elements and define a YANG data model for control and management of the radio link interfaces in a microwave node. Some parts of the resulting model may be generic and could also be used by other technologies, e.g., Ethernet technology.
目的是创建一个框架,以确定必要的信息元素,并定义一个数据模型,用于控制和管理微波节点中的无线链路接口。结果模型的某些部分可能是通用的,也可能被其他技术使用,例如以太网技术。
Status of This Memo
关于下段备忘
This document is not an Internet Standards Track specification; it is published for informational purposes.
本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 7841第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8432.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问https://www.rfc-editor.org/info/rfc8432.
Copyright Notice
版权公告
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2018 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(https://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................3 1.1. Conventions Used in This Document ..........................5 2. Terminology and Definitions .....................................5 3. Approaches to Manage and Control Radio Link Interfaces ..........7 3.1. Network Management Solutions ...............................7 3.2. Software-Defined Networking ................................7 4. Use Cases .......................................................8 4.1. Configuration Management ...................................9 4.2. Inventory .................................................10 4.3. Status and Statistics .....................................10 4.4. Performance Management ....................................10 4.5. Fault Management ..........................................11 4.6. Troubleshooting and Root Cause Analysis ...................11 5. Requirements ...................................................11 6. Gap Analysis on Models .........................................12 6.1. Microwave Radio Link Functionality ........................13 6.2. Generic Functionality .....................................14 6.3. Summary ...................................................15 7. Security Considerations ........................................16 8. IANA Considerations ............................................16 9. References .....................................................16 9.1. Normative References ......................................16 9.2. Informative References ....................................17 Contributors ......................................................19 Authors' Addresses ................................................20
1. Introduction ....................................................3 1.1. Conventions Used in This Document ..........................5 2. Terminology and Definitions .....................................5 3. Approaches to Manage and Control Radio Link Interfaces ..........7 3.1. Network Management Solutions ...............................7 3.2. Software-Defined Networking ................................7 4. Use Cases .......................................................8 4.1. Configuration Management ...................................9 4.2. Inventory .................................................10 4.3. Status and Statistics .....................................10 4.4. Performance Management ....................................10 4.5. Fault Management ..........................................11 4.6. Troubleshooting and Root Cause Analysis ...................11 5. Requirements ...................................................11 6. Gap Analysis on Models .........................................12 6.1. Microwave Radio Link Functionality ........................13 6.2. Generic Functionality .....................................14 6.3. Summary ...................................................15 7. Security Considerations ........................................16 8. IANA Considerations ............................................16 9. References .....................................................16 9.1. Normative References ......................................16 9.2. Informative References ....................................17 Contributors ......................................................19 Authors' Addresses ................................................20
Microwave radio is a technology that uses high-frequency radio waves to provide high-speed wireless connections that can send and receive voice, video, and data information. It is a general term used for systems covering a very large range of traffic capacities, channel separations, modulation formats, and applications over a wide range of frequency bands from 1.4 GHz up to and above 100 GHz.
微波无线电是一种利用高频无线电波提供高速无线连接的技术,可以发送和接收语音、视频和数据信息。它是一个通用术语,用于覆盖非常大范围的业务容量、信道分离、调制格式以及从1.4 GHz到100 GHz及以上的频带范围内的应用的系统。
The main application for microwave is backhaul for mobile broadband. Those networks will continue to be modernized using a combination of microwave and fiber technologies. The choice of technology depends on fiber presence and cost of ownership, not capacity limitations in microwave.
微波的主要应用是移动宽带的回程。这些网络将继续采用微波和光纤技术相结合的方式实现现代化。技术的选择取决于光纤的存在和拥有成本,而不是微波的容量限制。
Today, microwave is already able to fully support the capacity needs of a backhaul in a radio access network and will evolve to support multiple gigabits in traditional frequency bands and more than 10 gigabits in higher-frequency bands with more bandwidth. Layer 2 (L2) Ethernet features are normally an integrated part of microwave nodes, and more advanced L2 and Layer 3 (L3) features will be introduced over time to support the evolution of the transport services that will be provided by a backhaul/transport network. Note that wireless access technologies such as 3/4/5G and Wi-Fi are not within the scope of this document.
今天,微波已经能够完全支持无线接入网络中回程的容量需求,并将发展到在传统频带中支持多个千兆位,在更高频带中支持10个千兆位以上的带宽。第2层(L2)以太网功能通常是微波节点的集成部分,随着时间的推移,将引入更高级的第2层和第3层(L3)功能,以支持回程/传输网络提供的传输服务的发展。请注意,3/4/5G和Wi-Fi等无线接入技术不在本文档范围内。
Open and standardized interfaces are a prerequisite for efficient management of equipment from multiple vendors, integrated in a single system/controller. This framework addresses management and control of the radio link interface(s) and their relationship to other interfaces (typically, Ethernet interfaces) in a microwave node. A radio link provides the transport over the air, using one or several carriers in aggregated or protected configurations. Managing and controlling a transport service over a microwave node involves both radio link and packet transport functionality.
开放和标准化的接口是有效管理来自多个供应商、集成在单个系统/控制器中的设备的先决条件。该框架解决了微波节点中无线链路接口的管理和控制及其与其他接口(通常为以太网接口)的关系。无线链路使用聚合或受保护配置中的一个或多个载波提供空中传输。通过微波节点管理和控制传输服务涉及无线链路和分组传输功能。
Today, there are already numerous IETF data models, RFCs, and Internet-Drafts with technology-specific extensions that cover a large part of the L2 and L3 domains. Examples include IP Management [RFC8344], Routing Management [RFC8349], and Provider Bridge [IEEE802.1Qcp]. These are based on the IETF YANG data model for Interface Management [RFC8343], which is an evolution of the SNMP IF-MIB [RFC2863].
今天,已经有许多IETF数据模型、RFC和Internet草案,其中包含技术特定的扩展,覆盖了L2和L3领域的大部分。示例包括IP管理[RFC8344]、路由管理[RFC8349]和提供商网桥[IEEE802.1Qcp]。这些是基于IETF接口管理数据模型[RFC8343],它是SNMP IF-MIB[RFC2863]的一种改进。
Since microwave nodes will contain more and more L2 and L3 (packet) functionality that is expected to be managed using those models, there are advantages if radio link interfaces can be modeled and managed using the same structure and the same approach. This is
由于微波节点将包含越来越多的L2和L3(数据包)功能,预计将使用这些模型进行管理,因此,如果可以使用相同的结构和方法对无线链路接口进行建模和管理,则具有优势。这是
especially true for use cases in which a microwave node is managed as one common entity that includes both the radio link and the L2 and L3 functionality, e.g., basic configuration of the node and connections, centralized troubleshooting, upgrade, and maintenance. All interfaces in a node, irrespective of technology, would then be accessed from the same core model, i.e., [RFC8343], and could be extended with technology-specific parameters in models augmenting that core model. The relationship/connectivity between interfaces could be given by the physical equipment configuration. For example, the slot where the Radio Link Terminal (modem) is plugged in could be associated with a specific Ethernet port due to the wiring in the backplane of the system, or it could be flexible and therefore configured via a management system or controller.
尤其适用于微波节点作为一个公共实体进行管理的用例,该实体包括无线链路以及L2和L3功能,例如,节点和连接的基本配置、集中故障排除、升级和维护。一个节点中的所有接口,无论技术如何,都将从同一个核心模型(即[RFC8343])访问,并且可以在扩展该核心模型的模型中使用特定于技术的参数进行扩展。接口之间的关系/连通性可通过物理设备配置给出。例如,由于系统背板中的布线,插入无线电链路终端(调制解调器)的插槽可能与特定以太网端口相关联,也可能是灵活的,因此可通过管理系统或控制器进行配置。
+------------------------------------------------------------------+ | Interface [RFC8343] | | +---------------+ | | | Ethernet Port | | | +---------------+ | | \ | | +---------------------+ | | | Radio Link Terminal | | | +---------------------+ | | / \ | | +---------------------+ +---------------------+ | | | Carrier Termination | | Carrier Termination | | | +---------------------+ +---------------------+ | +------------------------------------------------------------------+
+------------------------------------------------------------------+ | Interface [RFC8343] | | +---------------+ | | | Ethernet Port | | | +---------------+ | | \ | | +---------------------+ | | | Radio Link Terminal | | | +---------------------+ | | / \ | | +---------------------+ +---------------------+ | | | Carrier Termination | | Carrier Termination | | | +---------------------+ +---------------------+ | +------------------------------------------------------------------+
Figure 1: Relationship between Interfaces in a Node
图1:节点中接口之间的关系
There will always be certain implementations that differ among products, so it is practically impossible to achieve industry consensus on every design detail. It is therefore important to focus on the parameters that are required to support the use cases applicable for centralized, unified, multi-vendor management and to allow other parameters to either be optional or be covered by extensions to the standardized model. Furthermore, a standard that allows for a certain degree of freedom encourages innovation and competition, which benefits the entire industry. Thus, it is important that a radio link management model covers all relevant functions but also leaves room for product- and feature-specific extensions.
在不同的产品中总会有不同的实现方式,因此实际上不可能在每个设计细节上达成行业共识。因此,重要的是关注支持适用于集中、统一、多供应商管理的用例所需的参数,并允许其他参数可选或由标准化模型的扩展覆盖。此外,允许一定程度自由的标准鼓励创新和竞争,这有利于整个行业。因此,重要的是,无线链路管理模型涵盖所有相关功能,但也为特定于产品和功能的扩展留出空间。
Models are available for microwave radio link functionality: "Microwave Information Model" by the ONF [ONF-MW] and "Microwave Radio Link YANG Data Models" submitted to and discussed by the CCAMP Working Group [CCAMP-MW]. The purpose of this document is to reach
微波无线电链路功能可用模型:ONF[ONF-MW]的“微波信息模型”和CCAMP工作组[CCAMP-MW]提交并讨论的“微波无线电链路数据模型”。本文件旨在达到以下目的:
consensus within the industry around one common approach with respect to the use cases and requirements to be supported, the type and structure of the model, and the resulting attributes to be included. This document describes the use cases, requirements, and expected characteristics of the model. It also includes an analysis of how the models in the two ongoing initiatives fulfill these expectations and recommendations for what can be reused and what gaps need to be filled by a new and evolved model ("A YANG Data Model for Microwave Radio Link" by the IETF [IETF-MW]).
业界就一种通用方法达成共识,该方法涉及要支持的用例和需求、模型的类型和结构以及要包含的结果属性。本文档描述了模型的用例、需求和预期特性。它还包括对两个正在进行的计划中的模型如何满足这些期望和建议的分析,这些期望和建议涉及哪些可以重用,以及需要通过新的和改进的模型(“IETF[IETF-MW]提出的微波无线电链路的YANG数据模型”)填补哪些空白。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“建议”、“不建议”、“可”和“可选”在所有大写字母出现时(如图所示)应按照BCP 14[RFC2119][RFC8174]所述进行解释。
Microwave radio: a term commonly used for technologies that operate in both microwave and millimeter wavelengths and in frequency bands from 1.4 GHz up to and beyond 100 GHz. In traditional bands, it typically supports capacities of 1-3 Gbps; in the 70/80 GHz band, it supports up to 10 Gbps. Using multi-carrier systems operating in frequency bands with wider channels, the technology will be capable of providing capacities of up to 100 Gbps.
微波无线电:通常用于微波和毫米波以及1.4GHz至100GHz及以上频段的技术的术语。在传统频段,它通常支持1-3 Gbps的容量;在70/80 GHz频段,它支持高达10 Gbps的速率。使用在更宽信道的频带中运行的多载波系统,该技术将能够提供高达100 Gbps的容量。
Microwave radio technology: widely used for point-to-point telecommunications because its small wavelength allows conveniently sized antennas to direct radio waves in narrow beams and its comparatively higher frequencies allow broad bandwidth and high data-transmission rates. It is used for a broad range of fixed and mobile services, including high-speed, point-to-point wireless local area networks (WLANs) and broadband access.
微波无线电技术:广泛用于点对点通信,因为它的波长小,可以方便地用大小合适的天线在窄波束中引导无线电波,而其相对较高的频率允许宽带和高数据传输速率。它用于广泛的固定和移动服务,包括高速、点对点无线局域网(WLAN)和宽带接入。
The ETSI EN 302 217 series defines the characteristics and requirements of microwave equipment and antennas. In particular, ETSI EN 302 217-2 [EN302217-2] specifies the essential parameters for the systems operating from 1.4 GHz to 86 GHz.
ETSI EN 302 217系列定义了微波设备和天线的特性和要求。具体而言,ETSI EN 302217-2[EN302217-2]规定了在1.4 GHz至86 GHz范围内运行的系统的基本参数。
Carrier Termination and Radio Link Terminal: two concepts defined to support modeling of microwave radio link features and parameters in a structured yet simple manner.
载波终端和无线链路终端:定义两个概念,以支持以结构化但简单的方式对微波无线链路特性和参数进行建模。
* Carrier Termination: an interface for the capacity provided over the air by a single carrier. It is typically defined by its transmitting and receiving frequencies.
* 载波终端:单个载波通过空中提供的容量接口。它通常由其发射和接收频率定义。
* Radio Link Terminal: an interface providing Ethernet capacity and/or Time Division Multiplexing (TDM) capacity to the associated Ethernet and/or TDM interfaces in a node. It is used for setting up a transport service over a microwave radio link.
* 无线链路终端:向节点中的相关以太网和/或TDM接口提供以太网容量和/或时分复用(TDM)容量的接口。它用于通过微波无线电链路建立传输服务。
Figure 2 provides a graphical representation of the Carrier Termination and Radio Link Terminal concepts.
图2提供了载波终端和无线链路终端概念的图形表示。
/--------- Radio Link ---------\ Near End Far End
/--------- Radio Link ---------\ Near End Far End
+---------------+ +---------------+ | Radio Link | | Radio Link | | Terminal | | Terminal | | | | | | (Protected or Bonded) | | | | | | +-----------+ | | +-----------+ | | | | | Carrier A | | | | | | Carrier | |<--------->| | Carrier | | | |Termination| | | |Termination| | ETH----| | | | | | | |----ETH | +-----------+ | | +-----------+ | TDM----| | | |----TDM | +-----------+ | | +-----------+ | | | | | Carrier B | | | | | | Carrier | |<--------->| | Carrier | | | |Termination| | | |Termination| | | | | | | | | | | +-----------+ | | +-----------+ | | | | | +---------------+ +---------------+
+---------------+ +---------------+ | Radio Link | | Radio Link | | Terminal | | Terminal | | | | | | (Protected or Bonded) | | | | | | +-----------+ | | +-----------+ | | | | | Carrier A | | | | | | Carrier | |<--------->| | Carrier | | | |Termination| | | |Termination| | ETH----| | | | | | | |----ETH | +-----------+ | | +-----------+ | TDM----| | | |----TDM | +-----------+ | | +-----------+ | | | | | Carrier B | | | | | | Carrier | |<--------->| | Carrier | | | |Termination| | | |Termination| | | | | | | | | | | +-----------+ | | +-----------+ | | | | | +---------------+ +---------------+
\--- Microwave Node ---/ \--- Microwave Node ---/
\--- Microwave Node ---/ \--- Microwave Node ---/
Figure 2: Radio Link Terminal and Carrier Termination
图2:无线链路终端和载波终端
Software-Defined Networking (SDN): an architecture that decouples the network control and forwarding functions, enabling the network control to become directly programmable and the underlying infrastructure to be abstracted for applications and network services. SDN can be used for automation of traditional network management functionality using an SDN approach of standardized programmable interfaces for control and management [RFC7426].
软件定义网络(SDN):一种将网络控制和转发功能解耦的体系结构,使网络控制可以直接编程,并将底层基础设施抽象为应用程序和网络服务。SDN可用于传统网络管理功能的自动化,使用控制和管理标准化可编程接口的SDN方法[RFC7426]。
This framework addresses the definition of an open and standardized interface for radio link functionality in a microwave node. The application of such an interface used for management and control of nodes and networks typically varies from one operator to another in terms of the systems used and how they interact. Possible approaches include using a Network Management System (NMS), Software-Defined Networking (SDN), or some combination of the two. As there are still many networks where the NMS is implemented as one component/interface and the SDN controller is scoped to control-plane functionality as a separate component/interface, this document does not preclude either model. The aim of this document is to provide a framework for development of a common YANG data model for both management and control of microwave interfaces.
该框架解决了微波节点中无线链路功能的开放和标准化接口的定义。用于管理和控制节点和网络的此类接口的应用通常因运营商的不同而有所不同,具体取决于所使用的系统及其交互方式。可能的方法包括使用网络管理系统(NMS)、软件定义网络(SDN)或两者的某种组合。由于仍有许多网络,其中NMS作为一个组件/接口实施,SDN控制器作为一个单独的组件/接口控制平面功能,因此本文件不排除这两种模型。本文件的目的是为微波接口的管理和控制提供一个通用数据模型的开发框架。
The classic network management solutions, with vendor-specific domain management combined with cross-domain functionality for service management and analytics, still dominate the market. These solutions are expected to evolve and benefit from an increased focus on standardization by simplifying multi-vendor management and removing the need for vendor- or domain-specific management.
经典的网络管理解决方案,包括特定于供应商的域管理,以及用于服务管理和分析的跨域功能,仍然主导着市场。通过简化多供应商管理并消除对供应商或特定领域管理的需求,这些解决方案有望发展并受益于对标准化的日益关注。
One of the main drivers for applying SDN from an operator perspective is simplification and automation of network provisioning as well as end-to-end network service management. The vision is to have a global view of the network conditions spanning different vendors' equipment and multiple technologies.
从运营商的角度来看,应用SDN的主要驱动因素之一是网络供应的简化和自动化以及端到端网络服务管理。愿景是对跨越不同供应商设备和多种技术的网络状况有一个全局视图。
If nodes from different vendors are managed by the same SDN controller via a node management interface without the extra effort of introducing intermediate systems, all nodes must align their node management interfaces. Hence, an open and standardized node management interface is required in a multi-vendor environment. Such a standardized interface enables unified management and configuration of nodes from different vendors by a common set of applications.
如果来自不同供应商的节点由同一SDN控制器通过节点管理接口进行管理,而无需引入中间系统,则所有节点都必须对齐其节点管理接口。因此,在多供应商环境中需要一个开放和标准化的节点管理界面。这种标准化的接口可以通过一组通用的应用程序对来自不同供应商的节点进行统一的管理和配置。
In addition to SDN applications for configuring, managing, and controlling the nodes and their associated transport interfaces (including the L2 Ethernet, L3 IP, and radio interfaces), there are also a large variety of more advanced SDN applications that can be utilized and/or developed.
除了用于配置、管理和控制节点及其相关传输接口(包括二级以太网、三级IP和无线电接口)的SDN应用程序外,还可以利用和/或开发多种更高级的SDN应用程序。
A potentially flexible approach for operators is to use SDN in a logically controlled way, managing the radio links by selecting a predefined operation mode. The operation mode is a set of logical metrics or parameters describing a complete radio link configuration, such as capacity, availability, priority, and power consumption.
运营商潜在的灵活方法是以逻辑控制的方式使用SDN,通过选择预定义的操作模式来管理无线链路。操作模式是一组描述完整无线链路配置的逻辑度量或参数,如容量、可用性、优先级和功耗。
An example of an operation mode table is shown in Figure 3. Based on its operation policy (e.g., power consumption or traffic priority), the SDN controller selects one operation mode and translates that into the required configuration of the individual parameters for the Radio Link Terminals and the associated Carrier Terminations.
图3显示了操作模式表的示例。基于其操作策略(例如,功耗或业务优先级),SDN控制器选择一种操作模式,并将其转换为无线链路终端和相关载波终端的各个参数的所需配置。
+----+---------------+------------+-------------+-----------+------+ | ID |Description | Capacity |Availability | Priority |Power | +----+---------------+------------+-------------+-----------+------+ | 1 |High capacity | 400 Mbps | 99.9% | Low |High | +----+---------------+------------+-------------+-----------+------+ | 2 |High avail- | 100 Mbps | 99.999% | High |Low | | | ability | | | | | +----+---------------+------------+-------------+-----------+------+
+----+---------------+------------+-------------+-----------+------+ | ID |Description | Capacity |Availability | Priority |Power | +----+---------------+------------+-------------+-----------+------+ | 1 |High capacity | 400 Mbps | 99.9% | Low |High | +----+---------------+------------+-------------+-----------+------+ | 2 |High avail- | 100 Mbps | 99.999% | High |Low | | | ability | | | | | +----+---------------+------------+-------------+-----------+------+
Figure 3: Example of an Operation Mode Table
图3:操作模式表的示例
An operation mode bundles together the values of a set of different parameters. How each operation mode maps a certain set of attributes is out of the scope of this document.
操作模式将一组不同参数的值捆绑在一起。每个操作模式如何映射一组特定的属性超出了本文档的范围。
The use cases described should be the basis for identifying and defining the parameters to be supported by a YANG data model for management of radio links that will be applicable to centralized, unified, multi-vendor management. The use cases involve configuration management, inventory, status and statistics, performance management, fault management, and troubleshooting and root cause analysis.
所描述的用例应作为识别和定义数据模型支持的参数的基础,该数据模型用于管理适用于集中、统一、多供应商管理的无线链路。用例包括配置管理、资源清册、状态和统计、性能管理、故障管理、故障排除和根本原因分析。
Other product-specific use cases, e.g., addressing installation or on-site troubleshooting and fault resolution, are outside the scope of this framework. If required, these use cases are expected to be supported by product-specific extensions to the standardized model.
其他特定于产品的用例(例如,解决安装或现场故障排除和故障解决)不在本框架的范围内。如果需要,这些用例将由标准化模型的特定于产品的扩展支持。
Configuration management involves configuring a Radio Link Terminal, the constituent Carrier Terminations, and, when applicable, the relationship to IP/Ethernet and TDM interfaces.
配置管理涉及配置无线链路终端、组成载波终端,以及在适用时与IP/以太网和TDM接口的关系。
o Understand the capabilities and limitations
o 了解功能和限制
Exchange of information between a manager and a device about the capabilities supported and specific limitations in the parameter values and enumerations that can be used.
在管理器和设备之间交换有关支持的功能以及可使用的参数值和枚举中的特定限制的信息。
Examples of information that could be exchanged include the maximum modulation supported and support (or lack of support) for the Cross Polarization Interference Cancellation (XPIC) feature.
可交换的信息示例包括支持的最大调制和对交叉极化干扰消除(XPIC)特性的支持(或缺乏支持)。
o Initial Configuration
o 初始配置
Initial configuration of a Radio Link Terminal, enough to establish Layer 1 (L1) connectivity to an associated Radio Link Terminal on a device at the far end over the hop. It may also include configuration of the relationship between a Radio Link Terminal and an associated traffic interface, e.g., an Ethernet interface, unless that is given by the equipment configuration.
无线链路终端的初始配置,足以通过跳建立到远端设备上的相关无线链路终端的第1层(L1)连接。它还可以包括无线电链路终端和相关联的业务接口(例如以太网接口)之间关系的配置,除非设备配置给出了这种配置。
Frequency, modulation, coding, and output power are examples of parameters typically configured for a Carrier Termination and type of aggregation/bonding or protection configurations expected for a Radio Link Terminal.
频率、调制、编码和输出功率是通常为载波终端配置的参数的示例,以及无线链路终端预期的聚合/结合或保护配置的类型。
o Radio link reconfiguration and optimization
o 无线链路重构与优化
Reconfiguration, update, or optimization of an existing Radio Link Terminal. Output power and modulation for a Carrier Termination as well as protection schemas and activation/deactivation of carriers in a Radio Link Terminal are examples on parameters that can be reconfigured and used for optimization of the performance of a network.
现有无线链路终端的重新配置、更新或优化。载波终端的输出功率和调制以及无线链路终端中的载波的保护模式和激活/失活是关于可重新配置并用于优化网络性能的参数的示例。
o Radio link logical configuration
o 无线链路逻辑配置
Radio Link Terminals configured to include a group of carriers are widely used in microwave technology. There are several kinds of groups: aggregation/bonding, 1+1 protection/redundancy, etc. To avoid configuration on each Carrier Termination directly, a logical control provides flexible management by mapping a logical configuration to a set of physical attributes. This could also be
配置为包括一组载波的无线链路终端在微波技术中被广泛使用。有几种类型的组:聚合/绑定、1+1保护/冗余等。为了避免直接在每个载波终端上进行配置,逻辑控件通过将逻辑配置映射到一组物理属性来提供灵活的管理。这也可能是
applied in a hierarchical SDN environment where some domain controllers are located between the SDN controller and the Radio Link Terminal.
应用于分层SDN环境,其中一些域控制器位于SDN控制器和无线链路终端之间。
o Retrieve logical inventory and configuration from device
o 从设备检索逻辑资源清册和配置
Request from manager and response by device with information about radio interfaces, e.g., their constitution and configuration.
管理器的请求和设备的响应,以及有关无线电接口的信息,例如其构成和配置。
o Retrieve physical/equipment inventory from device
o 从设备检索物理/设备清单
Request from manager about physical and/or equipment inventory associated with the Radio Link Terminals and Carrier Terminations.
经理关于无线电链路终端和载波终端相关的物理和/或设备库存的请求。
o Actual status and performance of a radio link interface
o 无线电链路接口的实际状态和性能
Manager requests and device responds with information about actual status and statistics of configured radio link interfaces and their constituent parts. It's important to report the effective bandwidth of a radio link since it can be configured to dynamically adjust the modulation based on the current signal conditions.
Manager请求和设备响应,并提供有关已配置无线链路接口及其组成部分的实际状态和统计信息。报告无线电链路的有效带宽很重要,因为它可以配置为根据当前信号条件动态调整调制。
o Configuration of historical performance measurements
o 历史性能度量的配置
Configuration of historical performance measurements for a radio link interface and/or its constituent parts. See Section 4.1.
无线链路接口和/或其组成部分的历史性能测量配置。见第4.1节。
o Collection of historical performance data
o 收集历史性能数据
Collection of historical performance data in bulk by the manager is a general use case for a device and not specific to a radio link interface.
manager批量收集历史性能数据是设备的一般用例,而不是特定于无线链路接口。
Collection of an individual counter for a specific interval is in some cases required as a complement to the retrieval in bulk as described above.
在某些情况下,需要收集特定间隔的单个计数器,作为上述批量检索的补充。
o Configuration of alarm reporting
o 报警报告的配置
Configuration of alarm reporting associated specifically with radio interfaces, e.g., configuration of alarm severity, is a subset of the configuration use case to be supported. See Section 4.1.
具体与无线电接口相关的报警报告配置,例如报警严重性配置,是需要支持的配置用例的子集。见第4.1节。
o Alarm management
o 报警管理
Alarm synchronization, visualization, handling, notifications, and events are generic use cases for a device and should be supported on a radio link interface. There are, however, radio-specific alarms that are important to report. Signal degradation of the radio link is one example.
报警同步、可视化、处理、通知和事件是设备的通用用例,应该在无线链路接口上得到支持。然而,有一些特定于无线电的警报需要报告。无线链路的信号退化就是一个例子。
Provide information and suggest actions required by a manager/ operator to investigate and understand the underlying issue to a problem in the performance and/or functionality of a Radio Link Terminal and the associated Carrier Terminations.
提供经理/运营商调查和了解无线链路终端和相关载波终端的性能和/或功能问题的根本问题所需的信息并建议其采取的行动。
For managing a microwave node including both the radio link and the packet transport functionality, a unified data model is desired to unify the modeling of the radio link interfaces and the L2/L3 interfaces using the same structure and the same modeling approach. If some part of the model is generic for other technology usage, it should be clearly stated.
为了管理包括无线链路和分组传输功能两者的微波节点,需要统一的数据模型,以使用相同的结构和相同的建模方法来统一无线链路接口和L2/L3接口的建模。如果模型的某些部分是其他技术用途的通用部分,则应明确说明。
The purpose of the YANG data model is for management and control of the radio link interface(s) and the relationship/connectivity to other interfaces, typically to Ethernet interfaces, in a microwave node.
YANG数据模型用于管理和控制微波节点中的无线链路接口以及与其他接口(通常是以太网接口)的关系/连接。
The capability of configuring and managing microwave nodes includes the following requirements for the model:
配置和管理微波节点的能力包括模型的以下要求:
1. It MUST be possible to configure, manage, and control a Radio Link Terminal and the constituent Carrier Terminations.
1. 必须能够配置、管理和控制无线链路终端和组成载波终端。
A. Configuration of frequency, channel bandwidth, modulation, coding, and transmitter output power MUST be supported for a Carrier Termination.
A.载波终端必须支持频率、信道带宽、调制、编码和发射机输出功率的配置。
B. A Radio Link Terminal MUST configure the associated Carrier Terminations and the type of aggregation/bonding or protection configurations expected for the Radio Link Terminal.
B.无线链路终端必须配置相关的载波终端以及无线链路终端预期的聚合/连接或保护配置类型。
C. The capability (e.g., the maximum modulation supported) and the actual status/statistics (e.g., administrative status of the carriers) SHOULD also be supported by the data model.
C.数据模型还应支持能力(例如,支持的最大调制)和实际状态/统计(例如,载波的管理状态)。
D. The definition of the features and parameters SHOULD be based on established microwave equipment and radio standards, such as ETSI EN 302 217 [EN302217-2], which specifies the essential parameters for microwave systems operating from 1.4 GHz to 86 GHz.
D.特征和参数的定义应基于既定的微波设备和无线电标准,如ETSI EN 302217[EN302217-2],其中规定了在1.4 GHz至86 GHz范围内工作的微波系统的基本参数。
2. It MUST be possible to map different traffic types (e.g., TDM and Ethernet) to the transport capacity provided by a specific Radio Link Terminal.
2. 必须能够将不同的业务类型(如TDM和以太网)映射到特定无线链路终端提供的传输容量。
3. It MUST be possible to configure and collect historical measurements (for the use case described in Section 4.4) to be performed on a radio link interface (e.g., minimum, maximum, average transmit power, and received level in dBm).
3. 必须能够配置和收集要在无线链路接口上执行的历史测量(对于第4.4节中描述的用例)(例如,最小、最大、平均发射功率和接收电平,单位为dBm)。
4. It MUST be possible to configure and retrieve alarms reporting associated with the radio interfaces (e.g., configuration fault, signal lost, modem fault, and radio fault).
4. 必须能够配置和检索与无线电接口相关的报警报告(例如,配置故障、信号丢失、调制解调器故障和无线电故障)。
The purpose of the gap analysis is to identify and recommend what models to use in a microwave device to support the use cases and requirements specified in the previous sections. This document also makes a recommendation for how the gaps not supported should be filled, including the need for development of new models and evolution of existing models and documents.
差距分析的目的是确定并推荐微波设备中使用的型号,以支持前面章节中规定的用例和要求。本文件还就如何填补未得到支持的空白提出了建议,包括开发新模型的必要性以及现有模型和文件的演变。
Models are available for microwave radio link functionality: "Microwave Information Model" by the ONF [ONF-MW] and "Microwave Radio Link YANG Data Models" submitted to and discussed by the CCAMP Working Group [CCAMP-MW]. The analysis in this document takes these initiatives into consideration and makes a recommendation on how to use and complement them in order to fill the gaps identified.
微波无线电链路功能可用模型:ONF[ONF-MW]的“微波信息模型”和CCAMP工作组[CCAMP-MW]提交并讨论的“微波无线电链路数据模型”。本文件中的分析考虑了这些举措,并就如何使用和补充这些举措提出了建议,以填补已确定的差距。
For generic functionality, not functionality specific to radio link, the ambition is to refer to existing or emerging models that could be applicable for all functional areas in a microwave node.
对于通用功能,而不是特定于无线链路的功能,我们的目标是参考现有或新兴的模型,这些模型可能适用于微波节点中的所有功能区域。
[ONF-CIM] defines a CoreModel of the ONF Common Information Model. An information model describes the things in a domain in terms of objects, their properties (represented as attributes), and their relationships. The ONF information model is expressed in Unified Modeling Language (UML). The ONF CoreModel is independent of specific data-plane technology. The technology-specific content, acquired in a runtime solution via "filled in" cases of specification, augments the CoreModel by providing a forwarding technology-specific representation.
[ONF-CIM]定义了ONF公共信息模型的核心模型。信息模型根据对象、对象的属性(表示为属性)及其关系来描述域中的事物。ONF信息模型用统一建模语言(UML)表示。ONF CoreModel独立于特定的数据平面技术。特定于技术的内容通过规范的“填充”案例在运行时解决方案中获得,通过提供特定于转发技术的表示来增强CoreModel。
IETF data models define implementations and protocol-specific details. YANG is a data modeling language used to model the configuration and state data. [RFC8343] defines a generic YANG data model for interface management that doesn't include technology-specific information. To describe the technology-specific information, several YANG data models have been proposed in the IETF to augment [RFC8343], e.g., the data model defined in [RFC8344]. The YANG data model is a popular approach for modeling interfaces for many packet transport technologies and is thereby well positioned to become an industry standard. In light of this trend, [CCAMP-MW] provides a YANG data model proposal for radio interfaces that is well aligned with the structure of other technology-specific YANG data models augmenting [RFC8343].
IETF数据模型定义了实现和特定于协议的细节。YANG是一种数据建模语言,用于对配置和状态数据进行建模。[RFC8343]为接口管理定义了一个通用数据模型,该模型不包括特定于技术的信息。为了描述特定于技术的信息,IETF中提出了几个数据模型来扩充[RFC8343],例如[RFC8344]中定义的数据模型。YANG数据模型是许多数据包传输技术接口建模的流行方法,因此很有可能成为行业标准。鉴于这一趋势,[CCAMP-MW]为无线电接口提供了一个YANG数据模型提案,该提案与其他技术特定的YANG数据模型的结构保持一致,以增强[RFC8343]。
[RFC3444] explains the difference between Information Models (IMs) and Data Models (DMs). An IM models managed objects at a conceptual level for designers and operators, while a DM is defined at a lower level and includes many details for implementers. In addition, the protocol-specific details are usually included in a DM. Since conceptual models can be implemented in different ways, multiple DMs can be derived from a single IM.
[RFC3444]解释了信息模型(IMs)和数据模型(DMs)之间的区别。IM在概念级别为设计人员和操作员建模托管对象,而DM在较低级别定义,并为实现人员提供许多详细信息。此外,特定于协议的详细信息通常包含在DM中。由于概念模型可以以不同的方式实现,因此可以从单个IM派生多个DM。
It is recommended to use the structure of the model described in [CCAMP-MW] as the starting point, since it is a data model providing the wanted alignment with [RFC8343]. To cover the identified gaps, it is recommended to define new leafs/parameters and include those in the new model [IETF-MW] while taking reference from [ONF-CIM]. It is also recommended to add the required data nodes to describe the interface layering for the capacity provided by a Radio Link Terminal and the associated Ethernet and TDM interfaces in a microwave node. The principles and data nodes for interface layering described in [RFC8343] should be used as a basis.
建议使用[CCAMP-MW]中描述的模型结构作为起点,因为它是一个数据模型,提供了与[RFC8343]所需的一致性。为了弥补已确定的差距,建议定义新的LEAF/参数,并在参考[ONF-CIM]的同时将其包括在新模型[IETF-MW]中。还建议添加所需的数据节点,以描述无线链路终端和微波节点中相关以太网和TDM接口提供的容量的接口分层。[RFC8343]中描述的接口分层原则和数据节点应作为基础。
For generic functionality, not functionality specific to radio links, the recommendation is to refer to existing RFCs or emerging Internet-Drafts according to Figure 4. "[IETF-MW]" is used in Figure 4 for the cases where the functionality is recommended to be included in the new model [IETF-MW] as described in Section 6.1.
对于通用功能,而不是特定于无线电链路的功能,建议参考图4中的现有RFC或新兴互联网草案。“IETF-MW]”在图4中用于建议将功能包括在第6.1节所述的新型号[IETF-MW]中的情况。
+------------------------------------+-----------------------------+ | Generic Functionality | Recommendation | | | | +------------------------------------+-----------------------------+ |1. Fault Management | | | | | | Alarm Configuration | [IETF-MW] | | | | | Alarm Notifications/ | [YANG-ALARM] | | Synchronization | | +------------------------------------+-----------------------------+ |2. Performance Management | | | | | | Performance Configuration/ | [IETF-MW] | | Activation | | | | | | Performance Collection | [IETF-MW] and XML files | +------------------------------------+-----------------------------+ |3. Physical/Equipment Inventory | [RFC8348] | +------------------------------------+-----------------------------+
+------------------------------------+-----------------------------+ | Generic Functionality | Recommendation | | | | +------------------------------------+-----------------------------+ |1. Fault Management | | | | | | Alarm Configuration | [IETF-MW] | | | | | Alarm Notifications/ | [YANG-ALARM] | | Synchronization | | +------------------------------------+-----------------------------+ |2. Performance Management | | | | | | Performance Configuration/ | [IETF-MW] | | Activation | | | | | | Performance Collection | [IETF-MW] and XML files | +------------------------------------+-----------------------------+ |3. Physical/Equipment Inventory | [RFC8348] | +------------------------------------+-----------------------------+
Figure 4: Recommendation for How to Support Generic Functionality
图4:关于如何支持通用功能的建议
Microwave-specific alarm configurations are recommended to be included in the new model [IETF-MW] and could be based on what is supported in the models described in [ONF-MW] and [CCAMP-MW]. Alarm notifications and synchronization are general and are recommended to be supported by a generic model, such as [YANG-ALARM].
建议在新型号[IETF-MW]中包括微波特定报警配置,并可基于[ONF-MW]和[CCAMP-MW]中所述型号中支持的配置。报警通知和同步是通用的,建议由通用模型(如[YANG-Alarm])支持。
Activation of interval counters and thresholds could be a generic function, but it is recommended to be supported by the new model [IETF-MW]. It can be based on the models described in [ONF-MW] and [CCAMP-MW].
激活间隔计数器和阈值可能是一种通用功能,但建议新型号[IETF-MW]支持该功能。它可以基于[ONF-MW]和[CCAMP-MW]中描述的模型。
Collection of interval/historical counters is a generic function that needs to be supported in a node. File-based collection via the SSH File Transfer Protocol (SFTP) and collection via NETCONF/YANG interfaces are two possible options; the recommendation is to include
间隔/历史计数器集合是节点中需要支持的通用函数。通过SSH文件传输协议(SFTP)进行基于文件的收集和通过NETCONF/YANG接口进行收集是两种可能的选择;建议包括:
support for the latter in the new model [IETF-MW]. The models described in [ONF-MW] and [CCAMP-MW] can also be used as a basis in this area.
在新型号[IETF-MW]中支持后者。[ONF-MW]和[CCAMP-MW]中描述的模型也可作为该领域的基础。
Physical and/or equipment inventory associated with the Radio Link Terminals and Carrier Terminations is recommended to be covered by a generic model for the complete node, e.g., the model defined in [RFC8348]. It is thereby outside the scope of the new model [IETF-MW].
建议完整节点的通用模型涵盖与无线链路终端和载波终端相关的物理和/或设备清单,例如[RFC8348]中定义的模型。因此,它超出了新型号[IETF-MW]的范围。
The conclusions and recommendations from the analysis can be summarized as follows:
分析得出的结论和建议可总结如下:
1. A new YANG data model for radio link [IETF-MW] should be defined with enough scope to support the use cases and requirements in Sections 4 and 5 of this document.
1. 无线电链路[IETF-MW]的新数据模型应具有足够的范围,以支持本文件第4节和第5节中的用例和要求。
2. Use the structure of the model described in [CCAMP-MW] as the starting point. It augments [RFC8343] and is thereby as required aligned with the structure of the models for management of the L2 and L3 domains.
2. 使用[CCAMP-MW]中描述的模型结构作为起点。它扩充了[RFC8343],因此根据需要与L2和L3域管理模型的结构保持一致。
3. Use established microwave equipment and radio standards (such as [EN302217-2], the model described in [CCAMP-MW], and the model described in [ONF-MW]) as the basis for the definition of the detailed leafs/ parameters to support the specified use cases and requirements, proposing new ones to cover identified gaps.
3. 使用已建立的微波设备和无线电标准(如[EN302217-2]、[CCAMP-MW]中描述的模型和[ONF-MW]中描述的模型)作为详细LEAF/参数定义的基础,以支持指定的用例和要求,并提出新的用例和要求,以弥补已确定的差距。
4. Add the required data nodes to describe the interface layering for the capacity provided by a Radio Link Terminal and the associated Ethernet and TDM interfaces, using the principles and data nodes for interface layering described in [RFC8343] as a basis.
4. 以[RFC8343]中描述的接口分层原理和数据节点为基础,添加所需数据节点,以描述无线链路终端和相关以太网和TDM接口提供的容量的接口分层。
5. Include support for configuration of microwave-specific alarms in the new YANG data model [IETF-MW] and rely on a generic model such as [YANG-ALARM] for notifications and alarm synchronization.
5. 在新的YANG数据模型[IETF-MW]中包括对微波特定警报配置的支持,并依靠[YANG-ALARM]等通用模型进行通知和警报同步。
6. Use a generic model such as [RFC8348] for physical/equipment inventory.
6. 使用[RFC8348]等通用模型进行物理/设备库存。
The configuration information may be considered sensitive or vulnerable in network environments. Unauthorized access to configuration data nodes can have a negative effect on network operations, e.g., interrupting the ability to forward traffic or increasing the interference level of the network. The status and inventory reveal some network information that could be very helpful to an attacker. A malicious attack to that information may result in a loss of customer data. Security issues concerning the access control to management interfaces can be generally addressed by authentication techniques providing origin verification, integrity, and confidentiality. In addition, management interfaces can be physically or logically isolated by configuring them to be only accessible out-of-band, through a system that is physically or logically separated from the rest of the network infrastructure. In cases where management interfaces are accessible in-band at the client device or within the microwave transport network domain, filtering or firewalling techniques can be used to restrict unauthorized in-band traffic. Additionally, authentication techniques may be used in all cases.
配置信息在网络环境中可能被视为敏感或易受攻击。未经授权访问配置数据节点可能会对网络操作产生负面影响,例如,中断转发流量的能力或增加网络的干扰级别。状态和清单显示了一些可能对攻击者非常有用的网络信息。对该信息的恶意攻击可能会导致客户数据丢失。有关管理接口访问控制的安全问题通常可以通过提供源验证、完整性和机密性的身份验证技术来解决。此外,通过将管理接口配置为只能在带外通过与网络基础设施的其余部分在物理上或逻辑上分离的系统访问,可以在物理上或逻辑上隔离管理接口。在客户端设备或微波传输网络域内的频带内可访问管理接口的情况下,可以使用过滤或防火墙技术来限制未经授权的频带内通信量。此外,认证技术可在所有情况下使用。
This framework describes the requirements and characteristics of a YANG data model for control and management of the radio link interfaces in a microwave node. It is supposed to be accessed via a management protocol with a secure transport layer, such as NETCONF [RFC6241].
该框架描述了用于控制和管理微波节点中无线链路接口的YANG数据模型的要求和特征。它应该通过具有安全传输层的管理协议进行访问,如NETCONF[RFC6241]。
This document has no IANA actions.
本文档没有IANA操作。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<https://www.rfc-editor.org/info/rfc2119>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8174]Leiba,B.,“RFC 2119关键词中大写与小写的歧义”,BCP 14,RFC 8174,DOI 10.17487/RFC8174,2017年5月<https://www.rfc-editor.org/info/rfc8174>.
[CCAMP-MW] Ahlberg, J., Carlson, J-O., Lund, H-A., Olausson, T., Ye, M., and M. Vaupotic, "Microwave Radio Link YANG Data Models", Work in Progress, draft-ahlberg-ccamp-microwave-radio-link-01, May 2016.
[CCAMP-MW]Ahlberg,J.,Carlson,J-O.,Lund,H-A.,Olausson,T.,Ye,M.,和M.Vaupotic,“微波无线电链路YANG数据模型”,正在进行中的工作,草稿-Ahlberg-CCAMP-Microwave-Radio-Link-01,2016年5月。
[EN302217-2] ETSI, "Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas; Part 2: Digital systems operating in frequency bands from 1 GHz to 86 GHz; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU", ETSI EN 302 217-2, V3.1.1, May 2017.
[EN302217-2]ETSI,“固定无线电系统;点对点设备和天线的特性和要求;第2部分:在1 GHz至86 GHz频带内工作的数字系统;涵盖指令2014/53/EU第3.2条基本要求的协调标准”,ETSI EN 302217-2,V3.1.1,2017年5月。
[IEEE802.1Qcp] IEEE, "Bridges and Bridged Networks Ammendment: YANG Data Model", Work in Progress, Draft 2.2, March 2018, <https://1.ieee802.org/tsn/802-1qcp/>.
[IEEE802.1Qcp]IEEE,“网桥和桥接网络AMMENDENT:YANG数据模型”,正在进行的工作,草案2.2,2018年3月<https://1.ieee802.org/tsn/802-1qcp/>.
[IETF-MW] Ahlberg, J., Ye, M., Li, X., Spreafico, D., and M. Vaupotic, "A YANG Data Model for Microwave Radio Link", Work in Progress, draft-ietf-ccamp-mw-yang-10, October 2018.
[IETF-MW]Ahlberg,J.,Ye,M.,Li,X.,Spreafico,D.,和M.Vaupotic,“微波无线电链路的YANG数据模型”,正在进行的工作,草案-IETF-ccamp-MW-YANG-10,2018年10月。
[ONF-CIM] ONF, "Core Information Model (CoreModel)", ONF TR-512, version 1.2, September 2016, <https://www.opennetworking.org/images/stories/downloads/ sdn-resources/technical-reports/ TR-512_CIM_(CoreModel)_1.2.zip>.
[ONF-CIM]ONF,“核心信息模型(CoreModel)”,ONF TR-512,版本1.2,2016年9月<https://www.opennetworking.org/images/stories/downloads/ sdn资源/技术报告/TR-512\u CIM\u(CoreModel)\u 1.2.zip>。
[ONF-MW] ONF, "Microwave Information Model", ONF TR-532, version 1.0, December 2016, <https://www.opennetworking.org/images/stories/downloads/ sdn-resources/technical-reports/ TR-532-Microwave-Information-Model-V1.pdf>.
[ONF-MW]ONF,“微波信息模型”,ONF TR-532,版本1.0,2016年12月<https://www.opennetworking.org/images/stories/downloads/ sdn资源/技术报告/TR-532-MIWARE-Information-Model-V1.pdf>。
[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000, <https://www.rfc-editor.org/info/rfc2863>.
[RFC2863]McCloghrie,K.和F.Kastenholz,“接口组MIB”,RFC 2863,DOI 10.17487/RFC2863,2000年6月<https://www.rfc-editor.org/info/rfc2863>.
[RFC3444] Pras, A. and J. Schoenwaelder, "On the Difference between Information Models and Data Models", RFC 3444, DOI 10.17487/RFC3444, January 2003, <https://www.rfc-editor.org/info/rfc3444>.
[RFC3444]Pras,A.和J.Schoenwaeld,“关于信息模型和数据模型之间的差异”,RFC 3444,DOI 10.17487/RFC3444,2003年1月<https://www.rfc-editor.org/info/rfc3444>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.
[RFC6241]Enns,R.,Ed.,Bjorklund,M.,Ed.,Schoenwaeld,J.,Ed.,和A.Bierman,Ed.,“网络配置协议(NETCONF)”,RFC 6241,DOI 10.17487/RFC6241,2011年6月<https://www.rfc-editor.org/info/rfc6241>.
[RFC7426] Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S., Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-Defined Networking (SDN): Layers and Architecture Terminology", RFC 7426, DOI 10.17487/RFC7426, January 2015, <https://www.rfc-editor.org/info/rfc7426>.
[RFC7426]Haleplis,E.,Ed.,Pentikousis,K.,Ed.,Denazis,S.,Hadi Salim,J.,Meyer,D.,和O.Koufopavlou,“软件定义网络(SDN):层和架构术语”,RFC 7426,DOI 10.17487/RFC7426,2015年1月<https://www.rfc-editor.org/info/rfc7426>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>.
[RFC8343]Bjorklund,M.,“用于接口管理的YANG数据模型”,RFC 8343,DOI 10.17487/RFC8343,2018年3月<https://www.rfc-editor.org/info/rfc8343>.
[RFC8344] Bjorklund, M., "A YANG Data Model for IP Management", RFC 8344, DOI 10.17487/RFC8344, March 2018, <https://www.rfc-editor.org/info/rfc8344>.
[RFC8344]Bjorklund,M.,“知识产权管理的杨氏数据模型”,RFC 8344,DOI 10.17487/RFC8344,2018年3月<https://www.rfc-editor.org/info/rfc8344>.
[RFC8348] Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A YANG Data Model for Hardware Management", RFC 8348, DOI 10.17487/RFC8348, March 2018, <https://www.rfc-editor.org/info/rfc8348>.
[RFC8348]Bierman,A.,Bjorklund,M.,Dong,J.,和D.Romascanu,“硬件管理的杨数据模型”,RFC 8348,DOI 10.17487/RFC8348,2018年3月<https://www.rfc-editor.org/info/rfc8348>.
[RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, March 2018, <https://www.rfc-editor.org/info/rfc8349>.
[RFC8349]Lhotka,L.,Lindem,A.,和Y.Qu,“路由管理的YANG数据模型(NMDA版本)”,RFC 8349,DOI 10.17487/RFC8349,2018年3月<https://www.rfc-editor.org/info/rfc8349>.
[YANG-ALARM] Vallin, S. and M. Bjorklund, "YANG Alarm Module", Work in Progress, draft-ietf-ccamp-alarm-module-04, October 2018.
[YANG-ALARM]Vallin,S.和M.Bjorklund,“YANG报警模块”,在建工程,草案-ietf-ccamp-ALARM-Module-042018年10月。
Contributors
贡献者
Marko Vaupotic Aviat Networks Motnica 9 Trzin-Ljubljana 1236 Slovenia
Marko Vaupotic Aviat Networks Motnica 9 Trzin卢布尔雅那1236斯洛文尼亚
Email: Marko.Vaupotic@aviatnet.com
Email: Marko.Vaupotic@aviatnet.com
Jeff Tantsura
杰夫·坦特拉
Email: jefftant.ietf@gmail.com
Email: jefftant.ietf@gmail.com
Koji Kawada NEC Corporation 1753, Shimonumabe Nakahara-ku Kawasaki, Kanagawa 211-8666 Japan
1753年,日本神奈川县下野县中川区川崎市川田浩治NEC公司,邮编:211-8666
Email: k-kawada@ah.jp.nec.com
Email: k-kawada@ah.jp.nec.com
Ippei Akiyoshi NEC 1753, Shimonumabe Nakahara-ku Kawasaki, Kanagawa 211-8666 Japan
日本神奈川县下野县中川町Ippei Akiyoshi NEC 1753,邮编:211-8666
Email: i-akiyoshi@ah.jp.nec.com
Email: i-akiyoshi@ah.jp.nec.com
Daniela Spreafico Nokia - IT Via Energy Park, 14 Vimercate (MI) 20871 Italy
Daniela Spreafico Nokia-意大利维默卡特14号能源园IT Vimercate(密歇根州)20871
Email: daniela.spreafico@nokia.com
Email: daniela.spreafico@nokia.com
Authors' Addresses
作者地址
Jonas Ahlberg (editor) Ericsson AB Lindholmspiren 11 Goteborg 417 56 Sweden
Jonas Ahlberg(编辑)爱立信AB Lindholmspiren 11哥德堡417 56瑞典
Email: jonas.ahlberg@ericsson.com
Email: jonas.ahlberg@ericsson.com
Min Ye (editor) Huawei Technologies No.1899, Xiyuan Avenue Chengdu 611731 China
中国成都市西苑大道1899号华为技术有限公司(编辑)邮编:611731
Email: amy.yemin@huawei.com
Email: amy.yemin@huawei.com
Xi Li NEC Laboratories Europe Kurfuersten-Anlage 36 Heidelberg 69115 Germany
席力NEC实验室欧洲库尔夫斯滕安拉36海德堡69115德国
Email: Xi.Li@neclab.eu
Email: Xi.Li@neclab.eu
Luis Contreras Telefonica I+D Ronda de la Comunicacion, S/N Madrid 28050 Spain
路易斯孔特雷拉斯电信公司I+D Ronda de la Comunicion,S/N马德里28050西班牙
Email: luismiguel.contrerasmurillo@telefonica.com
Email: luismiguel.contrerasmurillo@telefonica.com
Carlos J. Bernardos Universidad Carlos III de Madrid Av. Universidad, 30 Madrid, Leganes 28911 Spain
卡洛斯·J·贝尔纳多斯大学卡洛斯三世马德里大道。西班牙勒加内斯马德里30号大学28911
Email: cjbc@it.uc3m.es
Email: cjbc@it.uc3m.es