Internet Engineering Task Force (IETF) X. Zhang Request for Comments: 8363 H. Zheng Category: Standards Track Huawei ISSN: 2070-1721 R. Casellas CTTC O. Gonzalez de Dios Telefonica D. Ceccarelli Ericsson May 2018
Internet Engineering Task Force (IETF) X. Zhang Request for Comments: 8363 H. Zheng Category: Standards Track Huawei ISSN: 2070-1721 R. Casellas CTTC O. Gonzalez de Dios Telefonica D. Ceccarelli Ericsson May 2018
GMPLS OSPF-TE Extensions in Support of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks
支持灵活网格密集波分复用(DWDM)网络的GMPLS OSPF-TE扩展
Abstract
摘要
The International Telecommunication Union Telecommunication standardization sector (ITU-T) has extended its Recommendations G.694.1 and G.872 to include a new Dense Wavelength Division Multiplexing (DWDM) grid by defining channel spacings, a set of nominal central frequencies, and the concept of the "frequency slot". Corresponding techniques for data-plane connections are known as "flexi-grid".
国际电信联盟电信标准化部门(ITU-T)扩展了其建议G.694.1和G.872,通过定义信道间隔、一组标称中心频率和“频率槽”概念,将新的密集波分复用(DWDM)网格包括在内。数据平面连接的相应技术称为“flexi网格”。
Based on the characteristics of flexi-grid defined in G.694.1 and in RFCs 7698 and 7699, this document describes the Open Shortest Path First - Traffic Engineering (OSPF-TE) extensions in support of GMPLS control of networks that include devices that use the new flexible optical grid.
基于G.694.1和RFCs 7698和7699中定义的flexi网格的特征,本文件描述了开放最短路径优先-流量工程(OSPF-TE)扩展,以支持GMPLS控制网络,包括使用新的柔性光网格的设备。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 7841第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8363.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问https://www.rfc-editor.org/info/rfc8363.
Copyright Notice
版权公告
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2018 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(https://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. Conventions Used in This Document . . . . . . . . . . . . 4 3. Requirements for Flexi-Grid Routing . . . . . . . . . . . . . 4 3.1. Available Frequency Ranges . . . . . . . . . . . . . . . 4 3.2. Application Compliance Considerations . . . . . . . . . . 5 3.3. Comparison with Fixed-Grid DWDM Links . . . . . . . . . . 6 4. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1. Interface Switching Capability Descriptor (ISCD) Extensions for Flexi-Grid . . . . . . . . . . . . . . . . 7 4.1.1. Switching Capability Specific Information (SCSI) . . 8 4.1.2. An SCSI Example . . . . . . . . . . . . . . . . . . . 10 4.2. Extensions to the Port Label Restrictions Field . . . . . 11 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 5.1. New ISCD Switching Type . . . . . . . . . . . . . . . . . 13 5.2. New SCSI Type . . . . . . . . . . . . . . . . . . . . . . 13 6. Security Considerations . . . . . . . . . . . . . . . . . . . 13 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 14 7.1. Normative References . . . . . . . . . . . . . . . . . . 14 7.2. Informative References . . . . . . . . . . . . . . . . . 15 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 16 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. Conventions Used in This Document . . . . . . . . . . . . 4 3. Requirements for Flexi-Grid Routing . . . . . . . . . . . . . 4 3.1. Available Frequency Ranges . . . . . . . . . . . . . . . 4 3.2. Application Compliance Considerations . . . . . . . . . . 5 3.3. Comparison with Fixed-Grid DWDM Links . . . . . . . . . . 6 4. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1. Interface Switching Capability Descriptor (ISCD) Extensions for Flexi-Grid . . . . . . . . . . . . . . . . 7 4.1.1. Switching Capability Specific Information (SCSI) . . 8 4.1.2. An SCSI Example . . . . . . . . . . . . . . . . . . . 10 4.2. Extensions to the Port Label Restrictions Field . . . . . 11 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 5.1. New ISCD Switching Type . . . . . . . . . . . . . . . . . 13 5.2. New SCSI Type . . . . . . . . . . . . . . . . . . . . . . 13 6. Security Considerations . . . . . . . . . . . . . . . . . . . 13 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 14 7.1. Normative References . . . . . . . . . . . . . . . . . . 14 7.2. Informative References . . . . . . . . . . . . . . . . . 15 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 16 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17
[G.694.1] defines the Dense Wavelength Division Multiplexing (DWDM) frequency grids for Wavelength Division Multiplexing (WDM) applications. A frequency grid is a reference set of frequencies used to denote allowed nominal central frequencies that may be used for defining applications. The channel spacing is the frequency spacing between two allowed nominal central frequencies. All of the wavelengths on a fiber should use different central frequencies and occupy a fixed bandwidth of frequency.
[G.694.1]定义了波分复用(WDM)应用的密集波分复用(DWDM)频率网格。频率网格是一组参考频率,用于表示可用于定义应用的允许标称中心频率。信道间隔是两个允许的标称中心频率之间的频率间隔。光纤上的所有波长应使用不同的中心频率,并占用固定的频率带宽。
Fixed-grid channel spacing ranges from one of 12.5 GHz, 25 GHz, 50 GHz, or 100 GHz to integer multiples of 100 GHz. But [G.694.1] also defines a "flexible grid", also known as "flexi-grid". The terms "frequency slot" (i.e., the frequency range allocated to a specific channel and unavailable to other channels within a flexible grid) and "slot width" (i.e., the full width of a frequency slot in a flexible grid) are used to define a flexible grid.
固定网格通道间距范围从12.5 GHz、25 GHz、50 GHz或100 GHz中的一个到100 GHz的整数倍。但[G.694.1]也定义了“柔性网格”,也称为“柔性网格”。术语“频率时隙”(即,分配给特定信道且不可用于柔性网格内的其他信道的频率范围)和“时隙宽度”(即,柔性网格中的频率时隙的全宽)用于定义柔性网格。
[RFC7698] defines a framework and the associated control-plane requirements for the GMPLS-based control of flexi-grid DWDM networks.
[RFC7698]定义了基于GMPLS的flexi grid DWDM网络控制的框架和相关控制平面要求。
[RFC6163] provides a framework for GMPLS and Path Computation Element (PCE) control of Wavelength Switched Optical Networks (WSONs). [RFC7688] defines the requirements and OSPF-TE extensions in support of GMPLS control of a WSON.
[RFC6163]为波长交换光网络(WSON)的GMPLS和路径计算元件(PCE)控制提供了一个框架。[RFC7688]定义了支持WSON的GMPLS控制的要求和OSPF-TE扩展。
[RFC7792] describes requirements and protocol extensions for signaling to set up Label Switched Paths (LSPs) in networks that support the flexi-grid. This document complements [RFC7792] by describing the requirement and extensions for OSPF-TE routing in a flexi-grid network.
[RFC7792]描述了在支持flexi网格的网络中设置标签交换路径(LSP)的信令要求和协议扩展。本文件通过描述flexi网格网络中OSPF-TE路由的要求和扩展来补充[RFC7792]。
This document complements the efforts to provide extensions to the OSPF-TE protocol so as to support GMPLS control of flexi-grid networks.
本文件补充了OSPF-TE协议的扩展,以支持灵活网格网络的GMPLS控制。
For terminology related to flexi-grid, please consult [RFC7698] and [G.694.1].
有关flexi网格的术语,请参考[RFC7698]和[G.694.1]。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“建议”、“不建议”、“可”和“可选”在所有大写字母出现时(如图所示)应按照BCP 14[RFC2119][RFC8174]所述进行解释。
The architecture for establishing LSPs in a Spectrum Switched Optical Network (SSON) is described in [RFC7698].
[RFC7698]中描述了在频谱交换光网络(SSN)中建立LSP的体系结构。
A flexi-grid LSP occupies one or multiple specific frequency slots. The process of computing a route and the allocation of a frequency slot is referred to as "RSA" (Routing and Spectrum Assignment). [RFC7698] describes three types of architectural approaches to RSA: combined RSA, separated RSA, and routing and distributed SA. The first two approaches could be called "centralized SA" because the spectrum (frequency slot) assignment is performed by a single entity before the signaling procedure.
灵活网格LSP占用一个或多个特定频率槽。计算路由和分配频率时隙的过程称为“RSA”(路由和频谱分配)。[RFC7698]介绍了RSA的三种体系结构方法:组合RSA、分离RSA以及路由和分布式SA。前两种方法可称为“集中式SA”,因为频谱(时隙)分配在信令过程之前由单个实体执行。
In the case of centralized SA, the assigned frequency slot is specified in the RSVP-TE Path message during the signaling process. In the case of routing and distributed SA, only the requested slot width of the flexi-grid LSP is specified in the Path message, allowing the involved network elements to select the frequency slot to be used.
在集中式SA的情况下,分配的频率时隙在信令过程中在RSVP-TE路径消息中指定。在路由和分布式SA的情况下,路径消息中仅指定flexi grid LSP的请求时隙宽度,从而允许相关网元选择要使用的频率时隙。
If the capability of switching or converting the whole optical spectrum allocated to an optical spectrum LSP is not available at nodes along the path of the LSP, the LSP is subject to the Optical "Spectrum Continuity Constraint", as described in [RFC7698].
如果在沿着LSP路径的节点上不具备切换或转换分配给光谱LSP的整个光谱的能力,则LSP受光“光谱连续性约束”的约束,如[RFC7698]所述。
The remainder of this section states the additional extensions on the routing protocols in a flexi-grid network.
本节的其余部分说明了flexi网格网络中路由协议的附加扩展。
In the case of flexi-grids, the central frequency steps from 193.1 THz with 6.25 GHz granularity. The calculation method of central frequency and the frequency slot width of a frequency slot are defined in [G.694.1], i.e., by using nominal central frequency n and the slot width m.
在flexi网格的情况下,中心频率从193.1太赫兹步进,粒度为6.25 GHz。[G.694.1]中定义了频率槽的中心频率和频率槽宽度的计算方法,即使用标称中心频率n和槽宽度m。
On a DWDM link, the allocated or in-use frequency slots do not overlap with each other. However, the border frequencies of two frequency slots may be the same frequency, i.e., the upper bound of a frequency slot and the lower bound of the directly adjacent frequency slot are the same.
在DWDM链路上,分配的或正在使用的频率时隙彼此不重叠。然而,两个频率时隙的边界频率可以是相同的频率,即,频率时隙的上限和直接相邻的频率时隙的下限是相同的。
Frequency Slot 1 Frequency Slot 2 +-----------+-----------------------+ | | | -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ...+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--... ------------ ------------------------ ^ ^ Central F = 193.1 THz Central F = 193.1375 THz Slot width = 25 GHz Slot width = 50 GHz
Frequency Slot 1 Frequency Slot 2 +-----------+-----------------------+ | | | -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ...+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--... ------------ ------------------------ ^ ^ Central F = 193.1 THz Central F = 193.1375 THz Slot width = 25 GHz Slot width = 50 GHz
Figure 1: Two Frequency Slots on a Link
图1:链路上的两个频率槽
Figure 1 shows two adjacent frequency slots on a link. The highest frequency of frequency slot 1 denoted by n=2 is the lowest frequency of slot 2. In this example, it means that the frequency range from n=-2 to n=10 is unavailable to other flexi-grid LSPs. Available central frequencies are advertised for m=1, which means that for an available central frequency n, the frequency slot from central frequency n-1 to central frequency n+1 is available.
图1显示了链路上两个相邻的频率槽。由n=2表示的频率槽1的最高频率是槽2的最低频率。在本例中,这意味着从n=-2到n=10的频率范围对其他flexi grid LSP不可用。可用的中心频率为m=1,这意味着对于可用的中心频率n,从中心频率n-1到中心频率n+1的频率槽可用。
Hence, in order to clearly show which frequency slots are available and can be used for LSP establishment and which frequency slots are unavailable, the availability of frequency slots is advertised by the routing protocol for the flexi-grid DWDM links. A set of non-overlapping available frequency ranges is disseminated in order to allow efficient resource management of flexi-grid DWDM links and RSA procedures, which are described in Section 4.8 of [RFC7698].
因此,为了清楚地显示哪些频率时隙可用且可用于LSP建立以及哪些频率时隙不可用,通过flexi-grid-DWDM链路的路由协议来公布频率时隙的可用性。传播一组不重叠的可用频率范围,以便对[RFC7698]第4.8节所述的flexi grid DWDM链路和RSA程序进行有效的资源管理。
As described in [G.694.1], devices or applications that make use of the flexi-grid may not be capable of supporting every possible slot width or position (i.e., central frequency). In other words, applications or implementations may be defined where only a subset of the possible slot widths and positions are required to be supported.
如[G.694.1]所述,使用flexi网格的设备或应用可能无法支持每个可能的插槽宽度或位置(即中心频率)。换句话说,可以定义应用程序或实现,其中仅需要支持可能的时隙宽度和位置的子集。
For example, an application could be defined where the nominal central frequency granularity is 12.5 GHz (by only requiring values of n that are even) and the same application only requires slot widths as a multiple of 25 GHz (by only requiring values of m that are even).
例如,可以定义一个应用,其中标称中心频率粒度为12.5ghz(仅要求n的值为偶数),并且同一应用仅要求槽宽为25ghz的倍数(仅要求m的值为偶数)。
Hence, in order to support all possible applications and implementations, the following information SHOULD be advertised for a flexi-grid DWDM link:
因此,为了支持所有可能的应用和实施,应为flexi grid DWDM链路发布以下信息:
o Channel Spacing (C.S.): as defined in [RFC7699] for flexi-grid, is set to 5 to denote 6.25 GHz.
o 信道间距(C.S.):如[RFC7699]中对flexi网格的定义,设置为5表示6.25 GHz。
o Central frequency granularity: a multiplier of C.S.
o 中心频率粒度:C.S.的倍增器。
o Slot width granularity: a multiplier of 2*C.S.
o 插槽宽度粒度:2*C.S的乘数。
o Slot width range: two multipliers of the slot width granularity, each indicating the minimal and maximal slot width supported by a port, respectively.
o 插槽宽度范围:插槽宽度粒度的两个乘数,每个乘数分别表示端口支持的最小和最大插槽宽度。
The combination of slot width range and slot width granularity can be used to determine the slot widths set supported by a port.
插槽宽度范围和插槽宽度粒度的组合可用于确定端口支持的插槽宽度集。
In the case of fixed-grid DWDM links, each wavelength has a predefined central frequency. Each wavelength maps to a predefined central frequency, and the usable frequency range is implicit by the channel spacing. All the wavelengths on a DWDM link can be identified with an identifier that mainly conveys its central frequency as the label defined in [RFC6205]; the status of the wavelengths (available or not) can be advertised through a routing protocol.
在固定网格DWDM链路的情况下,每个波长具有预定义的中心频率。每个波长映射到预定义的中心频率,可用频率范围由通道间距隐含。DWDM链路上的所有波长都可以通过一个标识符进行识别,该标识符主要传达其中心频率,如[RFC6205]中定义的标签;波长的状态(可用或不可用)可以通过路由协议公布。
Figure 2 shows a link that supports a fixed-grid with 50 GHz channel spacing. The central frequencies of the wavelengths are predefined by values of "n", and each wavelength occupies a fixed 50 GHz frequency range as described in [G.694.1].
图2显示了支持50 GHz信道间隔的固定网格的链路。波长的中心频率由“n”值预定义,每个波长占据[G.694.1]中所述的固定50 GHz频率范围。
W(-2) | W(-1) | W(0) | W(1) | W(2) | ...---------+-----------+-----------+-----------+-----------+----... | 50 GHz | 50 GHz | 50 GHz | 50 GHz |
W(-2) | W(-1) | W(0) | W(1) | W(2) | ...---------+-----------+-----------+-----------+-----------+----... | 50 GHz | 50 GHz | 50 GHz | 50 GHz |
n=-2 n=-1 n=0 n=1 n=2 ...---+-----------+-----------+-----------+-----------+----------... ^ Central F = 193.1 THz
n=-2 n=-1 n=0 n=1 n=2 ...---+-----------+-----------+-----------+-----------+----------... ^ Central F = 193.1 THz
Figure 2: A Link Supports Fixed Wavelengths with 50 GHz Channel Spacing
图2:链路支持50 GHz信道间隔的固定波长
Unlike the fixed-grid DWDM links, on a flexi-grid DWDM link, the slot width of the frequency slot is flexible, as described in Section 3.1. That is, the value of m in the following formula from [G.694.1] is uncertain before a frequency slot is actually allocated for a flexi-grid LSP.
与固定网格DWDM链路不同,在灵活网格DWDM链路上,频率槽的槽宽是灵活的,如第3.1节所述。也就是说,[G.694.1]中以下公式中的m值在实际为flexi grid LSP分配频率时隙之前是不确定的。
Slot Width (in GHz) = 12.5GHz * m
槽宽(单位:GHz)=12.5GHz*m
For this reason, the available frequency slots (or ranges) are advertised for a flexi-grid DWDM link instead of the specific "wavelength" points that are sufficient for a fixed-grid link. Moreover, this advertisement is represented by the combination of central frequency granularity and slot width granularity.
出于这个原因,可用的频率槽(或范围)是针对flexi grid DWDM链路而不是针对固定网格链路的特定“波长”点进行宣传的。此外,该广告由中心频率粒度和时隙宽度粒度的组合来表示。
The network-connectivity topology constructed by the links and/or nodes and node capabilities are the same as for WSON, as described in [RFC7698], and they can be advertised by the GMPLS routing protocols using Opaque Link State Advertisements (LSAs) [RFC3630] in the case of OSPF-TE [RFC4203] (refer to Section 6.2 of [RFC6163]). In the flexi-grid case, the available frequency ranges, instead of the specific "wavelengths", are advertised for the link. This section defines the GMPLS OSPF-TE extensions in support of advertising the available frequency ranges for flexi-grid DWDM links.
如[RFC7698]所述,由链路和/或节点和节点能力构建的网络连接拓扑与WSON相同,在OSPF-TE[RFC4203]的情况下,它们可以通过GMPLS路由协议使用不透明链路状态公告(LSA)[RFC3630]进行公告(参考[RFC6163]的第6.2节)。在flexi-grid的情况下,可用的频率范围,而不是特定的“波长”,被广告用于链路。本节定义了GMPLS OSPF-TE扩展,以支持宣传灵活网格DWDM链路的可用频率范围。
4.1. Interface Switching Capability Descriptor (ISCD) Extensions for Flexi-Grid
4.1. Flexi网格的接口交换能力描述符(ISCD)扩展
This section defines a new value for the Switching Capability field of the ISCD with a value of 152 and type name Flexi-Grid-LSC.
本节为ISCD的交换能力字段定义了一个新值,值为152,类型名称为Flexi Grid LSC。
Value Name ----- -------------- 152 Flexi-Grid-LSC
Value Name ----- -------------- 152 Flexi-Grid-LSC
Switching Capability and Encoding values MUST be used as follows:
开关能力和编码值必须按如下方式使用:
Switching Capability = Flexi-Grid-LSC
交换能力=灵活电网LSC
Encoding Type = lambda (as defined in [RFC3471])
编码类型=λ(定义见[RFC3471])
When the Switching Capability and Encoding fields are set to values as stated above, the ISCD is interpreted as in [RFC4203] with the optional inclusion of one or more Switching Capability Specific Information (SCSI) sub-TLVs.
当交换能力和编码字段设置为如上所述的值时,ISCD被解释为在[RFC4203]中,可选地包括一个或多个交换能力特定信息(SCSI)子TLV。
As the "Max LSP Bandwidth at priority x" (x from 0 to 7) fields in the generic part of the ISCD [RFC4203] are not meaningful for flexi-grid DWDM links, the values of these fields MUST be set to zero and MUST be ignored. The SCSI as defined below provides the corresponding information for flexi-grid DWDM links.
由于ISCD[RFC4203]通用部分中的“优先级为x时的最大LSP带宽”(x从0到7)字段对于flexi grid DWDM链路没有意义,因此这些字段的值必须设置为零,并且必须忽略。下面定义的SCSI为flexi grid DWDM链路提供了相应的信息。
[RFC8258] defines a Generalized SCSI for the ISCD. This document defines the Frequency Availability Bitmap as a new type of the Generalized SCSI TLV. The technology-specific part of the flexi-grid ISCD includes the available frequency-spectrum resource as well as the information regarding max slot widths per priority. The format of this flexi-grid SCSI, the Frequency Availability Bitmap sub-TLV, is depicted in the following figure:
[RFC8258]为ISCD定义通用SCSI。本文档将频率可用性位图定义为一种新型的通用SCSI TLV。flexi grid ISCD的技术特定部分包括可用频谱资源以及关于每个优先级的最大时隙宽度的信息。此flexi grid SCSI(频率可用性位图子TLV)的格式如下图所示:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 11 | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Priority | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Max Slot Width at Priority k | Unreserved Padding ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | C.S. | Starting n | No. of Effective Bits | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Bitmap ... ~ ~ ... | padding bits ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 11 | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Priority | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Max Slot Width at Priority k | Unreserved Padding ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | C.S. | Starting n | No. of Effective Bits | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Bitmap ... ~ ~ ... | padding bits ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type (16 bits): The type of this sub-TLV (11).
类型(16位):此子TLV(11)的类型。
Length (16 bits): The length of the value field of this sub-TLV in octets.
长度(16位):此子TLV值字段的长度(以八位字节为单位)。
Priority (8 bits): A bitmap used to indicate which priorities are being advertised. The bitmap is in ascending order, with the leftmost bit representing priority level 0 (i.e., the highest) and the rightmost bit representing priority level 7 (i.e., the lowest). A bit is set (1) corresponding to each priority represented in the sub-TLV and clear (0) for each priority not represented in the sub-TLV. At least one priority level MUST be advertised. If only one priority level is advertised, it MUST be at priority level 0.
优先级(8位):用于指示正在播发哪些优先级的位图。位图按升序排列,最左边的位表示优先级0(即最高),最右边的位表示优先级7(即最低)。对应于子TLV中表示的每个优先级设置位(1),并针对子TLV中未表示的每个优先级清除位(0)。必须至少公布一个优先级。如果仅播发一个优先级,则该优先级必须为0。
Reserved: The Reserved field MUST be set to zero on transmission and MUST be ignored on receipt.
保留:传输时保留字段必须设置为零,接收时必须忽略。
Max Slot Width at Priority k (16 bits): This field indicates maximal frequency slot width supported at a particular priority level, up to 8. This field is set to max frequency slot width supported in the unit of 2*C.S., for a particular priority level. One field MUST be present for each bit set in the Priority field, and each present field is ordered to match the Priority field. Fields MUST be present for priority levels that are indicated in the Priority field.
优先级k(16位)下的最大时隙宽度:此字段表示特定优先级下支持的最大频率时隙宽度,最多为8。对于特定优先级,该字段设置为以2*C.S.为单位支持的最大频率槽宽度。优先级字段中设置的每个位必须有一个字段,并且每个字段的顺序与优先级字段相匹配。必须为优先级字段中指示的优先级提供字段。
Unreserved Padding (16 bits): The Padding field is used to ensure the 32-bit alignment of Max Slot Width at Priority k. When k is an odd number, the Unreserved Padding field MUST be included. When k is an even number, the Unreserved Padding field MUST be omitted. This field MUST be set to 0 and MUST be ignored on receipt.
无保留填充(16位):填充字段用于确保优先级为k时最大插槽宽度的32位对齐。当k是奇数时,必须包含无保留的填充字段。当k是偶数时,必须省略无保留的填充字段。此字段必须设置为0,并且在收到时必须忽略。
C.S. (4 bits): As defined in [RFC7699]; it is currently set to 5.
C.S.(4位):如[RFC7699]中所定义;当前设置为5。
Starting n (16 bits): As defined in [RFC7699]. This value denotes the starting point of the nominal central frequency of the frequency availability bitmap sub-TLV.
起始n(16位):如[RFC7699]中所定义。该值表示频率可用性位图子TLV的标称中心频率的起点。
No. of Effective Bits (12 bits): Indicates the number of effective bits in the Bitmap field.
有效位数(12位):表示位图字段中的有效位数。
Bitmap (variable): Indicates whether or not a basic frequency slot, characterized by a nominal central frequency and a fixed m value of 1, is available for flexi-grid LSP setup. The first nominal central frequency is the value of starting n; subsequent nominal central frequencies are implied by the position in the bitmap. Note that setting to 1 indicates that the corresponding central frequency is available for a flexi-grid LSP with m=1 and setting to 0 indicates the corresponding central frequency is unavailable. Note that a centralized SA process will need to extend this to high values of m by checking a sufficiently large number of consecutive basic frequency slots that are available.
位图(变量):指示以标称中心频率和固定m值1为特征的基本频率槽是否可用于flexi grid LSP设置。第一个标称中心频率为启动n的值;位图中的位置暗示了后续的标称中心频率。请注意,设置为1表示m=1的flexi grid LSP可使用相应的中心频率,设置为0表示相应的中心频率不可用。请注意,集中式SA过程需要通过检查足够多的连续基本频率槽来将其扩展到m的高值。
padding bits (variable): Padded after the Bitmap to make it a multiple of four bytes, if necessary. Padding bits MUST be set to 0 and MUST be ignored on receipt.
填充位(变量):如有必要,在位图后填充,使其成为四个字节的倍数。填充位必须设置为0,并且在接收时必须忽略。
An example is provided in Section 4.1.2.
第4.1.2节提供了一个示例。
Figure 3 shows an example of the available frequency spectrum resource of a flexi-grid DWDM link.
图3显示了flexi grid DWDM链路的可用频谱资源示例。
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ...+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--... |--Available Frequency Range--|
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ...+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--... |--Available Frequency Range--|
Figure 3: Flexi-Grid DWDM Link Example
图3:Flexi Grid DWDM链路示例
The symbol "+" represents the allowed nominal central frequency. The symbol "--" represents a central frequency granularity of 6.25 GHz, which is currently standardized in [G.694.1]. The number on the top of the line represents the "n" in the frequency calculation formula (193.1 + n * 0.00625). The nominal central frequency is 193.1 THz when n equals zero.
符号“+”表示允许的标称中心频率。符号“-”表示6.25 GHz的中心频率粒度,目前在[G.694.1]中进行了标准化。行顶部的数字表示频率计算公式(193.1+n*0.00625)中的“n”。当n等于零时,标称中心频率为193.1太赫兹。
In this example, it is assumed that the lowest nominal central frequency supported is n=-9 and the highest is n=11. Note they cannot be used as a nominal central frequency for setting up an LSP, but merely as the way to express the supported frequency range. Using the encoding defined in Section 4.1.1, the relevant fields to express the frequency resource availability can be filled as below:
在本例中,假设所支持的最低标称中心频率为n=-9,最高标称中心频率为n=11。注意:它们不能用作设置LSP的标称中心频率,而只能用作表示支持的频率范围的方式。使用第4.1.1节中定义的编码,表示频率资源可用性的相关字段可填写如下:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 11 | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Priority | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Max Slot Width at Priority k | Unreserved Padding ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 5 | Starting n (-9) | No. of Effec. Bits(21)| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|0|0|0|0|0|0|0|1|1|1|1|1|1|1|1|1|0|0|0|0| padding bits (0s) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 11 | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Priority | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Max Slot Width at Priority k | Unreserved Padding ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 5 | Starting n (-9) | No. of Effec. Bits(21)| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|0|0|0|0|0|0|0|1|1|1|1|1|1|1|1|1|0|0|0|0| padding bits (0s) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In the above example, the starting n is selected to be the lowest nominal central frequency, i.e., -9. It is observed from the bitmap that n=-1 to 7 can be used to set up LSPs. Note other starting n values can be chosen to represent the bitmap; for example, the first available nominal central frequency (a.k.a., the first available basic frequency slot) can be chosen, and the SCSI will be expressed as the following:
在上述示例中,起始n被选择为最低标称中心频率,即-9。从位图中可以看出,n=-1到7可用于设置LSP。注:可以选择其他起始n值来表示位图;例如,可以选择第一个可用的标称中心频率(也称为第一个可用的基本频率槽),SCSI将表示为:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 11 | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Priority | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Max Slot Width at Priority k | Unreserved Padding ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 5 | Starting n (-1) | No. of Effec. Bits(9)| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|1|1|1|1|1|1|1|1| padding bits (0s) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 11 | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Priority | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Max Slot Width at Priority k | Unreserved Padding ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 5 | Starting n (-1) | No. of Effec. Bits(9)| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|1|1|1|1|1|1|1|1| padding bits (0s) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This encoding denotes that, other than the advertised available nominal central frequencies, the other nominal central frequencies within the whole frequency range supported by the link are not available for flexi-grid LSP setup.
此编码表示,除公布的可用标称中心频率外,链路支持的整个频率范围内的其他标称中心频率不可用于flexi grid LSP设置。
If an LSP with slot width m equal to 1 is set up using this link, say using n=-1, then the SCSI information is updated to be the following:
如果使用此链接设置插槽宽度m等于1的LSP,例如使用n=-1,则SCSI信息将更新为以下内容:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 11 | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Priority | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Max Slot Width at Priority k | Unreserved Padding ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 5 | Starting n (-1) | No. of Effec. Bits(9)| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|0|1|1|1|1|1|1|1| padding bits (0s) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 11 | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Priority | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Max Slot Width at Priority k | Unreserved Padding ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 5 | Starting n (-1) | No. of Effec. Bits(9)| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|0|1|1|1|1|1|1|1| padding bits (0s) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
As described in Section 3.2, a port that supports flexi-grid may support only a restricted subset of the full flexible grid. The Port Label Restrictions field is defined in [RFC7579]. It can be used to describe the label restrictions on a port and is carried in the top-level Link TLV as specified in [RFC7580]. A new restriction type, the flexi-grid Restriction Type, is defined here to specify the restrictions on a port to support flexi-grid.
如第3.2节所述,支持柔性网格的端口可能仅支持全柔性网格的有限子集。[RFC7579]中定义了端口标签限制字段。它可用于描述端口上的标签限制,并按照[RFC7580]中的规定在顶级链路TLV中携带。此处定义了一种新的限制类型,即flexi grid限制类型,以指定支持flexi grid的端口上的限制。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MatrixID | RstType = 5 | Switching Cap | Encoding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | C.S. | C.F.G | S.W.G | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Min Slot Width | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MatrixID | RstType = 5 | Switching Cap | Encoding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | C.S. | C.F.G | S.W.G | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Min Slot Width | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
MatrixID (8 bits): As defined in [RFC7579].
MatrixID(8位):如[RFC7579]中所定义。
RstType (Restriction Type, 8 bits): Takes the value of 5 to indicate the restrictions on a port to support flexi-grid.
RstType(限制类型,8位):取值5表示支持flexi网格的端口上的限制。
Switching Cap (Switching Capability, 8 bits): As defined in [RFC7579], MUST be consistent with the one specified in ISCD as described in Section 4.1.
切换上限(切换能力,8位):如[RFC7579]中所定义,必须与第4.1节所述的ISCD中规定的一致。
Encoding (8 bits): As defined in [RFC7579], MUST be consistent with the one specified in ISCD as described in Section 4.1.
编码(8位):如[RFC7579]中所定义,必须与第4.1节所述的ISCD中规定的编码一致。
C.S. (4 bits): As defined in [RFC7699]. For flexi-grid, it is 5 to denote 6.25 GHz.
C.S.(4位):如[RFC7699]中所定义。对于flexi网格,它是5表示6.25 GHz。
C.F.G (Central Frequency Granularity, 8 bits): A positive integer. Its value indicates the multiple of C.S., in terms of central frequency granularity.
C.F.G(中心频率粒度,8位):一个正整数。其值表示C.S.在中心频率粒度方面的倍数。
S.W.G (Slot Width Granularity, 8 bits): A positive integer. Its value indicates the multiple of 2*C.S., in terms of slot width granularity.
S.W.G(插槽宽度粒度,8位):一个正整数。其值表示插槽宽度粒度方面的2*C.S.倍数。
Min Slot Width (16 bits): A positive integer. Its value indicates the multiple of 2*C.S. (in GHz), in terms of the supported minimal slot width.
最小插槽宽度(16位):正整数。其值表示2*C.S.(单位为GHz)的倍数,即支持的最小槽宽。
Reserved: The Reserved field MUST be set to zero on transmission and SHOULD be ignored on receipt.
保留:传输时必须将保留字段设置为零,接收时应忽略该字段。
IANA has made the following assignment in the "Switching Types" sub-registry of the "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Parameters" registry located at <https://www.iana.org/assignments/gmpls-sig-parameters>:
IANA已在位于的“通用多协议标签交换(GMPLS)信令参数”注册表的“交换类型”子注册表中进行了以下分配:<https://www.iana.org/assignments/gmpls-sig-parameters>:
Value Name Reference ------- ---------------- ---------- 152 Flexi-Grid-LSC RFC 8363
Value Name Reference ------- ---------------- ---------- 152 Flexi-Grid-LSC RFC 8363
This document defines a new generalized SCSI sub-TLV that is carried in the Interface Switching Capability Descriptors [RFC4203] when the Switching Type is set to Flexi-Grid-LSC.
本文档定义了一个新的通用SCSI子TLV,当交换类型设置为Flexi Grid LSC时,该TLV将在接口交换能力描述符[RFC4203]中携带。
IANA has made the following assignment in the "Generalized SCSI (Switching Capability Specific Information) TLV Types" sub-registry [RFC8258] of the "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Parameters" registry located at <https://www.iana.org/assignments/gmpls-sig-parameters>:
IANA在位于的“通用多协议标签交换(GMPLS)信令参数”注册表的“通用SCSI(交换能力特定信息)TLV类型”子注册表[RFC8258]中进行了以下分配:<https://www.iana.org/assignments/gmpls-sig-parameters>:
Value SCSI-TLV Switching Type Reference ----- ----------------------------- -------------- --------- 11 Frequency Availability Bitmap 152 RFC 8363
Value SCSI-TLV Switching Type Reference ----- ----------------------------- -------------- --------- 11 Frequency Availability Bitmap 152 RFC 8363
This document extends [RFC4203] and [RFC7580] to carry flexi-grid-specific information in OSPF Opaque LSAs. This document does not introduce any further security issues other than those discussed in [RFC3630] and [RFC4203]. To be more specific, the security mechanisms described in [RFC2328], which apply to Opaque LSAs carried in OSPF, still apply. An analysis of the OSPF security is provided in [RFC6863] and applies to the extensions to OSPF in this document as well.
本文件扩展了[RFC4203]和[RFC7580],以在OSPF不透明LSA中携带flexi网格特定信息。除[RFC3630]和[RFC4203]中讨论的安全问题外,本文件不介绍任何其他安全问题。更具体地说,[RFC2328]中描述的适用于OSPF中携带的不透明LSA的安全机制仍然适用。[RFC6863]中提供了对OSPF安全性的分析,并适用于本文档中对OSPF的扩展。
[G.694.1] International Telecommunication Union, "Spectral grids for WDM applications: DWDM frequency grid", ITU-T Recommendation G.694.1, February 2012, <https://www.itu.int/rec/T-REC-G.694.1/en>.
[G.694.1]国际电信联盟,“WDM应用的频谱网格:DWDM频率网格”,ITU-T建议G.694.1,2012年2月<https://www.itu.int/rec/T-REC-G.694.1/en>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<https://www.rfc-editor.org/info/rfc2119>.
[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, DOI 10.17487/RFC3471, January 2003, <https://www.rfc-editor.org/info/rfc3471>.
[RFC3471]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,DOI 10.17487/RFC3471,2003年1月<https://www.rfc-editor.org/info/rfc3471>.
[RFC4203] Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005, <https://www.rfc-editor.org/info/rfc4203>.
[RFC4203]Kompella,K.,Ed.和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的OSPF扩展”,RFC 4203,DOI 10.17487/RFC4203,2005年10月<https://www.rfc-editor.org/info/rfc4203>.
[RFC6205] Otani, T., Ed. and D. Li, Ed., "Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers", RFC 6205, DOI 10.17487/RFC6205, March 2011, <https://www.rfc-editor.org/info/rfc6205>.
[RFC6205]Otani,T.,Ed.和D.Li,Ed.,“Lambda交换机功能(LSC)标签交换路由器的通用标签”,RFC 6205,DOI 10.17487/RFC6205,2011年3月<https://www.rfc-editor.org/info/rfc6205>.
[RFC7579] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and J. Han, "General Network Element Constraint Encoding for GMPLS-Controlled Networks", RFC 7579, DOI 10.17487/RFC7579, June 2015, <https://www.rfc-editor.org/info/rfc7579>.
[RFC7579]Bernstein,G.,Ed.,Lee,Y.,Ed.,Li,D.,Imajuku,W.,和J.Han,“GMPLS控制网络的一般网元约束编码”,RFC 7579,DOI 10.17487/RFC7579,2015年6月<https://www.rfc-editor.org/info/rfc7579>.
[RFC7580] Zhang, F., Lee, Y., Han, J., Bernstein, G., and Y. Xu, "OSPF-TE Extensions for General Network Element Constraints", RFC 7580, DOI 10.17487/RFC7580, June 2015, <https://www.rfc-editor.org/info/rfc7580>.
[RFC7580]Zhang,F.,Lee,Y.,Han,J.,Bernstein,G.,和Y.Xu,“一般网元约束的OSPF-TE扩展”,RFC 7580,DOI 10.17487/RFC75802015年6月<https://www.rfc-editor.org/info/rfc7580>.
[RFC7699] Farrel, A., King, D., Li, Y., and F. Zhang, "Generalized Labels for the Flexi-Grid in Lambda Switch Capable (LSC) Label Switching Routers", RFC 7699, DOI 10.17487/RFC7699, November 2015, <https://www.rfc-editor.org/info/rfc7699>.
[RFC7699]Farrel,A.,King,D.,Li,Y.,和F.Zhang,“Lambda交换机功能(LSC)标签交换路由器中Flexi网格的通用标签”,RFC 7699,DOI 10.17487/RFC7699,2015年11月<https://www.rfc-editor.org/info/rfc7699>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8174]Leiba,B.,“RFC 2119关键词中大写与小写的歧义”,BCP 14,RFC 8174,DOI 10.17487/RFC8174,2017年5月<https://www.rfc-editor.org/info/rfc8174>.
[RFC8258] Ceccarelli, D. and L. Berger, "Generalized SCSI: A Generic Structure for Interface Switching Capability Descriptor (ISCD) Switching Capability Specific Information (SCSI)", RFC 8258, DOI 10.17487/RFC8258, October 2017, <https://www.rfc-editor.org/info/rfc8258>.
[RFC8258]Ceccarelli,D.和L.Berger,“通用SCSI:接口交换能力描述符(ISCD)交换能力特定信息(SCSI)的通用结构”,RFC 8258,DOI 10.17487/RFC8258,2017年10月<https://www.rfc-editor.org/info/rfc8258>.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, DOI 10.17487/RFC2328, April 1998, <https://www.rfc-editor.org/info/rfc2328>.
[RFC2328]Moy,J.,“OSPF版本2”,STD 54,RFC 2328,DOI 10.17487/RFC2328,1998年4月<https://www.rfc-editor.org/info/rfc2328>.
[RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2", RFC 3630, DOI 10.17487/RFC3630, September 2003, <https://www.rfc-editor.org/info/rfc3630>.
[RFC3630]Katz,D.,Kompella,K.,和D.Yeung,“OSPF版本2的交通工程(TE)扩展”,RFC 3630,DOI 10.17487/RFC3630,2003年9月<https://www.rfc-editor.org/info/rfc3630>.
[RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku, "Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)", RFC 6163, DOI 10.17487/RFC6163, April 2011, <https://www.rfc-editor.org/info/rfc6163>.
[RFC6163]Lee,Y.,Ed.,Bernstein,G.,Ed.,和W.Imajuku,“波长交换光网络(WSON)的GMPLS和路径计算元件(PCE)控制框架”,RFC 6163,DOI 10.17487/RFC6163,2011年4月<https://www.rfc-editor.org/info/rfc6163>.
[RFC6863] Hartman, S. and D. Zhang, "Analysis of OSPF Security According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6863, DOI 10.17487/RFC6863, March 2013, <https://www.rfc-editor.org/info/rfc6863>.
[RFC6863]Hartman,S.和D.Zhang,“根据路由协议键控和认证(KARP)设计指南分析OSPF安全性”,RFC 6863,DOI 10.17487/RFC6863,2013年3月<https://www.rfc-editor.org/info/rfc6863>.
[RFC7688] Lee, Y., Ed. and G. Bernstein, Ed., "GMPLS OSPF Enhancement for Signal and Network Element Compatibility for Wavelength Switched Optical Networks", RFC 7688, DOI 10.17487/RFC7688, November 2015, <https://www.rfc-editor.org/info/rfc7688>.
[RFC7688]Lee,Y.,Ed.和G.Bernstein,Ed.,“波长交换光网络信号和网元兼容性的GMPLS OSPF增强”,RFC 7688,DOI 10.17487/RFC7688,2015年11月<https://www.rfc-editor.org/info/rfc7688>.
[RFC7698] Gonzalez de Dios, O., Ed., Casellas, R., Ed., Zhang, F., Fu, X., Ceccarelli, D., and I. Hussain, "Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks", RFC 7698, DOI 10.17487/RFC7698, November 2015, <https://www.rfc-editor.org/info/rfc7698>.
[RFC7698]Gonzalez de Dios,O.,Ed.,Casellas,R.,Ed.,Zhang,F.,Fu,X.,Ceccarelli,D.,和I.Hussain,“基于GMPLS的灵活网格密集波分复用(DWDM)网络控制框架和要求”,RFC 7698,DOI 10.17487/RFC7698,2015年11月<https://www.rfc-editor.org/info/rfc7698>.
[RFC7792] Zhang, F., Zhang, X., Farrel, A., Gonzalez de Dios, O., and D. Ceccarelli, "RSVP-TE Signaling Extensions in Support of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks", RFC 7792, DOI 10.17487/RFC7792, March 2016, <https://www.rfc-editor.org/info/rfc7792>.
[RFC7792]Zhang,F.,Zhang,X.,Farrel,A.,Gonzalez de Dios,O.,和D.Ceccarelli,“支持灵活网格密集波分复用(DWDM)网络的RSVP-TE信令扩展”,RFC 7792,DOI 10.17487/RFC7792,2016年3月<https://www.rfc-editor.org/info/rfc7792>.
Acknowledgments
致谢
This work was supported in part by the FP-7 IDEALIST project under grant agreement number 317999.
这项工作部分得到了FP-7理想主义项目的支持,该项目的赠款协议编号为317999。
This work was supported in part by NSFC Project 61201260.
这项工作部分得到了国家自然科学基金项目61201260的支持。
Contributors
贡献者
Adrian Farrel Juniper Networks
Adrian Farrel Juniper Networks
Email: afarrel@juniper.net
Email: afarrel@juniper.net
Fatai Zhang Huawei Technologies
华为技术有限公司
Email: zhangfatai@huawei.com
Email: zhangfatai@huawei.com
Lei Wang Beijing University of Posts and Telecommunications
北京邮电大学雷王
Email: wang.lei@bupt.edu.cn
Email: wang.lei@bupt.edu.cn
Guoying Zhang China Academy of Information and Communication Technology
张国英中国信息通信技术研究院
Email: zhangguoying@ritt.cn
Email: zhangguoying@ritt.cn
Authors' Addresses
作者地址
Xian Zhang Huawei Technologies
张贤华为技术有限公司
Email: zhang.xian@huawei.com
Email: zhang.xian@huawei.com
Haomian Zheng Huawei Technologies
华为技术有限公司
Email: zhenghaomian@huawei.com
Email: zhenghaomian@huawei.com
Ramon Casellas, Ph.D. CTTC Spain
拉蒙·卡塞拉斯博士。CTTC西班牙
Phone: +34 936452916 Email: ramon.casellas@cttc.es
Phone: +34 936452916 Email: ramon.casellas@cttc.es
Oscar Gonzalez de Dios Telefonica Investigacion y Desarrollo Emilio Vargas 6 Madrid, 28045 Spain
奥斯卡·冈萨雷斯(Oscar Gonzalez de Dios Telefonica Investigacion y Desarrollo Emilio Vargas)西班牙马德里6号,邮编28045
Phone: +34 913374013 Email: oscar.gonzalezdedios@telefonica.com
Phone: +34 913374013 Email: oscar.gonzalezdedios@telefonica.com
Daniele Ceccarelli Ericsson Via A. Negrone 1/A Genova - Sestri Ponente Italy
Daniele Ceccarelli Ericsson通过A.Negrone 1/A Genova-意大利塞斯特里·波南特
Email: daniele.ceccarelli@ericsson.com
Email: daniele.ceccarelli@ericsson.com