Internet Engineering Task Force (IETF) X. Liu Request for Comments: 8294 Jabil Category: Standards Track Y. Qu ISSN: 2070-1721 Futurewei Technologies, Inc. A. Lindem Cisco Systems C. Hopps Deutsche Telekom L. Berger LabN Consulting, L.L.C. December 2017
Internet Engineering Task Force (IETF) X. Liu Request for Comments: 8294 Jabil Category: Standards Track Y. Qu ISSN: 2070-1721 Futurewei Technologies, Inc. A. Lindem Cisco Systems C. Hopps Deutsche Telekom L. Berger LabN Consulting, L.L.C. December 2017
Common YANG Data Types for the Routing Area
路由区域的常用数据类型
Abstract
摘要
This document defines a collection of common data types using the YANG data modeling language. These derived common types are designed to be imported by other modules defined in the routing area.
本文档使用YANG数据建模语言定义了一组通用数据类型。这些派生的通用类型设计为由路由区域中定义的其他模块导入。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 7841第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8294.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问https://www.rfc-editor.org/info/rfc8294.
Copyright Notice
版权公告
Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2017 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(https://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................3 1.1. Terminology ................................................3 2. Overview ........................................................3 3. IETF Routing Types YANG Module ..................................8 4. IANA Routing Types YANG Module .................................27 5. IANA Considerations ............................................37 5.1. IANA-Maintained iana-routing-types Module .................38 6. Security Considerations ........................................39 7. References .....................................................39 7.1. Normative References ......................................39 7.2. Informative References ....................................40 Acknowledgements ..................................................42 Authors' Addresses ................................................43
1. Introduction ....................................................3 1.1. Terminology ................................................3 2. Overview ........................................................3 3. IETF Routing Types YANG Module ..................................8 4. IANA Routing Types YANG Module .................................27 5. IANA Considerations ............................................37 5.1. IANA-Maintained iana-routing-types Module .................38 6. Security Considerations ........................................39 7. References .....................................................39 7.1. Normative References ......................................39 7.2. Informative References ....................................40 Acknowledgements ..................................................42 Authors' Addresses ................................................43
YANG [RFC6020] [RFC7950] is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. The YANG language supports a small set of built-in data types and provides mechanisms to derive other types from the built-in types.
YANG[RFC6020][RFC7950]是一种数据建模语言,用于为网络管理协议的配置数据、状态数据、远程过程调用和通知建模。YANG语言支持一小部分内置数据类型,并提供从内置类型派生其他类型的机制。
This document introduces a collection of common data types derived from the built-in YANG data types. The derived types are designed to be the common types applicable for modeling in the routing area.
本文档介绍从内置数据类型派生的常见数据类型的集合。派生类型被设计为适用于路由区域中建模的常见类型。
The terminology for describing YANG data models is found in [RFC7950].
描述YANG数据模型的术语见[RFC7950]。
This document defines two YANG modules for common routing types: ietf-routing-types and iana-routing-types. The only module imports (ietf-yang-types and ietf-inet-types; see Section 3) are from [RFC6991]. The ietf-routing-types module contains common routing types other than those corresponding directly to IANA mappings. These include the following:
本文档定义了两个常见路由类型模块:ietf路由类型和iana路由类型。唯一的模块导入(ietf yang类型和ietf inet类型;参见第3节)来自[RFC6991]。ietf路由类型模块包含除与IANA映射直接对应的路由类型以外的常见路由类型。这些措施包括:
router-id Router Identifiers are commonly used to identify nodes in routing and other control-plane protocols. An example usage of router-id can be found in [OSPF-YANG].
路由器id路由器标识符通常用于标识路由协议和其他控制平面协议中的节点。在[OSPF-YANG]中可以找到路由器id的示例用法。
route-target Route Targets (RTs) are commonly used to control the distribution of Virtual Routing and Forwarding (VRF) information (see [RFC4364]) in support of BGP/MPLS IP Virtual Private Networks (VPNs) and BGP/MPLS Ethernet VPNs [RFC7432]. An example usage can be found in [L2VPN-YANG].
路由目标路由目标(RTs)通常用于控制虚拟路由和转发(VRF)信息的分发(参见[RFC4364]),以支持BGP/MPLS IP虚拟专用网络(VPN)和BGP/MPLS以太网VPN[RFC7432]。在[L2VPN-YANG]中可以找到一个示例用法。
ipv6-route-target IPv6 Route Targets are similar to standard Route Targets, except that they are IPv6 Address Specific BGP Extended Communities as described in [RFC5701]. An IPv6 Route Target is 20 octets and includes an IPv6 address as the global administrator.
ipv6路由目标ipv6路由目标与标准路由目标类似,只是它们是[RFC5701]中描述的ipv6地址特定的BGP扩展社区。IPv6路由目标为20个八位字节,包括一个作为全局管理员的IPv6地址。
route-target-type This type defines the import and export rules of Route Targets, as described in Section 4.3.1 of [RFC4364].
路由目标类型此类型定义路由目标的导入和导出规则,如[RFC4364]第4.3.1节所述。
route-distinguisher Route Distinguishers (RDs) are commonly used to identify separate routes in support of VPNs. For example, as described in [RFC4364], RDs are commonly used to identify independent VPNs and VRFs, and, more generally, to identify multiple routes to the same prefix.
路由识别器路由识别器(RDs)通常用于识别支持VPN的独立路由。例如,如[RFC4364]所述,RDs通常用于识别独立的VPN和VRF,更一般地,用于识别指向同一前缀的多条路由。
route-origin A Route Origin is commonly used to indicate the Site of Origin for VRF information (see [RFC4364]) in support of BGP/MPLS IP VPNs and BGP/MPLS Ethernet VPNs [RFC7432].
路由来源路由来源通常用于指示VRF信息的来源地(参见[RFC4364]),以支持BGP/MPLS IP VPN和BGP/MPLS以太网VPN[RFC7432]。
ipv6-route-origin An IPv6 Route Origin would also be used to indicate the Site of Origin for VRF information (see [RFC4364]) in support of VPNs. IPv6 Route Origins are IPv6 Address Specific BGP Extended Communities as described in [RFC5701]. An IPv6 Route Origin is 20 octets and includes an IPv6 address as the global administrator.
ipv6路由来源ipv6路由来源还将用于指示VRF信息的来源地(参见[RFC4364]),以支持VPN。IPv6路由源是IPv6地址特定的BGP扩展社区,如[RFC5701]所述。IPv6路由源是20个八位字节,包括一个作为全局管理员的IPv6地址。
ipv4-multicast-group-address This type defines the representation of an IPv4 multicast group address, which is in the range of 224.0.0.0 to 239.255.255.255. An example usage can be found in [PIM-YANG].
ipv4多播组地址此类型定义ipv4多播组地址的表示形式,其范围在224.0.0.0到239.255.255.255之间。在[PIM-YANG]中可以找到一个示例用法。
ipv6-multicast-group-address This type defines the representation of an IPv6 multicast group address, which is in the range of ff00::/8. An example usage can be found in [PIM-YANG].
ipv6多播组地址此类型定义ipv6多播组地址的表示形式,其范围为ff00::/8。在[PIM-YANG]中可以找到一个示例用法。
ip-multicast-group-address This type represents an IP multicast group address and is IP version neutral. The format of the textual representation implies the IP version. An example usage can be found in [PIM-YANG].
ip多播组地址此类型表示ip多播组地址,与ip版本无关。文本表示的格式意味着IP版本。在[PIM-YANG]中可以找到一个示例用法。
ipv4-multicast-source-address This represents the IPv4 source address type for use in multicast control protocols. This type also allows the indication of wildcard sources, i.e., "*". An example of where this type may/will be used is [PIM-YANG].
ipv4多播源地址这表示多播控制协议中使用的ipv4源地址类型。此类型还允许指示通配符源,即“*”。[PIM-YANG]是该类型可能/将要使用的示例。
ipv6-multicast-source-address This represents the IPv6 source address type for use in multicast control protocols. This type also allows the indication of wildcard sources, i.e., "*". An example of where this type may/will be used is [PIM-YANG].
ipv6多播源地址表示多播控制协议中使用的ipv6源地址类型。此类型还允许指示通配符源,即“*”。[PIM-YANG]是该类型可能/将要使用的示例。
bandwidth-ieee-float32 This represents the bandwidth in IEEE 754 floating-point 32-bit binary format [IEEE754]. It is commonly used in Traffic Engineering control-plane protocols. An example of where this type may/will be used is [OSPF-YANG].
带宽-ieee-float32这表示ieee 754浮点32位二进制格式[IEEE754]中的带宽。它通常用于流量工程控制平面协议中。[OSPF-YANG]是该类型可能/将使用的示例。
link-access-type This type identifies the IGP link type.
链路访问类型此类型标识IGP链路类型。
timer-multiplier This type is used in conjunction with a timer-value type. It is generally used to indicate the number of timer-value intervals that may expire before a specific event must occur. Examples of this include the arrival of any Bidirectional Forwarding Detection (BFD) packets (see [RFC5880] Section 6.8.4) or hello_interval [RFC3209].
计时器乘法器此类型与计时器值类型一起使用。它通常用于指示特定事件必须发生之前可能过期的计时器值间隔数。这方面的示例包括任何双向转发检测(BFD)数据包的到达(参见[RFC5880]第6.8.4节)或hello_间隔[RFC3209]。
timer-value-seconds16 This type covers timers that can be set in seconds, not set, or set to infinity. This type supports a range of values that can be represented in a uint16 (2 octets).
timer-value-seconds 16此类型包括可在秒内设置、未设置或设置为无穷大的计时器。此类型支持一系列可以用uint16(2个八位字节)表示的值。
timer-value-seconds32 This type covers timers that can be set in seconds, not set, or set to infinity. This type supports a range of values that can be represented in a uint32 (4 octets).
timer-value-Second32此类型包括可在秒数内设置、未设置或设置为无穷大的计时器。此类型支持一系列可以用uint32(4个八位字节)表示的值。
timer-value-milliseconds This type covers timers that can be set in milliseconds, not set, or set to infinity. This type supports a range of values that can be represented in a uint32 (4 octets).
计时器值毫秒此类型包括可以以毫秒为单位设置、未设置或设置为无穷大的计时器。此类型支持一系列可以用uint32(4个八位字节)表示的值。
percentage This type defines a percentage with a range of 0-100%. An example usage can be found in [BGP-Model].
百分比此类型定义范围为0-100%的百分比。示例用法可在[BGP模型]中找到。
timeticks64 This type is based on the timeticks type defined in [RFC6991] but with 64-bit precision. It represents the time in hundredths of a second between two epochs. An example usage can be found in [BGP-Model].
timeticks64此类型基于[RFC6991]中定义的timeticks类型,但精度为64位。它代表两个时代之间的百分之一秒时间。示例用法可在[BGP模型]中找到。
uint24 This type defines a 24-bit unsigned integer. An example usage can be found in [OSPF-YANG].
uint24此类型定义24位无符号整数。在[OSPF-YANG]中可以找到一个示例用法。
generalized-label This type represents a Generalized Label for Generalized Multiprotocol Label Switching (GMPLS) [RFC3471]. The Generalized Label does not identify its type, which is known from context. An example usage can be found in [TE-YANG].
广义标签此类型表示广义多协议标签交换(GMPLS)[RFC3471]的广义标签。通用标签不标识其类型,这是从上下文中知道的。在[TE-YANG]中可以找到一个示例用法。
mpls-label-special-purpose This type represents the special-purpose MPLS label values [RFC7274].
mpls标签专用此类型表示专用mpls标签值[RFC7274]。
mpls-label-general-use The 20-bit label value in an MPLS label stack is specified in [RFC3032]. This label value does not include the encodings of Traffic Class and TTL (Time to Live). The label range specified by this type is for general use, with special-purpose MPLS label values excluded.
mpls标签一般使用[RFC3032]中规定了mpls标签堆栈中的20位标签值。此标签值不包括Traffic Class和TTL(生存时间)的编码。此类型指定的标签范围用于一般用途,不包括特殊用途的MPLS标签值。
mpls-label The 20-bit label value in an MPLS label stack is specified in [RFC3032]. This label value does not include the encodings of Traffic Class and TTL. The label range specified by this type covers the general-use values and the special-purpose label values. An example usage can be found in [MPLS-Base-YANG].
mpls标签mpls标签堆栈中的20位标签值在[RFC3032]中指定。此标签值不包括Traffic Class和TTL的编码。此类型指定的标签范围包括通用标签值和专用标签值。示例用法可在[MPLS Base YANG]中找到。
This document defines the following YANG groupings:
本文件定义了以下类别:
mpls-label-stack This grouping defines a reusable collection of schema nodes representing an MPLS label stack [RFC3032].
mpls标签堆栈此分组定义了表示mpls标签堆栈的模式节点的可重用集合[RFC3032]。
vpn-route-targets This grouping defines a reusable collection of schema nodes representing Route Target import-export rules used in BGP-enabled VPNs [RFC4364] [RFC4664]. An example usage can be found in [L2VPN-YANG].
vpn路由目标此分组定义了架构节点的可重用集合,表示启用BGP的vpn[RFC4364][RFC4664]中使用的路由目标导入导出规则。在[L2VPN-YANG]中可以找到一个示例用法。
The iana-routing-types module contains common routing types corresponding directly to IANA mappings. These include the following:
iana路由类型模块包含与iana映射直接对应的常见路由类型。这些措施包括:
address-family This type defines values for use in Address Family identifiers. The values are based on the IANA "Address Family Numbers" registry [IANA-ADDRESS-FAMILY-REGISTRY]. An example usage can be found in [BGP-Model].
地址族此类型定义在地址族标识符中使用的值。这些值基于IANA“地址系列号”注册表[IANA-Address-Family-registry]。示例用法可在[BGP模型]中找到。
subsequent-address-family This type defines values for use in Subsequent Address Family Identifiers (SAFIs). The values are based on the IANA "Subsequent Address Family Identifiers (SAFI) Parameters" registry [IANA-SAFI-REGISTRY].
后续地址族此类型定义用于后续地址族标识符(SAFI)的值。这些值基于IANA“后续地址系列标识符(SAFI)参数”注册表[IANA-SAFI-registry]。
<CODE BEGINS> file "ietf-routing-types@2017-12-04.yang"
<CODE BEGINS> file "ietf-routing-types@2017-12-04.yang"
module ietf-routing-types { namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types"; prefix rt-types;
module ietf-routing-types { namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types"; prefix rt-types;
import ietf-yang-types { prefix yang; } import ietf-inet-types { prefix inet; }
import ietf-yang-types { prefix yang; } import ietf-inet-types { prefix inet; }
organization "IETF RTGWG - Routing Area Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/rtgwg/> WG List: <mailto:rtgwg@ietf.org>
organization "IETF RTGWG - Routing Area Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/rtgwg/> WG List: <mailto:rtgwg@ietf.org>
Editors: Xufeng Liu <mailto:Xufeng_Liu@jabail.com> Yingzhen Qu <mailto:yingzhen.qu@huawei.com> Acee Lindem <mailto:acee@cisco.com> Christian Hopps <mailto:chopps@chopps.org> Lou Berger <mailto:lberger@labn.com>";
Editors: Xufeng Liu <mailto:Xufeng_Liu@jabail.com> Yingzhen Qu <mailto:yingzhen.qu@huawei.com> Acee Lindem <mailto:acee@cisco.com> Christian Hopps <mailto:chopps@chopps.org> Lou Berger <mailto:lberger@labn.com>";
description "This module contains a collection of YANG data types considered generally useful for routing protocols.
description“此模块包含对路由协议通常有用的数据类型集合。
Copyright (c) 2017 IETF Trust and the persons identified as authors of the code. All rights reserved.
版权所有(c)2017 IETF信托基金和被确定为代码作者的人员。版权所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).
根据IETF信托有关IETF文件的法律规定第4.c节规定的简化BSD许可证中包含的许可条款,允许以源代码和二进制格式重新分发和使用,无论是否修改(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8294; see the RFC itself for full legal notices.";
此模块的此版本是RFC 8294的一部分;有关完整的法律通知,请参见RFC本身。“;
revision 2017-12-04 { description "Initial revision."; reference "RFC 8294: Common YANG Data Types for the Routing Area. Section 3."; }
revision 2017-12-04 { description "Initial revision."; reference "RFC 8294: Common YANG Data Types for the Routing Area. Section 3."; }
/*** Identities related to MPLS/GMPLS ***/
/*** Identities related to MPLS/GMPLS ***/
identity mpls-label-special-purpose-value { description "Base identity for deriving identities describing special-purpose Multiprotocol Label Switching (MPLS) label values."; reference "RFC 7274: Allocating and Retiring Special-Purpose MPLS Labels."; }
identity mpls-label-special-purpose-value { description "Base identity for deriving identities describing special-purpose Multiprotocol Label Switching (MPLS) label values."; reference "RFC 7274: Allocating and Retiring Special-Purpose MPLS Labels."; }
identity ipv4-explicit-null-label { base mpls-label-special-purpose-value; description "This identity represents the IPv4 Explicit NULL Label."; reference "RFC 3032: MPLS Label Stack Encoding. Section 2.1."; }
identity ipv4-explicit-null-label { base mpls-label-special-purpose-value; description "This identity represents the IPv4 Explicit NULL Label."; reference "RFC 3032: MPLS Label Stack Encoding. Section 2.1."; }
identity router-alert-label { base mpls-label-special-purpose-value; description "This identity represents the Router Alert Label."; reference "RFC 3032: MPLS Label Stack Encoding. Section 2.1."; }
identity router-alert-label { base mpls-label-special-purpose-value; description "This identity represents the Router Alert Label."; reference "RFC 3032: MPLS Label Stack Encoding. Section 2.1."; }
identity ipv6-explicit-null-label { base mpls-label-special-purpose-value; description "This identity represents the IPv6 Explicit NULL Label."; reference "RFC 3032: MPLS Label Stack Encoding. Section 2.1."; }
identity ipv6-explicit-null-label { base mpls-label-special-purpose-value; description "This identity represents the IPv6 Explicit NULL Label."; reference "RFC 3032: MPLS Label Stack Encoding. Section 2.1."; }
identity implicit-null-label { base mpls-label-special-purpose-value; description "This identity represents the Implicit NULL Label."; reference "RFC 3032: MPLS Label Stack Encoding. Section 2.1."; }
identity implicit-null-label { base mpls-label-special-purpose-value; description "This identity represents the Implicit NULL Label."; reference "RFC 3032: MPLS Label Stack Encoding. Section 2.1."; }
identity entropy-label-indicator { base mpls-label-special-purpose-value; description "This identity represents the Entropy Label Indicator."; reference "RFC 6790: The Use of Entropy Labels in MPLS Forwarding. Sections 3 and 10.1."; }
identity entropy-label-indicator { base mpls-label-special-purpose-value; description "This identity represents the Entropy Label Indicator."; reference "RFC 6790: The Use of Entropy Labels in MPLS Forwarding. Sections 3 and 10.1."; }
identity gal-label { base mpls-label-special-purpose-value; description "This identity represents the Generic Associated Channel (G-ACh) Label (GAL)."; reference "RFC 5586: MPLS Generic Associated Channel. Sections 4 and 10."; }
identity gal-label { base mpls-label-special-purpose-value; description "This identity represents the Generic Associated Channel (G-ACh) Label (GAL)."; reference "RFC 5586: MPLS Generic Associated Channel. Sections 4 and 10."; }
identity oam-alert-label { base mpls-label-special-purpose-value; description "This identity represents the OAM Alert Label."; reference "RFC 3429: Assignment of the 'OAM Alert Label' for Multiprotocol Label Switching Architecture (MPLS) Operation and Maintenance (OAM) Functions. Sections 3 and 6."; }
identity oam-alert-label { base mpls-label-special-purpose-value; description "This identity represents the OAM Alert Label."; reference "RFC 3429: Assignment of the 'OAM Alert Label' for Multiprotocol Label Switching Architecture (MPLS) Operation and Maintenance (OAM) Functions. Sections 3 and 6."; }
identity extension-label { base mpls-label-special-purpose-value; description "This identity represents the Extension Label."; reference "RFC 7274: Allocating and Retiring Special-Purpose MPLS Labels. Sections 3.1 and 5."; }
identity extension-label { base mpls-label-special-purpose-value; description "This identity represents the Extension Label."; reference "RFC 7274: Allocating and Retiring Special-Purpose MPLS Labels. Sections 3.1 and 5."; }
/*** Collection of types related to routing ***/
/*** Collection of types related to routing ***/
typedef router-id { type yang:dotted-quad; description "A 32-bit number in the dotted-quad format assigned to each router. This number uniquely identifies the router within an Autonomous System."; }
typedef router-id { type yang:dotted-quad; description "A 32-bit number in the dotted-quad format assigned to each router. This number uniquely identifies the router within an Autonomous System."; }
/*** Collection of types related to VPNs ***/
/*** Collection of types related to VPNs ***/
typedef route-target { type string { pattern '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|' + '42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|' + '42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|' + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|' + '655[0-2][0-9]|' + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(2:(429496729[0-5]|42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|' + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|' + '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(6(:[a-fA-F0-9]{2}){6})|' + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):' + '[0-9a-fA-F]{1,12})'; }
typedef route-target { type string { pattern '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|' + '42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|' + '42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|' + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|' + '655[0-2][0-9]|' + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(2:(429496729[0-5]|42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|' + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|' + '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(6(:[a-fA-F0-9]{2}){6})|' + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):' + '[0-9a-fA-F]{1,12})'; }
description "A Route Target is an 8-octet BGP extended community initially identifying a set of sites in a BGP VPN (RFC 4364). However, it has since taken on a more general role in BGP route filtering. A Route Target consists of two or three fields: a 2-octet Type field, an administrator field, and, optionally, an assigned number field.
描述“路由目标是一个8位字节的BGP扩展社区,最初标识BGP VPN(RFC 4364)中的一组站点。但是,它在BGP路由筛选中起到了更一般的作用。路由目标由两个或三个字段组成:一个2位字节类型字段、一个管理员字段和一个可选的分配号码字段。
According to the data formats for types 0, 1, 2, and 6 as defined in RFC 4360, RFC 5668, and RFC 7432, the encoding pattern is defined as:
根据RFC 4360、RFC 5668和RFC 7432中定义的类型0、1、2和6的数据格式,编码模式定义为:
0:2-octet-asn:4-octet-number 1:4-octet-ipv4addr:2-octet-number 2:4-octet-asn:2-octet-number 6:6-octet-mac-address
0:2-octet-asn:4-octet-number 1:4-octet-ipv4addr:2-octet-number 2:4-octet-asn:2-octet-number 6:6-octet-mac-address
Additionally, a generic pattern is defined for future Route Target types:
此外,还为未来的路线目标类型定义了通用模式:
2-octet-other-hex-number:6-octet-hex-number
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are 0:100:100, 1:1.1.1.1:100, 2:1234567890:203, and 6:26:00:08:92:78:00."; reference "RFC 4360: BGP Extended Communities Attribute. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs). RFC 5668: 4-Octet AS Specific BGP Extended Community. RFC 7432: BGP MPLS-Based Ethernet VPN."; }
Some valid examples are 0:100:100, 1:1.1.1.1:100, 2:1234567890:203, and 6:26:00:08:92:78:00."; reference "RFC 4360: BGP Extended Communities Attribute. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs). RFC 5668: 4-Octet AS Specific BGP Extended Community. RFC 7432: BGP MPLS-Based Ethernet VPN."; }
typedef ipv6-route-target { type string { pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}' + '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; } description "An IPv6 Route Target is a 20-octet BGP IPv6 Address Specific Extended Community serving the same function as a standard 8-octet Route Target, except that it only allows an IPv6 address as the global administrator. The format is <ipv6-address:2-octet-number>.
typedef ipv6-route-target { type string { pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}' + '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; } description "An IPv6 Route Target is a 20-octet BGP IPv6 Address Specific Extended Community serving the same function as a standard 8-octet Route Target, except that it only allows an IPv6 address as the global administrator. The format is <ipv6-address:2-octet-number>.
Two valid examples are 2001:db8::1:6544 and 2001:db8::5eb1:791:6b37:17958."; reference "RFC 5701: IPv6 Address Specific BGP Extended Community Attribute."; }
Two valid examples are 2001:db8::1:6544 and 2001:db8::5eb1:791:6b37:17958."; reference "RFC 5701: IPv6 Address Specific BGP Extended Community Attribute."; }
typedef route-target-type { type enumeration { enum import { value 0; description "The Route Target applies to route import."; } enum export { value 1; description "The Route Target applies to route export."; }
typedef route-target-type { type enumeration { enum import { value 0; description "The Route Target applies to route import."; } enum export { value 1; description "The Route Target applies to route export."; }
enum both { value 2; description "The Route Target applies to both route import and route export."; } } description "Indicates the role a Route Target takes in route filtering."; reference "RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs)."; }
enum both { value 2; description "The Route Target applies to both route import and route export."; } } description "Indicates the role a Route Target takes in route filtering."; reference "RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs)."; }
typedef route-distinguisher { type string { pattern '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|' + '42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|' + '42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|' + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|' + '655[0-2][0-9]|' + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(2:(429496729[0-5]|42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|' + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|' + '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(6(:[a-fA-F0-9]{2}){6})|' + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):' + '[0-9a-fA-F]{1,12})'; }
typedef route-distinguisher { type string { pattern '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|' + '42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|' + '42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|' + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|' + '655[0-2][0-9]|' + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(2:(429496729[0-5]|42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|' + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|' + '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(6(:[a-fA-F0-9]{2}){6})|' + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):' + '[0-9a-fA-F]{1,12})'; }
description "A Route Distinguisher is an 8-octet value used to distinguish routes from different BGP VPNs (RFC 4364). A Route Distinguisher will have the same format as a Route Target as per RFC 4360 and will consist of two or three fields: a 2-octet Type field, an administrator field, and, optionally, an assigned number field.
描述“路由识别器是一个8位字节值,用于区分来自不同BGP VPN(RFC 4364)的路由。路由识别器将具有与RFC 4360规定的路由目标相同的格式,并由两个或三个字段组成:一个2位字节类型字段、一个管理员字段,以及一个可选的分配编号字段。
According to the data formats for types 0, 1, 2, and 6 as defined in RFC 4360, RFC 5668, and RFC 7432, the encoding pattern is defined as:
根据RFC 4360、RFC 5668和RFC 7432中定义的类型0、1、2和6的数据格式,编码模式定义为:
0:2-octet-asn:4-octet-number 1:4-octet-ipv4addr:2-octet-number 2:4-octet-asn:2-octet-number 6:6-octet-mac-address
0:2-octet-asn:4-octet-number 1:4-octet-ipv4addr:2-octet-number 2:4-octet-asn:2-octet-number 6:6-octet-mac-address
Additionally, a generic pattern is defined for future route discriminator types:
此外,还为未来的路由鉴别器类型定义了通用模式:
2-octet-other-hex-number:6-octet-hex-number
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are 0:100:100, 1:1.1.1.1:100, 2:1234567890:203, and 6:26:00:08:92:78:00."; reference "RFC 4360: BGP Extended Communities Attribute. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs). RFC 5668: 4-Octet AS Specific BGP Extended Community. RFC 7432: BGP MPLS-Based Ethernet VPN."; }
Some valid examples are 0:100:100, 1:1.1.1.1:100, 2:1234567890:203, and 6:26:00:08:92:78:00."; reference "RFC 4360: BGP Extended Communities Attribute. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs). RFC 5668: 4-Octet AS Specific BGP Extended Community. RFC 7432: BGP MPLS-Based Ethernet VPN."; }
typedef route-origin { type string { pattern '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|' + '42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|' + '42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|' + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|' + '655[0-2][0-9]|' + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(2:(429496729[0-5]|42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|' + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|' + '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(6(:[a-fA-F0-9]{2}){6})|' + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):' + '[0-9a-fA-F]{1,12})'; } description "A Route Origin is an 8-octet BGP extended community identifying the set of sites where the BGP route originated (RFC 4364). A Route Origin will have the same format as a Route Target as per RFC 4360 and will consist of two or three fields: a 2-octet Type field, an administrator field, and, optionally, an assigned number field.
typedef route-origin { type string { pattern '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|' + '42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|' + '42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|' + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|' + '655[0-2][0-9]|' + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(2:(429496729[0-5]|42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|' + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|' + '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(6(:[a-fA-F0-9]{2}){6})|' + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):' + '[0-9a-fA-F]{1,12})'; } description "A Route Origin is an 8-octet BGP extended community identifying the set of sites where the BGP route originated (RFC 4364). A Route Origin will have the same format as a Route Target as per RFC 4360 and will consist of two or three fields: a 2-octet Type field, an administrator field, and, optionally, an assigned number field.
According to the data formats for types 0, 1, 2, and 6 as defined in RFC 4360, RFC 5668, and RFC 7432, the encoding pattern is defined as:
根据RFC 4360、RFC 5668和RFC 7432中定义的类型0、1、2和6的数据格式,编码模式定义为:
0:2-octet-asn:4-octet-number 1:4-octet-ipv4addr:2-octet-number 2:4-octet-asn:2-octet-number 6:6-octet-mac-address
0:2-octet-asn:4-octet-number 1:4-octet-ipv4addr:2-octet-number 2:4-octet-asn:2-octet-number 6:6-octet-mac-address
Additionally, a generic pattern is defined for future Route Origin types:
此外,还为将来的管线原点类型定义了通用模式:
2-octet-other-hex-number:6-octet-hex-number
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are 0:100:100, 1:1.1.1.1:100, 2:1234567890:203, and 6:26:00:08:92:78:00."; reference "RFC 4360: BGP Extended Communities Attribute. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs). RFC 5668: 4-Octet AS Specific BGP Extended Community. RFC 7432: BGP MPLS-Based Ethernet VPN."; }
Some valid examples are 0:100:100, 1:1.1.1.1:100, 2:1234567890:203, and 6:26:00:08:92:78:00."; reference "RFC 4360: BGP Extended Communities Attribute. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs). RFC 5668: 4-Octet AS Specific BGP Extended Community. RFC 7432: BGP MPLS-Based Ethernet VPN."; }
typedef ipv6-route-origin { type string { pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}' + '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; } description "An IPv6 Route Origin is a 20-octet BGP IPv6 Address Specific Extended Community serving the same function as a standard 8-octet route, except that it only allows an IPv6 address as the global administrator. The format is <ipv6-address:2-octet-number>.
typedef ipv6-route-origin { type string { pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}' + '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; } description "An IPv6 Route Origin is a 20-octet BGP IPv6 Address Specific Extended Community serving the same function as a standard 8-octet route, except that it only allows an IPv6 address as the global administrator. The format is <ipv6-address:2-octet-number>.
Two valid examples are 2001:db8::1:6544 and 2001:db8::5eb1:791:6b37:17958."; reference "RFC 5701: IPv6 Address Specific BGP Extended Community Attribute."; }
Two valid examples are 2001:db8::1:6544 and 2001:db8::5eb1:791:6b37:17958."; reference "RFC 5701: IPv6 Address Specific BGP Extended Community Attribute."; }
/*** Collection of types common to multicast ***/
/*** Collection of types common to multicast ***/
typedef ipv4-multicast-group-address { type inet:ipv4-address { pattern '(2((2[4-9])|(3[0-9]))\.).*'; } description "This type represents an IPv4 multicast group address, which is in the range of 224.0.0.0 to 239.255.255.255."; reference "RFC 1112: Host Extensions for IP Multicasting."; }
typedef ipv4-multicast-group-address { type inet:ipv4-address { pattern '(2((2[4-9])|(3[0-9]))\.).*'; } description "This type represents an IPv4 multicast group address, which is in the range of 224.0.0.0 to 239.255.255.255."; reference "RFC 1112: Host Extensions for IP Multicasting."; }
typedef ipv6-multicast-group-address { type inet:ipv6-address { pattern '(([fF]{2}[0-9a-fA-F]{2}):).*'; } description "This type represents an IPv6 multicast group address, which is in the range of ff00::/8."; reference "RFC 4291: IP Version 6 Addressing Architecture. Section 2.7. RFC 7346: IPv6 Multicast Address Scopes."; }
typedef ipv6-multicast-group-address { type inet:ipv6-address { pattern '(([fF]{2}[0-9a-fA-F]{2}):).*'; } description "This type represents an IPv6 multicast group address, which is in the range of ff00::/8."; reference "RFC 4291: IP Version 6 Addressing Architecture. Section 2.7. RFC 7346: IPv6 Multicast Address Scopes."; }
typedef ip-multicast-group-address { type union { type ipv4-multicast-group-address; type ipv6-multicast-group-address; } description "This type represents a version-neutral IP multicast group address. The format of the textual representation implies the IP version."; }
typedef ip-multicast-group-address { type union { type ipv4-multicast-group-address; type ipv6-multicast-group-address; } description "This type represents a version-neutral IP multicast group address. The format of the textual representation implies the IP version."; }
typedef ipv4-multicast-source-address { type union { type enumeration { enum * { description "Any source address."; } } type inet:ipv4-address; } description "Multicast source IPv4 address type."; }
typedef ipv4-multicast-source-address { type union { type enumeration { enum * { description "Any source address."; } } type inet:ipv4-address; } description "Multicast source IPv4 address type."; }
typedef ipv6-multicast-source-address { type union { type enumeration { enum * { description "Any source address."; } } type inet:ipv6-address; } description "Multicast source IPv6 address type."; }
typedef ipv6-multicast-source-address { type union { type enumeration { enum * { description "Any source address."; } } type inet:ipv6-address; } description "Multicast source IPv6 address type."; }
/*** Collection of types common to protocols ***/
/*** Collection of types common to protocols ***/
typedef bandwidth-ieee-float32 { type string { pattern '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|' + '1(\.([0-9a-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|' + '1[01][0-9]|0?[0-9]?[0-9])?)'; } description "Bandwidth in IEEE 754 floating-point 32-bit binary format: (-1)**(S) * 2**(Exponent-127) * (1 + Fraction), where Exponent uses 8 bits and Fraction uses 23 bits. The units are octets per second. The encoding format is the external hexadecimal-significant character sequences specified in IEEE 754 and ISO/IEC C99. The format is restricted to be normalized, non-negative, and non-fraction: 0x1.hhhhhhp{+}d, 0X1.HHHHHHP{+}D, or 0x0p0, where 'h' and 'H' are hexadecimal digits and 'd' and 'D' are integers in the range of [0..127].
typedef bandwidth-ieee-float32 { type string { pattern '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|' + '1(\.([0-9a-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|' + '1[01][0-9]|0?[0-9]?[0-9])?)'; } description "Bandwidth in IEEE 754 floating-point 32-bit binary format: (-1)**(S) * 2**(Exponent-127) * (1 + Fraction), where Exponent uses 8 bits and Fraction uses 23 bits. The units are octets per second. The encoding format is the external hexadecimal-significant character sequences specified in IEEE 754 and ISO/IEC C99. The format is restricted to be normalized, non-negative, and non-fraction: 0x1.hhhhhhp{+}d, 0X1.HHHHHHP{+}D, or 0x0p0, where 'h' and 'H' are hexadecimal digits and 'd' and 'D' are integers in the range of [0..127].
When six hexadecimal digits are used for 'hhhhhh' or 'HHHHHH', the least significant digit must be an even number. 'x' and 'X' indicate hexadecimal; 'p' and 'P' indicate a power of two. Some examples are 0x0p0, 0x1p10, and 0x1.abcde2p+20."; reference "IEEE Std 754-2008: IEEE Standard for Floating-Point Arithmetic. ISO/IEC C99: Information technology - Programming Languages - C."; }
When six hexadecimal digits are used for 'hhhhhh' or 'HHHHHH', the least significant digit must be an even number. 'x' and 'X' indicate hexadecimal; 'p' and 'P' indicate a power of two. Some examples are 0x0p0, 0x1p10, and 0x1.abcde2p+20."; reference "IEEE Std 754-2008: IEEE Standard for Floating-Point Arithmetic. ISO/IEC C99: Information technology - Programming Languages - C."; }
typedef link-access-type { type enumeration { enum broadcast { description "Specify broadcast multi-access network."; } enum non-broadcast-multiaccess { description "Specify Non-Broadcast Multi-Access (NBMA) network."; } enum point-to-multipoint { description "Specify point-to-multipoint network."; } enum point-to-point { description "Specify point-to-point network."; } } description "Link access type."; }
typedef link-access-type { type enumeration { enum broadcast { description "Specify broadcast multi-access network."; } enum non-broadcast-multiaccess { description "Specify Non-Broadcast Multi-Access (NBMA) network."; } enum point-to-multipoint { description "Specify point-to-multipoint network."; } enum point-to-point { description "Specify point-to-point network."; } } description "Link access type."; }
typedef timer-multiplier { type uint8; description "The number of timer value intervals that should be interpreted as a failure."; }
typedef timer-multiplier { type uint8; description "The number of timer value intervals that should be interpreted as a failure."; }
typedef timer-value-seconds16 { type union { type uint16 { range "1..65535"; } type enumeration { enum infinity { description "The timer is set to infinity."; } enum not-set { description "The timer is not set."; } } } units "seconds"; description "Timer value type, in seconds (16-bit range)."; }
typedef timer-value-seconds16 { type union { type uint16 { range "1..65535"; } type enumeration { enum infinity { description "The timer is set to infinity."; } enum not-set { description "The timer is not set."; } } } units "seconds"; description "Timer value type, in seconds (16-bit range)."; }
typedef timer-value-seconds32 { type union { type uint32 { range "1..4294967295"; } type enumeration { enum infinity { description "The timer is set to infinity."; } enum not-set { description "The timer is not set."; } } } units "seconds"; description "Timer value type, in seconds (32-bit range)."; }
typedef timer-value-seconds32 { type union { type uint32 { range "1..4294967295"; } type enumeration { enum infinity { description "The timer is set to infinity."; } enum not-set { description "The timer is not set."; } } } units "seconds"; description "Timer value type, in seconds (32-bit range)."; }
typedef timer-value-milliseconds { type union { type uint32 { range "1..4294967295"; } type enumeration { enum infinity { description "The timer is set to infinity."; } enum not-set { description "The timer is not set."; } } } units "milliseconds"; description "Timer value type, in milliseconds."; }
typedef timer-value-milliseconds { type union { type uint32 { range "1..4294967295"; } type enumeration { enum infinity { description "The timer is set to infinity."; } enum not-set { description "The timer is not set."; } } } units "milliseconds"; description "Timer value type, in milliseconds."; }
typedef percentage { type uint8 { range "0..100"; } description "Integer indicating a percentage value."; }
typedef percentage { type uint8 { range "0..100"; } description "Integer indicating a percentage value."; }
typedef timeticks64 { type uint64; description "This type is based on the timeticks type defined in RFC 6991, but with 64-bit width. It represents the time, modulo 2^64, in hundredths of a second between two epochs."; reference "RFC 6991: Common YANG Data Types."; }
typedef timeticks64 { type uint64; description "This type is based on the timeticks type defined in RFC 6991, but with 64-bit width. It represents the time, modulo 2^64, in hundredths of a second between two epochs."; reference "RFC 6991: Common YANG Data Types."; }
typedef uint24 { type uint32 { range "0..16777215"; } description "24-bit unsigned integer."; }
typedef uint24 { type uint32 { range "0..16777215"; } description "24-bit unsigned integer."; }
/*** Collection of types related to MPLS/GMPLS ***/
/*** Collection of types related to MPLS/GMPLS ***/
typedef generalized-label { type binary; description "Generalized Label. Nodes sending and receiving the Generalized Label are aware of the link-specific label context and type."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description. Section 3.2."; }
typedef generalized-label { type binary; description "Generalized Label. Nodes sending and receiving the Generalized Label are aware of the link-specific label context and type."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description. Section 3.2."; }
typedef mpls-label-special-purpose { type identityref { base mpls-label-special-purpose-value; } description "This type represents the special-purpose MPLS label values."; reference "RFC 3032: MPLS Label Stack Encoding. RFC 7274: Allocating and Retiring Special-Purpose MPLS Labels."; }
typedef mpls-label-special-purpose { type identityref { base mpls-label-special-purpose-value; } description "This type represents the special-purpose MPLS label values."; reference "RFC 3032: MPLS Label Stack Encoding. RFC 7274: Allocating and Retiring Special-Purpose MPLS Labels."; }
typedef mpls-label-general-use { type uint32 { range "16..1048575"; } description "The 20-bit label value in an MPLS label stack as specified in RFC 3032. This label value does not include the encodings of Traffic Class and TTL (Time to Live). The label range specified by this type is for general use, with special-purpose MPLS label values excluded."; reference "RFC 3032: MPLS Label Stack Encoding."; }
typedef mpls-label-general-use { type uint32 { range "16..1048575"; } description "The 20-bit label value in an MPLS label stack as specified in RFC 3032. This label value does not include the encodings of Traffic Class and TTL (Time to Live). The label range specified by this type is for general use, with special-purpose MPLS label values excluded."; reference "RFC 3032: MPLS Label Stack Encoding."; }
typedef mpls-label { type union { type mpls-label-special-purpose; type mpls-label-general-use; } description "The 20-bit label value in an MPLS label stack as specified in RFC 3032. This label value does not include the encodings of Traffic Class and TTL."; reference "RFC 3032: MPLS Label Stack Encoding."; }
typedef mpls-label { type union { type mpls-label-special-purpose; type mpls-label-general-use; } description "The 20-bit label value in an MPLS label stack as specified in RFC 3032. This label value does not include the encodings of Traffic Class and TTL."; reference "RFC 3032: MPLS Label Stack Encoding."; }
/*** Groupings **/
/*** Groupings **/
grouping mpls-label-stack { description "This grouping specifies an MPLS label stack. The label stack is encoded as a list of label stack entries. The list key is an identifier that indicates the relative ordering of each entry, with the lowest-value identifier corresponding to the top of the label stack."; container mpls-label-stack { description "Container for a list of MPLS label stack entries."; list entry { key "id"; description "List of MPLS label stack entries."; leaf id { type uint8; description "Identifies the entry in a sequence of MPLS label stack entries. An entry with a smaller identifier value precedes an entry with a larger identifier value in the label stack. The value of this ID has no semantic meaning other than relative ordering and referencing the entry."; } leaf label { type rt-types:mpls-label; description "Label value."; }
grouping mpls-label-stack { description "This grouping specifies an MPLS label stack. The label stack is encoded as a list of label stack entries. The list key is an identifier that indicates the relative ordering of each entry, with the lowest-value identifier corresponding to the top of the label stack."; container mpls-label-stack { description "Container for a list of MPLS label stack entries."; list entry { key "id"; description "List of MPLS label stack entries."; leaf id { type uint8; description "Identifies the entry in a sequence of MPLS label stack entries. An entry with a smaller identifier value precedes an entry with a larger identifier value in the label stack. The value of this ID has no semantic meaning other than relative ordering and referencing the entry."; } leaf label { type rt-types:mpls-label; description "Label value."; }
leaf ttl { type uint8; description "Time to Live (TTL)."; reference "RFC 3032: MPLS Label Stack Encoding."; } leaf traffic-class { type uint8 { range "0..7"; } description "Traffic Class (TC)."; reference "RFC 5462: Multiprotocol Label Switching (MPLS) Label Stack Entry: 'EXP' Field Renamed to 'Traffic Class' Field."; } } } }
leaf ttl { type uint8; description "Time to Live (TTL)."; reference "RFC 3032: MPLS Label Stack Encoding."; } leaf traffic-class { type uint8 { range "0..7"; } description "Traffic Class (TC)."; reference "RFC 5462: Multiprotocol Label Switching (MPLS) Label Stack Entry: 'EXP' Field Renamed to 'Traffic Class' Field."; } } } }
grouping vpn-route-targets { description "A grouping that specifies Route Target import-export rules used in BGP-enabled VPNs."; reference "RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs). RFC 4664: Framework for Layer 2 Virtual Private Networks (L2VPNs)."; list vpn-target { key "route-target"; description "List of Route Targets."; leaf route-target { type rt-types:route-target; description "Route Target value."; } leaf route-target-type { type rt-types:route-target-type; mandatory true; description "Import/export type of the Route Target."; } } } }
grouping vpn-route-targets { description "A grouping that specifies Route Target import-export rules used in BGP-enabled VPNs."; reference "RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs). RFC 4664: Framework for Layer 2 Virtual Private Networks (L2VPNs)."; list vpn-target { key "route-target"; description "List of Route Targets."; leaf route-target { type rt-types:route-target; description "Route Target value."; } leaf route-target-type { type rt-types:route-target-type; mandatory true; description "Import/export type of the Route Target."; } } } }
<CODE ENDS>
<代码结束>
<CODE BEGINS> file "iana-routing-types@2017-12-04.yang"
<CODE BEGINS> file "iana-routing-types@2017-12-04.yang"
module iana-routing-types { namespace "urn:ietf:params:xml:ns:yang:iana-routing-types"; prefix iana-rt-types;
module iana-routing-types { namespace "urn:ietf:params:xml:ns:yang:iana-routing-types"; prefix iana-rt-types;
organization "IANA"; contact "Internet Assigned Numbers Authority
“IANA”组织;联系“互联网分配号码管理局”
Postal: ICANN 12025 Waterfront Drive, Suite 300 Los Angeles, CA 90094-2536 United States of America Tel: +1 310 301 5800 <mailto:iana@iana.org>";
Postal: ICANN 12025 Waterfront Drive, Suite 300 Los Angeles, CA 90094-2536 United States of America Tel: +1 310 301 5800 <mailto:iana@iana.org>";
description "This module contains a collection of YANG data types considered defined by IANA and used for routing protocols.
description“该模块包含IANA定义的用于路由协议的数据类型集合。
Copyright (c) 2017 IETF Trust and the persons identified as authors of the code. All rights reserved.
版权所有(c)2017 IETF信托基金和被确定为代码作者的人员。版权所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).
根据IETF信托有关IETF文件的法律规定第4.c节规定的简化BSD许可证中包含的许可条款,允许以源代码和二进制格式重新分发和使用,无论是否修改(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8294; see the RFC itself for full legal notices.";
此模块的此版本是RFC 8294的一部分;有关完整的法律通知,请参见RFC本身。“;
revision 2017-12-04 { description "Initial revision."; reference "RFC 8294: Common YANG Data Types for the Routing Area. Section 4."; }
revision 2017-12-04 { description "Initial revision."; reference "RFC 8294: Common YANG Data Types for the Routing Area. Section 4."; }
/*** Collection of IANA types related to routing ***/ /*** IANA Address Family enumeration ***/
/*** Collection of IANA types related to routing ***/ /*** IANA Address Family enumeration ***/
typedef address-family { type enumeration { enum ipv4 { value 1; description "IPv4 Address Family."; }
typedef address-family { type enumeration { enum ipv4 { value 1; description "IPv4 Address Family."; }
enum ipv6 { value 2; description "IPv6 Address Family."; }
enum ipv6 { value 2; description "IPv6 Address Family."; }
enum nsap { value 3; description "OSI Network Service Access Point (NSAP) Address Family."; }
enum nsap { value 3; description "OSI Network Service Access Point (NSAP) Address Family."; }
enum hdlc { value 4; description "High-Level Data Link Control (HDLC) Address Family."; }
enum hdlc { value 4; description "High-Level Data Link Control (HDLC) Address Family."; }
enum bbn1822 { value 5; description "Bolt, Beranek, and Newman Report 1822 (BBN 1822) Address Family."; }
enum bbn1822 { value 5; description "Bolt, Beranek, and Newman Report 1822 (BBN 1822) Address Family."; }
enum ieee802 { value 6; description "IEEE 802 Committee Address Family (aka Media Access Control (MAC) address)."; }
enum ieee802 { value 6; description "IEEE 802 Committee Address Family (aka Media Access Control (MAC) address)."; }
enum e163 { value 7; description "ITU-T E.163 Address Family."; }
enum e163 { value 7; description "ITU-T E.163 Address Family."; }
enum e164 { value 8; description "ITU-T E.164 (Switched Multimegabit Data Service (SMDS), Frame Relay, ATM) Address Family."; }
enum e164 { value 8; description "ITU-T E.164 (Switched Multimegabit Data Service (SMDS), Frame Relay, ATM) Address Family."; }
enum f69 { value 9; description "ITU-T F.69 (Telex) Address Family."; }
enum f69 { value 9; description "ITU-T F.69 (Telex) Address Family."; }
enum x121 { value 10; description "ITU-T X.121 (X.25, Frame Relay) Address Family."; }
enum x121 { value 10; description "ITU-T X.121 (X.25, Frame Relay) Address Family."; }
enum ipx { value 11; description "Novell Internetwork Packet Exchange (IPX) Address Family."; }
enum ipx { value 11; description "Novell Internetwork Packet Exchange (IPX) Address Family."; }
enum appletalk { value 12; description "Apple AppleTalk Address Family."; }
enum appletalk { value 12; description "Apple AppleTalk Address Family."; }
enum decnet-iv { value 13; description "Digital Equipment DECnet Phase IV Address Family."; }
enum decnet-iv { value 13; description "Digital Equipment DECnet Phase IV Address Family."; }
enum vines { value 14; description "Banyan Vines Address Family."; }
enum vines { value 14; description "Banyan Vines Address Family."; }
enum e164-nsap { value 15; description "ITU-T E.164 with NSAP sub-address Address Family."; }
enum e164-nsap { value 15; description "ITU-T E.164 with NSAP sub-address Address Family."; }
enum dns { value 16; description "Domain Name System (DNS) Address Family."; }
enum dns { value 16; description "Domain Name System (DNS) Address Family."; }
enum distinguished-name { value 17; description "Distinguished Name Address Family."; }
enum distinguished-name { value 17; description "Distinguished Name Address Family."; }
enum as-num { value 18; description "Autonomous System (AS) Number Address Family."; }
enum as-num { value 18; description "Autonomous System (AS) Number Address Family."; }
enum xtp-v4 { value 19; description "Xpress Transport Protocol (XTP) over IPv4 Address Family."; }
enum xtp-v4 { value 19; description "Xpress Transport Protocol (XTP) over IPv4 Address Family."; }
enum xtp-v6 { value 20; description "XTP over IPv6 Address Family."; }
enum xtp-v6 { value 20; description "XTP over IPv6 Address Family."; }
enum xtp-native { value 21; description "XTP native mode Address Family."; }
enum xtp-native { value 21; description "XTP native mode Address Family."; }
enum fc-port { value 22; description "Fibre Channel (FC) World-Wide Port Name Address Family."; }
enum fc-port { value 22; description "Fibre Channel (FC) World-Wide Port Name Address Family."; }
enum fc-node { value 23; description "FC World-Wide Node Name Address Family."; }
enum fc-node { value 23; description "FC World-Wide Node Name Address Family."; }
enum gwid { value 24; description "ATM Gateway Identifier (GWID) Number Address Family."; }
enum gwid { value 24; description "ATM Gateway Identifier (GWID) Number Address Family."; }
enum l2vpn { value 25; description "Layer 2 VPN (L2VPN) Address Family."; }
enum l2vpn { value 25; description "Layer 2 VPN (L2VPN) Address Family."; }
enum mpls-tp-section-eid { value 26; description "MPLS Transport Profile (MPLS-TP) Section Endpoint Identifier Address Family."; }
enum mpls-tp-section-eid { value 26; description "MPLS Transport Profile (MPLS-TP) Section Endpoint Identifier Address Family."; }
enum mpls-tp-lsp-eid { value 27; description "MPLS-TP Label Switched Path (LSP) Endpoint Identifier Address Family."; }
enum mpls-tp-lsp-eid { value 27; description "MPLS-TP Label Switched Path (LSP) Endpoint Identifier Address Family."; }
enum mpls-tp-pwe-eid { value 28; description "MPLS-TP Pseudowire Endpoint Identifier Address Family."; }
enum mpls-tp-pwe-eid { value 28; description "MPLS-TP Pseudowire Endpoint Identifier Address Family."; }
enum mt-v4 { value 29; description "Multi-Topology IPv4 Address Family."; }
enum mt-v4 { value 29; description "Multi-Topology IPv4 Address Family."; }
enum mt-v6 { value 30; description "Multi-Topology IPv6 Address Family."; }
enum mt-v6 { value 30; description "Multi-Topology IPv6 Address Family."; }
enum eigrp-common-sf { value 16384; description "Enhanced Interior Gateway Routing Protocol (EIGRP) Common Service Family Address Family."; }
enum eigrp-common-sf { value 16384; description "Enhanced Interior Gateway Routing Protocol (EIGRP) Common Service Family Address Family."; }
enum eigrp-v4-sf { value 16385; description "EIGRP IPv4 Service Family Address Family."; }
enum eigrp-v4-sf { value 16385; description "EIGRP IPv4 Service Family Address Family."; }
enum eigrp-v6-sf { value 16386; description "EIGRP IPv6 Service Family Address Family."; }
enum eigrp-v6-sf { value 16386; description "EIGRP IPv6 Service Family Address Family."; }
enum lcaf { value 16387; description "Locator/ID Separation Protocol (LISP) Canonical Address Format (LCAF) Address Family."; }
enum lcaf { value 16387; description "Locator/ID Separation Protocol (LISP) Canonical Address Format (LCAF) Address Family."; }
enum bgp-ls { value 16388; description "Border Gateway Protocol - Link State (BGP-LS) Address Family."; }
enum bgp-ls { value 16388; description "Border Gateway Protocol - Link State (BGP-LS) Address Family."; }
enum mac-48 { value 16389; description "IEEE 48-bit MAC Address Family."; }
enum mac-48 { value 16389; description "IEEE 48-bit MAC Address Family."; }
enum mac-64 { value 16390; description "IEEE 64-bit MAC Address Family."; }
enum mac-64 { value 16390; description "IEEE 64-bit MAC Address Family."; }
enum trill-oui { value 16391; description "Transparent Interconnection of Lots of Links (TRILL) IEEE Organizationally Unique Identifier (OUI) Address Family."; }
enum trill-oui { value 16391; description "Transparent Interconnection of Lots of Links (TRILL) IEEE Organizationally Unique Identifier (OUI) Address Family."; }
enum trill-mac-24 { value 16392; description "TRILL final 3 octets of 48-bit MAC Address Family."; }
enum trill-mac-24 { value 16392; description "TRILL final 3 octets of 48-bit MAC Address Family."; }
enum trill-mac-40 { value 16393; description "TRILL final 5 octets of 64-bit MAC Address Family."; }
enum trill-mac-40 { value 16393; description "TRILL final 5 octets of 64-bit MAC Address Family."; }
enum ipv6-64 { value 16394; description "First 8 octets (64 bits) of IPv6 address Address Family."; }
enum ipv6-64 { value 16394; description "First 8 octets (64 bits) of IPv6 address Address Family."; }
enum trill-rbridge-port-id { value 16395; description "TRILL Routing Bridge (RBridge) Port ID Address Family."; }
enum trill-rbridge-port-id { value 16395; description "TRILL Routing Bridge (RBridge) Port ID Address Family."; }
enum trill-nickname { value 16396; description "TRILL Nickname Address Family."; } }
enum trill-nickname { value 16396; description "TRILL Nickname Address Family."; } }
description "Enumeration containing all the IANA-defined Address Families.";
description“包含所有IANA定义的地址族的枚举。”;
}
}
/*** Subsequent Address Family Identifiers (SAFIs) ***/ /*** for multiprotocol BGP enumeration ***/
/*** Subsequent Address Family Identifiers (SAFIs) ***/ /*** for multiprotocol BGP enumeration ***/
typedef bgp-safi { type enumeration { enum unicast-safi { value 1; description "Unicast SAFI."; }
typedef bgp-safi { type enumeration { enum unicast-safi { value 1; description "Unicast SAFI."; }
enum multicast-safi { value 2; description "Multicast SAFI."; }
enum multicast-safi { value 2; description "Multicast SAFI."; }
enum labeled-unicast-safi { value 4; description "Labeled Unicast SAFI."; }
enum labeled-unicast-safi { value 4; description "Labeled Unicast SAFI."; }
enum multicast-vpn-safi { value 5; description "Multicast VPN SAFI."; }
enum multicast-vpn-safi { value 5; description "Multicast VPN SAFI."; }
enum pseudowire-safi { value 6; description "Multi-segment Pseudowire VPN SAFI."; }
enum pseudowire-safi { value 6; description "Multi-segment Pseudowire VPN SAFI."; }
enum tunnel-encap-safi { value 7; description "Tunnel Encap SAFI."; }
enum tunnel-encap-safi { value 7; description "Tunnel Encap SAFI."; }
enum mcast-vpls-safi { value 8; description "Multicast Virtual Private LAN Service (VPLS) SAFI."; }
enum mcast-vpls-safi { value 8; description "Multicast Virtual Private LAN Service (VPLS) SAFI."; }
enum tunnel-safi { value 64; description "Tunnel SAFI."; }
enum tunnel-safi { value 64; description "Tunnel SAFI."; }
enum vpls-safi { value 65; description "VPLS SAFI."; }
enum vpls-safi { value 65; description "VPLS SAFI."; }
enum mdt-safi { value 66; description "Multicast Distribution Tree (MDT) SAFI."; }
enum mdt-safi { value 66; description "Multicast Distribution Tree (MDT) SAFI."; }
enum v4-over-v6-safi { value 67; description "IPv4 over IPv6 SAFI."; }
enum v4-over-v6-safi { value 67; description "IPv4 over IPv6 SAFI."; }
enum v6-over-v4-safi { value 68; description "IPv6 over IPv4 SAFI."; }
enum v6-over-v4-safi { value 68; description "IPv6 over IPv4 SAFI."; }
enum l1-vpn-auto-discovery-safi { value 69; description "Layer 1 VPN Auto-Discovery SAFI."; }
enum l1-vpn-auto-discovery-safi { value 69; description "Layer 1 VPN Auto-Discovery SAFI."; }
enum evpn-safi { value 70; description "Ethernet VPN (EVPN) SAFI."; }
enum evpn-safi { value 70; description "Ethernet VPN (EVPN) SAFI."; }
enum bgp-ls-safi { value 71; description "BGP-LS SAFI."; }
enum bgp-ls-safi { value 71; description "BGP-LS SAFI."; }
enum bgp-ls-vpn-safi { value 72; description "BGP-LS VPN SAFI."; }
enum bgp-ls-vpn-safi { value 72; description "BGP-LS VPN SAFI."; }
enum sr-te-safi { value 73; description "Segment Routing - Traffic Engineering (SR-TE) SAFI."; }
enum sr-te-safi { value 73; description "Segment Routing - Traffic Engineering (SR-TE) SAFI."; }
enum labeled-vpn-safi { value 128; description "MPLS Labeled VPN SAFI."; }
enum labeled-vpn-safi { value 128; description "MPLS Labeled VPN SAFI."; }
enum multicast-mpls-vpn-safi { value 129; description "Multicast for BGP/MPLS IP VPN SAFI."; }
enum multicast-mpls-vpn-safi { value 129; description "Multicast for BGP/MPLS IP VPN SAFI."; }
enum route-target-safi { value 132; description "Route Target SAFI."; }
enum route-target-safi { value 132; description "Route Target SAFI."; }
enum ipv4-flow-spec-safi { value 133; description "IPv4 Flow Specification SAFI."; }
enum ipv4-flow-spec-safi { value 133; description "IPv4 Flow Specification SAFI."; }
enum vpnv4-flow-spec-safi { value 134; description "IPv4 VPN Flow Specification SAFI."; }
enum vpnv4-flow-spec-safi { value 134; description "IPv4 VPN Flow Specification SAFI."; }
enum vpn-auto-discovery-safi { value 140; description "VPN Auto-Discovery SAFI."; } } description "Enumeration for BGP SAFI."; reference "RFC 4760: Multiprotocol Extensions for BGP-4."; } }
enum vpn-auto-discovery-safi { value 140; description "VPN Auto-Discovery SAFI."; } } description "Enumeration for BGP SAFI."; reference "RFC 4760: Multiprotocol Extensions for BGP-4."; } }
<CODE ENDS>
<代码结束>
This document registers the following namespace URIs in the "IETF XML Registry" [RFC3688]:
本文档在“IETF XML注册表”[RFC3688]中注册以下命名空间URI:
URI: urn:ietf:params:xml:ns:yang:ietf-routing-types Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
URI:urn:ietf:params:xml:ns:yang:ietf路由类型注册人联系人:IESG。XML:不适用;请求的URI是一个XML命名空间。
URI: urn:ietf:params:xml:ns:yang:iana-routing-types Registrant Contact: IANA. XML: N/A; the requested URI is an XML namespace.
URI:urn:ietf:params:xml:ns:yang:iana路由类型注册人联系人:iana。XML:不适用;请求的URI是一个XML命名空间。
This document registers the following YANG modules in the "YANG Module Names" registry [RFC6020]:
本文件在“YANG模块名称”注册表[RFC6020]中注册以下YANG模块:
Name: ietf-routing-types Namespace: urn:ietf:params:xml:ns:yang:ietf-routing-types Prefix: rt-types Reference: RFC 8294
Name: ietf-routing-types Namespace: urn:ietf:params:xml:ns:yang:ietf-routing-types Prefix: rt-types Reference: RFC 8294
Name: iana-routing-types Namespace: urn:ietf:params:xml:ns:yang:iana-routing-types Prefix: iana-rt-types Reference: RFC 8294
Name: iana-routing-types Namespace: urn:ietf:params:xml:ns:yang:iana-routing-types Prefix: iana-rt-types Reference: RFC 8294
This document defines the initial version of the IANA-maintained iana-routing-types YANG module (Section 4).
本文件定义了IANA维护的IANA路由类型模块的初始版本(第4节)。
The iana-routing-types YANG module is intended to reflect the "Address Family Numbers" registry [IANA-ADDRESS-FAMILY-REGISTRY] and the "Subsequent Address Family Identifiers (SAFI) Parameters" registry [IANA-SAFI-REGISTRY].
iana路由类型模块旨在反映“地址族编号”注册表[iana-Address-Family-registry]和“后续地址族标识符(SAFI)参数”注册表[iana-SAFI-registry]。
IANA has added this note to the "iana-routing-types YANG Module" registry:
IANA已将此注释添加到“IANA路由类型模块”注册表中:
Address Families and Subsequent Address Families must not be directly added to the iana-routing-types YANG module. They must instead be respectively added to the "Address Family Numbers" and "Subsequent Address Family Identifiers (SAFI) Parameters" registries.
地址族和后续地址族不得直接添加到iana路由类型模块中。它们必须分别添加到“地址族编号”和“后续地址族标识符(SAFI)参数”注册表中。
When an Address Family or Subsequent Address Family is respectively added to the "Address Family Numbers" registry or the "Subsequent Address Family Identifiers (SAFI) Parameters" registry, a new "enum" statement must be added to the iana-routing-types YANG module. The name of the "enum" is the same as the corresponding Address Family or SAFI, except that it will be a valid YANG identifier in all lowercase and with hyphens separating individual words in compound identifiers. The following "enum" statement, and substatements thereof, should be defined:
当地址族或后续地址族分别添加到“地址族编号”注册表或“后续地址族标识符(SAFI)参数”注册表时,必须向iana路由类型模块添加新的“enum”语句。“enum”的名称与相应的地址族或SAFI相同,不同之处在于它将是一个所有小写字母的有效标识符,并且在复合标识符中用连字符分隔单个单词。应定义以下“enum”语句及其子语句:
"enum": Contains the YANG enum identifier for the "address-family" (for Address Families) or "bgp-safi" (for Subsequent Address Families). This may be the same as the "address-family" or "bgp-safi", or it may be a shorter version to facilitate YANG identifier usage.
“枚举”:包含“地址系列”(用于地址系列)或“bgp safi”(用于后续地址系列)的枚举标识符。这可能与“地址系列”或“bgp safi”相同,也可能是较短的版本,以便于使用。
"value": Contains the IANA-assigned value corresponding to the "address-family" (for Address Families) or "bgp-safi" (for Subsequent Address Families).
“值”:包含与“地址系列”(针对地址系列)或“bgp safi”(针对后续地址系列)相对应的IANA赋值。
"status": Include only if a registration has been deprecated (use the value "deprecated") or obsoleted (use the value "obsolete").
“状态”:仅当注册已弃用(使用值“弃用”)或已过时(使用值“过时”)时才包括。
"description": Replicate the description from the registry, if any. Insert line breaks as needed so that the line does not exceed 72 characters.
“描述”:从注册表复制描述(如果有)。根据需要插入换行符,使换行符不超过72个字符。
"reference": Replicate the reference from the registry, if any, and add the title of the document.
“引用”:复制注册表中的引用(如果有),并添加文档标题。
Unassigned or reserved values are not present in these modules.
这些模块中不存在未赋值或保留值。
When the iana-routing-types YANG module is updated, a new "revision" statement must be added in front of the existing revision statements.
更新iana路由类型模块时,必须在现有修订声明之前添加新的“修订”声明。
IANA has added this new note to the "Address Family Numbers" and "Subsequent Address Family Identifiers (SAFI) Parameters" registries:
IANA已将此新注释添加到“地址族编号”和“后续地址族标识符(SAFI)参数”注册表中:
When this registry is modified, the YANG module iana-routing-types must be updated as defined in RFC 8294.
修改此注册表时,必须按照RFC 8294中的定义更新模块iana路由类型。
This document defines common routing type definitions (i.e., typedef statements) using the YANG data modeling language. The definitions themselves have no security or privacy impact on the Internet, but the usage of these definitions in concrete YANG modules might have. The security considerations spelled out in the YANG 1.1 specification [RFC7950] apply for this document as well.
本文档使用YANG数据建模语言定义了常见的路由类型定义(即typedef语句)。这些定义本身对互联网没有安全或隐私影响,但在具体模块中使用这些定义可能会产生影响。YANG 1.1规范[RFC7950]中规定的安全注意事项也适用于本文件。
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.
[RFC3688]Mealling,M.,“IETF XML注册表”,BCP 81,RFC 3688,DOI 10.17487/RFC3688,2004年1月<https://www.rfc-editor.org/info/rfc3688>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.
[RFC6020]Bjorklund,M.,Ed.“YANG-网络配置协议的数据建模语言(NETCONF)”,RFC 6020,DOI 10.17487/RFC6020,2010年10月<https://www.rfc-editor.org/info/rfc6020>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.
[RFC6991]Schoenwaeld,J.,Ed.,“常见杨数据类型”,RFC 6991,DOI 10.17487/RFC69911913年7月<https://www.rfc-editor.org/info/rfc6991>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.
[RFC7950]Bjorklund,M.,Ed.“YANG 1.1数据建模语言”,RFC 7950,DOI 10.17487/RFC7950,2016年8月<https://www.rfc-editor.org/info/rfc7950>.
[IANA-ADDRESS-FAMILY-REGISTRY] "IANA Address Family Numbers Registry", <https://www.iana.org/assignments/ address-family-numbers/>.
[IANA-ADDRESS-FAMILY-REGISTRY]“IANA地址系列号注册表”<https://www.iana.org/assignments/ 地址系列号/>。
[IANA-SAFI-REGISTRY] "IANA Subsequent Address Family Identifiers (SAFI) Parameters Registry", <https://www.iana.org/assignments/safi-namespace/>.
[IANA-SAFI-REGISTRY]“IANA后续地址系列标识符(SAFI)参数注册表”<https://www.iana.org/assignments/safi-namespace/>.
[IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE 754-2008, DOI 10.1109/IEEESTD.2008.4610935.
[IEEE754]IEEE,“IEEE浮点运算标准”,IEEE 754-2008,DOI 10.1109/IEEESTD.2008.4610935。
[BGP-Model] Shaikh, A., Ed., Shakir, R., Ed., Patel, K., Ed., Hares, S., Ed., D'Souza, K., Bansal, D., Clemm, A., Zhdankin, A., Jethanandani, M., and X. Liu, "BGP Model for Service Provider Networks", Work in Progress, draft-ietf-idr-bgp-model-02, July 2016.
[BGP模型]Shaikh,A.,Ed.,Shakir,R.,Ed.,Patel,K.,Ed.,Hares,S.,Ed.,D'Souza,K.,Bansal,D.,Clemm,A.,Zhdankin,A.,Jethanandani,M.,和X.Liu,“服务提供商网络的BGP模型”,正在进行中,草案-ietf-idr-BGP-Model-02,2016年7月。
[OSPF-YANG] Yeung, D., Qu, Y., Zhang, J., Chen, I., and A. Lindem, "Yang Data Model for OSPF Protocol", Work in Progress, draft-ietf-ospf-yang-09, October 2017.
[OSPF-YANG]杨,D.,曲,Y.,张,J.,陈,I.,和A.林登,“OSPF协议的YANG数据模型”,正在进行的工作,草稿-ietf-OSPF-YANG-092017年10月。
[PIM-YANG] Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu, Y., and F. Hu, "A YANG data model for Protocol-Independent Multicast (PIM)", Work in Progress, draft-ietf-pim-yang-12, December 2017.
[PIM-YANG]Liu,X.,McAllister,P.,Peter,A.,Sivakumar,M.,Liu,Y.,和F.Hu,“协议独立多播(PIM)的YANG数据模型”,正在进行的工作,草稿-ietf-PIM-YANG-12,2017年12月。
[TE-YANG] Saad, T., Ed., Gandhi, R., Liu, X., Beeram, V., Shah, H., and I. Bryskin, "A YANG Data Model for Traffic Engineering Tunnels and Interfaces", Work in Progress, draft-ietf-teas-yang-te-09, October 2017.
[TE-YANG]Saad,T.,Ed.,Gandhi,R.,Liu,X.,Beeram,V.,Shah,H.,和I.Bryskin,“交通工程隧道和接口的YANG数据模型”,正在进行的工作,草案-ietf-teas-YANG-TE-092017年10月。
[L2VPN-YANG] Shah, H., Ed., Brissette, P., Ed., Chen, I., Ed., Hussain, I., Ed., Wen, B., Ed., and K. Tiruveedhula, Ed., "YANG Data Model for MPLS-based L2VPN", Work in Progress, draft-ietf-bess-l2vpn-yang-07, September 2017.
[L2VPN-YANG]Shah,H.,Ed.,Brissette,P.,Ed.,Chen,I.,Ed.,Hussain,I.,Ed.,Wen,B.,Ed.,和K.Tiruveedhula,Ed.,“基于MPLS的L2VPN的YANG数据模型”,正在进行的工作,草案-ietf-bess-L2VPN-YANG-07,2017年9月。
[MPLS-Base-YANG] Saad, T., Raza, K., Gandhi, R., Liu, X., Beeram, V., Shah, H., Bryskin, I., Chen, X., Jones, R., and B. Wen, "A YANG Data Model for MPLS Base", Work in Progress, draft-ietf-mpls-base-yang-05, July 2017.
[MPLS-Base YANG]Saad,T.,Raza,K.,Gandhi,R.,Liu,X.,Beeram,V.,Shah,H.,Bryskin,I.,Chen,X.,Jones,R.,和B.Wen,“MPLS-Base的YANG数据模型”,正在进行的工作,草案-ietf-MPLS-Base-YANG-052017年7月。
[RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001, <https://www.rfc-editor.org/info/rfc3032>.
[RFC3032]Rosen,E.,Tappan,D.,Fedorkow,G.,Rekhter,Y.,Farinaci,D.,Li,T.,和A.Conta,“MPLS标签堆栈编码”,RFC 3032,DOI 10.17487/RFC3032,2001年1月<https://www.rfc-editor.org/info/rfc3032>.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001, <https://www.rfc-editor.org/info/rfc3209>.
[RFC3209]Awduche,D.,Berger,L.,Gan,D.,Li,T.,Srinivasan,V.,和G.Swallow,“RSVP-TE:LSP隧道RSVP的扩展”,RFC 3209,DOI 10.17487/RFC3209,2001年12月<https://www.rfc-editor.org/info/rfc3209>.
[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, DOI 10.17487/RFC3471, January 2003, <https://www.rfc-editor.org/info/rfc3471>.
[RFC3471]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,DOI 10.17487/RFC3471,2003年1月<https://www.rfc-editor.org/info/rfc3471>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 2006, <https://www.rfc-editor.org/info/rfc4364>.
[RFC4364]Rosen,E.和Y.Rekhter,“BGP/MPLS IP虚拟专用网络(VPN)”,RFC 4364,DOI 10.17487/RFC4364,2006年2月<https://www.rfc-editor.org/info/rfc4364>.
[RFC4664] Andersson, L., Ed., and E. Rosen, Ed., "Framework for Layer 2 Virtual Private Networks (L2VPNs)", RFC 4664, DOI 10.17487/RFC4664, September 2006, <https://www.rfc-editor.org/info/rfc4664>.
[RFC4664]Andersson,L.,Ed.,和E.Rosen,Ed.,“第二层虚拟专用网络(L2VPN)框架”,RFC 4664,DOI 10.17487/RFC4664,2006年9月<https://www.rfc-editor.org/info/rfc4664>.
[RFC5701] Rekhter, Y., "IPv6 Address Specific BGP Extended Community Attribute", RFC 5701, DOI 10.17487/RFC5701, November 2009, <https://www.rfc-editor.org/info/rfc5701>.
[RFC5701]Rekhter,Y,“IPv6地址特定的BGP扩展社区属性”,RFC 5701,DOI 10.17487/RFC5701,2009年11月<https://www.rfc-editor.org/info/rfc5701>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010, <https://www.rfc-editor.org/info/rfc5880>.
[RFC5880]Katz,D.和D.Ward,“双向转发检测(BFD)”,RFC 5880,DOI 10.17487/RFC5880,2010年6月<https://www.rfc-editor.org/info/rfc5880>.
[RFC7274] Kompella, K., Andersson, L., and A. Farrel, "Allocating and Retiring Special-Purpose MPLS Labels", RFC 7274, DOI 10.17487/RFC7274, June 2014, <https://www.rfc-editor.org/info/rfc7274>.
[RFC7274]Kompella,K.,Andersson,L.,和A.Farrel,“分配和停用特殊用途MPLS标签”,RFC 7274,DOI 10.17487/RFC7274,2014年6月<https://www.rfc-editor.org/info/rfc7274>.
[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A., Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February 2015, <https://www.rfc-editor.org/info/rfc7432>.
[RFC7432]Sajassi,A.,Ed.,Aggarwal,R.,Bitar,N.,Isaac,A.,Uttaro,J.,Drake,J.,和W.Henderickx,“基于BGP MPLS的以太网VPN”,RFC 7432,DOI 10.17487/RFC7432,2015年2月<https://www.rfc-editor.org/info/rfc7432>.
Acknowledgements
致谢
The Routing Area YANG Architecture design team members included Acee Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Ebben Aries, Lou Berger, Qin Wu, Rob Shakir, Xufeng Liu, and Yingzhen Qu.
杨建筑设计团队成员包括Acee Lindem、Anes Shaikh、Christian Hopps、Dean Bogdanovic、Ebben Aries、Lou Berger、秦武、Rob Shakir、刘旭峰和瞿英珍。
Thanks to Martin Bjorklund, Tom Petch, Stewart Bryant, and Radek Krejci for comments on the model and document text. Thanks to Jeff Haas and Robert Raszuk for suggestions for additional common routing types.
感谢Martin Bjorklund、Tom Petch、Stewart Bryant和Radek Krejci对模型和文档文本的评论。感谢Jeff Haas和Robert Raszuk对其他常见路由类型的建议。
Authors' Addresses
作者地址
Xufeng Liu Jabil 8281 Greensboro Drive, Suite 200 McLean, VA 22102
弗吉尼亚州麦克莱恩市格林斯博罗大道8281号徐峰刘捷普邮编:22102
United States of America Email: Xufeng_Liu@jabil.com
美利坚合众国电子邮件:徐峰_Liu@jabil.com
Yingzhen Qu Futurewei Technologies, Inc. 2330 Central Expressway Santa Clara, CA 95050 United States of America
美国加利福尼亚州圣克拉拉中央高速公路2330号英镇区未来威科技有限公司,邮编95050
Email: yingzhen.qu@huawei.com
Email: yingzhen.qu@huawei.com
Acee Lindem Cisco Systems 301 Midenhall Way Cary, NC 27513 United States of America
Acee Lindem思科系统301美国北卡罗来纳州米登霍尔大道卡里27513号
Email: acee@cisco.com
Email: acee@cisco.com
Christian Hopps Deutsche Telekom
克里斯蒂安·霍普斯德国电信公司
Email: chopps@chopps.org
Email: chopps@chopps.org
Lou Berger LabN Consulting, L.L.C.
Lou Berger LabN咨询公司,L.L.C。
Email: lberger@labn.net
Email: lberger@labn.net