Internet Engineering Task Force (IETF)                        S. Boutros
Request for Comments: 8214                                        VMware
Category: Standards Track                                     A. Sajassi
ISSN: 2070-1721                                                 S. Salam
                                                                   Cisco
                                                                J. Drake
                                                        Juniper Networks
                                                              J. Rabadan
                                                                   Nokia
                                                             August 2017
        
Internet Engineering Task Force (IETF)                        S. Boutros
Request for Comments: 8214                                        VMware
Category: Standards Track                                     A. Sajassi
ISSN: 2070-1721                                                 S. Salam
                                                                   Cisco
                                                                J. Drake
                                                        Juniper Networks
                                                              J. Rabadan
                                                                   Nokia
                                                             August 2017
        

Virtual Private Wire Service Support in Ethernet VPN

以太网VPN中的虚拟专用线业务支持

Abstract

摘要

This document describes how Ethernet VPN (EVPN) can be used to support the Virtual Private Wire Service (VPWS) in MPLS/IP networks. EVPN accomplishes the following for VPWS: provides Single-Active as well as All-Active multihoming with flow-based load-balancing, eliminates the need for Pseudowire (PW) signaling, and provides fast protection convergence upon node or link failure.

本文档描述了如何使用以太网VPN(EVPN)支持MPLS/IP网络中的虚拟专用线服务(VPWS)。EVPN为VPWS实现以下功能:通过基于流的负载平衡提供单主动和全主动多宿主,消除了对伪线(PW)信令的需要,并在节点或链路故障时提供快速保护收敛。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 7841第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8214.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问https://www.rfc-editor.org/info/rfc8214.

Copyright Notice

版权公告

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2017 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(https://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................3
      1.1. Terminology ................................................5
   2. Service Interface ...............................................6
      2.1. VLAN-Based Service Interface ...............................6
      2.2. VLAN Bundle Service Interface ..............................7
           2.2.1. Port-Based Service Interface ........................7
      2.3. VLAN-Aware Bundle Service Interface ........................7
   3. BGP Extensions ..................................................7
      3.1. EVPN Layer 2 Attributes Extended Community .................8
   4. Operation ......................................................10
   5. EVPN Comparison to PW Signaling ................................11
   6. Failure Scenarios ..............................................12
      6.1. Single-Homed CEs ..........................................12
      6.2. Multihomed CEs ............................................12
   7. Security Considerations ........................................13
   8. IANA Considerations ............................................13
   9. References .....................................................13
      9.1. Normative References ......................................13
      9.2. Informative References ....................................14
   Acknowledgements ..................................................16
   Contributors ......................................................16
   Authors' Addresses ................................................17
        
   1. Introduction ....................................................3
      1.1. Terminology ................................................5
   2. Service Interface ...............................................6
      2.1. VLAN-Based Service Interface ...............................6
      2.2. VLAN Bundle Service Interface ..............................7
           2.2.1. Port-Based Service Interface ........................7
      2.3. VLAN-Aware Bundle Service Interface ........................7
   3. BGP Extensions ..................................................7
      3.1. EVPN Layer 2 Attributes Extended Community .................8
   4. Operation ......................................................10
   5. EVPN Comparison to PW Signaling ................................11
   6. Failure Scenarios ..............................................12
      6.1. Single-Homed CEs ..........................................12
      6.2. Multihomed CEs ............................................12
   7. Security Considerations ........................................13
   8. IANA Considerations ............................................13
   9. References .....................................................13
      9.1. Normative References ......................................13
      9.2. Informative References ....................................14
   Acknowledgements ..................................................16
   Contributors ......................................................16
   Authors' Addresses ................................................17
        
1. Introduction
1. 介绍

This document describes how EVPN can be used to support VPWS in MPLS/IP networks. The use of EVPN mechanisms for VPWS (EVPN-VPWS) brings the benefits of EVPN to Point-to-Point (P2P) services. These benefits include Single-Active redundancy as well as All-Active redundancy with flow-based load-balancing. Furthermore, the use of EVPN for VPWS eliminates the need for the traditional way of PW signaling for P2P Ethernet services, as described in Section 4.

本文档描述了如何使用EVPN支持MPLS/IP网络中的VPW。将EVPN机制用于VPWS(EVPN-VPWS)带来了EVPN到点(P2P)服务的好处。这些好处包括单个主动冗余以及基于流的负载平衡的所有主动冗余。此外,如第4节所述,将EVPN用于VPWS消除了P2P以太网服务对传统PW信令方式的需求。

[RFC7432] provides the ability to forward customer traffic to/from a given customer Attachment Circuit (AC), without any Media Access Control (MAC) lookup. This capability is ideal in providing P2P services (aka VPWS services). [MEF] defines the Ethernet Virtual Private Line (EVPL) service as a P2P service between a pair of ACs (designated by VLANs) and the Ethernet Private Line (EPL) service, in which all traffic flows are between a single pair of ports that, in EVPN terminology, would mean a single pair of Ethernet Segments ES(es). EVPL can be considered as a VPWS with only two ACs. In delivering an EVPL service, the traffic-forwarding capability of EVPN is based on the exchange of a pair of Ethernet Auto-Discovery (A-D) routes, whereas for more general VPWS as per [RFC4664], the traffic-forwarding capability of EVPN is based on the exchange of a group of Ethernet A-D routes (one Ethernet A-D route per AC/ES). In a VPWS service, the traffic from an originating Ethernet Segment can be forwarded only to a single destination Ethernet Segment; hence, no MAC lookup is needed, and the MPLS label associated with the per-EVPN instance (EVI) Ethernet A-D route can be used in forwarding user traffic to the destination AC.

[RFC7432]提供将客户流量转发至/转发至给定客户连接电路(AC)的能力,而无需任何媒体访问控制(MAC)查找。此功能非常适合提供P2P服务(也称为VPWS服务)。[MEF]将以太网虚拟专用线(EVPL)服务定义为一对ACs(由VLAN指定)和以太网专用线(EPL)服务之间的P2P服务,其中所有流量都在一对端口之间,在EVPN术语中,这意味着一对以太网段。EVPL可以被视为只有两个ACs的VPWS。在提供EVPL服务时,EVPN的流量转发能力基于一对以太网自动发现(a-D)路由的交换,而对于[RFC4664]中更通用的VPW,EVPN的流量转发能力基于一组以太网a-D路由的交换(每个AC/ES一个以太网a-D路由)。在VPWS服务中,来自始发以太网段的流量只能转发到单个目的以太网段;因此,不需要MAC查找,并且与每EVPN实例(EVI)以太网A-D路由相关联的MPLS标签可用于将用户流量转发到目的地AC。

For both EPL and EVPL services, a specific VPWS service instance is identified by a pair of per-EVI Ethernet A-D routes that together identify the VPWS service instance endpoints and the VPWS service instance. In the control plane, the VPWS service instance is identified using the VPWS service instance identifiers advertised by each Provider Edge (PE) node. In the data plane, the value of the MPLS label advertised by one PE is used by the other PE to send traffic for that VPWS service instance. As with the Ethernet Tag in standard EVPN, the VPWS service instance identifier has uniqueness within an EVPN instance.

对于EPL和EVPL服务,特定的VPWS服务实例由一对每EVI以太网a-D路由标识,这些路由共同标识VPWS服务实例端点和VPWS服务实例。在控制平面中,使用每个提供者边缘(PE)节点公布的VPWS服务实例标识符来标识VPWS服务实例。在数据平面中,一个PE播发的MPLS标签的值被另一个PE用于为该VPWS服务实例发送流量。与标准EVPN中的以太网标记一样,VPWS服务实例标识符在EVPN实例中具有唯一性。

For EVPN routes, the Ethernet Tag IDs are set to zero for port-based, VLAN-based, and VLAN bundle interface mode and set to non-zero Ethernet Tag IDs for VLAN-aware bundle mode. Conversely, for EVPN-VPWS, the Ethernet Tag ID in the Ethernet A-D route MUST be set to a non-zero value for all four service interface types.

对于EVPN路由,对于基于端口、基于VLAN和VLAN捆绑包接口模式,以太网标记ID设置为零,对于VLAN感知捆绑包模式,以太网标记ID设置为非零。相反,对于EVPN-VPWS,对于所有四种服务接口类型,以太网A-D路由中的以太网标签ID必须设置为非零值。

In terms of route advertisement and MPLS label lookup behavior, EVPN-VPWS resembles the VLAN-aware bundle mode of [RFC7432] such that when a PE advertises a per-EVI Ethernet A-D route, the VPWS service instance serves as a 32-bit normalized Ethernet Tag ID. The value of the MPLS label in this route represents both the EVI and the VPWS service instance, so that upon receiving an MPLS-encapsulated packet, the disposition PE can identify the egress AC from the MPLS label and subsequently perform any required tag translation. For the EVPL service, the Ethernet frames transported over an MPLS/IP network SHOULD remain tagged with the originating VLAN ID (VID), and any VID translation MUST be performed at the disposition PE. For the EPL service, the Ethernet frames are transported as is, and the tags are not altered.

就路由广告和MPLS标签查找行为而言,EVPN-VPWS类似于[RFC7432]的VLAN感知捆绑模式,因此当PE广告每EVI以太网a-D路由时,VPWS服务实例用作32位标准化以太网标签ID。此路由中MPLS标签的值表示EVI和VPWS服务实例,因此,在接收到MPLS封装的数据包时,部署PE可以从MPLS标签识别出口AC,并随后执行任何所需的标签转换。对于EVPL服务,通过MPLS/IP网络传输的以太网帧应保留原始VLAN ID(VID)标记,并且必须在PE上执行任何VID转换。对于EPL服务,以太网帧按原样传输,并且标记不会更改。

The MPLS label value in the Ethernet A-D route can be set to the Virtual Extensible LAN (VXLAN) Network Identifier (VNI) for VXLAN encapsulation as per [RFC7348], and this VNI will have a local scope per PE and may also be equal to the VPWS service instance identifier set in the Ethernet A-D route. When using VXLAN encapsulation, the BGP Encapsulation extended community is included in the Ethernet A-D route as described in [EVPN-OVERLAY]. The VNI is like the MPLS label that will be set in the tunnel header used to tunnel Ethernet packets from all the service interface types defined in Section 2. The EVPN-VPWS techniques defined in this document have no dependency on the tunneling technology.

根据[RFC7348],以太网A-D路由中的MPLS标签值可设置为VXLAN封装的虚拟可扩展LAN(VXLAN)网络标识符(VNI),该VNI将具有每个PE的本地作用域,也可能等于以太网A-D路由中设置的VPWS服务实例标识符。使用VXLAN封装时,BGP封装扩展社区包括在[EVPN-OVERLAY]中所述的以太网A-D路由中。VNI类似于将在隧道头中设置的MPLS标签,用于隧道来自第2节中定义的所有服务接口类型的以太网数据包。本文档中定义的EVPN-VPWS技术不依赖于隧道技术。

The Ethernet Segment Identifier encoded in the Ethernet A-D per-EVI route is not used to identify the service. However, it can be used for flow-based load-balancing and mass withdraw functions as per the [RFC7432] baseline.

每个EVI路由的以太网A-D中编码的以太网段标识符不用于标识服务。但是,根据[RFC7432]基线,它可用于基于流的负载平衡和质量回收功能。

As with standard EVPN, the Ethernet A-D per-ES route is used for fast convergence upon link or node failure. The Ethernet Segment route is used for auto-discovery of the PEs attached to a given multihomed Customer Edge node (CE) and to synchronize state between them.

与标准EVPN一样,每个ES路由的以太网A-D用于在链路或节点故障时快速收敛。以太网段路由用于自动发现连接到给定多宿客户边缘节点(CE)的PE,并同步它们之间的状态。

1.1. Terminology
1.1. 术语

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“建议”、“不建议”、“可”和“可选”在所有大写字母出现时(如图所示)应按照BCP 14[RFC2119][RFC8174]所述进行解释。

EVPN: Ethernet VPN.

以太网VPN。

MAC: Media Access Control.

媒体访问控制。

MPLS: Multiprotocol Label Switching.

MPLS:多协议标签交换。

OAM: Operations, Administration, and Maintenance.

OAM:运营、管理和维护。

PE: Provider Edge Node.

PE:提供程序边缘节点。

AS: Autonomous System.

AS:自治系统。

ASBR: Autonomous System Border Router.

ASBR:自治系统边界路由器。

CE: Customer Edge device (e.g., host, router, or switch).

CE:客户边缘设备(如主机、路由器或交换机)。

EVPL: Ethernet Virtual Private Line.

以太网虚拟专用线。

EPL: Ethernet Private Line.

以太网专用线路。

EP-LAN: Ethernet Private LAN.

EP-LAN:以太网专用LAN。

EVP-LAN: Ethernet Virtual Private LAN.

EVP-LAN:以太网虚拟专用LAN。

S-VLAN: Service VLAN identifier.

S-VLAN:服务VLAN标识符。

C-VLAN: Customer VLAN identifier.

C-VLAN:客户VLAN标识符。

VID: VLAN ID.

VID:VLAN-ID。

VPWS: Virtual Private Wire Service.

虚拟专用线路服务。

EVI: EVPN Instance.

EVI:EVPN实例。

P2P: Point to Point.

P2P:点对点。

VXLAN: Virtual Extensible LAN.

VXLAN:虚拟可扩展LAN。

DF: Designated Forwarder.

DF:指定货代。

L2: Layer 2.

L2:第二层。

MTU: Maximum Transmission Unit.

MTU:最大传输单位。

eBGP: External Border Gateway Protocol.

eBGP:外部边界网关协议。

iBGP: Internal Border Gateway Protocol.

iBGP:内部边界网关协议。

ES: "Ethernet Segment" on a PE refers to the link attached to it. This link can be part of a set of links attached to different PEs in multihomed cases or could be a single link in single-homed cases.

ES:PE上的“以太网段”指连接到它的链路。此链接可以是多宿主情况下连接到不同PE的一组链接的一部分,也可以是单宿主情况下的单个链接。

ESI: Ethernet Segment Identifier.

ESI:以太网段标识符。

Single-Active Mode: When a device or a network is multihomed to two or more PEs and when only a single PE in such a redundancy group can forward traffic to/from the multihomed device or network for a given VLAN, then such multihoming or redundancy is referred to as "Single-Active".

单一活动模式:当一个设备或网络多址到两个或多个PE,并且当这种冗余组中只有一个PE可以将流量转发到/从给定VLAN的多址设备或网络,则这种多址或冗余称为“单一活动”。

All-Active Mode: When a device is multihomed to two or more PEs and when all PEs in such a redundancy group can forward traffic to/from the multihomed device for a given VLAN, then such multihoming or redundancy is referred to as "All-Active".

全主动模式:当一个设备被多址连接到两个或多个PE,并且当该冗余组中的所有PE可以为给定VLAN向多址设备转发流量或从多址设备转发流量时,则该多址或冗余称为“全主动”。

VPWS Service Instance: A VPWS service instance is represented by a pair of EVPN service labels associated with a pair of endpoints. Each label is downstream-assigned and advertised by the disposition PE through an Ethernet A-D per-EVI route. The downstream label identifies the endpoint on the disposition PE. A VPWS service instance can be associated with only one VPWS service identifier.

VPWS服务实例:VPWS服务实例由与一对端点关联的一对EVPN服务标签表示。每个标签由配置PE通过以太网A-D按照EVI路由进行下游分配和通告。下游标签标识处理PE上的端点。一个VPWS服务实例只能与一个VPWS服务标识符关联。

2. Service Interface
2. 服务接口
2.1. VLAN-Based Service Interface
2.1. 基于VLAN的服务接口

With this service interface, a VPWS instance identifier corresponds to only a single VLAN on a specific interface. Therefore, there is a one-to-one mapping between a VID on this interface and the VPWS service instance identifier. The PE provides the cross-connect functionality between an MPLS Label Switched Path (LSP) identified by the VPWS service instance identifier and a specific <port, VLAN>. If the VLAN is represented by different VIDs on different PEs and different ES(es) (e.g., a different VID per Ethernet Segment per PE), then each PE needs to perform VID translation for frames destined to its Ethernet Segment. In such scenarios, the Ethernet frames

使用此服务接口,VPWS实例标识符仅对应于特定接口上的单个VLAN。因此,此接口上的VID与VPWS服务实例标识符之间存在一对一映射。PE提供由VPWS服务实例标识符标识的MPLS标签交换路径(LSP)与特定的<port,VLAN>之间的交叉连接功能。如果VLAN由不同PE和不同e(e)上的不同VID表示(例如,每个PE的每个以太网段的不同VID),则每个PE需要对发送到其以太网段的帧执行VID转换。在这种情况下,以太网帧

transported over an MPLS/IP network SHOULD remain tagged with the originating VID, and a VID translation MUST be supported in the data path and MUST be performed on the disposition PE.

通过MPLS/IP网络传输的视频应保留原始视频的标签,并且必须在数据路径中支持视频转换,并且必须在PE上执行视频转换。

2.2. VLAN Bundle Service Interface
2.2. VLAN包服务接口

With this service interface, a VPWS service instance identifier corresponds to multiple VLANs on a specific interface. The PE provides the cross-connect functionality between the MPLS label identified by the VPWS service instance identifier and a group of VLANs on a specific interface. For this service interface, each VLAN is presented by a single VID, which means that no VLAN translation is allowed. The receiving PE can direct the traffic, based on the EVPN label alone, to a specific port. The transmitting PE can cross-connect traffic from a group of VLANs on a specific port to the MPLS label. The MPLS-encapsulated frames MUST remain tagged with the originating VID.

使用此服务接口,VPWS服务实例标识符对应于特定接口上的多个VLAN。PE提供由VPWS服务实例标识符标识的MPLS标签与特定接口上的一组VLAN之间的交叉连接功能。对于此服务接口,每个VLAN由单个VID表示,这意味着不允许VLAN转换。接收PE可以仅基于EVPN标签将流量定向到特定端口。传输PE可以将特定端口上的一组VLAN的流量交叉连接到MPLS标签。MPLS封装的帧必须保留原始视频的标签。

2.2.1. Port-Based Service Interface
2.2.1. 基于端口的服务接口

This service interface is a special case of the VLAN bundle service interface, where all of the VLANs on the port are mapped to the same VPWS service instance identifier. The procedures are identical to those described in Section 2.2.

此服务接口是VLAN捆绑服务接口的特例,其中端口上的所有VLAN都映射到相同的VPWS服务实例标识符。程序与第2.2节所述程序相同。

2.3. VLAN-Aware Bundle Service Interface
2.3. 支持VLAN的捆绑服务接口

Contrary to EVPN, in EVPN-VPWS this service interface maps to a VLAN-based service interface (defined in Section 2.1); thus, this service interface is not used in EVPN-VPWS. In other words, if one tries to define data-plane and control-plane behavior for this service interface, one would realize that it is the same as that of the VLAN-based service.

与EVPN相反,在EVPN-VPWS中,该服务接口映射到基于VLAN的服务接口(定义见第2.1节);因此,EVPN-VPWS中不使用此服务接口。换句话说,如果试图为这个服务接口定义数据平面和控制平面行为,就会发现它与基于VLAN的服务的行为相同。

3. BGP Extensions
3. BGP扩展

This document specifies the use of the per-EVI Ethernet A-D route to signal VPWS services. The ESI field is set to the customer ES, and the 32-bit Ethernet Tag ID field MUST be set to the VPWS service instance identifier value. The VPWS service instance identifier value MAY be set to a 24-bit value, and when a 24-bit value is used, it MUST be right-aligned. For both EPL and EVPL services using a given VPWS service instance, the pair of PEs instantiating that VPWS service instance will each advertise a per-EVI Ethernet A-D route with its VPWS service instance identifier and will each be configured with the other PE's VPWS service instance identifier. When each PE

本文件规定了使用每EVI以太网A-D路由向VPWS服务发送信号。ESI字段设置为客户ES,32位以太网标签ID字段必须设置为VPWS服务实例标识符值。VPWS服务实例标识符值可以设置为24位值,当使用24位值时,它必须右对齐。对于使用给定VPWS服务实例的EPL和EVPL服务,实例化该VPWS服务实例的一对PE将各自使用其VPWS服务实例标识符通告每EVI以太网a-D路由,并且将各自使用另一个PE的VPWS服务实例标识符进行配置。每次体育课

has received the other PE's per-EVI Ethernet A-D route, the VPWS service instance is instantiated. It should be noted that the same VPWS service instance identifier may be configured on both PEs.

已收到其他PE的每EVI以太网A-D路由,则VPWS服务实例被实例化。应注意,两个PE上可能配置相同的VPWS服务实例标识符。

The Route Target (RT) extended community with which the per-EVI Ethernet A-D route is tagged identifies the EVPN instance in which the VPWS service instance is configured. It is the operator's choice as to how many and which VPWS service instances are configured in a given EVPN instance. However, a given EVPN instance MUST NOT be configured with both VPWS service instances and standard EVPN multipoint services.

标记每EVI以太网A-D路由的路由目标(RT)扩展社区标识配置了VPWS服务实例的EVPN实例。操作员可以选择在给定的EVPN实例中配置多少VPWS服务实例以及配置哪些VPWS服务实例。但是,给定的EVPN实例不能同时配置VPWS服务实例和标准EVPN多点服务。

3.1. EVPN Layer 2 Attributes Extended Community
3.1. EVPN第2层属性扩展社区

This document defines a new extended community [RFC4360], to be included with per-EVI Ethernet A-D routes. This attribute is mandatory if multihoming is enabled.

本文档定义了一个新的扩展社区[RFC4360],该社区将包含在每个EVI以太网a-D路由中。如果启用了多重归宿,则此属性是必需的。

               +-------------------------------------------+
               |  Type (0x06) / Sub-type (0x04) (2 octets) |
               +-------------------------------------------+
               |  Control Flags  (2 octets)                |
               +-------------------------------------------+
               |  L2 MTU (2 octets)                        |
               +-------------------------------------------+
               |  Reserved (2 octets)                      |
               +-------------------------------------------+
        
               +-------------------------------------------+
               |  Type (0x06) / Sub-type (0x04) (2 octets) |
               +-------------------------------------------+
               |  Control Flags  (2 octets)                |
               +-------------------------------------------+
               |  L2 MTU (2 octets)                        |
               +-------------------------------------------+
               |  Reserved (2 octets)                      |
               +-------------------------------------------+
        

Figure 1: EVPN Layer 2 Attributes Extended Community

图1:EVPN第2层属性扩展社区

            0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |   MBZ                   |C|P|B|  (MBZ = MUST Be Zero)
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
            0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |   MBZ                   |C|P|B|  (MBZ = MUST Be Zero)
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 2: EVPN Layer 2 Attributes Control Flags

图2:EVPN第2层属性控制标志

The following bits in Control Flags are defined; the remaining bits MUST be set to zero when sending and MUST be ignored when receiving this community.

定义了控制标志中的以下位;发送时必须将剩余位设置为零,接收此社区时必须忽略剩余位。

         Name     Meaning
         ---------------------------------------------------------------
         P        If set to 1 in multihoming Single-Active scenarios,
                  this flag indicates that the advertising PE is the
                  primary PE.  MUST be set to 1 for multihoming
                  All-Active scenarios by all active PE(s).
        
         Name     Meaning
         ---------------------------------------------------------------
         P        If set to 1 in multihoming Single-Active scenarios,
                  this flag indicates that the advertising PE is the
                  primary PE.  MUST be set to 1 for multihoming
                  All-Active scenarios by all active PE(s).
        

B If set to 1 in multihoming Single-Active scenarios, this flag indicates that the advertising PE is the backup PE.

B如果在多主单活动场景中设置为1,则此标志表示广告PE是备份PE。

C If set to 1, a control word [RFC4448] MUST be present when sending EVPN packets to this PE. It is recommended that the control word be included in the absence of an entropy label [RFC6790].

C如果设置为1,则向该PE发送EVPN数据包时必须存在控制字[RFC4448]。建议在没有熵标签的情况下包括控制字[RFC6790]。

L2 MTU is a 2-octet value indicating the MTU in bytes.

L2 MTU是以字节为单位指示MTU的2个八位组值。

A received L2 MTU of zero means that no MTU checking against the local MTU is needed. A received non-zero MTU MUST be checked against the local MTU, and if there is a mismatch, the local PE MUST NOT add the remote PE as the EVPN destination for the corresponding VPWS service instance.

接收到的L2 MTU为零意味着不需要对本地MTU进行MTU检查。必须对照本地MTU检查接收到的非零MTU,如果存在不匹配,则本地PE不得将远程PE添加为相应VPWS服务实例的EVPN目标。

The usage of the per-ES Ethernet A-D route is unchanged from its usage in [RFC7432], i.e., the "Single-Active" bit in the flags of the ESI Label extended community will indicate if Single-Active or All-Active redundancy is used for this ES.

每ES以太网A-D路由的使用与其在[RFC7432]中的使用情况相同,即ESI标签扩展社区标志中的“单个活动”位将指示此ES是否使用单个活动冗余或所有活动冗余。

In a multihoming All-Active scenario, there is no Designated Forwarder (DF) election, and all the PEs in the ES that are active and ready to forward traffic to/from the CE will set the P Flag. A remote PE will do per-flow load-balancing to the PEs that set the P Flag for the same Ethernet Tag and ESI. The B Flag in Control Flags SHOULD NOT be set in the multihoming All-Active scenario and MUST be ignored by receiving PE(s) if set.

在多宿全活动场景中,没有指定的转发器(DF)选择,ES中所有处于活动状态且准备将流量转发至/转发自CE的PE将设置P标志。远程PE将对为同一以太网标签和ESI设置P标志的PE进行每流负载平衡。控制标志中的B标志不应在多主所有活动场景中设置,如果设置,则必须通过接收PE忽略。

In a multihoming Single-Active scenario for a given VPWS service instance, the DF election should result in the primary-elected PE for the VPWS service instance advertising the P Flag set and the B Flag clear, the backup-elected PE should advertise the P Flag clear and the B Flag set, and the rest of the PEs in the same ES should signal both the P Flag and the B Flag clear. When the primary PE/ES fails, the primary PE will withdraw the associated Ethernet A-D routes for

在给定VPWS服务实例的多主单活动场景中,DF选择应导致VPWS服务实例的主选择PE清除P标志集和B标志集,备份选择PE应清除P标志集和B标志集,同一ES中的其余PE应发出P标志和B标志清除的信号。当主PE/ES发生故障时,主PE将为其退出相关的以太网A-D路由

the VPWS service instance from the remote PE, and the remote PE should then send traffic associated with the VPWS instance to the backup PE. DF re-election will happen between the PE(s) in the same ES, and there will be a newly elected primary PE and newly elected backup PE that will signal the P and B Flags as described. A remote PE SHOULD receive the P Flag set from only one primary PE and the B Flag set from only one backup PE. However, during transient situations, a remote PE receiving a P Flag set from more than one PE will select the last advertising PE as the primary PE when forwarding traffic. A remote PE receiving a B Flag set from more than one PE will select the last advertising PE as the backup PE. A remote PE MUST receive a P Flag set from at least one PE before forwarding traffic.

来自远程PE的VPWS服务实例,然后远程PE应将与VPWS实例关联的流量发送到备份PE。DF重新选举将在同一ES中的PE之间进行,并且将有一个新选出的主PE和新选出的备用PE,将如所述发出P和B标志的信号。远程PE应仅从一个主PE接收P标志集,并仅从一个备份PE接收B标志集。但是,在瞬态情况下,从多个PE接收P标志集的远程PE在转发流量时将选择最后一个广告PE作为主PE。从多个PE接收B标志集的远程PE将选择最后一个广告PE作为备份PE。在转发流量之前,远程PE必须从至少一个PE接收P标志集。

If a network uses entropy labels per [RFC6790], then the C Flag MUST NOT be set, and the control word MUST NOT be used when sending EVPN-encapsulated packets over a P2P LSP.

如果网络根据[RFC6790]使用熵标签,则不得设置C标志,并且在通过P2P LSP发送EVPN封装的数据包时不得使用控制字。

4. Operation
4. 活动

The following figure shows an example of a P2P service deployed with EVPN.

下图显示了使用EVPN部署的P2P服务的示例。

          Ethernet                                          Ethernet
          Native   |<--------- EVPN Instance ----------->|  Native
          Service  |                                     |  Service
          (AC)     |     |<-PSN1->|       |<-PSN2->|     |  (AC)
             |     V     V        V       V        V     V  |
             |     +-----+      +-----+  +-----+   +-----+  |
      +----+ |     | PE1 |======|ASBR1|==|ASBR2|===| PE3 |  |    +----+
      |    |-------+-----+      +-----+  +-----+   +-----+-------|    |
      | CE1| |                                              |    |CE2 |
      |    |-------+-----+      +-----+  +-----+   +-----+-------|    |
      +----+ |     | PE2 |======|ASBR3|==|ASBR4|===| PE4 |  |    +----+
           ^       +-----+      +-----+  +-----+   +-----+          ^
           |   Provider Edge 1        ^        Provider Edge 2      |
           |                          |                             |
           |                          |                             |
           |              EVPN Inter-provider point                 |
           |                                                        |
           |<---------------- Emulated Service -------------------->|
        
          Ethernet                                          Ethernet
          Native   |<--------- EVPN Instance ----------->|  Native
          Service  |                                     |  Service
          (AC)     |     |<-PSN1->|       |<-PSN2->|     |  (AC)
             |     V     V        V       V        V     V  |
             |     +-----+      +-----+  +-----+   +-----+  |
      +----+ |     | PE1 |======|ASBR1|==|ASBR2|===| PE3 |  |    +----+
      |    |-------+-----+      +-----+  +-----+   +-----+-------|    |
      | CE1| |                                              |    |CE2 |
      |    |-------+-----+      +-----+  +-----+   +-----+-------|    |
      +----+ |     | PE2 |======|ASBR3|==|ASBR4|===| PE4 |  |    +----+
           ^       +-----+      +-----+  +-----+   +-----+          ^
           |   Provider Edge 1        ^        Provider Edge 2      |
           |                          |                             |
           |                          |                             |
           |              EVPN Inter-provider point                 |
           |                                                        |
           |<---------------- Emulated Service -------------------->|
        

Figure 3: EVPN-VPWS Deployment Model

图3:EVPN-VPWS部署模型

iBGP sessions are established between PE1, PE2, ASBR1, and ASBR3, possibly via a BGP route reflector. Similarly, iBGP sessions are established among PE3, PE4, ASBR2, and ASBR4. eBGP sessions are established among ASBR1, ASBR2, ASBR3, and ASBR4.

iBGP会话可能通过BGP路由反射器在PE1、PE2、ASBR1和ASBR3之间建立。类似地,iBGP会话在PE3、PE4、ASBR2和ASBR4之间建立。eBGP会话在ASBR1、ASBR2、ASBR3和ASBR4之间建立。

All PEs and ASBRs are enabled for the EVPN Subsequent Address Family Identifier (SAFI) and exchange per-EVI Ethernet A-D routes, one route per VPWS service instance. For inter-AS option B, the ASBRs re-advertise these routes with the NEXT_HOP attribute set to their IP addresses as per [RFC4271]. The link between the CE and the PE is either a C-tagged or S-tagged interface, as described in [802.1Q], that can carry a single VLAN tag or two nested VLAN tags, and it is configured as a trunk with multiple VLANs, one per VPWS service instance. It should be noted that the VLAN ID used by the customer at either end of a VPWS service instance to identify that service instance may be different, and EVPN doesn't perform that translation between the two values. Rather, the MPLS label will identify the VPWS service instance, and if translation is needed, it should be done by the Ethernet interface for each service.

所有PEs和ASBR都为EVPN后续地址系列标识符(SAFI)和交换每个EVI以太网A-D路由启用,每个VPWS服务实例一个路由。对于inter-AS选项B,ASBR根据[RFC4271]将下一跳属性设置为其IP地址,从而重新公布这些路由。CE和PE之间的链路为C标记或S标记接口,如[802.1Q]所述,可携带单个VLAN标记或两个嵌套VLAN标记,并配置为具有多个VLAN的中继,每个VPWS服务实例一个VLAN。应该注意的是,客户在VPWS服务实例两端用于标识该服务实例的VLAN ID可能不同,EVPN不会在这两个值之间执行转换。相反,MPLS标签将标识VPWS服务实例,如果需要转换,则应通过以太网接口为每个服务进行转换。

For a single-homed CE, in an advertised per-EVI Ethernet A-D route, the ESI field is set to zero and the Ethernet Tag ID is set to the VPWS service instance identifier that identifies the EVPL or EPL service.

对于单宿CE,在每EVI以太网a-D路由中,ESI字段设置为零,以太网标签ID设置为标识EVPL或EPL服务的VPWS服务实例标识符。

For a multihomed CE, in an advertised per-EVI Ethernet A-D route, the ESI field is set to the CE's ESI and the Ethernet Tag ID is set to the VPWS service instance identifier, which MUST have the same value on all PEs attached to that ES. This allows an ingress PE in a multihoming All-Active scenario to perform flow-based load-balancing of traffic flows to all of the PEs attached to that ES. In all cases, traffic follows the transport paths, which may be asymmetric.

对于多宿CE,在每EVI以太网a-D路由中,ESI字段设置为CE的ESI,以太网标签ID设置为VPWS服务实例标识符,该标识符在连接到该ES的所有PE上必须具有相同的值。这允许多主全活动场景中的入口PE对连接到该ES的所有PE的流量执行基于流的负载平衡。在所有情况下,流量都遵循传输路径,这可能是不对称的。

Either (1) the VPWS service instance identifier encoded in the Ethernet Tag ID in an advertised per-EVI Ethernet A-D route MUST be unique across all ASes or (2) an ASBR needs to perform a translation when the per-EVI Ethernet A-D route is re-advertised by the ASBR from one AS to the other AS.

(1)每EVI以太网A-D路由中以太网标记ID中编码的VPWS服务实例标识符在所有ASE中必须是唯一的,或者(2)当ASBR将每EVI以太网A-D路由从一个AS重新通告到另一个AS时,ASBR需要执行转换。

A per-ES Ethernet A-D route can be used for mass withdraw to withdraw all per-EVI Ethernet A-D routes associated with the multihomed site on a given PE.

每ES以太网A-D路由可用于大规模撤回,以撤回与给定PE上的多宿站点相关联的所有每EVI以太网A-D路由。

5. EVPN Comparison to PW Signaling
5. EVPN与PW信令的比较

In EVPN, service endpoint discovery and label signaling are done concurrently using BGP, whereas with VPWS based on [RFC4448], label signaling is done via LDP and service endpoint discovery is either through manual provisioning or through BGP.

在EVPN中,服务端点发现和标签信令使用BGP同时完成,而对于基于[RFC4448]的VPWS,标签信令通过LDP完成,服务端点发现通过手动配置或通过BGP完成。

In existing implementations of VPWS using PWs, redundancy is limited to Single-Active mode, while with EVPN implementations of VPWS, both Single-Active and All-Active redundancy modes can be supported.

在使用PWs的现有VPWS实现中,冗余仅限于单个活动模式,而在VPWS的EVPN实现中,可以支持单个活动和所有活动冗余模式。

In existing implementations with PWs, backup PWs are not used to carry traffic, while with EVPN, traffic can be load-balanced among different PEs multihomed to a single CE.

在PWs的现有实现中,备份PWs不用于承载流量,而在EVPN中,流量可以在多址到单个CE的不同PEs之间进行负载平衡。

Upon link or node failure, EVPN can trigger failover with the withdrawal of a single BGP route per EVPL service or multiple EVPL services, whereas with VPWS PW redundancy, the failover sequence requires the exchange of two control-plane messages: one message to deactivate the group of primary PWs and a second message to activate the group of backup PWs associated with the access link.

在链路或节点发生故障时,EVPN可以通过每个EVPL服务或多个EVPL服务退出单个BGP路由来触发故障转移,而在VPWS PW冗余的情况下,故障切换序列需要交换两条控制平面消息:一条消息用于停用主PW组,另一条消息用于激活与访问链路关联的备份PW组。

Finally, EVPN may employ data-plane egress link protection mechanisms not available in VPWS. This can be done by the primary PE (on local AC down) using the label advertised in the per-EVI Ethernet A-D route by the backup PE to encapsulate the traffic and direct it to the backup PE.

最后,EVPN可以采用VPWS中不可用的数据平面出口链路保护机制。这可以由主PE(在本地AC上)使用备份PE在每EVI以太网A-D路由中公布的标签来封装流量并将其定向到备份PE来完成。

6. Failure Scenarios
6. 故障场景

On a link or port failure between the CE and the PE for both single-homed and multihomed CEs, unlike [RFC7432], the PE MUST withdraw all the associated Ethernet A-D routes for the VPWS service instances on the failed port or link.

与[RFC7432]不同,在单宿和多宿CE的CE和PE之间发生链路或端口故障时,PE必须为故障端口或链路上的VPWS服务实例撤消所有关联的以太网a-D路由。

6.1. Single-Homed CEs
6.1. 单宿CEs

Unlike [RFC7432], EVPN-VPWS uses Ethernet A-D route advertisements for single-homed Ethernet Segments. Therefore, upon a link/port failure of a given single-homed Ethernet Segment, the PE MUST withdraw the associated per-EVI Ethernet A-D routes.

与[RFC7432]不同,EVPN-VPWS使用以太网A-D路由播发进行单宿以太网段。因此,在给定的单主以太网段发生链路/端口故障时,PE必须撤回相关的每EVI以太网a-D路由。

6.2. Multihomed CEs
6.2. 多宿CEs

For a faster convergence in multihomed scenarios with either Single-Active redundancy or All-Active redundancy, a mass withdraw technique is used. A PE previously advertising a per-ES Ethernet A-D route can withdraw this route by signaling to the remote PEs to switch all the VPWS service instances associated with this multihomed ES to the backup PE.

为了在具有单个活动冗余或所有活动冗余的多宿场景中更快地收敛,使用了大规模撤回技术。先前宣传每ES以太网A-D路由的PE可以通过向远程PE发送信令来撤回该路由,以将与该多宿ES相关联的所有VPWS服务实例切换到备份PE。

Just like RFC 7432, the Ethernet A-D per-EVI route MUST NOT be used for traffic forwarding by a remote PE until it also receives the associated set of Ethernet A-D per-ES routes.

与RFC 7432一样,每个EVI的以太网A-D路由不得用于远程PE的流量转发,直到它还接收到一组相关的每个ES的以太网A-D路由。

7. Security Considerations
7. 安全考虑

The mechanisms in this document use the EVPN control plane as defined in [RFC7432]. The security considerations described in [RFC7432] are equally applicable.

本文件中的机构使用[RFC7432]中定义的EVPN控制平面。[RFC7432]中描述的安全注意事项同样适用。

This document uses MPLS and IP-based tunnel technologies to support data-plane transport. The security considerations described in [RFC7432] and in [EVPN-OVERLAY] are equally applicable.

本文档使用MPLS和基于IP的隧道技术来支持数据平面传输。[RFC7432]和[EVPN-OVERLAY]中描述的安全注意事项同样适用。

8. IANA Considerations
8. IANA考虑

IANA has allocated the following EVPN Extended Community sub-type:

IANA已分配以下EVPN扩展社区子类型:

      Sub-Type Value     Name                        Reference
      --------------------------------------------------------
      0x04               EVPN Layer 2 Attributes     RFC 8214
        
      Sub-Type Value     Name                        Reference
      --------------------------------------------------------
      0x04               EVPN Layer 2 Attributes     RFC 8214
        

This document creates a registry called "EVPN Layer 2 Attributes Control Flags". New registrations will be made through the "RFC Required" procedure defined in [RFC8126].

本文档创建了一个名为“EVPN第2层属性控制标志”的注册表。新的注册将通过[RFC8126]中定义的“需要RFC”程序进行。

Initial registrations are as follows:

初步登记如下:

P Advertising PE is the primary PE. B Advertising PE is the backup PE. C Control word [RFC4448] MUST be present.

P广告体育是主要体育。B广告PE是备用PE。C控制字[RFC4448]必须存在。

9. References
9. 工具书类
9.1. Normative References
9.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<https://www.rfc-editor.org/info/rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8174]Leiba,B.,“RFC 2119关键词中大写与小写的歧义”,BCP 14,RFC 8174,DOI 10.17487/RFC8174,2017年5月<https://www.rfc-editor.org/info/rfc8174>.

[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A., Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February 2015, <https://www.rfc-editor.org/info/rfc7432>.

[RFC7432]Sajassi,A.,Ed.,Aggarwal,R.,Bitar,N.,Isaac,A.,Uttaro,J.,Drake,J.,和W.Henderickx,“基于BGP MPLS的以太网VPN”,RFC 7432,DOI 10.17487/RFC7432,2015年2月<https://www.rfc-editor.org/info/rfc7432>.

[RFC4448] Martini, L., Ed., Rosen, E., El-Aawar, N., and G. Heron, "Encapsulation Methods for Transport of Ethernet over MPLS Networks", RFC 4448, DOI 10.17487/RFC4448, April 2006, <https://www.rfc-editor.org/info/rfc4448>.

[RFC4448]Martini,L.,Ed.,Rosen,E.,El Aawar,N.,和G.Heron,“通过MPLS网络传输以太网的封装方法”,RFC 4448,DOI 10.17487/RFC4448,2006年4月<https://www.rfc-editor.org/info/rfc4448>.

[RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and L. Yong, "The Use of Entropy Labels in MPLS Forwarding", RFC 6790, DOI 10.17487/RFC6790, November 2012, <https://www.rfc-editor.org/info/rfc6790>.

[RFC6790]Kompella,K.,Drake,J.,Amante,S.,Henderickx,W.,和L.Yong,“MPLS转发中熵标签的使用”,RFC 6790,DOI 10.17487/RFC6790,2012年11月<https://www.rfc-editor.org/info/rfc6790>.

[RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006, <https://www.rfc-editor.org/info/rfc4271>.

[RFC4271]Rekhter,Y.,Ed.,Li,T.,Ed.,和S.Hares,Ed.,“边境网关协议4(BGP-4)”,RFC 4271,DOI 10.17487/RFC4271,2006年1月<https://www.rfc-editor.org/info/rfc4271>.

[RFC4360] Sangli, S., Tappan, D., and Y. Rekhter, "BGP Extended Communities Attribute", RFC 4360, DOI 10.17487/RFC4360, February 2006, <https://www.rfc-editor.org/info/rfc4360>.

[RFC4360]Sangli,S.,Tappan,D.和Y.Rekhter,“BGP扩展社区属性”,RFC 4360,DOI 10.17487/RFC4360,2006年2月<https://www.rfc-editor.org/info/rfc4360>.

[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/info/rfc8126>.

[RFC8126]Cotton,M.,Leiba,B.,和T.Narten,“在RFC中编写IANA考虑事项部分的指南”,BCP 26,RFC 8126,DOI 10.17487/RFC8126,2017年6月<https://www.rfc-editor.org/info/rfc8126>.

[RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L., Sridhar, T., Bursell, M., and C. Wright, "Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, <https://www.rfc-editor.org/info/rfc7348>.

[RFC7348]Mahalingam,M.,Dutt,D.,Duda,K.,Agarwal,P.,Kreeger,L.,Sridhar,T.,Bursell,M.,和C.Wright,“虚拟可扩展局域网(VXLAN):在第3层网络上覆盖虚拟化第2层网络的框架”,RFC 7348,DOI 10.17487/RFC7348,2014年8月<https://www.rfc-editor.org/info/rfc7348>.

9.2. Informative References
9.2. 资料性引用

[MEF] Metro Ethernet Forum, "EVC Ethernet Services Definitions Phase 3", Technical Specification MEF 6.2, August 2014, <https://www.mef.net/Assets/Technical_Specifications/ PDF/MEF_6.2.pdf>.

[MEF]城域以太网论坛,“EVC以太网服务定义第3阶段”,技术规范MEF 6.2,2014年8月<https://www.mef.net/Assets/Technical_Specifications/ PDF/MEF_6.2.PDF>。

[RFC4664] Andersson, L., Ed., and E. Rosen, Ed., "Framework for Layer 2 Virtual Private Networks (L2VPNs)", RFC 4664, DOI 10.17487/RFC4664, September 2006, <https://www.rfc-editor.org/info/rfc4664>.

[RFC4664]Andersson,L.,Ed.,和E.Rosen,Ed.,“第二层虚拟专用网络(L2VPN)框架”,RFC 4664,DOI 10.17487/RFC4664,2006年9月<https://www.rfc-editor.org/info/rfc4664>.

[EVPN-OVERLAY] Sajassi, A., Ed., Drake, J., Ed., Bitar, N., Shekhar, R., Uttaro, J., and W. Henderickx, "A Network Virtualization Overlay Solution using EVPN", Work in Progress, draft-ietf-bess-evpn-overlay-08, March 2017.

[EVPN-OVERLAY]Sajassi,A.,Ed.,Drake,J.,Ed.,Bitar,N.,Shekhar,R.,Uttaro,J.,和W.Henderickx,“使用EVPN的网络虚拟化覆盖解决方案”,正在进行的工作,草稿-ietf-bess-EVPN-OVERLAY-08,2017年3月。

[802.1Q] IEEE, "IEEE Standard for Local and metropolitan area networks -- Media Access Control (MAC) Bridges and Virtual Bridge Local Area Networks", IEEE Std 802.1Q-2011, DOI 10.1109/IEEESTD.2011.6009146.

[802.1Q]IEEE,“局域网和城域网的IEEE标准——媒体访问控制(MAC)网桥和虚拟网桥局域网”,IEEE标准802.1Q-2011,DOI 10.1109/IEEESTD.2011.6009146。

Acknowledgements

致谢

The authors would like to acknowledge Jeffrey Zhang, Wen Lin, Nitin Singh, Senthil Sathappan, Vinod Prabhu, Himanshu Shah, Iftekhar Hussain, Alvaro Retana, and Acee Lindem for their feedback and contributions to this document.

作者感谢Jeffrey Zhang、Wen Lin、Nitin Singh、Senthil Sathappan、Vinod Prabhu、Himanshu Shah、Iftekhar Hussain、Alvaro Retana和Acee Lindem对本文件的反馈和贡献。

Contributors

贡献者

In addition to the authors listed on the front page, the following coauthors have also contributed to this document:

除了头版上列出的作者外,以下合著者也对本文件作出了贡献:

Jeff Tantsura Individual Email: jefftant@gmail.com

Jeff Tantsura个人电子邮件:jefftant@gmail.com

Dirk Steinberg Steinberg Consulting Email: dws@steinbergnet.net

德克·斯坦伯格咨询公司电子邮件:dws@steinbergnet.net

Patrice Brissette Cisco Systems Email: pbrisset@cisco.com

Patrice Brissette Cisco Systems电子邮件:pbrisset@cisco.com

Thomas Beckhaus Deutsche Telecom Email: Thomas.Beckhaus@telekom.de

托马斯·贝克豪斯德国电信电子邮件:托马斯。Beckhaus@telekom.de

Ryan Bickhart Juniper Networks Email: rbickhart@juniper.net

Ryan Bickhart Juniper Networks电子邮件:rbickhart@juniper.net

Daniel Voyer Bell Canada

丹尼尔·沃耶·贝尔加拿大

Authors' Addresses

作者地址

Sami Boutros VMware, Inc.

萨米·布特罗斯VMware公司。

   Email: sboutros@vmware.com
        
   Email: sboutros@vmware.com
        

Ali Sajassi Cisco Systems

阿里萨贾西思科系统公司

   Email: sajassi@cisco.com
        
   Email: sajassi@cisco.com
        

Samer Salam Cisco Systems

萨默萨拉姆思科系统公司

   Email: ssalam@cisco.com
        
   Email: ssalam@cisco.com
        

John Drake Juniper Networks

约翰·德雷克·杜松网络公司

   Email: jdrake@juniper.net
        
   Email: jdrake@juniper.net
        

Jorge Rabadan Nokia

豪尔赫·拉巴丹诺基亚

   Email: jorge.rabadan@nokia.com
        
   Email: jorge.rabadan@nokia.com