Internet Engineering Task Force (IETF)                N. Cam-Winget, Ed.
Request for Comments: 8036                                 Cisco Systems
Category: Standards Track                                         J. Hui
ISSN: 2070-1721                                                     Nest
                                                                 D. Popa
                                                              Itron, Inc
                                                            January 2017
        
Internet Engineering Task Force (IETF)                N. Cam-Winget, Ed.
Request for Comments: 8036                                 Cisco Systems
Category: Standards Track                                         J. Hui
ISSN: 2070-1721                                                     Nest
                                                                 D. Popa
                                                              Itron, Inc
                                                            January 2017
        

Applicability Statement for the Routing Protocol for Low-Power and Lossy Networks (RPL) in Advanced Metering Infrastructure (AMI) Networks

高级计量基础设施(AMI)网络中低功耗和有损网络(RPL)路由协议的适用性声明

Abstract

摘要

This document discusses the applicability of the Routing Protocol for Low-Power and Lossy Networks (RPL) in Advanced Metering Infrastructure (AMI) networks.

本文讨论了低功耗和有损网络(RPL)路由协议在高级计量基础设施(AMI)网络中的适用性。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 7841第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc8036.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc8036.

Copyright Notice

版权公告

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2017 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
     1.2.  Required Reading  . . . . . . . . . . . . . . . . . . . .   3
     1.3.  Out-of-Scope Requirements . . . . . . . . . . . . . . . .   4
   2.  Routing Protocol for LLNs (RPL) . . . . . . . . . . . . . . .   4
   3.  Description of AMI Networks for Electric Meters . . . . . . .   4
     3.1.  Deployment Scenarios  . . . . . . . . . . . . . . . . . .   5
   4.  Smart Grid Traffic Description  . . . . . . . . . . . . . . .   7
     4.1.  Smart Grid Traffic Characteristics  . . . . . . . . . . .   7
     4.2.  Smart Grid Traffic QoS Requirements . . . . . . . . . . .   8
     4.3.  RPL Applicability per Smart Grid Traffic Characteristics    9
   5.  Layer-2 Applicability . . . . . . . . . . . . . . . . . . . .   9
     5.1.  IEEE Wireless Technology  . . . . . . . . . . . . . . . .   9
     5.2.  IEEE Power Line Communication (PLC) Technology  . . . . .   9
   6.  Using RPL to Meet Functional Requirements . . . . . . . . . .  10
   7.  RPL Profile . . . . . . . . . . . . . . . . . . . . . . . . .  11
     7.1.  RPL Features  . . . . . . . . . . . . . . . . . . . . . .  11
       7.1.1.  RPL Instances . . . . . . . . . . . . . . . . . . . .  11
       7.1.2.  DAO Policy  . . . . . . . . . . . . . . . . . . . . .  11
       7.1.3.  Path Metrics  . . . . . . . . . . . . . . . . . . . .  11
       7.1.4.  Objective Function  . . . . . . . . . . . . . . . . .  12
       7.1.5.  DODAG Repair  . . . . . . . . . . . . . . . . . . . .  12
       7.1.6.  Multicast . . . . . . . . . . . . . . . . . . . . . .  12
       7.1.7.  Security  . . . . . . . . . . . . . . . . . . . . . .  13
     7.2.  Description of Layer-2 Features . . . . . . . . . . . . .  13
       7.2.1.  IEEE 1901.2 PHY and MAC Sub-layer Features  . . . . .  13
       7.2.2.  IEEE 802.15.4 (Amendments G and E) PHY and MAC
               Features  . . . . . . . . . . . . . . . . . . . . . .  14
       7.2.3.  IEEE MAC Sub-layer Security Features  . . . . . . . .  15
     7.3.  6LowPAN Options . . . . . . . . . . . . . . . . . . . . .  17
     7.4.  Recommended Configuration Defaults and Ranges . . . . . .  17
       7.4.1.  Trickle Parameters  . . . . . . . . . . . . . . . . .  17
       7.4.2.  Other Parameters  . . . . . . . . . . . . . . . . . .  18
   8.  Manageability Considerations  . . . . . . . . . . . . . . . .  18
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  19
     9.1.  Security Considerations during Initial Deployment . . . .  20
     9.2.  Security Considerations during Incremental Deployment . .  20
     9.3.  Security Considerations Based on RPL's Threat Analysis  .  20
   10. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  21
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  21
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  21
     11.2.  Informative references . . . . . . . . . . . . . . . . .  22
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  24
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  24
        
   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
     1.2.  Required Reading  . . . . . . . . . . . . . . . . . . . .   3
     1.3.  Out-of-Scope Requirements . . . . . . . . . . . . . . . .   4
   2.  Routing Protocol for LLNs (RPL) . . . . . . . . . . . . . . .   4
   3.  Description of AMI Networks for Electric Meters . . . . . . .   4
     3.1.  Deployment Scenarios  . . . . . . . . . . . . . . . . . .   5
   4.  Smart Grid Traffic Description  . . . . . . . . . . . . . . .   7
     4.1.  Smart Grid Traffic Characteristics  . . . . . . . . . . .   7
     4.2.  Smart Grid Traffic QoS Requirements . . . . . . . . . . .   8
     4.3.  RPL Applicability per Smart Grid Traffic Characteristics    9
   5.  Layer-2 Applicability . . . . . . . . . . . . . . . . . . . .   9
     5.1.  IEEE Wireless Technology  . . . . . . . . . . . . . . . .   9
     5.2.  IEEE Power Line Communication (PLC) Technology  . . . . .   9
   6.  Using RPL to Meet Functional Requirements . . . . . . . . . .  10
   7.  RPL Profile . . . . . . . . . . . . . . . . . . . . . . . . .  11
     7.1.  RPL Features  . . . . . . . . . . . . . . . . . . . . . .  11
       7.1.1.  RPL Instances . . . . . . . . . . . . . . . . . . . .  11
       7.1.2.  DAO Policy  . . . . . . . . . . . . . . . . . . . . .  11
       7.1.3.  Path Metrics  . . . . . . . . . . . . . . . . . . . .  11
       7.1.4.  Objective Function  . . . . . . . . . . . . . . . . .  12
       7.1.5.  DODAG Repair  . . . . . . . . . . . . . . . . . . . .  12
       7.1.6.  Multicast . . . . . . . . . . . . . . . . . . . . . .  12
       7.1.7.  Security  . . . . . . . . . . . . . . . . . . . . . .  13
     7.2.  Description of Layer-2 Features . . . . . . . . . . . . .  13
       7.2.1.  IEEE 1901.2 PHY and MAC Sub-layer Features  . . . . .  13
       7.2.2.  IEEE 802.15.4 (Amendments G and E) PHY and MAC
               Features  . . . . . . . . . . . . . . . . . . . . . .  14
       7.2.3.  IEEE MAC Sub-layer Security Features  . . . . . . . .  15
     7.3.  6LowPAN Options . . . . . . . . . . . . . . . . . . . . .  17
     7.4.  Recommended Configuration Defaults and Ranges . . . . . .  17
       7.4.1.  Trickle Parameters  . . . . . . . . . . . . . . . . .  17
       7.4.2.  Other Parameters  . . . . . . . . . . . . . . . . . .  18
   8.  Manageability Considerations  . . . . . . . . . . . . . . . .  18
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  19
     9.1.  Security Considerations during Initial Deployment . . . .  20
     9.2.  Security Considerations during Incremental Deployment . .  20
     9.3.  Security Considerations Based on RPL's Threat Analysis  .  20
   10. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  21
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  21
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  21
     11.2.  Informative references . . . . . . . . . . . . . . . . .  22
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  24
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  24
        
1. Introduction
1. 介绍

Advanced Metering Infrastructure (AMI) systems enable the measurement; configuration; and control of energy, gas, and water consumption and distribution; through two-way scheduled, on-exception, and on-demand communication.

先进的计量基础设施(AMI)系统可实现计量;配置能源,燃气,水的消耗和分配控制;;通过双向定时、按例外和按需通信。

AMI networks are composed of millions of endpoints, including meters, distribution automation elements, and eventually Home Area Network (HAN) devices. They are typically interconnected using some combination of wireless and power line communications, thus forming the so-called Neighbor Area Network (NAN) along with a backhaul network providing connectivity to "command-and-control" management software applications at the utility company back office.

AMI网络由数百万个端点组成,包括仪表、配电自动化元件以及最终的家庭区域网络(HAN)设备。它们通常使用无线和电力线通信的某种组合进行互连,从而形成所谓的邻居区域网络(NAN)以及回程网络,提供与公用事业公司后台“指挥和控制”管理软件应用程序的连接。

1.1. Requirements Language
1.1. 需求语言

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“建议”、“不建议”、“可”和“可选”应按照[RFC2119]中的说明进行解释。

1.2. Required Reading
1.2. 必读

[surveySG] gives an overview of Smart Grid architecture and related applications.

[surveySG]概述了智能电网体系结构和相关应用。

A NAN can use wireless communication technology, which is based on the IEEE 802.15.4 standard family: more specifically, the Physical Layer (PHY) amendment [IEEE.802.15.4g] and the Media Access Control (MAC) sub-layer amendment [IEEE.802.15.4e], which are adapted to smart grid networks.

NAN可以使用基于IEEE 802.15.4标准系列的无线通信技术:更具体地说,物理层(PHY)修正案[IEEE.802.15.4g]和媒体访问控制(MAC)子层修正案[IEEE.802.15.4e],它们适用于智能电网网络。

NAN can also use Power Line Communication (PLC) technology as an alternative to wireless communications. Several standards for PLC technology have emerged, such as [IEEE.1901.2].

NAN还可以使用电力线通信(PLC)技术作为无线通信的替代方案。一些PLC技术标准已经出现,如[IEEE.1901.2]。

NAN can further use a mix of wireless and PLC technologies to increase the network coverage ratio, which is a critical requirement for AMI networks.

NAN可以进一步混合使用无线和PLC技术来提高网络覆盖率,这是AMI网络的关键要求。

1.3. Out-of-Scope Requirements
1.3. 超出范围的要求

The following are outside the scope of this document:

以下内容不在本文件范围内:

o Applicability statement for RPL [RFC6550] in AMI networks composed of battery-powered devices (i.e., gas/water meters).

o RPL[RFC6550]在由电池供电设备(即煤气/水表)组成的AMI网络中的适用性声明。

o Applicability statement for RPL in AMI networks composed of a mix of devices powered by alternating current (i.e., electric meters) and battery-powered meters (i.e., gas/water meters).

o AMI网络中RPL的适用性声明,该网络由交流电(即电表)和电池供电的电表(即煤气/水表)组成。

o Applicability statement for RPL storing mode of operation in AMI networks.

o AMI网络中RPL存储操作模式的适用性声明。

2. Routing Protocol for LLNs (RPL)
2. LLN路由协议(RPL)

RPL provides routing functionality for mesh networks that can scale up to thousands of resource-constrained devices that are interconnected by low-power and lossy links and communicate with the external network infrastructure through a common aggregation point(s) (e.g., an LLN Border Router, or LBR).

RPL为网状网络提供路由功能,可扩展到数千个资源受限的设备,这些设备通过低功耗和有损链路互连,并通过公共聚合点(如LLN边界路由器或LBR)与外部网络基础设施通信。

RPL builds a Directed Acyclic Graph (DAG) routing structure rooted at an LBR, ensures loop-free routing, and provides support for alternate routes as well as for a wide range of routing metrics and policies.

RPL构建了一个基于LBR的有向无环图(DAG)路由结构,确保了无环路由,并为备用路由以及广泛的路由度量和策略提供了支持。

RPL was designed to operate in energy-constrained environments and includes energy-saving mechanisms (e.g., Trickle timers) and energy-aware metrics. RPL's ability to support multiple different metrics and constraints at the same time enables it to run efficiently in heterogeneous networks composed of nodes and links with vastly different characteristics [RFC6551].

RPL设计用于在能源受限的环境中运行,包括节能机制(如涓流计时器)和节能指标。RPL同时支持多个不同指标和约束的能力使其能够在由特征截然不同的节点和链路组成的异构网络中高效运行[RFC6551]。

This document describes the applicability of RPL non-storing mode (as defined in [RFC6550]) to AMI deployments. The Routing Requirements for Urban Low-Power and Lossy Networks [RFC5548] are applicable to AMI networks as well. The terminology used in this document is defined in [RFC7102].

本文档描述了RPL非存储模式(定义见[RFC6550])对AMI部署的适用性。城市低功耗和有损网络的路由要求[RFC5548]也适用于AMI网络。本文件中使用的术语定义见[RFC7102]。

3. Description of AMI Networks for Electric Meters
3. 电表用AMI网络的描述

In many deployments, in addition to measuring energy consumption, the electric meter network plays a central role in the Smart Grid since the device enables the utility company to control and query the electric meters themselves and can serve as a backhaul for all other devices in the Smart Grid, e.g., water and gas meters, distribution automation, and HAN devices. Electric meters may also be used as

在许多部署中,除了测量能耗外,电表网络在智能电网中起着核心作用,因为该设备使公用事业公司能够控制和查询电表本身,并且可以作为智能电网中所有其他设备的回程,例如水表和煤气表、配电自动化、,和汉族设备。电表也可用作电表

sensors to monitor electric grid quality and to support applications such as electric vehicle charging.

用于监测电网质量和支持电动汽车充电等应用的传感器。

Electric meter networks can be composed of millions of smart meters (or nodes), each of which is resource constrained in terms of processing power, storage capabilities, and communication bandwidth due to a combination of factors including regulations on spectrum use; on meter behavior and performance; and on heat emissions within the meter, form factor, and cost considerations. These constraints result in a compromise between range and throughput with effective link throughput of tens to a few hundred kilobits per second per link, a potentially significant portion of which is taken up by protocol and encryption overhead when strong security measures are in place.

电表网络可以由数百万个智能电表(或节点)组成,每个智能电表(或节点)在处理能力、存储能力和通信带宽方面都受到资源限制,这是由包括频谱使用法规在内的多种因素造成的;关于仪表行为和性能;以及仪表内的热排放、形状系数和成本考虑。这些限制导致了范围和吞吐量之间的折衷,每个链路的有效链路吞吐量为每秒几十到几百千比特,其中很大一部分在采取强有力的安全措施时被协议和加密开销占用。

Electric meters are often interconnected into multi-hop mesh networks, each of which is connected to a backhaul network leading to the utility company network through a network aggregation point, e.g., an LBR.

电表通常互连成多跳网状网络,每个网络通过网络聚合点(如LBR)连接到通向公用事业公司网络的回程网络。

3.1. Deployment Scenarios
3.1. 部署场景

AMI networks are composed of millions of endpoints distributed across both urban and rural environments. Such endpoints can include electric, gas, and water meters; distribution automation elements; and HAN devices.

AMI网络由分布在城市和农村环境中的数百万个端点组成。这些端点可以包括电表、煤气表和水表;配电自动化元件;和汉族设备。

Devices in the network communicate directly with other devices in close proximity using a variety of low-power and/or lossy link technologies that are both wireless and wired (e.g., IEEE 802.15.4g, IEEE 802.15.4e, IEEE 1901.2, and [IEEE.802.11]). In addition to serving as sources and destinations of packets, many network elements typically also forward packets and thus form a mesh topology.

网络中的设备使用各种无线和有线的低功耗和/或有损链路技术(例如,IEEE 802.15.4g、IEEE 802.15.4e、IEEE 1901.2和[IEEE.802.11])与邻近的其他设备直接通信。除了用作数据包的源和目的地之外,许多网络元件通常还转发数据包,从而形成网状拓扑。

In a typical AMI deployment, groups of meters within physical proximity form routing domains, each in the order of a 1,000 to 10,000 meters. Thus, each electric meter mesh typically has several thousand wireless endpoints with densities varying based on the area and the terrain.

在典型的AMI部署中,物理邻近范围内的米组形成路由域,每个路由域的长度约为1000到10000米。因此,每个电表网格通常具有数千个无线端点,其密度根据区域和地形而变化。

                                                         |
                                                         +M
                                                         |
                                          M   M   M   M  | M
             /-----------\            /---+---+---+---+--+-+- phase 1
    +----+   ( Internet  )    +-----+ /   M    M    M    M
    |MDMS|---(           )----| LBR |/----+----+----+----+---- phase 2
    +----+   (   WAN     )    +-----+\
              \----------/            \   M  M      M   M
                                       \--+--+----+-+---+----- phase 3
                                                   \   M   M
                                                    +--+---+--
                                  <----------------------------->
                                           RPL
        
                                                         |
                                                         +M
                                                         |
                                          M   M   M   M  | M
             /-----------\            /---+---+---+---+--+-+- phase 1
    +----+   ( Internet  )    +-----+ /   M    M    M    M
    |MDMS|---(           )----| LBR |/----+----+----+----+---- phase 2
    +----+   (   WAN     )    +-----+\
              \----------/            \   M  M      M   M
                                       \--+--+----+-+---+----- phase 3
                                                   \   M   M
                                                    +--+---+--
                                  <----------------------------->
                                           RPL
        

Figure 1: Typical NAN Topology

图1:典型的NAN拓扑

A typical AMI network architecture (see Figure 1) is composed of a Meter Data Management System (MDMS) connected through an IP network to an LBR, which can be located in the power substation or somewhere else in the field. The power substation connects the households and buildings. The physical topology of the electrical grid is a tree structure, either due to the three different power phases coming through the substation or just to the electrical network topology. Meters (represented by a M in the previous figure) can also participate in a HAN. The scope of this document is the communication between the LBR and the meters, i.e., the NAN segment.

典型的AMI网络架构(见图1)由仪表数据管理系统(MDMS)组成,该系统通过IP网络连接到LBR,LBR可以位于变电站或现场的其他地方。变电站连接家庭和建筑物。电网的物理拓扑为树形结构,这是由于通过变电站的三个不同的电源相位,或者仅仅是由于电网拓扑。米(在上图中用M表示)也可以参与HAN。本文件的范围是LBR和仪表之间的通信,即NAN段。

Node density can vary significantly. For example, apartment buildings in urban centers may have hundreds of meters in close proximity, whereas rural areas may have sparse node distributions and may include nodes that only have a small number of network neighbors. Each routing domain is connected to the larger IP infrastructure through one or more LBRs, which provide Wide Area Network (WAN) connectivity through various traditional network technologies, e.g., Ethernet, cellular, private WAN based on Worldwide Interoperability for Microwave Access (WiMAX), and optical fiber. Paths in the mesh between a network node and the nearest LBR may be composed of several hops or even several tens of hops. Powered from the main line, electric meters have less energy constraints than battery powered devices, such as gas and water meters, and can afford the additional resources required to route packets.

节点密度可能会发生显著变化。例如,市中心的公寓楼可能有数百米的距离,而农村地区可能有稀疏的节点分布,可能包括只有少量网络邻居的节点。每个路由域通过一个或多个LBR连接到更大的IP基础设施,LBR通过各种传统网络技术提供广域网(WAN)连接,例如以太网、蜂窝、基于全球微波接入互操作性(WiMAX)的专用WAN和光纤。网络节点和最近的LBR之间的网格中的路径可以由若干跳或甚至几十跳组成。由干线供电的电表比电池供电的设备(如煤气表和水表)具有更少的能量限制,并且能够提供路由数据包所需的额外资源。

As a function of the technology used to exchange information, the logical network topology will not necessarily match the electric grid topology. If meters exchange information through radio technologies such as in the IEEE 802.15.4 family, then the topology is a meshed

作为用于交换信息的技术的一种功能,逻辑网络拓扑不一定与电网拓扑匹配。如果电表通过无线技术(如IEEE 802.15.4系列)交换信息,则拓扑为网状拓扑

network where nodes belonging to the same Destination-Oriented DAG (DODAG) can be connected to the grid through different substations. If narrowband PLC technology is used, it will more or less follow the physical tree structure since crosstalk may allow one phase to communicate with the other. This is particularly true near the LBR. Some mixed topology can also be observed since some LBRs may be strategically installed in the field to avoid all the communications going through a single LBR. Nevertheless, the short propagation range forces meters to relay the information.

属于同一目标导向DAG(DODAG)的节点可通过不同变电站连接到电网的网络。如果使用窄带PLC技术,它将或多或少遵循物理树结构,因为串扰可能允许一个相位与另一个相位通信。在LBR附近尤其如此。还可以观察到一些混合拓扑,因为一些LBR可以战略性地安装在现场,以避免所有通信通过单个LBR。然而,短传播范围迫使仪表传递信息。

4. Smart Grid Traffic Description
4. 智能电网流量描述
4.1. Smart Grid Traffic Characteristics
4.1. 智能电网交通特性

In current AMI deployments, metering applications typically require all smart meters to communicate with a few head-end servers that are deployed in the utility company data center. Head-end servers generate data traffic to configure smart data reading or initiate queries and use unicast and multicast to efficiently communicate with a single device (i.e., Point-to-Point (P2P) communications) or groups of devices respectively (i.e., Point-to-Multipoint (P2MP) communication). The head-end server may send a single small packet at a time to the meters (e.g., a meter read request, a small configuration change, or a service-switch command) or a series of large packets (e.g., a firmware download across one or even thousands of devices). The frequency of large file transfers (e.g., firmware download of all metering devices) is typically much lower than the frequency of sending configuration messages or queries. Each smart meter generates Smart Metering Data (SMD) traffic according to a schedule (e.g., periodic meter reads) in response to on-demand queries (e.g., on-demand meter reads) or in response to some local event (e.g., power outage or leak detection). Such traffic is typically destined to a single head-end server. The SMD traffic is thus highly asymmetric, where the majority of the traffic volume generated by the smart meters typically goes through the LBRs, and is directed from the smart meter devices to the head-end servers in a Mesh Peer-to-Peer (MP2P) fashion. Current SMD traffic patterns are fairly uniform and well understood. The traffic generated by the head-end server and destined to metering devices is dominated by periodic meter reads while traffic generated by the metering devices is typically uniformly spread over some periodic read time-window.

在当前的AMI部署中,计量应用程序通常需要所有智能电表与部署在公用事业公司数据中心的几个前端服务器通信。前端服务器生成数据流量以配置智能数据读取或启动查询,并使用单播和多播分别与单个设备(即点对点(P2P)通信)或设备组(即点对多点(P2MP)通信)进行有效通信。前端服务器可一次向仪表发送单个小数据包(例如,仪表读取请求、小配置更改或服务切换命令)或一系列大数据包(例如,跨一个或甚至数千个设备的固件下载)。大型文件传输的频率(例如,所有计量设备的固件下载)通常远低于发送配置消息或查询的频率。每个智能电表根据时间表(例如,定期电表读数)生成智能电表数据(SMD)流量,以响应按需查询(例如,按需电表读数)或响应某些本地事件(例如,断电或泄漏检测)。这样的通信量通常被发送到单个前端服务器。因此,SMD流量高度不对称,其中智能电表生成的大部分流量通常通过LBR,并以网状对等(MP2P)方式从智能电表设备定向到前端服务器。目前的SMD流量模式相当统一,并且得到了很好的理解。由前端服务器生成并发送到计量设备的流量主要由周期性仪表读取控制,而由计量设备生成的流量通常均匀地分布在某个周期性读取时间窗口上。

Smart metering applications typically do not have hard real-time constraints, but they are often subject to bounded latency and stringent service level agreements about reliability.

智能计量应用程序通常没有硬实时约束,但它们通常受到有限延迟和严格的可靠性服务级别协议的约束。

Distribution Automation (DA) applications typically involve a small number of devices that communicate with each other in a P2P fashion and may or may not be in close physical proximity. DA applications typically have more stringent latency requirements than SMD applications.

分布式自动化(DA)应用程序通常涉及少量以P2P方式相互通信的设备,这些设备可能在物理上很近,也可能不在物理上很近。DA应用程序通常比SMD应用程序具有更严格的延迟要求。

There are also a number of emerging applications such as electric vehicle charging. These applications may require P2P communication and may eventually have more stringent latency requirements than SMD applications.

还有一些新兴应用,如电动汽车充电。这些应用程序可能需要P2P通信,并且最终可能比SMD应用程序具有更严格的延迟要求。

4.2. Smart Grid Traffic QoS Requirements
4.2. 智能电网流量QoS要求

As described previously, the two main traffic families in a NAN are:

如前所述,NAN中的两个主要交通族是:

A) Meter-initiated traffic (Meter-to-Head-End - M2HE)

A) 仪表启动流量(仪表至前端-M2HE)

B) Head-end-initiated traffic (Head-End-to-Meter - HE2M)

B) 前端启动流量(前端至仪表-HE2M)

B1) request is sent in P2P to a specific meter

B1)请求通过P2P发送到特定仪表

B2) request is sent in multicast to a subset of meters

B2)请求以多播方式发送到仪表的子集

B3) request is sent in multicast to all meters

B3)请求以多播方式发送到所有仪表

The M2HE are event based while the HE2M are mostly command response. In most cases, M2HE traffic is more critical than HE2M one, but there can be exceptions.

M2HE是基于事件的,而HE2M主要是命令响应。在大多数情况下,M2HE流量比HE2M流量更为关键,但也有例外。

Regarding priority, traffic may also be divided into several classes:

关于优先级,交通也可分为几个等级:

C1) High-Priority Critical traffic for Power System Outage, Pricing Events, and Emergency Messages require a 98%+ packet delivery under 5 s (payload size < 100 bytes)

C1)电力系统中断、定价事件和紧急消息的高优先级关键通信需要在5秒内完成98%以上的数据包交付(有效负载大小<100字节)

C2) Critical Priority traffic for Power Quality Events and Meter Service Connection and Disconnection requires 98%+ packet delivery under 10s (payload size < 150 bytes)

C2)电能质量事件和电表服务连接和断开的关键优先级流量要求在10秒内完成98%以上的数据包交付(有效负载大小<150字节)

C3) Normal Priority traffic for System Events including Faults, Configuration, and Security requires 98%+ packet delivery under 30 s (payload size < 200 bytes)

C3)包括故障、配置和安全性在内的系统事件的正常优先级流量要求在30秒内98%以上的数据包交付(有效负载大小<200字节)

C4) Low Priority traffic for Recurrent Meter Reading requires 98%+ packet 2-hour delivery window 6 times per day (payload size < 400 bytes)

C4)经常性抄表的低优先级流量需要98%+数据包2小时交付窗口,每天6次(有效负载大小<400字节)

C5) Background Priority traffic for firmware/software updates processed to 98%+ of devices within 7 days (average firmware update is 1 MB)

C5)7天内处理到98%以上设备的固件/软件更新的后台优先级流量(平均固件更新为1 MB)

4.3. RPL Applicability per Smart Grid Traffic Characteristics
4.3. 根据智能电网交通特征的RPL适用性

The RPL non-storing mode of operation naturally supports upstream and downstream forwarding of unicast traffic between the DODAG root and each DODAG node, and between DODAG nodes and the DODAG root, respectively.

RPL非存储操作模式自然支持DODAG根节点和每个DODAG节点之间以及DODAG节点和DODAG根节点之间的单播业务的上游和下游转发。

The group communication model used in smart grid requires the RPL non-storing mode of operation to support downstream forwarding of multicast traffic with a scope larger than link-local. The DODAG root is the single device that injects multicast traffic, with a scope larger than link-local, into the DODAG.

智能电网中使用的组通信模型需要RPL非存储操作模式,以支持范围大于本地链路的多播流量的下游转发。DODAG根是将多播通信量(作用域大于本地链路)注入DODAG的单个设备。

5. Layer-2 Applicability
5. 第二层适用性
5.1. IEEE Wireless Technology
5.1. IEEE无线技术

IEEE amendments 802.15.4g and 802.15.4e to the standard IEEE 802.15.4 have been specifically developed for smart grid networks. They are the most common PHY and MAC layers used for wireless AMI networks. IEEE 802.15.4g specifies multiple modes of operation (FSK, OQPSK, and OFDM modulations) with speeds from 50 kbps to 600 kbps and allows for transport of a full IPv6 packet (i.e., 1280 octets) without the need for upper-layer segmentation and reassembly.

IEEE 802.15.4标准的802.15.4g和802.15.4e修正案是专门为智能电网网络开发的。它们是用于无线AMI网络的最常见的PHY和MAC层。IEEE 802.15.4g规定了多种操作模式(FSK、OQPSK和OFDM调制),速度从50 kbps到600 kbps,并允许传输完整的IPv6数据包(即1280个八位字节),而无需上层分段和重新组装。

IEEE Std 802.15.4e is an amendment to IEEE Std 802.15.4 that specifies additional Media Access Control (MAC) behaviors and frame formats that allow IEEE 802.15.4 devices to support a wide range of industrial and commercial applications that were not adequately supported prior to the release of this amendment. It is important to notice that IEEE 802.15.4e does not change the link-layer security scheme defined in the last two updates to IEEE Std 802.15.4 (e.g., 2006 and 2011 amendments).

IEEE Std 802.15.4e是对IEEE Std 802.15.4的修订,该修订规定了额外的媒体访问控制(MAC)行为和帧格式,允许IEEE 802.15.4设备支持在本修订版本发布之前未得到充分支持的各种工业和商业应用。需要注意的是,IEEE 802.15.4e并未改变IEEE Std 802.15.4(如2006年和2011年修订版)最近两次更新中定义的链路层安全方案。

5.2. IEEE Power Line Communication (PLC) Technology
5.2. IEEE电力线通信(PLC)技术

IEEE Std 1901.2 specifies communications for low frequency (less than 500 kHz) narrowband power line devices via alternating current and direct current electric power lines. IEEE Std 1901.2 supports indoor and outdoor communications over a low voltage line (the line between transformer and meter, which is less than 1000 V) through a transformer of low-voltage to medium-voltage (1000 V up to 72 kV) and through a transformer of medium-voltage to low-voltage power lines in

IEEE Std 1901.2规定了低频(小于500 kHz)窄带电力线设备通过交流和直流电力线的通信。IEEE Std 1901.2支持通过低压至中压(1000 V至72 kV)变压器和低压至低压电力线变压器的低压线路(变压器和仪表之间的线路,小于1000 V)进行室内和室外通信

both urban and in long distance (multi-kilometer) rural communications.

城市和长距离(多公里)农村通信。

IEEE Std 1901.2 defines the PHY layer and the MAC sub-layer of the data link layer. The MAC sub-layer endorses a subset of IEEE Std 802.15.4 and IEEE 802.15.4e MAC sub-layer features.

IEEE Std 1901.2定义了数据链路层的物理层和MAC子层。MAC子层认可IEEE Std 802.15.4和IEEE 802.15.4e MAC子层功能的子集。

The IEEE Std 1901.2 PHY layer bit rates are scalable up to 500 kbps depending on the application requirements and type of encoding used.

IEEE Std 1901.2物理层比特率可扩展至500 kbps,具体取决于应用要求和使用的编码类型。

The IEEE Std 1901.2 MAC layer allows for transport of a full IPv6 packet (i.e., 1280 octets) without the need for upper-layer segmentation and reassembly.

IEEE Std 1901.2 MAC层允许传输完整的IPv6数据包(即1280个八位字节),而无需上层分段和重新组装。

IEEE Std 1901.2 specifies the necessary link-layer security features that fully endorse the IEEE 802.15.4 MAC sub-layer security scheme.

IEEE Std 1901.2规定了完全认可IEEE 802.15.4 MAC子层安全方案的必要链路层安全功能。

6. Using RPL to Meet Functional Requirements
6. 使用RPL满足功能需求

The functional requirements for most AMI deployments are similar to those listed in [RFC5548]. This section informally highlights some of the similarities:

大多数AMI部署的功能要求与[RFC5548]中列出的功能要求类似。本节非正式地强调了一些相似之处:

o The routing protocol MUST be capable of supporting the organization of a large number of nodes into regions containing on the order of 10^2 to 10^4 nodes each.

o 路由协议必须能够支持将大量节点组织到区域中,每个区域包含10^2到10^4个节点。

o The routing protocol MUST provide mechanisms to support configuration of the routing protocol itself.

o 路由协议必须提供支持路由协议本身配置的机制。

o The routing protocol SHOULD support and utilize the large number of highly directed flows to a few head-end servers to handle scalability.

o 路由协议应该支持并利用大量指向少数前端服务器的高定向流来处理可伸缩性。

o The routing protocol MUST dynamically compute and select effective routes composed of low-power and lossy links. Local network dynamics SHOULD NOT impact the entire network. The routing protocol MUST compute multiple paths when possible.

o 路由协议必须动态计算和选择由低功耗和有损链路组成的有效路由。本地网络动态不应影响整个网络。如果可能,路由协议必须计算多条路径。

o The routing protocol MUST support multicast and unicast addressing. The routing protocol SHOULD support formation and identification of groups of field devices in the network.

o 路由协议必须支持多播和单播寻址。路由协议应支持网络中现场设备组的形成和识别。

RPL supports the following features:

RPL支持以下功能:

o Scalability: Large-scale networks characterized by highly directed traffic flows between each smart meter and the head-end servers in the utility network. To this end, RPL builds a Directed Acyclic Graph (DAG) rooted at each LBR.

o 可扩展性:大型网络的特点是每个智能电表和公用网络中的前端服务器之间具有高度定向的流量。为此,RPL构建了一个以每个LBR为根的有向无环图(DAG)。

o Zero-touch configuration: This is done through in-band methods for configuring RPL variables using DIO (DODAG Information Object) messages and DIO message options [RFC6550].

o 零接触配置:这是通过带内方法完成的,用于使用DIO(DODAG信息对象)消息和DIO消息选项配置RPL变量[RFC6550]。

o The use of links with time-varying quality characteristics: This is accomplished by allowing the use of metrics that effectively capture the quality of a path (e.g., Expected Transmission Count (ETX)) and by limiting the impact of changing local conditions by discovering and maintaining multiple DAG parents (and by using local repair mechanisms when DAG links break).

o 使用具有时变质量特征的链路:这是通过允许使用有效捕获路径质量的度量(例如,预期传输计数(ETX))以及通过发现和维护多个DAG父级来限制局部条件变化的影响来实现的(并在DAG链接断开时使用局部修复机制)。

7. RPL Profile
7. RPL剖面图
7.1. RPL Features
7.1. RPL特性
7.1.1. RPL Instances
7.1.1. RPL实例

RPL operation is defined for a single RPL instance. However, multiple RPL instances can be supported in multi-service networks where different applications may require the use of different routing metrics and constraints, e.g., a network carrying both SMD and DA traffic.

RPL操作是为单个RPL实例定义的。然而,在多服务网络中可以支持多个RPL实例,其中不同的应用可能需要使用不同的路由度量和约束,例如,承载SMD和DA流量的网络。

7.1.2. DAO Policy
7.1.2. 道政策

Two-way communication is a requirement in AMI systems. As a result, nodes SHOULD send Destination Advertisement Object (DAO) messages to establish downward paths from the root to themselves.

双向通信是AMI系统中的一项要求。因此,节点应发送目标播发对象(DAO)消息,以建立从根到自身的向下路径。

7.1.3. Path Metrics
7.1.3. 路径度量

Smart metering deployments utilize link technologies that may exhibit significant packet loss and thus require routing metrics that take packet loss into account. To characterize a path over such link technologies, AMI deployments can use the ETX metric as defined in [RFC6551].

智能计量部署利用链路技术,这些技术可能会出现显著的数据包丢失,因此需要考虑数据包丢失的路由度量。为了描述这种链路技术上的路径,AMI部署可以使用[RFC6551]中定义的ETX度量。

Additional metrics may be defined in companion RFCs.

其他指标可在配套RFC中定义。

7.1.4. Objective Function
7.1.4. 目标函数

RPL relies on an Objective Function for selecting parents and computing path costs and rank. This objective function is decoupled from the core RPL mechanisms and also from the metrics in use in the network. Two objective functions for RPL have been defined at the time of this writing, Objective Function 0 (OF0) [RFC6552] and Minimum Rank with Hysteresis Objective Function (MRHOF) [RFC6719], both of which define the selection of a preferred parent and backup parents and are suitable for AMI deployments.

RPL依赖于一个目标函数来选择父母,并计算路径成本和等级。该目标函数与核心RPL机制以及网络中使用的度量解耦。在撰写本文时,已经为RPL定义了两个目标函数:目标函数0(OF0)[RFC6552]和具有滞后的最小秩目标函数(MRHOF)[RFC6719],这两个目标函数都定义了首选父级和备份父级的选择,并且适用于AMI部署。

Additional objective functions may be defined in companion RFCs.

附加目标函数可在配套RFC中定义。

7.1.5. DODAG Repair
7.1.5. DODAG修复

To effectively handle time-varying link characteristics and availability, AMI deployments SHOULD utilize the local repair mechanisms in RPL. Local repair is triggered by broken link detection. The first local repair mechanism consists of a node detaching from a DODAG and then reattaching to the same or to a different DODAG at a later time. While detached, a node advertises an infinite rank value so that its children can select a different parent. This process is known as "poisoning" and is described in Section 8.2.2.5 of [RFC6550]. While RPL provides an option to form a local DODAG, doing so in AMI for electric meters is of little benefit since AMI applications typically communicate through an LBR. After the detached node has made sufficient effort to send a notification to its children that it is detached, the node can rejoin the same DODAG with a higher rank value. The configured duration of the poisoning mechanism needs to take into account the disconnection time that applications running over the network can tolerate. Note that when joining a different DODAG, the node need not perform poisoning. The second local repair mechanism controls how much a node can increase its rank within a given DODAG version (e.g., after detaching from the DODAG as a result of broken link or loop detection). Setting the DAGMaxRankIncrease to a non-zero value enables this mechanism, and setting it to a value of less than infinity limits the cost of count-to-infinity scenarios when they occur, thus controlling the duration of disconnection applications may experience.

为了有效地处理时变链路特性和可用性,AMI部署应该利用RPL中的本地修复机制。本地修复由断开的链接检测触发。第一种局部修复机制包括一个节点从DODAG上分离,然后在以后重新连接到相同或不同的DODAG上。分离时,节点播发无限秩值,以便其子节点可以选择不同的父节点。该过程称为“中毒”,并在[RFC6550]第8.2.2.5节中进行了描述。虽然RPL提供了一个形成本地DODAG的选项,但在电表的AMI中这样做并没有什么好处,因为AMI应用程序通常通过LBR进行通信。在分离的节点做出足够的努力向其子节点发送已分离的通知后,该节点可以使用更高的秩值重新加入相同的DODAG。中毒机制的配置持续时间需要考虑通过网络运行的应用程序可以容忍的断开连接时间。请注意,当加入不同的DODAG时,节点无需执行中毒。第二种局部修复机制控制节点在给定的DODAG版本内(例如,由于断开链接或循环检测而从DODAG分离后)可以增加其等级的程度。将DAGMaxRankIncrease设置为非零值可启用此机制,并将其设置为小于无穷大的值可将计数成本限制为无穷大,从而控制应用程序可能遇到的断开连接持续时间。

7.1.6. Multicast
7.1.6. 多播

Multicast support for RPL in non-storing mode are being developed in companion RFCs (see [RFC7731]).

在非存储模式下对RPL的多播支持正在配套的RFC中开发(参见[RFC7731])。

7.1.7. Security
7.1.7. 安全

AMI deployments operate in areas that do not provide any physical security. For this reason, the link-layer, transport-layer, and application-layer technologies utilized within AMI networks typically provide security mechanisms to ensure authentication, confidentiality, integrity, and freshness. As a result, AMI deployments may not need to implement RPL's security mechanisms; they MUST include, at a minimum, link-layer security such as that defined by IEEE 1901.2 and IEEE 802.15.4.

AMI部署在不提供任何物理安全的区域中运行。因此,AMI网络中使用的链路层、传输层和应用层技术通常提供安全机制,以确保身份验证、机密性、完整性和新鲜性。因此,AMI部署可能不需要实现RPL的安全机制;它们必须至少包括由IEEE 1901.2和IEEE 802.15.4定义的链路层安全性。

7.2. Description of Layer-2 Features
7.2. 第2层特征说明
7.2.1. IEEE 1901.2 PHY and MAC Sub-layer Features
7.2.1. IEEE 1901.2物理层和MAC子层功能

The IEEE Std 1901.2 PHY layer is based on OFDM modulation and defines a time frequency interleaver over the entire PHY frame coupled with a Reed Solomon and Viterbi Forward Error Correction for maximum robustness. Since the noise level in each OFDM subcarrier can vary significantly, IEEE 1901.2 specifies two complementary mechanisms that allow fine-tuning of the robustness/performance tradeoff implicit in such systems. More specifically, the first (coarse-grained) mechanism defines the modulation from several possible choices (robust (super-ROBO, ROBO), BPSK, QPSK, and so on). The second (fine-grained) mechanism maps the subcarriers that are too noisy and deactivates them.

IEEE Std 1901.2物理层基于OFDM调制,并在整个物理层帧上定义了一个时频交织器,该交织器与Reed-Solomon和Viterbi前向纠错器耦合,以实现最大的鲁棒性。由于每个OFDM子载波中的噪声水平可以显著变化,IEEE 1901.2规定了两种互补机制,允许对此类系统中隐含的鲁棒性/性能权衡进行微调。更具体地说,第一种(粗粒度)机制从几个可能的选择(鲁棒(超级机器人、机器人)、BPSK、QPSK等)定义调制。第二种(细粒度)机制映射噪声过大的子载波并将其停用。

The existence of multiple modulations and dynamic frequency exclusion renders the problem of selecting a path between two nodes non-trivial as the possible number of combinations increases significantly, e.g., use a direct link with slow robust modulation or use a relay meter with fast modulation and 12 disabled subcarriers. In addition, IEEE 1901.2 technology offers a mechanism (adaptive tone map) for periodic exchanges on the link quality between nodes to constantly react to channel fluctuations. Every meter keeps a state of the quality of the link to each of its neighbors by either piggybacking the tone mapping on the data traffic or by sending explicit tone map requests.

多重调制和动态频率排除的存在使得在两个节点之间选择路径的问题变得非常重要,因为可能的组合数量显著增加,例如,使用具有缓慢鲁棒调制的直接链路或使用具有快速调制和12个禁用子载波的中继计。此外,IEEE 1901.2技术还提供了一种机制(自适应音调映射),用于节点之间定期交换链路质量,以不断对信道波动作出反应。每个仪表通过在数据通信量上搭载音调映射或发送显式音调映射请求来保持与每个相邻仪表的链路质量状态。

The IEEE 1901.2 MAC frame format shares most in common with the IEEE 802.15.4 MAC frame format [IEEE.802.15.4]. A few exceptions are described below.

IEEE 1901.2 MAC帧格式与IEEE 802.15.4 MAC帧格式[IEEE.802.15.4]最为相似。下文介绍了一些例外情况。

o The IEEE 1901.2 MAC frame is obtained by prepending a Segment Control Field to the IEEE 802.15.4 MAC header. One function of the Segment Control Field is to signal the use of the MAC sub-layer segmentation and reassembly.

o IEEE 1901.2 MAC帧是通过在IEEE 802.15.4 MAC报头前加一个段控制字段获得的。段控制字段的一个功能是向MAC子层分段和重新组装的使用发送信号。

o IEEE 1901.2 MAC frames use only the 802.15.4 MAC addresses with a length of 16 and 64 bits.

o IEEE 1901.2 MAC帧仅使用长度为16和64位的802.15.4 MAC地址。

o The IEEE 1901.2 MAC sub-layer endorses the concept of Information Elements, as defined in [IEEE.802.15.4e]. The format and use of Information Elements are not relevant to the RPL applicability statement.

o IEEE 1901.2 MAC子层认可[IEEE.802.15.4e]中定义的信息元素概念。信息元素的格式和使用与RPL适用性声明无关。

The IEEE 1901.2 PHY frame payload size varies as a function of the modulation used to transmit the frame and the strength of the Forward Error Correction scheme.

IEEE 1901.2 PHY帧有效负载大小随用于传输帧的调制和前向纠错方案的强度而变化。

The IEEE 1901.2 PHY MTU size is variable and dependent on the PHY settings in use (e.g., bandwidth, modulation, tones, etc). As quoted from the IEEE 1901.2 specification:

IEEE 1901.2物理层MTU大小是可变的,取决于使用中的物理层设置(例如,带宽、调制、音调等)。引用IEEE 1901.2规范:

For CENELEC A/B, if MSDU size is more than 247 octets for robust OFDM (ROBO) and Super-ROBO modulations or more than 239 octets for all other modulations, the MAC layer shall divide the MSDU into multiple segments as described in 5.3.7. For FCC and ARIB, if the MSDU size meets one of the following conditions: a) For ROBO and Super-ROBO modulations, the MSDU size is more than 247 octets but less than 494 octets, b) For all other modulations, the MSDU size is more than 239 octets but less than 478 octets.

对于CENELEC A/B,如果鲁棒OFDM(ROBO)和超级机器人调制的MSDU大小大于247个八位字节,或所有其他调制的MSDU大小大于239个八位字节,则MAC层应将MSDU划分为多个段,如5.3.7所述。对于FCC和ARIB,如果MSDU大小满足以下条件之一:a)对于机器人和超级机器人调制,MSDU大小大于247个八位字节但小于494个八位字节;b)对于所有其他调制,MSDU大小大于239个八位字节但小于478个八位字节。

7.2.2. IEEE 802.15.4 (Amendments G and E) PHY and MAC Features
7.2.2. IEEE 802.15.4(修改件G和E)物理层和MAC特性

IEEE Std 802.15.4g defines multiple modes of operation, where each mode uses different modulation and has multiple data rates. Additionally, the 802.15.4g PHY layer includes mechanisms to improve the robustness of the radio communications, such as data whitening and Forward Error Correction coding. The 802.15.4g PHY frame payload can carry up to 2048 octets.

IEEE Std 802.15.4g定义了多种操作模式,其中每种模式使用不同的调制,并具有多种数据速率。此外,802.15.4g PHY层包括用于提高无线电通信的健壮性的机制,例如数据白化和前向纠错编码。802.15.4g物理层帧有效负载最多可承载2048个八位字节。

IEEE Std 802.15.4g defines the following modulations: Multi-Rate and Multi-Regional FSK (MR-FSK), MR-OFDM, and MR-O-QPSK. The (over-the-air) bit rates for these modulations range from 4.8 to 600 kbps for MR-FSK, from 50 to 600 kbps for MR-OFDM, and from 6.25 to 500 kbps for MR-O-QPSK.

IEEE Std 802.15.4g定义了以下调制:多速率和多区域FSK(MR-FSK)、MR-OFDM和MR-O-QPSK。这些调制的(空中)比特率范围为:MR-FSK为4.8到600 kbps,MR-OFDM为50到600 kbps,MR-O-QPSK为6.25到500 kbps。

The MAC sub-layer running on top of a 4g radio link is based on IEEE 802.15.4e. The 802.15.4e MAC allows for a variety of modes for operation. These include:

运行在4g无线链路之上的MAC子层基于IEEE 802.15.4e。802.15.4e MAC允许多种操作模式。这些措施包括:

o Timetimeslotslotted Channel Hopping (TSCH): specifically designed for application domains such as process automation

o 时隙时隙信道跳频(TSCH):专门为过程自动化等应用领域设计

o Low-Latency Deterministic Networks (LLDN): for application domains such as factory automation.

o 低延迟确定性网络(LLDN):用于工厂自动化等应用领域。

o Deterministic and Synchronous Multi-channel Extension (DSME): for general industrial and commercial application domains that includes channel diversity to increase network robustness.

o 确定性和同步多信道扩展(DSME):用于一般工业和商业应用领域,包括信道多样性,以提高网络鲁棒性。

o Asynchronous Multi-channel Adaptation (AMCA): for large infrastructure application domains.

o 异步多通道自适应(AMCA):用于大型基础设施应用程序域。

The MAC addressing scheme supports short (16-bit) addresses along with extended (64-bit) addresses. These addresses are assigned in different ways and are specified by specific standards organizations. Information Elements, Enhanced Beacons, and frame version 2, as defined in IEEE 802.15.4e, MUST be supported.

MAC寻址方案支持短(16位)地址和扩展(64位)地址。这些地址以不同的方式分配,并由特定的标准组织指定。必须支持IEEE 802.15.4e中定义的信息元素、增强信标和帧版本2。

Since the MAC frame payload size limitation is given by the 4g PHY frame payload size limitation (i.e., 2048 bytes) and MAC layer overhead (headers, trailers, Information Elements, and security overhead), the MAC frame payload MUST able to carry a full IPv6 packet of 1280 octets without upper-layer fragmentation and reassembly.

由于MAC帧有效负载大小限制是由4g PHY帧有效负载大小限制(即2048字节)和MAC层开销(报头、拖车、信息元素和安全开销)给出的,因此MAC帧有效负载必须能够承载1280个八位字节的完整IPv6包,而无需上层碎片和重新组装。

7.2.3. IEEE MAC Sub-layer Security Features
7.2.3. IEEE MAC子层安全特性

Since the IEEE 1901.2 standard is based on the 802.15.4 MAC sub-layer and fully endorses the security scheme defined in 802.15.4, we only focus on the description of the IEEE 802.15.4 security scheme.

由于IEEE 1901.2标准基于802.15.4 MAC子层,并且完全支持802.15.4中定义的安全方案,因此我们只关注IEEE 802.15.4安全方案的描述。

The IEEE 802.15.4 specification was designed to support a variety of applications, many of which are security sensitive. IEEE 802.15.4 provides four basic security services: message authentication, message integrity, message confidentiality, and freshness checks to avoid replay attacks.

IEEE 802.15.4规范旨在支持多种应用,其中许多应用对安全敏感。IEEE 802.15.4提供四种基本安全服务:消息身份验证、消息完整性、消息机密性和新鲜度检查,以避免重播攻击。

The 802.15.4 security layer is handled at the media access control layer, below the 6LowPAN (IPv6 over Low-Power Wireless Personal Area Network) layer. The application specifies its security requirements by setting the appropriate control parameters into the radio/PLC stack. IEEE 802.15.4 defines four packet types: beacon frames, data frames, acknowledgment frames, and command frames for the media access control layer. The 802.15.4 specification does not support security for acknowledgement frames; data frames, beacon frames, and command frames can support integrity protection and confidentiality protection for the frames' data field. An application has a choice of security suites that control the type of security protection that is provided for the transmitted MAC frame. Each security suite offers a different set of security properties and guarantees, and

802.15.4安全层在6LowPAN(低功耗无线个人局域网上的IPv6)层下的媒体访问控制层处理。应用程序通过在无线电/PLC堆栈中设置适当的控制参数来指定其安全要求。IEEE 802.15.4为媒体访问控制层定义了四种数据包类型:信标帧、数据帧、确认帧和命令帧。802.15.4规范不支持确认帧的安全性;数据帧、信标帧和命令帧可以支持帧数据字段的完整性保护和机密性保护。应用程序可以选择控制为传输的MAC帧提供的安全保护类型的安全套件。每个安全套件都提供一组不同的安全属性和保证,以及

ultimately offers different MAC frame formats. The 802.15.4 specification defines eight different security suites, outlined below. We can broadly classify the suites by the properties that they offer: no security, encryption only (AES-CTR), authentication only (AES-CBC-MAC), and encryption and authentication (AES-CCM). Each category that supports authentication comes in three variants depending on the size of the Message Authentication Code that it offers. The MAC can be either 4, 8, or 16 bytes long. Additionally, for each suite that offers encryption, the recipient can optionally enable replay protection.

最终提供不同的MAC帧格式。802.15.4规范定义了八种不同的安全套件,概述如下。我们可以根据套件提供的属性对套件进行大致分类:无安全性、仅加密(AES-CTR)、仅身份验证(AES-CBC-MAC)以及加密和身份验证(AES-CCM)。支持身份验证的每个类别都有三种变体,具体取决于它提供的消息身份验证代码的大小。MAC可以是4、8或16字节长。此外,对于提供加密的每个套件,收件人可以选择启用重播保护。

o Null = No security

o Null=无安全性

o AES-CTR = Encryption only, CTR mode

o AES-CTR=仅加密,CTR模式

o AES-CBC-MAC-128 = No encryption, 128-bit MAC

o AES-CBC-MAC-128=无加密,128位MAC

o AES-CBC-MAC-64 = No encryption, 64-bit MAC

o AES-CBC-MAC-64=不加密,64位MAC

o AES-CCM-128 = Encryption and 128-bit MAC

o AES-CCM-128=加密和128位MAC

o AES-CCM-64 = Encryption and 64-bit MAC

o AES-CCM-64=加密和64位MAC

o AES-CCM-32 = Encryption and 32-bit MAC

o AES-CCM-32=加密和32位MAC

Note that AES-CCM-32 is the most commonly used cipher in these deployments today.

请注意,AES-CCM-32是目前这些部署中最常用的密码。

To achieve authentication, any device can maintain an Access Control List (ACL), which is a list of trusted nodes from which the device wishes to receive data. Data encryption is done by encryption of Message Authentication Control frame payload using the key shared between two devices or among a group of peers. If the key is to be shared between two peers, it is stored with each entry in the ACL list; otherwise, the key is stored as the default key. Thus, the device can make sure that its data cannot be read by devices that do not possess the corresponding key. However, device addresses are always transmitted unencrypted, which makes attacks that rely on device identity somewhat easier to launch. Integrity service is applied by appending a Message Integrity Code (MIC) generated from blocks of encrypted message text. This ensures that a frame cannot be modified by a receiver device that does not share a key with the sender. Finally, sequential freshness uses a frame counter and key sequence counter to ensure the freshness of the incoming frame and guard against replay attacks.

为了实现身份验证,任何设备都可以维护访问控制列表(ACL),ACL是设备希望从中接收数据的受信任节点的列表。数据加密通过使用两个设备之间或一组对等方之间共享的密钥对消息认证控制帧有效负载进行加密来完成。如果密钥要在两个对等方之间共享,则它与ACL列表中的每个条目一起存储;否则,该密钥将存储为默认密钥。因此,设备可以确保其数据不会被不具有相应密钥的设备读取。但是,设备地址始终未加密传输,这使得依赖设备标识的攻击更容易发起。完整性服务通过附加从加密消息文本块生成的消息完整性代码(MIC)来应用。这确保了帧不能被不与发送方共享密钥的接收方设备修改。最后,sequential freshness使用帧计数器和密钥序列计数器来确保传入帧的新鲜度并防止重播攻击。

A cryptographic Message Authentication Code (or keyed MIC) is used to authenticate messages. While longer MICs lead to improved resiliency

加密消息身份验证码(或密钥MIC)用于对消息进行身份验证。而较长的MIC可提高弹性

of the code, they also make the packet size larger and thus take up bandwidth in the network. In constrained environments such as metering infrastructures, an optimum balance between security requirements and network throughput must be found.

在这些代码中,它们还使数据包的大小变大,从而占用网络中的带宽。在计量基础设施等受限环境中,必须在安全要求和网络吞吐量之间找到最佳平衡。

7.3. 6LowPAN Options
7.3. 6LowPAN选项

AMI implementations based on IEEE 1901.2 and 802.15.4 (amendments g and e) can utilize all of the IPv6 Header Compression schemes specified in Section 3 of [RFC6282] and all of the IPv6 Next Header compression schemes specified in Section 4 of [RFC6282], if reducing over the air/wire overhead is a requirement.

基于IEEE 1901.2和802.15.4(修改件g和e)的AMI实现可以利用[RFC6282]第3节中规定的所有IPv6报头压缩方案和[RFC6282]第4节中规定的所有IPv6下一个报头压缩方案,前提是需要减少空中/有线开销。

7.4. Recommended Configuration Defaults and Ranges
7.4. 建议的配置默认值和范围
7.4.1. Trickle Parameters
7.4.1. 涓流参数

Trickle [RFC6206] was designed to be density aware and perform well in networks characterized by a wide range of node densities. The combination of DIO packet suppression and adaptive timers for sending updates allows Trickle to perform well in both sparse and dense environments. Node densities in AMI deployments can vary greatly, from nodes having only one or a handful of neighbors to nodes having several hundred neighbors. In high-density environments, relatively low values for Imin may cause a short period of congestion when an inconsistency is detected and DIO updates are sent by a large number of neighboring nodes nearly simultaneously. While the Trickle timer will exponentially backoff, some time may elapse before the congestion subsides. While some link layers employ contention mechanisms that attempt to avoid congestion, relying solely on the link layer to avoid congestion caused by a large number of DIO updates can result in increased communication latency for other control and data traffic in the network. To mitigate this kind of short-term congestion, this document recommends a more conservative set of values for the Trickle parameters than those specified in [RFC6206]. In particular, DIOIntervalMin is set to a larger value to avoid periods of congestion in dense environments, and DIORedundancyConstant is parameterized accordingly as described below. These values are appropriate for the timely distribution of DIO updates in both sparse and dense scenarios while avoiding the short-term congestion that might arise in dense scenarios. Because the actual link capacity depends on the particular link technology used within an AMI deployment, the Trickle parameters are specified in terms of the link's maximum capacity for transmitting link-local multicast messages. If the link can transmit m link-local multicast packets per second on average, the expected time it takes to transmit a link-local multicast packet is 1/m seconds.

涓流[RFC6206]被设计为具有密度意识,并在具有广泛节点密度特征的网络中表现良好。DIO数据包抑制和用于发送更新的自适应定时器的组合允许Trickle在稀疏和密集环境中都能很好地执行。AMI部署中的节点密度变化很大,从只有一个或几个邻居的节点到有几百个邻居的节点。在高密度环境中,当检测到不一致并且大量相邻节点几乎同时发送DIO更新时,Imin的相对较低值可能会导致短时间的拥塞。虽然涓流计时器将以指数方式后退,但在拥塞消退之前可能需要一段时间。虽然一些链路层采用争用机制试图避免拥塞,但仅依靠链路层避免大量DIO更新引起的拥塞可能会导致网络中其他控制和数据通信的通信延迟增加。为了缓解这种短期拥塞,本文件建议采用比[RFC6206]中规定的更保守的涓流参数值。特别是,DIOIntervalMin被设置为更大的值,以避免密集环境中的拥塞周期,并且DIORedundancyConstant被相应地参数化,如下所述。这些值适用于在稀疏和密集场景中及时分发DIO更新,同时避免密集场景中可能出现的短期拥塞。由于实际链路容量取决于AMI部署中使用的特定链路技术,因此根据链路传输链路本地多播消息的最大容量来指定涓流参数。如果链路平均每秒可以传输m个链路本地多播数据包,则传输链路本地多播数据包所需的预期时间为1/m秒。

DIOIntervalMin: AMI deployments SHOULD set DIOIntervalMin such that the Trickle Imin is at least 50 times as long as it takes to transmit a link-local multicast packet. This value is larger than that recommended in [RFC6206] to avoid congestion in dense urban deployments as described above.

DIOIntervalMin:AMI部署应设置DIOIntervalMin,使涓流Imin至少是传输链路本地多播数据包所需时间的50倍。该值大于[RFC6206]中建议的值,以避免上述密集城市部署中的拥堵。

DIOIntervalDoublings: AMI deployments SHOULD set DIOIntervalDoublings such that the Trickle Imax is at least 2 hours or more.

DIOIntervalDoublings:AMI部署应设置DIOIntervalDoublings,以便涓流Imax至少为2小时或更长时间。

DIORedundancyConstant: AMI deployments SHOULD set DIORedundancyConstant to a value of at least 10. This is due to the larger chosen value for DIOIntervalMin and the proportional relationship between Imin and k suggested in [RFC6206]. This increase is intended to compensate for the increased communication latency of DIO updates caused by the increase in the DIOIntervalMin value, though the proportional relationship between Imin and k suggested in [RFC6206] is not preserved. Instead, DIORedundancyConstant is set to a lower value in order to reduce the number of packet transmissions in dense environments.

DIORedundancyConstant:AMI部署应将DIORedundancyConstant设置为至少10的值。这是由于在[RFC6206]中选择了更大的DIOIntervalMin值以及Imin和k之间的比例关系。虽然[RFC6206]中建议的Imin和k之间的比例关系未得到保留,但该增加旨在补偿DIO更新的通信延迟因DIOVERVALMIN值的增加而增加。相反,DIORedundancyConstant设置为较低的值,以减少密集环境中的数据包传输数量。

7.4.2. Other Parameters
7.4.2. 其他参数

o AMI deployments SHOULD set MinHopRankIncrease to 256, resulting in 8 bits of resolution (e.g., for the ETX metric).

o AMI部署应将MinHopRankIncrease设置为256,从而产生8位分辨率(例如,对于ETX度量)。

o To enable local repair, AMI deployments SHOULD set MaxRankIncrease to a value that allows a device to move a small number of hops away from the root. With a MinHopRankIncrease of 256, a MaxRankIncrease of 1024 would allow a device to move up to 4 hops away.

o 要启用本地修复,AMI部署应将MaxRankIncrease设置为允许设备从根移动少量跃点的值。当MinHopRankIncrease为256时,MaxRankinecrease为1024将允许设备最多移动4个跃点。

8. Manageability Considerations
8. 可管理性考虑

Network manageability is a critical aspect of smart grid network deployment and operation. With millions of devices participating in the smart grid network, many requiring real-time reachability, automatic configuration, and lightweight-network health monitoring and management are crucial for achieving network availability and efficient operation. RPL enables automatic and consistent configuration of RPL routers through parameters specified by the DODAG root and disseminated through DIO packets. The use of Trickle for scheduling DIO transmissions ensures lightweight yet timely propagation of important network and parameter updates and allows network operators to choose the trade-off point with which they are comfortable with respect to overhead vs. reliability and timeliness of network updates. The metrics in use in the network along with the Trickle Timer parameters used to control the frequency and redundancy

网络可管理性是智能电网网络部署和运行的一个关键方面。智能电网网络中有数百万台设备,许多设备需要实时可达性、自动配置和轻量级网络健康监测和管理,这对于实现网络可用性和高效运行至关重要。RPL通过DODAG根指定的参数和通过DIO数据包传播的参数实现RPL路由器的自动和一致配置。使用涓流调度DIO传输可确保重要网络和参数更新的轻量级但及时的传播,并允许网络运营商在网络更新的开销与可靠性和及时性方面选择他们满意的折衷点。网络中使用的指标以及用于控制频率和冗余的涓流定时器参数

of network updates can be dynamically varied by the root during the lifetime of the network. To that end, all DIO messages SHOULD contain a Metric Container option for disseminating the metrics and metric values used for DODAG setup. In addition, DIO messages SHOULD contain a DODAG Configuration option for disseminating the Trickle Timer parameters throughout the network. The possibility of dynamically updating the metrics in use in the network as well as the frequency of network updates allows deployment characteristics (e.g., network density) to be discovered during network bring-up and to be used to tailor network parameters once the network is operational rather than having to rely on precise pre-configuration. This also allows the network parameters and the overall routing protocol behavior to evolve during the lifetime of the network. RPL specifies a number of variables and events that can be tracked for purposes of network fault and performance monitoring of RPL routers. Depending on the memory and processing capabilities of each smart grid device, various subsets of these can be employed in the field.

在网络的生命周期内,根用户可以动态更改网络更新的数量。为此,所有DIO消息都应该包含一个度量容器选项,用于传播用于DODAG设置的度量和度量值。此外,DIO消息应包含一个DODAG配置选项,用于在整个网络中传播涓流定时器参数。动态更新网络中使用的指标的可能性以及网络更新的频率允许部署特性(例如,网络密度)在网络启动期间发现,并在网络运行后用于调整网络参数,而不必依赖于精确的预配置。这还允许网络参数和总体路由协议行为在网络的生命周期内演变。RPL指定了一些变量和事件,这些变量和事件可以被跟踪,以便对RPL路由器进行网络故障和性能监控。根据每个智能电网设备的内存和处理能力,可以在现场使用这些设备的不同子集。

9. Security Considerations
9. 安全考虑

Smart grid networks are subject to stringent security requirements, as they are considered a critical infrastructure component. At the same time, they are composed of large numbers of resource-constrained devices interconnected with limited-throughput links. As a result, the choice of security mechanisms is highly dependent on the device and network capabilities characterizing a particular deployment.

智能电网网络受到严格的安全要求的约束,因为它们被视为关键的基础设施组件。同时,它们由大量资源受限的设备组成,这些设备通过有限的吞吐量链路互连。因此,安全机制的选择在很大程度上取决于特定部署的设备和网络能力。

In contrast to other types of LLNs, in smart grid networks both centralized administrative control and access to a permanent secure infrastructure are available. As a result, smart grid networks are deployed with security mechanisms such as link-layer, transport-layer, and/or application-layer security mechanisms; while it is best practice to secure all layers, using RPL's secure mode may not be necessary. Failure to protect any of these layers can result in various attacks; a lack of strong authentication of devices in the infrastructure can lead to uncontrolled and unauthorized access. Similarly, failure to protect the communication layers can enable passive (in wireless mediums) attacks as well as man-in-the-middle and active attacks.

与其他类型的LLN不同,在智能电网网络中,集中管理控制和对永久安全基础设施的访问都是可用的。因此,智能电网网络部署了安全机制,如链路层、传输层和/或应用层安全机制;虽然保护所有层是最佳实践,但可能不需要使用RPL的安全模式。未能保护这些层中的任何一层都可能导致各种攻击;对基础设施中的设备缺乏强有力的身份验证可能会导致不受控制和未经授权的访问。类似地,未能保护通信层也会导致被动(在无线媒体中)攻击以及中间人攻击和主动攻击。

As this document describes the applicability of RPL non-storing mode, the security considerations as defined in [RFC6550] also apply to this document and to AMI deployments.

由于本文档描述了RPL非存储模式的适用性,[RFC6550]中定义的安全注意事项也适用于本文档和AMI部署。

9.1. Security Considerations during Initial Deployment
9.1. 初始部署期间的安全注意事项

During the manufacturing process, the meters are loaded with the appropriate security credentials (keys and certificates). The configured security credentials during manufacturing are used by the devices to authenticate with the system and to further negotiate operational security credentials for both network and application layers.

在制造过程中,仪表加载了适当的安全凭证(密钥和证书)。设备使用制造期间配置的安全凭据与系统进行身份验证,并进一步协商网络层和应用层的操作安全凭据。

9.2. Security Considerations during Incremental Deployment
9.2. 增量部署期间的安全注意事项

If during the system operation a device fails or is known to be compromised, it is replaced with a new device. The new device does not take over the security identity of the replaced device. The security credentials associated with the failed/compromised device are removed from the security appliances.

如果在系统运行期间,设备出现故障或已知受损,则应更换新设备。新设备不会接管被替换设备的安全标识。与故障/受损设备关联的安全凭据将从安全设备中删除。

9.3. Security Considerations Based on RPL's Threat Analysis
9.3. 基于RPL威胁分析的安全考虑

[RFC7416] defines a set of security considerations for RPL security. This document defines how it leverages the device's link-layer and application-layer security mechanisms to address the threats as defined in Section 6 of [RFC7416].

[RFC7416]为RPL安全性定义了一组安全注意事项。本文档定义了如何利用设备的链路层和应用层安全机制来解决[RFC7416]第6节中定义的威胁。

Like any secure network infrastructure, an AMI deployment's ability to address node impersonation and active man-in-the-middle attacks rely on a mutual authentication and authorization process. To enable strong mutual authentication, all nodes, from smart meters to nodes in the infrastructure, must have a credential. The credential may be bootstrapped at the time the node is manufactured but must be appropriately managed and classified through the authorization process. The management and authorization process ensures that the nodes are properly authenticated and behaving or 'acting' in their assigned roles.

与任何安全的网络基础设施一样,AMI部署解决节点模拟和主动中间人攻击的能力依赖于相互身份验证和授权过程。要启用强相互身份验证,从智能仪表到基础架构中的节点,所有节点都必须具有凭据。凭证可以在节点制造时引导,但必须通过授权过程进行适当管理和分类。管理和授权过程可确保节点经过适当的身份验证,并在其分配的角色中发挥作用。

Similarly, to ensure that data has not been modified, confidentiality and integrity at the suitable layers (e.g., the link layer, the application layer, or both) should be used.

同样,为确保数据未被修改,应使用适当层(例如,链路层、应用层或两者)的机密性和完整性。

To provide the security mechanisms to address these threats, an AMI deployment MUST include the use of the security schemes as defined by IEEE 1901.2 (and IEEE 802.15.4) with IEEE 802.15.4 defining the security mechanisms to afford mutual authentication, access control (e.g., authorization), and transport confidentiality and integrity.

为了提供安全机制来应对这些威胁,AMI部署必须包括使用IEEE 1901.2(和IEEE 802.15.4)定义的安全方案,IEEE 802.15.4定义了安全机制,以提供相互认证、访问控制(例如授权)和传输机密性和完整性。

10. Privacy Considerations
10. 隐私考虑

Privacy of information flowing through smart grid networks are subject to consideration. An evolving set of recommendations and requirements are being defined by different groups and consortiums; for example, the U.S. Department of Energy issued a document [DOEVCC] defining a process and set of recommendations to address privacy issues. As this document describes the applicability of RPL, the privacy considerations as defined in [PRIVACY] and [EUPR] apply to this document and to AMI deployments.

通过智能电网网络传输的信息的隐私性需要考虑。不同的团体和财团正在确定一套不断发展的建议和要求;例如,美国能源部发布了一份文件[DOEVCC],定义了解决隐私问题的流程和一套建议。由于本文件描述了RPL的适用性,[privacy]和[EUPR]中定义的隐私注意事项适用于本文件和AMI部署。

11. References
11. 工具书类
11.1. Normative References
11.1. 规范性引用文件

[IEEE.1901.2] IEEE, "IEEE Standard for Low-Frequency (less than 500 kHz) Narrowband Power Line Communications for Smart Grid Applications", IEEE 1901.2-2013, DOI 10.1109/ieeestd.2013.6679210, December 2013, <http://ieeexplore.ieee.org/servlet/ opac?punumber=6679208>.

[IEEE.1901.2]IEEE,“智能电网应用低频(小于500 kHz)窄带电力线通信的IEEE标准”,IEEE 1901.2-2013,DOI 10.1109/ieeestd.2013.6679210,2013年12月<http://ieeexplore.ieee.org/servlet/ opac?punumber=6679208>。

[IEEE.802.15.4] IEEE, "IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)", IEEE 802.15.4-2011, DOI 10.1109/ieeestd.2011.6012487, September 2011, <http://ieeexplore.ieee.org/servlet/ opac?punumber=6012485>.

[IEEE.802.15.4]IEEE,“局域网和城域网的IEEE标准——第15.4部分:低速无线个人区域网(LR WPAN)”,IEEE 802.15.4-2011,DOI 10.1109/ieeestd.2011.6012487,2011年9月<http://ieeexplore.ieee.org/servlet/ opac?punumber=6012485>。

[IEEE.802.15.4e] IEEE, "IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer", IEEE 802.15.4e-2012, DOI 10.1109/ieeestd.2012.6185525, April 2012, <http://ieeexplore.ieee.org/servlet/ opac?punumber=6185523>.

[IEEE.802.15.4e]IEEE,“局域网和城域网的IEEE标准——第15.4部分:低速无线个人区域网(LR WPAN)修改件1:MAC子层”,IEEE 802.15.4e-2012,DOI 10.1109/ieeestd.2012.6185525,2012年4月<http://ieeexplore.ieee.org/servlet/ opac?punumber=6185523>。

[IEEE.802.15.4g] IEEE, "IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks", IEEE 802.15.4g-2012, DOI 10.1109/ieeestd.2012.6190698, April 2012, <http://ieeexplore.ieee.org/servlet/ opac?punumber=6190696>.

[IEEE.802.15.4g]IEEE,“局域网和城域网的IEEE标准——第15.4部分:低速无线个人区域网(LR WPAN)修改件3:低速无线智能计量公用设施网络的物理层(PHY)规范”,IEEE 802.15.4g-2012,DOI 10.1109/ieeestd.2012.6190698,2012年4月, <http://ieeexplore.ieee.org/servlet/ opac?punumber=6190696>。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<http://www.rfc-editor.org/info/rfc2119>.

[RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, JP., and R. Alexander, "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks", RFC 6550, DOI 10.17487/RFC6550, March 2012, <http://www.rfc-editor.org/info/rfc6550>.

[RFC6550]温特,T.,Ed.,Thubert,P.,Ed.,Brandt,A.,Hui,J.,Kelsey,R.,Levis,P.,Pister,K.,Struik,R.,Vasseur,JP.,和R.Alexander,“RPL:低功耗和有损网络的IPv6路由协议”,RFC 6550,DOI 10.17487/RFC6550,2012年3月<http://www.rfc-editor.org/info/rfc6550>.

[surveySG] Gungor, V., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., and G. Hancke, "A Survey on Smart Grid Potential Applications and Communication Requirements", IEEE Transactions on Industrial Informatics Volume 9, Issue 1, pp. 28-42, DOI 10.1109/TII.2012.2218253, February 2013.

[surveySG]Gungor,V.,Sahin,D.,Kocak,T.,Ergut,S.,Buccella,C.,Cecati,C.,和G.Hancke,“智能电网潜在应用和通信需求调查”,IEEE工业信息交易卷9,第1期,第28-42页,DOI 10.1109/TII.2012.2218253,2013年2月。

11.2. Informative references
11.2. 参考资料

[DOEVCC] "Voluntary Code of Conduct (VCC) Final Concepts and Principles", January 2015, <http://energy.gov/sites/prod/files/2015/01/f19/VCC%20Conc epts%20and%20Principles%202015_01_08%20FINAL.pdf>.

[DOEVCC]“自愿行为准则(VCC)最终概念和原则”,2015年1月<http://energy.gov/sites/prod/files/2015/01/f19/VCC%20Conc epts%20和%20原则%202015\u 01\u 08%20FINAL.pdf>。

[EUPR] "Information for investors and data controllers", June 2016, <https://ec.europa.eu/energy/node/1748>.

[EUPR]“投资者和数据控制者信息”,2016年6月<https://ec.europa.eu/energy/node/1748>.

[IEEE.802.11] IEEE, "IEEE Standard for Information technology-- Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE 802.11-2012, DOI 10.1109/ieeestd.2012.6178212, March 2012, <https://standards.ieee.org/getieee802/ download/802.11-2012.pdf>.

[IEEE.802.11]IEEE,“IEEE信息技术标准——系统局域网和城域网之间的电信和信息交换——具体要求第11部分:无线局域网介质访问控制(MAC)和物理层(PHY)规范”,IEEE 802.11-2012,DOI 10.1109/ieeestd.2012.6178212,2012年3月, <https://standards.ieee.org/getieee802/ 下载/802.11-2012.pdf>。

[PRIVACY] Thaler, D., "Privacy Considerations for IPv6 Adaptation Layer Mechanisms", Work in Progress, draft-ietf-6lo-privacy-considerations-04, October 2016.

[PRIVACY]Thaler,D.,“IPv6适配层机制的隐私注意事项”,正在进行的工作,草稿-ietf-6lo-PRIVACY-Advisions-042016年10月。

[RFC5548] Dohler, M., Ed., Watteyne, T., Ed., Winter, T., Ed., and D. Barthel, Ed., "Routing Requirements for Urban Low-Power and Lossy Networks", RFC 5548, DOI 10.17487/RFC5548, May 2009, <http://www.rfc-editor.org/info/rfc5548>.

[RFC5548]Dohler,M.,Ed.,Watteyne,T.,Ed.,Winter,T.,Ed.,和D.Barthel,Ed.,“城市低功率和有损网络的路由要求”,RFC 5548,DOI 10.17487/RFC5548,2009年5月<http://www.rfc-editor.org/info/rfc5548>.

[RFC6206] Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko, "The Trickle Algorithm", RFC 6206, DOI 10.17487/RFC6206, March 2011, <http://www.rfc-editor.org/info/rfc6206>.

[RFC6206]Levis,P.,Clausen,T.,Hui,J.,Gnawali,O.,和J.Ko,“涓流算法”,RFC 6206,DOI 10.17487/RFC6206,2011年3月<http://www.rfc-editor.org/info/rfc6206>.

[RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282, DOI 10.17487/RFC6282, September 2011, <http://www.rfc-editor.org/info/rfc6282>.

[RFC6282]Hui,J.,Ed.和P.Thubert,“基于IEEE 802.15.4的网络上IPv6数据报的压缩格式”,RFC 6282,DOI 10.17487/RFC6282,2011年9月<http://www.rfc-editor.org/info/rfc6282>.

[RFC6551] Vasseur, JP., Ed., Kim, M., Ed., Pister, K., Dejean, N., and D. Barthel, "Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks", RFC 6551, DOI 10.17487/RFC6551, March 2012, <http://www.rfc-editor.org/info/rfc6551>.

[RFC6551]Vasseur,JP.,Ed.,Kim,M.,Ed.,Pister,K.,Dejean,N.,和D.Barthel,“低功率和有损网络中用于路径计算的路由度量”,RFC 6551,DOI 10.17487/RFC6551,2012年3月<http://www.rfc-editor.org/info/rfc6551>.

[RFC6552] Thubert, P., Ed., "Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL)", RFC 6552, DOI 10.17487/RFC6552, March 2012, <http://www.rfc-editor.org/info/rfc6552>.

[RFC6552]Thubert,P.,Ed.“低功耗和有损网络路由协议(RPL)的目标函数零”,RFC 6552,DOI 10.17487/RFC6552,2012年3月<http://www.rfc-editor.org/info/rfc6552>.

[RFC6719] Gnawali, O. and P. Levis, "The Minimum Rank with Hysteresis Objective Function", RFC 6719, DOI 10.17487/RFC6719, September 2012, <http://www.rfc-editor.org/info/rfc6719>.

[RFC6719]Gnawali,O.和P.Levis,“具有滞后目标函数的最小秩”,RFC 6719,DOI 10.17487/RFC6719,2012年9月<http://www.rfc-editor.org/info/rfc6719>.

[RFC7102] Vasseur, JP., "Terms Used in Routing for Low-Power and Lossy Networks", RFC 7102, DOI 10.17487/RFC7102, January 2014, <http://www.rfc-editor.org/info/rfc7102>.

[RFC7102]Vasseur,JP.,“低功率和有损网络路由中使用的术语”,RFC 7102,DOI 10.17487/RFC7102,2014年1月<http://www.rfc-editor.org/info/rfc7102>.

[RFC7416] Tsao, T., Alexander, R., Dohler, M., Daza, V., Lozano, A., and M. Richardson, Ed., "A Security Threat Analysis for the Routing Protocol for Low-Power and Lossy Networks (RPLs)", RFC 7416, DOI 10.17487/RFC7416, January 2015, <http://www.rfc-editor.org/info/rfc7416>.

[RFC7416]Tsao,T.,Alexander,R.,Dohler,M.,Daza,V.,Lozano,A.,和M.Richardson,Ed.,“低功耗和有损网络(RPLs)路由协议的安全威胁分析”,RFC 7416,DOI 10.17487/RFC7416,2015年1月<http://www.rfc-editor.org/info/rfc7416>.

[RFC7731] Hui, J. and R. Kelsey, "Multicast Protocol for Low-Power and Lossy Networks (MPL)", RFC 7731, DOI 10.17487/RFC7731, February 2016, <http://www.rfc-editor.org/info/rfc7731>.

[RFC7731]Hui,J.和R.Kelsey,“低功耗和有损网络的多播协议(MPL)”,RFC 7731,DOI 10.17487/RFC7731,2016年2月<http://www.rfc-editor.org/info/rfc7731>.

Acknowledgements

致谢

Matthew Gillmore, Laurent Toutain, Ruben Salazar, and Kazuya Monden were contributors and noted as authors in earlier versions of this document. The authors would also like to acknowledge the review, feedback, and comments of Jari Arkko, Dominique Barthel, Cedric Chauvenet, Yuichi Igarashi, Philip Levis, Jeorjeta Jetcheva, Nicolas Dejean, and JP Vasseur.

Matthew Gillmore、Laurent Toutain、Ruben Salazar和Kazuya Monden是本文早期版本的贡献者和作者。作者还想感谢Jari Arkko、Dominique Barthel、Cedric Chauvenet、Yuichi Igarashi、Philip Levis、Jeorjeta Jetcheva、Nicolas Dejean和JP Vasseur的评论、反馈和评论。

Authors' Addresses

作者地址

Nancy Cam-Winget (editor) Cisco Systems 3550 Cisco Way San Jose, CA 95134 United States of America

南希·卡姆·维格特(编辑)美国加利福尼亚州圣何塞市思科路3550号思科系统公司95134

   Email: ncamwing@cisco.com
        
   Email: ncamwing@cisco.com
        

Jonathan Hui Nest 3400 Hillview Ave Palo Alto, CA 94304 United States of America

美国加利福尼亚州帕洛阿尔托山景大道3400号Jonathan Hui Nest 94304

   Email: jonhui@nestlabs.com
        
   Email: jonhui@nestlabs.com
        

Daniel Popa Itron, Inc 52, rue Camille Desmoulins Issy les Moulineaux 92130 France

Daniel Popa Itron有限公司,法国卡米尔-德斯穆林街52号,伊西-莱斯穆莱诺92130

   Email: daniel.popa@itron.com
        
   Email: daniel.popa@itron.com