Internet Engineering Task Force (IETF) F. Zhang Request for Comments: 7792 X. Zhang Category: Standards Track Huawei ISSN: 2070-1721 A. Farrel Old Dog Consulting O. Gonzalez de Dios Telefonica D. Ceccarelli Ericsson March 2016
Internet Engineering Task Force (IETF) F. Zhang Request for Comments: 7792 X. Zhang Category: Standards Track Huawei ISSN: 2070-1721 A. Farrel Old Dog Consulting O. Gonzalez de Dios Telefonica D. Ceccarelli Ericsson March 2016
RSVP-TE Signaling Extensions in Support of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks
支持灵活网格密集波分复用(DWDM)网络的RSVP-TE信令扩展
Abstract
摘要
This memo describes the extensions to the Resource Reservation Protocol - Traffic Engineering (RSVP-TE) signaling protocol to support Label Switched Paths (LSPs) in a GMPLS-controlled network that includes devices using the flexible optical grid.
本备忘录描述了资源预留协议-流量工程(RSVP-TE)信令协议的扩展,以支持GMPLS控制网络中的标签交换路径(LSP),该网络包括使用灵活光网格的设备。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7792.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7792.
Copyright Notice
版权公告
Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2016 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................3 2. Terminology .....................................................3 2.1. Conventions Used in This Document ..........................3 3. Requirements for Flexible-Grid Signaling ........................4 3.1. Slot Width .................................................4 3.2. Frequency Slot .............................................5 4. Protocol Extensions .............................................6 4.1. Traffic Parameters .........................................6 4.1.1. Applicability to Fixed-Grid Networks ................7 4.2. Generalized Label ..........................................7 4.3. Signaling Procedures .......................................7 5. IANA Considerations .............................................8 5.1. Class Types for RSVP Objects ...............................8 6. Manageability Considerations ....................................8 7. Security Considerations .........................................8 8. References ......................................................9 8.1. Normative References .......................................9 8.2. Informative References .....................................9 Acknowledgments ...................................................11 Contributors ......................................................11 Authors' Addresses ................................................12
1. Introduction ....................................................3 2. Terminology .....................................................3 2.1. Conventions Used in This Document ..........................3 3. Requirements for Flexible-Grid Signaling ........................4 3.1. Slot Width .................................................4 3.2. Frequency Slot .............................................5 4. Protocol Extensions .............................................6 4.1. Traffic Parameters .........................................6 4.1.1. Applicability to Fixed-Grid Networks ................7 4.2. Generalized Label ..........................................7 4.3. Signaling Procedures .......................................7 5. IANA Considerations .............................................8 5.1. Class Types for RSVP Objects ...............................8 6. Manageability Considerations ....................................8 7. Security Considerations .........................................8 8. References ......................................................9 8.1. Normative References .......................................9 8.2. Informative References .....................................9 Acknowledgments ...................................................11 Contributors ......................................................11 Authors' Addresses ................................................12
[G.694.1] defines the Dense Wavelength Division Multiplexing (DWDM) frequency grids for Wavelength Division Multiplexing (WDM) applications. A frequency grid is a reference set of frequencies used to denote allowed nominal central frequencies that may be used for defining applications that utilize WDM transmission. The channel spacing is the frequency spacing between two allowed nominal central frequencies. All of the wavelengths on a fiber use different central frequencies and occupy a designated range of frequencies.
[G.694.1]定义了波分复用(WDM)应用的密集波分复用(DWDM)频率网格。频率网格是一组参考频率,用于表示允许的标称中心频率,可用于定义利用WDM传输的应用。信道间隔是两个允许的标称中心频率之间的频率间隔。光纤上的所有波长使用不同的中心频率,并占据指定的频率范围。
Fixed-grid channel spacing is selected from 12.5 GHz, 25 GHz, 50 GHz, 100 GHz, and integer multiples of 100 GHz. Additionally, [G.694.1] defines "flexible grids", also known as "flexi-grid". The terms "frequency slot" (i.e., the frequency range allocated to a specific channel and unavailable to other channels within a flexible grid) and "slot width" (i.e., the full width of a frequency slot in a flexible grid) are introduced in [G.694.1] to define a flexible grid.
固定栅极信道间隔从12.5 GHz、25 GHz、50 GHz、100 GHz和100 GHz的整数倍中选择。此外,[G.694.1]定义了“柔性网格”,也称为“柔性网格”。[G.694.1]中引入了术语“频率槽”(即,分配给特定信道的频率范围,在灵活网格内其他信道不可用)和“槽宽”(即,灵活网格中频率槽的全宽),以定义灵活网格。
[RFC7698] defines a framework and the associated control-plane requirements for the GMPLS-based [RFC3945] control of flexi-grid DWDM networks.
[RFC7698]定义了基于GMPLS的[RFC3945]flexi grid DWDM网络控制的框架和相关控制平面要求。
[RFC6163] provides a framework for GMPLS and Path Computation Element (PCE) control of Wavelength Switched Optical Networks (WSONs), and [RFC7689] describes the requirements and protocol extensions for signaling to set up Label Switched Paths (LSPs) in WSONs.
[RFC6163]提供了波长交换光网络(WSON)的GMPLS和路径计算元件(PCE)控制框架,[RFC7689]描述了在WSON中设置标签交换路径(LSP)的信令要求和协议扩展。
This document describes the additional requirements and protocol extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) [RFC3473] to set up LSPs in networks that support the flexi-grid.
本文件描述了资源预留协议-流量工程(RSVP-TE)[RFC3473]的附加要求和协议扩展,以在支持flexi网格的网络中设置LSP。
For terminology related to flexi-grid, please refer to [RFC7698] and [G.694.1].
有关flexi网格的术语,请参考[RFC7698]和[G.694.1]。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。
The architecture for establishing LSPs in a flexi-grid network is described in [RFC7698].
[RFC7698]中描述了在flexi网格网络中建立LSP的体系结构。
An optical-spectrum LSP occupies a specific frequency slot, i.e., a range of frequencies. The process of computing a route and the allocation of a frequency slot is referred to as "Routing and Spectrum Assignment" (RSA). [RFC7698] describes three architectural approaches to RSA: combined RSA, separated RSA, and distributed SA. The first two approaches are referred to as "centralized SA", because routing (i.e., path determination) and spectrum assignment (i.e., selection of frequency slots) are both performed by a centralized entity prior to the signaling procedure.
光谱LSP占据特定的频率槽,即频率范围。计算路由和分配频率时隙的过程称为“路由和频谱分配”(RSA)。[RFC7698]介绍了RSA的三种体系结构方法:组合RSA、分离RSA和分布式SA。前两种方法被称为“集中式SA”,因为路由(即,路径确定)和频谱分配(即,频率时隙的选择)都是在信令过程之前由集中式实体执行的。
In the case of centralized SA, the assigned frequency slot is specified in the RSVP-TE Path message during LSP setup. In the case of distributed SA, the slot width of the flexi-grid LSP is specified in the Path message, allowing the network elements to select the frequency slot to be used when they process the RSVP-TE messages.
在集中式SA的情况下,在LSP设置期间,在RSVP-TE Path消息中指定指定的频率槽。在分布式SA的情况下,灵活网格LSP的时隙宽度在路径消息中指定,允许网元在处理RSVP-TE消息时选择要使用的频率时隙。
If the capability to switch or convert the whole optical spectrum allocated to an optical-spectrum LSP is not available at some nodes along the path of the LSP, the LSP is subject to the Optical "spectrum continuity constraint" as described in [RFC7698].
如果在沿着LSP路径的一些节点上无法切换或转换分配给光谱LSP的整个光谱的能力,则LSP受到[RFC7698]中所述的光学“光谱连续性约束”。
The remainder of this section states the additional requirements for signaling in a flexi-grid network.
本节剩余部分说明了灵活电网中信号的附加要求。
The slot width is an end-to-end parameter representing how much frequency resource is requested for a flexi-grid LSP. It is the equivalent of optical bandwidth, although the amount of bandwidth associated with a slot width will depend on the signal encoding.
时隙宽度是一个端到端参数,表示flexi grid LSP需要多少频率资源。它相当于光带宽,尽管与时隙宽度相关的带宽量将取决于信号编码。
Different LSPs may request different amounts of frequency resource in flexible-grid networks, so the slot width MUST be carried in the signaling message during LSP establishment. This enables the nodes along the LSP to know how much frequency resource has been requested (in a Path message) and how much has been allocated (by a Resv message) for the LSP.
在灵活的网格网络中,不同的LSP可能会请求不同数量的频率资源,因此在LSP建立期间,必须在信令消息中携带时隙宽度。这使得LSP沿线的节点能够知道有多少频率资源被请求(在路径消息中)以及有多少被分配(通过Resv消息)给LSP。
The frequency slot information identifies which part of the frequency spectrum is allocated on each link for an LSP in a flexi-grid network.
频率时隙信息识别在flexi网格网络中为LSP在每个链路上分配频谱的哪一部分。
This information MUST be present in a Resv message to indicate, hop by hop, the central frequency of the allocated resource. In combination with the slot width indicated in a Resv message (see Section 3.1), the central frequency carried in a Resv message identifies the resources reserved for the LSP (known as the frequency slot).
此信息必须出现在Resv消息中,以逐跳指示分配资源的中心频率。结合Resv消息中指示的时隙宽度(参见第3.1节),Resv消息中携带的中心频率标识为LSP保留的资源(称为频率时隙)。
The frequency slot can be represented by two parameters, as follows:
频率槽可由两个参数表示,如下所示:
Frequency slot = [(central frequency) - (slot width)/2] ~ [(central frequency) + (slot width)/2]
Frequency slot = [(central frequency) - (slot width)/2] ~ [(central frequency) + (slot width)/2]
As is common with other resource identifiers (i.e., labels) in GMPLS signaling, it must be possible for the head-end node, when sending a Path message, to suggest or require the central frequency to be used for the LSP. Furthermore, for bidirectional LSPs, the Path message MUST be able to specify the central frequency to be used for reverse-direction traffic.
与GMPLS信令中的其他资源标识符(即标签)一样,当发送路径消息时,头端节点必须能够建议或要求LSP使用中心频率。此外,对于双向LSP,路径消息必须能够指定用于反向业务的中心频率。
As described in [G.694.1], the allowed frequency slots for the flexible DWDM grid have a nominal central frequency (in THz), defined by:
如[G.694.1]所述,柔性DWDM网格的允许频率槽具有标称中心频率(以太赫兹为单位),定义如下:
193.1 + n * 0.00625
193.1+n*0.00625
where n is zero or a positive or negative integer.
其中n为零或正整数或负整数。
The slot width (in GHz) is defined as:
槽宽(单位为GHz)定义为:
12.5 * m
12.5 *m
where m is a positive integer.
其中m是正整数。
It is possible that an implementation supports only a subset of the possible slot widths and central frequencies. For example, an implementation can be built that is
一种实现可能仅支持可能的时隙宽度和中心频率的子集。例如,可以构建一个实现
1. limited to have a nominal central frequency granularity of 12.5 GHz, by only allowing values of n that are even, and
1. 通过仅允许n值为偶数,将标称中心频率粒度限制为12.5 GHz,并且
2. further limited to only support slot widths of 25 GHz, by only allowing values of m that are even.
2. 通过仅允许m值为偶数,进一步限制为仅支持25GHz的槽宽。
Further details can be found in [RFC7698].
有关更多详细信息,请参见[RFC7698]。
This section defines the extensions to RSVP-TE signaling for GMPLS [RFC3473] to support flexible-grid networks.
本节定义了GMPLS[RFC3473]的RSVP-TE信令扩展,以支持灵活的电网网络。
In RSVP-TE, the SENDER_TSPEC object in the Path message indicates the requested resource reservation. The FLOWSPEC object in the Resv message indicates the actual resource reservation. As described in Section 3.1, the slot width represents how much frequency resource is requested for a flexi-grid LSP. That is, it describes the end-to-end traffic profile of the LSP. Therefore, the traffic parameters for a flexi-grid LSP encode the slot width.
在RSVP-TE中,Path消息中的SENDER_TSPEC对象表示请求的资源保留。Resv消息中的FLOWSPEC对象表示实际的资源保留。如第3.1节所述,时隙宽度表示灵活网格LSP需要多少频率资源。也就是说,它描述了LSP的端到端流量配置文件。因此,flexi grid LSP的流量参数对时隙宽度进行编码。
This document defines new Class Types (C-Types) for the SENDER_TSPEC and FLOWSPEC objects to carry Spectrum-Switched Optical Network (SSON) traffic parameters:
本文档为发送方_TSPEC和FLOWSPEC对象定义了新的类别类型(C类型),以承载频谱交换光网络(SSON)流量参数:
SSON SENDER_TSPEC: Class = 12, C-Type = 8.
SSON发送器规格:类别=12,C型=8。
SSON FLOWSPEC: Class = 9, C-Type = 8.
SSON FLOWSPEC:Class=9,C型=8。
The SSON traffic parameters carried in both objects MUST have the format shown in Figure 1.
两个对象中携带的SSON流量参数必须具有图1所示的格式。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | m | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | m | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: The SSON Traffic Parameters
图1:SSON流量参数
m (16 bits): a positive integer; the slot width is specified by m * 12.5 GHz.
m(16位):正整数;槽宽由m*12.5 GHz指定。
The Reserved bits MUST be set to zero and ignored upon receipt.
保留位必须设置为零,并在收到时忽略。
Note that the slot width (i.e., traffic parameters) of a fixed grid defined in [G.694.1] can also be specified by using the SSON traffic parameters. The fixed-grid channel spacings (12.5 GHz, 25 GHz, 50 GHz, 100 GHz, and integer multiples of 100 GHz) are also the multiples of 12.5 GHz, so the m parameter can be used to represent these slot widths.
请注意,[G.694.1]中定义的固定网格的插槽宽度(即流量参数)也可以通过使用SSON流量参数来指定。固定栅极信道间隔(12.5 GHz、25 GHz、50 GHz、100 GHz和100 GHz的整数倍)也是12.5 GHz的倍数,因此m参数可用于表示这些时隙宽度。
Therefore, it is possible to consider using the new traffic parameter object types in common signaling messages for flexi-grid and legacy DWDM networks.
因此,有可能考虑在FLUE网格和传统DWDM网络中的公共信令消息中使用新的业务参数对象类型。
In the case of a flexible-grid network, the labels that have been requested or allocated as signaled in the RSVP-TE objects are encoded as described in [RFC7699]. This new label encoding can appear in any RSVP-TE object or sub-object that can carry a label.
在灵活网格网络的情况下,按照[RFC7699]中的说明对RSVP-TE对象中发出的信号请求或分配的标签进行编码。这种新的标签编码可以出现在任何可以携带标签的RSVP-TE对象或子对象中。
As noted in Section 4.2 of [RFC7699], the m parameter forms part of the label as well as part of the traffic parameters.
如[RFC7699]第4.2节所述,m参数构成标签的一部分以及流量参数的一部分。
As described in Section 4.3 of [RFC7699], a "compound label", constructed from a concatenation of the flexi-grid labels, is used when signaling an LSP that uses multiple flexi-grid slots.
如[RFC7699]第4.3节所述,当向使用多个flexi网格插槽的LSP发送信号时,使用由flexi网格标签串联而成的“复合标签”。
There are no differences between the signaling procedures described for LSP control in [RFC7698] and those required for use in a fixed-grid network [RFC7689]. Obviously, the TSpec, FlowSpec, and label formats described in Sections 4.1 and 4.2 are used. The signaling procedures for distributed SA and centralized SA can be applied.
[RFC7698]中描述的LSP控制信令程序与固定网格网络[RFC7689]中使用的信令程序没有区别。显然,使用了第4.1节和第4.2节中描述的TSpec、FlowSpec和标签格式。可以应用分布式SA和集中式SA的信令过程。
This document introduces two new Class Types for existing RSVP objects. IANA has made the following allocations from the "Resource Reservation Protocol (RSVP) Parameters" registry using the "Class Names, Class Numbers, and Class Types" sub-registry.
本文档为现有RSVP对象介绍了两种新的类类型。IANA使用“类名、类号和类类型”子注册表从“资源保留协议(RSVP)参数”注册表中进行了以下分配。
Class Number Class Name Reference ------------ ----------------------- --------- 9 FLOWSPEC [RFC2205]
Class Number Class Name Reference ------------ ----------------------- --------- 9 FLOWSPEC [RFC2205]
Class Type (C-Type):
类别类型(C类):
(8) SSON FLOWSPEC RFC 7792
(8) SSON FLOWSPEC RFC 7792
Class Number Class Name Reference ------------ ----------------------- --------- 12 SENDER_TSPEC [RFC2205]
Class Number Class Name Reference ------------ ----------------------- --------- 12 SENDER_TSPEC [RFC2205]
Class Type (C-Type):
类别类型(C类):
(8) SSON SENDER_TSPEC RFC 7792
(8) SSON发送者_TSPEC RFC 7792
This document makes minor modifications to GMPLS signaling but does not change the manageability considerations for such networks. Clearly, protocol analysis tools and other diagnostic aids (including logging systems and MIB modules) will need to be enhanced to support the new traffic parameters and label formats.
本文件对GMPLS信令进行了微小修改,但并未改变此类网络的可管理性考虑。显然,协议分析工具和其他诊断工具(包括日志记录系统和MIB模块)需要增强,以支持新的流量参数和标签格式。
This document introduces no new security considerations to [RFC3473].
本文档未向[RFC3473]引入新的安全注意事项。
See also [RFC5920] for a discussion of security considerations for GMPLS signaling.
有关GMPLS信令的安全注意事项的讨论,请参见[RFC5920]。
[G.694.1] International Telecommunication Union, "Spectral grids for WDM applications: DWDM frequency grid", ITU-T Recommendation G.694.1, February 2012, <https://www.itu.int/rec/T-REC-G.694.1/en>.
[G.694.1]国际电信联盟,“WDM应用的频谱网格:DWDM频率网格”,ITU-T建议G.694.1,2012年2月<https://www.itu.int/rec/T-REC-G.694.1/en>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<http://www.rfc-editor.org/info/rfc2119>.
[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, DOI 10.17487/RFC3473, January 2003, <http://www.rfc-editor.org/info/rfc3473>.
[RFC3473]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,DOI 10.17487/RFC3473,2003年1月<http://www.rfc-editor.org/info/rfc3473>.
[RFC7699] Farrel, A., King, D., Li, Y., and F. Zhang, "Generalized Labels for the Flexi-Grid in Lambda Switch Capable (LSC) Label Switching Routers", RFC 7699, DOI 10.17487/RFC7699, November 2015, <http://www.rfc-editor.org/info/rfc7699>.
[RFC7699]Farrel,A.,King,D.,Li,Y.,和F.Zhang,“Lambda交换机功能(LSC)标签交换路由器中Flexi网格的通用标签”,RFC 7699,DOI 10.17487/RFC7699,2015年11月<http://www.rfc-editor.org/info/rfc7699>.
[RFC2205] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, DOI 10.17487/RFC2205, September 1997, <http://www.rfc-editor.org/info/rfc2205>.
[RFC2205]Braden,R.,Ed.,Zhang,L.,Berson,S.,Herzog,S.,和S.Jamin,“资源保留协议(RSVP)——版本1功能规范”,RFC 2205,DOI 10.17487/RFC2205,1997年9月<http://www.rfc-editor.org/info/rfc2205>.
[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, DOI 10.17487/RFC3945, October 2004, <http://www.rfc-editor.org/info/rfc3945>.
[RFC3945]Mannie,E.,Ed.“通用多协议标签交换(GMPLS)体系结构”,RFC 3945,DOI 10.17487/RFC3945,2004年10月<http://www.rfc-editor.org/info/rfc3945>.
[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010, <http://www.rfc-editor.org/info/rfc5920>.
[RFC5920]方,L.,编辑,“MPLS和GMPLS网络的安全框架”,RFC 5920,DOI 10.17487/RFC5920,2010年7月<http://www.rfc-editor.org/info/rfc5920>.
[RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku, "Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)", RFC 6163, DOI 10.17487/RFC6163, April 2011, <http://www.rfc-editor.org/info/rfc6163>.
[RFC6163]Lee,Y.,Ed.,Bernstein,G.,Ed.,和W.Imajuku,“波长交换光网络(WSON)的GMPLS和路径计算元件(PCE)控制框架”,RFC 6163,DOI 10.17487/RFC6163,2011年4月<http://www.rfc-editor.org/info/rfc6163>.
[RFC7689] Bernstein, G., Ed., Xu, S., Lee, Y., Ed., Martinelli, G., and H. Harai, "Signaling Extensions for Wavelength Switched Optical Networks", RFC 7689, DOI 10.17487/RFC7689, November 2015, <http://www.rfc-editor.org/info/rfc7689>.
[RFC7689]Bernstein,G.,Ed.,Xu,S.,Lee,Y.,Ed.,Martinelli,G.,和H.Harai,“波长交换光网络的信令扩展”,RFC 7689,DOI 10.17487/RFC7689,2015年11月<http://www.rfc-editor.org/info/rfc7689>.
[RFC7698] Gonzalez de Dios, O., Ed., Casellas, R., Ed., Zhang, F., Fu, X., Ceccarelli, D., and I. Hussain, "Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks", RFC 7698, DOI 10.17487/RFC7698, November 2015, <http://www.rfc-editor.org/info/rfc7698>.
[RFC7698]Gonzalez de Dios,O.,Ed.,Casellas,R.,Ed.,Zhang,F.,Fu,X.,Ceccarelli,D.,和I.Hussain,“基于GMPLS的灵活网格密集波分复用(DWDM)网络控制框架和要求”,RFC 7698,DOI 10.17487/RFC7698,2015年11月<http://www.rfc-editor.org/info/rfc7698>.
Acknowledgments
致谢
This work was supported in part by the FP-7 IDEALIST project under grant agreement number 317999.
这项工作部分得到了FP-7理想主义项目的支持,该项目的赠款协议编号为317999。
Contributors
贡献者
Ramon Casellas CTTC Av. Carl Friedrich Gauss n7 Castelldefels, Barcelona 08860 Spain
拉蒙·卡塞拉斯CTTC Av。Carl Friedrich Gauss n7 Castelldefels,巴塞罗那08860西班牙
Email: ramon.casellas@cttc.es
Email: ramon.casellas@cttc.es
Felipe Jimenez Arribas Telefonica Investigacion y Desarrollo Emilio Vargas 6 Madrid 28045 Spain
菲利佩·希门尼斯·阿里巴斯西班牙马德里28045
Email: felipej@tid.es
Email: felipej@tid.es
Yi Lin Huawei Technologies Co., Ltd. F3-5-B R&D Center, Huawei Base Bantian, Longgang District Shenzhen 518129 China
宜林华为技术有限公司中国深圳市龙岗区华为基地坂田F3-5-B研发中心邮编:518129
Phone: +86 755-28972914 Email: yi.lin@huawei.com
Phone: +86 755-28972914 Email: yi.lin@huawei.com
Qilei Wang ZTE
王启雷中兴通讯
Email: wang.qilei@zte.com.cn
Email: wang.qilei@zte.com.cn
Haomian Zheng Huawei Technologies
华为技术有限公司
Email: zhenghaomian@huawei.com
Email: zhenghaomian@huawei.com
Authors' Addresses
作者地址
Fatai Zhang Huawei Technologies
华为技术有限公司
Email: zhangfatai@huawei.com
Email: zhangfatai@huawei.com
Xian Zhang Huawei Technologies
张贤华为技术有限公司
Email: zhang.xian@huawei.com
Email: zhang.xian@huawei.com
Adrian Farrel Old Dog Consulting
阿德里安·法雷尔老狗咨询公司
Email: adrian@olddog.co.uk
Email: adrian@olddog.co.uk
Oscar Gonzalez de Dios Telefonica Investigacion y Desarrollo Ronda de la Comunicacion S/N Madrid 28050 Spain
奥斯卡·冈萨雷斯(Oscar Gonzalez de Dios Telefonica Investigacion y Desarrollo Ronda de la Comunicion S/N)西班牙马德里28050
Phone: +34 913129647 Email: oscar.gonzalezdedios@telefonica.com
Phone: +34 913129647 Email: oscar.gonzalezdedios@telefonica.com
Daniele Ceccarelli Ericsson Via A. Negrone 1/A Genova - Sestri Ponente Italy
Daniele Ceccarelli Ericsson通过A.Negrone 1/A Genova-意大利塞斯特里·波南特
Email: daniele.ceccarelli@ericsson.com
Email: daniele.ceccarelli@ericsson.com