Internet Engineering Task Force (IETF) R. Papneja Request for Comments: 7747 Huawei Technologies Category: Informational B. Parise ISSN: 2070-1721 Skyport Systems S. Hares Huawei Technologies D. Lee IXIA I. Varlashkin Google April 2016
Internet Engineering Task Force (IETF) R. Papneja Request for Comments: 7747 Huawei Technologies Category: Informational B. Parise ISSN: 2070-1721 Skyport Systems S. Hares Huawei Technologies D. Lee IXIA I. Varlashkin Google April 2016
Basic BGP Convergence Benchmarking Methodology for Data-Plane Convergence
数据平面收敛的基本BGP收敛基准测试方法
Abstract
摘要
BGP is widely deployed and used by several service providers as the default inter-AS (Autonomous System) routing protocol. It is of utmost importance to ensure that when a BGP peer or a downstream link of a BGP peer fails, the alternate paths are rapidly used and routes via these alternate paths are installed. This document provides the basic BGP benchmarking methodology using existing BGP convergence terminology as defined in RFC 4098.
BGP作为默认的as(自治系统)间路由协议被许多服务提供商广泛部署和使用。最重要的是确保当BGP对等方或BGP对等方的下游链路发生故障时,快速使用备用路径并安装通过这些备用路径的路由。本文档使用RFC 4098中定义的现有BGP融合术语提供基本BGP基准测试方法。
Status of This Memo
关于下段备忘
This document is not an Internet Standards Track specification; it is published for informational purposes.
本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7747.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7747.
Copyright Notice
版权公告
Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2016 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.
本文件可能包含2008年11月10日之前发布或公开的IETF文件或IETF贡献中的材料。控制某些材料版权的人员可能未授予IETF信托允许在IETF标准流程之外修改此类材料的权利。在未从控制此类材料版权的人员处获得充分许可的情况下,不得在IETF标准流程之外修改本文件,也不得在IETF标准流程之外创建其衍生作品,除了将其格式化以RFC形式发布或将其翻译成英语以外的其他语言。
Table of Contents
目录
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Benchmarking Definitions . . . . . . . . . . . . . . . . 4 1.2. Purpose of BGP FIB (Data-Plane) Convergence . . . . . . . 4 1.3. Control-Plane Convergence . . . . . . . . . . . . . . . . 5 1.4. Benchmarking Testing . . . . . . . . . . . . . . . . . . 5 2. Existing Definitions and Requirements . . . . . . . . . . . . 5 3. Test Topologies . . . . . . . . . . . . . . . . . . . . . . . 6 3.1. General Reference Topologies . . . . . . . . . . . . . . 7 4. Test Considerations . . . . . . . . . . . . . . . . . . . . . 8 4.1. Number of Peers . . . . . . . . . . . . . . . . . . . . . 9 4.2. Number of Routes per Peer . . . . . . . . . . . . . . . . 9 4.3. Policy Processing/Reconfiguration . . . . . . . . . . . . 9 4.4. Configured Parameters (Timers, etc.) . . . . . . . . . . 9 4.5. Interface Types . . . . . . . . . . . . . . . . . . . . . 11 4.6. Measurement Accuracy . . . . . . . . . . . . . . . . . . 11 4.7. Measurement Statistics . . . . . . . . . . . . . . . . . 11 4.8. Authentication . . . . . . . . . . . . . . . . . . . . . 11 4.9. Convergence Events . . . . . . . . . . . . . . . . . . . 12 4.10. High Availability . . . . . . . . . . . . . . . . . . . . 12 5. Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.1. Basic Convergence Tests . . . . . . . . . . . . . . . . . 13 5.1.1. RIB-IN Convergence . . . . . . . . . . . . . . . . . 13 5.1.2. RIB-OUT Convergence . . . . . . . . . . . . . . . . . 15 5.1.3. eBGP Convergence . . . . . . . . . . . . . . . . . . 16 5.1.4. iBGP Convergence . . . . . . . . . . . . . . . . . . 16 5.1.5. eBGP Multihop Convergence . . . . . . . . . . . . . . 17 5.2. BGP Failure/Convergence Events . . . . . . . . . . . . . 18 5.2.1. Physical Link Failure on DUT End . . . . . . . . . . 18 5.2.2. Physical Link Failure on Remote/Emulator End . . . . 19 5.2.3. ECMP Link Failure on DUT End . . . . . . . . . . . . 20 5.3. BGP Adjacency Failure (Non-Physical Link Failure) on Emulator . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4. BGP Hard Reset Test Cases . . . . . . . . . . . . . . . . 21 5.4.1. BGP Non-Recovering Hard Reset Event on DUT . . . . . 21 5.5. BGP Soft Reset . . . . . . . . . . . . . . . . . . . . . 22 5.6. BGP Route Withdrawal Convergence Time . . . . . . . . . . 24 5.7. BGP Path Attribute Change Convergence Time . . . . . . . 26 5.8. BGP Graceful Restart Convergence Time . . . . . . . . . . 27 6. Reporting Format . . . . . . . . . . . . . . . . . . . . . . 29 7. Security Considerations . . . . . . . . . . . . . . . . . . . 32 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.1. Normative References . . . . . . . . . . . . . . . . . . 32 8.2. Informative References . . . . . . . . . . . . . . . . . 33 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 34 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 35
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Benchmarking Definitions . . . . . . . . . . . . . . . . 4 1.2. Purpose of BGP FIB (Data-Plane) Convergence . . . . . . . 4 1.3. Control-Plane Convergence . . . . . . . . . . . . . . . . 5 1.4. Benchmarking Testing . . . . . . . . . . . . . . . . . . 5 2. Existing Definitions and Requirements . . . . . . . . . . . . 5 3. Test Topologies . . . . . . . . . . . . . . . . . . . . . . . 6 3.1. General Reference Topologies . . . . . . . . . . . . . . 7 4. Test Considerations . . . . . . . . . . . . . . . . . . . . . 8 4.1. Number of Peers . . . . . . . . . . . . . . . . . . . . . 9 4.2. Number of Routes per Peer . . . . . . . . . . . . . . . . 9 4.3. Policy Processing/Reconfiguration . . . . . . . . . . . . 9 4.4. Configured Parameters (Timers, etc.) . . . . . . . . . . 9 4.5. Interface Types . . . . . . . . . . . . . . . . . . . . . 11 4.6. Measurement Accuracy . . . . . . . . . . . . . . . . . . 11 4.7. Measurement Statistics . . . . . . . . . . . . . . . . . 11 4.8. Authentication . . . . . . . . . . . . . . . . . . . . . 11 4.9. Convergence Events . . . . . . . . . . . . . . . . . . . 12 4.10. High Availability . . . . . . . . . . . . . . . . . . . . 12 5. Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.1. Basic Convergence Tests . . . . . . . . . . . . . . . . . 13 5.1.1. RIB-IN Convergence . . . . . . . . . . . . . . . . . 13 5.1.2. RIB-OUT Convergence . . . . . . . . . . . . . . . . . 15 5.1.3. eBGP Convergence . . . . . . . . . . . . . . . . . . 16 5.1.4. iBGP Convergence . . . . . . . . . . . . . . . . . . 16 5.1.5. eBGP Multihop Convergence . . . . . . . . . . . . . . 17 5.2. BGP Failure/Convergence Events . . . . . . . . . . . . . 18 5.2.1. Physical Link Failure on DUT End . . . . . . . . . . 18 5.2.2. Physical Link Failure on Remote/Emulator End . . . . 19 5.2.3. ECMP Link Failure on DUT End . . . . . . . . . . . . 20 5.3. BGP Adjacency Failure (Non-Physical Link Failure) on Emulator . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4. BGP Hard Reset Test Cases . . . . . . . . . . . . . . . . 21 5.4.1. BGP Non-Recovering Hard Reset Event on DUT . . . . . 21 5.5. BGP Soft Reset . . . . . . . . . . . . . . . . . . . . . 22 5.6. BGP Route Withdrawal Convergence Time . . . . . . . . . . 24 5.7. BGP Path Attribute Change Convergence Time . . . . . . . 26 5.8. BGP Graceful Restart Convergence Time . . . . . . . . . . 27 6. Reporting Format . . . . . . . . . . . . . . . . . . . . . . 29 7. Security Considerations . . . . . . . . . . . . . . . . . . . 32 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.1. Normative References . . . . . . . . . . . . . . . . . . 32 8.2. Informative References . . . . . . . . . . . . . . . . . 33 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 34 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 35
This document defines the methodology for benchmarking data-plane Forwarding Information Base (FIB) convergence performance of BGP in routers and switches using topologies of three or four nodes. The methodology proposed in this document applies to both IPv4 and IPv6, and if a particular test is unique to one version, it is marked accordingly. For IPv6 benchmarking, the Device Under Test (DUT) will require the support of Multiprotocol BGP (MP-BGP) [RFC4760] [RFC2545]. Similarly, both Internal BGP (iBGP) and External BGP (eBGP) are covered in the tests as applicable.
本文档定义了使用三个或四个节点的拓扑对路由器和交换机中BGP的数据平面转发信息库(FIB)收敛性能进行基准测试的方法。本文档中提出的方法适用于IPv4和IPv6,如果某个特定测试对于某个版本是唯一的,则会相应地进行标记。对于IPv6基准测试,被测设备(DUT)将需要多协议BGP(MP-BGP)[RFC4760][RFC2545]的支持。同样,内部BGP(iBGP)和外部BGP(eBGP)在适用的情况下也包含在测试中。
The scope of this document is to provide methodology for BGP FIB convergence measurements with BGP functionality limited to IPv4 and IPv6 as defined in [RFC4271] and MP-BGP [RFC4760] [RFC2545]. Other BGP extensions to support Layer 2 and Layer 3 Virtual Private Networks (VPNs) are outside the scope of this document. Interaction with IGPs (IGP interworking) is outside the scope of this document.
本文档的范围是提供BGP FIB融合测量方法,BGP功能仅限于[RFC4271]和MP-BGP[RFC4760][RFC2545]中定义的IPv4和IPv6。支持第2层和第3层虚拟专用网络(VPN)的其他BGP扩展不在本文档范围内。与IGP的交互(IGP互通)不在本文件范围内。
The terminology used in this document is defined in [RFC4098]. One additional term is defined in this document as follows.
本文件中使用的术语定义见[RFC4098]。本文件中定义了一个附加术语,如下所示。
FIB (data-plane) convergence is defined as the completion of all FIB changes so that all forwarded traffic then takes the newly proposed route. RFC 4098 defines the terms 'BGP device', 'FIB', and 'forwarded traffic'. Data-plane convergence is different than control-plane convergence within a node.
FIB(数据平面)收敛被定义为所有FIB变化的完成,以便所有转发的流量采用新提出的路由。RFC 4098定义了术语“BGP设备”、“FIB”和“转发流量”。数据平面收敛不同于节点内的控制平面收敛。
This document defines methodology to test
本文件定义了测试方法
o data-plane convergence on a single BGP device that supports the BGP functionality with a scope as outlined above; and
o 单个BGP设备上的数据平面聚合,该设备支持具有上述范围的BGP功能;和
o using test topology of three or four nodes that are sufficient to recreate the convergence events used in the various tests of this document.
o 使用三个或四个节点的测试拓扑,这些节点足以重新创建本文档各种测试中使用的聚合事件。
In the current Internet architecture, the inter-AS transit is primarily available through BGP. To maintain reliable connectivity within intra-domains or across inter-domains, fast recovery from failures remains most critical. To ensure minimal traffic losses, many service providers are requiring BGP implementations to converge the entire Internet routing table within sub-seconds at FIB level.
在当前的互联网架构中,AS间传输主要通过BGP提供。为了保持域内或跨域的可靠连接,故障的快速恢复仍然是最关键的。为了确保最小的流量损失,许多服务提供商要求BGP实现在FIB级别的亚秒内聚合整个Internet路由表。
Furthermore, to compare these numbers amongst various devices, service providers are also looking at ways to standardize the convergence measurement methods. This document offers test methods for simple topologies. These simple tests will provide a quick high-level check of BGP data-plane convergence across multiple implementations from different vendors.
此外,为了在各种设备之间比较这些数字,服务提供商也在寻找标准化融合测量方法的方法。本文件提供了简单拓扑的测试方法。这些简单的测试将在不同供应商的多个实现中提供BGP数据平面收敛的快速高级检查。
The convergence of BGP occurs at two levels: Routing Information Base (RIB) and FIB convergence. RFC 4098 defines terms for BGP control-plane convergence. Methodologies that test control-plane convergence are out of scope for this document.
BGP的收敛发生在两个层面:路由信息库(RIB)和FIB收敛。RFC4098定义了BGP控制平面收敛的术语。测试控制平面收敛性的方法不在本文档的范围内。
In order to ensure that the results obtained in tests are repeatable, careful setup of initial conditions and exact steps are required.
为了确保试验结果的可重复性,需要仔细设置初始条件和精确步骤。
This document proposes these initial conditions, test steps, and result checking. To ensure uniformity of the results, all optional parameters SHOULD be disabled and all settings SHOULD be changed to default; these may include BGP timers as well.
本文件提出了这些初始条件、测试步骤和结果检查。为确保结果的一致性,应禁用所有可选参数,并将所有设置更改为默认值;这些可能还包括BGP定时器。
"Benchmarking Terminology for Network Interconnect Devices" [RFC1242] and "Benchmarking Terminology for LAN Switching Devices" [RFC2285] SHOULD be reviewed in conjunction with this document. WLAN-specific terms and definitions are also provided in Clauses 3 and 4 of the IEEE 802.11 standard [IEEE.802.11]. Commonly used terms may also be found in RFC 1983 [RFC1983].
“网络互连设备的基准术语”[RFC1242]和“局域网交换设备的基准术语”[RFC2285]应结合本文件进行审查。IEEE 802.11标准[IEEE.802.11]第3条和第4条也提供了WLAN专用术语和定义。常用术语也可在RFC 1983[RFC1983]中找到。
For the sake of clarity and continuity, this document adopts the general template for benchmarking terminology set out in Section 2 of [RFC1242]. Definitions are organized in alphabetical order and grouped into sections for ease of reference. The following terms are assumed to be taken as defined in RFC 1242 [RFC1242]: Throughput, Latency, Constant Load, Frame Loss Rate, and Overhead Behavior. In addition, the following terms are taken as defined in [RFC2285]: Forwarding Rates, Maximum Forwarding Rate, Loads, Device Under Test (DUT), and System Under Test (SUT).
为了清晰和连续性,本文件采用[RFC1242]第2节中规定的基准术语通用模板。定义按字母顺序组织,并分为多个部分,以便于参考。假设以下术语如RFC 1242[RFC1242]中所定义:吞吐量、延迟、恒定负载、帧丢失率和开销行为。此外,以下术语如[RFC2285]中所定义:转发速率、最大转发速率、负载、被测设备(DUT)和被测系统(SUT)。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。
This section describes the test setups for use in BGP benchmarking tests measuring convergence of the FIB (data-plane) after BGP updates have been received.
本节描述了BGP基准测试中使用的测试设置,这些测试在收到BGP更新后测量FIB(数据平面)的收敛性。
These test setups have three or four nodes with the following configuration:
这些测试设置有三个或四个节点,配置如下:
1. Basic test setup
1. 基本测试设置
2. Three-node setup for iBGP or eBGP convergence
2. iBGP或eBGP聚合的三节点设置
3. Setup for eBGP multihop test Scenario
3. eBGP多跳测试场景的设置
4. Four-node setup for iBGP or eBGP convergence
4. iBGP或eBGP聚合的四节点设置
Individual tests refer to these topologies.
单独测试指的是这些拓扑。
Figures 1 through 4 use the following conventions:
图1至图4使用以下约定:
o AS-X: Autonomous System X
o AS-X:自治系统X
o Loopback Int: Loopback interface on a BGP-enabled device
o Loopback Int:启用BGP的设备上的环回接口
o HLP, HLP1, HLP2: Helper routers running the same version of BGP as the DUT
o HLP、HLP1、HLP2:与DUT运行相同版本BGP的辅助路由器
o All devices MUST be synchronized using NTP or some other clock synchronization mechanism
o 所有设备必须使用NTP或其他时钟同步机制进行同步
Emulator acts as one or more BGP peers for different test cases.
Emulator充当不同测试用例的一个或多个BGP对等点。
+----------+ +------------+ | | Traffic Interfaces | | | |-----------------------1---- | tx | | |-----------------------2---- | tr1 | | |-----------------------3-----| tr2 | | DUT | | Emulator | | | Routing Interfaces | | | Dp1 |--------------------------- |Emp1 | | | BGP Peering | | | Dp2 |---------------------------- |Emp2 | | | BGP Peering | | +----------+ +------------+
+----------+ +------------+ | | Traffic Interfaces | | | |-----------------------1---- | tx | | |-----------------------2---- | tr1 | | |-----------------------3-----| tr2 | | DUT | | Emulator | | | Routing Interfaces | | | Dp1 |--------------------------- |Emp1 | | | BGP Peering | | | Dp2 |---------------------------- |Emp2 | | | BGP Peering | | +----------+ +------------+
Figure 1: Basic Test Setup
图1:基本测试设置
+------------+ +-----------+ +-----------+ | | | | | | | | | | | | | HLP | | DUT | | Emulator | | (AS-X) |--------| (AS-Y) |-----------| (AS-Z) | | | | | | | | | | | | | | | | | | | +------------+ +-----------+ +-----------+ | | | | +--------------------------------------------+
+------------+ +-----------+ +-----------+ | | | | | | | | | | | | | HLP | | DUT | | Emulator | | (AS-X) |--------| (AS-Y) |-----------| (AS-Z) | | | | | | | | | | | | | | | | | | | +------------+ +-----------+ +-----------+ | | | | +--------------------------------------------+
Figure 2: Three-Node Setup for eBGP and iBGP Convergence
图2:eBGP和iBGP收敛的三节点设置
+----------------------------------------------+ | | | | +------------+ +-----------+ +-----------+ | | | | | | | | | | | | | HLP | | DUT | | Emulator | | (AS-X) |--------| (AS-Y) |-----------| (AS-Z) | | | | | | | | | | | | | | | | | | | +------------+ +-----------+ +-----------+ |Loopback-Int |Loopback-Int | | + +
+----------------------------------------------+ | | | | +------------+ +-----------+ +-----------+ | | | | | | | | | | | | | HLP | | DUT | | Emulator | | (AS-X) |--------| (AS-Y) |-----------| (AS-Z) | | | | | | | | | | | | | | | | | | | +------------+ +-----------+ +-----------+ |Loopback-Int |Loopback-Int | | + +
Figure 3: BGP Convergence for eBGP Multihop Scenario
图3:eBGP多跳场景的BGP收敛
+---------+ +--------+ +--------+ +---------+ | | | | | | | | | | | | | | | | | HLP1 | | DUT | | HLP2 | |Emulator | | (AS-X) |-----| (AS-X) |-----| (AS-Y) |-----| (AS-Z) | | | | | | | | | | | | | | | | | | | | | | | | | +---------+ +--------+ +--------+ +---------+ | | | | +---------------------------------------------+
+---------+ +--------+ +--------+ +---------+ | | | | | | | | | | | | | | | | | HLP1 | | DUT | | HLP2 | |Emulator | | (AS-X) |-----| (AS-X) |-----| (AS-Y) |-----| (AS-Z) | | | | | | | | | | | | | | | | | | | | | | | | | +---------+ +--------+ +--------+ +---------+ | | | | +---------------------------------------------+
Figure 4: Four-Node Setup for eBGP and iBGP Convergence
图4:eBGP和iBGP收敛的四节点设置
The test cases for measuring convergence for iBGP and eBGP are different. Both iBGP and eBGP use different mechanisms to advertise, install, and learn the routes. Typically, an iBGP route on the DUT is installed and exported when the next hop is valid. For eBGP, the route is installed on the DUT with the remote interface address as the next hop, with the exception of the multihop test case (as specified in the test).
用于测量iBGP和eBGP收敛性的测试用例是不同的。iBGP和eBGP都使用不同的机制来公布、安装和了解路由。通常,当下一跳有效时,在DUT上安装并导出iBGP路由。对于eBGP,路由安装在DUT上,远程接口地址作为下一跳,但多跳测试用例除外(如测试中所指定)。
"Number of Peers" is defined as the number of BGP neighbors or sessions the DUT has at the beginning of the test. The peers are established before the tests begin. The relationship could be either iBGP or eBGP peering depending upon the test case requirement.
“对等方数量”定义为测试开始时DUT拥有的BGP邻居或会话的数量。在测试开始之前建立对等点。根据测试用例需求,关系可以是iBGP或eBGP对等。
The DUT establishes one or more BGP peer sessions with one or more emulated routers or Helper Nodes. Additional peers can be added based on the testing requirements. The number of peers enabled during the testing should be well documented in the report matrix.
DUT与一个或多个模拟路由器或辅助节点建立一个或多个BGP对等会话。可以根据测试要求添加其他对等点。测试期间启用的对等点数量应在报告矩阵中详细记录。
"Number of Routes per Peer" is defined as the number of routes advertised or learned by the DUT per session or through a neighbor relationship with an emulator or Helper Node. The Tester, emulating as a BGP neighbor, MUST advertise at least one route per BGP peer.
“每个对等方的路由数”定义为DUT在每个会话或通过与仿真器或辅助节点的邻居关系播发或学习的路由数。测试仪模拟为BGP邻居,必须为每个BGP对等方至少播发一条路由。
Each test run must identify the route stream in terms of route packing, route mixture, and number of routes. This route stream must be well documented in the reporting stream. RFC 4098 defines these terms.
每次试运行必须根据路线包装、路线混合和路线数量确定路线流。必须在报告流中详细记录该路线流。RFC 4098定义了这些术语。
It is RECOMMENDED that the user consider advertising the entire current Internet routing table per peering session using an Internet route mixture with unique or non-unique routes. If multiple peers are used, it is important to precisely document the timing sequence between the peer sending routes (as defined in RFC 4098).
建议用户考虑使用具有唯一或非唯一路由的因特网路由混合,在每个对等会话中对整个当前因特网路由表进行广告。如果使用多个对等点,则必须精确记录对等点发送路由之间的时序(如RFC 4098中所定义)。
The DUT MUST run one baseline test where policy is the Minimal policy as defined in RFC 4098. Additional runs may be done with the policy that was set up before the tests began. Exact policy settings MUST be documented as part of the test.
DUT必须运行一个基线测试,其中策略是RFC 4098中定义的最小策略。可以使用测试开始前设置的策略执行其他运行。作为测试的一部分,必须记录确切的策略设置。
There are configured parameters and timers that may impact the measured BGP convergence times.
配置的参数和计时器可能会影响测量的BGP收敛时间。
The benchmark metrics MAY be measured at any fixed values for these configured parameters.
可以在这些配置参数的任何固定值上测量基准度量。
It is RECOMMENDED these configure parameters have the following settings: a) default values specified by the respective RFC, b) platform-specific default parameters, and c) values as expected in the operational network. All optional BGP settings MUST be kept consistent across iterations of any specific tests
建议这些配置参数具有以下设置:a)各RFC指定的默认值,b)平台特定的默认参数,以及c)运行网络中预期的值。所有可选BGP设置必须在任何特定测试的迭代中保持一致
Examples of the configured parameters that may impact measured BGP convergence time include, but are not limited to:
可能影响测量的BGP收敛时间的配置参数示例包括但不限于:
1. Interface failure detection timer
1. 接口故障检测定时器
2. BGP keepalive timer
2. 保持计时器
3. BGP holdtime
3. BGP保持时间
4. BGP update delay timer
4. 更新延迟定时器
5. ConnectRetry timer
5. 连接重试计时器
6. TCP segment size
6. TCP段大小
7. Minimum Route Advertisement Interval (MRAI)
7. 最小路线公布间隔(MRAI)
8. MinASOriginationInterval (MAOI)
8. MinASOriginationInterval(MAOI)
9. Route flap damping parameters
9. 路径襟翼阻尼参数
10. TCP Authentication Option (TCP AO or TCP MD5)
10. TCP身份验证选项(TCP AO或TCP MD5)
11. Maximum TCP window size
11. 最大TCP窗口大小
12. MTU
12. MTU
The basic-test settings for the parameters should be:
参数的基本测试设置应为:
1. Interface failure detection timer (0 ms)
1. 接口故障检测计时器(0毫秒)
2. BGP keepalive timer (1 min)
2. BGP保持计时器(1分钟)
3. BGP holdtime (3 min)
3. BGP保持时间(3分钟)
4. BGP update delay timer (0 s)
4. BGP更新延迟计时器(0秒)
5. ConnectRetry timer (1 s)
5. 连接重试计时器(1秒)
6. TCP segment size (4096 bytes)
6. TCP段大小(4096字节)
7. Minimum Route Advertisement Interval (MRAI) (0 s)
7. 最小路线公布间隔(MRAI)(0秒)
8. MinASOriginationInterval (MAOI) (0 s)
8. MinASOriginationInterval(MAOI)(0秒)
9. Route flap damping parameters (off)
9. 路线襟翼阻尼参数(关闭)
10. TCP Authentication Option (off)
10. TCP身份验证选项(关闭)
The type of media dictates which test cases may be executed; each interface type has a unique mechanism for detecting link failures, and the speed at which that mechanism operates will influence the measurement results. All interfaces MUST be of the same media and throughput for all iterations of each test case.
介质的类型决定了可以执行哪些测试用例;每种接口类型都有一种独特的检测链路故障的机制,该机制的运行速度将影响测量结果。对于每个测试用例的所有迭代,所有接口必须具有相同的介质和吞吐量。
Since observed packet loss is used to measure the route convergence time, the time between two successive packets offered to each individual route is the highest possible accuracy of any packet-loss-based measurement. When packet jitter is much less than the convergence time, it is a negligible source of error, and hence, it will be treated as within tolerance.
由于使用观察到的分组丢失来测量路由收敛时间,因此提供给每个单独路由的两个连续分组之间的时间是任何基于分组丢失的测量的最高可能精度。当数据包抖动远小于收敛时间时,它是一个可忽略的误差源,因此,它将被视为在公差范围内。
Other options to measure convergence are the Time-Based Loss Method (TBLM) and Timestamp-Based Method (TBM) [RFC6414].
其他衡量收敛性的方法有基于时间的损失法(TBLM)和基于时间戳的方法(TBM)[RFC6414]。
An exterior measurement on the input media (such as Ethernet) is defined by this specification.
输入媒体(如以太网)的外部测量由本规范定义。
The benchmark measurements may vary for each trial due to the statistical nature of timer expirations, CPU scheduling, etc. It is recommended to repeat the test multiple times. Evaluation of the test data must be done with an understanding of generally accepted testing practices regarding repeatability, variance, and statistical significance of a small number of trials.
由于计时器过期、CPU调度等的统计性质,每个试验的基准测量值可能会有所不同。建议多次重复测试。测试数据的评估必须在了解关于少量试验的重复性、方差和统计显著性的公认测试实践的基础上进行。
For any repeated tests that are averaged to remove variance, all parameters MUST remain the same.
对于为消除方差而取平均值的任何重复测试,所有参数必须保持不变。
Authentication in BGP is done using the TCP Authentication Option [RFC5925]. (In some legacy situations, the authentication may still be with TCP MD5). The processing of the authentication hash, particularly in devices with a large number of BGP peers and a large amount of update traffic, can have an impact on the control plane of
BGP中的身份验证使用TCP身份验证选项[RFC5925]完成。(在某些遗留情况下,身份验证可能仍然使用TCP MD5)。认证散列的处理,特别是在具有大量BGP对等点和大量更新通信量的设备中,可能会对该设备的控制平面产生影响
the device. If authentication is enabled, it MUST be documented correctly in the reporting format.
这个装置。如果启用了身份验证,则必须以报告格式正确记录身份验证。
Also, it is recommended that trials MUST be with the same Secure Inter-Domain Routing (SIDR) features [RFC7115] [BGPsec]. The best convergence tests would be with no SIDR features and then to repeat the convergence tests with the same SIDR features.
此外,建议试验必须具有相同的安全域间路由(SIDR)功能[RFC7115][BGPsec]。最好的收敛测试是不使用SIDR特性,然后使用相同的SIDR特性重复收敛测试。
Convergence events or triggers are defined as abnormal occurrences in the network, which initiate route flapping in the network and hence forces the reconvergence of a steady state network. In a real network, a series of convergence events may cause convergence latency operators desire to test.
收敛事件或触发器被定义为网络中的异常事件,它启动网络中的路由抖动,从而迫使稳态网络重新收敛。在实际网络中,一系列聚合事件可能会导致运营商希望测试的聚合延迟。
These convergence events must be defined in terms of the sequences defined in RFC 4098. This basic document begins all tests with a router initial setup. Additional documents will define BGP data-plane convergence based on peer initialization.
必须根据RFC 4098中定义的序列定义这些收敛事件。本基本文档以路由器初始设置开始所有测试。其他文件将定义基于对等初始化的BGP数据平面收敛。
The convergence events may or may not be tied to the actual failure. A soft reset [RFC4098] does not clear the RIB or FIB tables. A hard reset clears BGP peer sessions, RIB tables, and FIB tables.
收敛事件可能与实际故障有关,也可能与实际故障无关。软复位[RFC4098]不会清除RIB或FIB表格。硬重置将清除BGP对等会话、RIB表和FIB表。
Due to the different Non-Stop-Routing (sometimes referred to High-Availability) solutions available from different vendors, it is RECOMMENDED that any redundancy available in the routing processors should be disabled during the convergence measurements. For cases where the redundancy cannot be disabled, the results are no longer comparable and the level of impact on the measurements is out of scope of this document.
由于不同供应商提供的不间断路由(有时称为高可用性)解决方案不同,建议在收敛测量期间禁用路由处理器中的任何冗余。对于无法禁用冗余的情况,结果不再具有可比性,对测量的影响程度超出本文件的范围。
All tests defined under this section assume the following:
本节中定义的所有试验均假定:
a. BGP peers are in Established state.
a. BGP对等点处于已建立状态。
b. BGP state should be cleared from Established state to Idle prior to each test. This is recommended to ensure that all tests start with BGP peers being forced back to Idle state and databases flushed.
b. 每次测试前,应将BGP状态从已建立状态清除为空闲状态。建议这样做,以确保所有测试都是在BGP对等点被强制返回空闲状态并刷新数据库的情况下开始的。
c. Furthermore, the traffic generation and routing should be verified in the topology to ensure there is no packet loss observed on any advertised routes.
c. 此外,应在拓扑中验证流量生成和路由,以确保在任何公布的路由上都没有观察到数据包丢失。
d. The arrival timestamp of advertised routes can be measured by installing an inline monitoring device between the emulator and the DUT or by using the span port of the DUT connected with an external analyzer. The time base of such an inline monitor or external analyzer needs to be synchronized with the protocol and traffic emulator. Some modern emulators may have the capability to capture and timestamp every NLRI packet leaving and arriving at the emulator ports. The timestamps of these NLRI packets will be almost identical to the arrival time at the DUT if the cable distance between the emulator and DUT is relatively short.
d. 可通过在仿真器和DUT之间安装在线监测设备,或通过使用与外部分析仪连接的DUT的span端口来测量播发路由的到达时间戳。这种内联监视器或外部分析器的时基需要与协议和流量模拟器同步。一些现代仿真器可能具有捕获离开和到达仿真器端口的每个NLRI数据包并对其加时间戳的能力。如果模拟器和DUT之间的电缆距离相对较短,则这些NLRI数据包的时间戳将几乎与DUT的到达时间相同。
These test cases measure characteristics of a BGP implementation in non-failure scenarios like:
这些测试用例测量BGP实现在非故障场景中的特性,如:
1. RIB-IN Convergence
1. 肋内会聚
2. RIB-OUT Convergence
2. 肋出收敛
3. eBGP Convergence
3. eBGP收敛
4. iBGP Convergence
4. iBGP收敛
Objective:
目标:
This test measures the convergence time taken to receive and install a route in RIB using BGP.
该测试测量使用BGP在RIB中接收和安装路由所需的收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 1
此测试使用如图1所示的设置
Procedure:
程序:
A. All variables affecting convergence should be set to a basic test state (as defined in Section 4.4).
A.应将影响收敛的所有变量设置为基本测试状态(如第4.4节所定义)。
B. Establish BGP adjacency between the DUT and one peer of the emulator, Emp1.
B.在DUT和仿真器的一个对等点Emp1之间建立BGP邻接。
C. To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test.
C.为确保邻接建立,在继续进行其余测试之前,等待从DUT收到三个Keepalive或一个可配置的延迟。
D. Start the traffic from the emulator tx towards the DUT targeted at a route specified in the route mixture (e.g., routeA). Initially, no traffic SHOULD be observed on the egress interface as routeA is not installed in the forwarding database of the DUT.
D.启动从仿真器tx到DUT的通信量,目标是路由混合中指定的路由(例如,路由EA)。最初,由于DUT的转发数据库中未安装routeA,因此在出口接口上不应观察到任何通信量。
E. Advertise routeA from the peer (Emp1) to the DUT and record the time.
E.公布从对等机(Emp1)到DUT的路由A,并记录时间。
This is Tup(Emp1,Rt-A), also named XMT-Rt-time(Rt-A).
这就是Tup(Emp1,Rt-A),也称为XMT-Rt-time(Rt-A)。
F. Record the time when routeA from Emp1 is received at the DUT.
F.记录DUT从Emp1接收路由的时间。
This is Tup(DUT,Rt-A), also named RCV-Rt-time(Rt-A).
这就是Tup(DUT,Rt-A),也称为RCV-Rt-time(Rt-A)。
G. Record the time when the traffic targeted towards routeA is received by the emulator on the appropriate traffic egress interface.
G.记录模拟器在适当的流量出口接口上接收到针对routeA的流量的时间。
This is TR(TDr,Rt-A), also named DUT-XMT-Data-Time(Rt-A).
这是TR(TDr,Rt-A),也称为DUT XMT数据时间(Rt-A)。
H. The difference between the Tup(DUT,RT-A) and traffic received time (TR (TDr, Rt-A) is the FIB convergence time for routeA in the route mixture. A full convergence for the route update is the measurement between the first route (Rt-A) and the last route (Rt-last).
H.Tup(DUT,RT-A)和业务接收时间(TR(TDr,RT-A)之间的差值是路由混合中routeA的FIB收敛时间。路由更新的完全收敛是第一条路由(RT-A)和最后一条路由(RT-last)之间的测量值。
Route update convergence is
路由更新收敛是非常困难的
TR(TDr, Rt-last)- Tup(DUT, Rt-A), or
TR(TDr,Rt-last)-Tup(DUT,Rt-A),或
(DUT-XMT-Data-Time - RCV-Rt-Time)(Rt-A).
(DUT XMT数据时间-RCV Rt时间)(Rt-A)。
Note: It is recommended that a single test with the same route mixture be repeated several times. A report should provide the standard deviation and the average of all tests.
注:建议使用同一路线混合料重复多次单次试验。报告应提供所有测试的标准偏差和平均值。
Running tests with a varying number of routes and route mixtures is important to get a full characterization of a single peer.
使用不同数量的路由和路由混合运行测试对于获得单个对等节点的完整特性非常重要。
Objective:
目标:
This test measures the convergence time taken by an implementation to receive, install, and advertise a route using BGP.
此测试测量实现使用BGP接收、安装和公布路由所需的收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 2.
此测试使用如图2所示的设置。
Procedure:
程序:
A. The Helper Node (HLP) MUST run same version of BGP as the DUT.
A.辅助节点(HLP)必须运行与DUT相同版本的BGP。
B. All devices MUST be synchronized using NTP or some local reference clock.
B.所有设备必须使用NTP或某些本地参考时钟进行同步。
C. All configuration variables for the Helper Node, DUT, and emulator SHOULD be set to the same values. These values MAY be basic test or a unique set completely described in the test setup.
C.辅助节点、DUT和emulator的所有配置变量应设置为相同的值。这些值可以是基本测试值,也可以是测试设置中完全描述的唯一值集。
D. Establish BGP adjacency between the DUT and the emulator.
D.在DUT和仿真器之间建立BGP邻接。
E. Establish BGP adjacency between the DUT and the Helper Node.
E.在DUT和辅助节点之间建立BGP邻接。
F. To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test.
F.为确保邻接建立,等待从DUT收到三个KEEPALIVE或一个可配置的延迟,然后继续进行其余的测试。
G. Start the traffic from the emulator towards the Helper Node targeted at a specific route (e.g., routeA). Initially, no traffic SHOULD be observed on the egress interface as routeA is not installed in the forwarding database of the DUT.
G.启动从仿真器到特定路由(例如routeA)的助手节点的流量。最初,由于DUT的转发数据库中未安装routeA,因此在出口接口上不应观察到任何通信量。
H. Advertise routeA from the emulator to the DUT and note the time.
H.公布从仿真器到DUT的路由A,并记录时间。
This is Tup(EMx, Rt-A), also named EM-XMT-Data-Time(Rt-A).
这就是Tup(EMx,Rt-A),也称为emxmt数据时间(Rt-A)。
I. Record when routeA is received by the DUT.
I.记录DUT何时收到routeA。
This is Tup(DUTr, Rt-A), also named DUT-RCV-Rt-Time(Rt-A).
这就是Tup(DUTr,Rt-A),也称为dutrcvrt-Time(Rt-A)。
J. Record the time when routeA is forwarded by the DUT towards the Helper Node.
J.记录DUT向辅助节点转发路由A的时间。
This is Tup(DUTx, Rt-A), also named DUT-XMT-Rt-Time(Rt-A).
这是Tup(DUTx,Rt-A),也称为DUT-XMT-Rt-Time(Rt-A)。
K. Record the time when the traffic targeted towards routeA is received on the Route Egress Interface. This is TR(EMr, Rt-A), also named DUT-XMT-Data Time(Rt-A).
K.记录在路线出口接口上接收到针对路线A的流量的时间。这是TR(EMr,Rt-A),也称为DUT XMT数据时间(Rt-A)。
FIB convergence = (DUT-XMT-Data-Time -DUT-RCV-Rt-Time)(Rt-A)
FIB convergence = (DUT-XMT-Data-Time -DUT-RCV-Rt-Time)(Rt-A)
RIB convergence = (DUT-XMT-Rt-Time - DUT-RCV-Rt-Time)(Rt-A)
RIB convergence = (DUT-XMT-Rt-Time - DUT-RCV-Rt-Time)(Rt-A)
Convergence for a route stream is characterized by
路由流的收敛特征为
a) individual route convergence for FIB and RIB, and
a) FIB和RIB的单独路线会聚,以及
b) all route convergence of
b) 全路径收敛
FIB-convergence = DUT-XMT-Data-Time(last) - DUT-RCV-Rt- Time(first), and
FIB-convergence = DUT-XMT-Data-Time(last) - DUT-RCV-Rt- Time(first), and
RIB-convergence = DUT-XMT-Rt-Time(last) - DUT-RCV-Rt-Time(first).
肋骨会聚=DUT XMT Rt时间(最后一次)-DUT RCV Rt时间(第一次)。
Objective:
目标:
This test measures the convergence time taken by an implementation to receive, install, and advertise a route in an eBGP Scenario.
此测试测量实现在eBGP场景中接收、安装和公布路由所需的收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 2, and the scenarios described in RIB-IN and RIB-OUT are applicable to this test case.
此测试使用如图2所示的设置,并且在RIB-in和RIB-OUT中描述的场景适用于此测试用例。
Objective:
目标:
This test measures the convergence time taken by an implementation to receive, install, and advertise a route in an iBGP Scenario.
此测试测量实现在iBGP场景中接收、安装和公布路由所需的收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 2, and the scenarios described in RIB-IN and RIB-OUT are applicable to this test case.
此测试使用如图2所示的设置,并且在RIB-in和RIB-OUT中描述的场景适用于此测试用例。
Objective:
目标:
This test measures the convergence time taken by an implementation to receive, install, and advertise a route in an eBGP Multihop Scenario.
此测试测量实现在eBGP多跳场景中接收、安装和公布路由所需的收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 3. The DUT is used along with a Helper Node.
此测试使用如图3所示的设置。DUT与辅助节点一起使用。
Procedure:
程序:
A. The Helper Node MUST run the same version of BGP as the DUT.
A.辅助节点必须运行与DUT相同版本的BGP。
B. All devices MUST be synchronized using NTP or some local reference clock.
B.所有设备必须使用NTP或某些本地参考时钟进行同步。
C. All variables affecting convergence, like authentication, policies, and timers, SHOULD be set to basic settings.
C.所有影响收敛的变量,如身份验证、策略和计时器,都应设置为基本设置。
D. All three devices, the DUT, emulator, and Helper Node, are configured with different ASs.
D.所有三个设备,DUT、emulator和Helper节点,都配置了不同的ASs。
E. Loopback interfaces are configured on the DUT and Helper Node, and connectivity is established between them using any config options available on the DUT.
E.在DUT和助手节点上配置环回接口,并使用DUT上可用的任何配置选项在它们之间建立连接。
F. Establish BGP adjacency between the DUT and the emulator.
F.在DUT和仿真器之间建立BGP邻接。
G. Establish BGP adjacency between the DUT and the Helper Node.
G.在DUT和辅助节点之间建立BGP邻接。
H. To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test
H.为确保邻接建立,等待从DUT接收到三个Keepalive或可配置延迟,然后继续进行其余测试
I. Start the traffic from the emulator towards the DUT targeted at a specific route (e.g., routeA).
I.启动从仿真器到DUT的通信量,目标是特定的路由(例如routeA)。
J. Initially, no traffic SHOULD be observed on the egress interface as routeA is not installed in the forwarding database of the DUT.
J.最初,由于DUT的转发数据库中未安装routeA,因此在出口接口上不应观察到任何流量。
K. Advertise routeA from the emulator to the DUT and note the time (Tup(EMx,RouteA), also named Route-Tx-time(Rt-A).
K.从仿真器向DUT公布路由A,并记录时间(Tup(EMx,routeA),也称为路由Tx时间(Rt-A)。
L. Record the time when the route is received by the DUT. This is Tup(EMr,DUT), also named Route-Rcv-time(Rt-A).
L.记录DUT接收路线的时间。这就是Tup(EMr,DUT),也称为路由Rcv时间(Rt-A)。
M. Record the time when the traffic targeted towards routeA is received from the egress interface of the DUT on the emulator. This is Tup(EMd,DUT) named Data-Rcv-time(Rt-A)
M.在模拟器上记录从DUT出口接口接收到针对routeA的流量的时间。这是命名为数据Rcv时间(Rt-A)的Tup(EMd,DUT)
N. Record the time when routeA is forwarded by the DUT towards the Helper Node. This is Tup(EMf,DUT), also named Route-Fwd-time(Rt-A).
N.记录DUT向辅助节点转发路由A的时间。这是Tup(EMf,DUT),也称为路由Fwd时间(Rt-A)。
FIB Convergence = (Data-Rcv-time - Route-Rcv-time)(Rt-A)
FIB Convergence = (Data-Rcv-time - Route-Rcv-time)(Rt-A)
RIB Convergence = (Route-Fwd-time - Route-Rcv-time)(Rt-A)
RIB Convergence = (Route-Fwd-time - Route-Rcv-time)(Rt-A)
Note: It is recommended that the test be repeated with a varying number of routes and route mixtures. With each set route mixture, the test should be repeated multiple times. The results should record the average, mean, standard deviation.
注:建议使用不同数量的路线和路线混合物重复试验。对于每一组路线混合物,试验应重复多次。结果应记录平均值、平均值和标准偏差。
Objective:
目标:
This test measures the route convergence time due to a local link failure event at the DUT's Local Interface.
该测试测量由于DUT本地接口处的本地链路故障事件而导致的路由收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 1. The shutdown event is defined as an administrative shutdown event on the DUT.
此测试使用如图1所示的设置。关机事件定义为DUT上的管理关机事件。
Procedure:
程序:
A. All variables affecting convergence, like authentication, policies, and timers, should be set to basic-test policy.
A.影响收敛的所有变量,如身份验证、策略和计时器,都应设置为基本测试策略。
B. Establish two BGP adjacencies from the DUT to the emulator, one over the peer interface and the other using a second peer interface.
B.从DUT到仿真器建立两个BGP邻接,一个通过对等接口,另一个使用第二个对等接口。
C. Advertise the same route, routeA, over both adjacencies with preferences so that the Best Egress Interface for the preferred next hop is (Emp1) interface.
C.在具有首选项的两个邻接上公布相同的路由routeA,以便首选下一跳的最佳出口接口为(Emp1)接口。
D. To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test.
D.为确保邻接建立,在继续进行其余测试之前,等待从DUT接收到三个Keepalive或一个可配置的延迟。
E. Start the traffic from the emulator towards the DUT targeted at a specific route (e.g., routeA). Initially, traffic would be observed on the best egress route, Emp1, instead of Emp2.
E.启动从仿真器到DUT的针对特定路由(例如routeA)的通信量。最初,将在最佳出口路线Emp1而不是Emp2上观察交通情况。
F. Trigger the shutdown event of Best Egress Interface on the DUT (Dp1). This time is called Shutdown time.
F.触发DUT(Dp1)上最佳出口接口的关闭事件。这个时间叫做关机时间。
G. Measure the convergence time for the event to be detected and traffic to be forwarded to Next-Best Egress Interface (Dp2).
G.测量要检测的事件和要转发到下一个最佳出口接口(Dp2)的流量的收敛时间。
Time = Data-detect(Emp2) - Shutdown time
Time = Data-detect(Emp2) - Shutdown time
H. Stop the offered load and wait for the queues to drain. Restart the data flow.
H.停止提供的负载,等待队列耗尽。重新启动数据流。
I. Bring up the link on the DUT's Best Egress Interface.
I.打开DUT最佳出口接口上的链接。
J. Measure the convergence time taken for the traffic to be rerouted from Dp2 to Best Egress Interface, Dp1.
J.测量流量从Dp2重新路由到最佳出口接口Dp1所需的汇聚时间。
Time = Data-detect(Emp1) - Bring Up time
Time = Data-detect(Emp1) - Bring Up time
K. It is recommended that the test be repeated with a varying number of routes and route mixtures or with a number of routes and route mixtures closer to what is deployed in operational networks.
K.建议使用不同数量的路线和路线混合物,或使用更接近在运行网络中部署的路线和路线混合物,重复测试。
Objective:
目标:
This test measures the route convergence time due to a local link failure event at the Tester's Local Interface.
该测试测量由于测试仪本地接口的本地链路故障事件而导致的路由收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 1. The shutdown event is defined as a shutdown of the local interface of the Tester via a logical shutdown event. The procedure used in Section 5.2.1 is used for the termination.
此测试使用如图1所示的设置。关机事件定义为通过逻辑关机事件关闭测试仪的本地接口。第5.2.1节中使用的程序用于终止。
Objective:
目标:
This test measures the route convergence time due to a local link failure event at the ECMP member. The FIB configuration and BGP are set to allow two ECMP routes to be installed. However, policy directs the routes to be sent only over one of the paths.
该测试测量由于ECMP成员处的本地链路故障事件而导致的路由收敛时间。FIB配置和BGP设置为允许安装两条ECMP路由。但是,策略指示仅通过其中一条路径发送路由。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 1, and the procedure used in Section 5.2.1.
本试验使用图1所示的设置和第5.2.1节中使用的程序。
Objective:
目标:
This test measures the route convergence time due to BGP Adjacency Failure on the emulator.
该测试测量由于模拟器上的BGP邻接故障而导致的路由收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 1.
此测试使用如图1所示的设置。
Procedure:
程序:
A. All variables affecting convergence, like authentication, policies, and timers, should be set to basic-policy.
A.影响收敛的所有变量,如身份验证、策略和计时器,都应设置为基本策略。
B. Establish two BGP adjacencies from the DUT to the emulator: one over the Best Egress Interface and the other using the Next-Best Egress Interface.
B.从DUT到仿真器建立两个BGP邻接:一个在最佳出口接口上,另一个使用次最佳出口接口。
C. Advertise the same route, routeA, over both adjacencies with preferences so that the Best Egress Interface for the preferred next hop is (Emp1) interface.
C.在具有首选项的两个邻接上公布相同的路由routeA,以便首选下一跳的最佳出口接口为(Emp1)接口。
D. To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test.
D.为确保邻接建立,在继续进行其余测试之前,等待从DUT接收到三个Keepalive或一个可配置的延迟。
E. Start the traffic from the emulator towards the DUT targeted at a specific route (e.g., routeA). Initially, traffic would be observed on the Best Egress Interface.
E.启动从仿真器到DUT的针对特定路由(例如routeA)的通信量。最初,将在最佳出口界面上观察交通。
F. Remove BGP adjacency via a software adjacency down on the emulator on the Best Egress Interface. This time is called BGPadj-down-time, also termed BGPpeer-down.
F.通过最佳出口界面上模拟器上的软件邻接删除BGP邻接。此时间称为BGPadj停机时间,也称为BGPpeer停机时间。
G. Measure the convergence time for the event to be detected and traffic to be forwarded to Next-Best Egress Interface. This time is Tr-rr2, also called TR2-traffic-on.
G.测量要检测的事件和要转发到下一个最佳出口接口的流量的收敛时间。这一次是Tr-rr2,也称为TR2上的通信量。
Convergence = TR2-traffic-on - BGPpeer-down
Convergence = TR2-traffic-on - BGPpeer-down
H. Stop the offered load and wait for the queues to drain and restart the data flow.
H.停止提供的负载,等待队列耗尽并重新启动数据流。
I. Bring up BGP adjacency on the emulator over the Best Egress Interface. This time is BGP-adj-up, also called BGPpeer-up.
I.通过最佳出口接口在模拟器上显示BGP邻接。这次是BGP adj up,也称为BGPpeer up。
J. Measure the convergence time taken for the traffic to be rerouted to the Best Egress Interface. This time is Tr-rr1, also called TR1-traffic-on.
J.测量将流量重新路由至最佳出口接口所需的汇聚时间。这一次是Tr-rr1,也称为TR1上的通信量。
Convergence = TR1-traffic-on - BGPpeer-up
Convergence = TR1-traffic-on - BGPpeer-up
Objective:
目标:
This test measures the route convergence time due to a hard reset on the DUT.
该测试测量因DUT硬复位而导致的路由收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 1.
此测试使用如图1所示的设置。
Procedure:
程序:
A. The requirement for this test case is that the hard reset event should be non-recovering and should affect only the adjacency between the DUT and the emulator on the Best Egress Interface.
A.该测试用例的要求是硬复位事件应为非恢复事件,且应仅影响DUT和最佳出口接口上模拟器之间的邻接。
B. All variables affecting the test SHOULD be set to basic-test values.
B.影响试验的所有变量应设置为基本试验值。
C. Establish two BGP adjacencies from the DUT to the emulator: one over the Best Egress Interface and the other using the Next-Best Egress Interface.
C.从DUT到仿真器建立两个BGP邻接:一个在最佳出口接口上,另一个使用次最佳出口接口。
D. Advertise the same route, routeA, over both adjacencies with preferences so that the Best Egress Interface for the preferred next hop is (Emp1) interface.
D.在具有首选项的两个邻接上公布相同的路由routeA,以便首选下一跳的最佳出口接口为(Emp1)接口。
E. To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test.
E.为确保邻接建立,在继续进行其余测试之前,等待从DUT接收到三个Keepalive或一个可配置的延迟。
F. Start the traffic from the emulator towards the DUT targeted at a specific route (e.g., routeA). Initially, traffic would be observed on the Best Egress Interface.
F.启动从仿真器到DUT的通信量,目标是特定的路由(例如routeA)。最初,将在最佳出口界面上观察交通。
G. Trigger the hard reset event of the Best Egress Interface on the DUT. This time is called time reset.
G.触发DUT上最佳出口接口的硬复位事件。此时间称为时间重置。
H. This event is detected and traffic is forwarded to the Next-Best Egress Interface. This time is called time-traffic flow.
H.检测到该事件,并将流量转发到下一个最佳出口接口。这个时间称为时间交通流。
I. Measure the convergence time for the event to be detected and traffic to be forwarded to Next-Best Egress Interface.
I.测量要检测的事件和要转发到下一个最佳出口接口的流量的收敛时间。
Time of convergence = time-traffic flow - time-reset
收敛时间=时间交通流-时间重置
J. Stop the offered load and wait for the queues to drain and restart.
J.停止提供的负载,等待队列耗尽并重新启动。
K. It is recommended that the test be repeated with a varying number of routes and route mixtures or with a number of routes and route mixtures closer to what is deployed in operational networks.
K.建议使用不同数量的路线和路线混合物,或使用更接近在运行网络中部署的路线和路线混合物,重复测试。
L. When varying number of routes are used, convergence time is measured using the Loss-Derived method [RFC6412].
L.当使用不同数量的路由时,使用损耗导出方法[RFC6412]测量收敛时间。
M. Convergence time in this scenario is influenced by failure detection time on the Tester, BGP keepalive time and routing, and forwarding table update time.
M.此场景中的收敛时间受测试仪上的故障检测时间、BGP保留时间和路由以及转发表更新时间的影响。
Objective:
目标:
This test measures the route convergence time taken by an implementation to service a BGP Route Refresh message and advertise a route.
此测试测量实现为BGP路由刷新消息提供服务和公布路由所花费的路由聚合时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 2.
此测试使用如图2所示的设置。
Procedure:
程序:
A. The BGP implementation on the DUT and Helper Node needs to support BGP Route Refresh Capability [RFC2918].
A.DUT和助手节点上的BGP实现需要支持BGP路由刷新能力[RFC2918]。
B. All devices MUST be synchronized using NTP or some local reference clock.
B.所有设备必须使用NTP或某些本地参考时钟进行同步。
C. All variables affecting convergence, like authentication, policies, and timers, should be set to basic-test defaults.
影响收敛的所有变量,如身份验证、策略和计时器,都应设置为基本测试默认值。
D. The DUT and the Helper Node are configured in the same AS, whereas the emulator is configured under a different AS.
D.DUT和助手节点的配置方式与相同,而仿真器的配置方式不同。
E. Establish BGP adjacency between the DUT and the emulator.
E.在DUT和仿真器之间建立BGP邻接。
F. Establish BGP adjacency between the DUT and the Helper Node.
F.在DUT和辅助节点之间建立BGP邻接。
G. To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test.
G.为确保邻接建立,在继续进行其余测试之前,等待从DUT接收到三个Keepalive或一个可配置的延迟。
H. Configure a policy under the BGP on the Helper Node to deny routes received from the DUT.
H.在助手节点上的BGP下配置策略,以拒绝从DUT接收的路由。
I. Advertise routeA from the emulator to the DUT.
I.公布从仿真器到DUT的路由。
J. The DUT will try to advertise the route to the Helper Node; it will be denied.
J.DUT将尝试公布到辅助节点的路由;它将被拒绝。
K. Wait for three keepalives.
等三个月。
L. Start the traffic from the emulator towards the Helper Node targeted at a specific route, say routeA. Initially, no traffic would be observed on the egress interface, as routeA is not present.
L.启动从仿真器到特定路由(如routeA)的助手节点的流量。最初,由于routeA不存在,在出口接口上不会观察到任何流量。
M. Remove the policy on the Helper Node and issue a route refresh request towards the DUT. Note the timestamp of this event. This is the RefreshTime.
M.删除助手节点上的策略,并向DUT发出路由刷新请求。请注意此事件的时间戳。现在是休息时间。
N. Record the time when the traffic targeted towards routeA is received on the egress interface. This is RecTime.
N.记录在出口接口上接收到针对routeA的流量的时间。这是矩形时间。
O. The following equation represents the Route Refresh Convergence Time per route.
O.以下等式表示每条路由的路由刷新收敛时间。
Route Refresh Convergence Time = (RecTime - RefreshTime)
Route Refresh Convergence Time = (RecTime - RefreshTime)
Objective:
目标:
This test measures the route convergence time taken by an implementation to service a BGP withdraw message and advertise the withdraw.
此测试测量实现为BGP撤回消息提供服务和公布撤回消息所花费的路由收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 2.
此测试使用如图2所示的设置。
Procedure:
程序:
A. This test consists of two steps to determine the Total Withdraw Processing Time.
A.该测试包括两个步骤,以确定总提取处理时间。
B. Step 1:
B.第1步:
(1) All devices MUST be synchronized using NTP or some local reference clock.
(1) 所有设备必须使用NTP或某些本地参考时钟进行同步。
(2) All variables should be set to basic-test parameters.
(2) 所有变量应设置为基本测试参数。
(3) The DUT and Helper Node are configured in the same AS, whereas the emulator is configured under a different AS.
(3) DUT和助手节点的配置方式与相同,而仿真器的配置方式不同。
(4) Establish BGP adjacency between the DUT and the emulator.
(4) 在DUT和仿真器之间建立BGP邻接关系。
(5) To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test.
(5) 为确保邻接建立,在继续进行其余测试之前,等待从DUT接收到三个Keepalive或一个可配置的延迟。
(6) Start the traffic from the emulator towards the DUT targeted at a specific route (e.g., routeA). Initially, no traffic would be observed on the egress interface as routeA is not present on the DUT.
(6) 启动从仿真器到DUT的针对特定路由(例如routeA)的通信量。最初,由于DUT上不存在routeA,因此在出口接口上不会观察到任何通信量。
(7) Advertise routeA from the emulator to the DUT.
(7) 从仿真器向DUT播发路由A。
(8) The traffic targeted towards routeA is received on the egress interface.
(8) 在出口接口上接收到针对routeA的流量。
(9) Now the Tester sends a request to withdraw routeA to the DUT. TRx(Awith) is also called WdrawTime1(Rt-A).
(9) 现在,测试仪向DUT发送撤销路由a的请求。TRx(Awith)也称为WdrawTime1(Rt-A)。
(10) Record the time when no traffic is observed as determined by the emulator. This is the RouteRemoveTime1(Rt-A).
(10) 记录仿真器确定的未观察到流量的时间。这是路由移动时间1(Rt-A)。
(11) The difference between the RouteRemoveTime1 and WdrawTime1 is the WdrawConvTime1.
(11) RouteRemoveTime1和WdrawTime1之间的差异是WdrawConvTime1。
WdrawConvTime1(Rt-A) = RouteRemoveTime1(Rt-A) - WdrawTime1(Rt-A)
WdrawConvTime1(Rt-A) = RouteRemoveTime1(Rt-A) - WdrawTime1(Rt-A)
C. Step 2:
C.第2步:
(1) Continuing from Step 1, re-advertise routeA back to the DUT from the Tester.
(1) 从步骤1继续,从测试仪将路由A重新播发回DUT。
(2) The DUT will try to advertise routeA to the Helper Node (this assumes there exists a session between the DUT and Helper Node).
(2) DUT将尝试将路由a播发到辅助节点(假设DUT和辅助节点之间存在会话)。
(3) Start the traffic from the emulator towards the Helper Node targeted at a specific route (e.g., routeA). Traffic would be observed on the egress interface after routeA is received by the Helper Node.
(3) 启动从仿真器到特定路由(例如routeA)的助手节点的流量。助手节点接收routeA后,将在出口接口上观察流量。
WATime=time traffic first flows
WATime=首次流量的时间
(4) Now the Tester sends a request to withdraw routeA to DUT. This is the WdrawTime2(Rt-A).
(4) 现在,测试仪向DUT发送撤销路由a的请求。这是WdrawTime2(Rt-A)。
WAWtime-TRx(Rt-A) = WdrawTime2(Rt-A)
WAWtime-TRx(Rt-A) = WdrawTime2(Rt-A)
(5) DUT processes the withdraw and sends it to the Helper Node.
(5) DUT处理撤回并将其发送到助手节点。
(6) Record the time when no traffic is observed as determined by the emulator. This is:
(6) 记录仿真器确定的未观察到流量的时间。这是:
TR-WAW(DUT,RouteA) = RouteRemoveTime2(Rt-A)
TR-WAW(DUT,RouteA) = RouteRemoveTime2(Rt-A)
(7) Total Withdraw Processing Time is:
(7) 总提款处理时间为:
TotalWdrawTime(Rt-A) = ((RouteRemoveTime2(Rt-A) - WdrawTime2(Rt-A)) - WdrawConvTime1(Rt-A))
TotalWdrawTime(Rt-A) = ((RouteRemoveTime2(Rt-A) - WdrawTime2(Rt-A)) - WdrawConvTime1(Rt-A))
Objective:
目标:
This test measures the convergence time taken by an implementation to service a BGP Path Attribute Change.
此测试测量实现为BGP路径属性更改提供服务所需的收敛时间。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 1.
此测试使用如图1所示的设置。
Procedure:
程序:
A. This test only applies to Well-Known Mandatory Attributes like origin, AS path, and next hop.
A.此测试仅适用于众所周知的强制属性,如原点、AS路径和下一跳。
B. In each iteration of the test, only one of these mandatory attributes need to be varied whereas the others remain the same.
B.在测试的每次迭代中,只有一个强制性属性需要改变,而其他属性保持不变。
C. All devices MUST be synchronized using NTP or some local reference clock.
C.所有设备必须使用NTP或某些本地参考时钟进行同步。
D. All variables should be set to basic-test parameters.
D.所有变量应设置为基本测试参数。
E. Advertise the same route, routeA, over both adjacencies with preferences so that the Best Egress Interface for the preferred next hop is (Emp1) interface.
E.在具有首选项的两个邻接上公布相同的路由routeA,以便首选下一跳的最佳出口接口为(Emp1)接口。
F. To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test.
F.为确保邻接建立,等待从DUT收到三个KEEPALIVE或一个可配置的延迟,然后继续进行其余的测试。
G. Start the traffic from the emulator towards the DUT targeted at the specific route (e.g., routeA). Initially, traffic would be observed on the Best Egress Interface.
G.启动从仿真器到DUT的针对特定路由(例如routeA)的通信量。最初,将在最佳出口界面上观察交通。
H. Now advertise the same route, routeA, on the Next-Best Egress Interface but by varying one of the well-known mandatory attributes to have a preferred value over that interface. We call this Tbetter. The other values need to be the same as what was advertised on the Best-Egress adjacency.
H.现在在下一个最佳出口接口上公布相同的路由routeA,但通过改变其中一个众所周知的强制属性,使其在该接口上具有首选值。我们称之为Tbetter。其他值需要与最佳出口邻接上公布的值相同。
TRx(Path-Change(Rt-A)) = Path Change Event Time(Rt-A)
TRx(Path-Change(Rt-A)) = Path Change Event Time(Rt-A)
I. Measure the convergence time for the event to be detected and traffic to be forwarded to Next-Best Egress Interface.
I.测量要检测的事件和要转发到下一个最佳出口接口的流量的收敛时间。
DUT(Path-Change, Rt-A) = Path-switch time(Rt-A)
DUT(Path-Change, Rt-A) = Path-switch time(Rt-A)
Convergence = Path-switch time(Rt-A) - Path Change Event Time(Rt-A)
Convergence = Path-switch time(Rt-A) - Path Change Event Time(Rt-A)
J. Stop the offered load and wait for the queues to drain and restart.
J.停止提供的负载,等待队列耗尽并重新启动。
K. Repeat the test for various attributes.
K.对各种属性重复测试。
Objective:
目标:
This test measures the route convergence time taken by an implementation during a Graceful Restart Event as detailed in the terminology document [RFC4098].
该测试测量了实现在正常重启事件期间所花费的路由收敛时间,详见术语文档[RFC4098]。
Reference Test Setup:
参考测试设置:
This test uses the setup as shown in Figure 4.
此测试使用如图4所示的设置。
Procedure:
程序:
A. It measures the time taken by an implementation to service a BGP Graceful Restart Event and advertise a route.
A.它测量实现为BGP正常重启事件提供服务和公布路由所花费的时间。
B. The Helper Nodes are the same model as the DUT and run the same BGP implementation as the DUT.
B.辅助节点与DUT的型号相同,并且运行与DUT相同的BGP实现。
C. The BGP implementation on the DUT and Helper Node needs to support the BGP Graceful Restart Mechanism [RFC4724].
C.DUT和助手节点上的BGP实现需要支持BGP优雅重启机制[RFC4724]。
D. All devices MUST be synchronized using NTP or some local reference clock.
D.所有设备必须使用NTP或某些本地参考时钟进行同步。
E. All variables are set to basic-test values.
E.所有变量均设置为基本测试值。
F. The DUT and Helper Node 1 (HLP1) are configured in the same AS, whereas the emulator and Helper Node 2 (HLP2) are configured under different ASs.
F.DUT和辅助节点1(HLP1)的配置方式与相同,而仿真器和辅助节点2(HLP2)的配置方式不同。
G. Establish BGP adjacency between the DUT and Helper Nodes.
G.在DUT和辅助节点之间建立BGP邻接。
H. Establish BGP adjacency between the Helper Node 2 and the emulator.
H.在辅助节点2和仿真器之间建立BGP邻接。
I. To ensure adjacency establishment, wait for three keepalives to be received from the DUT or a configurable delay before proceeding with the rest of the test.
I.为确保邻接建立,在继续进行其余测试之前,等待从DUT接收到三个Keepalive或一个可配置的延迟。
J. Configure a policy under the BGP on Helper Node 1 to deny routes received from the DUT.
J.在助手节点1上的BGP下配置策略,以拒绝从DUT接收的路由。
K. Advertise routeA from the emulator to Helper Node 2.
K.将路由A从仿真器播发到辅助节点2。
L. Helper Node 2 advertises the route to the DUT and the DUT will try to advertise the route to Helper Node 1, which will be denied.
L.助手节点2播发到DUT的路由,DUT将尝试播发到助手节点1的路由,这将被拒绝。
M. Wait for three keepalives.
等三个月。
N. Start the traffic from the emulator towards the Helper Node 1 targeted at the specific route (e.g., routeA). Initially, no traffic would be observed on the egress interface as routeA is not present.
N.启动从仿真器到辅助节点1的流量,目标是特定路由(例如routeA)。最初,由于routeA不存在,出口接口上不会观察到任何流量。
O. Perform a Graceful Restart Trigger Event on the DUT and note the time. This is the GREventTime.
O.在DUT上执行正常重启触发事件,并记录时间。这是格雷文蒂时代。
P. Remove the policy on Helper Node 1.
P.删除辅助节点1上的策略。
Q. Record the time when the traffic targeted towards routeA is received on the egress interface.
Q.记录在出口接口上接收到针对routeA的流量的时间。
This is TRr(DUT, routeA), also called RecTime(Rt-A).
这是TRr(DUT,routeA),也称为RecTime(Rt-A)。
R. The following equation represents the Graceful Restart Convergence Time.
R.以下方程式表示收敛时间。
Graceful Restart Convergence Time(Rt-A) = ((RecTime(Rt-A) - GREventTime) - RIB-IN)
Graceful Restart Convergence Time(Rt-A) = ((RecTime(Rt-A) - GREventTime) - RIB-IN)
S. It is assumed in this test case that after a switchover is triggered on the DUT, it will not have any cycles to process the BGP Refresh messages. The reason for this assumption is that there is a narrow window of time where after switchover, when we remove the policy from Helper Node 1, implementations might generate Route Refresh automatically and this request might be serviced before the DUT actually switches over and re-establishes BGP adjacencies with the peers.
S.在本测试用例中,假设在DUT上触发切换后,其将没有任何周期来处理BGP刷新消息。这种假设的原因是,在切换之后,当我们从帮助节点1删除策略时,存在一个狭窄的时间窗口,实现可能会自动生成路由刷新,并且该请求可能会在DUT实际切换并与对等方重新建立BGP邻接之前得到服务。
For each test case, it is recommended that the reporting tables below are completed, and all time values SHOULD be reported with resolution as specified in [RFC4098].
对于每个测试用例,建议填写以下报告表,并且应按照[RFC4098]中规定的分辨率报告所有时间值。
Parameter Units or Description =========================== ========================== Test case Test case number
Parameter Units or Description =========================== ========================== Test case Test case number
Test topology 1, 2, 3, or 4
测试拓扑1、2、3或4
Parallel links Number of parallel links
平行链接平行链接的数量
Interface type Gigabit Ethernet (GigE), Packet over SONET (POS), ATM, other
接口类型千兆以太网(GigE)、SONET数据包(POS)、ATM、其他
Convergence Event Hard reset, soft reset, link failure, or other defined
聚合事件硬重置、软重置、链路故障或其他定义
eBGP sessions Number of eBGP sessions
eBGP会话数eBGP会话数
iBGP sessions Number of iBGP sessions
iBGP会话数iBGP会话数
eBGP neighbor Number of eBGP neighbors
eBGP邻居eBGP邻居的数目
iBGP neighbor Number of iBGP neighbors
iBGP邻居iBGP邻居的数目
Routes per peer Number of routes
每个对等路由的路由数
Total unique routes Number of routes
总唯一路由路由数
Total non-unique routes Number of routes
非唯一路由总数路由数
IGP configured IS-IS, OSPF, static, or other
IGP配置为IS-IS、OSPF、静态或其他
Route mixture Description of route mixture
路线混合料路线混合料的描述
Route packing Number of routes included in an update
路线包装更新中包含的路线数
Policy configured Yes, No
已配置策略是,否
SIDR origin authentication Yes, No [RFC7115]
SIDR原产地认证是,否[RFC7115]
bgp-sec [BGPsec] Yes, No
bgp sec[BGPsec]是,否
Packet size offered Bytes to the DUT
提供给DUT的数据包大小字节
Offered load Packets per second
每秒提供的加载包数
Packet sampling interval Seconds on Tester
测试仪上的数据包采样间隔秒
Forwarding delay threshold Seconds
转发延迟阈值秒
Timer values configured on DUT
DUT上配置的定时器值
Interface failure Seconds indication delay Hold time Seconds MinRouteAdvertisementInterval Seconds (MRAI) MinASOriginationInterval Seconds (MAOI) Keepalive time Seconds ConnectRetry Seconds
接口故障秒数指示延迟保持时间秒数最小路由垂直间隔秒数(MRAI)最小原始间隔秒数(MAOI)保持时间秒数连接重试秒数
TCP parameters for DUT and Tester Maximum Segment Size (MSS) Bytes Slow start threshold Bytes Maximum window size Bytes
DUT和测试仪的TCP参数最大段大小(MSS)字节慢启动阈值字节最大窗口大小字节
Test Details:
测试详情:
a. If the Offered Load matches a subset of routes, describe how this subset is selected.
a. 如果提供的负载与路由子集匹配,请描述如何选择该子集。
b. Describe how the convergence event is applied; does it cause instantaneous traffic loss or not?
b. 描述如何应用收敛事件;是否会造成瞬间交通损失?
c. If there is any policy configured, describe the configured policy.
c. 如果配置了任何策略,请描述配置的策略。
Complete the table below for the initial convergence event and the reversion convergence event.
完成下表中的初始收敛事件和反向收敛事件。
Parameter Unit =========================== ========================== Convergence Event Initial or reversion
Parameter Unit =========================== ========================== Convergence Event Initial or reversion
Traffic Forwarding Metrics Total number of packets Number of packets offered to the DUT Total number of packets Number of packets forwarded by the DUT Connectivity packet loss Number of packets Convergence packet loss Number of packets Out-of-order packets Number of packets Duplicate packets Number of packets
流量转发度量数据包总数提供给DUT的数据包总数数据包总数DUT转发的数据包数连接数据包数丢失数据包数收敛数据包数丢失数据包数无序数据包数重复数据包数
Convergence Benchmarks
衔接基准
Rate-Derived Method [RFC6412]: First route convergence Seconds time Full convergence time Seconds
速率导出法[RFC6412]:第一路收敛秒数时间完全收敛秒数
Loss-Derived Method [RFC6412]: Loss-Derived convergence Seconds time
损耗推导法[RFC6412]:损耗推导收敛秒时间
Route-Specific (R-S) Loss-Derived Method: Minimum R-S convergence Seconds time Maximum R-S convergence Seconds time Median R-S convergence Seconds time Average R-S convergence Seconds time
路由特定(R-S)损失推导方法:最小R-S收敛秒时间最大R-S收敛秒时间中值R-S收敛秒时间平均R-S收敛秒时间
Loss of Connectivity (LoC) Benchmarks
连通性丧失(LoC)基准
Loss-Derived Method: Loss-Derived loss of Seconds connectivity period
损失衍生方法:损失衍生的秒数损失连接周期
Route-Specific Loss-Derived Method: Minimum LoC period [n] Array of seconds Minimum Route LoC period Seconds Maximum Route LoC period Seconds Median Route LoC period Seconds Average Route LoC period Seconds
路线特定损失推导方法:最小LoC周期[n]秒数组最小路线LoC周期秒最大路线LoC周期秒中间路线LoC周期秒平均路线LoC周期秒
Benchmarking activities as described in this memo are limited to technology characterization using controlled stimuli in a laboratory environment, with dedicated address space and the constraints specified in the sections above.
本备忘录中所述的基准测试活动仅限于在实验室环境中使用受控刺激进行技术表征,具有专用地址空间和上述章节中规定的约束条件。
The benchmarking network topology is an independent test setup and MUST NOT be connected to devices that may forward the test traffic into a production network or misroute traffic to the test management network.
基准网络拓扑是一个独立的测试设置,不得连接到可能将测试流量转发到生产网络或将流量错误路由到测试管理网络的设备。
Further, benchmarking is performed on a "black-box" basis, relying solely on measurements observable and external to the DUT/SUT.
此外,基准测试是在“黑盒”基础上进行的,仅依赖于可观察到的测量值以及DUT/SUT外部的测量值。
Special capabilities SHOULD NOT exist in the DUT/SUT specifically for benchmarking purposes. Any implications for network security arising from the DUT/SUT SHOULD be identical in the lab and in production networks.
DUT/SUT中不应存在专门用于基准测试的特殊能力。DUT/SUT对网络安全的任何影响应在实验室和生产网络中相同。
[IEEE.802.11] IEEE, "IEEE Standard for Information technology -- Telecommunications and information exchange between systems Local and metropolitan area networks -- Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE 802.11-2012, DOI 10.1109/ieeestd.2012.6178212, April 2012, <http://ieeexplore.ieee.org/servlet/ opac?punumber=6178209>.
[IEEE.802.11]IEEE,“IEEE信息技术标准——系统局域网和城域网之间的电信和信息交换——具体要求第11部分:无线局域网介质访问控制(MAC)和物理层(PHY)规范”,IEEE 802.11-2012,DOI 10.1109/ieeestd.2012.6178212,2012年4月, <http://ieeexplore.ieee.org/servlet/ opac?punumber=6178209>。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<http://www.rfc-editor.org/info/rfc2119>.
[RFC2918] Chen, E., "Route Refresh Capability for BGP-4", RFC 2918, DOI 10.17487/RFC2918, September 2000, <http://www.rfc-editor.org/info/rfc2918>.
[RFC2918]Chen,E.“BGP-4的路由刷新能力”,RFC 2918,DOI 10.17487/RFC2918,2000年9月<http://www.rfc-editor.org/info/rfc2918>.
[RFC4098] Berkowitz, H., Davies, E., Ed., Hares, S., Krishnaswamy, P., and M. Lepp, "Terminology for Benchmarking BGP Device Convergence in the Control Plane", RFC 4098, DOI 10.17487/RFC4098, June 2005, <http://www.rfc-editor.org/info/rfc4098>.
[RFC4098]Berkowitz,H.,Davies,E.,Ed.,Hares,S.,Krishnaswamy,P.,和M.Lepp,“控制平面内BGP设备聚合基准测试术语”,RFC 4098,DOI 10.17487/RFC4098,2005年6月<http://www.rfc-editor.org/info/rfc4098>.
[RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006, <http://www.rfc-editor.org/info/rfc4271>.
[RFC4271]Rekhter,Y.,Ed.,Li,T.,Ed.,和S.Hares,Ed.,“边境网关协议4(BGP-4)”,RFC 4271,DOI 10.17487/RFC4271,2006年1月<http://www.rfc-editor.org/info/rfc4271>.
[RFC6412] Poretsky, S., Imhoff, B., and K. Michielsen, "Terminology for Benchmarking Link-State IGP Data-Plane Route Convergence", RFC 6412, DOI 10.17487/RFC6412, November 2011, <http://www.rfc-editor.org/info/rfc6412>.
[RFC6412]Poretsky,S.,Imhoff,B.,和K.Michielsen,“链路状态IGP数据平面路由聚合基准术语”,RFC 6412,DOI 10.17487/RFC6412,2011年11月<http://www.rfc-editor.org/info/rfc6412>.
[BGPsec] Lepinski, M. and K. Sriram, "BGPsec Protocol Specification", Work in Progress, draft-ietf-sidr-bgpsec-protocol-15, March 2016.
[BGPsec]Lepinski,M.和K.Sriram,“BGPsec协议规范”,正在进行的工作,草案-ietf-sidr-BGPsec-Protocol-15,2016年3月。
[RFC1242] Bradner, S., "Benchmarking Terminology for Network Interconnection Devices", RFC 1242, DOI 10.17487/RFC1242, July 1991, <http://www.rfc-editor.org/info/rfc1242>.
[RFC1242]Bradner,S.,“网络互连设备的基准术语”,RFC 1242,DOI 10.17487/RFC1242,1991年7月<http://www.rfc-editor.org/info/rfc1242>.
[RFC1983] Malkin, G., Ed., "Internet Users' Glossary", FYI 18, RFC 1983, DOI 10.17487/RFC1983, August 1996, <http://www.rfc-editor.org/info/rfc1983>.
[RFC1983]Malkin,G.,Ed.,“互联网用户词汇表”,FYI 18,RFC 1983,DOI 10.17487/RFC1983,1996年8月<http://www.rfc-editor.org/info/rfc1983>.
[RFC2285] Mandeville, R., "Benchmarking Terminology for LAN Switching Devices", RFC 2285, DOI 10.17487/RFC2285, February 1998, <http://www.rfc-editor.org/info/rfc2285>.
[RFC2285]Mandeville,R.,“局域网交换设备的基准术语”,RFC 2285,DOI 10.17487/RFC2285,1998年2月<http://www.rfc-editor.org/info/rfc2285>.
[RFC2545] Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing", RFC 2545, DOI 10.17487/RFC2545, March 1999, <http://www.rfc-editor.org/info/rfc2545>.
[RFC2545]Marques,P.和F.Dupont,“将BGP-4多协议扩展用于IPv6域间路由”,RFC 2545,DOI 10.17487/RFC2545,1999年3月<http://www.rfc-editor.org/info/rfc2545>.
[RFC4724] Sangli, S., Chen, E., Fernando, R., Scudder, J., and Y. Rekhter, "Graceful Restart Mechanism for BGP", RFC 4724, DOI 10.17487/RFC4724, January 2007, <http://www.rfc-editor.org/info/rfc4724>.
[RFC4724]Sangli,S.,Chen,E.,Fernando,R.,Scudder,J.,和Y.Rekhter,“BGP的优雅重启机制”,RFC 4724,DOI 10.17487/RFC4724,2007年1月<http://www.rfc-editor.org/info/rfc4724>.
[RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter, "Multiprotocol Extensions for BGP-4", RFC 4760, DOI 10.17487/RFC4760, January 2007, <http://www.rfc-editor.org/info/rfc4760>.
[RFC4760]Bates,T.,Chandra,R.,Katz,D.,和Y.Rekhter,“BGP-4的多协议扩展”,RFC 4760,DOI 10.17487/RFC4760,2007年1月<http://www.rfc-editor.org/info/rfc4760>.
[RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP Authentication Option", RFC 5925, DOI 10.17487/RFC5925, June 2010, <http://www.rfc-editor.org/info/rfc5925>.
[RFC5925]Touch,J.,Mankin,A.,和R.Bonica,“TCP认证选项”,RFC 5925,DOI 10.17487/RFC5925,2010年6月<http://www.rfc-editor.org/info/rfc5925>.
[RFC6414] Poretsky, S., Papneja, R., Karthik, J., and S. Vapiwala, "Benchmarking Terminology for Protection Performance", RFC 6414, DOI 10.17487/RFC6414, November 2011, <http://www.rfc-editor.org/info/rfc6414>.
[RFC6414]Poretsky,S.,Papneja,R.,Karthik,J.,和S.Vapiwala,“保护性能的基准术语”,RFC 6414,DOI 10.17487/RFC6414,2011年11月<http://www.rfc-editor.org/info/rfc6414>.
[RFC7115] Bush, R., "Origin Validation Operation Based on the Resource Public Key Infrastructure (RPKI)", BCP 185, RFC 7115, DOI 10.17487/RFC7115, January 2014, <http://www.rfc-editor.org/info/rfc7115>.
[RFC7115]Bush,R.,“基于资源公钥基础设施(RPKI)的原产地验证操作”,BCP 185,RFC 7115,DOI 10.17487/RFC7115,2014年1月<http://www.rfc-editor.org/info/rfc7115>.
Acknowledgements
致谢
We would like to thank Anil Tandon, Arvind Pandey, Mohan Nanduri, Jay Karthik, and Eric Brendel for their input and discussions on various sections in the document. We also like to acknowledge Will Liu, Hubert Gee, Semion Lisyansky, and Faisal Shah for their review and feedback on the document.
我们要感谢Anil Tandon、Arvind Pandey、Mohan Nanduri、Jay Karthik和Eric Brendel对文件各部分的投入和讨论。我们还要感谢Will Liu、Hubert Gee、Semion Lisyansky和Faisal Shah对该文件的审查和反馈。
Authors' Addresses
作者地址
Rajiv Papneja Huawei Technologies
华为技术有限公司
Email: rajiv.papneja@huawei.com
Email: rajiv.papneja@huawei.com
Bhavani Parise Skyport Systems
巴瓦尼巴黎机场系统
Email: bparise@skyportsystems.com
Email: bparise@skyportsystems.com
Susan Hares Huawei Technologies
Susan Hares华为技术有限公司
Email: shares@ndzh.com
Email: shares@ndzh.com
Dean Lee IXIA
李依霞院长
Email: dlee@ixiacom.com
Email: dlee@ixiacom.com
Ilya Varlashkin Google
伊利亚·瓦拉什金谷歌
Email: ilya@nobulus.com
Email: ilya@nobulus.com