Internet Engineering Task Force (IETF) O. Gonzalez de Dios, Ed. Request for Comments: 7698 Telefonica I+D Category: Informational R. Casellas, Ed. ISSN: 2070-1721 CTTC F. Zhang Huawei X. Fu Stairnote D. Ceccarelli Ericsson I. Hussain Infinera November 2015
Internet Engineering Task Force (IETF) O. Gonzalez de Dios, Ed. Request for Comments: 7698 Telefonica I+D Category: Informational R. Casellas, Ed. ISSN: 2070-1721 CTTC F. Zhang Huawei X. Fu Stairnote D. Ceccarelli Ericsson I. Hussain Infinera November 2015
Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks
基于GMPLS的灵活网格密集波分复用(DWDM)网络控制框架和要求
Abstract
摘要
To allow efficient allocation of optical spectral bandwidth for systems that have high bit-rates, the International Telecommunication Union Telecommunication Standardization Sector (ITU-T) has extended its Recommendations G.694.1 and G.872 to include a new Dense Wavelength Division Multiplexing (DWDM) grid by defining a set of nominal central frequencies, channel spacings, and the concept of the "frequency slot". In such an environment, a data-plane connection is switched based on allocated, variable-sized frequency ranges within the optical spectrum, creating what is known as a flexible grid (flexi-grid).
为了有效地为具有高比特率的系统分配光谱带宽,国际电信联盟电信标准化部门(ITU-T)扩展了其建议G.694.1和G.872,以包括新的密集波分复用(DWDM)通过定义一组标称中心频率、通道间距和“频率槽”概念来划分网格。在这样的环境中,数据平面连接基于光谱内分配的、可变大小的频率范围进行切换,从而创建所谓的柔性网格(flexi-grid)。
Given the specific characteristics of flexi-grid optical networks and their associated technology, this document defines a framework and the associated control-plane requirements for the application of the existing GMPLS architecture and control-plane protocols to the control of flexi-grid DWDM networks. The actual extensions to the GMPLS protocols will be defined in companion documents.
鉴于flexi grid光网络及其相关技术的具体特点,本文件定义了将现有GMPLS体系结构和控制平面协议应用于flexi grid DWDM网络控制的框架和相关控制平面要求。GMPLS协议的实际扩展将在配套文件中定义。
Status of This Memo
关于下段备忘
This document is not an Internet Standards Track specification; it is published for informational purposes.
本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7698.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7698.
Copyright Notice
版权公告
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2015 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................4 2. Terminology .....................................................5 2.1. Requirements Language ......................................5 2.2. Abbreviations ..............................................5 3. Overview of Flexi-Grid Networks .................................6 3.1. Flexi-Grid in the Context of OTN ...........................6 3.2. Flexi-Grid Terminology .....................................6 3.2.1. Frequency Slots .....................................7 3.2.2. Media-Layer Elements ................................9 3.2.3. Media Channels .....................................10 3.2.4. Optical Tributary Signals ..........................10 3.2.5. Composite Media Channels ...........................11 3.3. Hierarchy in the Media Layer ..............................11 3.4. Flexi-Grid Layered Network Model ..........................12 3.4.1. DWDM Flexi-Grid Enabled Network Element Models .....13 4. GMPLS Applicability ............................................14 4.1. General Considerations ....................................14 4.2. Consideration of TE Links .................................14 4.3. Consideration of LSPs in Flexi-Grid .......................17 4.4. Control-Plane Modeling of Network Elements ................22 4.5. Media Layer Resource Allocation Considerations ............22 4.6. Neighbor Discovery and Link Property Correlation ..........26 4.7. Path Computation, Routing and Spectrum Assignment (RSA) ...27 4.7.1. Architectural Approaches to RSA ....................28 4.8. Routing and Topology Dissemination ........................29 4.8.1. Available Frequency Ranges (Frequency Slots) of DWDM Links ...............................29 4.8.2. Available Slot Width Ranges of DWDM Links ..........29 4.8.3. Spectrum Management ................................29 4.8.4. Information Model ..................................30 5. Control-Plane Requirements .....................................31 5.1. Support for Media Channels ................................31 5.1.1. Signaling ..........................................32 5.1.2. Routing ............................................32 5.2. Support for Media Channel Resizing ........................33 5.3. Support for Logical Associations of Multiple Media Channels ..................................................33 5.4. Support for Composite Media Channels ......................33 5.5. Support for Neighbor Discovery and Link Property Correlation ...............................................34 6. Security Considerations ........................................34 7. Manageability Considerations ...................................35
1. Introduction ....................................................4 2. Terminology .....................................................5 2.1. Requirements Language ......................................5 2.2. Abbreviations ..............................................5 3. Overview of Flexi-Grid Networks .................................6 3.1. Flexi-Grid in the Context of OTN ...........................6 3.2. Flexi-Grid Terminology .....................................6 3.2.1. Frequency Slots .....................................7 3.2.2. Media-Layer Elements ................................9 3.2.3. Media Channels .....................................10 3.2.4. Optical Tributary Signals ..........................10 3.2.5. Composite Media Channels ...........................11 3.3. Hierarchy in the Media Layer ..............................11 3.4. Flexi-Grid Layered Network Model ..........................12 3.4.1. DWDM Flexi-Grid Enabled Network Element Models .....13 4. GMPLS Applicability ............................................14 4.1. General Considerations ....................................14 4.2. Consideration of TE Links .................................14 4.3. Consideration of LSPs in Flexi-Grid .......................17 4.4. Control-Plane Modeling of Network Elements ................22 4.5. Media Layer Resource Allocation Considerations ............22 4.6. Neighbor Discovery and Link Property Correlation ..........26 4.7. Path Computation, Routing and Spectrum Assignment (RSA) ...27 4.7.1. Architectural Approaches to RSA ....................28 4.8. Routing and Topology Dissemination ........................29 4.8.1. Available Frequency Ranges (Frequency Slots) of DWDM Links ...............................29 4.8.2. Available Slot Width Ranges of DWDM Links ..........29 4.8.3. Spectrum Management ................................29 4.8.4. Information Model ..................................30 5. Control-Plane Requirements .....................................31 5.1. Support for Media Channels ................................31 5.1.1. Signaling ..........................................32 5.1.2. Routing ............................................32 5.2. Support for Media Channel Resizing ........................33 5.3. Support for Logical Associations of Multiple Media Channels ..................................................33 5.4. Support for Composite Media Channels ......................33 5.5. Support for Neighbor Discovery and Link Property Correlation ...............................................34 6. Security Considerations ........................................34 7. Manageability Considerations ...................................35
8. References .....................................................36 8.1. Normative References ......................................36 8.2. Informative References ....................................37 Acknowledgments ...................................................39 Contributors ......................................................39 Authors' Addresses ................................................41
8. References .....................................................36 8.1. Normative References ......................................36 8.2. Informative References ....................................37 Acknowledgments ...................................................39 Contributors ......................................................39 Authors' Addresses ................................................41
The term "flexible grid" ("flexi-grid" for short), as defined by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T) Study Group 15 in the latest version of [G.694.1], refers to the updated set of nominal central frequencies (a frequency grid), channel spacing, and optical spectrum management and allocation considerations that have been defined in order to allow an efficient and flexible allocation and configuration of optical spectral bandwidth for systems that have high bit-rates.
国际电信联盟电信标准化部门(ITU-T)第15研究组在最新版[G.694.1]中定义的术语“柔性电网”(简称“柔性电网”)是指更新的标称中心频率(频率电网)、信道间隔、,以及已定义的光谱管理和分配注意事项,以允许高效且灵活地分配和配置具有高比特率的系统的光谱带宽。
A key concept of flexi-grid is the "frequency slot": a variable-sized optical frequency range that can be allocated to a data connection. As detailed later in the document, a frequency slot is characterized by its nominal central frequency and its slot width, which, as per [G.694.1], is constrained to be a multiple of a given slot width granularity.
flexi grid的一个关键概念是“频率槽”:可分配给数据连接的可变大小的光学频率范围。如本文件后面所述,频率时隙的特征是其标称中心频率和时隙宽度,根据[G.694.1],其限制为给定时隙宽度粒度的倍数。
Compared to a traditional fixed-grid network, which uses fixed-size optical spectrum frequency ranges or frequency slots with typical channel separations of 50 GHz, a flexible-grid network can select its media channels with a more flexible choice of slot widths, allocating as much optical spectrum as required.
与传统的固定网格网络相比,灵活网格网络使用固定大小的光谱频率范围或典型信道间隔为50 GHz的频率槽,可以选择具有更灵活的槽宽选择的媒体信道,根据需要分配尽可能多的光谱。
From a networking perspective, a flexible-grid network is assumed to be a layered network [G.872] [G.800] in which the media layer is the server layer and the optical signal layer is the client layer. In the media layer, switching is based on a frequency slot, and the size of a media channel is given by the properties of the associated frequency slot. In this layered network, a media channel can transport more than one Optical Tributary Signal (OTSi), as defined later in this document.
从网络的角度来看,假设柔性网格网络是分层网络[G.872][G.800],其中媒体层是服务器层,光信号层是客户端层。在媒体层中,切换基于频率槽,媒体信道的大小由相关频率槽的属性给出。在这个分层网络中,媒体信道可以传输一个以上的光支路信号(OTSi),如本文后面所定义。
A Wavelength Switched Optical Network (WSON), addressed in [RFC6163], is a term commonly used to refer to the application/deployment of a GMPLS-based control plane for the control (e.g., provisioning and recovery) of a fixed-grid Wavelength Division Multiplexing (WDM) network in which media (spectrum) and signal are jointly considered.
[RFC6163]中提到的波长交换光网络(WSON)是一个术语,通常用于指基于GMPLS的控制平面的应用/部署,用于控制(例如,供应和恢复)固定网格波分复用(WDM)网络,其中媒体(频谱)和信号被联合考虑。
This document defines the framework for a GMPLS-based control of flexi-grid enabled Dense Wavelength Division Multiplexing (DWDM) networks (in the scope defined by ITU-T layered Optical Transport Networks [G.872]), as well as a set of associated control-plane requirements. An important design consideration relates to the decoupling of the management of the optical spectrum resource and the client signals to be transported.
本文件定义了基于GMPLS的灵活网格密集波分复用(DWDM)网络控制框架(在ITU-T分层光传输网络[G.872]定义的范围内),以及一组相关的控制平面要求。一个重要的设计考虑涉及到将要传输的光谱资源和客户机信号的管理解耦。
Further terminology specific to flexi-grid networks can be found in Section 3.2.
有关flexi网格网络的更多术语,请参见第3.2节。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。
While [RFC2119] describes interpretations of these key words in terms of protocol specifications and implementations, they are used in this document to describe design requirements for protocol extensions.
虽然[RFC2119]从协议规范和实现的角度描述了这些关键词的解释,但在本文档中,它们用于描述协议扩展的设计要求。
FS: Frequency Slot
频率槽
FSC: Fiber-Switch Capable
FSC:支持光纤交换机
LSR: Label Switching Router
标签交换路由器
NCF: Nominal Central Frequency
标称中心频率
OCC: Optical Channel Carrier
光信道载波
OCh: Optical Channel
光信道
OCh-P: Optical Channel Payload
OCh-P:光信道有效载荷
OTN: Optical Transport Network
光传输网
OTSi: Optical Tributary Signal
光支路信号
OTSiG: OTSi Group is a set of OTSi
OTSiG:OTSi组是一组OTSi
PCE: Path Computation Element
路径计算元素
ROADM: Reconfigurable Optical Add/Drop Multiplexer
ROADM:可重构光分插复用器
SSON: Spectrum-Switched Optical Network
频谱交换光网络
SWG: Slot Width Granularity
槽宽粒度
[G.872] describes, from a network level, the functional architecture of an OTN. It is decomposed into independent-layer networks with client/layer relationships among them. A simplified view of the OTN layers is shown in Figure 1.
[G.872]从网络层面描述OTN的功能架构。它被分解为独立的层网络,其中包含客户机/层关系。OTN层的简化视图如图1所示。
+----------------+ | Digital Layer | +----------------+ | Signal Layer | +----------------+ | Media Layer | +----------------+
+----------------+ | Digital Layer | +----------------+ | Signal Layer | +----------------+ | Media Layer | +----------------+
Figure 1: Generic OTN Overview
图1:通用OTN概述
In the OTN layering context, the media layer is the server layer of the optical signal layer. The optical signal is guided to its destination by the media layer by means of a network media channel. In the media layer, switching is based on a frequency slot.
在OTN分层上下文中,媒体层是光信号层的服务器层。光信号通过网络媒体信道由媒体层引导到其目的地。在媒体层,交换是基于频率槽的。
In this scope, this document uses the term "flexi-grid enabled DWDM network" to refer to a network in which switching is based on frequency slots defined using the flexible grid. This document mainly covers the media layer, as well as the required adaptations from the signal layer. The present document is thus focused on the control and management of the media layer.
在此范围内,本文件使用术语“灵活网格启用的DWDM网络”指的是基于使用灵活网格定义的频率时隙进行切换的网络。本文档主要涵盖媒体层以及信号层所需的改编。因此,本文件侧重于媒体层的控制和管理。
This section presents the definitions of the terms used in flexi-grid networks. More details about these terms can be found in ITU-T Recommendations [G.694.1], [G.872], [G.870], [G.8080], and [G.959.1-2013].
本节介绍了flexi网格网络中使用的术语的定义。有关这些术语的更多详细信息,请参见ITU-T建议[G.694.1]、[G.872]、[G.870]、[G.8080]和[G.959.1-2013]。
Where appropriate, this document also uses terminology and lexicography from [RFC4397].
在适当的情况下,本文件还使用了[RFC4397]中的术语和词典。
This subsection is focused on the frequency slot and related terms.
本小节重点介绍频率槽和相关术语。
o Frequency Slot [G.694.1]: The frequency range allocated to a slot within the flexible grid and unavailable to other slots. A frequency slot is defined by its nominal central frequency and its slot width.
o 频率槽[G.694.1]:分配给灵活网格内某个槽的频率范围,其他槽不可用。频率槽由其标称中心频率和槽宽定义。
o Nominal Central Frequency: Each of the allowed frequencies as per the definition of the flexible DWDM grid in [G.694.1]. The set of nominal central frequencies can be built using the following expression:
o 标称中心频率:根据[G.694.1]中柔性DWDM网格定义的每个允许频率。可使用以下表达式建立标称中心频率集:
f = 193.1 THz + n x 0.00625 THz
f=193.1太赫兹+n x 0.00625太赫兹
where 193.1 THz is the ITU-T "anchor frequency" for transmission over the C-band and 'n' is a positive or negative integer including 0.
其中,193.1太赫兹是用于在C波段上传输的ITU-T“锚定频率”,而“n”是包括0的正整数或负整数。
-5 -4 -3 -2 -1 0 1 2 3 4 5 <- values of n ...+--+--+--+--+--+--+--+--+--+--+- ^ 193.1 THz <- anchor frequency
-5 -4 -3 -2 -1 0 1 2 3 4 5 <- values of n ...+--+--+--+--+--+--+--+--+--+--+- ^ 193.1 THz <- anchor frequency
Figure 2: Anchor Frequency and Set of Nominal Central Frequencies
图2:锚频率和标称中心频率集
o Nominal Central Frequency Granularity: The spacing between allowed nominal central frequencies. It is set to 6.25 GHz [G.694.1].
o 标称中心频率粒度:允许的标称中心频率之间的间距。它被设置为6.25 GHz[G.694.1]。
o Slot Width Granularity (SWG): 12.5 GHz, as defined in [G.694.1].
o 槽宽粒度(SWG):12.5 GHz,如[G.694.1]中所定义。
o Slot Width: Determines the "amount" of optical spectrum, regardless of its actual "position" in the frequency axis. A slot width is constrained to be m x SWG (that is, m x 12.5 GHz), where 'm' is an integer greater than or equal to 1.
o 狭缝宽度:确定光谱的“数量”,而不考虑其在频率轴上的实际“位置”。时隙宽度被限制为m x SWG(即m x 12.5 GHz),其中“m”是大于或等于1的整数。
Frequency Slot 1 Frequency Slot 2 ------------- ------------------- | | | | -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ...--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--... ------------- ------------------- ^ ^ Slot NCF = 193.1 THz Slot NCF = 193.14375 THz Slot width = 25 GHz Slot width = 37.5 GHz n = 0, m = 2 n = 7, m = 3
Frequency Slot 1 Frequency Slot 2 ------------- ------------------- | | | | -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ...--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--... ------------- ------------------- ^ ^ Slot NCF = 193.1 THz Slot NCF = 193.14375 THz Slot width = 25 GHz Slot width = 37.5 GHz n = 0, m = 2 n = 7, m = 3
Figure 3: Example Frequency Slots
图3:示例频率槽
* The symbol '+' represents the allowed nominal central frequencies.
* 符号“+”表示允许的标称中心频率。
* The '--' represents the nominal central frequency granularity in units of 6.25 GHz.
* “--”表示标称中心频率粒度,单位为6.25 GHz。
* The '^' represents the slot nominal central frequency.
* “^”表示插槽标称中心频率。
* The number on the top of the '+' symbol represents the 'n' in the frequency calculation formula.
* “+”符号顶部的数字表示频率计算公式中的“n”。
* The nominal central frequency is 193.1 THz when n equals zero.
* 当n等于零时,标称中心频率为193.1太赫兹。
o Effective Frequency Slot [G.870]: That part of the frequency slots of the filters along the media channel that is common to all of the filters' frequency slots. Note that both the terms "frequency slot" and "effective frequency slot" are applied locally.
o 有效频率槽[G.870]:沿媒体通道的滤波器频率槽的一部分,所有滤波器的频率槽共用。请注意,术语“频率时隙”和“有效频率时隙”均在本地应用。
o Figure 4 shows the effect of combining two filters along a channel. The combination of Frequency Slot 1 and Frequency Slot 2 applied to the media channel is the effective frequency slot shown.
o 图4显示了沿通道组合两个滤波器的效果。应用于媒体信道的频率时隙1和频率时隙2的组合是所示的有效频率时隙。
Frequency Slot 1 ------------- | | -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ..--+--+--+--+--X--+--+--+--+--+--+--+--+--+--+--+--...
Frequency Slot 1 ------------- | | -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ..--+--+--+--+--X--+--+--+--+--+--+--+--+--+--+--+--...
Frequency Slot 2 ------------------- | | -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ..--+--+--+--+--X--+--+--+--+--+--+--+--+--+--+--+--...
Frequency Slot 2 ------------------- | | -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ..--+--+--+--+--X--+--+--+--+--+--+--+--+--+--+--+--...
=============================================== Effective Frequency Slot ------------- | | -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ..--+--+--+--+--X--+--+--+--+--+--+--+--+--+--+--+--...
=============================================== Effective Frequency Slot ------------- | | -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ..--+--+--+--+--X--+--+--+--+--+--+--+--+--+--+--+--...
Figure 4: Effective Frequency Slot
图4:有效频率槽
o Media Element: A media element directs an optical signal or affects the properties of an optical signal. It does not modify the properties of the information that has been modulated to produce the optical signal [G.870]. Examples of media elements include fibers, amplifiers, filters, and switching matrices.
o 媒体元件:媒体元件引导光信号或影响光信号的特性。它不会修改已被调制以产生光信号的信息的属性[G.870]。介质元件的示例包括光纤、放大器、滤波器和开关矩阵。
o Media Channel Matrix: The media channel matrix provides flexible connectivity for the media channels. That is, it represents a point of flexibility where relationships between the media ports at the edge of a media channel matrix may be created and broken. The relationship between these ports is called a "matrix channel". (Network) media channels are switched in a media channel matrix.
o 媒体频道矩阵:媒体频道矩阵为媒体频道提供灵活的连接。也就是说,它代表了一个灵活性点,在该点上,媒体通道矩阵边缘的媒体端口之间的关系可以被创建和破坏。这些端口之间的关系称为“矩阵通道”。(网络)在媒体信道矩阵中切换媒体信道。
This section defines concepts such as the (network) media channel; the mapping to GMPLS constructs (i.e., LSP) is detailed in Section 4.
本节定义了(网络)媒体频道等概念;第4节详细介绍了到GMPLS结构(即LSP)的映射。
o Media Channel: A media association that represents both the topology (i.e., path through the media) and the resource (frequency slot) that it occupies. As a topological construct, it represents a frequency slot (an effective frequency slot) supported by a concatenation of media elements (fibers, amplifiers, filters, switching matrices...). This term is used to identify the end-to-end physical-layer entity with its corresponding (one or more) frequency slots local at each link filter.
o 媒体通道:表示拓扑(即通过媒体的路径)及其占用的资源(频率槽)的媒体关联。作为拓扑结构,它表示由媒体元素(光纤、放大器、滤波器、开关矩阵等)串联支持的频率槽(有效频率槽)。该术语用于识别端到端物理层实体及其在每个链路滤波器处的相应(一个或多个)本地频率时隙。
o Network Media Channel: Defined in [G.870] as a media channel that transports a single OTSi (defined in the next subsection).
o 网络媒体信道:在[G.870]中定义为传输单个OTSi的媒体信道(在下一小节中定义)。
o Optical Tributary Signal (OTSi): The optical signal that is placed within a network media channel for transport across the optical network. This may consist of a single modulated optical carrier or a group of modulated optical carriers or subcarriers. To provide a connection between the OTSi source and the OTSi sink, the optical signal must be assigned to a network media channel (see also [G.959.1-2013]).
o 光支路信号(OTSi):放置在网络媒体通道内的光信号,用于通过光网络传输。这可以由单个调制光载波或一组调制光载波或子载波组成。为了在OTSi源和OTSi接收器之间提供连接,必须将光信号分配给网络媒体信道(另请参见[G.959.1-2013])。
o OTSi Group (OTSiG): The set of OTSi that are carried by a group of network media channels. Each OTSi is carried by one network media channel. From a management perspective, it SHOULD be possible to manage both the OTSiG and a group of network media channels as single entities.
o OTSi组(OTSiG):由一组网络媒体频道承载的OTSi集。每个OTSi由一个网络媒体通道承载。从管理角度来看,应该可以将OTSiG和一组网络媒体频道作为单个实体进行管理。
o It is possible to construct an end-to-end media channel as a composite of more than one network media channel. A composite media channel carries a group of OTSi (i.e., OTSiG). Each OTSi is carried by one network media channel. This OTSiG is carried over a single fiber.
o 可以将端到端媒体信道构造为多个网络媒体信道的组合。复合媒体信道承载一组OTSi(即OTSiG)。每个OTSi由一个网络媒体通道承载。该OTSiG通过一根光纤传输。
o In this case, the effective frequency slots may be contiguous (i.e., there is no spectrum between them that can be used for other media channels) or non-contiguous.
o 在这种情况下,有效频率时隙可以是连续的(即,它们之间没有可用于其他媒体信道的频谱)或非连续的。
o It is not currently envisaged that such composite media channels may be constructed from slots carried on different fibers whether those fibers traverse the same hop-by-hop path through the network or not.
o 目前还没有设想这样的复合媒体信道可以由不同光纤上携带的时隙来构造,无论这些光纤是否通过网络穿过相同的逐跳路径。
o Furthermore, it is not considered likely that a media channel may be constructed from a different variation of slot composition on each hop. That is, the slot composition (i.e., the group of OTSi carried by the composite media channel) must be the same from one end of the media channel to the other, even if the specific slot for each OTSi and the spacing among slots may vary hop by hop.
o 此外,不认为媒体信道可能由每个跳上的时隙组成的不同变化来构造。也就是说,即使每个OTSi的特定时隙和时隙之间的间隔可以逐跳变化,从媒体信道的一端到另一端的时隙组成(即,复合媒体信道承载的OTSi组)必须相同。
o How the signal is carried across such groups of network media channels is out of scope for this document.
o 如何通过这些网络媒体频道组传输信号超出了本文档的范围。
In summary, the concept of the frequency slot is a logical abstraction that represents a frequency range, while the media layer represents the underlying media support. Media channels are media associations, characterized by their respective (effective) frequency slots, and media channels are switched in media channel matrices. From the control and management perspective, a media channel can be logically split into network media channels.
总之,频率槽的概念是表示频率范围的逻辑抽象,而媒体层表示底层媒体支持。媒体频道是媒体关联,以其各自的(有效)频率槽为特征,媒体频道在媒体频道矩阵中切换。从控制和管理的角度来看,媒体频道可以在逻辑上划分为网络媒体频道。
In Figure 5, a media channel has been configured and dimensioned to support two network media channels, each of them carrying one OTSi.
在图5中,一个媒体通道的配置和尺寸确定为支持两个网络媒体通道,每个网络媒体通道承载一个OTSi。
Media Channel Frequency Slot +-------------------------------X------------------------------+ | | | Frequency Slot Frequency Slot | | +-----------X-----------+ +----------X-----------+ | | | OTSi | | OTSi | | | | o | | o | | | | | | | | | | -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 --+---+---+---+---+---+---+---+---+---+---+---+--+---+---+---+---+--
Media Channel Frequency Slot +-------------------------------X------------------------------+ | | | Frequency Slot Frequency Slot | | +-----------X-----------+ +----------X-----------+ | | | OTSi | | OTSi | | | | o | | o | | | | | | | | | | -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 --+---+---+---+---+---+---+---+---+---+---+---+--+---+---+---+---+--
<- Network Media Channel -> <- Network Media Channel ->
<- Network Media Channel -> <- Network Media Channel ->
<------------------------ Media Channel ----------------------->
<------------------------ Media Channel ----------------------->
X - Frequency Slot Central Frequency
X-频率槽中心频率
o - Signal Central Frequency
o -信号中心频率
Figure 5: Example of Media Channel, Network Media Channels, and Associated Frequency Slots
图5:媒体频道、网络媒体频道和相关频率槽的示例
In the OTN layered network, the network media channel transports a single OTSi (see Figure 6).
在OTN分层网络中,网络媒体通道传输单个OTSi(见图6)。
| OTSi | O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O | | | Channel Port Network Media Channel Channel Port | O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O | | +--------+ +-----------+ +--------+ | \ (1) | | (1) | | (1) / | | \----|-----------------|-----------|-------------------|-----/ | +--------+ Link Channel +-----------+ Link Channel +--------+ Media Channel Media Channel Media Channel Matrix Matrix Matrix
| OTSi | O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O | | | Channel Port Network Media Channel Channel Port | O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O | | +--------+ +-----------+ +--------+ | \ (1) | | (1) | | (1) / | | \----|-----------------|-----------|-------------------|-----/ | +--------+ Link Channel +-----------+ Link Channel +--------+ Media Channel Media Channel Media Channel Matrix Matrix Matrix
The symbol (1) indicates a matrix channel
符号(1)表示矩阵通道
Figure 6: Simplified Layered Network Model
图6:简化的分层网络模型
Note that a particular example of OTSi is the OCh-P. Figure 7 shows this specific example as defined in G.805 [G.805].
请注意,OTSi的一个特定示例是OCh-P。图7显示了G.805[G.805]中定义的该特定示例。
OCh AP Trail (OCh) OCh AP O- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O | | --- OCh-P OCh-P --- \ / source sink \ / + + | OCh-P OCh-P Network Connection OCh-P | O TCP - - - - - - - - - - - - - - - - - - - - - - - - - - -TCP O | | |Channel Port Network Media Channel Channel Port | O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O | | +--------+ +-----------+ +---------+ | \ (1) | OCh-P LC | (1) | OCh-P LC | (1) / | | \----|-----------------|-----------|-----------------|------/ | +--------+ Link Channel +-----------+ Link Channel +---------+ Media Channel Media Channel Media Channel Matrix Matrix Matrix
OCh AP Trail (OCh) OCh AP O- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O | | --- OCh-P OCh-P --- \ / source sink \ / + + | OCh-P OCh-P Network Connection OCh-P | O TCP - - - - - - - - - - - - - - - - - - - - - - - - - - -TCP O | | |Channel Port Network Media Channel Channel Port | O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O | | +--------+ +-----------+ +---------+ | \ (1) | OCh-P LC | (1) | OCh-P LC | (1) / | | \----|-----------------|-----------|-----------------|------/ | +--------+ Link Channel +-----------+ Link Channel +---------+ Media Channel Media Channel Media Channel Matrix Matrix Matrix
The symbol (1) indicates a matrix channel "LC" indicates a link connection
符号(1)表示矩阵信道“LC”表示链路连接
Figure 7: Layered Network Model According to G.805
图7:根据G.805的分层网络模型
A flexible-grid network is constructed from subsystems that include WDM links, tunable transmitters, and receivers (i.e., media elements including media-layer switching elements that are media matrices), as well as electro-optical network elements. This is just the same as in a fixed-grid network, except that each element has flexible-grid characteristics.
柔性网格网络由包括WDM链路、可调谐发射机和接收机(即,包括媒体矩阵的媒体层交换元件的媒体元件)以及电光网络元件的子系统构成。这与固定网格网络中的情况相同,只是每个元素都具有灵活的网格特性。
As stated in Clause 7 of [G.694.1], the flexible DWDM grid has a nominal central frequency granularity of 6.25 GHz and a slot width granularity of 12.5 GHz. However, devices or applications that make use of the flexible grid might not be capable of supporting every possible slot width or position. In other words, applications may be defined where only a subset of the possible slot widths and positions is required to be supported. For example, an application could be defined where the nominal central frequency granularity is 12.5 GHz (by only requiring values of n that are even) and where slot widths are a multiple of 25 GHz (by only requiring values of m that are even).
如[G.694.1]第7条所述,柔性DWDM网格的标称中心频率粒度为6.25 GHz,时隙宽度粒度为12.5 GHz。然而,使用柔性网格的设备或应用程序可能无法支持每个可能的插槽宽度或位置。换句话说,可以定义仅需要支持可能的槽宽度和位置的子集的应用。例如,可以在标称中心频率粒度为12.5ghz(仅要求n的值为偶数)和时隙宽度为25ghz的倍数(仅要求m的值为偶数)的情况下定义应用。
The goal of this section is to provide an insight into the application of GMPLS as a control mechanism in flexi-grid networks. Specific control-plane requirements for the support of flexi-grid networks are covered in Section 5. This framework is aimed at controlling the media layer within the OTN hierarchy and controlling the required adaptations of the signal layer. This document also defines the term "Spectrum-Switched Optical Network" (SSON) to refer to a flexi-grid enabled DWDM network that is controlled by a GMPLS or PCE control plane.
本节的目的是深入了解GMPLS作为一种控制机制在flexi网格网络中的应用。第5节介绍了支持flexi电网的具体控制平面要求。该框架旨在控制OTN层次结构中的媒体层,并控制信号层所需的自适应。本文件还将术语“频谱交换光网络”(SSN)定义为指由GMPLS或PCE控制平面控制的灵活网格化DWDM网络。
This section provides a mapping of the ITU-T G.872 architectural aspects to GMPLS and control-plane terms and also considers the relationship between the architectural concept or construct of a media channel and its control-plane representations (e.g., as a TE link, as defined in [RFC3945]).
本节提供了ITU-T G.872体系结构方面到GMPLS和控制平面术语的映射,还考虑了媒体信道的体系结构概念或构造与其控制平面表示(例如,如[RFC3945]中定义的TE链路)之间的关系。
The GMPLS control of the media layer deals with the establishment of media channels that are switched in media channel matrices. GMPLS labels are used to locally represent the media channel and its associated frequency slot. Network media channels are considered a particular case of media channels when the endpoints are transceivers (that is, the source and destination of an OTSi).
媒体层的GMPLS控制处理在媒体信道矩阵中切换的媒体信道的建立。GMPLS标签用于本地表示媒体信道及其相关的频率槽。当端点是收发器(即OTSi的源和目的地)时,网络媒体信道被视为媒体信道的特定情况。
From a theoretical point of view, a fiber can be modeled as having a frequency slot that ranges from minus infinity to plus infinity. This representation helps us understand the relationship between frequency slots and ranges.
从理论上看,光纤可以建模为具有从负无穷大到正无穷大的频率槽。这种表示有助于我们理解频率槽和范围之间的关系。
The frequency slot is a local concept that applies within a component or element. When applied to a media channel, we are referring to its effective frequency slot as defined in [G.872].
频率槽是一个适用于组件或元件的局部概念。当应用于媒体信道时,我们指的是[G.872]中定义的有效频率槽。
The association sequence of the three components (i.e., a filter, a fiber, and a filter) is a media channel in its most basic form. From the control-plane perspective, this may be modeled as a (physical) TE link with a contiguous optical spectrum. This can be represented by saying that the portion of spectrum available at time t0 depends on which filters are placed at the ends of the fiber and how they have been configured. Once filters are placed, we have a one-hop media channel. In practical terms, associating a fiber with the terminating filters determines the usable optical spectrum.
三个组件(即滤波器、光纤和滤波器)的关联序列是最基本形式的媒体信道。从控制平面的角度来看,可以将其建模为具有连续光谱的(物理)TE链路。这可以表示为,时间t0处可用的频谱部分取决于光纤末端放置的滤波器以及它们的配置方式。一旦设置了过滤器,我们就有了一个单跳媒体频道。实际上,将光纤与端接滤波器相关联决定了可用的光谱。
---------------+ +----------------- | | +--------+ +--------+ | | | | +--------- ---o| =============================== o--| | | Fiber | | | --\ /-- ---o| | | o--| \/ | | | | | /\ ---o| =============================== o--| --/ \-- | Filter | | Filter | | | | | | +--------- +--------+ +--------+ | | |------- Basic Media Channel ---------| ---------------+ +-----------------
---------------+ +----------------- | | +--------+ +--------+ | | | | +--------- ---o| =============================== o--| | | Fiber | | | --\ /-- ---o| | | o--| \/ | | | | | /\ ---o| =============================== o--| --/ \-- | Filter | | Filter | | | | | | +--------- +--------+ +--------+ | | |------- Basic Media Channel ---------| ---------------+ +-----------------
--------+ +-------- |--------------------------------------| LSR | TE link | LSR |--------------------------------------| --------+ +--------
--------+ +-------- |--------------------------------------| LSR | TE link | LSR |--------------------------------------| --------+ +--------
Figure 8: (Basic) Media Channel and TE Link
图8:(基本)媒体频道和TE链接
Additionally, when a cross-connect for a specific frequency slot is considered, the resulting media support of joining basic media channels is still a media channel, i.e., a longer association sequence of media elements and its effective frequency slot. In other words, it is possible to "concatenate" several media channels (e.g., patch on intermediate nodes) to create a single media channel.
此外,当考虑特定频率时隙的交叉连接时,连接基本媒体信道的结果媒体支持仍然是媒体信道,即,媒体元素及其有效频率时隙的更长关联序列。换句话说,可以“连接”多个媒体通道(例如,中间节点上的补丁)以创建单个媒体通道。
The architectural construct resulting from the association sequence of basic media channels and media-layer matrix cross-connects can be represented as (i.e., corresponds to) a Label Switched Path (LSP) from a control-plane perspective.
从控制平面的角度来看,由基本媒体信道和媒体层矩阵交叉连接的关联序列产生的架构构造可以表示为(即,对应于)标签交换路径(LSP)。
----------+ +------------------------------+ +--------- | | | | +------+ +------+ +------+ +------+ | | | | +----------+ | | | | --o| ========= o--| |--o ========= o-- | | Fiber | | | --\ /-- | | | Fiber | | --o| | | o--| \/ |--o | | o-- | | | | | /\ | | | | | --o| ========= o--***********|--o ========= o-- |Filter| |Filter| | | |Filter| |Filter| | | | | | | | | +------+ +------+ +------+ +------+ | | | | <- Basic Media -> <- Matrix -> <- Basic Media -> |Channel| Channel |Channel| ----------+ +------------------------------+ +---------
----------+ +------------------------------+ +--------- | | | | +------+ +------+ +------+ +------+ | | | | +----------+ | | | | --o| ========= o--| |--o ========= o-- | | Fiber | | | --\ /-- | | | Fiber | | --o| | | o--| \/ |--o | | o-- | | | | | /\ | | | | | --o| ========= o--***********|--o ========= o-- |Filter| |Filter| | | |Filter| |Filter| | | | | | | | | +------+ +------+ +------+ +------+ | | | | <- Basic Media -> <- Matrix -> <- Basic Media -> |Channel| Channel |Channel| ----------+ +------------------------------+ +---------
<-------------------- Media Channel ---------------->
<-------------------- Media Channel ---------------->
------+ +---------------+ +------ |------------------| |------------------| LSR | TE link | LSR | TE link | LSR |------------------| |------------------| ------+ +---------------+ +------
------+ +---------------+ +------ |------------------| |------------------| LSR | TE link | LSR | TE link | LSR |------------------| |------------------| ------+ +---------------+ +------
Figure 9: Extended Media Channel
图9:扩展媒体通道
Furthermore, if appropriate, the media channel can also be represented as a TE link or Forwarding Adjacency (FA) [RFC4206], augmenting the control-plane network model.
此外,如果合适,媒体信道还可以表示为TE链路或转发邻接(FA)[RFC4206],以增强控制平面网络模型。
----------+ +------------------------------+ +--------- | | | | +------+ +------+ +------+ +------+ | | | | +----------+ | | | | --o| ========= o--| |--o ========= o-- | | Fiber | | | --\ /-- | | | Fiber | | --o| | | o--| \/ |--o | | o-- | | | | | /\ | | | | | --o| ========= o--***********|--o ========= o-- |Filter| |Filter| | | |Filter| |Filter| | | | | | | | | +------+ +------+ +------+ +------+ | | | | ----------+ +------------------------------+ +---------
----------+ +------------------------------+ +--------- | | | | +------+ +------+ +------+ +------+ | | | | +----------+ | | | | --o| ========= o--| |--o ========= o-- | | Fiber | | | --\ /-- | | | Fiber | | --o| | | o--| \/ |--o | | o-- | | | | | /\ | | | | | --o| ========= o--***********|--o ========= o-- |Filter| |Filter| | | |Filter| |Filter| | | | | | | | | +------+ +------+ +------+ +------+ | | | | ----------+ +------------------------------+ +---------
<------------------------ Media Channel ----------->
<------------------------ Media Channel ----------->
------+ +----- |------------------------------------------------------| LSR | TE link | LSR |------------------------------------------------------| ------+ +-----
------+ +----- |------------------------------------------------------| LSR | TE link | LSR |------------------------------------------------------| ------+ +-----
Figure 10: Extended Media Channel TE Link or FA
图10:扩展媒体通道TE链路或FA
The flexi-grid LSP is a control-plane representation of a media channel. Since network media channels are media channels, an LSP may also be the control-plane representation of a network media channel (without considering the adaptation functions). From a control-plane perspective, the main difference (regardless of the actual effective frequency slot, which may be dimensioned arbitrarily) is that the LSP that represents a network media channel also includes the endpoints (transceivers), including the cross-connects at the ingress and egress nodes. The ports towards the client can still be represented as interfaces from the control-plane perspective.
flexi grid LSP是媒体频道的控制平面表示。由于网络媒体信道是媒体信道,因此LSP也可以是网络媒体信道的控制平面表示(不考虑自适应功能)。从控制平面的角度来看,主要区别(与实际有效频率时隙无关,实际有效频率时隙可以任意标注)是,表示网络媒体信道的LSP还包括端点(收发器),包括入口和出口节点处的交叉连接。从控制平面的角度来看,通向客户机的端口仍然可以表示为接口。
Figure 11 shows an LSP routed between three nodes. The LSP is terminated before the optical matrix of the ingress and egress nodes and can represent a media channel. This case does not (and cannot) represent a network media channel because it does not include (and cannot include) the transceivers.
图11显示了在三个节点之间路由的LSP。LSP在入口和出口节点的光学矩阵之前终止,并且可以表示媒体信道。这种情况不(也不能)表示网络媒体频道,因为它不包括(也不能包括)收发器。
---------+ +--------------------------------+ +-------- | | | | +------+ +------+ +------+ +------+ | | | | +----------+ | | | | -o| ========= o---| |---o ========= o- | | Fiber | | | --\ /-- | | | Fiber | | -o|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>o- | | | | | /\ | | | | | -o| ========= o---***********|---o ========= o- |Filter| |Filter| | | |Filter| |Filter| | | | | | | | | +------+ +------+ +------+ +------+ | | | | ---------+ +--------------------------------+ +--------
---------+ +--------------------------------+ +-------- | | | | +------+ +------+ +------+ +------+ | | | | +----------+ | | | | -o| ========= o---| |---o ========= o- | | Fiber | | | --\ /-- | | | Fiber | | -o|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>o- | | | | | /\ | | | | | -o| ========= o---***********|---o ========= o- |Filter| |Filter| | | |Filter| |Filter| | | | | | | | | +------+ +------+ +------+ +------+ | | | | ---------+ +--------------------------------+ +--------
>>>>>>>>>>>>>>>>>>>>>>>>>>>> LSP >>>>>>>>>>>>>>>>>>>>>>>> -----+ +---------------+ +----- |------------------| |----------------| LSR | TE link | LSR | TE link | LSR |------------------| |----------------| -----+ +---------------+ +-----
>>>>>>>>>>>>>>>>>>>>>>>>>>>> LSP >>>>>>>>>>>>>>>>>>>>>>>> -----+ +---------------+ +----- |------------------| |----------------| LSR | TE link | LSR | TE link | LSR |------------------| |----------------| -----+ +---------------+ +-----
Figure 11: Flexi-Grid LSP Representing a Media Channel That Starts at the Filter of the Outgoing Interface of the Ingress LSR and Ends at the Filter of the Incoming Interface of the Egress LSR
图11:Flexi Grid LSP表示从入口LSR的输出接口的过滤器开始到出口LSR的输入接口的过滤器结束的媒体通道
In Figure 12, a network media channel is represented as terminated at the network side of the transceivers. This is commonly named an OTSi-trail connection.
在图12中,网络媒体信道表示为在收发器的网络侧终止。这通常称为OTSi跟踪连接。
|--------------------- Network Media Channel ----------------------|
|--------------------- Network Media Channel ----------------------|
+----------------------+ +----------------------+ | | | +------+ +------+ +------+ +------+ | | +----+ | | | | +----+ | |OTSi OTSi| o-| |-o | +-----+ | o-| |-o |sink src | | | | | ===+-+ +-+==| | | | | O---|R T|***o******o******************************************************** | | |\ /| | | | | | | | |\ /| | | | o-| \/ |-o ===| | | |==| o-| \/ |-o | | | | /\ | | | +-+ +-+ | | | /\ | | | | o-|/ \|-o | | \/ | | o-|/ \|-o | |Filter| | | |Filter| | /\ | |Filter| | | |Filter| +------+ | | +------+ +-----+ +------+ | | +------+ | | | | | | | | +----------------------+ +----------------------+ LSP <------------------------------------------------------------------->
+----------------------+ +----------------------+ | | | +------+ +------+ +------+ +------+ | | +----+ | | | | +----+ | |OTSi OTSi| o-| |-o | +-----+ | o-| |-o |sink src | | | | | ===+-+ +-+==| | | | | O---|R T|***o******o******************************************************** | | |\ /| | | | | | | | |\ /| | | | o-| \/ |-o ===| | | |==| o-| \/ |-o | | | | /\ | | | +-+ +-+ | | | /\ | | | | o-|/ \|-o | | \/ | | o-|/ \|-o | |Filter| | | |Filter| | /\ | |Filter| | | |Filter| +------+ | | +------+ +-----+ +------+ | | +------+ | | | | | | | | +----------------------+ +----------------------+ LSP <------------------------------------------------------------------->
LSP <------------------------------------------------------------------> +-----+ +--------+ +-----+ o--- | |-------------------| |----------------| |---o | LSR | TE link | LSR | TE link | LSR | | |-------------------| |----------------| | +-----+ +--------+ +-----+
LSP <------------------------------------------------------------------> +-----+ +--------+ +-----+ o--- | |-------------------| |----------------| |---o | LSR | TE link | LSR | TE link | LSR | | |-------------------| |----------------| | +-----+ +--------+ +-----+
Figure 12: LSP Representing a Network Media Channel (OTSi Trail)
图12:表示网络媒体通道(OTSi通道)的LSP
In a third case, a network media channel is terminated on the filter ports of the ingress and egress nodes. This is defined in G.872 as an OTSi Network Connection. As can be seen from the figures, from a GMPLS modeling perspective there is no difference between these cases, but they are shown as distinct examples to highlight the differences in the data plane.
在第三种情况下,网络媒体信道在入口和出口节点的过滤端口上终止。这在G.872中定义为OTSi网络连接。从图中可以看出,从GMPLS建模的角度来看,这些情况之间没有区别,但它们显示为不同的示例,以突出数据平面中的差异。
|--------------------- Network Media Channel --------------------|
|--------------------- Network Media Channel --------------------|
+------------------------+ +------------------------+ +------+ +------+ +------+ +------+ | | +----+ | | | | +----+ | | | o-| |-o | +------+ | o-| |-o | | | | | | =====+-+ +-+=====| | | | | | T-o******o********************************************************O-R | | |\ /| | | | | | | | |\ /| | | | o-| \/ |-o =====| | | |=====| o-| \/ |-o | | | | /\ | | | +-+ +-+ | | | /\ | | | | o-|/ \|-o | | \/ | | o-|/ \|-o | |Filter| | | |Filter| | /\ | |Filter| | | |Filter| +------+ | | +------+ +------+ +------+ | | +------+ | | | | | | | | +----------------------+ +----------------------+ <-----------------------------------------------------------------> LSP
+------------------------+ +------------------------+ +------+ +------+ +------+ +------+ | | +----+ | | | | +----+ | | | o-| |-o | +------+ | o-| |-o | | | | | | =====+-+ +-+=====| | | | | | T-o******o********************************************************O-R | | |\ /| | | | | | | | |\ /| | | | o-| \/ |-o =====| | | |=====| o-| \/ |-o | | | | /\ | | | +-+ +-+ | | | /\ | | | | o-|/ \|-o | | \/ | | o-|/ \|-o | |Filter| | | |Filter| | /\ | |Filter| | | |Filter| +------+ | | +------+ +------+ +------+ | | +------+ | | | | | | | | +----------------------+ +----------------------+ <-----------------------------------------------------------------> LSP
LSP <--------------------------------------------------------------> +-----+ +--------+ +-----+ o--| |--------------------| |-------------------| |--o | LSR | TE link | LSR | TE link | LSR | | |--------------------| |-------------------| | +-----+ +--------+ +-----+
LSP <--------------------------------------------------------------> +-----+ +--------+ +-----+ o--| |--------------------| |-------------------| |--o | LSR | TE link | LSR | TE link | LSR | | |--------------------| |-------------------| | +-----+ +--------+ +-----+
Figure 13: LSP Representing a Network Media Channel (OTSi Network Connection)
图13:表示网络媒体通道(OTSi网络连接)的LSP
Applying the notion of hierarchy at the media layer, by using the LSP as an FA (i.e., by using hierarchical LSPs), the media channel created can support multiple (sub-)media channels.
在媒体层应用层次概念,通过将LSP用作FA(即,通过使用层次LSP),创建的媒体信道可以支持多个(子)媒体信道。
+--------------+ +--------------+ | Media Channel| TE | Media Channel| Virtual TE | | link | | link | Matrix |o- - - - - - - - - - o| Matrix |o- - - - - - +--------------+ +--------------+ | +---------+ | | | Media | | |o----| Channel |-----o| | | | Matrix | +---------+
+--------------+ +--------------+ | Media Channel| TE | Media Channel| Virtual TE | | link | | link | Matrix |o- - - - - - - - - - o| Matrix |o- - - - - - +--------------+ +--------------+ | +---------+ | | | Media | | |o----| Channel |-----o| | | | Matrix | +---------+
Figure 14: Topology View with TE Link or FA
图14:带有TE链路或FA的拓扑视图
Note that there is only one media-layer switch matrix (one implementation is a flexi-grid ROADM) in SSON, while a signal-layer LSP (network media channel) is established mainly for the purpose of management and control of individual optical signals. Signal-layer LSPs with the same attributes (such as source and destination) can be grouped into one media-layer LSP (media channel); this has advantages in spectral efficiency (reduced guard band between adjacent OChs in one FSC channel) and LSP management. However, assuming that some network elements perform signal-layer switching in an SSON, there must be enough guard band between adjacent OTSi in any media channel to compensate for the filter concatenation effects and other effects caused by signal-layer switching elements. In such a situation, the separation of the signal layer from the media layer does not bring any benefit in spectral efficiency or in other aspects, and it makes the network switching and control more complex. If two OTSi must be switched to different ports, it is better to carry them via different FSC channels, and the media-layer switch is enough in this scenario.
请注意,在SSON中只有一个媒体层交换矩阵(一个实现是flexi grid ROADM),而信号层LSP(网络媒体信道)的建立主要是为了管理和控制单个光信号。具有相同属性(如源和目的地)的信号层LSP可分组为一个媒体层LSP(媒体信道);这在频谱效率(减少一个FSC信道中相邻OCH之间的保护带)和LSP管理方面具有优势。然而,假设一些网络元件在SSON中执行信号层交换,则任何媒体信道中的相邻OTSi之间必须有足够的保护带,以补偿滤波器级联效应和信号层交换元件引起的其他效应。在这种情况下,信号层与媒体层的分离在频谱效率或其他方面没有带来任何好处,并且使得网络交换和控制更加复杂。如果必须将两个OTSi切换到不同的端口,则最好通过不同的FSC通道进行传输,在这种情况下,媒体层交换机就足够了。
As discussed in Section 3.2.5, a media channel may be constructed from a composite of network media channels. This may be achieved in two ways using LSPs. These mechanisms may be compared to the techniques used in GMPLS to support inverse multiplexing in Time Division Multiplexing (TDM) networks and in OTN [RFC4606] [RFC6344] [RFC7139].
如第3.2.5节所述,媒体频道可由网络媒体频道组合而成。这可以通过使用LSP的两种方式实现。这些机制可与GMPLS中用于支持时分复用(TDM)网络和OTN[RFC4606][RFC6344][RFC7139]中的逆复用的技术进行比较。
o In the first case, a single LSP may be established in the control plane. The signaling messages include information for all of the component network media channels that make up the composite media channel.
o 在第一种情况下,可以在控制平面中建立单个LSP。信令消息包括组成复合媒体信道的所有组件网络媒体信道的信息。
o In the second case, each component network media channel is established using a separate control-plane LSP, and these LSPs are associated within the control plane so that the endpoints may see them as a single media channel.
o 在第二种情况下,使用单独的控制平面LSP建立每个组件网络媒体信道,并且这些LSP在控制平面内关联,以便端点可以将它们视为单个媒体信道。
Optical transmitters and receivers may have different tunability constraints, and media channel matrices may have switching restrictions. Additionally, a key feature of their implementation is their highly asymmetric switching capability, which is described in detail in [RFC6163]. Media matrices include line-side ports that are connected to DWDM links and tributary-side input/output ports that can be connected to transmitters/receivers.
光发射机和接收机可具有不同的可调谐性约束,并且媒体信道矩阵可具有切换约束。此外,其实现的一个关键特征是其高度不对称的交换能力,这在[RFC6163]中有详细描述。媒体矩阵包括连接到DWDM链路的线路侧端口和可连接到发射机/接收机的支路侧输入/输出端口。
A set of common constraints can be defined:
可以定义一组常见约束:
o Slot widths: The minimum and maximum slot width.
o 插槽宽度:最小和最大插槽宽度。
o Granularity: The optical hardware may not be able to select parameters with the lowest granularity (e.g., 6.25 GHz for nominal central frequencies or 12.5 GHz for slot width granularity).
o 粒度:光学硬件可能无法选择具有最低粒度的参数(例如,标称中心频率为6.25 GHz,时隙宽度粒度为12.5 GHz)。
o Available frequency ranges: The set or union of frequency ranges that have not been allocated (i.e., are available). The relative grouping and distribution of available frequency ranges in a fiber are usually referred to as "fragmentation".
o 可用频率范围:尚未分配(即可用)的频率范围的集合或联合。光纤中可用频率范围的相对分组和分布通常称为“碎片”。
o Available slot width ranges: The set or union of slot width ranges supported by media matrices. It includes the following information:
o 可用插槽宽度范围:媒体矩阵支持的插槽宽度范围的集合或并集。它包括以下信息:
* Slot width threshold: The minimum and maximum slot width supported by the media matrix. For example, the slot width could be from 50 GHz to 200 GHz.
* 插槽宽度阈值:媒体矩阵支持的最小和最大插槽宽度。例如,时隙宽度可以是从50ghz到200ghz。
* Step granularity: The minimum step by which the optical filter bandwidth of the media matrix can be increased or decreased. This parameter is typically equal to slot width granularity (i.e., 12.5 GHz) or integer multiples of 12.5 GHz.
* 步长粒度:增加或减少介质矩阵的光学滤波器带宽的最小步长。该参数通常等于时隙宽度粒度(即12.5 GHz)或12.5 GHz的整数倍。
A media channel has an associated effective frequency slot. From the perspective of network control and management, this effective slot is seen as the "usable" end-to-end frequency slot. The establishment of an LSP is related to the establishment of the media channel and the configuration of the effective frequency slot.
媒体信道具有相关联的有效频率时隙。从网络控制和管理的角度来看,此有效时隙被视为“可用”端到端频率时隙。LSP的建立与媒体信道的建立和有效频率时隙的配置有关。
A "service request" is characterized (at a minimum) by its required effective slot width. This does not preclude the request from adding additional constraints, such as also imposing the nominal central frequency. A given effective frequency slot may be requested for the media channel in the control-plane LSP setup messages, and a specific frequency slot can be requested on any specific hop of the LSP setup. Regardless of the actual encoding, the LSP setup message specifies a minimum effective frequency slot width that needs to be fulfilled in order to successfully establish the requested LSP.
“服务请求”的特征是(至少)所需的有效插槽宽度。这并不排除请求添加额外的约束,例如也施加标称中心频率。可以在控制平面LSP设置消息中为媒体信道请求给定的有效频率时隙,并且可以在LSP设置的任何特定跳上请求特定频率时隙。不管实际编码是什么,LSP设置消息都会指定成功建立请求的LSP所需的最小有效频率槽宽度。
An effective frequency slot must equally be described in terms of a central nominal frequency and its slot width (in terms of usable spectrum of the effective frequency slot). That is, it must be possible to determine the end-to-end values of the n and m parameters. We refer to this by saying that the "effective frequency slot of the media channel or LSP must be valid".
有效频率槽必须根据中心标称频率及其槽宽(根据有效频率槽的可用频谱)进行同等描述。也就是说,必须能够确定n和m参数的端到端值。我们指的是“媒体频道或LSP的有效频率槽必须有效”。
In GMPLS, the requested effective frequency slot is represented to the TSpec present in the RSVP-TE Path message, and the effective frequency slot is mapped to the FlowSpec carried in the RSVP-TE Resv message.
在GMPLS中,请求的有效频率时隙表示为RSVP-TE Path消息中存在的TSpec,有效频率时隙映射为RSVP-TE Resv消息中携带的FlowSpec。
In GMPLS-controlled systems, the switched element corresponds to the 'label'. In flexi-grid, the switched element is a frequency slot, and the label represents a frequency slot. Consequently, the label in flexi-grid conveys the necessary information to obtain the frequency slot characteristics (i.e., central frequency and slot width: the n and m parameters). The frequency slot is locally identified by the label.
在GMPLS控制系统中,切换元件与“标签”相对应。在flexi grid中,开关元件是频率槽,标签表示频率槽。因此,flexi grid中的标签传达获得频率槽特征所需的信息(即中心频率和槽宽:n和m参数)。频率槽由标签在本地标识。
The local frequency slot may change at each hop, given hardware constraints and capabilities (e.g., a given node might not support the finest granularity). This means that the values of n and m may change at each hop. As long as a given downstream node allocates enough optical spectrum, m can be different along the path. This covers the issue where media matrices can have different slot width granularities. Such variations in the local value of m will appear in the allocated label that encodes the frequency slot as well as in the FlowSpec that describes the flow.
给定硬件约束和能力(例如,给定节点可能不支持最细粒度),本地频率时隙可能在每个跃点处改变。这意味着n和m的值可能在每个跃点处改变。只要给定的下游节点分配了足够的光谱,m就可以沿路径不同。这涵盖了介质矩阵可能具有不同槽宽粒度的问题。本地值m的这种变化将出现在编码频率槽的分配标签以及描述流量的FlowSpec中。
Different operational modes can be considered. For Routing and Spectrum Assignment (RSA) with explicit label control, and for Routing and Distributed Spectrum Assignment (R+DSA), the GMPLS signaling procedures are similar to those described in Section 4.1.3 of [RFC6163] for Routing and Wavelength Assignment (RWA) and for Routing and Distributed Wavelength Assignment (R+DWA). The main difference is that the label set specifies the available nominal central frequencies that meet the slot width requirements of the LSP.
可以考虑不同的操作模式。对于具有显式标签控制的路由和频谱分配(RSA)以及路由和分布式频谱分配(R+DSA),GMPLS信令程序类似于[RFC6163]第4.1.3节中所述的路由和波长分配(RWA)以及路由和分布式波长分配(R+DWA)。主要区别在于标签集指定了满足LSP插槽宽度要求的可用标称中心频率。
The intermediate nodes use the control plane to collect the acceptable central frequencies that meet the slot width requirement hop by hop. The tail-end node also needs to know the slot width of an LSP to assign the proper frequency resource. Except for identifying the resource (i.e., fixed wavelength for WSON, and frequency resource for flexible grids), the other signaling requirements (e.g., unidirectional or bidirectional, with or without converters) are the same as for WSON as described in Section 6.1 of [RFC6163].
中间节点使用控制平面逐跳收集满足时隙宽度要求的可接受中心频率。尾端节点还需要知道LSP的时隙宽度,以分配适当的频率资源。除了识别资源(即,WSON的固定波长和灵活电网的频率资源),其他信令要求(例如,单向或双向,带或不带转换器)与[RFC6163]第6.1节中所述的WSON相同。
Regarding how a GMPLS control plane can assign n and m hop by hop along the path of an LSP, different cases can apply:
关于GMPLS控制平面如何沿LSP路径逐跳分配n和m,可以应用不同的情况:
a. n and m can both change. It is the effective frequency slot that matters; it needs to remain valid along the path.
a. n和m都可以改变。重要的是有效的频率槽;它需要沿着路径保持有效。
b. m can change, but n needs to remain the same along the path. This ensures that the nominal central frequency stays the same, but the width of the slot can vary along the path. Again, the important thing is that the effective frequency slot remains valid and satisfies the requested parameters along the whole path of the LSP.
b. m可以改变,但n需要在路径上保持不变。这可确保标称中心频率保持不变,但槽的宽度可沿路径变化。同样,重要的是,有效频率时隙保持有效,并沿LSP的整个路径满足所请求的参数。
c. n and m need to be unchanging along the path. This ensures that the frequency slot is well known from end to end and is a simple way to ensure that the effective frequency slot remains valid for the whole LSP.
c. n和m需要沿着路径保持不变。这确保了频率时隙从端到端是众所周知的,并且是确保有效频率时隙对于整个LSP保持有效的简单方法。
d. n can change, but m needs to remain the same along the path. This ensures that the effective frequency slot remains valid but also allows the frequency slot to be moved within the spectrum from hop to hop.
d. n可以改变,但m需要在路径上保持不变。这确保了有效频率时隙保持有效,但也允许频率时隙在频谱内从一跳移动到另一跳。
The selection of a path that ensures n and m continuity can be delegated to a dedicated entity such as a Path Computation Element (PCE). Any constraint (including frequency slot and width granularities) can be taken into account during path computation. Alternatively, A PCE can compute a path, leaving the actual frequency slot assignment to be done, for example, with a distributed (signaling) procedure:
确保n和m连续性的路径选择可委托给专用实体,如路径计算元素(PCE)。在路径计算过程中,可以考虑任何约束(包括频率时隙和宽度粒度)。或者,PCE可以计算路径,留下实际的时隙分配,例如,通过分布式(信令)过程来完成:
o Each downstream node ensures that m is >= requested_m.
o 每个下游节点确保m>=请求的m。
o A downstream node cannot foresee what an upstream node will allocate. A way to ensure that the effective frequency slot is valid along the length of the LSP is to ensure that the same value of n is allocated at each hop. By forcing the same value of n, we
o 下游节点无法预见上游节点将分配什么。确保有效频率时隙沿LSP长度有效的一种方法是确保在每个跳上分配相同的n值。通过强制n的相同值,我们
avoid cases where the effective frequency slot of the media channel is invalid (that is, the resulting frequency slot cannot be described by its n and m parameters).
避免媒体通道的有效频率槽无效的情况(即,产生的频率槽不能用其n和m参数来描述)。
o This may be too restrictive, since a node (or even a centralized/ combined RSA entity) may be able to ensure that the resulting end-to-end effective frequency slot is valid, even if n varies locally. That means that the effective frequency slot that characterizes the media channel from end to end is consistent and is determined by its n and m values but that the effective frequency slot and those values are logical (i.e., do not map "direct" to the physically assigned spectrum) in the sense that they are the result of the intersection of locally assigned frequency slots applicable at local components (such as filters), each of which may have different frequency slots assigned to them.
o 这可能过于严格,因为节点(甚至是集中式/组合式RSA实体)可能能够确保产生的端到端有效频率槽有效,即使n在本地变化。这意味着表征媒体信道从端到端的有效频率时隙是一致的,由其n和m值确定,但有效频率时隙和这些值是逻辑的(即,不“直接”映射到物理分配的频谱)从某种意义上说,它们是适用于本地组件(如滤波器)的本地分配的频率时隙相交的结果,每个组件可能具有分配给它们的不同频率时隙。
As shown in Figure 15, the effective slot is made valid by ensuring that the minimum m is greater than the requested m. The effective slot (intersection) is the lowest m (bottleneck).
如图15所示,通过确保最小m大于所请求的m,有效插槽有效。有效时隙(交点)是最低的m(瓶颈)。
C B A |Path(m_req) | ^ | |---------> | # | | | # ^ -^--------------^----------------#----------------#-- Effective # # # # FS n, m # . . . . . . .#. . . . . . . . # . . . . . . . .# <-fixed # # # # n -v--------------v----------------#----------------#--- | | # v | | # Resv | | | v <------ | | | |FlowSpec(n, m_a)| | | <--------| | | | FlowSpec(n, | <--------| min(m_a, m_b)) FlowSpec(n, | min(m_a, m_b, m_c))
C B A |Path(m_req) | ^ | |---------> | # | | | # ^ -^--------------^----------------#----------------#-- Effective # # # # FS n, m # . . . . . . .#. . . . . . . . # . . . . . . . .# <-fixed # # # # n -v--------------v----------------#----------------#--- | | # v | | # Resv | | | v <------ | | | |FlowSpec(n, m_a)| | | <--------| | | | FlowSpec(n, | <--------| min(m_a, m_b)) FlowSpec(n, | min(m_a, m_b, m_c))
m_a, m_b, m_c: Selected frequency slot widths
m_a、m_b、m_c:选定的频率槽宽度
Figure 15: Distributed Allocation with Different m and Same n
图15:不同m和相同n的分布式分配
In Figure 16, the effective slot is made valid by ensuring that it is valid at each hop in the upstream direction. The intersection needs to be computed; otherwise, invalid slots could result.
在图16中,通过确保有效时隙在上游方向的每个跃点有效,使其有效。交叉口需要计算;否则,可能会导致无效插槽。
C B A |Path(m_req) ^ | | |---------> # | | | # ^ ^ -^-------------#----------------#-----------------#-------- Effective # # # # FS n, m # # # # # # # # -v-------------v----------------#-----------------#-------- | | # v | | # Resv | | | v <------ | | | |FlowSpec(n_a, m_a) | | <--------| | | | FlowSpec(FSb [intersect] FSa) <--------| FlowSpec([intersect] FSa,FSb,FSc)
C B A |Path(m_req) ^ | | |---------> # | | | # ^ ^ -^-------------#----------------#-----------------#-------- Effective # # # # FS n, m # # # # # # # # -v-------------v----------------#-----------------#-------- | | # v | | # Resv | | | v <------ | | | |FlowSpec(n_a, m_a) | | <--------| | | | FlowSpec(FSb [intersect] FSa) <--------| FlowSpec([intersect] FSa,FSb,FSc)
n_a: Selected nominal central frequency by node A m_a: Selected frequency slot widths by node A FSa, FSb, FSc: Frequency slot at each hop A, B, C
n_a:按节点a选择的标称中心频率m_a:按节点a选择的频率槽宽度FSa、FSb、FSc:每个跳a、B、C的频率槽
Figure 16: Distributed Allocation with Different m and Different n
图16:不同m和不同n的分布式分配
Note that when a media channel is bound to one OTSi (i.e., is a network media channel), the effective FS must be the frequency slot of the OTSi. The media channel set up by the LSP may contain the effective FS of the network media channel effective FS. This is an endpoint property; the egress and ingress have to constrain the effective FS to be the OTSi effective FS.
请注意,当媒体信道绑定到一个OTSi(即,是网络媒体信道)时,有效FS必须是OTSi的频率槽。LSP设置的媒体信道可以包含网络媒体信道的有效FS。这是端点属性;出口和入口必须将有效FS限制为OTSi有效FS。
There are potential interworking problems between fixed-grid DWDM nodes and flexi-grid DWDM nodes. Additionally, even two flexi-grid nodes may have different grid properties, leading to link property conflict and resulting in limited interworking.
固定网格DWDM节点和灵活网格DWDM节点之间存在潜在的互通问题。此外,即使两个flexi网格节点也可能具有不同的网格属性,从而导致链接属性冲突并导致有限的互通。
Devices or applications that make use of flexi-grid might not be able to support every possible slot width. In other words, different applications may be defined where each supports a different grid granularity. In this case, the link between two optical nodes with
使用flexi grid的设备或应用程序可能无法支持所有可能的插槽宽度。换句话说,可以定义不同的应用程序,其中每个应用程序支持不同的网格粒度。在这种情况下,两个光学节点之间的链路
different grid granularities must be configured to align with the larger of both granularities. Furthermore, different nodes may have different slot width tuning ranges.
不同的网格粒度必须配置为与两个粒度中较大的粒度对齐。此外,不同节点可以具有不同的时隙宽度调谐范围。
In summary, in a DWDM link between two nodes, at a minimum, the following properties need to be negotiated:
总之,在两个节点之间的DWDM链路中,至少需要协商以下属性:
o Grid capability (channel spacing) - Between fixed-grid and flexi-grid nodes.
o 网格能力(通道间距)-固定网格和灵活网格节点之间。
o Grid granularity - Between two flexi-grid nodes.
o 网格粒度-在两个flexi网格节点之间。
o Slot width tuning range - Between two flexi-grid nodes.
o 插槽宽度调整范围-在两个flexi栅格节点之间。
In WSON, if there is no (available) wavelength converter in an optical network, an LSP is subject to the "wavelength continuity constraint" (see Section 4 of [RFC6163]). Similarly, in flexi-grid, if the capability to shift or convert an allocated frequency slot is absent, the LSP is subject to the "spectrum continuity constraint".
在WSON中,如果光网络中没有(可用的)波长转换器,则LSP受“波长连续性约束”(参见[RFC6163]第4节)。类似地,在flexi网格中,如果没有移位或转换分配的频率时隙的能力,则LSP受到“频谱连续性约束”。
Because of the limited availability of spectrum converters (in what is called a "sparse translucent optical network"), the spectrum continuity constraint always has to be considered. When available, information regarding spectrum conversion capabilities at the optical nodes may be used by RSA mechanisms.
由于频谱转换器(在所谓的“稀疏半透明光网络”中)的可用性有限,因此必须始终考虑频谱连续性约束。当可用时,RSA机制可以使用关于光节点处的频谱转换能力的信息。
The RSA process determines a route and frequency slot for an LSP. Hence, when a route is computed, the spectrum assignment process determines the central frequency and slot width based on the following:
RSA进程确定LSP的路由和频率槽。因此,当计算路由时,频谱分配过程基于以下内容确定中心频率和时隙宽度:
o the requested slot width
o 请求的插槽宽度
o the information regarding the transmitter and receiver capabilities, including the availability of central frequencies and their slot width granularity
o 关于发射机和接收机能力的信息,包括中心频率的可用性及其时隙宽度粒度
o the information regarding available frequency slots (frequency ranges) and available slot widths of the links traversed along the route
o 有关沿路线穿过的链路的可用频率槽(频率范围)和可用槽宽度的信息
Similar to RWA for fixed grids [RFC6163], different ways of performing RSA in conjunction with the control plane can be considered. The approaches included in this document are provided for reference purposes only; other possible options could also be deployed.
与固定网格的RWA[RFC6163]类似,可以考虑结合控制平面执行RSA的不同方式。本文件中包含的方法仅供参考;还可以部署其他可能的选择。
Note that all of these models allow the concept of a composite media channel supported by a single control-plane LSP or by a set of associated LSPs.
请注意,所有这些模型都允许由单个控制平面LSP或一组相关LSP支持的复合媒体信道的概念。
In this case, a computation entity performs both routing and frequency slot assignment. The computation entity needs access to detailed network information, e.g., the connectivity topology of the nodes and links, available frequency ranges on each link, and node capabilities.
在这种情况下,计算实体执行路由和频率时隙分配。计算实体需要访问详细的网络信息,例如节点和链路的连接拓扑、每条链路上的可用频率范围以及节点能力。
The computation entity could reside on a dedicated PCE server, in the provisioning application that requests the service, or on the ingress node.
计算实体可以驻留在专用PCE服务器、请求服务的供应应用程序或入口节点上。
In this case, routing computation and frequency slot assignment are performed by different entities. The first entity computes the routes and provides them to the second entity. The second entity assigns the frequency slot.
在这种情况下,路由计算和时隙分配由不同的实体执行。第一个实体计算路由并将其提供给第二个实体。第二个实体分配频率时隙。
The first entity needs the connectivity topology to compute the proper routes. The second entity needs information about the available frequency ranges of the links and the capabilities of the nodes in order to assign the spectrum.
第一个实体需要连接拓扑来计算正确的路由。第二个实体需要关于链路的可用频率范围和节点的能力的信息,以便分配频谱。
In this case, an entity computes the route, but the frequency slot assignment is performed hop by hop in a distributed way along the route. The available central frequencies that meet the spectrum continuity constraint need to be collected hop by hop along the route. This procedure can be implemented by the GMPLS signaling protocol.
在这种情况下,实体计算路由,但频率时隙分配是沿着路由以分布式方式逐跳执行的。满足频谱连续性约束的可用中心频率需要沿路线逐跳收集。这个过程可以通过GMPLS信令协议来实现。
In the case of the combined RSA architecture, the computation entity needs the detailed network information, i.e., connectivity topology, node capabilities, and available frequency ranges of the links. Route computation is performed based on the connectivity topology and node capabilities, while spectrum assignment is performed based on the available frequency ranges of the links. The computation entity may get the detailed network information via the GMPLS routing protocol.
在组合RSA体系结构的情况下,计算实体需要详细的网络信息,即连接拓扑、节点能力和链路的可用频率范围。路由计算基于连接拓扑和节点能力执行,而频谱分配基于链路的可用频率范围执行。计算实体可以通过GMPLS路由协议获得详细的网络信息。
For WSON, the connectivity topology and node capabilities can be advertised by the GMPLS routing protocol (refer to Section 6.2 of [RFC6163]). Except for wavelength-specific availability information, the information for flexi-grid is the same as for WSON and can equally be distributed by the GMPLS routing protocol.
对于WSON,可通过GMPLS路由协议公布连接拓扑和节点能力(参考[RFC6163]第6.2节)。除了特定波长的可用性信息外,flexi grid的信息与WSON的信息相同,并且可以通过GMPLS路由协议平均分布。
This section analyzes the necessary changes to link information required by flexible grids.
本节分析了柔性网格所需的链接信息的必要更改。
In the case of flexible grids, channel central frequencies span from 193.1 THz towards both ends of the C-band spectrum with a granularity of 6.25 GHz. Different LSPs could make use of different slot widths on the same link. Hence, the available frequency ranges need to be advertised.
在柔性网格的情况下,信道中心频率从193.1太赫兹跨越到C波段频谱的两端,粒度为6.25 GHz。不同的LSP可以在同一链路上使用不同的时隙宽度。因此,需要公布可用的频率范围。
The available slot width ranges need to be advertised in combination with the available frequency ranges, so that the computing entity can verify whether an LSP with a given slot width can be set up or not. This is constrained by the available slot width ranges of the media matrix. Depending on the availability of the slot width ranges, it is possible to allocate more spectrum than what is strictly needed by the LSP.
可用时隙宽度范围需要结合可用频率范围来公布,以便计算实体可以验证是否可以设置具有给定时隙宽度的LSP。这受媒体矩阵的可用插槽宽度范围的限制。根据时隙宽度范围的可用性,可以分配比LSP严格需要的更多的频谱。
The total available spectrum on a fiber can be described as a resource that can be partitioned. For example, a part of the spectrum could be assigned to a third party to manage, or parts of the spectrum could be assigned by the operator for different classes of traffic. This partitioning creates the impression that the spectrum is a hierarchy in view of the management plane and the control plane: each partition could itself be partitioned. However,
光纤上的总可用频谱可以描述为可分区的资源。例如,频谱的一部分可以分配给第三方进行管理,或者频谱的一部分可以由运营商分配给不同类别的业务。这种划分给人的印象是,从管理平面和控制平面的角度来看,频谱是一个层次结构:每个分区本身都可以被划分。然而
the hierarchy is created purely within a management system; it defines a hierarchy of access or management rights, but there is no corresponding resource hierarchy within the fiber.
层次结构纯粹是在管理系统中创建的;它定义了访问或管理权限的层次结构,但光纤中没有相应的资源层次结构。
The end of the fiber is a link end and presents a fiber port that represents all of the spectrum available on the fiber. Each spectrum allocation appears as a Link Channel Port (i.e., frequency slot port) within the fiber. Thus, while there is a hierarchy of ownership (the Link Channel Port and corresponding LSP are located on a fiber and therefore are associated with a fiber port), there is no continued nesting hierarchy of frequency slots within larger frequency slots. In its way, this mirrors the fixed-grid behavior where a wavelength is associated with a fiber port but cannot be subdivided even though it is a partition of the total spectrum available on the fiber.
光纤的一端是链路端,代表光纤上所有可用频谱的光纤端口。每个频谱分配显示为光纤内的链路信道端口(即,频率槽端口)。因此,虽然存在所有权层次结构(链路信道端口和相应的LSP位于光纤上,因此与光纤端口相关联),但在较大的频率槽内不存在频率槽的连续嵌套层次结构。以其方式,这反映了固定网格行为,即波长与光纤端口关联,但无法细分,即使它是光纤上可用总光谱的一部分。
This section defines an information model to describe the data that represents the capabilities and resources available in a flexi-grid network. It is not a data model and is not intended to limit any protocol solution such as an encoding for an IGP. For example, information required for routing and path selection may be the set of available nominal central frequencies from which a frequency slot of the required width can be allocated. A convenient encoding for this information is left for further study in an IGP encoding document.
本节定义了一个信息模型,用于描述代表flexi网格网络中可用功能和资源的数据。它不是一个数据模型,也不打算限制任何协议解决方案,例如IGP的编码。例如,路由和路径选择所需的信息可以是可用标称中心频率的集合,从该集合可以分配所需宽度的频率时隙。在IGP编码文档中,该信息的方便编码留待进一步研究。
Fixed DWDM grids can also be described via suitable choices of slots in a flexible DWDM grid. However, devices or applications that make use of the flexible grid may not be capable of supporting every possible slot width or central frequency position. Thus, the information model needs to enable:
固定DWDM网格也可以通过灵活DWDM网格中插槽的适当选择来描述。然而,使用柔性网格的设备或应用程序可能无法支持每个可能的槽宽或中心频率位置。因此,信息模型需要启用:
o the exchange of information to enable RSA in a flexi-grid network
o 在flexi网格网络中实现RSA的信息交换
o the representation of a fixed-grid device participating in a flexi-grid network
o 参与柔性网格网络的固定网格设备的表示
o full interworking of fixed-grid and flexible-grid devices within the same network
o 同一网络内固定电网和灵活电网设备的全面互通
o interworking of flexible-grid devices with different capabilities
o 具有不同功能的灵活网格设备的互通
The information model is represented using the Routing Backus-Naur Format (RBNF) as defined in [RFC5511].
信息模型使用[RFC5511]中定义的路由Backus Naur格式(RBNF)表示。
<Available Spectrum> ::= <Available Frequency Range-List> <Available NCFs> <Available Slot Widths>
<Available Spectrum> ::= <Available Frequency Range-List> <Available NCFs> <Available Slot Widths>
where
哪里
<Available Frequency Range-List> ::= <Available Frequency Range> [<Available Frequency Range-List>]
<Available Frequency Range-List> ::= <Available Frequency Range> [<Available Frequency Range-List>]
<Available Frequency Range> ::= ( <Start NCF> <End NCF> ) | <FS defined by (n, m) containing contiguous available NCFs>
<Available Frequency Range> ::= ( <Start NCF> <End NCF> ) | <FS defined by (n, m) containing contiguous available NCFs>
and
和
<Available NCFs> ::= <Available NCF Granularity> [<Offset>] -- Subset of supported n values given by p x n + q -- where p is a positive integer -- and q (offset) belongs to 0,..,p-1.
<Available NCFs> ::= <Available NCF Granularity> [<Offset>] -- Subset of supported n values given by p x n + q -- where p is a positive integer -- and q (offset) belongs to 0,..,p-1.
and
和
<Available Slot Widths> ::= <Available Slot Width Granularity> <Min Slot Width> -- given by j x 12.5 GHz, with j a positive integer <Max Slot Width> -- given by k x 12.5 GHz, with k a positive integer (k >= j)
<Available Slot Widths> ::= <Available Slot Width Granularity> <Min Slot Width> -- given by j x 12.5 GHz, with j a positive integer <Max Slot Width> -- given by k x 12.5 GHz, with k a positive integer (k >= j)
Figure 17: Routing Information Model
图17:路由信息模型
The control of flexi-grid networks places additional requirements on the GMPLS protocols. This section summarizes those requirements for signaling and routing.
flexi网格网络的控制对GMPLS协议提出了额外要求。本节总结了信令和路由的要求。
The control plane SHALL be able to support media channels, characterized by a single frequency slot. The representation of the media channel in the GMPLS control plane is the so-called "flexi-grid LSP". Since network media channels are media channels, an LSP may
控制平面应能够支持媒体频道,其特点是具有单个频率槽。GMPLS控制平面中的媒体信道表示为所谓的“flexi grid LSP”。由于网络媒体频道是媒体频道,因此LSP可以
also be the control-plane representation of a network media channel. Consequently, the control plane will also be able to support network media channels.
也可以是网络媒体频道的控制平面表示。因此,控制平面也将能够支持网络媒体频道。
The signaling procedure SHALL be able to configure the nominal central frequency (n) of a flexi-grid LSP.
信号程序应能够配置灵活电网LSP的标称中心频率(n)。
The signaling procedure SHALL allow a flexible range of values for the frequency slot width (m) parameter. Specifically, the control plane SHALL allow setting up a media channel with frequency slot width (m) ranging from a minimum of m = 1 (12.5 GHz) to a maximum of the entire C-band (the wavelength range 1530 nm to 1565 nm, which corresponds to the amplification range of erbium-doped fiber amplifiers) with a slot width granularity of 12.5 GHz.
信号程序应允许频率槽宽度(m)参数值的灵活范围。具体而言,控制平面应允许设置一个媒体信道,其频率槽宽度(m)范围为整个C波段(波长范围1530 nm至1565 nm,对应于掺铒光纤放大器的放大范围)的最小m=1(12.5 GHz)至最大m,槽宽粒度为12.5 GHz。
The signaling procedure SHALL be able to configure the minimum width (m) of a flexi-grid LSP. In addition, the signaling procedure SHALL be able to configure local frequency slots.
信号程序应能够配置灵活网格LSP的最小宽度(m)。此外,信号程序应能够配置本地频率槽。
The control-plane architecture SHOULD allow for the support of the L-band (the wavelength range 1565 nm to 1625 nm) and the S-band (the wavelength range 1460 nm to 1530 nm).
控制平面结构应允许支持L波段(波长范围1565 nm至1625 nm)和S波段(波长范围1460 nm至1530 nm)。
The signaling process SHALL be able to collect the local frequency slot assigned at each link along the path.
信令过程应能够收集沿路径在每个链路上分配的本地频率时隙。
The signaling procedures SHALL support all of the RSA architectural models (R&SA, R+SA, and R+DSA) within a single set of protocol objects, although some objects may only be applicable within one of the models.
信令程序应支持单个协议对象集中的所有RSA体系结构模型(R&SA、R+SA和R+DSA),尽管某些对象可能仅适用于其中一个模型。
The routing protocol will support all functions described in [RFC4202] and extend them to a flexi-grid data plane.
路由协议将支持[RFC4202]中描述的所有功能,并将其扩展到flexi网格数据平面。
The routing protocol SHALL distribute sufficient information to compute paths to enable the signaling procedure to establish LSPs as described in the previous sections. This includes, at a minimum, the data described by the information model in Figure 17.
路由协议应分配足够的信息来计算路径,以使信令程序能够建立前面章节所述的LSP。这至少包括图17中信息模型描述的数据。
The routing protocol SHALL update its advertisements of available resources and capabilities as the usage of resources in the network varies with the establishment or teardown of LSPs. These updates SHOULD be amenable to damping and thresholds as in other traffic engineering routing advertisements.
路由协议应更新其可用资源和能力的公告,因为网络中资源的使用随LSP的建立或拆除而变化。与其他流量工程路由广告一样,这些更新应符合阻尼和阈值要求。
The routing protocol SHALL support all of the RSA architectural models (R&SA, R+SA, and R+DSA) without any configuration or change of behavior. Thus, the routing protocols SHALL be agnostic to the computation and signaling model that is in use.
路由协议应支持所有RSA架构模型(R&SA、R+SA和R+DSA),无需任何配置或行为更改。因此,路由协议应与正在使用的计算和信令模型无关。
The signaling procedures SHALL allow the resizing (growing or shrinking) of the frequency slot width of a media channel or network media channel. The resizing MAY imply resizing the local frequency slots along the path of the flexi-grid LSP.
信令程序应允许媒体信道或网络媒体信道的频率槽宽度调整(增长或收缩)。调整大小可能意味着沿着柔性网格LSP的路径调整本地频率时隙的大小。
The routing protocol SHALL update its advertisements of available resources and capabilities as the usage of resources in the network varies with the resizing of LSPs. These updates SHOULD be amenable to damping and thresholds as in other traffic engineering routing advertisements.
路由协议应更新其可用资源和能力的公告,因为网络中资源的使用随LSP大小的变化而变化。与其他流量工程路由广告一样,这些更新应符合阻尼和阈值要求。
A set of media channels can be used to transport signals that have a logical association between them. The control-plane architecture SHOULD allow multiple media channels to be logically associated. The control plane SHOULD allow the co-routing of a set of media channels that are logically associated.
一组媒体通道可用于传输具有逻辑关联的信号。控制平面架构应允许多个媒体通道逻辑关联。控制平面应允许逻辑关联的一组媒体通道的共同路由。
As described in Sections 3.2.5 and 4.3, a media channel may be composed of multiple network media channels.
如第3.2.5节和第4.3节所述,媒体频道可由多个网络媒体频道组成。
The signaling procedures SHOULD include support for signaling a single control-plane LSP that includes information about multiple network media channels that will comprise the single compound media channel.
信令过程应包括对单个控制平面LSP的信令支持,该LSP包括关于将构成单个复合媒体信道的多个网络媒体信道的信息。
The signaling procedures SHOULD include a mechanism to associate separately signaled control-plane LSPs so that the endpoints may correlate them into a single compound media channel.
信令过程应包括将单独发信号的控制平面lsp相关联的机制,以便端点可将它们关联到单个复合媒体信道中。
The signaling procedures MAY include a mechanism to dynamically vary the composition of a composite media channel by allowing network media channels to be added to or removed from the whole.
信令过程可以包括通过允许网络媒体信道被添加到整体或从整体中移除来动态地改变复合媒体信道的组成的机制。
The routing protocols MUST provide sufficient information for the computation of paths and slots for composite media channels using any of the three RSA architectural models (R&SA, R+SA, and R+DSA).
路由协议必须提供足够的信息,以便使用三种RSA体系结构模型(R&SA、R+SA和R+DSA)中的任何一种来计算复合媒体通道的路径和插槽。
The control plane MAY include support for neighbor discovery such that a flexi-grid network can be constructed in a "plug-and-play" manner. Note, however, that in common operational practice, validation processes are used rather than automatic discovery.
控制平面可以包括对邻居发现的支持,使得可以以“即插即用”的方式构造flexi网格网络。但是,请注意,在常见的操作实践中,使用验证过程,而不是自动发现。
The control plane SHOULD allow the nodes at opposite ends of a link to correlate the properties that they will apply to the link. Such a correlation SHOULD include at least the identities of the nodes and the identities that they apply to the link. Other properties, such as the link characteristics described for the routing information model in Figure 17, SHOULD also be correlated.
控制平面应允许链接两端的节点关联将应用于链接的属性。这种关联应至少包括节点的标识以及它们应用于链路的标识。其他属性,如图17中为路由信息模型描述的链路特性,也应该相互关联。
Such neighbor discovery and link property correlation, if provided, MUST be able to operate in both an out-of-band and an out-of-fiber control channel.
这种邻居发现和链路属性关联(如果提供)必须能够在带外和光纤外控制信道中运行。
The control-plane and data-plane aspects of a flexi-grid system are fundamentally the same as a fixed-grid system, and there is no substantial reason to expect the security considerations to be any different.
flexi网格系统的控制平面和数据平面方面基本上与固定网格系统相同,没有实质性的理由期望安全考虑因素有所不同。
A good overview of the security considerations for a GMPLS-based control plane can be found in [RFC5920].
关于基于GMPLS的控制平面的安全注意事项,请参见[RFC5920]。
[RFC6163] includes a section describing security considerations for WSON, and it is reasonable to infer that these considerations apply and may be exacerbated in a flexi-grid SSON system. In particular, the detailed and granular information describing a flexi-grid network and the capabilities of nodes in that network could put stress on the routing protocol or the out-of-band control channel used by the protocol. An attacker might be able to cause small variations in the use of the network or the available resources (perhaps by modifying the environment of a fiber) and so trigger the routing protocol to make new flooding announcements. This situation is explicitly mitigated in the requirements for the routing protocol extensions where it is noted that the protocol must include damping and configurable thresholds as already exist in the core GMPLS routing protocols.
[RFC6163]包括一节描述WSON的安全注意事项,可以合理推断,这些注意事项适用于flexi grid SSON系统,并且可能会加剧。特别是,描述flexi网格网络的详细和细粒度信息以及该网络中节点的能力可能会对路由协议或协议使用的带外控制信道造成压力。攻击者可能会导致网络或可用资源的使用发生微小变化(可能是通过修改光纤环境),从而触发路由协议以发布新的泛洪通知。这种情况在路由协议扩展的要求中得到了明确缓解,注意到协议必须包括阻尼和可配置的阈值,正如核心GMPLS路由协议中已经存在的那样。
GMPLS systems already contain a number of management tools:
GMPLS系统已经包含许多管理工具:
o MIB modules exist to model the control-plane protocols and the network elements [RFC4802] [RFC4803], and there is early work to provide similar access through YANG. The features described in these models are currently designed to represent fixed-label technologies such as optical networks using the fixed grid; extensions may be needed in order to represent bandwidth, frequency slots, and effective frequency slots in flexi-grid networks.
o MIB模块用于对控制平面协议和网络元件[RFC4802][RFC4803]进行建模,早期的工作是通过YANG提供类似的访问。这些模型中描述的特征目前设计用于表示固定标签技术,例如使用固定网格的光网络;可能需要扩展来表示flexi网格网络中的带宽、频率时隙和有效频率时隙。
o There are protocol extensions within GMPLS signaling to allow control-plane systems to report the presence of faults that affect LSPs [RFC4783], although it must be carefully noted that these mechanisms do not constitute an alarm mechanism that could be used to rapidly propagate information about faults in a way that would allow the data plane to perform protection switching. These mechanisms could easily be enhanced with the addition of technology-specific reason codes if any are needed.
o GMPLS信令中有协议扩展,允许控制平面系统报告影响LSP的故障的存在[RFC4783],尽管必须小心注意,这些机制并不构成报警机制,可用于以允许数据平面执行保护切换的方式快速传播故障信息。如果需要,可以通过添加特定于技术的原因代码轻松增强这些机制。
o The GMPLS protocols, themselves, already include fault detection and recovery mechanisms (such as the PathErr and Notify messages in RSVP-TE signaling as used by GMPLS [RFC3473]). It is not anticipated that these mechanisms will need enhancement to support flexi-grid, although additional reason codes may be needed to describe technology-specific error cases.
o GMPLS协议本身已经包括故障检测和恢复机制(如GMPLS[RFC3473]使用的RSVP-TE信令中的PathErr和Notify消息)。虽然可能需要额外的原因代码来描述特定于技术的错误情况,但预计这些机制不需要增强以支持flexi grid。
o [RFC7260] describes a framework for the control and configuration of data-plane Operations, Administration, and Maintenance (OAM). It would not be appropriate for the IETF to define or describe data-plane OAM for optical systems, but the framework described in RFC 7260 could be used (with minor protocol extensions) to enable data-plane OAM that has been defined by the originators of the flexi-grid data-plane technology (the ITU-T).
o [RFC7260]描述了用于控制和配置数据平面操作、管理和维护(OAM)的框架。IETF不适合定义或描述光学系统的数据平面OAM,但可以使用RFC 7260中描述的框架(带有较小的协议扩展)来启用flexi网格数据平面技术(ITU-T)发起者定义的数据平面OAM。
o The Link Management Protocol (LMP) [RFC4204] is designed to allow the two ends of a network link to coordinate and confirm the configuration and capabilities that they will apply to the link. LMP is particularly applicable to optical links, where the characteristics of the network devices may considerably affect how the link is used and where misconfiguration or mis-fibering could make physical interoperability impossible. LMP could easily be extended to collect and report information between the endpoints of links in a flexi-grid network.
o 链路管理协议(LMP)[RFC4204]旨在允许网络链路的两端协调并确认将应用于链路的配置和功能。LMP特别适用于光链路,其中网络设备的特性可能会极大地影响链路的使用方式,并且错误配置或错配可能导致物理互操作性不可能。LMP可以很容易地扩展,以收集和报告flexi网格网络中链路端点之间的信息。
[G.694.1] International Telecommunication Union, "Spectral grids for WDM applications: DWDM frequency grid", ITU-T Recommendation G.694.1, February 2012, <https://www.itu.int/rec/T-REC-G.694.1/en>.
[G.694.1]国际电信联盟,“WDM应用的频谱网格:DWDM频率网格”,ITU-T建议G.694.1,2012年2月<https://www.itu.int/rec/T-REC-G.694.1/en>.
[G.800] International Telecommunication Union, "Unified functional architecture of transport networks", ITU-T Recommendation G.800, February 2012, <http://www.itu.int/rec/T-REC-G.800/>.
[G.800]国际电信联盟,“运输网络的统一功能架构”,ITU-T建议G.800,2012年2月<http://www.itu.int/rec/T-REC-G.800/>.
[G.805] International Telecommunication Union, "Generic functional architecture of transport networks", ITU-T Recommendation G.805, March 2000, <https://www.itu.int/rec/T-REC-G.805-200003-I/en>.
[G.805]国际电信联盟,“传输网络的通用功能架构”,ITU-T建议G.805,2000年3月<https://www.itu.int/rec/T-REC-G.805-200003-I/en>.
[G.8080] International Telecommunication Union, "Architecture for the automatically switched optical network", ITU-T Recommendation G.8080/Y.1304, February 2012, <https://www.itu.int/rec/T-REC-G.8080-201202-I/en>.
[G.8080]国际电信联盟,“自动交换光网络的体系结构”,ITU-T建议G.8080/Y.1304,2012年2月<https://www.itu.int/rec/T-REC-G.8080-201202-I/en>.
[G.870] International Telecommunication Union, "Terms and definitions for optical transport networks", ITU-T Recommendation G.870/Y.1352, October 2012, <https://www.itu.int/rec/T-REC-G.870/en>.
[G.870]国际电信联盟,“光传输网络的术语和定义”,ITU-T建议G.870/Y.1352,2012年10月<https://www.itu.int/rec/T-REC-G.870/en>.
[G.872] International Telecommunication Union, "Architecture of optical transport networks", ITU-T Recommendation G.872, October 2012, <http://www.itu.int/rec/T-REC-G.872-201210-I>.
[G.872]国际电信联盟,“光传输网络体系结构”,ITU-T建议G.872,2012年10月<http://www.itu.int/rec/T-REC-G.872-201210-I>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<http://www.rfc-editor.org/info/rfc2119>.
[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, DOI 10.17487/RFC3945, October 2004, <http://www.rfc-editor.org/info/rfc3945>.
[RFC3945]Mannie,E.,Ed.“通用多协议标签交换(GMPLS)体系结构”,RFC 3945,DOI 10.17487/RFC3945,2004年10月<http://www.rfc-editor.org/info/rfc3945>.
[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, DOI 10.17487/RFC4202, October 2005, <http://www.rfc-editor.org/info/rfc4202>.
[RFC4202]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的路由扩展”,RFC 4202,DOI 10.17487/RFC4202,2005年10月<http://www.rfc-editor.org/info/rfc4202>.
[RFC4206] Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)", RFC 4206, DOI 10.17487/RFC4206, October 2005, <http://www.rfc-editor.org/info/rfc4206>.
[RFC4206]Kompella,K.和Y.Rekhter,“具有通用多协议标签交换(GMPLS)流量工程(TE)的标签交换路径(LSP)层次结构”,RFC 4206,DOI 10.17487/RFC4206,2005年10月<http://www.rfc-editor.org/info/rfc4206>.
[RFC5511] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax Used to Form Encoding Rules in Various Routing Protocol Specifications", RFC 5511, DOI 10.17487/RFC5511, April 2009, <http://www.rfc-editor.org/info/rfc5511>.
[RFC5511]Farrel,A.,“路由Backus-Naur形式(RBNF):用于在各种路由协议规范中形成编码规则的语法”,RFC 5511,DOI 10.17487/RFC5511,2009年4月<http://www.rfc-editor.org/info/rfc5511>.
[G.959.1-2013] International Telecommunication Union, "Optical transport network physical layer interfaces", Update to ITU-T Recommendation G.959.1, 2013.
[G.959.1-2013]国际电信联盟,“光传输网络物理层接口”,对ITU-T建议G.959.1的更新,2013年。
[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, DOI 10.17487/RFC3473, January 2003, <http://www.rfc-editor.org/info/rfc3473>.
[RFC3473]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,DOI 10.17487/RFC3473,2003年1月<http://www.rfc-editor.org/info/rfc3473>.
[RFC4204] Lang, J., Ed., "Link Management Protocol (LMP)", RFC 4204, DOI 10.17487/RFC4204, October 2005, <http://www.rfc-editor.org/info/rfc4204>.
[RFC4204]Lang,J.,Ed.,“链路管理协议(LMP)”,RFC 4204,DOI 10.17487/RFC4204,2005年10月<http://www.rfc-editor.org/info/rfc4204>.
[RFC4397] Bryskin, I. and A. Farrel, "A Lexicography for the Interpretation of Generalized Multiprotocol Label Switching (GMPLS) Terminology within the Context of the ITU-T's Automatically Switched Optical Network (ASON) Architecture", RFC 4397, DOI 10.17487/RFC4397, February 2006, <http://www.rfc-editor.org/info/rfc4397>.
[RFC4397]Bryskin,I.和A.Farrel,“在ITU-T自动交换光网络(ASON)体系结构背景下解释通用多协议标签交换(GMPLS)术语的词典”,RFC 4397,DOI 10.17487/RFC4397,2006年2月<http://www.rfc-editor.org/info/rfc4397>.
[RFC4606] Mannie, E. and D. Papadimitriou, "Generalized Multi-Protocol Label Switching (GMPLS) Extensions for Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH) Control", RFC 4606, DOI 10.17487/RFC4606, August 2006, <http://www.rfc-editor.org/info/rfc4606>.
[RFC4606]Mannie,E.和D.Papadimitriou,“同步光网络(SONET)和同步数字体系(SDH)控制的通用多协议标签交换(GMPLS)扩展”,RFC 4606,DOI 10.17487/RFC4606,2006年8月<http://www.rfc-editor.org/info/rfc4606>.
[RFC4783] Berger, L., Ed., "GMPLS - Communication of Alarm Information", RFC 4783, DOI 10.17487/RFC4783, December 2006, <http://www.rfc-editor.org/info/rfc4783>.
[RFC4783]Berger,L.,Ed.,“GMPLS-报警信息的通信”,RFC 4783,DOI 10.17487/RFC4783,2006年12月<http://www.rfc-editor.org/info/rfc4783>.
[RFC4802] Nadeau, T., Ed., Farrel, A., and , "Generalized Multiprotocol Label Switching (GMPLS) Traffic Engineering Management Information Base", RFC 4802, DOI 10.17487/RFC4802, February 2007, <http://www.rfc-editor.org/info/rfc4802>.
[RFC4802]Nadeau,T.,Ed.,Farrel,A.,和,“通用多协议标签交换(GMPLS)流量工程管理信息库”,RFC 4802,DOI 10.17487/RFC4802,2007年2月<http://www.rfc-editor.org/info/rfc4802>.
[RFC4803] Nadeau, T., Ed., and A. Farrel, Ed., "Generalized Multiprotocol Label Switching (GMPLS) Label Switching Router (LSR) Management Information Base", RFC 4803, DOI 10.17487/RFC4803, February 2007, <http://www.rfc-editor.org/info/rfc4803>.
[RFC4803]Nadeau,T.,Ed.,和A.Farrel,Ed.,“通用多协议标签交换(GMPLS)标签交换路由器(LSR)管理信息库”,RFC 4803,DOI 10.17487/RFC4803,2007年2月<http://www.rfc-editor.org/info/rfc4803>.
[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010, <http://www.rfc-editor.org/info/rfc5920>.
[RFC5920]方,L.,编辑,“MPLS和GMPLS网络的安全框架”,RFC 5920,DOI 10.17487/RFC5920,2010年7月<http://www.rfc-editor.org/info/rfc5920>.
[RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku, "Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)", RFC 6163, DOI 10.17487/RFC6163, April 2011, <http://www.rfc-editor.org/info/rfc6163>.
[RFC6163]Lee,Y.,Ed.,Bernstein,G.,Ed.,和W.Imajuku,“波长交换光网络(WSON)的GMPLS和路径计算元件(PCE)控制框架”,RFC 6163,DOI 10.17487/RFC6163,2011年4月<http://www.rfc-editor.org/info/rfc6163>.
[RFC6344] Bernstein, G., Ed., Caviglia, D., Rabbat, R., and H. van Helvoort, "Operating Virtual Concatenation (VCAT) and the Link Capacity Adjustment Scheme (LCAS) with Generalized Multi-Protocol Label Switching (GMPLS)", RFC 6344, DOI 10.17487/RFC6344, August 2011, <http://www.rfc-editor.org/info/rfc6344>.
[RFC6344]Bernstein,G.,Ed.,Caviglia,D.,Rabbat,R.,和H.van Helvoort,“操作虚拟连接(VCAT)和带有通用多协议标签交换(GMPLS)的链路容量调整方案(LCAS)”,RFC 6344,DOI 10.17487/RFC6344,2011年8月<http://www.rfc-editor.org/info/rfc6344>.
[RFC7139] Zhang, F., Ed., Zhang, G., Belotti, S., Ceccarelli, D., and K. Pithewan, "GMPLS Signaling Extensions for Control of Evolving G.709 Optical Transport Networks", RFC 7139, DOI 10.17487/RFC7139, March 2014, <http://www.rfc-editor.org/info/rfc7139>.
[RFC7139]Zhang,F.,Ed.,Zhang,G.,Belotti,S.,Ceccarelli,D.,和K.Pithewan,“用于控制演进中的G.709光传输网络的GMPLS信令扩展”,RFC 7139,DOI 10.17487/RFC7139,2014年3月<http://www.rfc-editor.org/info/rfc7139>.
[RFC7260] Takacs, A., Fedyk, D., and J. He, "GMPLS RSVP-TE Extensions for Operations, Administration, and Maintenance (OAM) Configuration", RFC 7260, DOI 10.17487/RFC7260, June 2014, <http://www.rfc-editor.org/info/rfc7260>.
[RFC7260]Takacs,A.,Fedyk,D.,和J.He,“用于运行、管理和维护(OAM)配置的GMPLS RSVP-TE扩展”,RFC 7260,DOI 10.17487/RFC7260,2014年6月<http://www.rfc-editor.org/info/rfc7260>.
Acknowledgments
致谢
The authors would like to thank Pete Anslow for his insights and clarifications, and Matt Hartley and Jonas Maertensson for their reviews.
作者要感谢皮特·安斯洛(Pete Anslow)的见解和澄清,以及马特·哈特利(Matt Hartley)和乔纳斯·梅尔滕森(Jonas Maertensson)的评论。
This work was supported in part by the FP-7 IDEALIST project under grant agreement number 317999.
这项工作部分得到了FP-7理想主义项目的支持,该项目的赠款协议编号为317999。
Contributors
贡献者
Adrian Farrel Old Dog Consulting Email: adrian@olddog.co.uk
Adrian Farrel老狗咨询电子邮件:adrian@olddog.co.uk
Daniel King Old Dog Consulting Email: daniel@olddog.co.uk
Daniel King老狗咨询电子邮件:daniel@olddog.co.uk
Xian Zhang Huawei Email: zhang.xian@huawei.com
Xian Zhang华为电子邮件:Zhang。xian@huawei.com
Cyril Margaria Juniper Networks Email: cmargaria@juniper.net
Cyril Margaria Juniper Networks电子邮件:cmargaria@juniper.net
Qilei Wang ZTE Ruanjian Avenue, Nanjing, China Email: wang.qilei@zte.com.cn
齐磊王中兴通讯中国南京阮建大道电子邮件:王。qilei@zte.com.cn
Malcolm Betts ZTE Email: malcolm.betts@zte.com.cn
Malcolm Betts中兴通讯电子邮件:Malcolm。betts@zte.com.cn
Sergio Belotti Alcatel-Lucent Optics CTO Via Trento 30 20059 Vimercate (Milano) Italy Phone: +39 039 686 3033 Email: sergio.belotti@alcatel-lucent.com
塞尔吉奥·贝洛蒂·阿尔卡特·朗讯光学公司首席技术官,电话号码:30 20059意大利米兰维梅卡特电话:+39 039 686 3033电子邮件:塞尔吉奥。belotti@alcatel-朗讯网
Yao Li Nanjing University Email: wsliguotou@hotmail.com
姚莉南京大学电子邮件:wsliguotou@hotmail.com
Fei Zhang Huawei Email: zhangfei7@huawei.com
张飞华为邮箱:zhangfei7@huawei.com
Lei Wang Email: wang.lei@bupt.edu.cn
王磊电子邮件:王。lei@bupt.edu.cn
Guoying Zhang China Academy of Telecom Research No.52 Huayuan Bei Road, Beijing, China Email: zhangguoying@ritt.cn
中国电信研究院张国英中国北京花园北路52号电子邮件:zhangguoying@ritt.cn
Takehiro Tsuritani KDDI R&D Laboratories Inc. 2-1-15 Ohara, Fujimino, Saitama, Japan Email: tsuri@kddilabs.jp
Takehiro Turitani KDDI研发实验室有限公司2-1-15 Ohara,Fujimino,Saitama,日本电子邮件:tsuri@kddilabs.jp
Lei Liu UC Davis, United States Email: leiliu@ucdavis.edu
Lei Liu UC Davis,美国电子邮件:leiliu@ucdavis.edu
Eve Varma Alcatel-Lucent Phone: +1 732 239 7656 Email: eve.varma@alcatel-lucent.com
Eve Varma Alcatel-Lucent电话:+1 732 239 7656电子邮件:Eve。varma@alcatel-朗讯网
Young Lee Huawei
李小华
Jianrui Han Huawei
韩建瑞华为
Sharfuddin Syed Infinera
沙夫丁·赛德·英菲内拉
Rajan Rao Infinera
拉詹·拉奥·因菲内拉
Marco Sosa Infinera
马尔科·索萨·因菲内拉
Biao Lu Infinera
刘彪
Abinder Dhillon Infinera
阿宾德·迪隆·因菲内拉
Felipe Jimenez Arribas Telefonica I+D
菲利佩·希门尼斯·阿里巴斯电视台I+D
Andrew G. Malis Huawei Email: agmalis@gmail.com
Andrew G.Malis华为电子邮件:agmalis@gmail.com
Huub van Helvoort Hai Gaoming BV The Netherlands Email: huubatwork@gmail.com
荷兰Huub van Helvoort Hai Gaoming BV电子邮件:huubatwork@gmail.com
Authors' Addresses
作者地址
Oscar Gonzalez de Dios (editor) Telefonica I+D Ronda de la Comunicacion s/n Madrid 28050 Spain
奥斯卡·冈萨雷斯·德·迪奥斯(编辑)西班牙马德里南部电话会议中心,邮编28050
Phone: +34 91 312 96 47 Email: oscar.gonzalezdedios@telefonica.com
Phone: +34 91 312 96 47 Email: oscar.gonzalezdedios@telefonica.com
Ramon Casellas (editor) CTTC Av. Carl Friedrich Gauss n.7 Castelldefels Barcelona Spain
拉蒙·卡塞拉斯(编辑)CTTC Av。卡尔·弗里德里希·高斯n.7卡斯特尔德费尔斯巴塞罗那西班牙酒店
Phone: +34 93 645 29 00 Email: ramon.casellas@cttc.es
Phone: +34 93 645 29 00 Email: ramon.casellas@cttc.es
Fatai Zhang Huawei Huawei Base, Bantian, Longgang District Shenzhen 518129 China
中国深圳市龙岗区坂田华为基地法泰张518129
Phone: +86 755 28972912 Email: zhangfatai@huawei.com
Phone: +86 755 28972912 Email: zhangfatai@huawei.com
Xihua Fu Stairnote No.118, Taibai Road, Yanta District Xi'An China
中国西安市雁塔区太白路118号西华府楼梯口
Email: fu.xihua@stairnote.com
Email: fu.xihua@stairnote.com
Daniele Ceccarelli Ericsson Via Calda 5 Genova Italy
Daniele Ceccarelli Ericsson Via Calda 5意大利热那亚
Phone: +39 010 600 2512 Email: daniele.ceccarelli@ericsson.com
Phone: +39 010 600 2512 Email: daniele.ceccarelli@ericsson.com
Iftekhar Hussain Infinera 140 Caspian Ct. Sunnyvale, CA 94089 United States
Iftekhar Hussain Infinera 140里海Ct。美国加利福尼亚州桑尼维尔94089
Phone: 408 572 5233 Email: ihussain@infinera.com
电话:408572 5233电子邮件:ihussain@infinera.com