Internet Engineering Task Force (IETF) Y. Lee, Ed. Request for Comments: 7688 Huawei Category: Standards Track G. Bernstein, Ed. ISSN: 2070-1721 Grotto Networking November 2015
Internet Engineering Task Force (IETF) Y. Lee, Ed. Request for Comments: 7688 Huawei Category: Standards Track G. Bernstein, Ed. ISSN: 2070-1721 Grotto Networking November 2015
GMPLS OSPF Enhancement for Signal and Network Element Compatibility for Wavelength Switched Optical Networks
波长交换光网络信号和网元兼容性的GMPLS OSPF增强
Abstract
摘要
This document provides Generalized Multiprotocol Label Switching (GMPLS) Open Shortest Path First (OSPF) routing enhancements to support signal compatibility constraints associated with Wavelength Switched Optical Network (WSON) elements. These routing enhancements are applicable in common optical or hybrid electro-optical networks where not all the optical signals in the network are compatible with all network elements participating in the network.
本文档提供了通用多协议标签交换(GMPLS)开放最短路径优先(OSPF)路由增强功能,以支持与波长交换光网络(WSON)元件相关的信号兼容性约束。这些路由增强适用于普通光学或混合电光网络,其中并非网络中的所有光信号都与参与网络的所有网络元件兼容。
This compatibility constraint model is applicable to common optical or hybrid electro-optical systems such as optical-electronic-optical (OEO) switches, regenerators, and wavelength converters, since such systems can be limited to processing only certain types of WSON signals.
该兼容性约束模型适用于普通光学或混合电光系统,如光电(OEO)开关、再生器和波长转换器,因为此类系统仅限于处理特定类型的WSON信号。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7688.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7688.
Copyright Notice
版权公告
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2015 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................3 1.1. Conventions Used in This Document ..........................3 2. The Optical Node Property TLV ...................................3 2.1. Resource Block Information .................................4 2.2. Resource Accessibility .....................................5 2.3. Resource Wavelength Constraints ............................5 2.4. Resource Block Pool State ..................................5 2.5. Resource Block Shared Access Wavelength Availability .......5 3. Interface Switching Capability Descriptor (ISCD) Format Extensions ......................................................5 3.1. Switching Capability Specific Information (SCSI) ...........6 4. WSON-Specific Scalability and Timeliness ........................7 5. Security Considerations .........................................8 6. IANA Considerations .............................................8 6.1. Optical Node Property TLV ..................................8 6.1.1. Optical Node Property Sub-TLV .......................8 6.2. WSON-LSC Switching Type TLV ................................9 6.2.1. WSON-LSC SCSI Sub-TLVs ..............................9 7. References .....................................................10 7.1. Normative References ......................................10 7.2. Informative References ....................................10 Authors' Addresses ................................................12
1. Introduction ....................................................3 1.1. Conventions Used in This Document ..........................3 2. The Optical Node Property TLV ...................................3 2.1. Resource Block Information .................................4 2.2. Resource Accessibility .....................................5 2.3. Resource Wavelength Constraints ............................5 2.4. Resource Block Pool State ..................................5 2.5. Resource Block Shared Access Wavelength Availability .......5 3. Interface Switching Capability Descriptor (ISCD) Format Extensions ......................................................5 3.1. Switching Capability Specific Information (SCSI) ...........6 4. WSON-Specific Scalability and Timeliness ........................7 5. Security Considerations .........................................8 6. IANA Considerations .............................................8 6.1. Optical Node Property TLV ..................................8 6.1.1. Optical Node Property Sub-TLV .......................8 6.2. WSON-LSC Switching Type TLV ................................9 6.2.1. WSON-LSC SCSI Sub-TLVs ..............................9 7. References .....................................................10 7.1. Normative References ......................................10 7.2. Informative References ....................................10 Authors' Addresses ................................................12
The documents [RFC6163], [RFC7446], and [RFC7581] explain how to extend the Wavelength Switched Optical Network (WSON) control plane to support both multiple WSON signal types and common hybrid electro-optical systems as well hybrid systems containing optical switching and electro-optical resources. In WSON, not all the optical signals in the network are compatible with all network elements participating in the network. Therefore, signal compatibility is an important constraint in path computation in a WSON.
文献[RFC6163]、[RFC7446]和[RFC7581]解释了如何扩展波长交换光网络(WSON)控制平面,以支持多种WSON信号类型和常见的混合电光系统以及包含光交换和电光资源的混合系统。在无线传感器网络(WSON)中,并非网络中的所有光信号都与参与网络的所有网元兼容。因此,信号兼容性是无线传感器网络路径计算中的一个重要约束。
This document provides GMPLS OSPF routing enhancements to support signal compatibility constraints associated with general WSON network elements. These routing enhancements are applicable in common optical or hybrid electro-optical networks where not all optical signals in the network are compatible with all network elements participating in the network.
本文档提供了GMPLS OSPF路由增强功能,以支持与一般WSON网络元件相关的信号兼容性约束。这些路由增强适用于普通光网络或混合电光网络,其中网络中并非所有光信号都与参与网络的所有网络元件兼容。
This compatibility constraint model is applicable to common optical or hybrid electro-optical systems such as OEO switches, regenerators, and wavelength converters, since such systems can be limited to processing only certain types of WSON signals.
此兼容性约束模型适用于普通光学或混合电光系统,如OEO开关、再生器和波长转换器,因为此类系统可能仅限于处理特定类型的WSON信号。
Related to this document is [RFC7580], which provides GMPLS OSPF routing enhancements to support the generic routing and label assignment process that can be applicable to a wider range of technologies beyond WSON.
与本文件相关的是[RFC7580],它提供了GMPLS OSPF路由增强功能,以支持通用路由和标签分配过程,该过程可适用于WSON以外的更广泛技术。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。
[RFC3630] defines OSPF Traffic Engineering (TE) Link State Advertisement (LSA) using an opaque LSA. This document adds a new top-level TLV for use in the OSPF TE LSA: the Optical Node Property TLV. The Optical Node Property TLV describes a single node. It is comprised of a set of optional sub-TLVs. There are no ordering requirements for the sub-TLVs.
[RFC3630]使用不透明LSA定义OSPF流量工程(TE)链路状态公告(LSA)。本文档添加了一个用于OSPF TE LSA的新顶级TLV:光节点属性TLV。光学节点属性TLV描述单个节点。它由一组可选的子TLV组成。子TLV没有订购要求。
When using the extensions defined in this document, at least one Optical Node Property TLV MUST be advertised in each LSA. To allow for fine-grained changes in topology, more than one Optical Node Property TLV MAY be advertised in a single LSA. Implementations MUST support receiving multiple Optical Node Property TLVs in an LSA.
使用本文档中定义的扩展时,必须在每个LSA中公布至少一个光节点属性TLV。为了允许拓扑中的细粒度更改,可以在单个LSA中通告多个光节点属性TLV。实现必须支持在LSA中接收多个光节点属性TLV。
The Optical Node Property TLV contains all WSON-specific node properties and signal compatibility constraints. The detailed encodings of these properties are defined in [RFC7581].
光节点属性TLV包含所有特定于WSON的节点属性和信号兼容性约束。[RFC7581]中定义了这些属性的详细编码。
The following sub-TLVs of the Optical Node Property TLV are defined:
定义了光学节点属性TLV的以下子TLV:
Value Length Sub-TLV Type
值长度子TLV类型
1 variable Resource Block Information 2 variable Resource Accessibility 3 variable Resource Wavelength Constraints 4 variable Resource Block Pool State 5 variable Resource Block Shared Access Wavelength Availability
1可变资源块信息2可变资源可访问性3可变资源波长约束4可变资源块池状态5可变资源块共享访问波长可用性
The detailed encodings of these sub-TLVs are found in [RFC7581] as indicated in the table below.
这些子TLV的详细编码见[RFC7581],如下表所示。
Sub-TLV Type Section from [RFC7581]
[RFC7581]的子TLV型截面
Resource Block Information 4 Resource Accessibility 3.1 Resource Wavelength Constraints 3.2 Resource Block Pool State 3.3 Resource Block Shared Access Wavelength Availability 3.4
资源块信息4资源可访问性3.1资源波长约束3.2资源块池状态3.3资源块共享访问波长可用性3.4
All sub-TLVs defined here may occur at most once in any given Optical Node TLV under one TE LSA. If more than one copy of the sub-TLV is received in the same LSA, the redundant sub-TLV SHOULD be ignored. If the same sub-TLV is advertised in a different TE LSA (which would only occur if there was a packaging error), then the sub-TLV with the largest LSA ID (Section 2.2 of RFC 3630) SHOULD be picked. These restrictions need not apply to future sub-TLVs. Unrecognized sub-TLVs are ignored.
此处定义的所有子TLV在一个TE LSA下的任何给定光节点TLV中最多出现一次。如果在同一LSA中接收到子TLV的多个副本,则应忽略冗余子TLV。如果在不同的TE LSA中公布相同的子TLV(仅当存在包装错误时才会发生),则应选择LSA ID最大的子TLV(RFC 3630第2.2节)。这些限制不必适用于未来的子TLV。忽略未识别的子TLV。
Among the sub-TLVs defined above, the Resource Block Pool State sub-TLV and Resource Block Shared Access Wavelength Availability are dynamic in nature, while the rest are static. As such, they can be separated out from the rest and be advertised with multiple TE LSAs per OSPF router, as described in [RFC3630] and [RFC5250].
在上面定义的子TLV中,资源块池状态子TLV和资源块共享访问波长可用性本质上是动态的,而其余是静态的。因此,它们可以从其余部分中分离出来,并按照[RFC3630]和[RFC5250]中所述,根据OSPF路由器使用多个TE LSA进行广告。
As defined in [RFC7446], this sub-TLV is used to represent resource signal constraints and processing capabilities of a node.
如[RFC7446]中所定义,此子TLV用于表示节点的资源信号约束和处理能力。
This sub-TLV describes the structure of the resource pool in relation to the switching device. In particular, it indicates the ability of an ingress port to reach a resource block and of a resource block to reach a particular egress port.
此子TLV描述了与交换设备相关的资源池的结构。具体而言,它指示入口端口到达资源块和资源块到达特定出口端口的能力。
Resources, such as wavelength converters, etc., may have limited input or output wavelength ranges. Additionally, due to the structure of the optical system, not all wavelengths can necessarily reach or leave all the resources. The Resource Wavelength Constraints sub-TLV describes these properties.
诸如波长转换器等资源可能具有有限的输入或输出波长范围。此外,由于光学系统的结构,并非所有波长都能到达或离开所有资源。资源波长约束子TLV描述了这些属性。
This sub-TLV describes the usage state of a resource that can be encoded as either a list of integer values or a bitmap indicating whether a single resource is available or in use. This information can be relatively dynamic, i.e., can change when a connection is established or torn down.
此子TLV描述资源的使用状态,可以将其编码为整数值列表或指示单个资源可用或正在使用的位图。此信息可能是相对动态的,即,当建立或断开连接时,此信息可能会发生变化。
Resource blocks may be accessed via a shared fiber. If this is the case, then wavelength availability on these shared fibers is needed to understand resource availability.
可以通过共享光纤访问资源块。如果是这种情况,则需要这些共享光纤上的波长可用性来了解资源可用性。
The ISCD describes the switching capability of an interface [RFC4202]. This document defines a new Switching Capability value for WSON as follows:
ISCD描述了接口[RFC4202]的交换能力。本文件为WSON定义了一个新的开关能力值,如下所示:
Value Type ----- ---- 151 WSON-LSC
Value Type ----- ---- 151 WSON-LSC
Switching Capability and Encoding values MUST be used as follows:
开关能力和编码值必须按如下方式使用:
Switching Capability = WSON-LSC
交换能力=WSON-LSC
Encoding Type = Lambda (as defined in [RFC3471])
编码类型=λ(定义见[RFC3471])
When Switching Capability and Encoding fields are set to values as stated above, the Interface Switching Capability Descriptor MUST be interpreted as in [RFC4203] with the optional inclusion of one or more Switching Capability Specific Information sub-TLVs.
当切换能力和编码字段设置为如上所述的值时,接口切换能力描述符必须按照[RFC4203]中的说明进行解释,可选包含一个或多个特定于切换能力的信息子TLV。
The technology-specific part of the WSON ISCD may include a variable number of sub-TLVs called Bandwidth sub-TLVs. Two types of Bandwidth sub-TLV are defined:
WSON-ISCD的技术特定部分可以包括称为带宽子tlv的可变数量的子tlv。定义了两种类型的带宽子TLV:
- Type 1: Available Labels
- 类型1:可用标签
- Type 2: Shared Backup Labels
- 类型2:共享备份标签
A SCSI may contain multiple Available Label sub-TLVs and multiple Shared Backup Label sub-TLVs. The following figure shows the format for a SCSI that contains these sub-TLVs, where the Available Label Sub-TLV and Shared Backup Label sub-TLV are as defined in [RFC7579]. The order of the sub-TLVs in the SCSI is arbitrary.
SCSI可能包含多个可用标签子TLV和多个共享备份标签子TLV。下图显示了包含这些子TLV的SCSI的格式,其中可用的标签子TLV和共享备份标签子TLV如[RFC7579]中所定义。SCSI中子TLV的顺序是任意的。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Available) | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | Available Label Sub-TLV | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ ... ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 2 (Shared backup) | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | Shared Backup Label Sub-TLV | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Available) | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | Available Label Sub-TLV | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ ... ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 2 (Shared backup) | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | Shared Backup Label Sub-TLV | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: SCSI Format
图1:SCSI格式
If duplicated sub-TLVs are advertised, the router/node will ignore the duplicated labels that are identified by the Label format defined in [RFC6205].
如果公布重复的子TLV,路由器/节点将忽略由[RFC6205]中定义的标签格式标识的重复标签。
The label format defined in [RFC6205] MUST be used when advertising interfaces with a WSON-LSC type Switching Capability.
当广告接口具有WSON-LSC类型切换功能时,必须使用[RFC6205]中定义的标签格式。
This document has defined five sub-TLVs specific to WSON. The examples given in [RFC7581] show that very large systems, in terms of channel count, ports, or resources, can be very efficiently encoded.
本文件定义了WSON特有的五个子TLV。[RFC7581]中给出的示例表明,在信道计数、端口或资源方面,非常大的系统可以非常高效地编码。
There has been concern expressed that some possible systems may produce LSAs that exceed the IP Maximum Transmission Unit (MTU). In a typical node configuration, the Optical Node Property TLV will not exceed the IP MTU. A typical node configuration refers to a system with several hundreds of channels with an OEO element in the node. This would give the Optical Node Property TLV less than 350 bytes. In addition, [RFC7581] provides mechanisms to compactly encode required information elements. In a rare case where the TLV exceeds the IP MTU, IP fragmentation/reassembly can be used, which is an acceptable method. For IPv6, a node may use the IPv6 Fragment header to fragment the packet at the source and have it reassembled at the destination(s).
有人担心,一些可能的系统可能会产生超过IP最大传输单元(MTU)的LSA。在典型节点配置中,光节点属性TLV不会超过IP MTU。典型的节点配置是指具有数百个通道的系统,其中节点中有一个OEO元素。这将使光节点属性TLV小于350字节。此外,[RFC7581]还提供了对所需信息元素进行紧凑编码的机制。在TLV超过IP MTU的罕见情况下,可以使用IP分段/重新组装,这是一种可接受的方法。对于IPv6,节点可以使用IPv6片段头在源处对数据包进行片段化,并在目的地重新组装数据包。
If the size of this LSA is greater than the MTU, then these sub-TLVs can be packed into separate LSAs. From the point of view of path computation, the presence of the Resource Block Information sub-TLV indicates that resources exist in the system and may have signal compatibility or other constraints. The other four sub-TLVs indicate constraints on access to and availability of those resources.
如果此LSA的大小大于MTU,则这些子TLV可以打包到单独的LSA中。从路径计算的观点来看,资源块信息子TLV的存在指示资源存在于系统中并且可能具有信号兼容性或其他约束。其他四个子TLV表示对这些资源的访问和可用性的限制。
Hence, the "synchronization" procedure is quite simple from the point of view of path computation. Until a Resource Block Information sub-TLV is received for a system, path computation cannot make use of the other four sub-TLVs since it does not know the nature of the resources, e.g., whether the resources are wavelength converters, regenerators, or something else. Once this sub-TLV is received, path computation can proceed with whatever sub-TLVs it may have received (their use is dependent upon the system type).
因此,从路径计算的角度来看,“同步”过程非常简单。在为系统接收到资源块信息子TLV之前,路径计算不能使用其他四个子TLV,因为它不知道资源的性质,例如,资源是波长转换器、再生器还是其他东西。一旦接收到该子TLV,路径计算就可以处理它可能接收到的任何子TLV(它们的使用取决于系统类型)。
If path computation proceeds with out-of-date or missing information from these sub-TLVs, then there is the possibility of either (a) path computation yielding a path that does not exist in the network, (b) path computation failing to find a path through the network that actually exists. Both situations are currently encountered with GMPLS, i.e., out-of-date information on constraints or resource availability.
如果路径计算在这些子TLV的信息过期或丢失的情况下进行,则存在以下两种可能性:(a)路径计算产生网络中不存在的路径,(b)路径计算无法找到通过网络的实际存在的路径。GMPLS目前遇到这两种情况,即关于约束或资源可用性的过时信息。
If the new sub-TLVs or their attendant encodings are malformed, a proper implementation SHOULD log the problem and MUST stop sending the LSA that contains malformed TLVs or sub-TLVs.
如果新的子TLV或其伴随编码格式不正确,则正确的实现应记录该问题,并且必须停止发送包含格式不正确的TLV或子TLV的LSA。
Errors of this nature SHOULD be logged for the local operator. Implementations MUST provide a rate limit on such logs, and that rate limit SHOULD be configurable.
应为本地操作员记录此类性质的错误。实现必须对此类日志提供速率限制,并且该速率限制应该是可配置的。
Note that the connection establishment mechanism (signaling or management) is ultimately responsible for the establishment of the connection, and this implies that such mechanisms must ensure signal compatibility.
请注意,连接建立机制(信令或管理)最终负责建立连接,这意味着此类机制必须确保信号兼容性。
This document does not introduce security issues other than those discussed in [RFC3630] and [RFC4203].
除[RFC3630]和[RFC4203]中讨论的安全问题外,本文件不介绍其他安全问题。
As with [RFC4203], it specifies the contents of Opaque LSAs in OSPFv2. As Opaque LSAs are not used for Shortest Path First (SPF) computation or normal routing, the extensions specified here have no direct effect on IP routing. Tampering with GMPLS TE LSAs may have an effect on the underlying transport. [RFC3630] notes that the security mechanisms described in [RFC2328] apply to Opaque LSAs carried in OSPFv2.
与[RFC4203]一样,它指定OSPFv2中不透明LSA的内容。由于不透明LSA不用于最短路径优先(SPF)计算或正常路由,因此此处指定的扩展对IP路由没有直接影响。篡改GMPLS TE LSA可能会对基础传输产生影响。[RFC3630]注意到[RFC2328]中描述的安全机制适用于OSPFv2中携带的不透明LSA。
For general security aspects relevant to GMPLS-controlled networks, please refer to [RFC5920].
有关GMPLS控制网络的一般安全方面,请参考[RFC5920]。
This document introduces a new Top-Level Node TLV (Optical Node Property TLV) under the OSPF TE LSA defined in [RFC3630]. IANA has registered a new TLV for "Optical Node Property". The new TLV is in the "Top Level Types in TE LSAs" registry in "Open Shortest Path First (OSPF) Traffic Engineering TLVs" located at <http://www.iana.org/assignments/ospf-traffic-eng-tlvs>, and is as follows:
本文档介绍了[RFC3630]中定义的OSPF TE LSA下的新顶级节点TLV(光节点属性TLV)。IANA已为“光节点属性”注册了新的TLV。新TLV位于“开放最短路径优先(OSPF)流量工程TLV”的“TE LSAs顶级类型”注册表中,位于<http://www.iana.org/assignments/ospf-traffic-eng-tlvs>,详情如下:
Value TLV Type Reference
值TLV类型引用
6 Optical Node Property RFC 7688
6光节点属性RFC 7688
Additionally, a new IANA registry has been created named "Types for sub-TLVs of Optical Node Property (Value 6)" in the "Open Shortest Path First (OSPF) Traffic Engineering TLVs" registry located at <http://www.iana.org/assignments/ospf-traffic-eng-tlvs>. New sub-TLVs and their values have been assigned as follows:
此外,在位于的“开放最短路径优先(OSPF)流量工程TLV”注册表中创建了一个名为“光节点属性子TLV类型(值6)”的新IANA注册表<http://www.iana.org/assignments/ospf-traffic-eng-tlvs>. 新的子TLV及其值分配如下:
Value Length Sub-TLV Reference
值长度子TLV参考
0 Reserved 1 variable Resource Block Information RFC 7688 2 variable Resource Accessibility RFC 7688 3 variable Resource Wavelength Constraints RFC 7688 4 variable Resource Block Pool State RFC 7688 5 variable Resource Block Shared Access Wavelength Availability RFC 7688 6-65535 Unassigned
0保留1可变资源块信息RFC 7688 2可变资源可访问性RFC 7688 3可变资源波长约束RFC 7688 4可变资源块池状态RFC 7688 5可变资源块共享访问波长可用性RFC 7688 6-65535未分配
The registration procedure for this registry is Standards Action as defined in [RFC5226].
此注册表的注册程序是[RFC5226]中定义的标准行动。
IANA has registered a new switching type in the "Switching Types" registry in "GMPLS Signaling Parameters", located at <http://www.iana.org/assignments/gmpls-sig-parameters>, as follows:
IANA已在“GMPLS信令参数”中的“切换类型”注册表中注册了一种新的切换类型,该注册表位于<http://www.iana.org/assignments/gmpls-sig-parameters>,详情如下:
Value Description Reference
值描述参考
151 WSON-LSC RFC 7688
151 WSON-LSC RFC 7688
Also, IANA has added the following entry to the IANAGmplsSwitchingTypeTC MIB:
此外,IANA还在IANAGMPLSSSwitchingTypeTC MIB中添加了以下条目:
wsonlsc(151), -- WSON-LSC
wsonlsc(151),--WSON-LSC
Additionally, a new IANA registry has been created for sub-TLVs of the WSON-LSC SCSI sub-TLV. It is named "Types for sub-TLVs of WSON-LSC SCSI (Switching Capability Specific Information)" and is in the "Open Shortest Path First (OSPF) Traffic Engineering TLVs" registry. It contains the following sub-TLVs:
此外,还为WSON-LSC SCSI子TLV的子TLV创建了一个新的IANA注册表。它被命名为“WSON-LSC SCSI子TLV的类型(交换能力特定信息)”,并位于“开放最短路径优先(OSPF)流量工程TLV”注册表中。它包含以下子TLV:
Value Sub-TLV Reference
值子TLV参考
0 Reserved 1 Available Labels RFC 7688 2 Shared Backup Labels RFC 7688 3-65535 Unassigned
0保留1可用标签RFC 7688 2共享备份标签RFC 7688 3-65535未分配
The registration procedure for this registry is Standards Action as defined in [RFC5226].
此注册表的注册程序是[RFC5226]中定义的标准行动。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<http://www.rfc-editor.org/info/rfc2119>.
[RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2", RFC 3630, DOI 10.17487/RFC3630, September 2003, <http://www.rfc-editor.org/info/rfc3630>.
[RFC3630]Katz,D.,Kompella,K.,和D.Yeung,“OSPF版本2的交通工程(TE)扩展”,RFC 3630,DOI 10.17487/RFC3630,2003年9月<http://www.rfc-editor.org/info/rfc3630>.
[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005, <http://www.rfc-editor.org/info/rfc4203>.
[RFC4203]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的OSPF扩展”,RFC 4203,DOI 10.17487/RFC4203,2005年10月<http://www.rfc-editor.org/info/rfc4203>.
[RFC6205] Otani, T., Ed., and D. Li, Ed., "Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers", RFC 6205, DOI 10.17487/RFC6205, March 2011, <http://www.rfc-editor.org/info/rfc6205>.
[RFC6205]Otani,T.,Ed.,和D.Li,Ed.,“Lambda交换机功能(LSC)标签交换路由器的通用标签”,RFC 6205,DOI 10.17487/RFC6205,2011年3月<http://www.rfc-editor.org/info/rfc6205>.
[RFC7579] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and J. Han, "General Network Element Constraint Encoding for GMPLS-Controlled Networks", RFC 7579, DOI 10.17487/RFC7579, June 2015, <http://www.rfc-editor.org/info/rfc7579>.
[RFC7579]Bernstein,G.,Ed.,Lee,Y.,Ed.,Li,D.,Imajuku,W.,和J.Han,“GMPLS控制网络的一般网元约束编码”,RFC 7579,DOI 10.17487/RFC7579,2015年6月<http://www.rfc-editor.org/info/rfc7579>.
[RFC7580] Zhang, F., Lee, Y., Han, J., Bernstein, G., and Y. Xu, "OSPF-TE Extensions for General Network Element Constraints", RFC 7580, DOI 10.17487/RFC7580, June 2015, <http://www.rfc-editor.org/info/rfc7580>.
[RFC7580]Zhang,F.,Lee,Y.,Han,J.,Bernstein,G.,和Y.Xu,“一般网元约束的OSPF-TE扩展”,RFC 7580,DOI 10.17487/RFC75802015年6月<http://www.rfc-editor.org/info/rfc7580>.
[RFC7581] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and J. Han, "Routing and Wavelength Assignment Information Encoding for Wavelength Switched Optical Networks", RFC 7581, DOI 10.17487/RFC7581, June 2015, <http://www.rfc-editor.org/info/rfc7581>.
[RFC7581]Bernstein,G.,Ed.,Lee,Y.,Ed.,Li,D.,Imajuku,W.,和J.Han,“波长交换光网络的路由和波长分配信息编码”,RFC 7581,DOI 10.17487/RFC7581,2015年6月<http://www.rfc-editor.org/info/rfc7581>.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, DOI 10.17487/RFC2328, April 1998, <http://www.rfc-editor.org/info/rfc2328>.
[RFC2328]Moy,J.,“OSPF版本2”,STD 54,RFC 2328,DOI 10.17487/RFC2328,1998年4月<http://www.rfc-editor.org/info/rfc2328>.
[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, DOI 10.17487/RFC3471, January 2003, <http://www.rfc-editor.org/info/rfc3471>.
[RFC3471]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,DOI 10.17487/RFC3471,2003年1月<http://www.rfc-editor.org/info/rfc3471>.
[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, DOI 10.17487/RFC4202, October 2005, <http://www.rfc-editor.org/info/rfc4202>.
[RFC4202]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的路由扩展”,RFC 4202,DOI 10.17487/RFC4202,2005年10月<http://www.rfc-editor.org/info/rfc4202>.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, DOI 10.17487/RFC5226, May 2008, <http://www.rfc-editor.org/info/rfc5226>.
[RFC5226]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,DOI 10.17487/RFC5226,2008年5月<http://www.rfc-editor.org/info/rfc5226>.
[RFC5250] Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The OSPF Opaque LSA Option", RFC 5250, DOI 10.17487/RFC5250, July 2008, <http://www.rfc-editor.org/info/rfc5250>.
[RFC5250]Berger,L.,Bryskin,I.,Zinin,A.,和R.Coltun,“OSPF不透明LSA选项”,RFC 5250,DOI 10.17487/RFC5250,2008年7月<http://www.rfc-editor.org/info/rfc5250>.
[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010, <http://www.rfc-editor.org/info/rfc5920>.
[RFC5920]方,L.,编辑,“MPLS和GMPLS网络的安全框架”,RFC 5920,DOI 10.17487/RFC5920,2010年7月<http://www.rfc-editor.org/info/rfc5920>.
[RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku, "Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)", RFC 6163, DOI 10.17487/RFC6163, April 2011, <http://www.rfc-editor.org/info/rfc6163>.
[RFC6163]Lee,Y.,Ed.,Bernstein,G.,Ed.,和W.Imajuku,“波长交换光网络(WSON)的GMPLS和路径计算元件(PCE)控制框架”,RFC 6163,DOI 10.17487/RFC6163,2011年4月<http://www.rfc-editor.org/info/rfc6163>.
[RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku, "Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks", RFC 7446, DOI 10.17487/RFC7446, February 2015, <http://www.rfc-editor.org/info/rfc7446>.
[RFC7446]Lee,Y.,Ed.,Bernstein,G.,Ed.,Li,D.,和W.Imajuku,“波长交换光网络的路由和波长分配信息模型”,RFC 7446,DOI 10.17487/RFC7446,2015年2月<http://www.rfc-editor.org/info/rfc7446>.
Authors' Addresses
作者地址
Young Lee (editor) Huawei Technologies 5340 Legacy Drive, Building 3 Plano, TX 75024 United States
Young Lee(编辑)美国德克萨斯州Plano 3号楼华为技术5340 Legacy Drive 75024
Phone: (469) 277-5838 Email: leeyoung@huawei.com
电话:(469)277-5838电子邮件:leeyoung@huawei.com
Greg M. Bernstein (editor) Grotto Networking Fremont, CA United States
Greg M.Bernstein(编辑)美国加利福尼亚州弗里蒙特Grotto Networking
Phone: (510) 573-2237 Email: gregb@grotto-networking.com
电话:(510)573-2237电子邮件:gregb@grotto-网络