Independent Submission J. T. Hao Request for Comments: 7625 Huawei Technologies Co., Ltd Category: Informational P. Maheshwari ISSN: 2070-1721 Bharti Airtel, Ltd. R. Huang L. Andersson M. Chen Huawei Technologies Co., Ltd August 2015
Independent Submission J. T. Hao Request for Comments: 7625 Huawei Technologies Co., Ltd Category: Informational P. Maheshwari ISSN: 2070-1721 Bharti Airtel, Ltd. R. Huang L. Andersson M. Chen Huawei Technologies Co., Ltd August 2015
Architecture of an IP/MPLS Network with Hardened Pipes
具有加固管道的IP/MPLS网络体系结构
Abstract
摘要
This document describes an IP/MPLS network that has an infrastructure that can be separated into two or more strata. For the implementation described in this document, the infrastructure has been separated into two strata: one for the "Hard Pipes", called the "Hard Pipe Stratum", and one for the normal IP/MPLS traffic, called the "Normal IP/MPLS Stratum".
本文档描述了一个IP/MPLS网络,该网络具有可分为两个或更多层的基础设施。对于本文档中描述的实现,基础设施分为两个层:一个用于“硬管道”,称为“硬管道层”,另一个用于正常IP/MPLS流量,称为“正常IP/MPLS层”。
This document introduces the concept of a Hard Pipe -- an MPLS Label Switched Path (LSP) or a pseudowire (PW) with a bandwidth that is guaranteed and can neither be exceeded nor infringed upon.
本文档介绍了硬管道的概念——MPLS标签交换路径(LSP)或伪线(PW),其带宽是有保证的,既不能超过也不能侵犯。
The Hard Pipe stratum does not use statistical multiplexing; for the LSPs and PWs set up within this stratum, the bandwidth is guaranteed end to end.
硬管地层不使用统计复用;对于在该层中建立的LSP和PW,带宽是端到端保证的。
The document does not specify any new protocol or procedures. It does explain how the MPLS standards implementation has been deployed and operated to meet the requirements from operators that offer traditional Virtual Leased Line (VLL) services.
本文件未规定任何新的协议或程序。它确实解释了如何部署和操作MPLS标准实施,以满足提供传统虚拟租用线路(VLL)服务的运营商的要求。
Status of This Memo
关于下段备忘
This document is not an Internet Standards Track specification; it is published for informational purposes.
本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。
This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
这是对RFC系列的贡献,独立于任何其他RFC流。RFC编辑器已选择自行发布此文档,并且未声明其对实现或部署的价值。RFC编辑批准发布的文件不适用于任何级别的互联网标准;见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7625.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7625.
Copyright Notice
版权公告
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2015 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。
Table of Contents
目录
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 4 2. The Stratified Network . . . . . . . . . . . . . . . . . . . 5 2.1. The Physical Network . . . . . . . . . . . . . . . . . . 6 2.2. The Hard Pipe Stratum . . . . . . . . . . . . . . . . . . 6 2.3. The Normal IP/MPLS Stratum . . . . . . . . . . . . . . . 7 2.4. Stratum Networks . . . . . . . . . . . . . . . . . . . . 7 3. Configuring the Leased Lines in the Hard Pipe Stratum . . . . 8 4. Efficient State Management . . . . . . . . . . . . . . . . . 9 4.1. State in the Forwarding Plane . . . . . . . . . . . . . . 9 4.2. State in the NMS/Controller . . . . . . . . . . . . . . . 10 4.3. Annotations for Configuring Leased Lines . . . . . . . . 10 5. Setting Up Leased Lines . . . . . . . . . . . . . . . . . . . 12 6. Leased Line Protection . . . . . . . . . . . . . . . . . . . 13 7. Security Considerations . . . . . . . . . . . . . . . . . . . 13 8. Informative References . . . . . . . . . . . . . . . . . . . 13 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 14 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 4 2. The Stratified Network . . . . . . . . . . . . . . . . . . . 5 2.1. The Physical Network . . . . . . . . . . . . . . . . . . 6 2.2. The Hard Pipe Stratum . . . . . . . . . . . . . . . . . . 6 2.3. The Normal IP/MPLS Stratum . . . . . . . . . . . . . . . 7 2.4. Stratum Networks . . . . . . . . . . . . . . . . . . . . 7 3. Configuring the Leased Lines in the Hard Pipe Stratum . . . . 8 4. Efficient State Management . . . . . . . . . . . . . . . . . 9 4.1. State in the Forwarding Plane . . . . . . . . . . . . . . 9 4.2. State in the NMS/Controller . . . . . . . . . . . . . . . 10 4.3. Annotations for Configuring Leased Lines . . . . . . . . 10 5. Setting Up Leased Lines . . . . . . . . . . . . . . . . . . . 12 6. Leased Line Protection . . . . . . . . . . . . . . . . . . . 13 7. Security Considerations . . . . . . . . . . . . . . . . . . . 13 8. Informative References . . . . . . . . . . . . . . . . . . . 13 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 14 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15
IP leased line services, Ethernet Private Line (EPL), and Time-Division Multiplexed (TDM) leased line services are commonly offered by operators worldwide.
IP专线服务、以太网专用线(EPL)和时分多路复用(TDM)专线服务通常由全球运营商提供。
There are customers, e.g., many enterprises, that insist on TDM leased line services. They do so regardless of the fact that the same operators often offer IP leased line services and EPL services at a lower price and with a guaranteed bandwidth.
有一些客户(例如许多企业)坚持使用TDM专线服务。他们这样做,而不考虑同样的运营商通常以较低的价格和有保证的带宽提供IP专线服务和EPL服务。
Today we see a trend that TDM (in particular, Synchronous Digital Hierarchy / Synchronous Optical Network (SDH/SONET)) networks are gradually carrying less and less traffic, and many operators want to shut their TDM networks down to reduce costs.
今天,我们看到一种趋势,即TDM(特别是同步数字体系/同步光网络(SDH/SONET))网络承载的流量逐渐减少,许多运营商希望关闭其TDM网络以降低成本。
In light of these trends, vendors and operators have built and deployed the Hard Pipe service described in this document. It is a way to introduce leased line service with the same characteristics as TDM leased line services in IP/MPLS networks.
根据这些趋势,供应商和运营商已经构建并部署了本文档中描述的硬管道服务。它是在IP/MPLS网络中引入与TDM专线业务具有相同特性的专线业务的一种方式。
Even if leased line has been the initial motivation to define the Hard Pipe technology, the Hard Pipe is by no means limited to support leased line services. When guaranteed bandwidth is the priority,
即使专线是定义硬管技术的最初动机,硬管也绝不限于支持专线服务。当保证带宽是优先级时,
Virtual Private Wire Services (VPWS), Virtual Private LAN Services (VPLS), L3 Virtual Private Networks (L3VPN), and IP-only Private LAN Services can be mapped to a tunnel in the Hard Pipe stratum.
虚拟专用线服务(VPWS)、虚拟专用LAN服务(VPLS)、L3虚拟专用网络(L3VPN)和仅限IP的专用LAN服务可以映射到硬管道层中的隧道。
EPL and Ethernet Private LAN (EPLAN) are out of scope for this document.
EPL和以太网专用LAN(EPLAN)不在本文档的范围内。
Virtual Leased Line service is used in examples throughout this document.
本文档中的示例中使用了虚拟专线服务。
The solution soon to be deployed has an Ethernet infrastructure that has been split into two parallel logical networks -- two parallel strata. The first stratum -- the Hard Pipe Stratum -- does not use statistical multiplexing, and bandwidth is guaranteed end to end. The second stratum -- the Normal IP/MPLS Stratum -- works as a normal IP/MPLS network. The two strata share the same physical network, i.e., routers and links, but the resource reserved for the Hard Pipe stratum will never be preempted by the Normal IP/MPLS stratum.
即将部署的解决方案有一个以太网基础设施,该基础设施被分成两个并行逻辑网络——两个并行层。第一层——硬管层——不使用统计多路复用,带宽保证端到端。第二层——普通IP/MPLS层——作为普通IP/MPLS网络工作。这两个层共享相同的物理网络,即路由器和链路,但为硬管道层保留的资源永远不会被正常的IP/MPLS层抢占。
The routers will handle the traffic belonging to one stratum differently from how traffic from the other stratum is handled. This separation in traffic handling is based on support in hardware.
路由器将以不同于处理来自另一层的流量的方式处理属于一层的流量。流量处理中的这种分离基于硬件支持。
The reader of this document is assumed to be familiar with RFC 3031 [RFC3031] and RFC 5921 [RFC5921].
假定本文件的读者熟悉RFC 3031[RFC3031]和RFC 5921[RFC5921]。
This document has the following purposes:
本文件具有以下目的:
o to introduce a two strata IP/MPLS network: the purpose of one of the strata is to provide capabilities for services that are, from a customer's point of view, functionally identical to TDM-like leased lines; and
o 引入两层IP/MPLS网络:其中一层的目的是为从客户的角度来看与TDM类似的租用线路功能相同的服务提供能力;和
o to indicate how a router differentiates the traffic of the two strata.
o 指示路由器如何区分这两个层次的通信量。
CC: Continuity Check
连续性检查
CV: Connection Verification
连接验证
L-label: Leased Line label
L-标签:专线标签
LSP: Label Switched Path
标签交换路径
LSR: Label Switching Router
标签交换路由器
MPLS-TP: MPLS Transport Profile
MPLS-TP:MPLS传输配置文件
NMS: Network Management System
网络管理系统
OAM: Operations, Administration, and Maintenance
OAM:运营、管理和维护
P: Provider Router
提供商路由器
PE: Provider Edge Router
提供者边缘路由器
PW: Pseudowire
伪线
T-label: Tunnel label
T标签:隧道标签
TDM: Time-Division Multiplexing
时分复用
tLDP: Targeted LDP
tLDP:目标自民党
VLL: Virtual Leased Line
虚拟租用线路
VPLS: Virtual Private LAN Service
虚拟专用局域网服务
VPWS: Virtual Private Wire Service
虚拟专用线路服务
The concept of stratified or strata networks has been around for some time. It appears to have different meaning in different contexts. The way we use the concept is that we logically assign certain characteristics to part of the network. The part of the network that has the special characteristics form one stratum, and the "remainder" forms a second stratum. The network described in this document uses a single link-layer technology, Ethernet.
分层或分层网络的概念已经存在了一段时间。在不同的语境中,它似乎有不同的含义。我们使用这个概念的方式是,我们在逻辑上将某些特征分配给网络的一部分。网络中具有特殊特征的部分形成一个层次,“剩余部分”形成第二个层次。本文档中描述的网络使用单链路层技术以太网。
In many cases, a whole physical interface is assigned to a single hard stratum, especially in the scenario where there are many physical links between two nodes.
在许多情况下,整个物理接口被分配给单个硬层,特别是在两个节点之间有许多物理链路的情况下。
This document does not address the network configuration possibilities for Hard Pipe and IP/MPLS strata in detail. There are configuration options, the basic configuration is that one Hard Pipe stratum and one IP/MPLS stratum are provisioned.
本文档未详细说明硬管道和IP/MPLS层的网络配置可能性。有配置选项,基本配置是提供一个硬管层和一个IP/MPLS层。
However, it is also possible to provision more than one Hard Pipe stratum, e.g., if customers want enhanced separation for their leased line. Even though the main driver for the Hard Pipe technology is the leased lines, any service for which an operator does not want to use statistical multiplexing will benefit from using the Hard Pipes.
但是,也可以提供一个以上的硬管地层,例如,如果客户希望为其租赁线路提供更好的隔离。尽管硬管道技术的主要驱动因素是租用线路,但运营商不希望使用统计多路复用的任何服务都将从使用硬管道中受益。
Consider a network with 10 routers and all the links between are 10G Ethernet, such as shown in Figure 1. This is the network topology we've used for this model and also (with topology variations) in our first deployment.
考虑一个具有10个路由器的网络和10G以太网之间的所有链路,如图1所示。这是我们用于此模型的网络拓扑,也是我们在第一次部署中使用的(带有拓扑变化)。
+---+ 10G +---+ 10G +---+ 10G +---+ +---| B |-----------| C |-----------| D |----------| E |---+ 10G | +---+ +---+ +---+ +---+ | 10G | | | | | | +---+ | 10G 10G | 10G | 10G | +---+ --| F | | | | | | G |-- +---+ | | | | +---+ | | | | | | 10G | +---+ +---+ +---+ +---+ | 10G +---| H |-----------| J |-----------| K |----------| L |---+ +---+ 10G +---+ 10G +---+ 10G +---+
+---+ 10G +---+ 10G +---+ 10G +---+ +---| B |-----------| C |-----------| D |----------| E |---+ 10G | +---+ +---+ +---+ +---+ | 10G | | | | | | +---+ | 10G 10G | 10G | 10G | +---+ --| F | | | | | | G |-- +---+ | | | | +---+ | | | | | | 10G | +---+ +---+ +---+ +---+ | 10G +---| H |-----------| J |-----------| K |----------| L |---+ +---+ 10G +---+ 10G +---+ 10G +---+
Figure 1
图1
In this document, we use the terms "traffic matrix" or "estimated traffic matrix" to indicate an estimate of how much traffic will flow between the ingress and egress (PE) nodes. This may be translated into how much bandwidth is needed per link in the Hard Pipe stratum.
在本文档中,我们使用术语“流量矩阵”或“估计流量矩阵”来表示入口和出口(PE)节点之间流量的估计。这可以转化为硬管道层中每个链路需要多少带宽。
When the intention is to define a Hard Pipe stratum, it is, for example, possible to start from an estimated traffic matrix to estimate how much bandwidth to reserve on the links of the Ethernet link-layer network for the Hard Pipes.
当意图是定义硬管层时,例如,可以从估计的业务矩阵开始估计在以太网链路层网络的链路上为硬管保留多少带宽。
Note that the implication is that the normal traffic gets the remainder of the available bandwidth. Thus, the link-layer network will be split into two logical networks, or two strata -- one stratum for the hardened pipe network and the other for the "normal" IP and MPLS traffic. This is shown in Figures 2 and 3.
请注意,这意味着正常通信量将获得剩余的可用带宽。因此,链路层网络将分为两个逻辑网络,或两个层——一个层用于加固的管网,另一个层用于“正常”的IP和MPLS流量。如图2和图3所示。
+---+ 2G +---+ +---+ +---| B |-----------| C | | E |---+ 1G | +---+ +---+ +---+ | 2G | | | | +---+ 2G | 1G | +---+ --| F | | | | G |-- +---+ | | +---+ | | | | 1G | +---+ +---+ +---+ +---+ | 2G +---| H |-----------| J |-----------| K |----------| L |---+ +---+ 2G +---+ 4G +---+ 4G +---+
+---+ 2G +---+ +---+ +---| B |-----------| C | | E |---+ 1G | +---+ +---+ +---+ | 2G | | | | +---+ 2G | 1G | +---+ --| F | | | | G |-- +---+ | | +---+ | | | | 1G | +---+ +---+ +---+ +---+ | 2G +---| H |-----------| J |-----------| K |----------| L |---+ +---+ 2G +---+ 4G +---+ 4G +---+
Figure 2: The Hard Pipe Stratum
图2:硬管地层
It is worth noting that even if the figures in this document are drawn to indicate "bandwidth on the link", the only bandwidth information that the nodes have available is the bandwidth assigned to the Hard Pipe stratum and the Normal IP/MPLS stratum. All other information is kept on the NMS/Controller. The NMS/Controller keeps a global bandwidth resource table for the Hard Pipe stratum.
值得注意的是,即使本文档中的数字表示“链路上的带宽”,节点仅有的可用带宽信息是分配给硬管道层和正常IP/MPLS层的带宽。所有其他信息保存在NMS/控制器上。NMS/控制器为硬管道层保留一个全局带宽资源表。
Given that the starting point is the physical network in Figure 1 and the Hard Pipe stratum as defined in Figure 2, the Normal IP/MPLS stratum will look as is shown in Figure 3:
考虑到起点是图1中的物理网络和图2中定义的硬管层,正常IP/MPLS层将如图3所示:
+---+ 8G +---+ 10G +---+ 10G +---+ +---| B |-----------| C |-----------| D |----------| E |---+ 9G | +---+ +---+ +---+ +---+ | 8G | | | | | | +---+ | 10G 8G | 10G | 9G | +---+ --| F | | | | | | G |-- +---+ | | | | +---+ | | | | | | 9G | +---+ +---+ +---+ +---+ | 9G +---| H |-----------| J |-----------| K |----------| L |---+ +---+ 8G +---+ 6G +---+ 6G +---+
+---+ 8G +---+ 10G +---+ 10G +---+ +---| B |-----------| C |-----------| D |----------| E |---+ 9G | +---+ +---+ +---+ +---+ | 8G | | | | | | +---+ | 10G 8G | 10G | 9G | +---+ --| F | | | | | | G |-- +---+ | | | | +---+ | | | | | | 9G | +---+ +---+ +---+ +---+ | 9G +---| H |-----------| J |-----------| K |----------| L |---+ +---+ 8G +---+ 6G +---+ 6G +---+
Figure 3: The Normal IP/MPLS Stratum
图3:正常的IP/MPLS层
In this document, the concept of stratum network is used to indicate basically parallel logical networks with strictly separated resources. Traffic sent over one stratum network can not infringe on traffic in the other stratum network.
在本文中,层网络的概念用于表示具有严格分离资源的基本并行逻辑网络。通过一层网络发送的流量不能侵犯另一层网络的流量。
In the case described here, all the traffic in the Hard Pipe stratum is MPLS encapsulated. A number of the labels have been set aside so other applications can't allocate them and so the routers recognize them as belonging to the Hard Pipe application.
在这里描述的情况下,硬管道层中的所有流量都是MPLS封装的。许多标签被放在一边,所以其他应用程序无法分配它们,所以路由器将它们识别为属于硬管道应用程序。
When the strata are provisioned, the IP/MPLS stratum is set up exactly as any other IP/MPLS network. The one small difference between provisioning the Hard Pipe stratum and the IP/MPLS stratum is that no overbooking is done for the Hard Pipe stratum.
当配置层时,IP/MPLS层的设置与任何其他IP/MPLS网络完全相同。提供硬管层和IP/MPLS层之间的一个小区别是,硬管层没有超售。
Overbooking and/or congestion in the IP/MPLS stratum can not affect the Hard Pipe stratum.
IP/MPLS层中的超售和/或拥塞不会影响硬管层。
All labels used for the Hard Pipe stratum are "Configured Labels", i.e., labels that are provisioned and reclaimed by management actions. These management actions can be by manual actions or by an NMS/Controller or a centralized controller. For the size of network being deployed, manual configuration is not practical; we are both provisioning and reclaiming a label from an NMS/Controller.
硬管地层使用的所有标签均为“配置标签”,即由管理操作提供和回收的标签。这些管理操作可以是手动操作,也可以是NMS/控制器或集中控制器。对于正在部署的网络规模,手动配置是不现实的;我们正在从NMS/控制器调配和回收标签。
o If an operator wants to set up a leased line, it is first checked if there is a path available in the Hard Pipe stratum that matches the criteria (e.g., bandwidth) for the requested leased line.
o 如果运营商想要建立租用线路,首先检查硬管层中是否存在符合所请求租用线路标准(例如带宽)的可用路径。
* If such a path does exist, it is checked if there is a matching MPLS tunnel available over that path.
* 如果确实存在这样的路径,则会检查该路径上是否存在匹配的MPLS隧道。
+ If such a tunnel exists, it is used to establish the leased line by adding L-labels forming an LSP that are carried by the tunnel. L-labels are known only by the ingress and egress LSRs. They are local to the endpoints the same way that the label signaled by Targeted LDP (tLDP) is local to the endpoints of a targeted session LSP. (Here, "Targeted LDP" means LDP as defined in RFC 5036 [RFC5036], using Targeted Hello messages.)
+ 如果存在这样的隧道,则通过添加形成由隧道承载的LSP的L标签来建立租用线路。L-标签仅由入口和出口LSR知道。它们对端点是本地的,就像目标LDP(tLDP)发出信号的标签对目标会话LSP的端点是本地的一样。(此处,“目标LDP”指RFC 5036[RFC5036]中定义的LDP,使用目标Hello消息。)
At the same time, the available bandwidth in the Hard Pipe stratum is decremented by the bandwidth that is needed for the leased line for every hop across this stratum in the global resource table (for the Hard Pipe stratum).
同时,硬管层中的可用带宽在全局资源表(对于硬管层)中通过该层的每一跳所需的租用线路带宽中递减。
+ If such a tunnel does not exist, it can be established so that the leased line can be set up as above.
+ 如果不存在这样的隧道,可以建立隧道,以便如上所述设置租用线路。
* If the path does not exist (not enough bandwidth in the Hard Pipe stratum for the leased line), available bandwidth on the links is checked to see if the stratum can be expanded to accommodate such a path.
* 如果路径不存在(硬管层中没有足够的带宽用于租用线路),则会检查链路上的可用带宽,以查看该层是否可以扩展以适应此类路径。
+ If the Hard Pipe stratum can be expanded, this is done and the tunnel for the leased line is established as described above.
+ 如果可以扩展硬管地层,则按照上述方式进行,并建立租赁线路的隧道。
It is likely that other modifications of the Hard Pipe stratum, e.g., consolidating already set up Hard IP tunnels on to existing links so that room for new leased lines are created, may have implications that go well outside the leased line service, and it is currently not viewed as a fully automated operation.
硬管层的其他修改(例如,将已经建立的硬IP隧道整合到现有链路上,以便为新的专线创造空间)可能会产生超出专线服务范围的影响,目前还不被视为完全自动化的操作。
+ If it is not possible to expand the Hard Pipe stratum to accommodate the new path, set up of the leased line will need to be declined.
+ 如果无法扩展硬管地层以容纳新路径,则需要拒绝设置租用线路。
Thus, given the existence of a viable Hard Pipe stratum, leased lines are configured in two very simple steps. First, establish a hop-by-hop tunnel (T-labels), and second, configure the leased lines (L-labels). The T-labels need to be configured on both the PE and P routers while L-labels only need to be configured on the PE routers.
因此,鉴于存在可行的硬管地层,租赁线路的配置分为两个非常简单的步骤。首先,建立逐跳隧道(T标签),然后配置租用线路(L标签)。T标签需要在PE和P路由器上配置,而L标签只需要在PE路由器上配置。
Note that L-labels may be used for normal IP service [RFC3031], BGP/MPLS VPNs [RFC4364], or PWs [RFC3985].
请注意,L标签可用于正常IP服务[RFC3031]、BGP/MPLS VPN[RFC4364]或PWs[RFC3985]。
The system as described here generates a very small amount of state, and most of it is kept in the NMS/Controller.
此处所述的系统生成非常少量的状态,大部分状态保存在NMS/控制器中。
The only configured information that is actually kept on the LSRs is
LSR上实际保存的唯一配置信息是
o the information needed for the label swapping procedures, i.e., incoming label to outgoing label and port, and whether the label belongs to the set of labels that are set aside for the Hard Pipe stratum tunnels; and
o 标签交换程序所需的信息,即输入标签到输出标签和端口,以及标签是否属于为硬管地层隧道预留的标签集;和
o the bandwidth available for the Hard Pipe stratum and the Normal IP/MPLS stratum.
o 硬管层和普通IP/MPLS层的可用带宽。
The following state needs to be kept in the NMS/Controller:
NMS/控制器中需要保持以下状态:
o the topology and bandwidth resources available in the Hard Pipe network; see Figure 2.
o 硬管网中可用的拓扑和带宽资源;参见图2。
o the total and available bandwidth per link in the Hard Pipe network; see Figure 4.
o 硬管网中每条链路的总带宽和可用带宽;参见图4。
o the T-label mappings; see Figure 5.
o T-标签映射;参见图5。
o the L-label mappings; see Figure 6.
o L-标签映射;参见图6。
o the reserved bandwidth, as well as other constraints and the path per L-label.
o 保留带宽,以及其他约束和每个L标签的路径。
The annotations given below are neither a programming guideline nor an indication how this architecture could be implemented. It is rather an indication of how much data needs to be saved for each stratum and leased line, as well as where this data could be stored.
下面给出的注释既不是编程指南,也不是该体系结构如何实现的指示。相反,它指示了每个地层和租用线路需要保存多少数据,以及这些数据可以存储在哪里。
Considering the Hard Pipe stratum as it has been outlined in Figure 2, there is actually some additional information related to the Hard Pipe stratum that not is shown in the figure.
考虑到硬管地层,如图2所示,实际上有一些与硬管地层相关的附加信息未在图中显示。
Looking explicitly on the link between LSR J and K we find:
明确查看LSR J和K之间的联系,我们发现:
+---+ +---+ +---+ +---+ ---| H |-----------| J |-----------| K |----------| L |--- +---+ +---+ +---+ +---+ [4,0]G
+---+ +---+ +---+ +---+ ---| H |-----------| J |-----------| K |----------| L |--- +---+ +---+ +---+ +---+ [4,0]G
Figure 4
图4
The annotation [4,0]G means that 4G is allocated to the stratum on the link between J and K, and of these, 0G has been allocated to a service.
注释[4,0]G表示将4G分配给J和K之间链路上的层,其中0G已分配给服务。
If we were to allocate two tunnels labels from the labels that have been configured to work within the Hard Pipe stratum, the resource view would look like this:
如果我们要从已配置为在硬管地层中工作的标签中分配两个隧道标签,则资源视图如下所示:
+---+ +---+ +---+ +---+ ---| H |-----------| J |-----------| K |----------| L |--- +---+ +---+ +---+ +---+ [4,0]G T1 ,T2
+---+ +---+ +---+ +---+ ---| H |-----------| J |-----------| K |----------| L |--- +---+ +---+ +---+ +---+ [4,0]G T1 ,T2
Figure 5
图5
Note that allocating the tunnel labels does not reserve bandwidth for the tunnel from the Hard Pipe stratum.
请注意,分配隧道标签不会从硬管地层为隧道保留带宽。
When the L-labels are assigned, this will consume bandwidth; so we need to keep track of the bandwidth per leased line and the total of bandwidth allocated from the Hard Pipe stratum.
当分配L标签时,这将消耗带宽;因此,我们需要跟踪每条租用线路的带宽以及从硬管道层分配的总带宽。
The annotation for the link between J and K could look like this:
J和K之间链接的注释可以如下所示:
+---+ +---+ +---+ +---+ ---| H |-----------| J |-----------| K |----------| L |--- +---+ +---+ +---+ +---+ [4,1.5]G, T1, L1 [.5], L2 [.5], T2, L1 [.5]
+---+ +---+ +---+ +---+ ---| H |-----------| J |-----------| K |----------| L |--- +---+ +---+ +---+ +---+ [4,1.5]G, T1, L1 [.5], L2 [.5], T2, L1 [.5]
Figure 6
图6
The line [4,1.5]G, T1, L1 [.5], L2 [.5], T2, L1 [.5] would be interpreted as follows:
直线[4,1.5]G、T1、L1[.5]、L2[.5]、T2、L1[.5]将解释为:
The Hard Pipe stratum link between nodes J and K has 4G bandwidth allocated; of the total bandwidth, 1.5G is allocated for leased lines.
节点J和K之间的硬管层链路已分配4G带宽;在总带宽中,1.5G分配给租用线路。
Tunnel label T1 carries two leased lines, each of 0.5G, and tunnel label T2 carries a third leased line of 0.5G.
隧道标签T1承载两条0.5G的专线,隧道标签T2承载第三条0.5G的专线。
Note that it is not necessary to keep this information in the nodes; it is held within the NMS/Controller. Also, it is not necessary to keep the bandwidth per leased line, but some operations are simplified (e.g., removing a leased line) if this is done.
注意,不需要将此信息保存在节点中;它保存在NMS/控制器内。此外,没有必要保持每条租用线路的带宽,但如果这样做,某些操作会得到简化(例如,删除租用线路)。
Consider the case where an operator wants to set up a leased line of 0.4G from F to G in the Hard Pipe stratum in Figure 2.
考虑一个操作员想要在图2中在硬管层中设置从F到G的0.4G租用线路的情况。
Since there are no constraints other than bandwidth and ingress and egress PEs, the shortest path will be chosen. A tunnel will be configured from F to G over the nodes F, H, J, K, L, and G, and a Leased Line label (a) will be configured on F and G, and the available resources will be recalculated.
由于除了带宽和进出PEs之外没有其他约束,因此将选择最短路径。将在节点F、H、J、K、L和G上从F到G配置隧道,并在F和G上配置专线标签(A),并重新计算可用资源。
A second leased line of 0.3G between the same PEs is easily configured by adding a new Leased Line label (b) at the ingress and egress PEs.
通过在入口和出口PEs处添加新的专线标签(b),可以轻松配置相同PEs之间0.3G的第二条专线。
After these operations, a view of the Hard Pipe stratum resources (available bandwidth) would look like this:
完成这些操作后,硬管地层资源(可用带宽)的视图如下所示:
+---+ 2G +---+ +---+ +---| B |-----------| C | | E |---+ 1G | +---+ +---+ +---+ | 2G | | | | +---+ 2G | 1G | +---+ --| F | | | | G |-- +---+ | | +---+ | | | | .3G | +---+ +---+ +---+ +---+ | 1.3G +---| H |-----------| J |-----------| K |----------| L |---+ +---+ 1.3G +---+ 3.3G +---+ 3.3G +---+
+---+ 2G +---+ +---+ +---| B |-----------| C | | E |---+ 1G | +---+ +---+ +---+ | 2G | | | | +---+ 2G | 1G | +---+ --| F | | | | G |-- +---+ | | +---+ | | | | .3G | +---+ +---+ +---+ +---+ | 1.3G +---| H |-----------| J |-----------| K |----------| L |---+ +---+ 1.3G +---+ 3.3G +---+ 3.3G +---+
Figure 7: The Hard Pipe Stratum after Operations
图7:作业后的硬管地层
If the operator now wishes to establish a new leased line with the criteria being that it should originate from F and terminate at G, have 0.4G bandwidth, and pass through node E, then analysis of the Hard Pipe stratum (after establishing the first two listed lines) and the criteria for the new leased line would give the following:
如果运营商现在希望建立一条新的租用线路,其标准是该线路应起源于F,终止于G,具有0.4G带宽,并通过节点E,则分析硬管地层(在建立前两条列出的线路之后)和新租用线路的标准将给出以下内容:
o The existing tunnel cannot be used since it does not pass through E; a new tunnel need to be established.
o 现有隧道不能使用,因为它没有穿过E;需要修建一条新隧道。
o The hop from F to H cannot be used since the available bandwidth is insufficient.
o 由于可用带宽不足,无法使用从F到H的跃点。
o Since no existing tunnels meet the criteria requested, a new tunnel will be set up from F, to B, C, J, K, L, E (the criteria to pass through E), and to G.
o 由于现有隧道均不符合要求的标准,因此将在F、B、C、J、K、L、E(通过E的标准)和G之间修建一条新隧道。
A new L-label (c) to be carried over T2 will be configured on F and G, and the available resources of the Hard Pipe stratum will be recalculated.
将在F和G上配置一个新的L标签(c),并重新计算硬管地层的可用资源。
This leased line service uses the MPLS Transport Profile (MPLS-TP) line protection as it is defined in RFC 6378 [RFC6378] and is updated as specified in RFC 7271 [RFC7271] and RFC 7324 [RFC7324]
此租用线路服务使用RFC 6378[RFC6378]中定义的MPLS传输配置文件(MPLS-TP)线路保护,并按照RFC 7271[RFC7271]和RFC 7324[RFC7324]中的规定进行更新
The CV and CC are run over the tunnels between the Maintenance Entity Group End Points (MEP) at each end, i.e., the entire tunnel is protected end to end.
CV和CC在各端维护实体组端点(MEP)之间的隧道上运行,即,整个隧道端到端受到保护。
In general, all of the MPLS-TP Operations, Administration, and Maintenance (OAM) as defined in RFC 6371 [RFC6371] is v applicable.
通常,RFC 6371[RFC6371]中定义的所有MPLS-TP操作、管理和维护(OAM)都适用。
The security considerations as defined in "Security Framework for MPLS and GMPLS Networks" (RFC 5920 [RFC5920]) and "MPLS Transport Profile (MPLS-TP) Security Framework" (RFC 6941 [RFC6941]) apply to this document.
“MPLS和GMPLS网络安全框架”(RFC 5920[RFC5920])和“MPLS传输配置文件(MPLS-TP)安全框架”(RFC 6941[RFC6941])中定义的安全注意事项适用于本文件。
[RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol Label Switching Architecture", RFC 3031, DOI 10.17487/RFC3031, January 2001, <http://www.rfc-editor.org/info/rfc3031>.
[RFC3031]Rosen,E.,Viswanathan,A.,和R.Callon,“多协议标签交换体系结构”,RFC 3031,DOI 10.17487/RFC3031,2001年1月<http://www.rfc-editor.org/info/rfc3031>.
[RFC3985] Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation Edge-to-Edge (PWE3) Architecture", RFC 3985, DOI 10.17487/RFC3985, March 2005, <http://www.rfc-editor.org/info/rfc3985>.
[RFC3985]Bryant,S.,Ed.和P.Pate,Ed.,“伪线仿真边到边(PWE3)架构”,RFC 3985,DOI 10.17487/RFC3985,2005年3月<http://www.rfc-editor.org/info/rfc3985>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 2006, <http://www.rfc-editor.org/info/rfc4364>.
[RFC4364]Rosen,E.和Y.Rekhter,“BGP/MPLS IP虚拟专用网络(VPN)”,RFC 4364,DOI 10.17487/RFC4364,2006年2月<http://www.rfc-editor.org/info/rfc4364>.
[RFC5036] Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed., "LDP Specification", RFC 5036, DOI 10.17487/RFC5036, October 2007, <http://www.rfc-editor.org/info/rfc5036>.
[RFC5036]Andersson,L.,Ed.,Minei,I.,Ed.,和B.Thomas,Ed.“LDP规范”,RFC 5036,DOI 10.17487/RFC5036,2007年10月<http://www.rfc-editor.org/info/rfc5036>.
[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010, <http://www.rfc-editor.org/info/rfc5920>.
[RFC5920]方,L.,编辑,“MPLS和GMPLS网络的安全框架”,RFC 5920,DOI 10.17487/RFC5920,2010年7月<http://www.rfc-editor.org/info/rfc5920>.
[RFC5921] Bocci, M., Ed., Bryant, S., Ed., Frost, D., Ed., Levrau, L., and L. Berger, "A Framework for MPLS in Transport Networks", RFC 5921, DOI 10.17487/RFC5921, July 2010, <http://www.rfc-editor.org/info/rfc5921>.
[RFC5921]Bocci,M.,Ed.,Bryant,S.,Ed.,Frost,D.,Ed.,Levrau,L.,和L.Berger,“传输网络中MPLS的框架”,RFC 5921,DOI 10.17487/RFC59212010年7月<http://www.rfc-editor.org/info/rfc5921>.
[RFC6371] Busi, I., Ed. and D. Allan, Ed., "Operations, Administration, and Maintenance Framework for MPLS-Based Transport Networks", RFC 6371, DOI 10.17487/RFC6371, September 2011, <http://www.rfc-editor.org/info/rfc6371>.
[RFC6371]Busi,I.,Ed.和D.Allan,Ed.,“基于MPLS的传输网络的运营、管理和维护框架”,RFC 6371,DOI 10.17487/RFC63711911年9月<http://www.rfc-editor.org/info/rfc6371>.
[RFC6378] Weingarten, Y., Ed., Bryant, S., Osborne, E., Sprecher, N., and A. Fulignoli, Ed., "MPLS Transport Profile (MPLS-TP) Linear Protection", RFC 6378, DOI 10.17487/RFC6378, October 2011, <http://www.rfc-editor.org/info/rfc6378>.
[RFC6378]Y.Weingarten,Ed.,Bryant,S.,Osborne,E.,Sprecher,N.,和A.Fulignoli,Ed.,“MPLS传输模式(MPLS-TP)线性保护”,RFC 6378,DOI 10.17487/RFC6378,2011年10月<http://www.rfc-editor.org/info/rfc6378>.
[RFC6941] Fang, L., Ed., Niven-Jenkins, B., Ed., Mansfield, S., Ed., and R. Graveman, Ed., "MPLS Transport Profile (MPLS-TP) Security Framework", RFC 6941, DOI 10.17487/RFC6941, April 2013, <http://www.rfc-editor.org/info/rfc6941>.
[RFC6941]Fang,L.,Ed.,Niven Jenkins,B.,Ed.,Mansfield,S.,Ed.,和R.Graveman,Ed.,“MPLS传输配置文件(MPLS-TP)安全框架”,RFC 6941,DOI 10.17487/RFC69411913年4月<http://www.rfc-editor.org/info/rfc6941>.
[RFC7271] Ryoo, J., Ed., Gray, E., Ed., van Helvoort, H., D'Alessandro, A., Cheung, T., and E. Osborne, "MPLS Transport Profile (MPLS-TP) Linear Protection to Match the Operational Expectations of Synchronous Digital Hierarchy, Optical Transport Network, and Ethernet Transport Network Operators", RFC 7271, DOI 10.17487/RFC7271, June 2014, <http://www.rfc-editor.org/info/rfc7271>.
[RFC7271]Ryoo,J.,Ed.,Gray,E.,Ed.,van Helvoort,H.,D'Alessandro,A.,Cheung,T.,和E.Osborne,“MPLS传输配置文件(MPLS-TP)线性保护,以满足同步数字体系、光传输网络和以太网传输网络运营商的运营期望”,RFC 7271,DOI 10.17487/RFC72712014年6月, <http://www.rfc-editor.org/info/rfc7271>.
[RFC7324] Osborne, E., "Updates to MPLS Transport Profile Linear Protection", RFC 7324, DOI 10.17487/RFC7324, July 2014, <http://www.rfc-editor.org/info/rfc7324>.
[RFC7324]Osborne,E.“MPLS传输配置文件线性保护的更新”,RFC 7324,DOI 10.17487/RFC73242014年7月<http://www.rfc-editor.org/info/rfc7324>.
Acknowledgements
致谢
The authors want to thank Andy Malis for detailed technical and language review and for valuable comments.
作者要感谢Andy Malis的详细技术和语言评论以及宝贵的评论。
Authors' Addresses
作者地址
JiangTao Hao Huawei Technologies Co., Ltd Q13 Huawei Campus No. 156 Beiqing Road Hai-dian District Beijing 100095 China Email: haojiangtao@huawei.com
江涛浩华为技术有限公司Q13北京市海淀区北青路156号华为校区邮编100095中国电子邮件:haojiangtao@huawei.com
Praveen Maheshwari Bharti Airtel, Ltd. Plot No. 16, Udyog Bihar, Phase IV, Gurgaon - 122015 Haryana India Email: Praveen.Maheshwari@in.airtel.com
Praveen Maheshwari Bharti Airtel,Ltd.Gurgaon四期Udyog Bihar 16号地块-122015 Haryana India电子邮件:Praveen。Maheshwari@in.airtel.com
River Huang Huawei Technologies Co., Ltd Q13 Huawei Campus No. 156 Beiqing Road Hai-dian District Beijing 100095 China Email: river.huang@huawei.com
中国北京海淀区北青路156号华为校园Q13号黄河华为技术有限公司邮编:100095电子邮件:River。huang@huawei.com
Loa Andersson Huawei Technologies Co., Ltd Stockholm Sweden Email: loa@mail01.huawei.com
Loa安德森华为技术有限公司斯德哥尔摩瑞典电子邮件:loa@mail01.huawei.com
Mach(Guoyi) Chen Huawei Technologies Co., Ltd Q14 Huawei Campus No. 156 Beiqing Road Hai-dian District Beijing 100095 China Email: mach.chen@huawei.com
马赫(国一)陈华为技术有限公司Q14华为校区北京市海淀区北青路156号邮编:100095中国电子邮件:马赫。chen@huawei.com