Internet Engineering Task Force (IETF) F. Zhang Request for Comments: 7580 Y. Lee Category: Standards Track J. Han ISSN: 2070-1721 Huawei G. Bernstein Grotto Networking Y. Xu CATR June 2015
Internet Engineering Task Force (IETF) F. Zhang Request for Comments: 7580 Y. Lee Category: Standards Track J. Han ISSN: 2070-1721 Huawei G. Bernstein Grotto Networking Y. Xu CATR June 2015
OSPF-TE Extensions for General Network Element Constraints
一般网元约束的OSPF-TE扩展
Abstract
摘要
Generalized Multiprotocol Label Switching (GMPLS) can be used to control a wide variety of technologies including packet switching (e.g., MPLS), time division (e.g., Synchronous Optical Network / Synchronous Digital Hierarchy (SONET/SDH) and Optical Transport Network (OTN)), wavelength (lambdas), and spatial switching (e.g., incoming port or fiber to outgoing port or fiber). In some of these technologies, network elements and links may impose additional routing constraints such as asymmetric switch connectivity, non-local label assignment, and label range limitations on links. This document describes Open Shortest Path First (OSPF) routing protocol extensions to support these kinds of constraints under the control of GMPLS.
广义多协议标签交换(GMPLS)可用于控制多种技术,包括分组交换(如MPLS)、时分(如同步光网络/同步数字体系(SONET/SDH)和光传输网络(OTN))、波长(lambdas)和空间交换(例如,输入端口或光纤到输出端口或光纤)。在其中一些技术中,网络元件和链路可能会施加额外的路由约束,如不对称交换机连接、非本地标签分配和链路上的标签范围限制。本文档描述了开放最短路径优先(OSPF)在GMPLS的控制下,路由协议扩展支持这些约束。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7580.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7580.
Copyright Notice
版权公告
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2015 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................3 1.1. Conventions Used in This Document ..........................3 2. Node Information ................................................3 2.1. Connectivity Matrix ........................................4 3. Link Information ................................................4 3.1. Port Label Restrictions ....................................5 4. Routing Procedures ..............................................5 5. Scalability and Timeliness ......................................6 5.1. Different Sub-TLVs into Multiple LSAs ......................6 5.2. Decomposing a Connectivity Matrix into Multiple Matrices ...6 6. Security Considerations .........................................7 7. Manageability ...................................................7 8. IANA Considerations .............................................8 8.1. Node Information ...........................................8 8.2. Link Information ...........................................8 9. References ......................................................9 9.1. Normative References .......................................9 9.2. Informative References ....................................10 Acknowledgments ...................................................11 Contributors ......................................................11 Authors' Addresses ................................................12
1. Introduction ....................................................3 1.1. Conventions Used in This Document ..........................3 2. Node Information ................................................3 2.1. Connectivity Matrix ........................................4 3. Link Information ................................................4 3.1. Port Label Restrictions ....................................5 4. Routing Procedures ..............................................5 5. Scalability and Timeliness ......................................6 5.1. Different Sub-TLVs into Multiple LSAs ......................6 5.2. Decomposing a Connectivity Matrix into Multiple Matrices ...6 6. Security Considerations .........................................7 7. Manageability ...................................................7 8. IANA Considerations .............................................8 8.1. Node Information ...........................................8 8.2. Link Information ...........................................8 9. References ......................................................9 9.1. Normative References .......................................9 9.2. Informative References ....................................10 Acknowledgments ...................................................11 Contributors ......................................................11 Authors' Addresses ................................................12
Some data-plane technologies that require the use of a GMPLS control plane impose additional constraints on switching capability and label assignment. In addition, some of these technologies should be capable of performing non-local label assignment based on the nature of the technology, e.g., wavelength continuity constraint in Wavelength Switched Optical Networks (WSONs) [RFC6163]. Such constraints can lead to the requirement for link-by-link label availability in path computation and label assignment.
一些需要使用GMPLS控制平面的数据平面技术对交换能力和标签分配施加了额外的限制。此外,其中一些技术应能够基于技术的性质执行非本地标签分配,例如,波长交换光网络(WSON)中的波长连续性约束[RFC6163]。这样的约束会导致在路径计算和标签分配中对逐链接标签可用性的要求。
[RFC7579] provides efficient encodings of information needed by the routing and label assignment process in technologies such as WSON. These encodings are potentially applicable to a wider range of technologies as well. The encoding provided in [RFC7579] is protocol-neutral and can be used in routing, signaling, and/or Path Computation Element communication protocol extensions.
[RFC7579]为无线传感器网络(WSON)等技术中的路由和标签分配过程所需的信息提供高效编码。这些编码可能也适用于更广泛的技术。[RFC7579]中提供的编码与协议无关,可用于路由、信令和/或路径计算元素通信协议扩展。
This document defines extensions to the OSPF routing protocol based on [RFC7579] to enhance the Traffic Engineering (TE) properties of GMPLS TE that are defined in [RFC3630], [RFC4202], and [RFC4203]. The enhancements to the TE properties of GMPLS TE links can be advertised in OSPF-TE Link State Advertisements (LSAs). The TE LSA, which is an opaque LSA with area flooding scope [RFC3630], has only one top-level Type-Length-Value (TLV) triplet and has one or more nested sub-TLVs for extensibility. The top-level TLV can take one of three values: Router Address [RFC3630], Link [RFC3630], or Node Attribute [RFC5786]. In this document, we enhance the sub-TLVs for the Link TLV in support of the general network element constraints under the control of GMPLS.
本文件定义了基于[RFC7579]的OSPF路由协议扩展,以增强[RFC3630]、[RFC4202]和[RFC4203]中定义的GMPLS TE的流量工程(TE)特性。GMPLS TE链路TE属性的增强可以在OSPF-TE链路状态公告(LSA)中公告。TE LSA是具有区域泛洪作用域[RFC3630]的不透明LSA,只有一个顶级类型长度值(TLV)三元组,并且具有一个或多个用于扩展的嵌套子TLV。顶级TLV可以采用三个值之一:路由器地址[RFC3630]、链路[RFC3630]或节点属性[RFC5786]。在本文中,我们增强了链路TLV的子TLV,以支持GMPLS控制下的一般网元约束。
The detailed encoding of OSPF extensions is not defined in this document. [RFC7579] provides encoding details.
本文档中未定义OSPF扩展的详细编码。[RFC7579]提供编码详细信息。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。
According to [RFC7579], the additional node information representing node switching asymmetry constraints includes device type and connectivity matrix. Except for the device type, which is defined in [RFC7579], the other pieces of information are defined in this document.
根据[RFC7579],表示节点切换不对称约束的附加节点信息包括设备类型和连接矩阵。除[RFC7579]中定义的设备类型外,其他信息均在本文档中定义。
Per [RFC7579], this document defines the Connectivity Matrix sub-TLV of the Node Attribute TLV defined in [RFC5786]. The new sub-TLV has Type 14.
根据[RFC7579],本文件定义了[RFC5786]中定义的节点属性TLV的连接矩阵子TLV。新的子TLV具有14型。
Depending on the control-plane implementation being used, the Connectivity Matrix sub-TLV may be optional in some specific technologies, e.g., WSON networks. Usually, for example, in WSON networks, the Connectivity Matrix sub-TLV may be advertised in the LSAs since WSON switches are currently asymmetric. If no Connectivity Matrix sub-TLV is included, it is assumed that the switches support symmetric switching.
根据所使用的控制平面实现,连接矩阵子TLV在某些特定技术中可能是可选的,例如,WSON网络。通常,例如,在WSON网络中,由于WSON交换机当前是不对称的,因此可以在lsa中通告连接矩阵子TLV。如果不包括连接矩阵子TLV,则假定交换机支持对称交换。
If the switching devices supporting certain data-plane technology are asymmetric, it is necessary to identify which input ports and labels can be switched to some specific labels on a specific output port.
如果支持特定数据平面技术的交换设备是不对称的,则有必要确定哪些输入端口和标签可以切换到特定输出端口上的某些特定标签。
The connectivity matrix, which can represent either the potential connectivity matrix for asymmetric switches (e.g., Reconfigurable Optical Add/Drop Multiplexers (ROADMs) and such) or fixed connectivity for an asymmetric device such as a multiplexer as defined in [RFC7446], is used to identify these restrictions.
连接矩阵可以表示非对称交换机(例如,可重构光分插复用器(ROADM)等)的潜在连接矩阵,也可以表示非对称设备(例如,[RFC7446]中定义的复用器)的固定连接矩阵,用于识别这些限制。
The Connectivity Matrix is a sub-TLV of the Node Attribute TLV. The length is the length of the value field in octets. The meaning and format of this sub-TLV value field are defined in Section 2.1 of [RFC7579]. One sub-TLV contains one matrix. The Connectivity Matrix sub-TLV may occur more than once to contain multiple matrices within the Node Attribute TLV. In addition, a large connectivity matrix can be decomposed into smaller sub-matrices for transmission in multiple LSAs as described in Section 5.
连接矩阵是节点属性TLV的子TLV。长度是值字段的长度(以八位字节为单位)。[RFC7579]第2.1节定义了该子TLV值字段的含义和格式。一个子TLV包含一个矩阵。连接矩阵子TLV可能出现多次,以包含节点属性TLV内的多个矩阵。此外,如第5节所述,可以将大型连接性矩阵分解为较小的子矩阵,以便在多个lsa中传输。
The most common link sub-TLVs nested in the top-level Link TLV are already defined in [RFC3630] and [RFC4203]. For example, Link ID, Administrative Group, Interface Switching Capability Descriptor (ISCD), Link Protection Type, Shared Risk Link Group (SRLG), and Traffic Engineering Metric are among the typical link sub-TLVs.
嵌套在顶级链路TLV中的最常见链路子TLV已在[RFC3630]和[RFC4203]中定义。例如,链路ID、管理组、接口交换能力描述符(ISCD)、链路保护类型、共享风险链路组(SRLG)和流量工程度量属于典型的链路子TLV。
Per [RFC7579], this document defines the Port Label Restrictions sub-TLV of the Link TLV defined in [RFC3630]. The new sub-TLV has Type 34.
根据[RFC7579],本文件定义了[RFC3630]中定义的链路TLV的端口标签限制子TLV。新的子TLV具有34型。
Generally, all the sub-TLVs above are optional, depending on control-plane implementations being used. The Port Label Restrictions sub-TLV will not be advertised when there are no restrictions on label assignment.
通常,上述所有子TLV都是可选的,具体取决于所使用的控制平面实现。如果标签分配没有限制,则不会公布端口标签限制子TLV。
Port label restrictions describe the label restrictions that the network element (node) and link may impose on a port. These restrictions represent what labels may or may not be used on a link and are intended to be relatively static. For increased modeling flexibility, port label restrictions may be specified relative to the port in general or to a specific connectivity matrix.
端口标签限制描述网元(节点)和链路可能对端口施加的标签限制。这些限制表示哪些标签可以在链接上使用,哪些标签不可以在链接上使用,并且是相对静态的。为了提高建模灵活性,可以相对于端口或特定的连接矩阵指定端口标签限制。
For example, the port label restrictions describe the wavelength restrictions that the link and various optical devices such as Optical Cross-Connects (OXCs), ROADMs, and waveband multiplexers may impose on a port in WSON. These restrictions represent which wavelengths may or may not be used on a link and are relatively static. Detailed information about port label restrictions is provided in [RFC7446].
例如,端口标签限制描述链路和各种光学设备(例如光交叉连接(oxc)、ROADMs和波段多路复用器)可能对WSON中的端口施加的波长限制。这些限制表示哪些波长可以或不可以在链路上使用,并且是相对静态的。[RFC7446]中提供了有关端口标签限制的详细信息。
The Port Label Restrictions sub-TLV is a sub-TLV of the Link TLV. The length is the length of value field in octets. The meaning and format of this sub-TLV value field are defined in Section 2.2 of [RFC7579]. The Port Label Restrictions sub-TLV may occur more than once to specify a complex port constraint within the Link TLV.
端口标签限制子TLV是链路TLV的子TLV。长度是值字段的长度(以八位字节为单位)。[RFC7579]第2.2节定义了该子TLV值字段的含义和格式。端口标签限制子TLV可能会出现多次,以指定链路TLV内的复杂端口约束。
All sub-TLVs are nested in top-level TLV(s) and contained in Opaque LSAs. The flooding rules of Opaque LSAs are specified in [RFC2328], [RFC5250], [RFC3630], and [RFC4203].
所有子TLV嵌套在顶级TLV中,并包含在不透明LSA中。不透明LSA的泛洪规则在[RFC2328]、[RFC5250]、[RFC3630]和[RFC4203]中有规定。
Considering the routing scalability issues in some cases, the routing protocol should be capable of supporting the separation of dynamic information from relatively static information to avoid unnecessary updates of static information when dynamic information is changed. A standards-compliant approach is to separate the dynamic information sub-TLVs from the static information sub-TLVs, each nested in a separate top-level TLV (see [RFC3630] and [RFC5786]), and advertise them in the separate OSPF-TE LSAs.
考虑到某些情况下的路由可伸缩性问题,路由协议应该能够支持动态信息与相对静态信息的分离,以避免在动态信息发生变化时对静态信息进行不必要的更新。符合标准的方法是将动态信息子TLV与静态信息子TLV分开,每个TLV嵌套在单独的顶级TLV中(参见[RFC3630]和[RFC5786]),并在单独的OSPF-TE LSA中公布。
For node information, since the connectivity matrix information is static, the LSA containing the Node Attribute TLV can be updated with a lower frequency to avoid unnecessary updates.
对于节点信息,由于连接性矩阵信息是静态的,因此可以以较低的频率更新包含节点属性TLV的LSA,以避免不必要的更新。
For link information, a mechanism MAY be applied such that static information and dynamic information of one TE link are contained in separate Opaque LSAs. For example, the Port Label Restrictions sub-TLV could be nested in separate top-level Link TLVs and advertised in the separate LSAs.
对于链路信息,可以应用机制,使得一个TE链路的静态信息和动态信息包含在单独的不透明lsa中。例如,端口标签限制子TLV可以嵌套在单独的顶级链路TLV中,并在单独的LSA中公布。
As with other TE information, an implementation typically takes measures to avoid rapid and frequent updates of routing information that could cause the routing network to become swamped. See Section 3 of [RFC3630] for related details.
与其他TE信息一样,实现通常采取措施避免路由信息的快速和频繁更新,这可能导致路由网络被淹没。有关详细信息,请参见[RFC3630]第3节。
This document defines two sub-TLVs for describing generic routing constraints. The examples given in [RFC7579] show that very large systems, in terms of label count or ports, can be very efficiently encoded. However, because there has been concern expressed that some possible systems may produce LSAs that exceed the IP Maximum Transmission Unit (MTU), methods should be given to allow for the splitting of general constraint LSAs into smaller LSAs that are under the MTU limit. This section presents a set of techniques that can be used for this purpose.
本文档定义了两个子TLV,用于描述通用路由约束。[RFC7579]中给出的示例表明,就标签计数或端口而言,非常大的系统可以非常高效地编码。然而,由于有人担心某些可能的系统可能产生超过IP最大传输单元(MTU)的LSA,因此应给出允许将一般约束LSA拆分为MTU限制下的较小LSA的方法。本节介绍了一组可用于此目的的技术。
Two sub-TLVs are defined in this document:
本文件中定义了两个子TLV:
1. Connectivity Matrix (carried in the Node Attribute TLV)
1. 连接矩阵(在节点属性TLV中携带)
2. Port Label Restrictions (carried in the Link TLV)
2. 端口标签限制(在链路TLV中携带)
The Connectivity Matrix sub-TLV can be carried in the Node Attribute TLV (as defined in [RFC5786]), whereas the Port Label Restrictions sub-TLV can be carried in a Link TLV, of which there can be at most one in an LSA (as defined in [RFC3630]). Note that the port label restrictions are relatively static, i.e., only would change with hardware changes or significant system reconfiguration.
连接矩阵子TLV可以在节点属性TLV(如[RFC5786]中定义)中携带,而端口标签限制子TLV可以在链路TLV中携带,其中LSA中最多可以有一个(如[RFC3630]中定义)。请注意,端口标签限制是相对静态的,即仅会随着硬件更改或重大系统重新配置而更改。
In the highly unlikely event that a Connectivity Matrix sub-TLV by itself would result in an LSA exceeding the MTU, a single large matrix can be decomposed into sub-matrices. Per [RFC7579], a connectivity matrix just consists of pairs of input and output ports that can reach each other; hence, this decomposition would be straightforward. Each of these sub-matrices would get a unique matrix identifier per [RFC7579].
在极不可能的情况下,连接矩阵子TLV本身会导致LSA超过MTU,单个大矩阵可以分解为子矩阵。根据[RFC7579],连接性矩阵仅由可相互连接的成对输入和输出端口组成;因此,这种分解很简单。根据[RFC7579],这些子矩阵中的每一个子矩阵都将获得唯一的矩阵标识符。
From the point of view of a path computation process, prior to receiving an LSA with a Connectivity Matrix sub-TLV, no connectivity restrictions are assumed, i.e., the standard GMPLS assumption of any port to any port reachability holds. Once a Connectivity Matrix sub-TLV is received, path computation would know that connectivity is restricted and use the information from all Connectivity Matrix sub-TLVs received to understand the complete connectivity potential of the system. Prior to receiving any Connectivity Matrix sub-TLVs, path computation may compute a path through the system when, in fact, no path exists. In between the reception of an additional Connectivity Matrix sub-TLV, path computation may not be able to find a path through the system when one actually exists. Both cases are currently encountered and handled with existing GMPLS mechanisms. Due to the reliability mechanisms in OSPF, the phenomena of late or missing Connectivity Matrix sub-TLVs would be relatively rare.
从路径计算过程的观点来看,在接收具有连接性矩阵子TLV的LSA之前,不假设连接性限制,即,任何端口到任何端口的可达性的标准GMPLS假设成立。一旦收到连接矩阵子TLV,路径计算将知道连接受到限制,并使用收到的所有连接矩阵子TLV的信息来了解系统的完整连接潜力。在接收任何连接矩阵子TLV之前,路径计算可以在实际上不存在路径的情况下计算通过系统的路径。在接收附加连接矩阵子TLV之间,路径计算可能无法在实际存在路径时找到通过系统的路径。这两种情况目前都是通过现有的GMPLS机制遇到和处理的。由于OSPF中的可靠性机制,延迟或缺失连接矩阵子TLV的现象相对较少。
In the case where the new sub-TLVs or their attendant encodings are malformed, the proper action would be to log the problem and ignore just the sub-TLVs in GMPLS path computations rather than ignoring the entire LSA.
如果新的子TLV或其伴随编码格式不正确,正确的操作是记录问题并在GMPLS路径计算中仅忽略子TLV,而不是忽略整个LSA。
This document does not introduce any further security issues other than those discussed in [RFC3630], [RFC4203], and [RFC5250].
除[RFC3630]、[RFC4203]和[RFC5250]中讨论的安全问题外,本文件不介绍任何其他安全问题。
For general security aspects relevant to GMPLS-controlled networks, please refer to [RFC5920].
有关GMPLS控制网络的一般安全方面,请参考[RFC5920]。
No existing management tools handle the additional TE parameters as defined in this document and distributed in OSPF-TE. The existing MIB module contained in [RFC6825] allows the TE information distributed by OSPF-TE to be read from a network node; this MIB module could be augmented (possibly by a sparse augmentation) to report this new information.
现有的管理工具无法处理本文件中定义并在OSPF-TE中分发的附加TE参数。[RFC6825]中包含的现有MIB模块允许从网络节点读取OSPF-TE分发的TE信息;这个MIB模块可以被扩充(可能通过稀疏扩充)以报告这个新信息。
The current environment in the IETF favors the Network Configuration Protocol (NETCONF) [RFC6241] and YANG [RFC6020] over SNMP and MIB modules. Work is in progress in the TEAS working group to develop a YANG module to represent the generic TE information that may be present in a Traffic Engineering Database (TED). This model may be extended to handle the additional information described in this document to allow that information to be read from network devices or exchanged between consumers of the TED. Furthermore, links state
IETF中的当前环境支持网络配置协议(NETCONF)[RFC6241]和YANG[RFC6020]而不是SNMP和MIB模块。TEAS工作组正在开发一个YANG模块,以表示交通工程数据库(TED)中可能存在的通用TE信息。该模型可扩展以处理本文档中描述的附加信息,以允许从网络设备读取该信息或在TED的消费者之间交换该信息。此外,链接状态
export using BGP [BGP-LS] enables the export of TE information from a network using BGP. Work could realistically be done to extend BGP-LS to also carry the information defined in this document.
使用BGP导出[BGP-LS]允许使用BGP从网络导出TE信息。实际上,可以开展工作来扩展BGP-LS,以同时携带本文件中定义的信息。
It is not envisaged that the extensions defined in this document will place substantial additional requirements on Operations, Administration, and Maintenance (OAM) mechanisms currently used to diagnose and debug OSPF systems. However, tools that examine the contents of opaque LSAs will need to be enhanced to handle these new sub-TLVs.
本文件中定义的扩展不会对当前用于诊断和调试OSPF系统的操作、管理和维护(OAM)机制提出实质性的额外要求。但是,需要增强检查不透明LSA内容的工具,以处理这些新的子TLV。
IANA has allocated new sub-TLVs as defined in Sections 2 and 3 as follows:
IANA已按照第2节和第3节的规定分配了新的子TLV,如下所示:
IANA maintains the "Open Shortest Path First (OSPF) Traffic Engineering TLVs" registry with a sub-registry called "Types for sub-TLVs of TE Node Attribute TLV (Value 5)". IANA has assigned a new code point as follows:
IANA维护“开放最短路径优先(OSPF)流量工程TLV”注册表,该注册表包含一个名为“TE节点属性TLV(值5)的子TLV类型”的子注册表。IANA分配了一个新的代码点,如下所示:
Type | Sub-TLV | Reference -------+-------------------------------+------------ 14 | Connectivity Matrix | [RFC7580]
Type | Sub-TLV | Reference -------+-------------------------------+------------ 14 | Connectivity Matrix | [RFC7580]
IANA maintains the "Open Shortest Path First (OSPF) Traffic Engineering TLVs" registry with a sub-registry called "Types for sub-TLVs of TE Link TLV (Value 2)". IANA has assigned a new code point as follows:
IANA维护“开放最短路径优先(OSPF)流量工程TLV”注册表,其中包含一个名为“TE Link TLV子TLV类型(值2)”的子注册表。IANA分配了一个新的代码点,如下所示:
Type | Sub-TLV | Reference -------+-------------------------------+------------ 34 | Port Label Restrictions | [RFC7580]
Type | Sub-TLV | Reference -------+-------------------------------+------------ 34 | Port Label Restrictions | [RFC7580]
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<http://www.rfc-editor.org/info/rfc2119>.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, DOI 10.17487/RFC2328, April 1998, <http://www.rfc-editor.org/info/rfc2328>.
[RFC2328]Moy,J.,“OSPF版本2”,STD 54,RFC 2328,DOI 10.17487/RFC2328,1998年4月<http://www.rfc-editor.org/info/rfc2328>.
[RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2", RFC 3630, DOI 10.17487/RFC3630, September 2003, <http://www.rfc-editor.org/info/rfc3630>.
[RFC3630]Katz,D.,Kompella,K.,和D.Yeung,“OSPF版本2的交通工程(TE)扩展”,RFC 3630,DOI 10.17487/RFC3630,2003年9月<http://www.rfc-editor.org/info/rfc3630>.
[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, DOI 10.17487/RFC4202, October 2005, <http://www.rfc-editor.org/info/rfc4202>.
[RFC4202]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的路由扩展”,RFC 4202,DOI 10.17487/RFC4202,2005年10月<http://www.rfc-editor.org/info/rfc4202>.
[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005, <http://www.rfc-editor.org/info/rfc4203>.
[RFC4203]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的OSPF扩展”,RFC 4203,DOI 10.17487/RFC4203,2005年10月<http://www.rfc-editor.org/info/rfc4203>.
[RFC5250] Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The OSPF Opaque LSA Option", RFC 5250, DOI 10.17487/RFC5250, July 2008, <http://www.rfc-editor.org/info/rfc5250>.
[RFC5250]Berger,L.,Bryskin,I.,Zinin,A.,和R.Coltun,“OSPF不透明LSA选项”,RFC 5250,DOI 10.17487/RFC5250,2008年7月<http://www.rfc-editor.org/info/rfc5250>.
[RFC5786] Aggarwal, R. and K. Kompella, "Advertising a Router's Local Addresses in OSPF Traffic Engineering (TE) Extensions", RFC 5786, DOI 10.17487/RFC5786, March 2010, <http://www.rfc-editor.org/info/rfc5786>.
[RFC5786]Aggarwal,R.和K.Kompella,“在OSPF流量工程(TE)扩展中公布路由器的本地地址”,RFC 5786,DOI 10.17487/RFC5786,2010年3月<http://www.rfc-editor.org/info/rfc5786>.
[RFC7579] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and J. Han, "General Network Element Constraint Encoding for GMPLS-Controlled Networks", RFC 7579, DOI 10.17487/RFC7579, June 2015, <http://www.rfc-editor.org/info/rfc7579>.
[RFC7579]Bernstein,G.,Ed.,Lee,Y.,Ed.,Li,D.,Imajuku,W.,和J.Han,“GMPLS控制网络的一般网元约束编码”,RFC 7579,DOI 10.17487/RFC7579,2015年6月<http://www.rfc-editor.org/info/rfc7579>.
[BGP-LS] Gredler, H., Medved, J., Previdi, S., Farrel, A., and S. Ray, "North-Bound Distribution of Link-State and TE Information using BGP", Work in Progress, draft-ietf-idr-ls-distribution-11, June 2015.
[BGP-LS]Gredler,H.,Medved,J.,Previdi,S.,Farrel,A.,和S.Ray,“使用BGP的链路状态和TE信息的北向分布”,正在进行的工作,草案-ietf-idr-LS-Distribution-112015年6月。
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <http://www.rfc-editor.org/info/rfc6020>.
[RFC6020]Bjorklund,M.,Ed.“YANG-网络配置协议的数据建模语言(NETCONF)”,RFC 6020,DOI 10.17487/RFC6020,2010年10月<http://www.rfc-editor.org/info/rfc6020>.
[RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku, "Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)", RFC 6163, DOI 10.17487/RFC6163, April 2011, <http://www.rfc-editor.org/info/rfc6163>.
[RFC6163]Lee,Y.,Ed.,Bernstein,G.,Ed.,和W.Imajuku,“波长交换光网络(WSON)的GMPLS和路径计算元件(PCE)控制框架”,RFC 6163,DOI 10.17487/RFC6163,2011年4月<http://www.rfc-editor.org/info/rfc6163>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <http://www.rfc-editor.org/info/rfc6241>.
[RFC6241]Enns,R.,Ed.,Bjorklund,M.,Ed.,Schoenwaeld,J.,Ed.,和A.Bierman,Ed.,“网络配置协议(NETCONF)”,RFC 6241,DOI 10.17487/RFC6241,2011年6月<http://www.rfc-editor.org/info/rfc6241>.
[RFC6825] Miyazawa, M., Otani, T., Kumaki, K., and T. Nadeau, "Traffic Engineering Database Management Information Base in Support of MPLS-TE/GMPLS", RFC 6825, DOI 10.17487/RFC6825, January 2013, <http://www.rfc-editor.org/info/rfc6825>.
[RFC6825]Miyazawa,M.,Otani,T.,Kumaki,K.,和T.Nadeau,“支持MPLS-TE/GMPLS的交通工程数据库管理信息库”,RFC 6825,DOI 10.17487/RFC6825,2013年1月<http://www.rfc-editor.org/info/rfc6825>.
[RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku, "Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks", RFC 7446, DOI 10.17487/RFC7446, February 2015, <http://www.rfc-editor.org/info/rfc7446>.
[RFC7446]Lee,Y.,Ed.,Bernstein,G.,Ed.,Li,D.,和W.Imajuku,“波长交换光网络的路由和波长分配信息模型”,RFC 7446,DOI 10.17487/RFC7446,2015年2月<http://www.rfc-editor.org/info/rfc7446>.
[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010, <http://www.rfc-editor.org/info/rfc5920>.
[RFC5920]方,L.,编辑,“MPLS和GMPLS网络的安全框架”,RFC 5920,DOI 10.17487/RFC5920,2010年7月<http://www.rfc-editor.org/info/rfc5920>.
Acknowledgments
致谢
We thank Ming Chen and Yabin Ye from DICONNET Project who provided valuable information for this document.
我们感谢DICONNET项目的Ming Chen和Yabin Ye为本文件提供了有价值的信息。
Contributors
贡献者
Guoying Zhang China Academy of Telecommunication Research of MII 11 Yue Tan Nan Jie Beijing China Phone: +86-10-68094272 EMail: zhangguoying@mail.ritt.com.cn
张国英信息产业部电信研究院11月坛南街中国北京电话:+86-10-68094272电子邮件:zhangguoying@mail.ritt.com.cn
Dan Li Huawei Technologies Co., Ltd. F3-5-B R&D Center, Huawei Base Bantian, Longgang District Shenzhen 518129 China Phone: +86-755-28973237 EMail: danli@huawei.com
丹丽华为技术有限公司深圳市龙岗区华为基地坂田F3-5-B研发中心518129中国电话:+86-755-28973237电子邮件:danli@huawei.com
Ming Chen European Research Center Huawei Technologies Riesstr. 25, 80992 Munchen Germany Phone: 0049-89158834072 EMail: minc@huawei.com
陈明欧洲研究中心华为技术Riesstr。2580992慕尼黑德国电话:0049-89158834072电子邮件:minc@huawei.com
Yabin Ye European Research Center Huawei Technologies Riesstr. 25, 80992 Munchen Germany Phone: 0049-89158834074 EMail: yabin.ye@huawei.com
叶亚斌欧洲研究中心华为技术Riesstr。2580992慕尼黑德国电话:0049-89158834074电子邮件:yabin。ye@huawei.com
Authors' Addresses
作者地址
Fatai Zhang Huawei Technologies F3-5-B R&D Center, Huawei Base Bantian, Longgang District Shenzhen 518129 China Phone: +86-755-28972912 EMail: zhangfatai@huawei.com
深圳市龙岗区华为基地坂田华为技术研发中心F3-5-B Fatai Zhang中国电话:+86-755-28972912电子邮件:zhangfatai@huawei.com
Young Lee Huawei Technologies 5360 Legacy Drive, Building 3 Plano, TX 75023 United States Phone: (469)277-5838 EMail: leeyoung@huawei.com
Young Lee华为技术5360 Legacy Drive,德克萨斯州普莱诺3号楼75023美国电话:(469)277-5838电子邮件:leeyoung@huawei.com
Jianrui Han Huawei Technologies Co., Ltd. F3-5-B R&D Center, Huawei Base Bantian, Longgang District Shenzhen 518129 China Phone: +86-755-28977943 EMail: hanjianrui@huawei.com
韩建瑞华为技术有限公司深圳市龙岗区华为基地坂田F3-5-B研发中心518129中国电话:+86-755-28977943电子邮件:hanjianrui@huawei.com
Greg Bernstein Grotto Networking Fremont, CA United States Phone: (510) 573-2237 EMail: gregb@grotto-networking.com
Greg Bernstein Grotto Networking加利福尼亚州弗里蒙特电话:(510)573-2237电子邮件:gregb@grotto-网络
Yunbin Xu China Academy of Telecommunication Research of MII 11 Yue Tan Nan Jie Beijing China Phone: +86-10-68094134 EMail: xuyunbin@mail.ritt.com.cn
徐云斌信息产业部电信研究院11月坛南街中国北京电话:+86-10-68094134电子邮件:xuyunbin@mail.ritt.com.cn