Internet Engineering Task Force (IETF)                 J. Kaippallimalil
Request for Comments: 7561                                        Huawei
Category: Informational                                    R. Pazhyannur
ISSN: 2070-1721                                                    Cisco
                                                               P. Yegani
                                                                 Juniper
                                                               June 2015
        
Internet Engineering Task Force (IETF)                 J. Kaippallimalil
Request for Comments: 7561                                        Huawei
Category: Informational                                    R. Pazhyannur
ISSN: 2070-1721                                                    Cisco
                                                               P. Yegani
                                                                 Juniper
                                                               June 2015
        

Mapping Quality of Service (QoS) Procedures of Proxy Mobile IPv6 (PMIPv6) and WLAN

代理移动IPv6(PMIPv6)和WLAN的服务质量(QoS)映射过程

Abstract

摘要

This document provides guidelines for achieving end-to-end Quality of Service (QoS) in a Proxy Mobile IPv6 (PMIPv6) domain where the access network is based on IEEE 802.11. RFC 7222 describes QoS negotiation between a Mobile Access Gateway (MAG) and Local Mobility Anchor (LMA) in a PMIPv6 mobility domain. The negotiated QoS parameters can be used for QoS policing and marking of packets to enforce QoS differentiation on the path between the MAG and LMA. IEEE 802.11 and Wi-Fi Multimedia - Admission Control (WMM-AC) describe methods for QoS negotiation between a Wi-Fi Station (MN in PMIPv6 terminology) and an Access Point. This document provides a mapping between the above two sets of QoS procedures and the associated QoS parameters. This document is intended to be used as a companion document to RFC 7222 to enable implementation of end-to-end QoS.

本文档提供了在接入网络基于IEEE 802.11的代理移动IPv6(PMIPv6)域中实现端到端服务质量(QoS)的指南。rfc7222描述了PMIPv6移动域中移动接入网关(MAG)和本地移动锚(LMA)之间的QoS协商。协商的QoS参数可用于QoS策略和分组标记,以在MAG和LMA之间的路径上实施QoS区分。IEEE 802.11和Wi-Fi多媒体-准入控制(WMM-AC)描述了Wi-Fi站点(PMIPv6术语中的MN)和接入点之间QoS协商的方法。本文档提供了上述两组QoS过程和相关QoS参数之间的映射。本文档旨在用作RFC 7222的配套文档,以实现端到端QoS。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7561.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7561.

Copyright Notice

版权公告

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2015 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Abbreviations . . . . . . . . . . . . . . . . . . . . . .   4
     1.2.  Definitions . . . . . . . . . . . . . . . . . . . . . . .   5
   2.  Overview of IEEE 802.11 QoS . . . . . . . . . . . . . . . . .   7
   3.  Mapping QoS Procedures between IEEE 802.11 and PMIPv6 . . . .   7
     3.1.  MN-Initiated QoS Service Request  . . . . . . . . . . . .   8
       3.1.1.  MN-Initiated QoS Reservation Request  . . . . . . . .   8
       3.1.2.  MN-Initiated QoS De-allocation Request  . . . . . . .  11
     3.2.  LMA-Initiated QoS Service Request . . . . . . . . . . . .  12
       3.2.1.  LMA-Initiated QoS Reservation Request . . . . . . . .  12
       3.2.2.  Discussion on QoS Request Handling with IEEE 802.11aa  13
       3.2.3.  LMA-Initiated QoS De-allocation Request . . . . . . .  14
   4.  Mapping between IEEE 802.11 QoS and PMIPv6 QoS Parameters . .  15
     4.1.  Connection Parameters . . . . . . . . . . . . . . . . . .  15
     4.2.  QoS Class . . . . . . . . . . . . . . . . . . . . . . . .  16
     4.3.  Bandwidth . . . . . . . . . . . . . . . . . . . . . . . .  17
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  18
   6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  19
     6.1.  Normative References  . . . . . . . . . . . . . . . . . .  19
     6.2.  Informative References  . . . . . . . . . . . . . . . . .  19
   Appendix A.  LMA-Initiated QoS Service Flow with IEEE 802.11aa  .  21
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  23
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  23
        
   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Abbreviations . . . . . . . . . . . . . . . . . . . . . .   4
     1.2.  Definitions . . . . . . . . . . . . . . . . . . . . . . .   5
   2.  Overview of IEEE 802.11 QoS . . . . . . . . . . . . . . . . .   7
   3.  Mapping QoS Procedures between IEEE 802.11 and PMIPv6 . . . .   7
     3.1.  MN-Initiated QoS Service Request  . . . . . . . . . . . .   8
       3.1.1.  MN-Initiated QoS Reservation Request  . . . . . . . .   8
       3.1.2.  MN-Initiated QoS De-allocation Request  . . . . . . .  11
     3.2.  LMA-Initiated QoS Service Request . . . . . . . . . . . .  12
       3.2.1.  LMA-Initiated QoS Reservation Request . . . . . . . .  12
       3.2.2.  Discussion on QoS Request Handling with IEEE 802.11aa  13
       3.2.3.  LMA-Initiated QoS De-allocation Request . . . . . . .  14
   4.  Mapping between IEEE 802.11 QoS and PMIPv6 QoS Parameters . .  15
     4.1.  Connection Parameters . . . . . . . . . . . . . . . . . .  15
     4.2.  QoS Class . . . . . . . . . . . . . . . . . . . . . . . .  16
     4.3.  Bandwidth . . . . . . . . . . . . . . . . . . . . . . . .  17
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  18
   6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  19
     6.1.  Normative References  . . . . . . . . . . . . . . . . . .  19
     6.2.  Informative References  . . . . . . . . . . . . . . . . .  19
   Appendix A.  LMA-Initiated QoS Service Flow with IEEE 802.11aa  .  21
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  23
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  23
        
1. Introduction
1. 介绍

PMIPv6 QoS [1] describes an access-network-independent way to negotiate Quality of Service (QoS) for Proxy Mobile IPv6 (PMIPv6) mobility sessions. IEEE 802.11, Wi-Fi Multimedia (WMM), and Wi-Fi Multimedia - Admission Control (WMM-AC) describe ways to provide QoS for Wi-Fi traffic between the Wi-Fi Station (STA) and Access Point (AP). This document describes how QoS can be implemented in a network where the access network is based on IEEE 802.11 (Wi-Fi). It requires a mapping between QoS procedures and information elements in two segments: 1) the Wi-Fi segment and 2) the PMIPv6 segment. (See Figure 1.) The recommendations here allow for dynamic QoS policy information per Mobile Node (MN) and session to be configured by the IEEE 802.11 access network. PMIPv6 QoS signaling between the Mobile Access Gateway (MAG) and Local Mobility Anchor (LMA) provisions the per-MN QoS policies in the MAG. Further details on policy configuration and the Policy Control Function (PCF) can be found in [1], Section 6.1. In the IEEE 802.11 access network modeled here, the MAG is located at the AP / Wireless LAN Controller (WLC). Figure 1 below provides an overview of the entities and protocols.

PMIPv6 QoS[1]描述了一种独立于接入网络的方式,用于协商代理移动IPv6(PMIPv6)移动会话的服务质量(QoS)。IEEE 802.11、Wi-Fi多媒体(WMM)和Wi-Fi多媒体-准入控制(WMM-AC)描述了为Wi-Fi站点(STA)和接入点(AP)之间的Wi-Fi流量提供QoS的方法。本文档描述了如何在接入网络基于IEEE 802.11(Wi-Fi)的网络中实现QoS。它需要在两个段中的QoS过程和信息元素之间进行映射:1)Wi-Fi段和2)PMIPv6段。(参见图1。)此处的建议允许每个移动节点(MN)和会话的动态QoS策略信息由IEEE 802.11接入网络配置。移动接入网关(MAG)和本地移动锚(LMA)之间的PMIPv6 QoS信令规定了MAG中的每MN QoS策略。有关策略配置和策略控制功能(PCF)的更多详细信息,请参见第6.1节[1]。在这里建模的IEEE 802.11接入网络中,MAG位于AP/无线LAN控制器(WLC)处。下面的图1提供了实体和协议的概述。

                                   +-----+                +-------+
                                   | AAA |                |  PCF  |
                                   +--+--+                +---+---+
                                      |                       |
                                      |                       |
       +----+                      +--+--------+          +---+---+
       |    | IEEE 802.11, WMM-AC  |+-++  +---+|  PMIPv6  |       |
       | MN <---------------------->|AP+--+MAG|<==========>  LMA  |
       |    |   (ADDTS, DELTS)     |+--+  +---+|   QoS    |       |
       +----+                      +-----------+          +-------+
        
                                   +-----+                +-------+
                                   | AAA |                |  PCF  |
                                   +--+--+                +---+---+
                                      |                       |
                                      |                       |
       +----+                      +--+--------+          +---+---+
       |    | IEEE 802.11, WMM-AC  |+-++  +---+|  PMIPv6  |       |
       | MN <---------------------->|AP+--+MAG|<==========>  LMA  |
       |    |   (ADDTS, DELTS)     |+--+  +---+|   QoS    |       |
       +----+                      +-----------+          +-------+
        

Figure 1: End-to-End QoS in Networks with IEEE 802.11 Access

图1:IEEE 802.11接入网络中的端到端QoS

The MN and Access Point (AP) use IEEE 802.11 QoS mechanisms to set up QoS flows in the Wi-Fi segment. The MAG and LMA set up QoS flows using PMIPv6 QoS procedures. The protocols and mechanisms between the AP and MAG are outside the scope of this document. Some implementations may have the AP and MAG in the same network node. However, this document does not exclude various deployments including those in which the AP and WLC are separate nodes or in which the MAG control and data planes are separate.

MN和接入点(AP)使用IEEE 802.11 QoS机制在Wi-Fi段中设置QoS流。MAG和LMA使用PMIPv6 QoS程序设置QoS流。AP和MAG之间的协议和机制不在本文件范围内。某些实现可能将AP和MAG放在同一网络节点中。但是,本文档不排除各种部署,包括AP和WLC是独立节点或MAG控制和数据平面是独立的部署。

The recommendations in this document use IEEE 802.11 QoS and PMIPv6 QoS mechanisms [1]. State machines for QoS policy setup in IEEE 802.11 and PMIPv6 operate differently. Guidelines for installing QoS in the MN using IEEE 802.11 and PMIPv6 segments and for mapping parameters between them are outlined below.

本文档中的建议使用IEEE 802.11 QoS和PMIPv6 QoS机制[1]。IEEE 802.11和PMIPv6中用于QoS策略设置的状态机运行方式不同。使用IEEE 802.11和PMIPv6段在MN中安装QoS以及在它们之间映射参数的指南概述如下。

- Procedure Mapping:

- 程序映射:

PMIPv6-defined procedures for QoS setup, as specified in [1], may be triggered by the LMA or MAG. IEEE 802.11 QoS setup, on the other hand, is always triggered by the MN (IEEE 802.11 QoS Station (QSTA)). The end-to-end QoS setup across these network segments should accommodate QoS that is triggered by the network or by the end user.

如[1]所述,PMIPv6定义的QoS设置程序可由LMA或MAG触发。另一方面,IEEE 802.11 QoS设置始终由MN触发(IEEE 802.11 QoS站(QSTA))。跨这些网段的端到端QoS设置应适应由网络或最终用户触发的QoS。

- Parameter Mapping:

- 参数映射:

There is no systematic method of mapping of specific parameters between PMIPv6 QoS parameters and IEEE 802.11 QoS. For example, parameters like Allocation and Retention Priority (AARP) in PMIPv6 QoS have no equivalent in IEEE 802.11.

在PMIPv6 QoS参数和IEEE 802.11 QoS参数之间没有系统的映射特定参数的方法。例如,PMIPv6 QoS中的分配和保留优先级(AARP)等参数在IEEE 802.11中没有等价物。

The primary emphasis of this specification is to handle the interworking between WMM-AC signaling/procedures and PMIPv6 QoS signaling/procedures. When the client does not support WMM-AC, then the AP/MAG uses the connection mapping in Table 2 and DSCP-to-AC mapping as shown in Table 3.

本规范的主要重点是处理WMM-AC信令/程序和PMIPv6 QoS信令/程序之间的互通。当客户端不支持WMM-AC时,AP/MAG使用表2中的连接映射和表3中所示的DSCP到AC映射。

The rest of the document is organized as follows. Section 2 provides an overview of IEEE 802.11 QoS. Section 3 describes a mapping of QoS signaling procedures between IEEE 802.11 and PMIPv6. The mapping of parameters between IEEE 802.11 and PMIPv6 QoS is described in Section 4.

文件的其余部分组织如下。第2节概述了IEEE 802.11 QoS。第3节描述了IEEE 802.11和PMIPv6之间QoS信令过程的映射。第4节描述了IEEE 802.11和PMIPv6 QoS之间的参数映射。

1.1. Abbreviations
1.1. 缩写

AAA Authentication, Authorization, and Accounting AARP Allocation and Retention Priority AC Access Category ADDTS ADD Traffic Stream AIFS Arbitration Inter-Frame Space ALG Application Layer Gateway AMBR Aggregate Maximum Bit Rate AP Access Point CW Contention Window DELTS DELete Traffic Stream DL DownLink DSCP Differentiated Services Code Point DPI Deep Packet Inspection EDCA Enhanced Distributed Channel Access EPC Evolved Packet Core GBR Guaranteed Bit Rate MAC Media Access Control MAG Mobile Access Gateway

AAA认证、授权、,和记帐AARP分配和保留优先级AC访问类别ADDTS添加业务流AIFS仲裁帧间空间ALG应用层网关AMBR聚合最大比特率AP接入点CW竞争窗口DELTS删除业务流DL下行链路DSCP区分服务代码点DPI深度包检查EDCA增强型分布式信道接入EPC演进包核心GBR保证比特率MAC媒体接入控制MAG移动接入网关

MBR Maximum Bit Rate MN Mobile Node MSDU Media Access Control Service Data Unit PBA Proxy Binding Acknowledgement PBU Proxy Binding Update PCF Policy Control Function PHY Physical Layer QCI QoS Class Identifier QoS Quality of Service QSTA QoS Station SIP Session Initiation Protocol STA Station TC Traffic Class TCLAS Type Classification TCP Transmission Control Protocol TS Traffic Stream TSPEC Traffic Conditioning Specification UDP User Datagram Protocol UL UpLink UP User Priority WLAN Wireless Local Area Network WLC Wireless Controller WMM Wi-Fi MultiMedia WMM-AC Wi-Fi MultiMedia Admission Control

MBR最大比特率MN移动节点MSDU媒体访问控制服务数据单元PBA代理绑定确认PBU代理绑定更新PCF策略控制功能物理层QCI QoS类标识符QoS服务质量QSTA QoS站SIP会话发起协议STA站TC流量类TCLAS类型分类TCP传输控制协议TS流量TSPEC流量调节规范UDP用户数据报协议UL上行用户优先级WLAN无线局域网WLC无线控制器WMM Wi-Fi多媒体WMM-AC Wi-Fi多媒体准入控制

1.2. Definitions
1.2. 定义

Peak Data Rate

峰值数据速率

In WMM-AC, Peak Data Rate specifies the maximum data rate in bits per second. The Maximum Data Rate does not include the MAC and PHY overheads [4]. Data rate includes the transport of the IP packet and header.

在WMM-AC中,峰值数据速率指定最大数据速率(以位/秒为单位)。最大数据速率不包括MAC和PHY开销[4]。数据速率包括IP数据包和报头的传输。

TSPECs for both uplink and downlink may contain Peak Data Rate.

上行链路和下行链路的tspec可以包含峰值数据速率。

Mean Data Rate

平均数据速率

This is the average data rate in bits per second. The Mean Data Rate does not include the MAC and PHY overheads [4]. Data rate includes the transport of the IP packet and header.

这是以位/秒为单位的平均数据速率。平均数据速率不包括MAC和PHY开销[4]。数据速率包括IP数据包和报头的传输。

TSPECs for both uplink and downlink must contain the Mean Data Rate.

上行链路和下行链路的TSPEC必须包含平均数据速率。

Minimum Data Rate

最小数据速率

In WMM-AC, Minimum Data Rate specifies the minimum data rate in bits per second. The Minimum Data Rate does not include the MAC and PHY overheads [4]. Data rate includes the transport of the IP packet and header.

在WMM-AC中,最小数据速率指定最小数据速率(以位/秒为单位)。最低数据速率不包括MAC和PHY开销[4]。数据速率包括IP数据包和报头的传输。

Minimum Data Rate is not used in QoS provisioning as it is described here.

如本文所述,QoS供应中未使用最小数据速率。

QCI

QCI

The QoS Class Identifier (QCI) is a scalar parameter that points to standardized characteristics of QoS as opposed to signaling separate parameters for resource type, priority, delay, and loss [8].

QoS类别标识符(QCI)是一个标量参数,它指向QoS的标准化特征,而不是为资源类型、优先级、延迟和丢失发送单独的参数[8]。

STA

STA

A station (STA) is a device that has the capability to use the IEEE 802.11 protocol. For example, a station maybe a laptop, a desktop PC, an access point, or a Wi-Fi phone [3].

站点(STA)是能够使用IEEE 802.11协议的设备。例如,站点可能是笔记本电脑、台式电脑、接入点或Wi-Fi电话[3]。

An STA that implements the QoS facility is a QoS Station (QSTA) [3].

实现QoS设施的STA是QoS站(QSTA)[3]。

TSPEC

TSPEC

The TSPEC element in IEEE 802.11 contains the set of parameters that define the characteristics and QoS expectations of a traffic flow [3].

IEEE 802.11中的TSPEC元素包含一组参数,这些参数定义了业务流的特征和QoS期望[3]。

TCLAS

TCLAS

The TCLAS element specifies an element that contains a set of parameters necessary to identify incoming MSDUs (MAC Service Data Units) that belong to a particular TS (Traffic Stream) [3].

TCLAS元素指定一个元素,该元素包含一组必要的参数,用于标识属于特定TS(流量流)的传入MSDU(MAC服务数据单元)[3]。

2. Overview of IEEE 802.11 QoS
2. ieee802.11qos综述

IEEE 802.11 defines a way of providing prioritized access for different traffic classes (video, voice, etc.) by a mechanism called EDCA (Enhanced Distributed Channel Access). The levels of priority in EDCA are called access categories (ACs) and there are four levels (in decreasing order of priority): Voice, Video, Best-Effort, and Background. Prioritized access is achieved by using AC-specific values for Contention Window (CW) and Arbitration Inter-Frame Space (AIFS). (Higher-priority categories have smaller values for minimum and maximum CW and AIFS.)

IEEE 802.11定义了一种通过称为EDCA(增强分布式信道访问)的机制为不同流量类别(视频、语音等)提供优先访问的方法。EDCA中的优先级级别称为访问类别(ACs),有四个级别(按优先级的降序排列):语音、视频、尽力而为和背景。通过使用竞争窗口(CW)和仲裁帧间空间(AIFS)的AC特定值实现优先访问。(高优先级类别的最小和最大CW和AIF值较小。)

A subset of the QoS mechanisms is defined in WMM -- a Wi-Fi Alliance certification of support for a set of features from an IEEE 802.11e draft (now part of IEEE 802.11). This certification is for both clients and APs and certifies the operation of WMM. WMM is primarily the implementation of the EDCA component of IEEE 802.11e. WMM uses the IEEE 802.1P classification scheme developed by the IEEE (which is now a part of the 802.1D specification). The IEEE 802.1P classification scheme has eight priorities, which WMM maps to four access categories: AC_BK, AC_BE, AC_VI, and AC_VO. The lack of support in WMM for the TCLAS (used in identifying an IP flow) has an impact on the QoS provisioning. The impact on WMM-based QoS provisioning is described in Sections 3 and 4.

WMM中定义了QoS机制的一个子集——支持IEEE 802.11e草案(现在是IEEE 802.11的一部分)中一组功能的Wi-Fi联盟认证。此认证适用于客户端和AP,并认证WMM的运行。WMM主要是IEEE 802.11e的EDCA组件的实现。WMM使用IEEE开发的IEEE 802.1P分类方案(现在是802.1D规范的一部分)。IEEE 802.1P分类方案有八个优先级,WMM将其映射到四个访问类别:AC_BK、AC_BE、AC_VI和AC_VO。WMM中缺乏对TCLA(用于识别IP流)的支持会影响QoS供应。第3节和第4节描述了对基于WMM的QoS供应的影响。

IEEE 802.11 defines the way a (non-AP) STA can request QoS to be reserved for an access category. Correspondingly, the AP can determine whether to admit or deny the request depending on the available resources. Further, the AP may require that Admission Control is mandatory for an access category. In such a case, the STA is expected to use the access category only after being successfully admitted. WMM-AC is a Wi-Fi Alliance certification of support for Admission Control based on a set of features in IEEE 802.11.

IEEE 802.11定义了(非AP)STA请求为接入类别保留QoS的方式。相应地,AP可以根据可用资源来确定是否接纳或拒绝请求。此外,AP可以要求对接入类别的准入控制是强制性的。在这种情况下,STA期望仅在被成功接纳之后才使用接入类别。WMM-AC是基于IEEE 802.11中的一组功能支持准入控制的Wi-Fi联盟认证。

The QoS signaling in IEEE 802.11 is initiated by the (non-AP) STA (by sending an ADDTS request). This specification references procedures in IEEE 802.11, WMM, and WMM-AC.

IEEE 802.11中的QoS信令由(非AP)STA(通过发送ADDTS请求)发起。本规范参考了IEEE 802.11、WMM和WMM-AC中的程序。

3. Mapping QoS Procedures between IEEE 802.11 and PMIPv6
3. 在IEEE 802.11和PMIPv6之间映射QoS过程

There are two main types of interaction possible to provision QoS for flows that require Admission Control -- one where the MN initiates the QoS request and the network provisions the resources. The second is where the network provisions resources as a result of a PMIPv6 QoS request. In the second scenario, the LMA can push the QoS configuration to the MAG. However, there is no standard way for the AP to initiate a QoS service request to the MN. Recommendations to set up QoS in both these cases are described in this section.

有两种主要类型的交互可以为需要准入控制的流提供QoS——一种是MN发起QoS请求,而网络提供资源。第二种情况是网络根据PMIPv6 QoS请求提供资源。在第二个场景中,LMA可以将QoS配置推送到MAG。但是,AP没有标准的方式向MN发起QoS服务请求。本节介绍了在这两种情况下设置QoS的建议。

3.1. MN-Initiated QoS Service Request
3.1. MN发起的QoS服务请求
3.1.1. MN-Initiated QoS Reservation Request
3.1.1. MN发起的QoS保留请求

This procedure outlines the case where the MN is configured to start the QoS signaling. In this case, the MN sends an ADDTS request indicating the QoS required for the flow. The AP/MAG obtains the corresponding level of QoS to be granted to the flow by using the PMIPv6 PBU/PBA sequence that contains the QoS options exchanged with the LMA. Details of the QoS provisioning for the flow are provided below.

此过程概述了将MN配置为启动QoS信令的情况。在这种情况下,MN发送一个ADDTS请求,指示流所需的QoS。AP/MAG通过使用包含与LMA交换的QoS选项的PMIPv6 PBU/PBA序列来获得要授予流的相应QoS水平。下面提供了流的QoS供应的详细信息。

                                 +-----------+
    +----+                       |+--+  +---+|            +-------+
    | MN |                       ||AP|  |MAG||            |  LMA  |
    +-+--+                       ++-++--+-+-++            +---+---+
      |                             |     |                   |
    +-------------------------------------------------------------+
    |          (0) establish session with mobile network          |
    +-------------------------------------------------------------+
      |                             |     |                   |
    +-------------+                 |     |                   |
    |upper-layer  |                 |     |                   |
    |notification |                 |     |                   |
    +-+-+-+-+-+-+-+                 |     |                   |
      |                             |     |                   |
      | ADDTS Request(TCLAS(opt),TSPEC),AC|                   |
      |---------------------------->|     |                   |
      |             (1)             |---->|PBU(QoS options)(2)|
      |                             |     |------------------>|
      |                             |     |                   | Policy
      |                             |     |PBA(QoS option)(3) |<----->
      |                             |     |<------------------|
      |                             |<----|                   |
      |ADDTS Response(TCLAS(opt),TSPEC),AC|                   |
      |<----------------------------|     |                   |
      |             (4)             |     |
        
                                 +-----------+
    +----+                       |+--+  +---+|            +-------+
    | MN |                       ||AP|  |MAG||            |  LMA  |
    +-+--+                       ++-++--+-+-++            +---+---+
      |                             |     |                   |
    +-------------------------------------------------------------+
    |          (0) establish session with mobile network          |
    +-------------------------------------------------------------+
      |                             |     |                   |
    +-------------+                 |     |                   |
    |upper-layer  |                 |     |                   |
    |notification |                 |     |                   |
    +-+-+-+-+-+-+-+                 |     |                   |
      |                             |     |                   |
      | ADDTS Request(TCLAS(opt),TSPEC),AC|                   |
      |---------------------------->|     |                   |
      |             (1)             |---->|PBU(QoS options)(2)|
      |                             |     |------------------>|
      |                             |     |                   | Policy
      |                             |     |PBA(QoS option)(3) |<----->
      |                             |     |<------------------|
      |                             |<----|                   |
      |ADDTS Response(TCLAS(opt),TSPEC),AC|                   |
      |<----------------------------|     |                   |
      |             (4)             |     |
        

Figure 2: MS-Initiated QoS Service Request

图2:MS发起的QoS服务请求

In the use case shown in Figure 2, the MN initiates the QoS service request.

在图2所示的用例中,MN发起QoS服务请求。

(0) The MN establishes a session as described in steps 1-4 of Use Case 2 (MAG-Initiated QoS Service Request) in Section 3.1 of [1]. At this point, a connection with a PMIPv6 tunnel is established to the LMA. This allows the MN to start application-level signaling.

(0) MN建立会话,如[1]第3.1节中用例2(MAG发起的QoS服务请求)的步骤1-4所述。此时,通过PMIPv6隧道与LMA建立连接。这允许MN启动应用程序级信令。

(1) The trigger for the MN to request QoS is an upper-layer notification. This may be the result of end-to-end application signaling and setup procedures (e.g., SIP [10]).

(1) MN请求QoS的触发器是上层通知。这可能是端到端应用信令和设置程序(例如,SIP[10])的结果。

Since the MN is configured to start QoS signaling, it sends an ADDTS request with TSPEC and TCLAS identifying the flow for which QoS is requested.

由于MN被配置为启动QoS信令,因此它发送ADDTS请求,其中TSPEC和TCLAS标识请求QoS的流。

It should be noted that WMM-AC specifications do not contain TCLAS. When TCLAS is not present, there is no direct way to derive flow-specific attributes like Traffic Selector in PMIPv6. In this case, functionality to derive IP flow details from information in upper-layer protocols (e.g., SIP [10]) and associate them with a subsequent QoS request may be used. This is not described further here, but it may be functionality in an Application Layer Gateway (ALG) or Deep Packet Inspection (DPI). It should be noted that an ALG or DPI can increase the complexity of the AP/MAG implementation and affect its scalability. If no TCLAS is derived, the reservation applies to all flows of the MN. Parameter mapping in this case is shown in Table 2.

应该注意的是,WMM-AC规范不包含TCLA。当TCLAS不存在时,没有直接的方法来派生特定于流的属性,如PMIPv6中的流量选择器。在这种情况下,可以使用从上层协议(例如,SIP[10])中的信息导出IP流细节并将其与后续QoS请求相关联的功能。这里不再进一步描述,但它可以是应用层网关(ALG)或深度分组检查(DPI)中的功能。应注意,ALG或DPI可增加AP/MAG实现的复杂性并影响其可伸缩性。如果没有派生TCLA,则保留将应用于MN的所有流。这种情况下的参数映射如表2所示。

(2) If there are sufficient resources at the AP/WLC to satisfy the request, the MAG sends a PBU with QoS options, Operational Code ALLOCATE, and the Traffic Selector identifying the flow. The Traffic Selector is derived from the TCLAS to identify the flow requesting QoS. IEEE 802.11 QoS parameters in TSPEC are mapped to PMIPv6 parameters. The mapping of TCLAS to PMIPv6 is shown in Table 1. TSPEC parameter mapping is shown in Table 4.

(2) 如果AP/WLC处有足够的资源来满足请求,则MAG发送一个PBU,其中包含QoS选项、操作代码分配和识别流的流量选择器。流量选择器来自TCLA,用于识别请求QoS的流。TSPEC中的IEEE 802.11 QoS参数映射到PMIPv6参数。TCLA到PMIPv6的映射如表1所示。TSPEC参数映射如表4所示。

If TCLAS is not present (when WMM-AC is used), TCLAS may be derived from information in upper-layer protocols (as described in step 1) and populated in the Traffic Selector. If TCLAS cannot be derived, the Traffic Selector field is not included in the QoS options.

如果TCLA不存在(当使用WMM-AC时),则可以从上层协议(如步骤1所述)中的信息导出TCLA,并将其填充到流量选择器中。如果无法派生TCLA,则QoS选项中不包括流量选择器字段。

(3) The LMA obtains the authorized QoS for the flow and responds to the MAG with Operational Code set to RESPONSE. Mapping of PMIPv6 to IEEE 802.11 TCLAS is shown in Table 1, and mapping of TSPEC parameters is shown in Table 4.

(3) LMA获得流的授权QoS,并使用设置为响应的操作代码响应MAG。PMIPv6到IEEE 802.11 TCLA的映射如表1所示,TSPEC参数的映射如表4所示。

Reserved bandwidth for flows is calculated separately from the non-reserved session bandwidth. The Traffic Selector identifies the flow for which the QoS reservations are made.

流的保留带宽与非保留会话带宽分开计算。流量选择器标识为其进行QoS预留的流。

If the LMA offers downgraded QoS values to the MAG, it should send a PBU to the LMA with Operational Code set to DE-ALLOCATE. (The LMA would respond with PBA to confirm completion of the request.)

如果LMA向MAG提供降级QoS值,则应向LMA发送PBU,并将操作代码设置为去分配。(LMA将与PBA一起回复,以确认请求的完成。)

(4) The AP/MAG provisions the corresponding QoS and replies with ADDTS Response containing authorized QoS in TSPEC, the flow identification in TSPEC, and ResultCode set to SUCCESS.

(4) AP/MAG提供相应的QoS,并使用ADDTS响应(包含TSPEC中的授权QoS)、TSPEC中的流标识以及设置为SUCCESS的ResultCode进行回复。

The AP polices these flows according to the QoS provisioning.

AP根据QoS供应来管理这些流。

In step 3, if the LMA sends a downgraded QoS or a PBA message with status code CANNOT_MEET_QOS_SERVICE_REQUEST (179), then the AP should respond to the MN with ADDTS Response and ResultCode set as follows:

在步骤3中,如果LMA发送降级的QoS或PBA消息,状态代码为“无法满足QoS”或“服务”请求(179),则AP应使用ADDTS Response和ResultCode对MN进行响应,如下所示:

- for downgraded QoS from LMA, ResultCode is set to REJECTED_WITH_SUGGESTED_CHANGES. Downgraded QoS values from LMA are mapped to TSPEC as per Table 4. This is still a rejection, but the MN may revise the QoS to a lower level and repeat this sequence if the application can adapt.

- 对于来自LMA的降级QoS,ResultCode设置为REJECTED_,带有建议的_更改。根据表4,来自LMA的降级QoS值映射到TSPEC。这仍然是拒绝,但是如果应用程序能够适应,MN可以将QoS修改到较低的级别并重复该序列。

- if LMA cannot meet the QoS service request, ResultCode is set to TCLAS_RESOURCES_EXHAUSTED.

- 如果LMA无法满足QoS服务请求,则ResultCode设置为TCLAS\u RESOURCES\u Expensed。

Either REJECTED_WITH_SUGGESTED_CHANGES or TCLAS_RESOURCES_EXHAUSTED results in the rejection of the QoS reservation, but it does not cause the removal of the session itself.

被拒绝的\u带有\u建议的\u更改或TCLAS\u资源\u耗尽都会导致QoS保留被拒绝,但不会导致会话本身被删除。

3.1.2. MN-Initiated QoS De-allocation Request
3.1.2. MN发起的QoS取消分配请求

QoS resources reserved for a session are released on completion of the session. When the application session completes, the LMA or the MN may signal for the release of resources. In the use case shown in Figure 3, the MN initiates the release of QoS resources.

为会话保留的QoS资源在会话完成时释放。当应用会话完成时,LMA或MN可以发出释放资源的信号。在图3所示的用例中,MN启动QoS资源的释放。

                                 +-----------+
    +----+                       |+--+  +---+|             +-------+
    | MN |                       ||AP|  |MAG||             |  LMA  |
    +-+--+                       ++-++--+-+-++             +---+---+
      |                             |     |                    |
    +-------------------------------------------------------------+
    |         (0) Establishment of application session            |
    |              and reservation of QoS resources               |
    |                                                             |
    |                   (Session in progress)                     |
    |                                                             |
    |               Release of application session                |
    +-------------------------------------------------------------+
      |                             |     |                    |
      | DELTS Request (TS INFO)(1)  |     |                    |
      |---------------------------->|     |                    |
      |                             |---->|                    |
      |                             |<----|                    |
      | DELTS Response (TS INFO)(2) |     |                    |
      |<----------------------------|     |                    |
      |                             |     |PBU(QoS,DE-ALLOC)(3)|
      |                             |     |------------------->|Policy
      |                             |     |                    |<---->
      |                             |     |                    |Update
      |                             |     |PBA(QoS,RESPONSE)(4)|
      |                             |     |<-------------------|
      |                             |     |                    |
        
                                 +-----------+
    +----+                       |+--+  +---+|             +-------+
    | MN |                       ||AP|  |MAG||             |  LMA  |
    +-+--+                       ++-++--+-+-++             +---+---+
      |                             |     |                    |
    +-------------------------------------------------------------+
    |         (0) Establishment of application session            |
    |              and reservation of QoS resources               |
    |                                                             |
    |                   (Session in progress)                     |
    |                                                             |
    |               Release of application session                |
    +-------------------------------------------------------------+
      |                             |     |                    |
      | DELTS Request (TS INFO)(1)  |     |                    |
      |---------------------------->|     |                    |
      |                             |---->|                    |
      |                             |<----|                    |
      | DELTS Response (TS INFO)(2) |     |                    |
      |<----------------------------|     |                    |
      |                             |     |PBU(QoS,DE-ALLOC)(3)|
      |                             |     |------------------->|Policy
      |                             |     |                    |<---->
      |                             |     |                    |Update
      |                             |     |PBA(QoS,RESPONSE)(4)|
      |                             |     |<-------------------|
      |                             |     |                    |
        

Figure 3: MN-Initiated QoS Resource Release

图3:MN发起的QoS资源释放

(0) The MN establishes and reserves QoS resources. When the application session terminates, the MN prepares to release QoS resources.

(0) MN建立并保留QoS资源。当应用程序会话终止时,MN准备释放QoS资源。

(1) The MN releases its own internal resources and sends a DELTS Request to the AP with TS (Traffic Stream) INFO.

(1) MN释放其自己的内部资源,并向AP发送带有TS(流量流)信息的DELTS请求。

(2) The AP receives the DELTS request, releases local resources, and responds to the MN with a DELTS response.

(2) AP接收DELTS请求,释放本地资源,并用DELTS响应响应MN。

(3) The MAG initiates a PBU, with the Operational Code set to DE-ALLOCATE, and with the Traffic Selector constructed from TCLAS and PMIPv6 QoS parameters from TSPEC.

(3) MAG启动PBU,将操作代码设置为去分配,并使用由TCLAS和TSPEC的PMIPv6 QoS参数构造的流量选择器。

When TCLAS is not present, the MAG should de-allocate all flows with the same access category as indicated in the DELTS Request. In the typical case, if the client does not support TCLAS and only MN-initiated QoS Service requests are supported, then the MAG will have at most one QoS Service request per access category.

当TCLA不存在时,MAG应取消分配具有DELTS请求中指示的相同访问类别的所有流。在典型情况下,如果客户端不支持TCLAS,并且只支持MN发起的QoS服务请求,那么MAG将在每个访问类别中最多有一个QoS服务请求。

(4) LMA receives the PBU and releases local resources. The LMA then responds with a PBA.

(4) LMA接收PBU并释放本地资源。然后LMA以PBA响应。

It should be noted that steps 3 and 4 can proceed independently of the DELTS Response (step 2).

应该注意的是,步骤3和4可以独立于DELTS响应(步骤2)进行。

3.2. LMA-Initiated QoS Service Request
3.2. LMA发起的QoS服务请求
3.2.1. LMA-Initiated QoS Reservation Request
3.2.1. LMA发起的QoS保留请求

This section describes the case when the QoS service request is initiated by the LMA. For example, an application such as voice may request the network to initiate configuration of additional QoS policy as in [8], Section 7.4.2. In the current WLAN specifications, there is no standard-defined way for the AP to initiate a QoS service request to the MN. As a result, when the MAG receives a QoS request from the LMA, it does not have any standard mechanisms to initiate any QoS requests to the MN over the access network. Given this, the PMIPv6 QoS service requests and any potential WLAN service requests (such as described in Section 3.1) are handled asynchronously.

本节描述由LMA发起QoS服务请求的情况。例如,语音等应用程序可请求网络启动附加QoS策略的配置,如第7.4.2节[8]所述。在当前的WLAN规范中,AP没有标准定义的方式向MN发起QoS服务请求。结果,当MAG接收到来自LMA的QoS请求时,它没有任何标准机制来通过接入网络向MN发起任何QoS请求。因此,PMIPv6 QoS服务请求和任何潜在的WLAN服务请求(如第3.1节所述)都是异步处理的。

The PMIPv6 QoS service requests and WLAN QoS service request could still be coordinated to provide an end-to-end QoS. If the MAG receives an Update Notification (UPN) request from the LMA to reserve QoS resources for which it has no corresponding QoS request from the MN, the MAG may, in consultation with the AP, provision a policy that can grant a subsequent QoS request from the MN. If the MN initiates QoS procedures after the completion of PMIPv6 QoS procedures, the AP/ MAG can ensure consistency between the QoS resources in the access network and QoS resources between the MAG and LMA.

PMIPv6 QoS服务请求和WLAN QoS服务请求仍然可以协调以提供端到端QoS。如果MAG接收到来自LMA的更新通知(UPN)请求以保留其没有来自MN的相应QoS请求的QoS资源,则MAG可以与AP协商,提供可以从MN授予后续QoS请求的策略。如果MN在PMIPv6 QoS过程完成之后发起QoS过程,则AP/MAG可以确保接入网络中的QoS资源与MAG和LMA之间的QoS资源之间的一致性。

For example, if the MN is requesting a mean data rate of x Mbps, the AP and MAG can ensure that the rate can be supported on the network between MAG and LMA based on previous PMIPv6 QoS procedures. If the MN subsequently requests data rates of x Mbps or less, the AP can accept a request based on the earlier PMIPv6 QoS provisioning. For the case where there is a mismatch, i.e., the network does not

例如,如果MN正在请求x Mbps的平均数据速率,则AP和MAG可以确保基于先前的PMIPv6 QoS过程在MAG和LMA之间的网络上支持该速率。如果MN随后请求x Mbps或更小的数据速率,则AP可以接受基于先前PMIPv6 QoS供应的请求。对于存在不匹配的情况,即网络不匹配

support the x Mbps, then either the MAG should renegotiate the QoS resource and ask for increased QoS resources or the AP should reject the QoS request.

支持x Mbps,则MAG应重新协商QoS资源并请求增加QoS资源,或者AP应拒绝QoS请求。

3.2.2. Discussion on QoS Request Handling with IEEE 802.11aa
3.2.2. ieee802.11aa中QoS请求处理的探讨

The network-initiated QoS service request scenario poses some challenges outlined here. IEEE 802.11 does not provide any mechanisms for the AP to initiate a QoS request. As a result, the AP/MAG cannot explicitly make any reservations in response to a QoS reservation request made using UPN. IEEE 802.11aa [5] (which is an amendment to IEEE 802.11) has a mechanism that enables the AP to ask the client to reserve QoS for a traffic stream. It does this via the ADDTS Reserve Request. The ADDTS Reserve Request contains a TSPEC, an optional TCLAS, and a mandatory stream identifier. The specification does not describe how the AP would obtain such a stream identifier. As a result, there needs to be a new higher-layer protocol defined that is understood by the MN and AP and that provides a common stream identifier to both ends. Alternately, the IEEE 802.11aa specification could be modified to make the usage optional. When (or if) the stream identifier is made optional, the TCLAS can provide information about the traffic stream.

网络发起的QoS服务请求场景带来了一些挑战。IEEE 802.11不提供AP发起QoS请求的任何机制。结果,AP/MAG不能显式地响应使用UPN发出的QoS保留请求而进行任何保留。IEEE 802.11aa[5](是对IEEE 802.11的修订)具有一种机制,使AP能够请求客户端为业务流保留QoS。它通过ADDTS Reserve请求实现这一点。ADDTS Reserve请求包含一个TSPEC、一个可选的TCLAS和一个强制流标识符。该规范没有描述AP将如何获得这样的流标识符。因此,需要定义一个新的更高层协议,该协议由MN和AP理解,并向两端提供公共流标识符。或者,可以修改IEEE 802.11aa规范,使使用成为可选的。当(或如果)流标识符是可选的时,TCLAS可以提供关于业务流的信息。

Appendix A outlines a protocol sequence with PMIPv6 UPN / Update Notification Acknowledgement (UPA) if the above IEEE 802.11aa issues can be resolved.

如果上述IEEE 802.11aa问题能够得到解决,附录A概述了带有PMIPv6 UPN/更新通知确认(UPA)的协议序列。

3.2.3. LMA-Initiated QoS De-allocation Request
3.2.3. LMA发起的QoS解分配请求

QoS resources reserved for a session are released on completion of the session. When the application session completes, the LMA or the MN may signal for the release of resources. In this use case, the network initiates the release of QoS resources.

为会话保留的QoS资源在会话完成时释放。当应用会话完成时,LMA或MN可以发出释放资源的信号。在这个用例中,网络启动QoS资源的释放。

                                  +-----------+
    +----+                       |+--+  +---+|            +-------+
    | MN |                       ||AP|  |MAG||            |  LMA  |
    +-+--+                       ++-++--+-+-++            +---+---+
      |                             |     |                   |
    +-------------------------------------------------------------+
    |             Establishment of application session            |
    |              and reservation of QoS resources               |
    |                                                             |
    |                   (Session in progress)                     |
    |                                                             |
    |               Release of application session                |
    +-------------------------------------------------------------+
      |                             |     |                   | Policy
      |                             |     |                   |<------
      |                             |     |UPN(QoS,DE-ALLOC)  |
      |                             |     |<------------------|
      |                             |<----|        (1)        |
      |                             |---->|UPA(QoS,RESPONSE)  |
      |                             |     |------------------>|
      |                             |     |        (2)        |
      |                             |     |                   |
      | DELTS Request (TS INFO)(3)  |     |                   |
      |<----------------------------|     |                   |
      | DELTS Response (TS INFO)(4) |     |                   |
      |---------------------------->|     |                   |
      |                             |     |                   |
        
                                  +-----------+
    +----+                       |+--+  +---+|            +-------+
    | MN |                       ||AP|  |MAG||            |  LMA  |
    +-+--+                       ++-++--+-+-++            +---+---+
      |                             |     |                   |
    +-------------------------------------------------------------+
    |             Establishment of application session            |
    |              and reservation of QoS resources               |
    |                                                             |
    |                   (Session in progress)                     |
    |                                                             |
    |               Release of application session                |
    +-------------------------------------------------------------+
      |                             |     |                   | Policy
      |                             |     |                   |<------
      |                             |     |UPN(QoS,DE-ALLOC)  |
      |                             |     |<------------------|
      |                             |<----|        (1)        |
      |                             |---->|UPA(QoS,RESPONSE)  |
      |                             |     |------------------>|
      |                             |     |        (2)        |
      |                             |     |                   |
      | DELTS Request (TS INFO)(3)  |     |                   |
      |<----------------------------|     |                   |
      | DELTS Response (TS INFO)(4) |     |                   |
      |---------------------------->|     |                   |
      |                             |     |                   |
        

Figure 4: LMA-Initiated QoS Resource Release

图4:LMA发起的QoS资源释放

In the use case shown in Figure 4, the network initiates the release of QoS resources. When the application session terminates, the LMA receives notification of that event. The LMA releases local QoS resources associated with the flow and initiates signaling to release QoS resources in the network.

在图4所示的用例中,网络启动QoS资源的释放。当应用程序会话终止时,LMA接收该事件的通知。LMA释放与流相关联的本地QoS资源,并发起信令以释放网络中的QoS资源。

(1) The LMA sends a UPN with QoS options identifying the flow for which QoS resources are to be released and Operational Code set to DE-ALLOCATE. No additional LMA QoS parameters are sent.

(1) LMA发送具有QoS选项的UPN,该选项识别要释放QoS资源的流以及设置为取消分配的操作代码。不发送额外的LMA QoS参数。

(2) The MAG replies with a UPA confirming the acceptance and Operational Code set to RESPONSE.

(2) MAG回复UPA,确认接收和操作代码设置为响应。

(3) The AP/WLC (MAG) releases local QoS resources associated with the flow. The AP derives the corresponding access category from the Traffic Class (TC) field provided in the QoS option. In addition, if the AP supports TCLAS and the QoS option contains a Traffic Selector field, then the AP shall map the Traffic Selector into a TCLAS element. In the case where the AP does not support TCLAS (for example, an AP compliant with WMM-AC), then the AP shall only use the access category. The AP sends a DELTS Request with TS INFO identifying the reservation.

(3) AP/WLC(MAG)释放与流相关联的本地QoS资源。AP从QoS选项中提供的流量类别(TC)字段中导出相应的访问类别。此外,如果AP支持TCLAS且QoS选项包含流量选择器字段,则AP应将流量选择器映射到TCLAS元素中。如果AP不支持TCLA(例如,符合WMM-AC的AP),则AP只能使用访问类别。AP发送一个带有TS信息的DELTS请求,用于标识预订。

(4) The MN sends DELTS Response confirming release.

(4) MN发送确认释放的DELTS响应。

It should be noted that steps 3 and 4 can proceed independently of the UPA (step 2).

应注意,步骤3和4可以独立于UPA进行(步骤2)。

4. Mapping between IEEE 802.11 QoS and PMIPv6 QoS Parameters
4. IEEE 802.11 QoS和PMIPv6 QoS参数之间的映射
4.1. Connection Parameters
4.1. 连接参数

TSPEC in IEEE 802.11 is used to reserve QoS for a traffic stream (MN MAC, TS ID). The IEEE 802.11 QoS reservation is for IEEE 802.11 frames associated with an MN's MAC address.

IEEE 802.11中的TSPEC用于为业务流(MN MAC,TS ID)保留QoS。IEEE 802.11 QoS保留用于与MN的MAC地址相关联的IEEE 802.11帧。

The TCLAS element with Classifier 1 (TCP/UDP Parameters) is used to identify a PMIPv6 QoS flow. We should note that WMM-AC procedures do not support TCLAS. When TCLAS is present, a one-to-one mapping between the TCLAS-defined flow and the Traffic Selector is given below.

TCLAS元素和分类器1(TCP/UDP参数)用于标识PMIPv6 QoS流。我们应该注意,WMM-AC过程不支持TCLA。当存在TCLAS时,TCLAS定义的流和流量选择器之间的一对一映射如下所示。

QoS reservations in IEEE 802.11 are made for a traffic stream (identified in TCLAS) and correspond to PMIPv6 QoS session parameters (identified by the Traffic Selector). PMIPv6 QoS [1] specifies that when QoS-Traffic-Selector is included along with the per-session bandwidth attributes described in Section 4.3 below, the attributes apply at a per-session level.

IEEE 802.11中的QoS保留是针对业务流(在TCLAS中标识)进行的,并对应于PMIPv6 QoS会话参数(由业务选择器标识)。PMIPv6 QoS[1]规定,当QoS流量选择器与下面第4.3节中描述的每会话带宽属性一起包含时,这些属性将在每会话级别应用。

      +--------------------------------+----------------------------+
      |    MN <--> AP (IEEE 802.11)    |   MAG <--> LMA (PMIPv6)    |
      +--------------------------------+----------------------------+
      | (TCLAS Classifier 1)TCP/UDP IP | Traffic Selector (IP flow) |
      |   (TCLAS Classifier 1) DSCP    |     Traffic Class (TC)     |
      +--------------------------------+----------------------------+
        
      +--------------------------------+----------------------------+
      |    MN <--> AP (IEEE 802.11)    |   MAG <--> LMA (PMIPv6)    |
      +--------------------------------+----------------------------+
      | (TCLAS Classifier 1)TCP/UDP IP | Traffic Selector (IP flow) |
      |   (TCLAS Classifier 1) DSCP    |     Traffic Class (TC)     |
      +--------------------------------+----------------------------+
        

Table 1: IEEE 802.11 - PMIPv6 QoS Connection Mapping

表1:IEEE 802.11-PMIPv6 QoS连接映射

If the MN or AP is not able to convey flow parameters in TCLAS, the QoS reservation request in IEEE 802.11 is derived as shown in Table 2.

如果MN或AP不能在TCLAS中传输流参数,则IEEE802.11中的QoS保留请求导出如表2所示。

        +------------------------------+--------------------------+
        |       MN <--> AP (WMM)       | MAG <--> LMA (PMIPv6)    |
        +------------------------------+--------------------------+
        | (no IP flow parameter/TCLAS) | (a) applies to all flows |
        |                              | (b) derived out-of-band  |
        |                              |                          |
        |    User Priority (802.1D)    | Traffic Class (TC)       |
        |                              | (derived using Table 3)  |
        +------------------------------+--------------------------+
        
        +------------------------------+--------------------------+
        |       MN <--> AP (WMM)       | MAG <--> LMA (PMIPv6)    |
        +------------------------------+--------------------------+
        | (no IP flow parameter/TCLAS) | (a) applies to all flows |
        |                              | (b) derived out-of-band  |
        |                              |                          |
        |    User Priority (802.1D)    | Traffic Class (TC)       |
        |                              | (derived using Table 3)  |
        +------------------------------+--------------------------+
        

Table 2: WMM - PMIPv6 QoS Connection Mapping

表2:WMM-PMIPv6 QoS连接映射

When WMM [4] is used, and TCLAS is not present to specify IP flow, one of two options apply for the MAG - LMA (PMIPv6) segment:

当使用WMM[4]且不存在用于指定IP流的TCLA时,两个选项之一适用于MAG-LMA(PMIPv6)段:

(a) Bandwidth parameters described in Section 4.3 apply to all flows of the MN. This is not a preferred mode of operation if the LMA performs reservation for a single flow, e.g., a voice flow identified by an IP 5-tuple.

(a) 第4.3节中描述的带宽参数适用于MN的所有流。如果LMA对单个流(例如,由IP 5元组识别的语音流)执行保留,则这不是优选的操作模式。

(b) The IP flow for which the MN requests reservation is derived out-of-band. For example, the AP/MAG observes application-level signaling (e.g., SIP [10]) or session-level signaling (e.g., 3GPP WLCP (WLAN Control Protocol) [7]), associates subsequent ADDTS requests using heuristics, and then derives the IP flow / Traffic Selector field.

(b) MN请求保留从带外派生的IP流。例如,AP/MAG观察应用级信令(例如,SIP[10])或会话级信令(例如,3GPP WLCP(WLAN控制协议)[7]),使用试探法关联后续ADDTS请求,然后导出IP流/业务选择器字段。

4.2. QoS Class
4.2. 服务质量等级

Table 3 contains a mapping between access category (AC) and IEEE 802.1D User Priority (UP) tag in IEEE 802.11 frames, and DSCP in IP data packets. The table also provides the mapping between AC and DSCP for use in IEEE 802.11 TSPEC and PMIPv6 QoS (Traffic Class). Mapping of QCI to DSCP uses the tables in [6].

表3包含IEEE 802.11帧中的访问类别(AC)和IEEE 802.1D用户优先级(UP)标记与IP数据包中的DSCP之间的映射。该表还提供了在IEEE 802.11 TSPEC和PMIPv6 QoS(流量等级)中使用的AC和DSCP之间的映射。QCI到DSCP的映射使用了[6]中的表。

        +-----+------+-----------+---------+----------------------+
        | QCI | DSCP | 802.1D UP |    AC   | Example Services     |
        +-----+------+-----------+---------+----------------------+
        |  1  |  EF  |   6(VO)   | 3 AC_VO | conversational voice |
        |  2  |  EF  |   6(VO)   | 3 AC_VO | conversational video |
        |  3  |  EF  |   6(VO)   | 3 AC_VO | real-time gaming     |
        |  4  | AF41 |   5(VI)   | 2 AC_VI | buffered streaming   |
        |  5  | AF31 |   4(CL)   | 2 AC_VI | signaling            |
        |  6  | AF32 |   4(CL)   | 2 AC_VI | buffered streaming   |
        |  7  | AF21 |   3(EE)   | 0 AC_BE | interactive gaming   |
        |  8  | AF11 |   1(BE)   | 0 AC_BE | web access           |
        |  9  |  BE  |   0(BK)   | 1 AC_BK | email                |
        +-----+------+-----------+---------+----------------------+
        
        +-----+------+-----------+---------+----------------------+
        | QCI | DSCP | 802.1D UP |    AC   | Example Services     |
        +-----+------+-----------+---------+----------------------+
        |  1  |  EF  |   6(VO)   | 3 AC_VO | conversational voice |
        |  2  |  EF  |   6(VO)   | 3 AC_VO | conversational video |
        |  3  |  EF  |   6(VO)   | 3 AC_VO | real-time gaming     |
        |  4  | AF41 |   5(VI)   | 2 AC_VI | buffered streaming   |
        |  5  | AF31 |   4(CL)   | 2 AC_VI | signaling            |
        |  6  | AF32 |   4(CL)   | 2 AC_VI | buffered streaming   |
        |  7  | AF21 |   3(EE)   | 0 AC_BE | interactive gaming   |
        |  8  | AF11 |   1(BE)   | 0 AC_BE | web access           |
        |  9  |  BE  |   0(BK)   | 1 AC_BK | email                |
        +-----+------+-----------+---------+----------------------+
        

Table 3: QoS Mapping between QCI/DSCP, 802.1D UP, AC

表3:QCI/DSCP、802.1D以上、AC之间的QoS映射

The MN tags all data packets with DSCP and IEEE 802.1D UP corresponding to the application and the subscribed policy or authorization. The AP polices sessions and flows based on the configured QoS policy values for the MN.

MN使用DSCP和IEEE 802.1D UP标记所有数据包,对应于应用程序和订阅的策略或授权。AP根据为MN配置的QoS策略值对会话和流进行策略。

For QoS reservations, TSPEC uses WMM-AC values and PMIPv6 QoS uses corresponding DSCP values in Traffic Class (TC). IEEE 802.11 QoS Access Category AC_VO and AC_VI are used for QoS reservations. AC_BE and AC_BK should not be used in reservations.

对于QoS保留,TSPEC使用WMM-AC值,PMIPv6 QoS使用通信量类别(TC)中相应的DSCP值。IEEE 802.11 QoS接入类别AC_VO和AC_VI用于QoS预留。AC_BE和AC_BK不应用于预订。

When WMM-AC specifications that do not contain TCLAS are used, it is only possible to have one reservation per Traffic Class / access category. PMIPv6 QoS will not contain any flow-specific attributes like Traffic Selector.

当使用不包含TCLA的WMM-AC规范时,每个流量类别/访问类别只能有一个预订。PMIPv6 QoS将不包含任何特定于流的属性,如流量选择器。

4.3. Bandwidth
4.3. 带宽

Bandwidth parameters that need to be mapped between IEEE 802.11 and PMIPv6 QoS are shown in Table 4.

需要在IEEE 802.11和PMIPv6 QoS之间映射的带宽参数如表4所示。

          +-------------------------+---------------------------+
          | MN <--> AP(IEEE 802.11) | MAG <--> LMA (PMIPv6)     |
          +-------------------------+---------------------------+
          |    Mean Data Rate, DL   | Guaranteed-DL-Bit-Rate    |
          |    Mean Data Rate, UL   | Guaranteed-UL-Bit-Rate    |
          |    Peak Data Rate, DL   | Aggregate-Max-DL-Bit-Rate |
          |    Peak Data Rate, UL   | Aggregate-Max-UL-Bit-Rate |
          +-------------------------+---------------------------+
        
          +-------------------------+---------------------------+
          | MN <--> AP(IEEE 802.11) | MAG <--> LMA (PMIPv6)     |
          +-------------------------+---------------------------+
          |    Mean Data Rate, DL   | Guaranteed-DL-Bit-Rate    |
          |    Mean Data Rate, UL   | Guaranteed-UL-Bit-Rate    |
          |    Peak Data Rate, DL   | Aggregate-Max-DL-Bit-Rate |
          |    Peak Data Rate, UL   | Aggregate-Max-UL-Bit-Rate |
          +-------------------------+---------------------------+
        

Table 4: Bandwidth Parameters for Admission-Controlled Flows

表4:准入控制流的带宽参数

In PMIPv6 QoS [1], services using a sending rate smaller than or equal to the Guaranteed Bit Rate (GBR) can assume, in general, that congestion-related packet drops will not occur [8]. If the rate offered by the service exceeds this threshold, there are no guarantees provided. IEEE 802.11 radio networks do not offer such a guarantee, but [4] notes that the application (service) requirements are captured in TSPEC by the MSDU (MAC Service Data Unit) and Mean Data Rate. The TSPEC should contain Mean Data Rate, and it is recommended that it be mapped to the GBR parameters, Guaranteed-DL-Bit-Rate and Guaranteed-UL-Bit-Rate in PMIPv6 QoS [1].

在PMIPv6 QoS[1]中,使用小于或等于保证比特率(GBR)的发送速率的服务通常可以假定不会发生与拥塞相关的分组丢弃[8]。如果服务提供的费率超过此阈值,则不提供任何保证。IEEE 802.11无线网络不提供此类保证,但[4]指出,应用(服务)要求由MSDU(MAC服务数据单元)和平均数据速率在TSPEC中捕获。TSPEC应包含平均数据速率,建议将其映射到PMIPv6 QoS中的GBR参数、保证DL比特率和保证UL比特率[1]。

IEEE 802.11 TSPEC requests do not require all fields to be completed. [4] specifies a list of TSPEC parameters that are required in the specification. Peak Data Rate is not required in WMM; however, for MNs and APs that are capable of specifying the Peak Data Rate, it should be mapped to MBR (Maximum Bit Rate) in PMIPv6 QoS. The AP should use the MBR parameters Aggregate-Max-DL-Bit-Rate and Aggregate-Max-UL-Bit-Rate to police these flows on the backhaul segment between MAG and LMA.

IEEE 802.11 TSPEC请求不要求填写所有字段。[4] 指定规范中所需的TSPEC参数列表。WMM中不需要峰值数据速率;但是,对于能够指定峰值数据速率的MN和AP,应将其映射到PMIPv6 QoS中的MBR(最大比特率)。AP应使用MBR参数“聚合最大DL比特率”和“聚合最大UL比特率”来监控MAG和LMA之间回程段上的这些流。

During the QoS reservation procedure, if the MN requests Mean Data Rate, or Peak Data Rate in excess of values authorized in PMIPv6 QoS, the AP should deny the request in an ADDTS response. The AP may set the reject cause code to REJECTED_WITH_SUGGESTED_CHANGES and send a revised TSPEC with Mean Data Rate and Peak Data Rate set to acceptable GBR and MBR, respectively, in PMIPv6 QoS.

在QoS保留过程中,如果MN请求的平均数据速率或峰值数据速率超过PMIPv6 QoS中授权的值,则AP应在ADDTS响应中拒绝该请求。AP可以在PMIPv6 QoS中将拒绝原因代码设置为带有建议的_更改的拒绝_,并在平均数据速率和峰值数据速率分别设置为可接受的GBR和MBR的情况下发送修改后的TSPEC。

5. Security Considerations
5. 安全考虑

This document describes mapping of PMIPv6 QoS parameters to IEEE 802.11 QoS parameters. Thus, the security in the WLAN and PMIPv6 signaling segments and the functional entities that map the two protocols need to be considered. IEEE 802.11 [3] provides the means to secure management frames that are used for ADDTS and DELTS. The PMIPv6 specification [9] recommends using IPsec and IKEv2 to secure protocol messages. The security of the node(s) that implement the QoS mapping functionality should be considered in actual deployments.

本文档描述PMIPv6 QoS参数到IEEE 802.11 QoS参数的映射。因此,需要考虑WLAN和PMIPv6信令段中的安全性以及映射这两个协议的功能实体。IEEE 802.11[3]提供了保护用于ADDT和DELT的管理帧的方法。PMIPv6规范[9]建议使用IPsec和IKEv2保护协议消息。在实际部署中应考虑实现QoS映射功能的节点的安全性。

The QoS mappings themselves do not introduce additional security concerns.

QoS映射本身不会带来额外的安全问题。

6. References
6. 工具书类
6.1. Normative References
6.1. 规范性引用文件

[1] Liebsch, M., Seite, P., Yokota, H., Korhonen, J., and S. Gundavelli, "Quality-of-Service Option for Proxy Mobile IPv6", RFC 7222, DOI 10.17487/RFC7222, May 2014, <http://www.rfc-editor.org/info/rfc7222>.

[1] Liebsch,M.,Seite,P.,Yokota,H.,Korhonen,J.,和S.Gundavelli,“代理移动IPv6的服务质量选项”,RFC 7222,DOI 10.17487/RFC7222,2014年5月<http://www.rfc-editor.org/info/rfc7222>.

[2] Krishnan, S., Gundavelli, S., Liebsch, M., Yokota, H., and J. Korhonen, "Update Notifications for Proxy Mobile IPv6", RFC 7077, DOI 10.17487/RFC7077, November 2013, <http://www.rfc-editor.org/info/rfc7077>.

[2] Krishnan,S.,Gundavelli,S.,Liebsch,M.,Yokota,H.,和J.Korhonen,“代理移动IPv6的更新通知”,RFC 7077,DOI 10.17487/RFC7077,2013年11月<http://www.rfc-editor.org/info/rfc7077>.

6.2. Informative References
6.2. 资料性引用

[3] IEEE, "IEEE Standard for Information Technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE Standard 802.11.

[3] IEEE,“IEEE信息技术标准-系统间电信和信息交换-局域网和城域网-特定要求第11部分:无线LAN介质访问控制(MAC)和物理层(PHY)规范”,IEEE标准802.11。

[4] Wi-Fi Alliance, "Wi-Fi Multimedia Technical Specification (with WMM-Power Save and WMM-Admission Control)", Version 1.2.0, May 2012.

[4] Wi-Fi联盟,“Wi-Fi多媒体技术规范(具有WMM节能和WMM准入控制)”,版本1.2.0,2012年5月。

[5] IEEE, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, Amendment 2: MAC Enhancements for Robust Audio Video Streaming", IEEE 802.11aa.

[5] IEEE,“无线LAN媒体访问控制(MAC)和物理层(PHY)规范,修改件2:用于强健音频视频流的MAC增强”,IEEE 802.11aa。

[6] 3GPP, "Guidelines for IPX Provider networks (Previously Inter-Service Provider IP Backbone Guidelines)", GSMA Official Document IR.34 v11.0, November 2014, <http://www.gsma.com/newsroom/wp-content/uploads/ IR.34-v11.0.pdf>.

[6] 3GPP,“IPX提供商网络指南(之前的服务提供商IP主干网指南)”,GSMA官方文件IR.34 v11.0,2014年11月<http://www.gsma.com/newsroom/wp-content/uploads/ IR.34-v11.0.pdf>。

[7] 3GPP, "Technical Specification Group Core Network and Services; Wireless LAN control plane protocols for trusted WLAN access to EPC; Stage 3 (Release 12)", 3GPP TS 23.244 12.1.0, December 2014, <http://www.3gpp.org/ftp/specs/archive/24_series/24.244/>.

[7] 3GPP,“技术规范组核心网络和服务;EPC受信任WLAN访问的无线LAN控制平面协议;第3阶段(第12版)”,3GPP TS 23.244 12.1.012014年12月<http://www.3gpp.org/ftp/specs/archive/24_series/24.244/>.

[8] 3GPP, "Technical Specification Group Services and System Aspects; Policy and Charging Control Architecture (Release 13)", 3GPP TS 23.203 13.2.0, December 2014, <http://www.3gpp.org/ftp/specs/archive/23_series/23.203/>.

[8] 3GPP,“技术规范组服务和系统方面;策略和计费控制体系结构(第13版)”,3GPP TS 23.203 13.2.0,2014年12月<http://www.3gpp.org/ftp/specs/archive/23_series/23.203/>.

[9] Gundavelli, S., Ed., Leung, K., Devarapalli, V., Chowdhury, K., and B. Patil, "Proxy Mobile IPv6", RFC 5213, DOI 10.17487/RFC5213, August 2008, <http://www.rfc-editor.org/info/rfc5213>.

[9] Gundavelli,S.,Ed.,Leung,K.,Devarapalli,V.,Chowdhury,K.,和B.Patil,“代理移动IPv6”,RFC 5213,DOI 10.17487/RFC5213,2008年8月<http://www.rfc-editor.org/info/rfc5213>.

[10] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, DOI 10.17487/RFC3261, June 2002, <http://www.rfc-editor.org/info/rfc3261>.

[10] Rosenberg,J.,Schulzrinne,H.,Camarillo,G.,Johnston,A.,Peterson,J.,Sparks,R.,Handley,M.,和E.Schooler,“SIP:会话启动协议”,RFC 3261,DOI 10.17487/RFC3261,2002年6月<http://www.rfc-editor.org/info/rfc3261>.

Appendix A. LMA-Initiated QoS Service Flow with IEEE 802.11aa
附录A.使用IEEE 802.11aa的LMA发起的QoS服务流
                              +-----------+
    +----+                    |+--+  +---+|           +-------+
    | MN |                    ||AP|  |MAG||           |  LMA  |
    +-+--+                    ++-++--+-+-++           +---+---+
      |                          |     |                  |
    +----------------------------------------------------------------+
    |         (0) establish session with mobile network              |
    +----------------------------------------------------------------+
      |                          |     |                  |
      |                          |     |                  | Policy
      |                          |     |                  |<----------
      |                          |     |UPN(QoS opt(2)    | Update(1)
      | ADDTS Reserve Request    |     |<-----------------|
      |      (TCLAS, TSPEC)(3)   |<----|                  |
      |<-------------------------|     |                  |
      | ADDTS Reserve Response   |     |                  |
      |      (TCLAS, TSPEC)(4)   |     |                  |
      |------------------------->|     |                  |
      |                          |---->|UPA(QoS opt)(5)   |
      |                          |     |----------------->|
      |                          |     |                  |
        
                              +-----------+
    +----+                    |+--+  +---+|           +-------+
    | MN |                    ||AP|  |MAG||           |  LMA  |
    +-+--+                    ++-++--+-+-++           +---+---+
      |                          |     |                  |
    +----------------------------------------------------------------+
    |         (0) establish session with mobile network              |
    +----------------------------------------------------------------+
      |                          |     |                  |
      |                          |     |                  | Policy
      |                          |     |                  |<----------
      |                          |     |UPN(QoS opt(2)    | Update(1)
      | ADDTS Reserve Request    |     |<-----------------|
      |      (TCLAS, TSPEC)(3)   |<----|                  |
      |<-------------------------|     |                  |
      | ADDTS Reserve Response   |     |                  |
      |      (TCLAS, TSPEC)(4)   |     |                  |
      |------------------------->|     |                  |
      |                          |---->|UPA(QoS opt)(5)   |
      |                          |     |----------------->|
      |                          |     |                  |
        

Figure 5: LMA-Initiated QoS Service Request with 802.11aa

图5:802.11aa下LMA发起的QoS服务请求

In the use case shown in Figure 5, the LMA initiates the QoS service request and IEEE 802.11aa is used to set up the QoS reservation in the Wi-Fi segment.

在图5所示的用例中,LMA发起QoS服务请求,IEEE 802.11aa用于在Wi-Fi段中设置QoS保留。

(0) The MN sets up a best-effort session. This allows the MN to perform application-level signaling and setup.

(0) MN建立了一个尽力而为的会话。这允许MN执行应用程序级信令和设置。

(1) The policy server sends a QoS reservation request to the LMA. This is usually sent in response to an application that requests the policy server for higher QoS for some of its flows.

(1) 策略服务器向LMA发送QoS保留请求。这通常是针对请求策略服务器为其某些流提供更高QoS的应用程序发送的。

The LMA reserves resources for the flow requested.

LMA为请求的流量保留资源。

(2) The LMA sends a PMIPv6 UPN (Update Notification) [2], as outlined in Section 3.2.1, to the MAG with Notification Reason set to QOS_SERVICE_REQUEST and Acknowledgement Requested flag set to 1. The Operational Code in the QoS option is set to ALLOCATE, and the Traffic Selector identifies the flow for QoS.

(2) LMA向MAG发送PMIPv6 UPN(更新通知)[2],如第3.2.1节所述,通知原因设置为QOS_服务_请求,确认请求标志设置为1。QoS选项中的操作代码设置为ALLOCATE,并且流量选择器标识QoS流。

The LMA QoS parameters include Guaranteed-DL-Bit-Rate/Guaranteed-UL-Bit-Rate and Aggregate-Max-DL-Bit-Rate/Aggregate-Max-UL-Bit-Rate for the flow. The reserved bandwidth for flows is calculated separately from the non-reserved session bandwidth.

LMA QoS参数包括流的保证DL比特率/保证UL比特率和聚合最大DL比特率/聚合最大UL比特率。流的保留带宽与非保留会话带宽分开计算。

(3) If there are sufficient resources to satisfy the request, the AP/ MAG sends an ADDTS Reserve Request (IEEE 802.11aa) specifying the QoS reserved for the traffic stream, including the TSPEC and TCLAS elements mapped from the PMIPv6 QoS Traffic Selector to identify the flow.

(3) 如果有足够的资源来满足该请求,AP/MAG发送ADDTS Reserve请求(IEEE 802.11aa),指定为业务流保留的QoS,包括从PMIPv6 QoS业务选择器映射的TSPEC和TCLAS元素,以识别该流。

PMIPv6 parameters are mapped to TCLAS (Table 1) and TSPEC (Table 4). If there are insufficient resources at the AP/WLC, the MAG will not send an ADDTS message and will continue the processing of step 5.

PMIPv6参数映射到TCLA(表1)和TSPEC(表4)。如果AP/WLC没有足够的资源,MAG将不会发送ADDTS消息,并将继续步骤5的处理。

The higher-level stream identifier in IEEE 802.11aa should be encoded as discussed in Section 3.2.2.

IEEE 802.11aa中的高级流标识符应按照第3.2.2节中的讨论进行编码。

(4) MN accepts the QoS reserved in the network and replies with ADDTS Reserve Response.

(4) MN接受网络中保留的QoS,并使用ADDTS Reserve Response进行响应。

(5) The MAG (AP/WLC) replies with a UPA confirming the acceptance of QoS options and Operational Code set to RESPONSE. The AP/WLC polices flows based on the new QoS.

(5) MAG(AP/WLC)回复UPA,确认接受QoS选项和设置为响应的操作代码。AP/WLC基于新的QoS策略流。

If there are insufficient resources at the AP in step 3, the MAG sends a response with UPA status code set to CANNOT_MEET_QOS_SERVICE_REQUEST (130).

如果在步骤3中AP处的资源不足,则MAG发送UPA状态代码设置为无法满足QOS服务请求的响应(130)。

Acknowledgements

致谢

The authors thank the NETEXT Working Group for the valuable feedback to different versions of this specification. In particular, the authors wish to thank Sri Gundavelli, Georgios Karagianis, Rajeev Koodli, Kent Leung, Marco Liebsch, Basavaraj Patil, Pierrick Seite, and Hidetoshi Yokota for their suggestions and valuable input. The authors also thank George Calcev, Mirko Schramm, Mazin Shalash, and Marco Spini for detailed input on parameters and scheduling in IEEE 802.11 and 3GPP radio networks.

作者感谢NETEXT工作组对本规范不同版本的宝贵反馈。特别是,作者要感谢Sri Gundavelli、Georgios Karagianis、Rajeev Koodli、Kent Leung、Marco Liebsch、Basavaraj Patil、Pierrick Seite和Hidetoshi Yokota的建议和宝贵意见。作者还感谢George Calcev、Mirko Schramm、Mazin Shalash和Marco Spini对IEEE 802.11和3GPP无线网络中的参数和调度的详细输入。

Authors' Addresses

作者地址

John Kaippallimalil Huawei 5340 Legacy Dr., Suite 175 Plano, TX 75024 United States

John Kaippallimalil华为5340 Legacy Dr.,美国德克萨斯州普莱诺175号套房,邮编75024

   EMail: john.kaippallimalil@huawei.com
        
   EMail: john.kaippallimalil@huawei.com
        

Rajesh Pazhyannur Cisco 170 West Tasman Drive San Jose, CA 95134 United States

美国加利福尼亚州圣何塞西塔斯曼大道170号拉杰什·帕兹扬努尔思科公司,邮编95134

   EMail: rpazhyan@cisco.com
        
   EMail: rpazhyan@cisco.com
        

Parviz Yegani Juniper 1194 North Mathilda Ave. Sunnyvale, CA 94089-1206 United States

美国加利福尼亚州桑尼维尔北马蒂尔达大道1194号帕维兹·耶加尼·朱尼珀,邮编94089-1206

   EMail: pyegani@juniper.net
        
   EMail: pyegani@juniper.net