Internet Engineering Task Force (IETF) S. Giacalone Request for Comments: 7471 Unaffiliated Category: Standards Track D. Ward ISSN: 2070-1721 Cisco Systems J. Drake A. Atlas Juniper Networks S. Previdi Cisco Systems March 2015
Internet Engineering Task Force (IETF) S. Giacalone Request for Comments: 7471 Unaffiliated Category: Standards Track D. Ward ISSN: 2070-1721 Cisco Systems J. Drake A. Atlas Juniper Networks S. Previdi Cisco Systems March 2015
OSPF Traffic Engineering (TE) Metric Extensions
OSPF流量工程(TE)度量扩展
Abstract
摘要
In certain networks, such as, but not limited to, financial information networks (e.g., stock market data providers), network performance information (e.g., link propagation delay) is becoming critical to data path selection.
在某些网络中,例如但不限于金融信息网络(例如股票市场数据提供商),网络性能信息(例如链路传播延迟)对于数据路径选择变得至关重要。
This document describes common extensions to RFC 3630 "Traffic Engineering (TE) Extensions to OSPF Version 2" and RFC 5329 "Traffic Engineering Extensions to OSPF Version 3" to enable network performance information to be distributed in a scalable fashion. The information distributed using OSPF TE Metric Extensions can then be used to make path selection decisions based on network performance.
本文档描述了RFC 3630“OSPF版本2的流量工程(TE)扩展”和RFC 5329“OSPF版本3的流量工程扩展”的常见扩展,以使网络性能信息能够以可扩展的方式分发。然后,使用OSPF TE度量扩展分发的信息可用于根据网络性能做出路径选择决策。
Note that this document only covers the mechanisms by which network performance information is distributed. The mechanisms for measuring network performance information or using that information, once distributed, are outside the scope of this document.
请注意,本文档仅介绍分发网络性能信息的机制。测量网络性能信息或使用该信息的机制(一旦发布)不在本文件范围内。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7471.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7471.
Copyright Notice
版权公告
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2015 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................3 2. Conventions Used in This Document ...............................4 3. TE Metric Extensions to OSPF TE .................................4 4. Sub-TLV Details .................................................6 4.1. Unidirectional Link Delay Sub-TLV ..........................6 4.1.1. Type ................................................6 4.1.2. Length ..............................................6 4.1.3. Anomalous (A) Bit ...................................7 4.1.4. Reserved ............................................7 4.1.5. Delay Value .........................................7 4.2. Min/Max Unidirectional Link Delay Sub-TLV ..................7 4.2.1. Type ................................................7 4.2.2. Length ..............................................7 4.2.3. Anomalous (A) Bit ...................................8 4.2.4. Reserved ............................................8 4.2.5. Min Delay ...........................................8 4.2.6. Reserved ............................................8 4.2.7. Max Delay ...........................................8 4.3. Unidirectional Delay Variation Sub-TLV .....................9 4.3.1. Type ................................................9 4.3.2. Length ..............................................9 4.3.3. Reserved ............................................9 4.3.4. Delay Variation .....................................9 4.4. Unidirectional Link Loss Sub-TLV ...........................9 4.4.1. Type ...............................................10 4.4.2. Length .............................................10 4.4.3. Anomalous (A) Bit ..................................10 4.4.4. Reserved ...........................................10 4.4.5. Link Loss ..........................................10
1. Introduction ....................................................3 2. Conventions Used in This Document ...............................4 3. TE Metric Extensions to OSPF TE .................................4 4. Sub-TLV Details .................................................6 4.1. Unidirectional Link Delay Sub-TLV ..........................6 4.1.1. Type ................................................6 4.1.2. Length ..............................................6 4.1.3. Anomalous (A) Bit ...................................7 4.1.4. Reserved ............................................7 4.1.5. Delay Value .........................................7 4.2. Min/Max Unidirectional Link Delay Sub-TLV ..................7 4.2.1. Type ................................................7 4.2.2. Length ..............................................7 4.2.3. Anomalous (A) Bit ...................................8 4.2.4. Reserved ............................................8 4.2.5. Min Delay ...........................................8 4.2.6. Reserved ............................................8 4.2.7. Max Delay ...........................................8 4.3. Unidirectional Delay Variation Sub-TLV .....................9 4.3.1. Type ................................................9 4.3.2. Length ..............................................9 4.3.3. Reserved ............................................9 4.3.4. Delay Variation .....................................9 4.4. Unidirectional Link Loss Sub-TLV ...........................9 4.4.1. Type ...............................................10 4.4.2. Length .............................................10 4.4.3. Anomalous (A) Bit ..................................10 4.4.4. Reserved ...........................................10 4.4.5. Link Loss ..........................................10
4.5. Unidirectional Residual Bandwidth Sub-TLV .................10 4.5.1. Type ...............................................11 4.5.2. Length .............................................11 4.5.3. Residual Bandwidth .................................11 4.6. Unidirectional Available Bandwidth Sub-TLV ................11 4.6.1. Type ...............................................12 4.6.2. Length .............................................12 4.6.3. Available Bandwidth ................................12 4.7. Unidirectional Utilized Bandwidth Sub-TLV .................12 4.7.1. Type ...............................................12 4.7.2. Length .............................................13 4.7.3. Utilized Bandwidth .................................13 5. Announcement Thresholds and Filters ............................13 6. Announcement Suppression .......................................14 7. Network Stability and Announcement Periodicity .................14 8. Enabling and Disabling Sub-TLVs ................................15 9. Static Metric Override .........................................15 10. Compatibility .................................................15 11. Security Considerations .......................................15 12. IANA Considerations ...........................................16 13. References ....................................................16 13.1. Normative References .....................................16 13.2. Informative References ...................................17 Acknowledgments ...................................................18 Authors' Addresses ................................................19
4.5. Unidirectional Residual Bandwidth Sub-TLV .................10 4.5.1. Type ...............................................11 4.5.2. Length .............................................11 4.5.3. Residual Bandwidth .................................11 4.6. Unidirectional Available Bandwidth Sub-TLV ................11 4.6.1. Type ...............................................12 4.6.2. Length .............................................12 4.6.3. Available Bandwidth ................................12 4.7. Unidirectional Utilized Bandwidth Sub-TLV .................12 4.7.1. Type ...............................................12 4.7.2. Length .............................................13 4.7.3. Utilized Bandwidth .................................13 5. Announcement Thresholds and Filters ............................13 6. Announcement Suppression .......................................14 7. Network Stability and Announcement Periodicity .................14 8. Enabling and Disabling Sub-TLVs ................................15 9. Static Metric Override .........................................15 10. Compatibility .................................................15 11. Security Considerations .......................................15 12. IANA Considerations ...........................................16 13. References ....................................................16 13.1. Normative References .....................................16 13.2. Informative References ...................................17 Acknowledgments ...................................................18 Authors' Addresses ................................................19
In certain networks, such as, but not limited to, financial information networks (e.g., stock market data providers), network performance information (e.g., link propagation delay) is becoming as critical to data path selection as other metrics.
在某些网络中,例如但不限于金融信息网络(例如,股票市场数据提供商),网络性能信息(例如,链路传播延迟)对数据路径选择的重要性与其他指标一样。
Because of this, using metrics such as hop count or cost as routing metrics is becoming only tangentially important. Rather, it would be beneficial to be able to make path selection decisions based on network performance information (such as link propagation delay) in a cost-effective and scalable way.
因此,使用跃点计数或成本等指标作为路由指标变得非常重要。相反,能够基于网络性能信息(例如链路传播延迟)以经济高效且可扩展的方式做出路径选择决策将是有益的。
This document describes extensions to OSPFv2 and OSPFv3 TE (hereafter called "OSPF TE Metric Extensions"), that can be used to distribute network performance information (viz link propagation delay, delay variation, link loss, residual bandwidth, available bandwidth, and utilized bandwidth).
本文档描述了OSPFv2和OSPFv3 TE的扩展(以下称为“OSPF TE度量扩展”),可用于分发网络性能信息(即链路传播延迟、延迟变化、链路损耗、剩余带宽、可用带宽和利用带宽)。
The data distributed by OSPF TE Metric Extensions is meant to be used as part of the operation of the routing protocol (e.g., by replacing cost with link propagation delay or considering bandwidth as well as
通过OSPF TE度量扩展分发的数据旨在用作路由协议操作的一部分(例如,通过用链路传播延迟替换成本或考虑带宽以及
cost), by enhancing Constrained Shortest Path First (CSPF), or for use by a PCE [RFC4655] or an Application-Layer Traffic Optimization (ALTO) server [RFC7285]. With respect to CSPF, the data distributed by OSPF TE Metric Extensions can be used to set up, fail over, and fail back data paths using protocols such as RSVP-TE [RFC3209].
成本),通过增强受限最短路径优先(CSPF),或供PCE[RFC4655]或应用层流量优化(ALTO)服务器[RFC7285]使用。对于CSPF,OSPF TE度量扩展分发的数据可用于使用诸如RSVP-TE[RFC3209]等协议建立、故障转移和故障回复数据路径。
Note that the mechanisms described in this document only distribute network performance information. The methods for measuring that information or acting on it once it is distributed are outside the scope of this document. A method for measuring loss and delay in an MPLS network is described in [RFC6374].
请注意,本文档中描述的机制仅分发网络性能信息。测量该信息或在信息发布后对其采取行动的方法不在本文件范围内。[RFC6374]中描述了测量MPLS网络中的损耗和延迟的方法。
While this document does not specify the method for measuring network performance information, any measurement of link propagation delay SHOULD NOT vary significantly based upon the offered traffic load and, hence, SHOULD NOT include queuing delays. For a forwarding adjacency (FA) [RFC4206], care must be taken that measurement of the link propagation delay avoids significant queuing delay; this can be accomplished in a variety of ways, e.g., measuring with a traffic class that experiences minimal queuing or summing the measured link propagation delay of the links on the FA's path.
虽然本文件未规定测量网络性能信息的方法,但链路传播延迟的任何测量不应因提供的流量负载而发生显著变化,因此不应包括排队延迟。对于转发邻接(FA)[RFC4206],必须注意链路传播延迟的测量避免显著的排队延迟;这可以通过多种方式实现,例如,使用经历最小排队的业务类别进行测量,或将FA路径上链路的测量链路传播延迟相加。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。
In this document, these words should convey that interpretation only when in ALL CAPS. Lowercase uses of these words are not to be interpreted as carrying this significance.
在本文件中,只有在所有大写字母中,这些词语才应传达这种解释。这些词的小写用法不应被解释为具有这种意义。
This document defines new OSPF TE sub-TLVs that are used to distribute network performance information. The extensions in this document build on the ones provided in OSPFv2 TE [RFC3630] and OSPFv3 TE [RFC5329].
本文档定义了用于分发网络性能信息的新OSPF TE子TLV。本文档中的扩展基于OSPFv2 TE[RFC3630]和OSPFv3 TE[RFC5329]中提供的扩展。
OSPFv2 TE Link State Advertisements (LSAs) [RFC3630] are opaque LSAs [RFC5250] with area flooding scope while OSPFv3 Intra-Area-TE-LSAs have their own LSA type, also with area flooding scope; both consist of a single TLV with one or more nested sub-TLVs. The Link TLV is common to both and describes the characteristics of a link between OSPF neighbors.
OSPFv2 TE链路状态播发(LSA)[RFC3630]是不透明的LSA[RFC5250],具有区域泛洪范围,而OSPFv3区域内TE LSA具有自己的LSA类型,也具有区域泛洪范围;两者都由一个TLV和一个或多个嵌套子TLV组成。链路TLV对两者都是通用的,它描述了OSPF邻居之间链路的特性。
This document defines several additional sub-TLVs for the Link TLV:
本文件为链路TLV定义了几个附加子TLV:
Type Length Value
类型长度值
27 4 Unidirectional Link Delay
27.4单向链路延迟
28 8 Min/Max Unidirectional Link Delay
28 8最小/最大单向链路延迟
29 4 Unidirectional Delay Variation
29.4单向延迟变化
30 4 Unidirectional Link Loss
304单向链路损耗
31 4 Unidirectional Residual Bandwidth
314单向剩余带宽
32 4 Unidirectional Available Bandwidth
32.4单向可用带宽
33 4 Unidirectional Utilized Bandwidth
33.4单向利用带宽
As can be seen in the list above, the sub-TLVs described in this document carry different types of network performance information. Many (but not all) of the sub-TLVs include a bit called the Anomalous (or A) bit. When the A bit is clear (or when the sub-TLV does not include an A bit), the sub-TLV describes steady state link performance. This information could conceivably be used to construct a steady state performance topology for initial tunnel path computation, or to verify alternative failover paths.
从上面的列表中可以看出,本文档中描述的子TLV携带不同类型的网络性能信息。许多(但不是全部)子TLV包括一个称为异常(或a)位的位。当A位清除时(或当子TLV不包括A位时),子TLV描述稳态链路性能。可以想象,该信息可用于构建用于初始隧道路径计算的稳态性能拓扑,或用于验证替代故障切换路径。
When network performance violates configurable link-local thresholds a sub-TLV with the A bit set is advertised. These sub-TLVs could be used by the receiving node to determine whether to move traffic to a backup path or whether to calculate an entirely new path. From an MPLS perspective, the intent of the A bit is to permit LSP ingress nodes to:
当网络性能违反可配置的链路本地阈值时,将公布一个具有位集的子TLV。接收节点可以使用这些子TLV来确定是将通信量移动到备份路径,还是计算一个全新的路径。从MPLS的角度来看,比特的目的是允许LSP入口节点:
A) Determine whether the link referenced in the sub-TLV affects any of the LSPs for which it is ingress. If there are, then:
A) 确定子TLV中引用的链路是否影响其正在进入的任何LSP。如果有,则:
B) The node determines whether those LSPs still meet end-to-end performance objectives. If not, then:
B) 节点确定这些LSP是否仍然满足端到端性能目标。若否,则:
C) The node could then conceivably move affected traffic to a pre-established protection LSP or establish a new LSP and place the traffic in it.
C) 然后,该节点可以想象地将受影响的业务移动到预先建立的保护LSP,或者建立新的LSP并将业务放入其中。
If link performance then improves beyond a configurable minimum value (reuse threshold), that sub-TLV can be re-advertised with the Anomalous bit cleared. In this case, a receiving node can conceivably do whatever re-optimization (or failback) it wishes (including nothing).
若链路性能随后改善超过可配置的最小值(重用阈值),则该子TLV可以在清除异常位的情况下重新公布。在这种情况下,接收节点可以按照自己的意愿进行任何重新优化(或故障回复)(不包括任何内容)。
The A bit was intentionally omitted from some sub-TLVs to help mitigate oscillations. See Section 7.1 for more information.
一些子TLV故意省略了A位,以帮助缓解振荡。更多信息请参见第7.1节。
Link delay, delay variation, and link loss MUST be encoded as integers. Consistent with existing OSPF TE specifications [RFC3630], residual, available, and utilized bandwidth MUST be encoded in IEEE single precision floating point [IEEE754]. Link delay and delay variation MUST be in units of microseconds, link loss MUST be a percentage, and bandwidth MUST be in units of bytes per second. All values (except residual bandwidth) MUST be calculated as rolling averages where the averaging period MUST be a configurable period of time. See Section 5 for more information.
链路延迟、延迟变化和链路丢失必须编码为整数。与现有OSPF TE规范[RFC3630]一致,剩余、可用和利用的带宽必须用IEEE单精度浮点[IEEE754]编码。链路延迟和延迟变化必须以微秒为单位,链路丢失必须以百分比为单位,带宽必须以每秒字节为单位。所有值(剩余带宽除外)必须计算为滚动平均值,其中平均周期必须是可配置的时间周期。更多信息请参见第5节。
This sub-TLV advertises the average link delay between two directly connected OSPF neighbors. The delay advertised by this sub-TLV MUST be the delay from the advertising node to its neighbor (i.e., the forward path delay). The format of this sub-TLV is shown in the following diagram:
此子TLV播发两个直接连接的OSPF邻居之间的平均链路延迟。此子TLV播发的延迟必须是从播发节点到其邻居的延迟(即,前向路径延迟)。该子TLV的格式如下图所示:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 27 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |A| RESERVED | Delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 27 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |A| RESERVED | Delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This sub-TLV has a type of 27.
该子TLV的类型为27。
The length is 4.
长度是4。
This field represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.
此字段表示异常(A)位。当此参数的测量值超过其配置的最大阈值时,将设置A位。当测量值低于其配置的重用阈值时,A位被清除。如果A位清除,则子TLV表示稳态链路性能。
This field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.
此字段保留供将来使用。发送时必须将其设置为0,接收时必须忽略。
This 24-bit field carries the average link delay over a configurable interval in microseconds, encoded as an integer value. When set to the maximum value 16,777,215 (16.777215 sec), then the delay is at least that value, and it may be larger.
此24位字段以微秒为单位携带可配置间隔内的平均链路延迟,编码为整数值。当设置为最大值16777215(16.777215秒)时,延迟至少为该值,并且可能更大。
This sub-TLV advertises the minimum and maximum delay values between two directly connected OSPF neighbors. The delay advertised by this sub-TLV MUST be the delay from the advertising node to its neighbor (i.e., the forward path delay). The format of this sub-TLV is shown in the following diagram:
此子TLV播发两个直接连接的OSPF邻居之间的最小和最大延迟值。此子TLV播发的延迟必须是从播发节点到其邻居的延迟(即,前向路径延迟)。该子TLV的格式如下图所示:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 28 | 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |A| RESERVED | Min Delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RESERVED | Max Delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 28 | 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |A| RESERVED | Min Delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RESERVED | Max Delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This sub-TLV has a type of 28.
该子TLV的类型为28。
The length is 8.
长度是8。
This field represents the Anomalous (A) bit. The A bit is set when one or more measured values exceed a configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.
此字段表示异常(A)位。当一个或多个测量值超过配置的最大阈值时,设置A位。当测量值低于其配置的重用阈值时,A位被清除。如果A位清除,则子TLV表示稳态链路性能。
This field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.
此字段保留供将来使用。发送时必须将其设置为0,接收时必须忽略。
This 24-bit field carries minimum measured link delay value (in microseconds) over a configurable interval, encoded as an integer value.
该24位字段在可配置的时间间隔内携带最小测量链路延迟值(以微秒为单位),编码为整数值。
Implementations MAY also permit the configuration of an offset value (in microseconds) to be added to the measured delay value to advertise operator specific delay constraints.
实现还可以允许将偏移值(以微秒为单位)的配置添加到测量的延迟值,以通告特定于操作员的延迟约束。
When set to the maximum value 16,777,215 (16.777215 sec), then the delay is at least that value, and it may be larger.
当设置为最大值16777215(16.777215秒)时,延迟至少为该值,并且可能更大。
This field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.
此字段保留供将来使用。发送时必须将其设置为0,接收时必须忽略。
This 24-bit field carries the maximum measured link delay value (in microseconds) over a configurable interval, encoded as an integer value.
该24位字段在可配置的间隔内携带最大测量链路延迟值(以微秒为单位),编码为整数值。
Implementations may also permit the configuration of an offset value (in microseconds) to be added to the measured delay value to advertise operator specific delay constraints.
实现还可以允许将偏移值(以微秒为单位)的配置添加到测量的延迟值,以通告特定于操作员的延迟约束。
It is possible for min delay and max delay to be the same value.
最小延迟和最大延迟可能是相同的值。
When the delay value is set to the maximum value 16,777,215 (16.777215 sec), then the delay is at least that value, and it may be larger.
当延迟值设置为最大值16777215(16.777215秒)时,延迟至少为该值,并且可能更大。
This sub-TLV advertises the average link delay variation between two directly connected OSPF neighbors. The delay variation advertised by this sub-TLV MUST be the delay from the advertising node to its neighbor (i.e., the forward path delay variation). The format of this sub-TLV is shown in the following diagram:
此子TLV播发两个直接连接的OSPF邻居之间的平均链路延迟变化。该子TLV播发的延迟变化必须是从播发节点到其邻居的延迟(即,前向路径延迟变化)。该子TLV的格式如下图所示:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 29 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RESERVED | Delay Variation | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 29 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RESERVED | Delay Variation | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This sub-TLV has a type of 29.
该子TLV的类型为29。
The length is 4.
长度是4。
This field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.
此字段保留供将来使用。发送时必须将其设置为0,接收时必须忽略。
This 24-bit field carries the average link delay variation over a configurable interval in microseconds, encoded as an integer value. When set to 0, it has not been measured. When set to the maximum value 16,777,215 (16.777215 sec), then the delay is at least that value, and it may be larger.
此24位字段携带可配置间隔内的平均链路延迟变化(以微秒为单位),编码为整数值。设置为0时,未对其进行测量。当设置为最大值16777215(16.777215秒)时,延迟至少为该值,并且可能更大。
This sub-TLV advertises the loss (as a packet percentage) between two directly connected OSPF neighbors. The link loss advertised by this sub-TLV MUST be the packet loss from the advertising node to its neighbor (i.e., the forward path loss). The format of this sub-TLV is shown in the following diagram:
此子TLV在两个直接连接的OSPF邻居之间播发丢失(以数据包百分比表示)。此子TLV播发的链路丢失必须是从播发节点到其邻居的数据包丢失(即,前向路径丢失)。该子TLV的格式如下图所示:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 30 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |A| RESERVED | Link Loss | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 30 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |A| RESERVED | Link Loss | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This sub-TLV has a type of 30
该子TLV的类型为30
The length is 4.
长度是4。
This field represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.
此字段表示异常(A)位。当此参数的测量值超过其配置的最大阈值时,将设置A位。当测量值低于其配置的重用阈值时,A位被清除。如果A位清除,则子TLV表示稳态链路性能。
This field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.
此字段保留供将来使用。发送时必须将其设置为0,接收时必须忽略。
This 24-bit field carries link packet loss as a percentage of the total traffic sent over a configurable interval. The basic unit is 0.000003%, where (2^24 - 2) is 50.331642%. This value is the highest packet loss percentage that can be expressed (the assumption being that precision is more important on high speed links than the ability to advertise loss rates greater than this, and that high speed links with over 50% loss are unusable). Therefore, measured values that are larger than the field maximum SHOULD be encoded as the maximum value.
此24位字段以在可配置间隔内发送的总流量的百分比表示链路数据包丢失。基本单位为0.000003%,其中(2^24-2)为50.331642%。该值是可以表示的最高数据包丢失百分比(假设在高速链路上精度比公布大于该值的丢失率的能力更重要,并且丢失率超过50%的高速链路不可用)。因此,大于字段最大值的测量值应编码为最大值。
This sub-TLV advertises the residual bandwidth between two directly connected OSPF neighbors. The residual bandwidth advertised by this sub-TLV MUST be the residual bandwidth from the advertising node to its neighbor.
该子TLV播发两个直接连接的OSPF邻居之间的剩余带宽。此子TLV播发的剩余带宽必须是从播发节点到其邻居的剩余带宽。
The format of this sub-TLV is shown in the following diagram:
该子TLV的格式如下图所示:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 31 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Residual Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 31 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Residual Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This sub-TLV has a type of 31.
该子TLV的类型为31。
The length is 4.
长度是4。
This field carries the residual bandwidth on a link, forwarding adjacency [RFC4206], or bundled link in IEEE floating point format with units of bytes per second. For a link or forwarding adjacency, residual bandwidth is defined to be Maximum Bandwidth [RFC3630] minus the bandwidth currently allocated to RSVP-TE LSPs. For a bundled link, residual bandwidth is defined to be the sum of the component link residual bandwidths.
此字段承载链路、转发邻接[RFC4206]或IEEE浮点格式的捆绑链路上的剩余带宽,单位为字节/秒。对于链路或转发邻接,剩余带宽定义为最大带宽[RFC3630]减去当前分配给RSVP-TE LSP的带宽。对于捆绑链路,剩余带宽定义为组件链路剩余带宽之和。
The calculation of Residual Bandwidth is different than that of Unreserved Bandwidth [RFC3630]. Residual Bandwidth subtracts tunnel reservations from Maximum Bandwidth (i.e., the link capacity) [RFC3630] and provides an aggregated remainder across priorities. Unreserved Bandwidth, on the other hand, is subtracted from the Maximum Reservable Bandwidth (the bandwidth that can theoretically be reserved) and provides per priority remainders. Residual Bandwidth and Unreserved Bandwidth [RFC3630] can be used concurrently, and each has a separate use case (e.g., the former can be used for applications like Weighted ECMP while the latter can be used for call admission control).
剩余带宽的计算不同于未保留带宽的计算[RFC3630]。剩余带宽从最大带宽(即链路容量)中减去隧道预留[RFC3630],并提供跨优先级的聚合剩余。另一方面,从最大可保留带宽(理论上可以保留的带宽)中减去未保留带宽,并提供每优先级剩余。剩余带宽和非保留带宽[RFC3630]可以同时使用,并且每个都有单独的用例(例如,前者可用于加权ECMP等应用,而后者可用于呼叫允许控制)。
This sub-TLV advertises the available bandwidth between two directly connected OSPF neighbors. The available bandwidth advertised by this sub-TLV MUST be the available bandwidth from the advertising node to its neighbor. The format of this sub-TLV is shown in the following diagram:
此子TLV在两个直接连接的OSPF邻居之间播发可用带宽。此子TLV播发的可用带宽必须是从播发节点到其邻居的可用带宽。该子TLV的格式如下图所示:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 32 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Available Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 32 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Available Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This sub-TLV has a type of 32.
此子TLV的类型为32。
The length is 4.
长度是4。
This field carries the available bandwidth on a link, forwarding adjacency, or bundled link in IEEE floating point format with units of bytes per second. For a link or forwarding adjacency, available bandwidth is defined to be residual bandwidth (see Section 4.5) minus the measured bandwidth used for the actual forwarding of non-RSVP-TE LSP packets. For a bundled link, available bandwidth is defined to be the sum of the component link available bandwidths.
此字段以IEEE浮点格式携带链路、转发邻接或捆绑链路上的可用带宽,单位为字节/秒。对于链路或转发邻接,可用带宽定义为剩余带宽(见第4.5节)减去用于实际转发非RSVP TE LSP数据包的测量带宽。对于捆绑链路,可用带宽定义为组件链路可用带宽之和。
This Sub-TLV advertises the bandwidth utilization between two directly connected OSPF neighbors. The bandwidth utilization advertised by this sub-TLV MUST be the bandwidth from the advertising node to its neighbor. The format of this Sub-TLV is shown in the following diagram:
该子TLV公布两个直接连接的OSPF邻居之间的带宽利用率。此子TLV播发的带宽利用率必须是从播发节点到其邻居的带宽。该子TLV的格式如下图所示:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 33 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Utilized Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 33 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Utilized Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This sub-TLV has a type of 33.
该子TLV的类型为33。
The length is 4.
长度是4。
This field carries the bandwidth utilization on a link, forwarding adjacency, or bundled link in IEEE floating-point format with units of bytes per second. For a link or forwarding adjacency, bandwidth utilization represents the actual utilization of the link (i.e., as measured by the advertising node). For a bundled link, bandwidth utilization is defined to be the sum of the component link bandwidth utilizations.
此字段以IEEE浮点格式表示链路、转发邻接或捆绑链路的带宽利用率,单位为字节/秒。对于链路或转发邻接,带宽利用率表示链路的实际利用率(即,由广告节点测量)。对于捆绑链路,带宽利用率定义为组件链路带宽利用率之和。
The values advertised in all sub-TLVs (except min/max delay and residual bandwidth) MUST represent an average over a period or be obtained by a filter that is reasonably representative of an average. For example, a rolling average is one such filter.
在所有子TLV中公布的值(最小/最大延迟和剩余带宽除外)必须代表一段时间内的平均值,或由合理代表平均值的过滤器获得。例如,滚动平均值就是这样一个过滤器。
Min and max delay MAY be the lowest and/or highest measured value over a measurement interval or MAY make use of a filter, or other technique, to obtain a reasonable representation of a min and max value representative of the interval with compensation for outliers.
最小和最大延迟可以是测量间隔内的最低和/或最高测量值,或者可以使用过滤器或其他技术,以获得代表该间隔的最小和最大值的合理表示,并补偿异常值。
The measurement interval, any filter coefficients, and any advertisement intervals MUST be configurable for each sub-TLV.
必须为每个子TLV配置测量间隔、任何滤波器系数和任何广告间隔。
In addition to the measurement intervals governing re-advertisement, implementations SHOULD provide for each sub-TLV configurable accelerated advertisement thresholds, such that:
除了管理重新公布的测量间隔外,实施还应为每个子TLV提供可配置的加速公布阈值,以便:
1. If the measured parameter falls outside a configured upper bound for all but the min delay metric (or lower bound for min delay metric only) and the advertised sub-TLV is not already outside that bound, or
1. 如果测量参数超出除最小延迟度量(或仅最小延迟度量的下限)之外的所有配置上限,且播发的子TLV尚未超出该上限,或
2. If the difference between the last advertised value and current measured value exceed a configured threshold, then
2. 如果最后公布的值和当前测量值之间的差值超过配置的阈值,则
3. The advertisement is made immediately.
3. 广告马上就做了。
4. For sub-TLVs, which include an A bit (except min/max delay), an additional threshold SHOULD be included corresponding to the threshold for which the performance is considered anomalous (and sub-TLVs with the A bit are sent). The A bit is cleared when the sub-TLV's performance has been below (or re-crosses) this threshold for an advertisement interval(s) to permit fail back.
4. 对于包含A位的子TLV(最小/最大延迟除外),应包含一个额外的阈值,该阈值对应于性能被视为异常的阈值(并且发送带有A位的子TLV)。当子TLV的性能在播发间隔内低于(或重新超过)该阈值以允许回切时,A位被清除。
To prevent oscillations, only the high threshold or the low threshold (but not both) may be used to trigger any given sub-TLV that supports both.
为了防止振荡,只能使用高阈值或低阈值(但不能同时使用两者)来触发支持两者的任何给定子TLV。
Additionally, once outside of the bounds of the threshold, any re-advertisement of a measurement within the bounds would remain governed solely by the measurement interval for that sub-TLV.
此外,一旦超出阈值的边界,边界内测量的任何重新公布将仅由该子TLV的测量间隔控制。
When link performance values change by small amounts that fall under thresholds that would cause the announcement of a sub-TLV, implementations SHOULD suppress sub-TLV re-advertisement and/or lengthen the period within which they are refreshed.
当链路性能值的变化量很小,低于可能导致宣布子TLV的阈值时,实施应抑制子TLV重新公布和/或延长刷新时间。
Only the accelerated advertisement threshold mechanism described in Section 5 may shorten the re-advertisement interval.
只有第5节中描述的加速广告阈值机制可以缩短重新广告间隔。
All suppression and re-advertisement interval back-off timer features SHOULD be configurable.
应可配置所有抑制和重新播发间隔回退计时器功能。
Sections 5 and 6 provide configurable mechanisms to bound the number of re-advertisements. Instability might occur in very large networks if measurement intervals are set low enough to overwhelm the processing of flooded information at some of the routers in the topology. Therefore, care should be taken in setting these values.
第5节和第6节提供了可配置的机制来限制重新发布的数量。如果测量间隔设置得足够低,足以覆盖拓扑中某些路由器对泛洪信息的处理,则在非常大的网络中可能会发生不稳定性。因此,在设置这些值时应小心。
Additionally, the default measurement interval for all sub-TLVs should be 30 seconds.
此外,所有子TLV的默认测量间隔应为30秒。
Announcements must also be able to be throttled using configurable inter-update throttle timers. The minimum announcement periodicity is 1 announcement per second. The default value should be set to 120 seconds.
公告还必须能够使用可配置的更新间调节计时器进行调节。最短公告周期为每秒1次公告。默认值应设置为120秒。
Implementations should not permit the inter-update timer to be lower than the measurement interval.
实施不应允许更新间计时器低于测量间隔。
Furthermore, it is recommended that any underlying performance measurement mechanisms not include any significant buffer delay, any significant buffer induced delay variation, or any significant loss due to buffer overflow or due to active queue management.
此外,建议任何底层性能度量机制不包括任何显著的缓冲区延迟、任何显著的缓冲区引起的延迟变化,或由于缓冲区溢出或主动队列管理而导致的任何显著损失。
Implementations MUST make it possible to individually enable or disable the advertisement of each sub-TLV.
实现必须能够单独启用或禁用每个子TLV的播发。
Implementations SHOULD permit the static configuration and/or manual override of dynamic measurements for each sub-TLV in order to simplify migration and to mitigate scenarios where dynamic measurements are not possible.
实施应允许静态配置和/或手动覆盖每个子TLV的动态测量,以简化迁移并缓解不可能进行动态测量的情况。
As per [RFC3630], an unrecognized TLV should be silently ignored. That is, it should not be processed but it should be included in LSAs sent to OSPF neighbors.
根据[RFC3630],未识别的TLV应被静默忽略。也就是说,它不应该被处理,但应该包含在发送给OSPF邻居的LSA中。
This document does not introduce security issues beyond those discussed in [RFC3630]. OSPFv2 HMAC-SHA [RFC5709] provides additional protection for OSPFv2. OSPFv3 IPsec [RFC4552] and OSPFv3 Authentication Trailer [RFC7166] provide additional protection for OSPFv3.
除[RFC3630]中讨论的安全问题外,本文件未介绍其他安全问题。OSPFv2 HMAC-SHA[RFC5709]为OSPFv2提供额外保护。OSPFv3 IPsec[RFC4552]和OSPFv3身份验证尾部[RFC7166]为OSPFv3提供额外的保护。
OSPF Keying and Authentication for Routing Protocols (KARP) [RFC6863] provides an analysis of OSPFv2 and OSPFv3 routing security, and OSPFv2 Security Extensions [OSPFSEC] provides extensions designed to address the identified gaps in OSPFv2.
OSPF路由协议键控和认证(KARP)[RFC6863]提供了对OSPFv2和OSPFv3路由安全性的分析,而OSPFv2安全扩展[OSPFSEC]提供了旨在解决OSPFv2中已识别的漏洞的扩展。
IANA maintains the registry for the Link TLV sub-TLVs. For OSPF TE Metric Extensions, one new type code for each sub-TLV defined in this document has been registered, as follows:
IANA维护链接TLV子TLV的注册表。对于OSPF TE度量扩展,已为本文件中定义的每个子TLV注册了一个新类型代码,如下所示:
Value Sub-TLV
值子TLV
27 Unidirectional Link Delay
27单向链路延迟
28 Min/Max Unidirectional Link Delay
28分钟/最大单向链路延迟
29 Unidirectional Delay Variation
29单向延迟变化
30 Unidirectional Link Loss
30单向链路损耗
31 Unidirectional Residual Bandwidth
31单向剩余带宽
32 Unidirectional Available Bandwidth
32单向可用带宽
33 Unidirectional Utilized Bandwidth
33单向利用带宽
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月<http://www.rfc-editor.org/info/rfc2119>.
[RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2", RFC 3630, September 2003, <http://www.rfc-editor.org/info/rfc3630>.
[RFC3630]Katz,D.,Kompella,K.,和D.Yeung,“OSPF版本2的交通工程(TE)扩展”,RFC 3630,2003年9月<http://www.rfc-editor.org/info/rfc3630>.
[RFC5329] Ishiguro, K., Manral, V., Davey, A., and A. Lindem, Ed., "Traffic Engineering Extensions to OSPF Version 3", RFC 5329, September 2008, <http://www.rfc-editor.org/info/rfc5329>.
[RFC5329]Ishiguro,K.,Manral,V.,Davey,A.,和A.Lindem,Ed.,“OSPF版本3的流量工程扩展”,RFC 53292008年9月<http://www.rfc-editor.org/info/rfc5329>.
[IEEE754] Institute of Electrical and Electronics Engineers, "Standard for Floating-Point Arithmetic", IEEE Standard 754, August 2008.
[IEEE754]电气和电子工程师协会,“浮点运算标准”,IEEE标准754,2008年8月。
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, December 2001, <http://www.rfc-editor.org/info/rfc3209>.
[RFC3209]Awduche,D.,Berger,L.,Gan,D.,Li,T.,Srinivasan,V.,和G.Swallow,“RSVP-TE:LSP隧道RSVP的扩展”,RFC 3209,2001年12月<http://www.rfc-editor.org/info/rfc3209>.
[RFC4206] Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)", RFC 4206, October 2005, <http://www.rfc-editor.org/info/rfc4206>.
[RFC4206]Kompella,K.和Y.Rekhter,“具有通用多协议标签交换(GMPLS)流量工程(TE)的标签交换路径(LSP)层次结构”,RFC 4206,2005年10月<http://www.rfc-editor.org/info/rfc4206>.
[RFC4552] Gupta, M. and N. Melam, "Authentication/Confidentiality for OSPFv3", RFC 4552, June 2006, <http://www.rfc-editor.org/info/rfc4552>.
[RFC4552]Gupta,M.和N.Melam,“OSPFv3的认证/保密”,RFC 45522006年6月<http://www.rfc-editor.org/info/rfc4552>.
[RFC4655] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path Computation Element (PCE)-Based Architecture", RFC 4655, August 2006, <http://www.rfc-editor.org/info/rfc4655>.
[RFC4655]Farrel,A.,Vasseur,J.-P.,和J.Ash,“基于路径计算元素(PCE)的体系结构”,RFC 46552006年8月<http://www.rfc-editor.org/info/rfc4655>.
[RFC5250] Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The OSPF Opaque LSA Option", RFC 5250, July 2008, <http://www.rfc-editor.org/info/rfc5250>.
[RFC5250]Berger,L.,Bryskin,I.,Zinin,A.,和R.Coltun,“OSPF不透明LSA选项”,RFC 5250,2008年7月<http://www.rfc-editor.org/info/rfc5250>.
[RFC5709] Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M., Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic Authentication", RFC 5709, October 2009, <http://www.rfc-editor.org/info/rfc5709>.
[RFC5709]Bhatia,M.,Manral,V.,Fanto,M.,White,R.,Barnes,M.,Li,T.,和R.Atkinson,“OSPFv2 HMAC-SHA加密认证”,RFC 57092009年10月<http://www.rfc-editor.org/info/rfc5709>.
[RFC6374] Frost, D. and S. Bryant, "Packet Loss and Delay Measurement for MPLS Networks", RFC 6374, September 2011, <http://www.rfc-editor.org/info/rfc6374>.
[RFC6374]Frost,D.和S.Bryant,“MPLS网络的数据包丢失和延迟测量”,RFC 63742011年9月<http://www.rfc-editor.org/info/rfc6374>.
[RFC6863] Hartman, S. and D. Zhang, "Analysis of OSPF Security According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6863, March 2013, <http://www.rfc-editor.org/info/rfc6863>.
[RFC6863]Hartman,S.和D.Zhang,“根据路由协议键控和认证(KARP)设计指南分析OSPF安全性”,RFC 6863,2013年3月<http://www.rfc-editor.org/info/rfc6863>.
[RFC7166] Bhatia, M., Manral, V., and A. Lindem, "Supporting Authentication Trailer for OSPFv3", RFC 7166, March 2014, <http://www.rfc-editor.org/info/rfc7166>.
[RFC7166]Bhatia,M.,Manral,V.,和A.Lindem,“OSPFv3的支持认证拖车”,RFC 7166,2014年3月<http://www.rfc-editor.org/info/rfc7166>.
[RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S., Previdi, S., Roome, W., Shalunov, S., and R. Woundy, "Application-Layer Traffic Optimization (ALTO) Protocol", RFC 7285, September 2014, <http://www.rfc-editor.org/info/rfc7285>.
[RFC7285]Alimi,R.,Ed.,Penno,R.,Ed.,Yang,Y.,Ed.,Kiesel,S.,Previdi,S.,Roome,W.,Shalunov,S.,和R.Woundy,“应用层流量优化(ALTO)协议”,RFC 7285,2014年9月<http://www.rfc-editor.org/info/rfc7285>.
[OSPFSEC] Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed., "Security Extension for OSPFv2 when Using Manual Key Management", Work in Progress, draft-ietf-ospf-security-extension-manual-keying, November 2014.
[OSPFSEC]Bhatia,M.,Hartman,S.,Zhang,D.,和A.Lindem,Ed.,“使用手动密钥管理时OSPFv2的安全扩展”,正在进行的工作,ietf ospf安全扩展手册密钥草案,2014年11月。
Acknowledgments
致谢
The authors would like to recognize Nabil Bitar, Edward Crabbe, Don Fedyk, Acee Lindem, David McDysan, and Ayman Soliman for their contributions to this document.
作者要感谢Nabil Bitar、Edward Crabbe、Don Fedyk、Acee Lindem、David McDysan和Ayman Soliman对本文件的贡献。
The authors would also like to acknowledge Curtis Villamizar for his significant comments and direct content collaboration.
作者还想感谢Curtis Villamizar的重要评论和直接内容协作。
Authors' Addresses
作者地址
Spencer Giacalone Unaffiliated
斯宾塞·贾卡隆非附属公司
EMail: spencer.giacalone@gmail.com
EMail: spencer.giacalone@gmail.com
Dave Ward Cisco Systems 170 West Tasman Dr. San Jose, CA 95134 United States
Dave Ward Cisco Systems 170 West Tasman Dr.San Jose,加利福尼亚州,美国95134
EMail: dward@cisco.com
EMail: dward@cisco.com
John Drake Juniper Networks 1194 N. Mathilda Ave. Sunnyvale, CA 94089 United States
约翰·德雷克·朱尼珀网络公司美国加利福尼亚州桑尼维尔市马蒂尔达大道北1194号,邮编94089
EMail: jdrake@juniper.net
EMail: jdrake@juniper.net
Alia Atlas Juniper Networks 1194 N. Mathilda Ave. Sunnyvale, CA 94089 United States
Alia Atlas Juniper Networks 1194 N.Mathilda Ave.Sunnyvale,加利福尼亚州94089
EMail: akatlas@juniper.net
EMail: akatlas@juniper.net
Stefano Previdi Cisco Systems Via Del Serafico 200 00142 Rome Italy
Stefano Previdi Cisco Systems Via Del Serafico 200 00142意大利罗马
EMail: sprevidi@cisco.com
EMail: sprevidi@cisco.com