Internet Engineering Task Force (IETF)                       Y. Lee, Ed.
Request for Comments: 7446                                        Huawei
Category: Informational                                G. Bernstein, Ed.
ISSN: 2070-1721                                        Grotto Networking
                                                                   D. Li
                                                                  Huawei
                                                              W. Imajuku
                                                                     NTT
                                                           February 2015
        
Internet Engineering Task Force (IETF)                       Y. Lee, Ed.
Request for Comments: 7446                                        Huawei
Category: Informational                                G. Bernstein, Ed.
ISSN: 2070-1721                                        Grotto Networking
                                                                   D. Li
                                                                  Huawei
                                                              W. Imajuku
                                                                     NTT
                                                           February 2015
        

Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks

波长交换光网络的路由和波长分配信息模型

Abstract

摘要

This document provides a model of information needed by the Routing and Wavelength Assignment (RWA) process in Wavelength Switched Optical Networks (WSONs). The purpose of the information described in this model is to facilitate constrained optical path computation in WSONs. This model takes into account compatibility constraints between WSON signal attributes and network elements but does not include constraints due to optical impairments. Aspects of this information that may be of use to other technologies utilizing a GMPLS control plane are discussed.

本文档提供了波长交换光网络(WSON)中路由和波长分配(RWA)过程所需的信息模型。该模型中描述的信息的目的是促进无线传感器网络中的约束光程计算。该模型考虑了无线传感器网络(WSON)信号属性和网络元素之间的兼容性约束,但不包括由于光学损伤而产生的约束。讨论了该信息可能用于利用GMPLS控制平面的其他技术的方面。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7446.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7446.

Copyright Notice

版权公告

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2015 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................3
   2. Terminology .....................................................3
   3. Routing and Wavelength Assignment Information Model .............3
      3.1. Dynamic and Relatively Static Information ..................4
   4. Node Information (General) ......................................4
      4.1. Connectivity Matrix ........................................5
   5. Node Information (WSON Specific) ................................5
      5.1. Resource Accessibility/Availability ........................7
      5.2. Resource Signal Constraints and Processing Capabilities ...11
      5.3. Compatibility and Capability Details ......................12
           5.3.1. Shared Input or Output Indication ..................12
           5.3.2. Optical Interface Class List .......................12
           5.3.3. Acceptable Client Signal List ......................13
           5.3.4. Processing Capability List .........................13
   6. Link Information (General) .....................................13
      6.1. Administrative Group ......................................14
      6.2. Interface Switching Capability Descriptor .................14
      6.3. Link Protection Type (for This Link) ......................14
      6.4. Shared Risk Link Group Information ........................14
      6.5. Traffic Engineering Metric ................................15
      6.6. Port Label Restrictions ...................................15
           6.6.1. Port-Wavelength Exclusivity Example ................17
   7. Dynamic Components of the Information Model ....................18
      7.1. Dynamic Link Information (General) ........................19
      7.2. Dynamic Node Information (WSON Specific) ..................19
   8. Security Considerations ........................................19
   9. References .....................................................20
      9.1. Normative References ......................................20
      9.2. Informative References ....................................21
   Contributors ......................................................22
   Authors' Addresses ................................................23
        
   1. Introduction ....................................................3
   2. Terminology .....................................................3
   3. Routing and Wavelength Assignment Information Model .............3
      3.1. Dynamic and Relatively Static Information ..................4
   4. Node Information (General) ......................................4
      4.1. Connectivity Matrix ........................................5
   5. Node Information (WSON Specific) ................................5
      5.1. Resource Accessibility/Availability ........................7
      5.2. Resource Signal Constraints and Processing Capabilities ...11
      5.3. Compatibility and Capability Details ......................12
           5.3.1. Shared Input or Output Indication ..................12
           5.3.2. Optical Interface Class List .......................12
           5.3.3. Acceptable Client Signal List ......................13
           5.3.4. Processing Capability List .........................13
   6. Link Information (General) .....................................13
      6.1. Administrative Group ......................................14
      6.2. Interface Switching Capability Descriptor .................14
      6.3. Link Protection Type (for This Link) ......................14
      6.4. Shared Risk Link Group Information ........................14
      6.5. Traffic Engineering Metric ................................15
      6.6. Port Label Restrictions ...................................15
           6.6.1. Port-Wavelength Exclusivity Example ................17
   7. Dynamic Components of the Information Model ....................18
      7.1. Dynamic Link Information (General) ........................19
      7.2. Dynamic Node Information (WSON Specific) ..................19
   8. Security Considerations ........................................19
   9. References .....................................................20
      9.1. Normative References ......................................20
      9.2. Informative References ....................................21
   Contributors ......................................................22
   Authors' Addresses ................................................23
        
1. Introduction
1. 介绍

The purpose of the WSON information model described in this document is to facilitate constrained optical path computation, and as such it is not a general-purpose network management information model. This constraint is frequently referred to as the "wavelength continuity" constraint, and the corresponding constrained optical path computation is known as the Routing and Wavelength Assignment (RWA) problem. Hence, the information model must provide sufficient topology and wavelength restriction and availability information to support this computation. More details on the RWA process and WSON subsystems and their properties can be found in [RFC6163]. The model defined here includes constraints between WSON signal attributes and network elements but does not include optical impairments.

本文档中描述的WSON信息模型的目的是促进受限光程计算,因此它不是通用网络管理信息模型。这种约束通常被称为“波长连续性”约束,相应的受约束光路计算被称为路由和波长分配(RWA)问题。因此,信息模型必须提供足够的拓扑和波长限制以及可用性信息来支持这种计算。有关RWA流程和WSON子系统及其属性的更多详细信息,请参见[RFC6163]。这里定义的模型包括WSON信号属性和网络元素之间的约束,但不包括光学损伤。

In addition to presenting an information model suitable for path computation in WSON, this document also highlights model aspects that may have general applicability to other technologies utilizing a GMPLS control plane. The portion of the information model applicable to technologies beyond WSON is referred to as "general" to distinguish it from the "WSON-specific" portion that is applicable only to WSON technology.

除了介绍适用于WSON中路径计算的信息模型外,本文档还强调了可能对使用GMPLS控制平面的其他技术具有普遍适用性的模型方面。信息模型中适用于无线传感器网络以外技术的部分被称为“通用”以区别于仅适用于无线传感器网络技术的“无线传感器网络特定”部分。

2. Terminology
2. 术语

Refer to [RFC6163] for definitions of Reconfigurable Optical Add/Drop Multiplexer (ROADM), RWA, Wavelength Conversion, Wavelength Division Multiplexing (WDM), WSON, and other related terminology used in this document.

参考[RFC6163]了解本文件中使用的可重构光分插复用器(ROADM)、RWA、波长转换、波分复用(WDM)、WSON和其他相关术语的定义。

3. Routing and Wavelength Assignment Information Model
3. 路由和波长分配信息模型

The WSON RWA information model in this document comprises four categories of information. The categories are independent of whether the information comes from a switching subsystem or from a line subsystem -- a switching subsystem refers to WSON nodes such as a ROADM or an Optical Add/Drop Multiplexer (OADM), and a line subsystem refers to devices such as WDM or Optical Amplifier. The categories are these:

本文件中的WSON RWA信息模型包括四类信息。这些类别与信息是来自交换子系统还是来自线路子系统无关——交换子系统指WSON节点,如ROADM或光分插复用器(OADM),线路子系统指WDM或光放大器等设备。这些类别包括:

o Node Information

o 节点信息

o Link Information

o 链接信息

o Dynamic Node Information

o 动态节点信息

o Dynamic Link Information

o 动态链接信息

Note that this is roughly the categorization used in Section 7 of [G.7715].

请注意,这大致是[G.7715]第7节中使用的分类。

In the following, where applicable, the Reduced Backus-Naur Form (RBNF) syntax of [RBNF] is used to aid in defining the RWA information model.

在下文中,在适用的情况下,[RBNF]的简化巴科斯诺尔形式(RBNF)语法用于帮助定义RWA信息模型。

3.1. Dynamic and Relatively Static Information
3.1. 动态和相对静态的信息

All the RWA information of concern in a WSON network is subject to change over time. Equipment can be upgraded; links may be placed in or out of service and the like. However, from the point of view of RWA computations, there is a difference between information that can change with each successive connection establishment in the network and information that is relatively static and independent of connection establishment. A key example of the former is link wavelength usage since this can change with connection setup/teardown and this information is a key input to the RWA process. Examples of relatively static information are the potential port connectivity of a WDM ROADM, and the channel spacing on a WDM link.

WSON网络中所有相关的RWA信息都会随时间而变化。设备可以升级;链接可置于服务或停止服务等。然而,从RWA计算的角度来看,随着网络中的每个连续连接建立而改变的信息与相对静态且独立于连接建立的信息之间存在差异。前者的一个关键示例是链路波长使用,因为这会随着连接设置/断开而改变,并且该信息是RWA过程的关键输入。相对静态信息的示例包括WDM ROADM的潜在端口连接以及WDM链路上的信道间距。

This document separates, where possible, dynamic and static information so that these can be kept separate in possible encodings. This allows for separate updates of these two types of information, thereby reducing processing and traffic load caused by the timely distribution of the more dynamic RWA WSON information.

本文档尽可能分离动态和静态信息,以便在可能的编码中将它们分开。这允许单独更新这两种类型的信息,从而减少及时分发更动态的RWA WSON信息所造成的处理和流量负载。

4. Node Information (General)
4. 节点信息(常规)

The node information described here contains the relatively static information related to a WSON node. This includes connectivity constraints amongst ports and wavelengths since WSON switches can exhibit asymmetric switching properties. Additional information could include properties of wavelength converters in the node, if any are present. In [Switch] it was shown that the wavelength connectivity constraints for a large class of practical WSON devices can be modeled via switched and fixed connectivity matrices along with corresponding switched and fixed port constraints. These connectivity matrices are included with the node information, while the switched and fixed port wavelength constraints are included with the link information.

此处描述的节点信息包含与WSON节点相关的相对静态信息。这包括端口和波长之间的连接限制,因为WSON交换机可能表现出不对称交换特性。其他信息可能包括节点中波长转换器的属性(如果存在)。在[Switch]中,可以通过交换和固定连接矩阵以及相应的交换和固定端口约束,对一大类实际WSON设备的波长连接约束进行建模。这些连接性矩阵包含在节点信息中,而交换和固定端口波长约束包含在链路信息中。

Formally,

正式地

   <Node_Information> ::= <Node_ID> [<ConnectivityMatrix>...]
        
   <Node_Information> ::= <Node_ID> [<ConnectivityMatrix>...]
        

Where the Node_ID would be an appropriate identifier for the node within the WSON RWA context.

其中,Node_ID将是WSON RWA上下文中节点的适当标识符。

Note that multiple connectivity matrices are allowed and hence can fully support the most-general cases enumerated in [Switch].

请注意,允许使用多个连接矩阵,因此可以完全支持[Switch]中列举的最一般情况。

4.1. Connectivity Matrix
4.1. 连通矩阵

The connectivity matrix (ConnectivityMatrix) represents either the potential connectivity matrix for asymmetric switches (e.g., ROADMs and such) or fixed connectivity for an asymmetric device such as a multiplexer. Note that this matrix does not represent any particular internal blocking behavior but indicates which input ports and wavelengths could possibly be connected to a particular output port. For a switch or ROADM, representing blocking that is dependent on the internal state is beyond the scope of this document. Due to its highly implementation-dependent nature, it would most likely not be subject to standardization in the future. The connectivity matrix is a conceptual M by N matrix representing the potential switched or fixed connectivity, where M represents the number of input ports and N the number of output ports. This is a "conceptual" matrix since the matrix tends to exhibit structure that allows for very compact representations that are useful for both transmission and path computation.

连接性矩阵(ConnectivityMatrix)表示非对称交换机(例如ROADMs等)的潜在连接性矩阵或非对称设备(例如多路复用器)的固定连接性。请注意,该矩阵并不表示任何特定的内部阻塞行为,而是指示哪些输入端口和波长可能连接到特定的输出端口。对于交换机或ROADM,表示依赖于内部状态的阻塞超出了本文档的范围。由于其高度依赖于实现的性质,它在将来很可能不受标准化的约束。连接性矩阵是一个概念性的M×N矩阵,表示潜在的交换或固定连接性,其中M表示输入端口的数量,N表示输出端口的数量。这是一个“概念”矩阵,因为该矩阵倾向于展示结构,允许对传输和路径计算都有用的非常紧凑的表示。

Note that the connectivity matrix information element can be useful in any technology context where asymmetric switches are utilized.

注意,连通性矩阵信息元素在使用非对称交换机的任何技术环境中都是有用的。

   <ConnectivityMatrix> ::= <MatrixID>
        
   <ConnectivityMatrix> ::= <MatrixID>
        

<ConnType>

<ConnType>

<Matrix>

<Matrix>

Where

哪里

<MatrixID> is a unique identifier for the matrix.

<MatrixID>是矩阵的唯一标识符。

<ConnType> can be either 0 or 1 depending upon whether the connectivity is either fixed or switched.

<ConnType>可以是0或1,具体取决于连接是固定的还是交换的。

<Matrix> represents the fixed or switched connectivity in that Matrix(i, j) = 0 or 1 depending on whether input port i can connect to output port j for one or more wavelengths.

<Matrix>表示该矩阵(i,j)=0或1中的固定或交换连接,具体取决于输入端口i是否可以连接到一个或多个波长的输出端口j。

5. Node Information (WSON Specific)
5. 节点信息(特定于WSON)

As discussed in [RFC6163], a WSON node may contain electro-optical subsystems such as regenerators, wavelength converters or entire switching subsystems. The model present here can be used in characterizing the accessibility and availability of limited

如[RFC6163]中所述,WSON节点可包含电光子系统,如再生器、波长转换器或整个开关子系统。本文提出的模型可用于描述有限资源的可访问性和可用性

resources such as regenerators or wavelength converters as well as WSON signal attribute constraints of electro-optical subsystems. As such, this information element is fairly specific to WSON technologies.

再生器或波长转换器等资源以及光电子系统的WSON信号属性约束。因此,此信息元素相当特定于WSON技术。

In this document, the term "resource" is used to refer to a physical component of a WSON node such as a regenerator or a wavelength converter. Multiple instances of such components are often present within a single WSON node. This term is not to be confused with the concept of forwarding or switching resources such as bandwidth or lambdas.

在本文档中,术语“资源”用于指WSON节点的物理组件,例如再生器或波长转换器。此类组件的多个实例通常存在于单个WSON节点中。此术语不应与转发或交换资源(如带宽或lambda)的概念混淆。

A WSON node may include regenerators or wavelength converters arranged in a shared pool. As discussed in [RFC6163], a WSON node can also include WDM switches that use optical-electronic-optical (OEO) processing. There are a number of different approaches used in the design of WDM switches containing regenerator or converter pools. However, from the point of view of path computation, the following need to be known:

WSON节点可以包括布置在共享池中的再生器或波长转换器。如[RFC6163]中所述,WSON节点还可以包括使用光电(OEO)处理的WDM交换机。在包含再生器或转换器池的WDM交换机的设计中使用了许多不同的方法。然而,从路径计算的角度来看,需要知道以下内容:

1. The nodes that support regeneration or wavelength conversion.

1. 支持再生或波长转换的节点。

2. The accessibility and availability of a wavelength converter to convert from a given input wavelength on a particular input port to a desired output wavelength on a particular output port.

2. 波长转换器的可访问性和可用性,用于将特定输入端口上的给定输入波长转换为特定输出端口上的期望输出波长。

3. Limitations on the types of signals that can be converted and the conversions that can be performed.

3. 对可转换信号类型和可执行转换的限制。

Since resources tend to be packaged together in blocks of similar devices, e.g., on line cards or other types of modules, the fundamental unit of identifiable resource in this document is the "resource block".

由于资源往往被打包在类似设备的块中,例如在线卡或其他类型的模块,因此本文档中可识别资源的基本单元是“资源块”。

A resource block is a collection of resources from the same WSON node that are grouped together for administrative reasons and for ease of encoding in the protocols. All resources in the same resource block behave in the same way and have similar characteristics relevant to the optical system, e.g., processing properties, accessibility, etc.

资源块是来自同一WSON节点的资源的集合,出于管理原因和协议中编码的方便性,这些资源被分组在一起。同一资源块中的所有资源的行为方式相同,并且具有与光学系统相关的类似特征,例如,处理属性、可访问性等。

A resource pool is a collection of resource blocks for the purpose of representing throughput or cross-connect capabilities in a WSON node. A resource pool associates input ports or links on the node with output ports or links and is used to indicate how signals may be passed from an input port or link to an output port or link by way of a resource block (in other words, by way of a resource). A resource pool may, therefore, be modeled as a matrix.

资源池是资源块的集合,用于表示WSON节点中的吞吐量或交叉连接能力。资源池将节点上的输入端口或链路与输出端口或链路相关联,并用于指示信号如何通过资源块(换句话说,通过资源)从输入端口或链路传递到输出端口或链路。因此,可以将资源池建模为矩阵。

A resource block may be present in multiple resource pools.

一个资源块可能存在于多个资源池中。

This leads to the following formal high-level model:

这导致了以下正式的高级模型:

   <Node_Information> ::= <Node_ID>
        
   <Node_Information> ::= <Node_ID>
        

[<ConnectivityMatrix>...]

[<ConnectivityMatrix>…]

[<ResourcePool>]

[<ResourcePool>]

Where

哪里

   <ResourcePool> ::= <ResourceBlockInfo>...
        
   <ResourcePool> ::= <ResourceBlockInfo>...
        

[<ResourceAccessibility>...]

[<ResourceAccessibility>…]

[<ResourceWaveConstraints>...]

[<ResourceWaveConstraints>…]

[<RBPoolState>]

[<RBPoolState>]

First, the accessibility of resource blocks is addressed; then, their properties are discussed.

首先,解决了资源块的可访问性问题;然后讨论了它们的性质。

5.1. Resource Accessibility/Availability
5.1. 资源可及性/可用性

A similar technique as used to model ROADMs, and optical switches can be used to model regenerator/converter accessibility. This technique was generally discussed in [RFC6163] and consisted of a matrix to indicate possible connectivity along with wavelength constraints for links/ports. Since regenerators or wavelength converters may be considered a scarce resource, it is desirable that the model include, if desired, the usage state (availability) of individual regenerators or converters in the pool. Models that incorporate more state to further reveal blocking conditions on input or output to particular converters are for further study and not included here.

用于模拟ROADM的类似技术,以及用于模拟再生器/转换器可达性的光开关。该技术在[RFC6163]中进行了一般性讨论,包括一个矩阵,用于指示链路/端口的可能连接以及波长限制。由于再生器或波长转换器可能被视为稀缺资源,因此,如果需要,模型应包括池中单个再生器或转换器的使用状态(可用性)。包含更多状态以进一步揭示特定转换器输入或输出阻塞条件的模型用于进一步研究,此处不包括。

The three-stage model is shown schematically in Figures 1 and 2. The difference between the two figures is that in Figure 1 it's assumed that each signal that can get to a resource block may do so, while in Figure 2 the access to sets of resource blocks is via a shared fiber that imposes its own wavelength collision constraint. Figure 1 shows that there can be more than one input to each resource block since each input represents a single wavelength signal, while Figure 2 shows a single WDM input or output, e.g., a fiber, to/from each set of blocks.

三级模型如图1和图2所示。这两幅图之间的区别在于,在图1中,假设可以到达资源块的每个信号都可以这样做,而在图2中,对资源块集的访问是通过施加其自身波长冲突约束的共享光纤进行的。图1显示了每个资源块可以有多个输入,因为每个输入代表一个单一波长信号,而图2显示了到/来自每组块的单个WDM输入或输出,例如光纤。

   This model assumes N input ports (fibers), P resource blocks
   containing one or more identical resources (e.g., wavelength
   converters), and M output ports (fibers).  Since not all input ports
   can necessarily reach each resource block, the model starts with a
   resource pool input matrix RI(i,p) = {0,1} depending on whether input
   port i can potentially reach resource block p.
        
   This model assumes N input ports (fibers), P resource blocks
   containing one or more identical resources (e.g., wavelength
   converters), and M output ports (fibers).  Since not all input ports
   can necessarily reach each resource block, the model starts with a
   resource pool input matrix RI(i,p) = {0,1} depending on whether input
   port i can potentially reach resource block p.
        

Since not all wavelengths can necessarily reach all the resources or the resources may have limited input wavelength range, the model has a set of relatively static input port constraints for each resource. In addition, if the access to a set of resource blocks is via a shared fiber (Figure 2), this would impose a dynamic wavelength availability constraint on that shared fiber. The resource block input port constraint is modeled via a static wavelength set mechanism, and the case of shared access to a set of blocks is modeled via a dynamic wavelength set mechanism.

由于并非所有波长都能到达所有资源,或者资源可能具有有限的输入波长范围,因此该模型对每个资源具有一组相对静态的输入端口约束。此外,如果通过共享光纤访问一组资源块(图2),这将对该共享光纤施加动态波长可用性约束。资源块输入端口约束通过静态波长集机制建模,共享访问一组块的情况通过动态波长集机制建模。

   Next, a state vector RA(j) = {0,...,k} is used to track the number of
   resources in resource block j in use.  This is the only state kept in
   the resource pool model.  This state is not necessary for modeling
   "fixed" transponder system or full OEO switches with WDM interfaces,
   i.e., systems where there is no sharing.
        
   Next, a state vector RA(j) = {0,...,k} is used to track the number of
   resources in resource block j in use.  This is the only state kept in
   the resource pool model.  This state is not necessary for modeling
   "fixed" transponder system or full OEO switches with WDM interfaces,
   i.e., systems where there is no sharing.
        

After that, a set of static resource output wavelength constraints and possibly dynamic shared output fiber constraints maybe used. The static constraints indicate what wavelengths a particular resource block can generate or is restricted to generating, e.g., a fixed regenerator would be limited to a single lambda. The dynamic constraints would be used in the case where a single shared fiber is used to output the resource block (Figure 2).

之后,可以使用一组静态资源输出波长约束和可能的动态共享输出光纤约束。静态约束指示特定资源块可以生成或限制生成的波长,例如,固定再生器将被限制为单个λ。在使用单个共享光纤输出资源块的情况下,将使用动态约束(图2)。

   Finally, to complete the model, a resource pool output matrix RE(p,k)
   = {0,1} depending on whether the output from resource block p can
   reach output port k, may be used.
        
   Finally, to complete the model, a resource pool output matrix RE(p,k)
   = {0,1} depending on whether the output from resource block p can
   reach output port k, may be used.
        
      I1   +-------------+                       +-------------+ O1
     ----->|             |      +--------+       |             |----->
      I2   |             +------+ Rb #1  +-------+             | O2
     ----->|             |      +--------+       |             |----->
           |             |                       |             |
           | Resource    |      +--------+       |  Resource   |
           | Pool        +------+        +-------+  Pool       |
           |             |      + Rb #2  +       |             |
           | Input       +------+        +-------|  Output     |
           | Connection  |      +--------+       |  Connection |
           | Matrix      |           .           |  Matrix     |
           |             |           .           |             |
           |             |           .           |             |
      IN   |             |      +--------+       |             | OM
     ----->|             +------+ Rb #P  +-------+             |----->
           |             |      +--------+       |             |
           +-------------+   ^               ^   +-------------+
                             |               |
                             |               |
                             |               |
                             |               |
        
      I1   +-------------+                       +-------------+ O1
     ----->|             |      +--------+       |             |----->
      I2   |             +------+ Rb #1  +-------+             | O2
     ----->|             |      +--------+       |             |----->
           |             |                       |             |
           | Resource    |      +--------+       |  Resource   |
           | Pool        +------+        +-------+  Pool       |
           |             |      + Rb #2  +       |             |
           | Input       +------+        +-------|  Output     |
           | Connection  |      +--------+       |  Connection |
           | Matrix      |           .           |  Matrix     |
           |             |           .           |             |
           |             |           .           |             |
      IN   |             |      +--------+       |             | OM
     ----->|             +------+ Rb #P  +-------+             |----->
           |             |      +--------+       |             |
           +-------------+   ^               ^   +-------------+
                             |               |
                             |               |
                             |               |
                             |               |
        

Input wavelength Output wavelength constraints for constraints for each resource each resource

每个资源约束的输入波长输出波长约束每个资源

Note: Rb is a resource block.

注意:Rb是一个资源块。

Figure 1: Schematic Diagram of the Resource Pool Model

图1:资源池模型的示意图

    I1   +-------------+                       +-------------+ O1
   ----->|             |      +--------+       |             |----->
    I2   |             +======+ Rb #1  +-+     |             | O2
   ----->|             |      +--------+ |     |             |----->
         |             |                 |=====|             |
         | Resource    |      +--------+ |     |  Resource   |
         | Pool        |    +-+ Rb #2  +-+     |  Pool       |
         |             |    | +--------+       |             |
         | Input       |====|                  |  Output     |
         | Connection  |    | +--------+       |  Connection |
         | Matrix      |    +-| Rb #3  |=======|  Matrix     |
         |             |      +--------+       |             |
         |             |           .           |             |
         |             |           .           |             |
         |             |           .           |             |
    IN   |             |      +--------+       |             | OM
   ----->|             +======+ Rb #P  +=======+             |----->
         |             |      +--------+       |             |
         +-------------+   ^               ^   +-------------+
                           |               |
                           |               |
                           |               |
               Single (shared) fibers for block input and output
        
    I1   +-------------+                       +-------------+ O1
   ----->|             |      +--------+       |             |----->
    I2   |             +======+ Rb #1  +-+     |             | O2
   ----->|             |      +--------+ |     |             |----->
         |             |                 |=====|             |
         | Resource    |      +--------+ |     |  Resource   |
         | Pool        |    +-+ Rb #2  +-+     |  Pool       |
         |             |    | +--------+       |             |
         | Input       |====|                  |  Output     |
         | Connection  |    | +--------+       |  Connection |
         | Matrix      |    +-| Rb #3  |=======|  Matrix     |
         |             |      +--------+       |             |
         |             |           .           |             |
         |             |           .           |             |
         |             |           .           |             |
    IN   |             |      +--------+       |             | OM
   ----->|             +======+ Rb #P  +=======+             |----->
         |             |      +--------+       |             |
         +-------------+   ^               ^   +-------------+
                           |               |
                           |               |
                           |               |
               Single (shared) fibers for block input and output
        

Input wavelength Output wavelength availability for availability for each block input fiber each block output fiber

输入波长输出波长每个块输入光纤的可用性每个块输出光纤的可用性

Note: Rb is a resource block.

注意:Rb是一个资源块。

Figure 2: Schematic Diagram of the Resource Pool Model with Shared Block Accessibility

图2:具有共享块可访问性的资源池模型示意图

Formally, the model can be specified as:

形式上,模型可以指定为:

   <ResourceAccessibility> ::= <PoolInputMatrix>
        
   <ResourceAccessibility> ::= <PoolInputMatrix>
        

<PoolOutputMatrix>

<PoolOutputMatrix>

   <ResourceWaveConstraints> ::= <InputWaveConstraints>
        
   <ResourceWaveConstraints> ::= <InputWaveConstraints>
        

<OutputWaveConstraints>

<OutputWaveConstraints>

   <RBSharedAccessWaveAvailability> ::= [<InAvailableWavelengths>]
        
   <RBSharedAccessWaveAvailability> ::= [<InAvailableWavelengths>]
        

[<OutAvailableWavelengths>]

[<OutAvailableWavelength>]

   <RBPoolState> ::=    <ResourceBlockID>
        
   <RBPoolState> ::=    <ResourceBlockID>
        

<NumResourcesInUse>

<numresourcenuse>

[<RBSharedAccessWaveAvailability>]

[<RBSharedAccessWaveAvailability>]

[<RBPoolState>]

[<RBPoolState>]

Note that, except for <RBPoolState>, all the components of <ResourcePool> are relatively static. Also, the <InAvailableWavelengths> and <OutAvailableWavelengths> are only used in the cases of shared input or output access to the particular block. See the resource block information in the next section for how this is specified.

请注意,除了<RBPoolState>,<ResourcePool>的所有组件都是相对静态的。此外,<InAvailableWavelengths>和<OutAvailableWavelengths>仅在共享对特定块的输入或输出访问的情况下使用。有关如何指定资源块的信息,请参见下一节中的资源块信息。

5.2. Resource Signal Constraints and Processing Capabilities
5.2. 资源信号限制和处理能力

The wavelength conversion abilities of a resource (e.g., regenerator, wavelength converter) were modeled in the <OutputWaveConstraints> previously discussed. As discussed in [RFC6163], the constraints on an electro-optical resource can be modeled in terms of input constraints, processing capabilities, and output constraints:

在前面讨论的<OutputWaveConstraints>中对资源(例如再生器、波长转换器)的波长转换能力进行了建模。如[RFC6163]中所述,电光资源的约束可根据输入约束、处理能力和输出约束进行建模:

   <ResourceBlockInfo> ::= <ResourceBlockSet>
        
   <ResourceBlockInfo> ::= <ResourceBlockSet>
        

[<InputConstraints>]

[<InputConstraints>]

[<ProcessingCapabilities>]

[<ProcessingCapabilities>]

[<OutputConstraints>]

[<OutputConstraints>]

Where <ResourceBlockSet> is a list of resource block identifiers with the same characteristics. If this set is missing, the constraints are applied to the entire network element.

其中<ResourceBlockSet>是具有相同特征的资源块标识符的列表。如果缺少此集合,则约束将应用于整个网元。

The <InputConstraints> are constraints are based on signal compatibility and/or shared access constraint indication. The details of these constraints are defined in Section 5.3.

<InputConstraints>是基于信号兼容性和/或共享访问约束指示的约束。第5.3节定义了这些约束的详细信息。

   <InputConstraints> ::= <SharedInput>
        
   <InputConstraints> ::= <SharedInput>
        

[<OpticalInterfaceClassList>]

[<OpticalInterfaceClassList>]

[<ClientSignalList>]

[<ClientSignalList>]

The <ProcessingCapabilities> are important operations that the resource (or network element) can perform on the signal. The details of these capabilities are defined in Section 5.3.

<ProcessingCapabilities>是资源(或网元)可以对信号执行的重要操作。第5.3节定义了这些能力的详细信息。

   <ProcessingCapabilities> ::= [<NumResources>]
        
   <ProcessingCapabilities> ::= [<NumResources>]
        

[<RegenerationCapabilities>]

[<再生能力>]

[<FaultPerfMon>]

[<FaultPerfMon>]

[<VendorSpecific>]

[<vendorsspecific>]

The <OutputConstraints> are either restrictions on the properties of the signal leaving the block, options concerning the signal properties when leaving the resource, or shared fiber output constraint indication.

<OutputConstraints>是对离开块的信号属性的限制、关于离开资源时的信号属性的选项,或者是共享光纤输出约束指示。

   <OutputConstraints> := <SharedOutput>
        
   <OutputConstraints> := <SharedOutput>
        

[<OpticalInterfaceClassList>]

[<OpticalInterfaceClassList>]

[<ClientSignalList>]

[<ClientSignalList>]

5.3. Compatibility and Capability Details
5.3. 兼容性和功能详细信息
5.3.1. Shared Input or Output Indication
5.3.1. 共享输入或输出指示

As discussed in Section 5.2 and shown in Figure 2, the input or output access to a resource block may be via a shared fiber. The <SharedInput> and <SharedOutput> elements are indicators for this condition with respect to the block being described.

如第5.2节所述和图2所示,可通过共享光纤对资源块进行输入或输出访问。<SharedInput>和<SharedOutput>元素是与所描述的块相关的这种情况的指示器。

5.3.2. Optical Interface Class List
5.3.2. 光接口类列表
      <OpticalInterfaceClassList> ::= <OpticalInterfaceClass> ...
        
      <OpticalInterfaceClassList> ::= <OpticalInterfaceClass> ...
        

The Optical Interface Class is a unique number that identifies all information related to optical characteristics of a physical interface. The class may include other optical parameters related to other interface properties. A class always includes signal compatibility information.

光学接口类是唯一的编号,用于标识与物理接口的光学特性相关的所有信息。该类可包括与其他接口属性相关的其他光学参数。类始终包含信号兼容性信息。

The content of each class is out of the scope of this document and can be defined by other entities (e.g., the ITU, optical equipment vendors, etc.).

每个类别的内容不在本文件范围内,可由其他实体(如ITU、光学设备供应商等)定义。

Since even current implementation of physical interfaces may support different optical characteristics, a single interface may support multiple interface classes. Which optical interface class is used among all the ones available for an interface is out of the scope of this document but is an output of the RWA process.

由于即使是物理接口的当前实现也可能支持不同的光学特性,因此单个接口可能支持多个接口类。在一个接口的所有可用光学接口类别中,使用哪种光学接口类别不在本文件范围内,但它是RWA过程的输出。

5.3.3. Acceptable Client Signal List
5.3.3. 可接受的客户端信号列表

The list is simply:

名单如下:

   <ClientSignalList>::=[<G-PID>]...
        
   <ClientSignalList>::=[<G-PID>]...
        

Where the Generalized Protocol Identifiers (G-PID) object represents one of the IETF-standardized G-PID values as defined in [RFC3471] and [RFC4328].

其中,通用协议标识符(G-PID)对象表示[RFC3471]和[RFC4328]中定义的IETF标准化G-PID值之一。

5.3.4. Processing Capability List
5.3.4. 处理能力列表

The ProcessingCapabilities are defined in Section 5.2.

第5.2节定义了处理能力。

The processing capability list sub-TLV is a list of processing functions that the WSON network element (NE) can perform on the signal including:

处理能力列表子TLV是WSON网元(NE)可以对信号执行的处理功能列表,包括:

1. number of resources within the block

1. 块中的资源数

2. regeneration capability

2. 再生能力

3. fault and performance monitoring

3. 故障和性能监视

4. vendor-specific capability

4. 供应商特定能力

Note that the code points for fault and performance monitoring and vendor-specific capability are subject to further study.

请注意,故障和性能监控的代码点以及供应商特定的功能有待进一步研究。

6. Link Information (General)
6. 链接信息(一般)

MPLS-TE routing protocol extensions for OSPF [RFC3630] and IS-IS [RFC5305], along with GMPLS routing protocol extensions for OSPF [RFC4203] and IS-IS [RFC5307] provide the bulk of the relatively static link information needed by the RWA process. However, WSONs bring in additional link-related constraints. These stem from characterizing WDM line systems, restricting laser transmitter tuning, and switching subsystem port wavelength constraints, e.g., "colored" ROADM drop ports.

OSPF[RFC3630]和IS-IS[RFC5305]的MPLS-TE路由协议扩展以及OSPF[RFC4203]和IS-IS[RFC5307]的GMPLS路由协议扩展提供了RWA过程所需的大部分相对静态链路信息。然而,无线传感器网络带来了额外的链路相关约束。这些问题源于WDM线路系统的特征、限制激光发射机调谐和开关子系统端口波长限制,例如“彩色”ROADM下降端口。

The following syntax summarizes both information from existing GMPLS routing protocols and new information that may be needed by the RWA process.

以下语法总结了来自现有GMPLS路由协议的信息和RWA流程可能需要的新信息。

   <LinkInfo> ::=  <LinkID>
        
   <LinkInfo> ::=  <LinkID>
        

[<AdministrativeGroup>]

[<AdministrativeGroup>]

[<InterfaceCapDesc>]

[<InterfaceCapDesc>]

[<Protection>]

[<Protection>]

[<SRLG>...]

[<SRLG>…]

[<TrafficEngineeringMetric>]

[<TrafficEngineeringMetric>]

[<PortLabelRestriction>...]

[<PortLabelRestriction>…]

Note that these additional link characteristics only apply to line-side ports of a WDM system or add/drop ports pertaining to the resource pool (e.g., regenerator or wavelength converter pool). The advertisement of input/output tributary ports is not intended here.

请注意,这些附加链路特性仅适用于WDM系统的线路侧端口或与资源池(例如,再生器或波长转换器池)相关的添加/删除端口。此处不打算公布输入/输出分支端口。

6.1. Administrative Group
6.1. 管理组

Administrative Group: Defined in [RFC3630] and extended for MPLS-TE [RFC7308]. Each set bit corresponds to one administrative group assigned to the interface. A link may belong to multiple groups. This is a configured quantity and can be used to influence routing decisions.

管理组:在[RFC3630]中定义,并针对MPLS-TE[RFC7308]进行扩展。每个设置位对应于分配给接口的一个管理组。链接可能属于多个组。这是一个配置数量,可用于影响路由决策。

6.2. Interface Switching Capability Descriptor
6.2. 接口交换能力描述符

InterfaceSwCapDesc: Defined in [RFC4202]; lets us know the different switching capabilities on this GMPLS interface. In both [RFC4203] and [RFC5307], this information gets combined with the maximum Link State Protocol Data Unit (LSP) bandwidth that can be used on this link at eight different priority levels.

接口WCAPDESC:在[RFC4202]中定义;让我们了解此GMPLS接口上的不同切换功能。在[RFC4203]和[RFC5307]中,此信息与可在此链路上以八种不同优先级使用的最大链路状态协议数据单元(LSP)带宽相结合。

6.3. Link Protection Type (for This Link)
6.3. 链路保护类型(用于此链路)

Protection: Defined in [RFC4202] and implemented in [RFC4203] and [RFC5307]. Used to indicate what protection, if any, is guarding this link.

保护:在[RFC4202]中定义,并在[RFC4203]和[RFC5307]中实现。用于指示保护此链接的保护(如果有)。

6.4. Shared Risk Link Group Information
6.4. 共享风险链接组信息

SRLG: Defined in [RFC4202] and implemented in [RFC4203] and [RFC5307]. This allows for the grouping of links into shared risk groups, i.e., those links that are likely, for some reason, to fail at the same time.

SRLG:在[RFC4202]中定义,并在[RFC4203]和[RFC5307]中实现。这允许将链接分组为共享风险组,即,由于某种原因,可能同时发生故障的链接。

6.5. Traffic Engineering Metric
6.5. 交通工程度量

TrafficEngineeringMetric: Defined in [RFC3630] and [RFC5305]. This allows for the identification of a data-channel link metric value for traffic engineering that is separate from the metric used for path cost computation of the control plane.

交通工程度量:在[RFC3630]和[RFC5305]中定义。这允许识别用于业务工程的数据信道链路度量值,该度量值与用于控制平面的路径成本计算的度量值分离。

Note that multiple "link metric values" could find use in optical networks; however, it would be more useful to the RWA process to assign these specific meanings such as "link mile" metric, "probability of failure" metric, etc.

注意,多个“链路度量值”可用于光网络;然而,对RWA流程而言,更有用的是指定这些特定含义,如“链路里程”指标、“故障概率”指标等。

6.6. Port Label Restrictions
6.6. 港口标签限制

Port label restrictions could be applied generally to any label types in GMPLS by adding new kinds of restrictions. Wavelength is a type of label.

通过添加新的限制类型,端口标签限制通常可以应用于GMPLS中的任何标签类型。波长是一种标签。

Port label (wavelength) restrictions (PortLabelRestriction) model the label (wavelength) restrictions that the link and various optical devices, such as Optical Cross-Connects (OXCs), ROADMs, and waveband multiplexers, may impose on a port. These restrictions tell us what wavelength may or may not be used on a link and are relatively static. This plays an important role in fully characterizing a WSON switching device [Switch]. Port wavelength restrictions are specified relative to the port in general or to a specific connectivity matrix (Section 4.1). [Switch] gives an example where both switch and fixed connectivity matrices are used and both types of constraints occur on the same port.

端口标签(波长)限制(PortLabelRestriction)模拟链路和各种光学设备(如光交叉连接(OXC)、ROADM和波段多路复用器)可能对端口施加的标签(波长)限制。这些限制告诉我们链路上可以使用或不使用什么波长,并且是相对静态的。这在充分描述WSON开关设备[开关]特性方面起着重要作用。端口波长限制是相对于一般端口或特定连接矩阵规定的(第4.1节)。[Switch]给出了一个示例,其中使用了交换机和固定连接矩阵,并且两种类型的约束都出现在同一端口上。

   <PortLabelRestriction> ::= <MatrixID>
        
   <PortLabelRestriction> ::= <MatrixID>
        

<RestrictionType>

<RestrictionType>

<Restriction parameters list>

<限制参数列表>

   <Restriction parameters list> ::=
        
   <Restriction parameters list> ::=
        

<Simple label restriction parameters> |

<简单标签限制参数>|

<Channel count restriction parameters> |

<通道计数限制参数>|

<Label range restriction parameters> |

<标签范围限制参数>|

                        <Simple+channel restriction parameters> |
        
                        <Simple+channel restriction parameters> |
        

<Exclusive label restriction parameters>

<独占标签限制参数>

   <Simple label restriction parameters> ::= <LabelSet> ...
        
   <Simple label restriction parameters> ::= <LabelSet> ...
        
   <Channel count restriction parameters> ::= <MaxNumChannels>
        
   <Channel count restriction parameters> ::= <MaxNumChannels>
        
   <Label range restriction parameters> ::= <MaxLabelRange>
        
   <Label range restriction parameters> ::= <MaxLabelRange>
        

(<LabelSet> ...)

(<LabelSet>…)

   <Simple+channel restriction parameters> ::= <MaxNumChannels>
        
   <Simple+channel restriction parameters> ::= <MaxNumChannels>
        

(<LabelSet> ...)

(<LabelSet>…)

   <Exclusive label restriction parameters> ::= <LabelSet> ...
        
   <Exclusive label restriction parameters> ::= <LabelSet> ...
        

Where

哪里

MatrixID is the ID of the corresponding connectivity matrix (Section 4.1).

MatrixID是相应连接矩阵的ID(第4.1节)。

The RestrictionType parameter is used to specify general port restrictions and matrix-specific restrictions. It can take the following values and meanings:

RestrictionType参数用于指定常规端口限制和矩阵特定限制。它可以具有以下值和含义:

SIMPLE_LABEL: Simple label (wavelength) set restriction; the LabelSet parameter is required.

简单标签:简单标签(波长)设置限制;LabelSet参数是必需的。

CHANNEL_COUNT: The number of channels is restricted to be less than or equal to the MaxNumChannels parameter (which is required).

通道计数:通道数限制为小于或等于MaxNumChannels参数(这是必需的)。

LABEL_RANGE: Used to indicate a restriction on a range of labels that can be switched. For example, a waveband device with a tunable center frequency and passband. This constraint is characterized by the MaxLabelRange parameter, which indicates the maximum range of the labels, e.g., which may represent a waveband in terms of channels. Note that an additional parameter can be used to indicate the overall tuning range. Specific center frequency tuning information can be obtained from information about the dynamic channel in use. It is assumed that both center frequency and bandwidth (Q) tuning can be done without causing faults in existing signals.

标签范围:用于指示对可切换标签范围的限制。例如,具有可调中心频率和通带的波段设备。该约束以MaxLabelRange参数为特征,该参数指示标签的最大范围,例如,可能代表信道中的波段。请注意,可以使用附加参数来指示整体调谐范围。具体的中心频率调谐信息可以从使用中的动态通道信息中获得。假设中心频率和带宽(Q)调谐都可以在不引起现有信号故障的情况下完成。

SIMPLE LABEL and CHANNEL COUNT: In this case, the accompanying label set and MaxNumChannels indicate labels permitted on the port and the maximum number of labels that can be simultaneously used on the port.

简单标签和通道计数:在这种情况下,附带的标签集和MaxNumChannel指示端口上允许的标签以及端口上可同时使用的最大标签数。

LINK LABEL_EXCLUSIVITY: A label (wavelength) can be used at most once among a given set of ports. The set of ports is specified as a parameter to this constraint.

链路标签\唯一性:在给定的一组端口中,标签(波长)最多只能使用一次。端口集被指定为此约束的参数。

Restriction-specific parameters are used with one or more of the previously listed restriction types. The currently defined parameters are:

限制特定参数用于一个或多个先前列出的限制类型。当前定义的参数包括:

LabelSet is a conceptual set of labels (wavelengths).

标签集是标签(波长)的概念集。

MaxNumChannels is the maximum number of channels that can be simultaneously used (relative to either a port or a matrix).

MaxNumChannel是可同时使用的最大通道数(相对于端口或矩阵)。

LinkSet is a conceptual set of ports.

链接集是端口的概念集。

MaxLabelRange indicates the maximum range of the labels. For example, if the port is a "colored" drop port of a ROADM, then there are two restrictions: (a) CHANNEL_COUNT, with MaxNumChannels = 1, and (b) SIMPLE_WAVELENGTH, with the wavelength set consisting of a single member corresponding to the frequency of the permitted wavelength. See [Switch] for a complete waveband example.

MaxLabelRange表示标签的最大范围。例如,如果端口是ROADM的“彩色”放置端口,则有两个限制:(a)通道计数,MaxNumChannels=1,和(b)简单波长,波长集由单个成员组成,对应于允许波长的频率。有关完整的波段示例,请参见[开关]。

This information model for port wavelength (label) restrictions is fairly general in that it can be applied to ports that have label restrictions only or to ports that are part of an asymmetric switch and have label restrictions. In addition, the types of label restrictions that can be supported are extensible.

此端口波长(标签)限制的信息模型相当通用,因为它可以应用于仅具有标签限制的端口,或者应用于作为非对称交换机一部分且具有标签限制的端口。此外,可以支持的标签限制类型是可扩展的。

6.6.1. Port-Wavelength Exclusivity Example
6.6.1. 端口波长排他性示例

Although there can be many different ROADM or switch architectures that can lead to the constraint where a lambda (label) maybe used at most once on a set of ports, Figure 3 shows a ROADM architecture based on components known as Wavelength Selective Switches (WSSes) [OFC08]. This ROADM is composed of splitters, combiners, and WSSes. This ROADM has 11 output ports, which are numbered in the diagram. Output ports 1-8 are known as drop ports and are intended to support a single wavelength. Drop ports 1-4 output from WSS 2, which is fed from WSS 1 via a single fiber. Due to this internal structure, a constraint is placed on the output ports 1-4 that a lambda can be used only once over the group of ports (assuming unicast and not multicast operation). The output ports 5-8 have a similar constraint due to the internal structure.

尽管可能存在许多不同的ROADM或交换机架构,这些架构会导致一组端口上最多只能使用一次lambda(标签)的限制,但图3显示了基于称为波长选择交换机(WSSE)的组件的ROADM架构[Of08]。该ROADM由分路器、合路器和WSSE组成。此RODM有11个输出端口,它们在图中编号。输出端口1-8称为下降端口,用于支持单一波长。从WSS 2输出的丢弃端口1-4,通过单光纤从WSS 1馈送。由于这种内部结构,在输出端口1-4上设置了一个约束,即lambda只能在端口组上使用一次(假设单播而非多播操作)。由于内部结构,输出端口5-8具有类似的约束。

                            |               A
                            v            10 |
                        +-------+        +-------+
                        | Split |        |WSS  6 |
                        +-------+        +-------+
     +----+              | | | |          | | | |
     | W  |              | | | |          | | | +-------+   +----+
     | S  |--------------+ | | |    +-----+ | +----+    |   | S  |
   9 | S  |----------------|---|----|-------|------|----|---| p  |
   --|    |----------------|---|----|-------|----+ |    +---| l  |<
     | 5  |--------------+ |   |    | +-----+    | |     +--| i  |
     +----+              | |   |    | |   +------|-|-----|--| t  |
                +--------|-+   +----|-|---|------|----+  |  +----+
     +----+     |        |          | |   |      | |  |  |
     | S  |-----|--------|----------+ |   |      | |  |  |  +----+
     | p  |-----|--------|------------|---|------|----|--|--| W  |
   ->| l  |-----|-----+  | +----------+   |      | |  +--|--| S  |11
     | i  |---+ |     |  | | +------------|------|-------|--| S  |->
     | t  |   | |     |  | | |            |      | | +---|--|    |
     +----+   | | +---|--|-|-|------------|------|-|-|---+  | 7  |
              | | |   +--|-|-|--------+ | |      | | |      +----+
              | | |      | | |        | | |      | | |
             +------+   +------+     +------+   +------+
             | WSS 1|   | Split|     | WSS 3|   | Split|
             +--+---+   +--+---+     +--+---+   +--+---+
                |          A            |          A
                v          |            v          |
             +-------+  +--+----+    +-------+  +--+----+
             | WSS 2 |  | Comb. |    | WSS 4 |  | Comb. |
             +-------+  +-------+    +-------+  +-------+
             1|2|3|4|    A A A A     5|6|7|8|    A A A A
              v v v v    | | | |      v v v v    | | | |
        
                            |               A
                            v            10 |
                        +-------+        +-------+
                        | Split |        |WSS  6 |
                        +-------+        +-------+
     +----+              | | | |          | | | |
     | W  |              | | | |          | | | +-------+   +----+
     | S  |--------------+ | | |    +-----+ | +----+    |   | S  |
   9 | S  |----------------|---|----|-------|------|----|---| p  |
   --|    |----------------|---|----|-------|----+ |    +---| l  |<
     | 5  |--------------+ |   |    | +-----+    | |     +--| i  |
     +----+              | |   |    | |   +------|-|-----|--| t  |
                +--------|-+   +----|-|---|------|----+  |  +----+
     +----+     |        |          | |   |      | |  |  |
     | S  |-----|--------|----------+ |   |      | |  |  |  +----+
     | p  |-----|--------|------------|---|------|----|--|--| W  |
   ->| l  |-----|-----+  | +----------+   |      | |  +--|--| S  |11
     | i  |---+ |     |  | | +------------|------|-------|--| S  |->
     | t  |   | |     |  | | |            |      | | +---|--|    |
     +----+   | | +---|--|-|-|------------|------|-|-|---+  | 7  |
              | | |   +--|-|-|--------+ | |      | | |      +----+
              | | |      | | |        | | |      | | |
             +------+   +------+     +------+   +------+
             | WSS 1|   | Split|     | WSS 3|   | Split|
             +--+---+   +--+---+     +--+---+   +--+---+
                |          A            |          A
                v          |            v          |
             +-------+  +--+----+    +-------+  +--+----+
             | WSS 2 |  | Comb. |    | WSS 4 |  | Comb. |
             +-------+  +-------+    +-------+  +-------+
             1|2|3|4|    A A A A     5|6|7|8|    A A A A
              v v v v    | | | |      v v v v    | | | |
        

Figure 3: A ROADM Composed from Splitter, Combiners, and WSSes

图3:由分路器、合路器和WSSE组成的ROADM

7. Dynamic Components of the Information Model
7. 信息模型的动态组件

In the previously presented information model, there are a limited number of information elements that are dynamic, i.e., subject to change with subsequent establishment and teardown of connections. Depending on the protocol used to convey this overall information model, it may be possible to send this dynamic information separately from the relatively larger amount of static information needed to characterize WSONs and their network elements.

在前面介绍的信息模型中,数量有限的信息元素是动态的,即随着连接的建立和断开而变化。根据用于传输此总体信息模型的协议,可以将此动态信息与表征无线传感器网络及其网络元件所需的相对较大数量的静态信息分开发送。

7.1. Dynamic Link Information (General)
7.1. 动态链接信息(常规)

For WSON links, the wavelength availability and which wavelengths are in use for shared backup purposes can be considered dynamic information and hence are grouped with the dynamic information in the following set:

对于WSON链路,波长可用性以及用于共享备份目的的波长可被视为动态信息,因此与以下集合中的动态信息分组:

   <DynamicLinkInfo> ::=  <LinkID>
        
   <DynamicLinkInfo> ::=  <LinkID>
        

<AvailableLabels>

<AvailableLabels>

[<SharedBackupLabels>]

[<SharedBackupLabels>]

AvailableLabels is a set of labels (wavelengths) currently available on the link. Given this information and the port wavelength restrictions, one can also determine which wavelengths are currently in use. This parameter could potentially be used with other technologies that GMPLS currently covers or may cover in the future.

AvailableLabels是链接上当前可用的一组标签(波长)。根据这些信息和端口波长限制,还可以确定当前使用的波长。该参数可能用于GMPLS目前或将来可能涉及的其他技术。

SharedBackupLabels is a set of labels (wavelengths) currently used for shared backup protection on the link. An example usage of this information in a WSON setting is given in [Shared]. This parameter could potentially be used with other technologies that GMPLS currently covers or may cover in the future.

SharedBackupLabels是一组标签(波长),当前用于链路上的共享备份保护。[Shared]中给出了此信息在WSON设置中的示例用法。该参数可能用于GMPLS目前或将来可能涉及的其他技术。

Note that the above does not dictate a particular encoding or placement for available label information. In some routing protocols, it may be advantageous or required to place this information within another information element such as the Interface Switching Capability Descriptor (ISCD). Consult the extensions that are specific to each routing protocol for details of placement of information elements.

请注意,上述内容并未规定可用标签信息的特定编码或位置。在一些路由协议中,将该信息放在另一个信息元素(如接口交换能力描述符(ISCD))中可能是有利的或必需的。有关信息元素放置的详细信息,请参阅特定于每个路由协议的扩展。

7.2. Dynamic Node Information (WSON Specific)
7.2. 动态节点信息(特定于WSON)

Currently the only node information that can be considered dynamic is the resource pool state, and it can be isolated into a dynamic node information element as follows:

目前,唯一可以被视为动态的节点信息是资源池状态,可以将其隔离到动态节点信息元素中,如下所示:

   <DynamicNodeInfo> ::=  <NodeID> [<ResourcePool>]
        
   <DynamicNodeInfo> ::=  <NodeID> [<ResourcePool>]
        
8. Security Considerations
8. 安全考虑

This document discusses an information model for RWA computation in WSONs. From a security standpoint, such a model is very similar to the information that can be currently conveyed via GMPLS routing protocols. Such information includes network topology, link state and current utilization, as well as the capabilities of switches and

本文讨论WSONs中RWA计算的信息模型。从安全的角度来看,这种模型与当前可以通过GMPLS路由协议传输的信息非常相似。这些信息包括网络拓扑、链路状态和当前利用率,以及交换机和交换机的能力

routers within the network. As such, this information should be protected from disclosure to unintended recipients. In addition, the intentional modification of this information can significantly affect network operations, particularly due to the large capacity of the optical infrastructure to be controlled. A general discussion on security in GMPLS networks can be found in [RFC5920].

网络中的路由器。因此,应保护这些信息不被泄露给非预期接收者。此外,有意修改此信息会显著影响网络操作,特别是由于要控制的光学基础设施的大容量。关于GMPLS网络安全性的一般性讨论见[RFC5920]。

9. References
9. 工具书类
9.1. Normative References
9.1. 规范性引用文件

[G.7715] ITU-T, "Architecture and requirements for routing in the automatically switched optical networks", ITU-T Recommendation G.7715, June 2002.

[G.7715]ITU-T,“自动交换光网络中路由的体系结构和要求”,ITU-T建议G.7715,2002年6月。

[RBNF] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax Used to Form Encoding Rules in Various Routing Protocol Specifications", RFC 5511, April 2009, <http://www.rfc-editor.org/info/rfc5511>.

[RBNF]Farrel,A.,“路由Backus-Naur形式(RBNF):用于在各种路由协议规范中形成编码规则的语法”,RFC 5511,2009年4月<http://www.rfc-editor.org/info/rfc5511>.

[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003, <http://www.rfc-editor.org/info/rfc3471>.

[RFC3471]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月<http://www.rfc-editor.org/info/rfc3471>.

[RFC3630] van der Meer, J., Mackie, D., Swaminathan, V., Singer, D., and P. Gentric, "RTP Payload Format for Transport of MPEG-4 Elementary Streams", RFC 3640, November 2003, <http://www.rfc-editor.org/info/rfc3640>.

[RFC3630]van der Meer,J.,Mackie,D.,Swaminathan,V.,Singer,D.,和P.Gentric,“MPEG-4基本流传输的RTP有效载荷格式”,RFC 3640,2003年11月<http://www.rfc-editor.org/info/rfc3640>.

[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, October 2005, <http://www.rfc-editor.org/info/rfc4202>.

[RFC4202]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的路由扩展”,RFC 4202,2005年10月<http://www.rfc-editor.org/info/rfc4202>.

[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005, <http://www.rfc-editor.org/info/rfc4203>.

[RFC4203]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的OSPF扩展”,RFC 4203,2005年10月<http://www.rfc-editor.org/info/rfc4203>.

[RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G.709 Optical Transport Networks Control", RFC 4328, January 2006, <http://www.rfc-editor.org/info/rfc4328>.

[RFC4328]Papadimitriou,D.,编辑,“G.709光传输网络控制的通用多协议标签交换(GMPLS)信令扩展”,RFC 4328,2006年1月<http://www.rfc-editor.org/info/rfc4328>.

[RFC5305] Li, T. and H. Smit, "IS-IS Extensions for Traffic Engineering", RFC 5305, October 2008, <http://www.rfc-editor.org/info/rfc5305>.

[RFC5305]Li,T.和H.Smit,“交通工程的IS-IS扩展”,RFC 53052008年10月<http://www.rfc-editor.org/info/rfc5305>.

[RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 5307, October 2008, <http://www.rfc-editor.org/info/rfc5307>.

[RFC5307]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的IS-IS扩展”,RFC 5307,2008年10月<http://www.rfc-editor.org/info/rfc5307>.

[RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku, "Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)", RFC 6163, April 2011, <http://www.rfc-editor.org/info/rfc6163>.

[RFC6163]Lee,Y.,Ed.,Bernstein,G.,Ed.,和W.Imajuku,“波长交换光网络(WSON)的GMPLS和路径计算元件(PCE)控制框架”,RFC 61632011年4月<http://www.rfc-editor.org/info/rfc6163>.

[RFC7308] Osborne, E., "Extended Administrative Groups in MPLS Traffic Engineering (MPLS-TE)", RFC 7308, July 2014, <http://www.rfc-editor.org/info/rfc7308>.

[RFC7308]Osborne,E.“MPLS流量工程(MPLS-TE)中的扩展管理组”,RFC 7308,2014年7月<http://www.rfc-editor.org/info/rfc7308>.

9.2. Informative References
9.2. 资料性引用

[OFC08] Roorda, P., and B. Collings, "Evolution to Colorless and Directionless ROADM Architectures", Optical Fiber Communication / National Fiber Optic Engineers Conference (OFC/NFOEC), 2008, pp. 1-3.

[OFC08]Roorda,P.和B.Collings,“向无色和无方向ROADM架构的演变”,光纤通信/全国光纤工程师会议(OFC/NFOEC),2008年,第1-3页。

[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, July 2010, <http://www.rfc-editor.org/info/rfc5920>.

[RFC5920]Fang,L.,Ed.“MPLS和GMPLS网络的安全框架”,RFC 5920,2010年7月<http://www.rfc-editor.org/info/rfc5920>.

[Shared] Bernstein, G., and Y. Lee, "Shared Backup Mesh Protection in PCE-based WSON Networks", iPOP 2008.

[共享]Bernstein,G.和Y.Lee,“基于PCE的无线传感器网络中的共享备份网格保护”,iPOP 2008。

[Switch] Bernstein, G., Lee, Y., Gavler, A., and J. Martensson, "Modeling WDM Wavelength Switching Systems for Use in GMPLS and Automated Path Computation", Journal of Optical Communications and Networking, vol. 1, June 2009, pp. 187-195.

[Switch]Bernstein,G.,Lee,Y.,Gavler,A.,和J.Martenson,“用于GMPLS和自动路径计算的WDM波长交换系统建模”,《光通信和网络杂志》,第1卷,2009年6月,第187-195页。

Contributors

贡献者

Diego Caviglia Ericsson Via A. Negrone 1/A 16153 Genoa, Italy

Diego Caviglia Ericsson Via A.Negrone 1/A 16153意大利热那亚

   Phone: +39 010 600 3736
   EMail: diego.caviglia@(marconi.com, ericsson.com)
        
   Phone: +39 010 600 3736
   EMail: diego.caviglia@(marconi.com, ericsson.com)
        

Anders Gavler Acreo AB Electrum 236 SE - 164 40 Kista Sweden

Anders Gavler Acreo AB Electrum 236东南-164 40基斯塔瑞典

   EMail: Anders.Gavler@acreo.se
        
   EMail: Anders.Gavler@acreo.se
        

Jonas Martensson Acreo AB Electrum 236 SE - 164 40 Kista Sweden

Jonas Martenson Acreo AB Electrum 236东南-164 40基斯塔瑞典

   EMail: Jonas.Martensson@acreo.se
        
   EMail: Jonas.Martensson@acreo.se
        

Itaru Nishioka NEC Corp. 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 Japan

Itaru Nishioka NEC Corp.1753 Simonumabe,Kanagawa Kawasaki中川区211-8666日本

   Phone: +81 44 396 3287
   EMail: i-nishioka@cb.jp.nec.com
        
   Phone: +81 44 396 3287
   EMail: i-nishioka@cb.jp.nec.com
        

Lyndon Ong Ciena EMail: lyong@ciena.com

林登:电子邮件:lyong@ciena.com

Cyril Margaria EMail: cyril.margaria@gmail.com

西里尔·玛格丽亚电子邮件:西里尔。margaria@gmail.com

Authors' Addresses

作者地址

Young Lee (editor) Huawei Technologies 5369 Legacy Drive, Building 3 Plano, TX 75023 United States

Young Lee(编辑)美国德克萨斯州普莱诺3号楼华为技术5369 Legacy Drive 75023

Phone: (469) 277-5838 EMail: leeyoung@huawei.com

电话:(469)277-5838电子邮件:leeyoung@huawei.com

Greg M. Bernstein (editor) Grotto Networking Fremont, CA United States

Greg M.Bernstein(编辑)美国加利福尼亚州弗里蒙特Grotto Networking

Phone: (510) 573-2237 EMail: gregb@grotto-networking.com

电话:(510)573-2237电子邮件:gregb@grotto-网络

Dan Li Huawei Technologies Co., Ltd. F3-5-B R&D Center, Huawei Base, Bantian, Longgang District Shenzhen 518129 China

中国深圳市龙岗区坂田华为基地F3-5-B研发中心丹丽华为技术有限公司,邮编:518129

   Phone: +86-755-28973237
   EMail: danli@huawei.com
        
   Phone: +86-755-28973237
   EMail: danli@huawei.com
        

Wataru Imajuku NTT Network Innovation Labs 1-1 Hikari-no-oka, Yokosuka, Kanagawa Japan

Wataru Imajuku NTT网络创新实验室1-1 Hikari no oka,横须贺,神奈川日本

   Phone: +81-(46) 859-4315
   EMail: imajuku.wataru@lab.ntt.co.jp
        
   Phone: +81-(46) 859-4315
   EMail: imajuku.wataru@lab.ntt.co.jp