Internet Engineering Task Force (IETF)                        J. Parello
Request for Comments: 7326                                     B. Claise
Category: Informational                              Cisco Systems, Inc.
ISSN: 2070-1721                                             B. Schoening
                                                  Independent Consultant
                                                              J. Quittek
                                                         NEC Europe Ltd.
                                                          September 2014
        
Internet Engineering Task Force (IETF)                        J. Parello
Request for Comments: 7326                                     B. Claise
Category: Informational                              Cisco Systems, Inc.
ISSN: 2070-1721                                             B. Schoening
                                                  Independent Consultant
                                                              J. Quittek
                                                         NEC Europe Ltd.
                                                          September 2014
        

Energy Management Framework

能源管理框架

Abstract

摘要

This document defines a framework for Energy Management (EMAN) for devices and device components within, or connected to, communication networks. The framework presents a physical reference model and information model. The information model consists of an Energy Management Domain as a set of Energy Objects. Each Energy Object can be attributed with identity, classification, and context. Energy Objects can be monitored and controlled with respect to power, Power State, energy, demand, Power Attributes, and battery. Additionally, the framework models relationships and capabilities between Energy Objects.

本文件定义了通信网络内或连接到通信网络的设备和设备组件的能源管理(EMAN)框架。该框架提出了一个物理参考模型和信息模型。信息模型由能源管理领域作为一组能源对象组成。每个能量对象都可以通过标识、分类和上下文进行属性化。可以根据功率、功率状态、能量、需求、功率属性和电池来监视和控制能量对象。此外,该框架还对能源对象之间的关系和能力进行建模。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7326.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7326.

Copyright Notice

版权公告

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2014 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................3
   2. Terminology .....................................................4
   3. Target Devices ..................................................9
   4. Physical Reference Model .......................................10
   5. Areas Not Covered by the Framework .............................11
   6. Energy Management Abstraction ..................................12
      6.1. Conceptual Model ..........................................12
      6.2. Energy Object (Class) .....................................13
      6.3. Energy Object Attributes ..................................15
      6.4. Measurements ..............................................18
      6.5. Control ...................................................19
      6.6. Relationships .............................................25
   7. Energy Management Information Model ............................29
   8. Modeling Relationships between Devices .........................33
      8.1. Power Source Relationship .................................33
      8.2. Metering Relationship .....................................37
      8.3. Aggregation Relationship ..................................38
   9. Relationship to Other Standards ................................39
   10. Security Considerations .......................................39
      10.1. Security Considerations for SNMP .........................40
   11. IANA Considerations ...........................................41
      11.1. IANA Registration of New Power State Sets ................41
      11.2. Updating the Registration of Existing Power State Sets ...42
   12. References ....................................................43
      12.1. Normative References .....................................43
      12.2. Informative References ...................................44
   13. Acknowledgments ...............................................45
   Appendix A. Information Model Listing .............................46
        
   1. Introduction ....................................................3
   2. Terminology .....................................................4
   3. Target Devices ..................................................9
   4. Physical Reference Model .......................................10
   5. Areas Not Covered by the Framework .............................11
   6. Energy Management Abstraction ..................................12
      6.1. Conceptual Model ..........................................12
      6.2. Energy Object (Class) .....................................13
      6.3. Energy Object Attributes ..................................15
      6.4. Measurements ..............................................18
      6.5. Control ...................................................19
      6.6. Relationships .............................................25
   7. Energy Management Information Model ............................29
   8. Modeling Relationships between Devices .........................33
      8.1. Power Source Relationship .................................33
      8.2. Metering Relationship .....................................37
      8.3. Aggregation Relationship ..................................38
   9. Relationship to Other Standards ................................39
   10. Security Considerations .......................................39
      10.1. Security Considerations for SNMP .........................40
   11. IANA Considerations ...........................................41
      11.1. IANA Registration of New Power State Sets ................41
      11.2. Updating the Registration of Existing Power State Sets ...42
   12. References ....................................................43
      12.1. Normative References .....................................43
      12.2. Informative References ...................................44
   13. Acknowledgments ...............................................45
   Appendix A. Information Model Listing .............................46
        
1. Introduction
1. 介绍

Network Management is often divided into the five main areas defined in the ISO Telecommunications Management Network model: Fault, Configuration, Accounting, Performance, and Security Management (FCAPS) [X.700]. Not covered by this traditional management model is Energy Management, which is rapidly becoming a critical area of concern worldwide, as seen in [ISO50001].

网络管理通常分为ISO电信管理网络模型中定义的五个主要领域:故障、配置、记帐、性能和安全管理(FCAPS)[X.700]。这一传统管理模式并未涵盖能源管理,能源管理正迅速成为全世界关注的关键领域,如[ISO50001]所示。

This document defines an Energy Management framework for devices within, or connected to, communication networks, per the Energy Management requirements specified in [RFC6988]. The devices, or the components of these devices (such as line cards, fans, and disks), can then be monitored and controlled. Monitoring includes measuring power, energy, demand, and attributes of power. Energy Control can be performed by setting a device's or component's state. The devices monitored by this framework can be either of the following:

本文件根据[RFC6988]中规定的能源管理要求,为通信网络内或连接到通信网络的设备定义了能源管理框架。然后可以监视和控制设备或这些设备的组件(如线路卡、风扇和磁盘)。监控包括测量功率、能量、需求和功率属性。可以通过设置设备或组件的状态来执行能量控制。此框架监视的设备可以是以下任一设备:

o consumers of energy (such as routers and computer systems) and components of such devices (such as line cards, fans, and disks)

o 能源消费者(如路由器和计算机系统)以及此类设备的组件(如线路卡、风扇和磁盘)

o producers of energy (like an uninterruptible power supply or renewable energy system) and their associated components (such as battery cells, inverters, or photovoltaic panels)

o 能源生产商(如不间断电源或可再生能源系统)及其相关组件(如电池、逆变器或光伏板)

This framework further describes how to identify, classify, and provide context for such devices. While context information is not specific to Energy Management, some context attributes are specified in the framework, addressing the following use cases:

该框架进一步描述了如何识别、分类和提供此类设备的上下文。虽然上下文信息并非特定于能源管理,但框架中指定了一些上下文属性,以解决以下用例:

o How important is a device in terms of its business impact?

o 就业务影响而言,设备有多重要?

o How should devices be grouped for reporting and searching?

o 如何对设备进行分组以进行报告和搜索?

o How should a device role be described?

o 如何描述设备角色?

Guidelines for using context for Energy Management are described.

描述了使用上下文进行能源管理的指南。

The framework introduces the concept of a Power Interface that is analogous to a network interface. A Power Interface is defined as an interconnection among devices where energy can be provided, received, or both.

该框架引入了电源接口的概念,类似于网络接口。电源接口被定义为设备之间的互连,其中可以提供、接收或同时提供能量。

The most basic example of Energy Management is a single device reporting information about itself. In many cases, however, energy is not measured by the device itself but is measured upstream in the power distribution tree. For example, a Power Distribution Unit (PDU) may measure the energy it supplies to attached devices and

能源管理最基本的例子是单个设备报告自身的信息。然而,在许多情况下,能量不是由设备本身测量的,而是在配电树的上游测量的。例如,配电装置(PDU)可测量其提供给连接设备和设备的能量

report this to an Energy Management System. Therefore, devices often have relationships to other devices or components in the power network. An Energy Management System (EnMS) generally requires an understanding of the power topology (who provides power to whom), the Metering topology (who meters whom), and the potential Aggregation (who aggregates values of others).

将此报告给能源管理系统。因此,设备通常与电网中的其他设备或组件有关系。能源管理系统(EnMS)通常需要了解电源拓扑(谁向谁供电)、计量拓扑(谁计量谁)和潜在聚合(谁聚合其他人的值)。

The relationships build on the Power Interface concept. The different relationships among devices and components, as specified in this document, include power source, Metering, and Aggregation Relationships.

这些关系建立在电源接口概念的基础上。本文档中规定的设备和组件之间的不同关系包括电源、计量和聚合关系。

The framework does not cover non-electrical equipment, nor does it cover energy procurement and manufacturing.

该框架不包括非电气设备,也不包括能源采购和制造。

2. Terminology
2. 术语

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。

In this document, these words will appear with the above interpretation only when in ALL CAPS. Lowercase uses of these words are not to be interpreted as carrying the significance of RFC 2119 key words.

在本文件中,只有在所有大写字母中,这些词语才会以上述解释出现。这些词的小写用法不得解释为带有RFC 2119关键词的意义。

In this section, some terms have a NOTE that is not part of the definition itself but accounts for differences between terminologies of different standards organizations or further clarifies the definition.

在本节中,一些术语的注释不属于定义本身,但说明了不同标准组织术语之间的差异,或进一步澄清了定义。

The terms are listed in an order that aids in reading where terms may build off a previous term, as opposed to an alphabetical ordering. Some terms that are common in electrical engineering or that describe common physical items use a lowercase notation.

这些术语的排列顺序有助于阅读,因为这些术语可能是前一个术语的基础,而不是字母顺序。电气工程中常见的一些术语或描述常见物理项目的术语使用小写符号。

Energy Management Energy Management is a set of functions for measuring, modeling, planning, and optimizing networks to ensure that the network and network-attached devices use energy efficiently and appropriately for the nature of the application and the cost constraints of the organization.

能源管理能源管理是一组用于测量、建模、规划和优化网络的功能,以确保网络和网络连接设备根据应用程序的性质和组织的成本约束高效、适当地使用能源。

Reference: Adapted from [TMN].

参考文献:改编自[TMN]。

NOTES:

笔记:

1. "Energy Management" refers to the activities, methods, procedures, and tools that pertain to measuring, modeling, planning, controlling, and optimizing the use of energy in networked systems [NMF].

1. “能源管理”是指与测量、建模、规划、控制和优化网络系统中能源使用有关的活动、方法、程序和工具[NMF]。

2. Energy Management is a management domain that is congruent to any of the FCAPS areas of management in the ISO/OSI Network Management Model [TMN]. Energy Management for communication networks and attached devices is a subset or part of an organization's greater Energy Management Policies.

2. 能量管理是一个管理领域,与ISO/OSI网络管理模型[TMN]中的任何FCAP管理领域一致。通信网络和连接设备的能量管理是组织更大能量管理策略的子集或部分。

Energy Management System (EnMS) An Energy Management System is a combination of hardware and software used to administer a network, with the primary purpose of Energy Management.

能源管理系统(EnMS)能源管理系统是用于管理网络的硬件和软件的组合,其主要目的是能源管理。

NOTES:

笔记:

1. An Energy Management System according to [ISO50001] (ISO-EnMS) is a set of systems or procedures upon which organizations can develop and implement an energy policy, set targets and action plans, and take into account legal requirements related to energy use. An ISO-EnMS allows organizations to improve energy performance and demonstrate conformity to requirements, standards, and/or legal requirements.

1. 根据[ISO50001](ISO EnMS)的能源管理体系是一套系统或程序,组织可以根据这些系统或程序制定和实施能源政策,设定目标和行动计划,并考虑与能源使用相关的法律要求。ISO EnMS允许组织改进能源性能,并证明符合要求、标准和/或法律要求。

2. Example ISO-EnMS: Company A defines a set of policies and procedures indicating that there should exist multiple computerized systems that will poll energy measurements from their meters and pricing / source data from their local utility. Company A specifies that their CFO (Chief Financial Officer) should collect information and summarize it quarterly to be sent to an accounting firm to produce carbon accounting reporting as required by their local government.

2. ISO EnMS示例:A公司定义了一套政策和程序,表明应存在多个计算机化系统,这些系统将从其电表中轮询能源测量值,并从其当地公用事业公司中轮询定价/来源数据。A公司规定,其首席财务官(首席财务官)应收集信息,并每季度汇总一次,然后发送给会计师事务所,以便按照当地政府的要求编制碳会计报告。

3. For the purposes of EMAN, the definition herein is the preferred meaning of an EnMS. The definition from [ISO50001] can be referred to as an ISO Energy Management System (ISO-EnMS).

3. 就EMAN而言,本文中的定义是EnMS的首选含义。[ISO50001]中的定义可称为ISO能源管理体系(ISO EnMS)。

Energy Monitoring Energy Monitoring is a part of Energy Management that deals with collecting or reading information from devices to aid in Energy Management.

能源监控能源监控是能源管理的一部分,处理从设备收集或读取信息以帮助能源管理。

Energy Control Energy Control is a part of Energy Management that deals with directing influence over devices.

能量控制能量控制是能量管理的一部分,处理对设备的直接影响。

electrical equipment This is a general term that includes materials, fittings, devices, appliances, fixtures, apparatus, machines, etc., that are used as a part of, or in connection with, an electric installation.

电气设备这是一个通用术语,包括作为电气装置的一部分或与电气装置相关的材料、配件、装置、器具、固定装置、装置、机器等。

Reference: [IEEE100].

参考文献:[IEEE100]。

non-electrical equipment (mechanical equipment) This is a general term that includes materials, fittings, devices, appliances, fixtures, apparatus, machines, etc., that are used as a part of, or in connection with, non-electrical power installations.

非电气设备(机械设备)这是一个通用术语,包括作为非电力装置的一部分或与之相关的材料、配件、装置、器具、固定装置、仪器、机器等。

Reference: Adapted from [IEEE100].

参考文献:改编自[IEEE100]。

device A device is a piece of electrical or non-electrical equipment.

装置装置是一种电气或非电气设备。

Reference: Adapted from [IEEE100].

参考文献:改编自[IEEE100]。

component A component is a part of electrical or non-electrical equipment (device).

部件部件是电气或非电气设备(装置)的一部分。

Reference: Adapted from [TMN].

参考文献:改编自[TMN]。

power inlet A power inlet (or simply "inlet") is an interface at which a device or component receives energy from another device or component.

电源插座电源插座(或简称“插座”)是一个接口,设备或组件在该接口处从另一个设备或组件接收能量。

power outlet A power outlet (or simply "outlet") is an interface at which a device or component provides energy to another device or component.

电源插座电源插座(或简称“插座”)是设备或组件向另一设备或组件提供能量的接口。

energy Energy is that which does work or is capable of doing work. As used by electric utilities, it is generally a reference to electrical energy and is measured in kilowatt-hours (kWh).

能量是能做功或能做功的东西。在电力公司使用时,它通常是电能的参考值,以千瓦时(kWh)为单位计量。

Reference: [IEEE100].

参考文献:[IEEE100]。

NOTE:

注:

1. Energy is the capacity of a system to produce external activity or perform work [ISO50001].

1. 能量是系统产生外部活动或执行工作的能力[ISO50001]。

power Power is the time rate at which energy is emitted, transferred, or received; power is usually expressed in watts (joules per second).

功率是能量发射、传输或接收的时间速率;功率通常以瓦特(焦耳/秒)表示。

Reference: [IEEE100].

参考文献:[IEEE100]。

demand Demand is the average value of power or a related quantity over a specified interval of time. Note: Demand is expressed in kilowatts, kilovolt-amperes, kilovars, or other suitable units.

需求是指定时间间隔内功率或相关量的平均值。注:需求以千瓦、千伏安、千瓦或其他合适的单位表示。

Reference: [IEEE100].

参考文献:[IEEE100]。

NOTE:

注:

1. While IEEE100 defines demand in kilo measurements, for EMAN we use watts with any suitable metric prefix.

1. IEEE100定义了以千克为单位的需求,而对于EMAN,我们使用瓦特和任何合适的公制前缀。

provide energy A device (or component) "provides" energy to another device if there is an energy flow from this device to the other one.

提供能量一个装置(或部件)“提供”能量给另一个装置,如果有能量从这个装置流向另一个装置。

receive energy A device (or component) "receives" energy from another device if there is an energy flow from the other device to this one.

接收能量如果存在从另一个设备到该设备的能量流,则该设备(或组件)“接收”来自另一个设备的能量。

meter (energy meter) A meter is a device intended to measure electrical energy by integrating power with respect to time.

电表(电能表)电表是一种通过将功率与时间积分来测量电能的装置。

Reference: Adapted from [IEC60050].

参考:改编自[IEC60050]。

battery A battery is one or more cells (consisting of an assembly of electrodes, electrolyte, container, terminals, and (usually) separators) that are a source and/or store of electric energy.

电池电池是一个或多个电池(由电极、电解液、容器、端子和(通常)分离器组成),是电能的来源和/或储存。

Reference: Adapted from [IEC60050].

参考:改编自[IEC60050]。

Power Interface A Power Interface is a power inlet, outlet, or both.

电源接口电源接口是电源入口、出口或两者。

Nameplate Power The Nameplate Power is the nominal power of a device as specified by the device manufacturer.

铭牌功率铭牌功率是设备制造商规定的设备标称功率。

Power Attributes Power Attributes are measurements of the electrical current, voltage, phase, and frequencies at a given point in an electrical power system.

功率属性功率属性是对电力系统中给定点的电流、电压、相位和频率的测量。

Reference: Adapted from [IEC60050].

参考:改编自[IEC60050]。

NOTE:

注:

1. Power Attributes are not intended to provide any bounds or recommended range for the value. They are simply the reading of the value associated with the attribute in question.

1. 电源属性不打算为该值提供任何边界或建议的范围。它们只是读取与所讨论的属性相关联的值。

Power Quality "Power Quality" refers to characteristics of the electrical current, voltage, phase, and frequencies at a given point in an electric power system, evaluated against a set of reference technical parameters. These parameters might, in some cases, relate to the compatibility between electricity supplied in an electric power system and the loads connected to that electric power system.

电能质量“电能质量”是指根据一组参考技术参数对电力系统中给定点的电流、电压、相位和频率的特性进行评估。在某些情况下,这些参数可能与电力系统中提供的电力与连接到该电力系统的负荷之间的兼容性有关。

Reference: [IEC60050].

参考文献:[IEC60050]。

NOTE:

注:

1. Electrical characteristics representing Power Quality information are typically required by customer facility Energy Management Systems. Electrical characteristics are not intended to satisfy the detailed requirements of Power Quality monitoring. Standards typically also give ranges of allowed values; the information attributes are the raw measurements, not the "yes/no" determination by the various standards.

1. 代表电能质量信息的电气特性通常是客户设施能源管理系统所要求的。电气特性不满足电能质量监测的详细要求。标准通常也给出允许值的范围;信息属性是原始测量值,而不是各种标准确定的“是/否”。

Reference: [ASHRAE-201].

参考文献:[ASHRAE-201]。

Power State A Power State is a condition or mode of a device (or component) that broadly characterizes its capabilities, power, and responsiveness to input.

电源状态电源状态是设备(或组件)的一种状态或模式,广泛表征其能力、功率和对输入的响应。

Reference: Adapted from [IEEE1621].

参考文献:改编自[IEEE1621]。

Power State Set A Power State Set is a collection of Power States that comprises a named or logical control grouping.

电源状态集电源状态集是由命名或逻辑控制分组组成的电源状态集合。

3. Target Devices
3. 目标设备

With Energy Management, there exists a wide variety of devices that may be contained in the same deployment as a communication network but comprise a separate facility, home, or power distribution network.

对于能源管理,存在多种设备,这些设备可能包含在与通信网络相同的部署中,但包括单独的设施、家庭或配电网络。

Energy Management has special challenges because a power distribution network supplies energy to devices and components, while a separate communications network monitors and controls the power distribution network.

能源管理有着特殊的挑战,因为配电网络为设备和组件提供能源,而独立的通信网络监控配电网络。

The target devices for Energy Management are all devices that can be monitored or controlled (directly or indirectly) by an Energy Management System (EnMS). These target devices include, for example:

能源管理的目标设备是可由能源管理系统(EnMS)监测或控制(直接或间接)的所有设备。这些目标设备包括,例如:

o Simple electrical appliances and fixtures

o 简易电器及固定装置

o Hosts, such as a PC, a server, or a printer

o 主机,如PC、服务器或打印机

o Switches, routers, base stations, and other network equipment such as middleboxes

o 交换机、路由器、基站和其他网络设备,如中间盒

o Components within devices, e.g., a line card inside a switch

o 设备内的组件,例如交换机内的线路卡

o Batteries functioning as a device or component that is a store of energy

o 作为能量储存装置或部件的电池

o Devices or components that charge or produce energy, such as solar cells, charging stations, or generators

o 充电或产生能量的装置或部件,如太阳能电池、充电站或发电机

o Power over Ethernet (PoE) endpoints

o 以太网供电(PoE)端点

o Power Distribution Units (PDUs)

o 配电装置(PDU)

o Protocol gateway devices for Building Management Systems (BMS)

o 楼宇管理系统(BMS)的协议网关设备

o Electrical meters

o 电表

o Sensor controllers with subtended sensors

o 带对端传感器的传感器控制器

Target devices include devices that communicate via the Internet Protocol (IP) as well as devices using other means for communication. The latter are managed through gateways or proxies that can communicate using IP.

目标设备包括通过互联网协议(IP)通信的设备以及使用其他通信手段的设备。后者通过可以使用IP进行通信的网关或代理进行管理。

4. Physical Reference Model
4. 物理参考模型

The following reference model describes physical power topologies that exist in parallel with a communication topology. While many more topologies can be created with a combination of devices, the following are some basic ones that show how Energy Management topologies differ from Network Management topologies.

以下参考模型描述了与通信拓扑并行存在的物理电源拓扑。虽然可以通过设备组合创建更多拓扑,但以下是一些基本拓扑,它们显示了能量管理拓扑与网络管理拓扑的区别。

NOTE: "###" is used to denote a transfer of energy. "- >" is used to denote a transfer of information.

注:“####”用于表示能量转移。“->”用于表示信息传输。

Basic Energy Management:

基本能源管理:

                        +--------------------------+
                        | Energy Management System |
                        +--------------------------+
                                    ^  ^
                         monitoring |  | control
                                    v  v
                                +---------+
                                | device  |
                                +---------+
        
                        +--------------------------+
                        | Energy Management System |
                        +--------------------------+
                                    ^  ^
                         monitoring |  | control
                                    v  v
                                +---------+
                                | device  |
                                +---------+
        

Basic Power Supply:

基本电源:

                +-----------------------------------------+
                |         Energy Management System        |
                +-----------------------------------------+
                      ^  ^                       ^  ^
           monitoring |  | control    monitoring |  | control
                      v  v                       v  v
                +--------------+        +-----------------+
                | power source |########|      device     |
                +--------------+        +-----------------+
        
                +-----------------------------------------+
                |         Energy Management System        |
                +-----------------------------------------+
                      ^  ^                       ^  ^
           monitoring |  | control    monitoring |  | control
                      v  v                       v  v
                +--------------+        +-----------------+
                | power source |########|      device     |
                +--------------+        +-----------------+
        

Single Power Supply with Multiple Devices:

具有多个设备的单电源:

                  +---------------------------------------+
                  |       Energy Management System        |
                  +---------------------------------------+
                     ^  ^                       ^  ^
          monitoring |  | control    monitoring |  | control
                     v  v                       v  v
                  +--------+        +------------------+
                  | power  |########|         device 1 |
                  | source |   #    +------------------+-+
                  +--------+   #######|         device 2 |
                                 #    +------------------+-+
                                 #######|         device 3 |
                                        +------------------+
        
                  +---------------------------------------+
                  |       Energy Management System        |
                  +---------------------------------------+
                     ^  ^                       ^  ^
          monitoring |  | control    monitoring |  | control
                     v  v                       v  v
                  +--------+        +------------------+
                  | power  |########|         device 1 |
                  | source |   #    +------------------+-+
                  +--------+   #######|         device 2 |
                                 #    +------------------+-+
                                 #######|         device 3 |
                                        +------------------+
        

Multiple Power Supplies with Single Device:

具有单个设备的多个电源:

             +----------------------------------------------+
             |          Energy Management System            |
             +----------------------------------------------+
                 ^  ^              ^  ^              ^  ^
            mon. |  | ctrl.   mon. |  | ctrl.   mon. |  | ctrl.
                 v  v              v  v              v  v
             +----------+      +----------+      +----------+
             | power    |######|  device  |######| power    |
             | source 1 |      |          |      | source 2 |
             +----------+      +----------+      +----------+
        
             +----------------------------------------------+
             |          Energy Management System            |
             +----------------------------------------------+
                 ^  ^              ^  ^              ^  ^
            mon. |  | ctrl.   mon. |  | ctrl.   mon. |  | ctrl.
                 v  v              v  v              v  v
             +----------+      +----------+      +----------+
             | power    |######|  device  |######| power    |
             | source 1 |      |          |      | source 2 |
             +----------+      +----------+      +----------+
        
5. Areas Not Covered by the Framework
5. 框架未涵盖的领域

While this framework is intended as a framework for Energy Management in general, there are some areas that are not covered.

虽然本框架旨在作为一般能源管理框架,但仍有一些领域未涵盖。

Non-Electrical Equipment

非电气设备

The primary focus of this framework is the management of electrical equipment. Non-electrical equipment, which is not covered in this framework, could nevertheless be modeled by providing interfaces that comply with the framework: for example, using the same units for power and energy. Therefore, non-electrical equipment that does not "convert to" or "present as" an entity equivalent to electrical equipment is not addressed.

该框架的主要重点是电气设备的管理。本框架中未涵盖的非电气设备可通过提供符合框架的接口进行建模:例如,使用相同的电源和能源装置。因此,不涉及“转换为”或“呈现为”等同于电气设备的实体的非电气设备。

Energy Procurement and Manufacturing

能源采购和制造

While an EnMS may be a central point for corporate reporting, cost computation, environmental impact analysis, and regulatory compliance reporting, Energy Management in this framework excludes energy procurement and the environmental impact of energy use.

虽然EnMS可能是公司报告、成本计算、环境影响分析和法规遵从性报告的中心点,但本框架中的能源管理不包括能源采购和能源使用的环境影响。

As such, the framework does not include:

因此,该框架不包括:

o Cost in currency or environmental units of manufacturing a device

o 制造设备的货币或环境单位成本

o Embedded carbon or environmental equivalences of a device

o 设备的嵌入式碳或环境等效物

o Cost in currency or environmental impact to dismantle or recycle a device

o 拆卸或回收设备的货币成本或环境影响

o Supply chain analysis of energy sources for device deployment

o 设备部署的能源供应链分析

o Conversion of the usage or production of energy to units expressed from the source of that energy (such as the greenhouse gas emissions associated with the transfer of energy from a diesel source)

o 将能源的使用或生产转换为该能源来源表示的单位(如与柴油能源转移相关的温室气体排放)

6. Energy Management Abstraction
6. 能源管理抽象

This section describes a conceptual model of information that can be used for Energy Management. The classes and categories of attributes in the model are described, with a rationale for each.

本节介绍可用于能源管理的信息概念模型。描述了模型中属性的类别和类别,并给出了每个类别的基本原理。

6.1. Conceptual Model
6.1. 概念模型

This section describes an information model that addresses issues specific to Energy Management and complements existing Network Management models.

本节描述了一个信息模型,该模型解决了能源管理特有的问题,并补充了现有的网络管理模型。

An information model for Energy Management will need to describe a means to monitor and control devices and components. The model will also need to describe the relationships among, and connections between, devices and components.

能源管理的信息模型需要描述监控设备和组件的方法。该模型还需要描述设备和组件之间的关系以及它们之间的连接。

This section defines a conceptual model for devices and components that is similar to the model used in Network Management: devices, components, and interfaces. This section then defines the additional attributes specific to Energy Management for those entities that are not available in existing Network Management models.

本节定义了设备和组件的概念模型,该模型类似于网络管理中使用的模型:设备、组件和接口。然后,本节为现有网络管理模型中不可用的实体定义特定于能量管理的附加属性。

For modeling the devices and components, this section describes three classes denoted by a "(Class)" suffix: a Device (Class), a Component (Class), and a Power Interface (Class). These classes are sub-types of an abstract Energy Object (Class).

为了对设备和组件进行建模,本节描述了由“(类)”后缀表示的三个类:设备(类)、组件(类)和电源接口(类)。这些类是抽象能量对象(类)的子类型。

Summary of Notation for Modeling Physical Equipment

物理设备建模符号概述

         Physical         Modeling (Metadata)      Model Instance
         ---------------------------------------------------------
         equipment        Energy Object (Class)    Energy Object
        
         Physical         Modeling (Metadata)      Model Instance
         ---------------------------------------------------------
         equipment        Energy Object (Class)    Energy Object
        

device Device (Class) Device

设备(类)设备

component Component (Class) Component

组件(类)组件

inlet/outlet Power Interface (Class) Power Interface

入口/出口电源接口(类)电源接口

This section then describes the attributes of an Energy Object (Class) for identification, classification, context, control, power, and energy.

然后,本节描述能源对象(类)的标识、分类、上下文、控制、电源和能源属性。

Since the interconnections between devices and components for Energy Management may have no relation to the interconnections for Network Management, the Energy Object (Classes) contain a separate Relationships (Class) as an attribute to model these types of interconnections.

由于用于能量管理的设备和组件之间的互连可能与用于网络管理的互连无关,因此能量对象(类)包含一个单独的关系(类),作为对这些互连类型建模的属性。

The next sections describe each of the classes and categories of attributes in the information model.

下一节将描述信息模型中属性的每个类和类别。

Not all of the attributes are mandatory for implementations. Specifications describing implementations of the information model in this framework need to be explicit about which are mandatory and which are optional to implement.

并非所有的属性都是实现所必需的。描述此框架中信息模型实现的规范需要明确哪些是强制性的,哪些是可选的。

The formal definitions of the classes and attributes are specified in Section 7.

第7节规定了类和属性的正式定义。

6.2. Energy Object (Class)
6.2. 能量对象(类)

An Energy Object (Class) represents a piece of equipment that is part of, or attached to, a communications network that is monitored or controlled or that aids in the management of another device for Energy Management.

能源对象(类别)表示作为通信网络一部分或连接到通信网络的设备,该通信网络受监控或控制,或有助于管理另一个能源管理设备。

The Energy Object (Class) is an abstract class that contains the base attributes to represent a piece of equipment for Energy Management. There are three types of Energy Object (Class): Device (Class), Component (Class), and Power Interface (Class).

能源对象(类)是一个抽象类,包含表示能源管理设备的基本属性。有三种类型的能量对象(类):设备(类)、组件(类)和电源接口(类)。

6.2.1. Device (Class)
6.2.1. 设备(类)

The Device (Class) is a subclass of Energy Object (Class) that represents a physical piece of equipment.

设备(类)是能量对象(类)的一个子类,表示设备的物理部分。

A Device (Class) instance represents a device that is a consumer, producer, meter, distributor, or store of energy.

设备(类)实例表示作为消费者、生产者、电表、分销商或能量存储的设备。

A Device (Class) instance may represent a physical device that contains other components.

设备(类)实例可以表示包含其他组件的物理设备。

6.2.2. Component (Class)
6.2.2. 组件(类)

The Component (Class) is a subclass of Energy Object (Class) that represents a part of a physical piece of equipment.

组件(类)是能量对象(类)的一个子类,表示设备物理部分的一部分。

6.2.3. Power Interface (Class)
6.2.3. 电源接口(类)

A Power Interface (Class) represents the interconnections (inlet, outlet) among devices or components where energy can be provided, received, or both.

电源接口(类)表示设备或组件之间的互连(入口、出口),在这些设备或组件中可以提供、接收或同时提供能量。

The Power Interface (Class) is a subclass of Energy Object (Class) that represents a physical inlet or outlet.

电源接口(类)是表示物理入口或出口的能源对象(类)的子类。

There are some similarities between Power Interfaces and network interfaces. A network interface can be set to different states, such as sending or receiving data on an attached line. Similarly, a Power Interface can be receiving or providing energy.

电源接口和网络接口之间有一些相似之处。网络接口可以设置为不同的状态,例如在连接的线路上发送或接收数据。类似地,电源接口可以接收或提供能量。

A Power Interface (Class) instance can represent (physically) an AC power socket, an AC power cord attached to a device, or an 8P8C (RJ45) PoE socket, etc.

电源接口(类)实例可以(物理)表示交流电源插座、连接到设备的交流电源线或8P8C(RJ45)PoE插座等。

6.3. Energy Object Attributes
6.3. 能量对象属性

This section describes categories of attributes for an Energy Object (Class).

本节介绍能量对象(类)的属性类别。

6.3.1. Identification
6.3.1. 识别

A Universally Unique Identifier (UUID) [RFC4122] is used to uniquely and persistently identify an Energy Object.

通用唯一标识符(UUID)[RFC4122]用于唯一且持久地标识能量对象。

Every Energy Object has an optional unique human-readable printable name. Possible naming conventions are textual DNS name, Media Access Control (MAC) address of the device, interface ifName, or a text string uniquely identifying the Energy Object. As an example, in the case of IP phones, the Energy Object name can be the device's DNS name.

每个能量对象都有一个可选的唯一的人类可读的可打印名称。可能的命名约定包括文本DNS名称、设备的媒体访问控制(MAC)地址、接口ifName或唯一标识能量对象的文本字符串。例如,在IP电话的情况下,能量对象名称可以是设备的DNS名称。

Additionally, an alternate key is provided to allow an Energy Object to be optionally linked with models in different systems.

此外,还提供了一个备用键,以允许能源对象选择性地与不同系统中的模型链接。

6.3.2. Context: General
6.3.2. 背景:一般

In order to aid in reporting and in differentiation between Energy Objects, each object optionally contains information establishing its business, site, or organizational context within a deployment.

为了帮助报告和区分能源对象,每个对象可选地包含在部署中建立其业务、站点或组织上下文的信息。

The Energy Object (Class) contains a category attribute that broadly describes how an instance is used in a deployment. The category indicates whether the Energy Object is primarily functioning as a consumer, producer, meter, distributor, or store of energy.

Energy对象(类)包含一个category属性,该属性广泛地描述了实例在部署中的使用方式。该类别表示能量对象是否主要作为能量的消费者、生产者、计量器、分销商或存储。

Given the category and context of an object, an EnMS can summarize or analyze measurements for the site.

给定对象的类别和上下文,EnMS可以总结或分析现场的测量结果。

6.3.3. Context: Importance
6.3.3. 背景:重要性

An Energy Object can provide an importance value in the range of 1 to 100 to help rank a device's use or relative value to the site. The importance range is from 1 (least important) to 100 (most important). The default importance value is 1.

能量对象可以提供1到100范围内的重要值,以帮助对设备的使用或相对于站点的相对价值进行排名。重要性范围从1(最不重要)到100(最重要)。默认的重要性值为1。

For example, a typical office environment has several types of phones, which can be rated according to their business impact. A public desk phone has a lower importance (for example, 10) than a business-critical emergency phone (for example, 100). As another example, a company can consider that a PC and a phone for a customer service engineer are more important than a PC and a phone for lobby use.

例如,一个典型的办公环境有几种类型的电话,可以根据其业务影响对其进行评级。公用桌面电话的重要性(例如,10)低于业务关键型紧急电话(例如,100)。作为另一个例子,公司可以认为PC和电话对于客户服务工程师比PC和大堂使用的电话更重要。

Although EnMS and administrators can establish their own ranking, the following example is a broad recommendation for commercial deployments [CISCO-EW]:

尽管EnMS和管理员可以建立自己的排名,但以下示例是对商业部署[CISCO-EW]的广泛建议:

90 to 100 Emergency response 80 to 90 Executive or business-critical 70 to 79 General or average 60 to 69 Staff or support 40 to 59 Public or guest 1 to 39 Decorative or hospitality

90至100紧急响应80至90执行或关键业务70至79一般或平均60至69名员工或支持40至59名公众或客人1至39名装饰或招待

6.3.4. Context: Keywords
6.3.4. 上下文:关键字

The Energy Object (Class) contains an attribute with context keywords.

能量对象(类)包含具有上下文关键字的属性。

An Energy Object can provide a set of keywords that is a list of tags that can be used for grouping, summary reporting (within or between Energy Management Domains), and searching. Potential examples are IT, lobby, HumanResources, Accounting, StoreRoom, CustomerSpace, router, phone, floor2, or SoftwareLab.

能源对象可以提供一组关键字,这些关键字是可用于分组、摘要报告(在能源管理域内或之间)和搜索的标记列表。潜在的例子有IT、大厅、人力资源、会计、库房、客户空间、路由器、电话、楼层2或软件实验室。

The specifics of how this tag is represented are left to the MIB module or other object definition documents to be based on this framework.

如何表示此标记的细节留给MIB模块或基于此框架的其他对象定义文档。

There is no default value for a keyword. Multiple keywords can be assigned to an Energy Object.

关键字没有默认值。可以为一个能量对象指定多个关键字。

6.3.5. Context: Role
6.3.5. 背景:角色

The Energy Object (Class) contains a role attribute. The "role description" string indicates the primary purpose the Energy Object serves in the deployment. This could be a string representing the purpose the Energy Object fulfills in the deployment.

能量对象(类)包含角色属性。“角色描述”字符串表示能量对象在部署中的主要用途。这可以是表示能量对象在部署中实现的目的的字符串。

The specifics of how this tag is represented are left to the MIB module or other object definition documents to be based on this framework.

如何表示此标记的细节留给MIB模块或基于此框架的其他对象定义文档。

Administrators can define any naming scheme for the role. As guidance, a two-word role that combines the service the Energy Object provides, along with type, can be used [IPENERGY].

管理员可以为角色定义任何命名方案。作为指导,可以使用两个单词的角色,将能量对象提供的服务与类型结合起来[IPENERGY]。

Example types of devices: Router, Switch, Light, Phone, WorkStation, Server, Display, Kiosk, HVAC.

设备的示例类型:路由器、交换机、灯、电话、工作站、服务器、显示器、信息亭、HVAC。

Example Services by Line of Business:

按业务线列出的服务示例:

         Line of Business     Service
         ------------------------------------------------------
         Education            Student, Faculty, Administration,
                              Athletic
        
         Line of Business     Service
         ------------------------------------------------------
         Education            Student, Faculty, Administration,
                              Athletic
        

Finance Trader, Teller, Fulfillment

金融交易员、出纳员、履行

Manufacturing Assembly, Control, Shipping

制造、装配、控制、运输

Retail Advertising, Cashier

零售广告,收银员

Support Helpdesk, Management

支持服务台、管理

Medical Patient, Administration, Billing

医疗病人、管理、账单

Role as a two-word string: "Faculty Desktop", "Teller Phone", "Shipping HVAC", "Advertising Display", "Helpdesk Kiosk", "Administration Switch".

角色为两个单词字符串:“教员桌面”、“出纳员电话”、“装运HVAC”、“广告显示”、“帮助台信息亭”、“管理开关”。

The specifics of how this tag is represented are left to the MIB module or other object definition documents to be based on this framework.

如何表示此标记的细节留给MIB模块或基于此框架的其他对象定义文档。

6.3.6. Context: Domain
6.3.6. 上下文:域

The Energy Object (Class) contains a string attribute to indicate membership in an Energy Management Domain. An Energy Management Domain can be any collection of Energy Objects in a deployment, but it is recommended to map 1:1 with a metered or sub-metered portion of the site.

能量对象(类)包含一个字符串属性,用于指示能量管理域中的成员身份。能量管理域可以是部署中的任何能量对象集合,但建议将1:1映射到站点的计量或子计量部分。

In building management, a meter refers to the meter provided by the utility used for billing and measuring power to an entire building or unit within a building. A sub-meter refers to a customer- or user-installed meter that is not used by the utility to bill but is instead used to get measurements from portions of a building.

在建筑物管理中,电表是指公用事业公司提供的电表,用于计费和测量整个建筑物或建筑物内装置的电力。子电表是指客户或用户安装的电表,公用事业公司不使用该电表计费,而是使用该电表从建筑物的各个部分获取测量值。

The specifics of how this tag is represented are left to the MIB module or other object definition documents to be based on this framework.

如何表示此标记的细节留给MIB模块或基于此框架的其他对象定义文档。

An Energy Object MUST be a member of a single Energy Management Domain; therefore, one attribute is provided.

能源对象必须是单个能源管理域的成员;因此,提供了一个属性。

6.4. Measurements
6.4. 测量

The Energy Object (Class) contains attributes to describe power, energy, and demand measurements.

能量对象(类)包含用于描述功率、能量和需求测量的属性。

An analogy for understanding power versus energy measurements can be made to speed and distance in automobiles. Just as a speedometer indicates the rate of change of distance (speed), a power measurement indicates the rate of transfer of energy. The odometer in an automobile measures the cumulative distance traveled; similarly, an energy measurement indicates the accumulated energy transferred.

可以对汽车的速度和距离进行类比,以了解功率与能量的关系。正如速度表指示距离(速度)的变化率一样,功率测量也指示能量的传递率。汽车里程表测量累计行驶距离;类似地,能量测量值表示传输的累积能量。

Demand measurements are averages of power measurements over time. So, using the same analogy to an automobile: measuring the average vehicle speed over multiple intervals of time for a given distance traveled, demand is the average power measured over multiple time intervals for a given energy value.

需求测量是一段时间内功率测量的平均值。因此,使用与汽车相同的类比:测量给定行驶距离的多个时间间隔内的平均车速,需求是给定能量值的多个时间间隔内测量的平均功率。

Within this framework, energy will only be quantified in units of watt-hours. Physical devices measuring energy in other units must convert values to watt-hours or be represented by Energy Objects that convert to watt-hours.

在此框架内,能源将仅以瓦时为单位进行量化。以其他单位测量能量的物理设备必须将值转换为瓦时,或由转换为瓦时的能量对象表示。

6.4.1. Measurements: Power
6.4.1. 测量:功率

The Energy Object (Class) contains a Nameplate Power Attribute that describes the nominal power as specified by the manufacturer of the device. The EnMS can use the Nameplate Power for provisioning, capacity planning, and (potentially) billing.

能量对象(类别)包含一个铭牌功率属性,该属性描述设备制造商指定的标称功率。EnMS可以使用铭牌电源进行资源调配、容量规划和(可能)计费。

The Energy Object (Class) has attributes that describe the present power information, along with how that measurement was obtained or derived (e.g., actual, estimated, or static).

能量对象(类)具有描述当前功率信息的属性,以及如何获得或导出该测量值(例如,实际、估计或静态)。

A power measurement is qualified with the units, magnitude, and direction of power flow and is qualified as to the means by which the measurement was made.

功率测量通过功率流的单位、大小和方向以及测量方法进行鉴定。

Power measurement magnitude conforms to the [IEC61850] definition of unit multiplier for the SI (System International) units of measure. Measured values are represented in SI units obtained by BaseValue * (10 ^ Scale). For example, if current power usage of an Energy Object is 17, it could be 17 W, 17 mW, 17 kW, or 17 MW, depending on the value of the scaling factor. 17 W implies that BaseValue = 17 and Scale = 0, whereas 17 mW implies that BaseValue = 17 and ScaleFactor = -3.

功率测量值符合国际标准(SI)测量单位的[IEC61850]单位乘数定义。测量值以通过BaseValue*(10^标度)获得的国际单位制表示。例如,如果能量对象的当前功率使用为17,则可能为17 W、17 mW、17 kW或17 mW,具体取决于比例因子的值。17 W表示BaseValue=17,Scale=0,而17 mW表示BaseValue=17,ScaleFactor=-3。

An Energy Object (Class) indicates how the power measurement was obtained with a caliber and accuracy attribute that indicates:

能量对象(类)表示如何通过口径和精度属性获得功率测量,该属性表示:

o Whether the measurements were made at the device itself or at a remote source.

o 测量是在设备本身还是在远程源进行的。

o Description of the method that was used to measure the power and whether this method can distinguish actual or estimated values.

o 描述用于测量功率的方法,以及该方法是否能够区分实际值或估计值。

o Accuracy for actual measured values.

o 实际测量值的准确度。

6.4.2. Measurements: Power Attributes
6.4.2. 测量:功率属性

The Energy Object (Class) contains an optional attribute that describes Power Attribute information reflecting the electrical characteristics of the measurement. These Power Attributes adhere to the [IEC61850-7-2] standard for describing AC measurements.

能量对象(类)包含一个可选属性,该属性描述反映测量电气特性的功率属性信息。这些功率属性符合描述交流测量的[IEC61850-7-2]标准。

6.4.3. Measurements: Energy
6.4.3. 测量:能量

The Energy Object (Class) contains optional attributes that represent the energy used, received, produced, and/or stored. Typically, only devices or components that can measure actual power will have the ability to measure energy.

能量对象(类)包含表示使用、接收、产生和/或存储的能量的可选属性。通常,只有能够测量实际功率的设备或组件才能测量能量。

6.4.4. Measurements: Demand
6.4.4. 测量:需求

The Energy Object (Class) contains optional attributes that represent demand information over time. Typically, only devices or components that can report actual power are capable of measuring demand.

能量对象(类)包含表示随时间变化的需求信息的可选属性。通常,只有能够报告实际功率的设备或组件才能测量需求。

6.5. Control
6.5. 控制

The Energy Object (Class) contains a Power State Set (Class) attribute that represents the set of Power States a device or component supports.

能量对象(类)包含电源状态集(类)属性,该属性表示设备或组件支持的电源状态集。

A Power State describes a condition or mode of a device or component. While Power States are typically used for control, they may be used for monitoring only.

电源状态描述设备或组件的状态或模式。虽然电源状态通常用于控制,但它们可能仅用于监控。

A device or component is expected to support at least one set of Power States consisting of at least two states: an on state and an off state.

设备或组件应支持至少一组电源状态,包括至少两种状态:接通状态和断开状态。

There are many existing standards describing device and component Power States. The framework supports modeling a mixed set of Power States defined in different standards. A basic example is given by

有许多现有标准描述设备和组件的电源状态。该框架支持对不同标准中定义的混合电源状态集进行建模。下面给出了一个基本示例:

the three Power States defined in IEEE1621 [IEEE1621]: on, off, and sleep. The Distributed Management Task Force (DMTF) standards organization [DMTF], Advanced Configuration and Power Interface (ACPI) specification [ACPI], and Printer Working Group (PWG) all define larger numbers of Power States.

IEEE1621[IEEE1621]中定义的三种电源状态:打开、关闭和睡眠。分布式管理任务组(DMTF)标准组织[DMTF]、高级配置和电源接口(ACPI)规范[ACPI]以及打印机工作组(PWG)都定义了大量的电源状态。

The semantics of a Power State are specified by:

电源状态的语义由以下内容指定:

a) The functionality provided by an Energy Object in this state.

a) 能量对象在此状态下提供的功能。

b) A limitation of the power that an Energy Object uses in this state.

b) 能量物体在这种状态下使用的能量限制。

c) A combination of a) and b).

c) A)和b)的组合。

The semantics of a Power State should be clearly defined. Limitation (curtailment) of the power used by an Energy Object in a state may be specified by:

电源状态的语义应该明确定义。能源对象在某一状态下使用的功率限制(限功率)可通过以下方式规定:

o An absolute power value.

o 绝对功率值。

o A percentage value of power relative to the Energy Object's Nameplate Power.

o 相对于能量对象铭牌功率的功率百分比值。

o An indication of power relative to another Power State. For example, specify that power in state A is less than in state B.

o 相对于另一个功率状态的功率指示。例如,指定状态A中的功率小于状态B中的功率。

o For supporting Power State management, an Energy Object provides statistics on Power States, including the time an Energy Object spent in a certain Power State and the number of times an Energy Object entered a Power State.

o 为了支持电源状态管理,能源对象提供电源状态的统计信息,包括能源对象在特定电源状态下花费的时间以及能源对象进入电源状态的次数。

When requesting an Energy Object to enter a Power State, an indication of the Power State's name or number can be used. Optionally, an absolute or percentage of Nameplate Power can be provided to allow the Energy Object to transition to a nearest or equivalent Power State.

当请求能量对象进入功率状态时,可以使用功率状态名称或编号的指示。可选地,可提供铭牌功率的绝对值或百分比,以允许能量对象转换到最接近或等效的功率状态。

When an Energy Object is set to a particular Power State, the represented device or component may be busy. The Energy Object should set the desired Power State and then update the actual Power State when the device or component changes. There are then two Power State (Class) control attributes: actual and requested.

当能量对象设置为特定电源状态时,所表示的设备或组件可能正忙。能源对象应设置所需的电源状态,然后在设备或组件更改时更新实际电源状态。然后有两个电源状态(类)控制属性:实际和请求。

The following sections describe well-known Power States for devices and components that should be modeled in the information model.

以下各节描述了应在信息模型中建模的设备和组件的已知电源状态。

6.5.1. Power State Sets
6.5.1. 幂状态集

There are several standards and implementations of Power State Sets. The Energy Object (Class) supports modeling one or multiple Power State Set implementations on the device or component concurrently.

电源状态集有几种标准和实现。Energy对象(类)支持同时对设备或组件上的一个或多个电源状态集实现进行建模。

There are currently three Power State Sets specified by IANA:

IANA目前指定了三种电源状态集:

      IEEE1621 (256) - [IEEE1621]
      DMTF (512)     - [DMTF]
      EMAN (768)     - [RFC7326]
        
      IEEE1621 (256) - [IEEE1621]
      DMTF (512)     - [DMTF]
      EMAN (768)     - [RFC7326]
        

The respective specific states related to each Power State Set are specified in the following sections. The guidelines for the modification of Power State Sets are specified in the IANA Considerations section.

与每个电源状态集相关的各个特定状态在以下章节中指定。IANA注意事项部分规定了修改电源状态集的指南。

6.5.2. Power State Set: IEEE1621
6.5.2. 电源状态集:IEEE1621

The IEEE1621 Power State Set [IEEE1621] consists of three rudimentary states: on, off, or sleep.

IEEE1621电源状态集[IEEE1621]由三种基本状态组成:打开、关闭或睡眠。

In IEEE1621, devices are limited to the three basic Power States -- on (2), sleep (1), and off (0). Any additional Power States are variants of one of the basic states, rather than a fourth state [IEEE1621].

在IEEE1621中,设备仅限于三种基本电源状态——开(2)、睡眠(1)和关(0)。任何附加电源状态都是一种基本状态的变体,而不是第四种状态[IEEE1621]。

6.5.3. Power State Set: DMTF
6.5.3. 电源状态集:DMTF

The DMTF [DMTF] standards organization has defined a power profile standard based on the CIM (Common Information Model), which consists of 15 Power States.

DMTF[DMTF]标准组织基于CIM(公共信息模型)定义了一个电源配置文件标准,该标准由15个电源状态组成。

The DMTF standard is targeted for hosts and computers. Details of the semantics of each Power State within the DMTF Power State Set can be obtained from the DMTF Power State Management Profile specification [DMTF].

DMTF标准针对主机和计算机。DMTF电源状态集中每个电源状态的语义细节可从DMTF电源状态管理配置文件规范[DMTF]中获得。

The DMTF power profile extends ACPI Power States. The following table provides a mapping between DMTF and ACPI Power State Sets:

DMTF电源配置文件扩展了ACPI电源状态。下表提供了DMTF和ACPI电源状态集之间的映射:

       DMTF                                 ACPI
       ------------------------------------------------
       Reserved (0)
       Reserved (1)
       ON (2)                               G0/S0
       Sleep-Light (3)                      G1/S1 G1/S2
       Sleep-Deep (4)                       G1/S3
       Power Cycle (Off-Soft) (5)           G2/S5
       Off-Hard (6)                         G3
       Hibernate (Off-Soft) (7)             G1/S4
       Off-Soft (8)                         G2/S5
       Power Cycle (Off-Hard) (9)           G3
       Master Bus Reset (10)                G2/S5
       Diagnostic Interrupt (11)            G2/S5
       Off-Soft Graceful (12)               G2/S5
       Off-Hard Graceful (13)               G3
       MasterBus Reset Graceful (14)        G2/S5
       Power Cycle Off-Soft Graceful (15)   G2/S5
       Power Cycle Off-Hard Graceful (16)   G3
        
       DMTF                                 ACPI
       ------------------------------------------------
       Reserved (0)
       Reserved (1)
       ON (2)                               G0/S0
       Sleep-Light (3)                      G1/S1 G1/S2
       Sleep-Deep (4)                       G1/S3
       Power Cycle (Off-Soft) (5)           G2/S5
       Off-Hard (6)                         G3
       Hibernate (Off-Soft) (7)             G1/S4
       Off-Soft (8)                         G2/S5
       Power Cycle (Off-Hard) (9)           G3
       Master Bus Reset (10)                G2/S5
       Diagnostic Interrupt (11)            G2/S5
       Off-Soft Graceful (12)               G2/S5
       Off-Hard Graceful (13)               G3
       MasterBus Reset Graceful (14)        G2/S5
       Power Cycle Off-Soft Graceful (15)   G2/S5
       Power Cycle Off-Hard Graceful (16)   G3
        
6.5.4. Power State Set: IETF EMAN
6.5.4. 电源状态集:IETF-EMAN

The EMAN Power States are an expansion of the basic Power States as defined in [IEEE1621] plus the addition of the Power States defined in [ACPI] and [DMTF]. Therefore, in addition to the non-operational states as defined in [ACPI] and [DMTF] standards, several intermediate operational states have been defined.

EMAN功率状态是[IEEE1621]中定义的基本功率状态的扩展,再加上[ACPI]和[DMTF]中定义的功率状态。因此,除了[ACPI]和[DMTF]标准中定义的非运行状态外,还定义了几个中间运行状态。

Physical devices and components are expected to support the EMAN Power State Set or to be modeled via an Energy Object the supports these states.

预计物理设备和组件将支持EMAN电源状态集,或通过支持这些状态的能源对象进行建模。

An Energy Object may implement fewer or more Power States than a particular EMAN Power State Set specifies. In that case, the Energy Object implementation can determine its own mapping to the predefined EMAN Power States within the EMAN Power State Set.

能量对象可以实现比特定EMAN功率状态集指定的功率状态更少或更多的功率状态。在这种情况下,能源对象实现可以确定其自身到EMAN电源状态集中预定义的EMAN电源状态的映射。

There are twelve EMAN Power States that expand on [IEEE1621]. The expanded list of Power States is derived from [CISCO-EW] and is divided into six operational states and six non-operational states.

在[IEEE1621]上扩展了12个EMAN功率状态。扩展的电源状态列表源自[CISCO-EW],分为六种工作状态和六种非工作状态。

The lowest non-operational state is 0, and the highest is 5. Each non-operational state corresponds to an [ACPI] Global and System state between G3 (hard-off) and G1 (sleeping). Each operational state represents a performance state and may be mapped to [ACPI] states P0 (maximum performance power) through P5 (minimum performance and minimum power).

最低非操作状态为0,最高为5。每个非运行状态对应于G3(硬关闭)和G1(休眠)之间的[ACPI]全局和系统状态。每个操作状态表示一个性能状态,并且可以映射到[ACPI]状态P0(最大性能功率)到P5(最小性能和最小功率)。

In each of the non-operational states (from mechoff(0) to ready(5)), the Power State preceding it is expected to have a lower Power value and a longer delay in returning to an operational state:

在每个非工作状态(从mechoff(0)到ready(5))中,预期其之前的电源状态在返回到工作状态时具有较低的电源值和较长的延迟:

mechoff(0): An off state where no Energy Object features are available. The Energy Object is unavailable. No energy is being consumed, and the power connector can be removed.

mechoff(0):没有可用能量对象特征的关闭状态。能量对象不可用。不消耗任何能量,可以卸下电源连接器。

softoff(1): Similar to mechoff(0), but some components remain powered or receive trace power so that the Energy Object can be awakened from its off state. In softoff(1), no context is saved, and the device typically requires a complete boot when awakened.

softoff(1):与mechoff(0)类似,但某些组件保持通电或接收跟踪电源,以便可以将能量对象从其关闭状态唤醒。在softoff(1)中,不保存上下文,设备在唤醒时通常需要完全引导。

hibernate(2): No Energy Object features are available. The Energy Object may be awakened without requiring a complete boot, but the time for availability is longer than sleep(3). An example for state hibernate(2) is a save-to-disk state where DRAM context is not maintained. Typically, energy consumption is zero or close to zero.

hibernate(2):没有可用的能量对象功能。能量对象可以在不需要完全启动的情况下被唤醒,但可用时间比睡眠时间长(3)。状态hibernate(2)的一个示例是保存到磁盘状态,其中不维护DRAM上下文。通常,能耗为零或接近零。

sleep(3): No Energy Object features are available, except for out-of-band management, such as wake-up mechanisms. The time for availability is longer than standby(4). An example for state sleep(3) is a save-to-RAM state, where DRAM context is maintained. Typically, energy consumption is close to zero.

睡眠(3):除带外管理(如唤醒机制)外,没有可用的能量对象功能。可用时间比待机时间长(4)。状态睡眠(3)的一个例子是保存到RAM状态,其中DRAM上下文被维护。通常,能源消耗接近于零。

standby(4): No Energy Object features are available, except for out-of-band management, such as wake-up mechanisms. This mode is analogous to cold-standby. The time for availability is longer than ready(5). For example, processor context may not be maintained. Typically, energy consumption is close to zero.

待机(4):除带外管理(如唤醒机制)外,没有可用的能量对象功能。此模式类似于冷备用。可用时间比准备时间长(5)。例如,处理器上下文可能无法维护。通常,能源消耗接近于零。

ready(5): No Energy Object features are available, except for out-of-band management, such as wake-up mechanisms. This mode is analogous to hot-standby. The Energy Object can be quickly transitioned into an operational state. For example, processors are not executing, but processor context is maintained.

就绪(5):除带外管理(如唤醒机制)外,没有可用的能量对象功能。此模式类似于热备用。能量对象可以快速转换为运行状态。例如,处理器未执行,但处理器上下文得到维护。

lowMinus(6): Indicates that some Energy Object features may not be available and the Energy Object has taken measures or selected options to use less energy than low(7).

lowMinus(6):表示某些能量对象功能可能不可用,并且能量对象已采取措施或选择选项以使用低于low(7)的能量。

low(7): Indicates that some Energy Object features may not be available and the Energy Object has taken measures or selected options to use less energy than mediumMinus(8).

低(7):表示某些能量对象功能可能不可用,并且能量对象已采取措施或选择选项以使用比mediumMinus(8)更少的能量。

mediumMinus(8): Indicates that all Energy Object features are available but the Energy Object has taken measures or selected options to use less energy than medium(9).

mediumMinus(8):表示所有能量对象功能都可用,但能量对象已采取措施或选择选项以使用比介质(9)更少的能量。

medium(9): Indicates that all Energy Object features are available but the Energy Object has taken measures or selected options to use less energy than highMinus(10).

中等(9):表示所有能量对象特征都可用,但能量对象已采取措施或选择选项以使用比高负(10)更少的能量。

highMinus(10): Indicates that all Energy Object features are available and the Energy Object has taken measures or selected options to use less energy than high(11).

高负(10):表示所有能量对象特征都可用,并且能量对象已采取措施或选择选项以使用低于高(11)的能量。

high(11): Indicates that all Energy Object features are available and the Energy Object may use the maximum energy as indicated by the Nameplate Power.

高(11):表示所有能量对象功能都可用,能量对象可能使用铭牌功率所示的最大能量。

6.5.5. Power State Sets Comparison
6.5.5. 电源状态集比较

A comparison of Power States from different Power State Sets can be seen in the following tables:

不同电源状态集的电源状态比较见下表:

Non-operational states:

非运行状态:

      IEEE1621  DMTF           ACPI         EMAN
      --------------------------------------------------
      off       Off-Hard       G3/S5        mechoff(0)
      off       Off-Soft       G2/S5        softoff(1)
      off       Hibernate      G1/S4        hibernate(2)
      sleep     Sleep-Deep     G1/S3        sleep(3)
      sleep     Sleep-Light    G1/S2        standby(4)
      sleep     Sleep-Light    G1/S1        ready(5)
        
      IEEE1621  DMTF           ACPI         EMAN
      --------------------------------------------------
      off       Off-Hard       G3/S5        mechoff(0)
      off       Off-Soft       G2/S5        softoff(1)
      off       Hibernate      G1/S4        hibernate(2)
      sleep     Sleep-Deep     G1/S3        sleep(3)
      sleep     Sleep-Light    G1/S2        standby(4)
      sleep     Sleep-Light    G1/S1        ready(5)
        

Operational states:

运行状态:

      IEEE1621  DMTF         ACPI           EMAN
      ----------------------------------------------------
      on        on           G0/S0/P5       lowMinus(6)
      on        on           G0/S0/P4       low(7)
      on        on           G0/S0/P3       mediumMinus(8)
      on        on           G0/S0/P2       medium(9)
      on        on           G0/S0/P1       highMinus(10)
      on        on           G0/S0/P0       high(11)
        
      IEEE1621  DMTF         ACPI           EMAN
      ----------------------------------------------------
      on        on           G0/S0/P5       lowMinus(6)
      on        on           G0/S0/P4       low(7)
      on        on           G0/S0/P3       mediumMinus(8)
      on        on           G0/S0/P2       medium(9)
      on        on           G0/S0/P1       highMinus(10)
      on        on           G0/S0/P0       high(11)
        
6.6. Relationships
6.6. 关系

The Energy Object (Class) contains a set of Relationship (Class) attributes to model the relationships between devices and components. Two Energy Objects can establish an Energy Object Relationship to model the deployment topology with respect to Energy Management.

能量对象(类)包含一组关系(类)属性,用于对设备和组件之间的关系进行建模。两个能量对象可以建立能量对象关系,以针对能量管理对部署拓扑进行建模。

Relationships are modeled with a Relationship (Class) that contains the UUID of the other participant in the relationship and a name that describes the type of relationship [CHEN]. The types of relationships are Power Source, Metering, and Aggregations.

关系由一个关系(类)建模,该关系(类)包含关系中其他参与者的UUID和一个描述关系类型的名称[CHEN]。关系的类型包括电源、计量和聚合。

o A Power Source Relationship is a relationship where one Energy Object provides power to one or more Energy Objects. The Power Source Relationship gives a view of the physical wiring topology -- for example, a data center server receiving power from two specific Power Interfaces from two different PDUs.

o 电源关系是一个能量对象向一个或多个能量对象提供电源的关系。电源关系提供了物理布线拓扑的视图——例如,数据中心服务器从两个不同PDU的两个特定电源接口接收电源。

Note: A Power Source Relationship may or may not change as the direction of power changes between two Energy Objects. The relationship may remain to indicate that the change of power direction was unintended or an error condition.

注意:电源关系可能会也可能不会随着两个能量对象之间电源方向的变化而变化。该关系可能仍然存在,以表明功率方向的改变是意外的或是错误情况。

o A Metering Relationship is a relationship where one Energy Object measures power, energy, demand, or Power Attributes of one or more other Energy Objects. The Metering Relationship gives the view of the Metering topology. Physical meters can be placed anywhere in a power distribution tree. For example, utility meters monitor and report accumulated power consumption of the entire building. Logically, the Metering topology overlaps with the wiring topology, as meters are connected to the wiring topology. A typical example is meters that clamp onto the existing wiring.

o 计量关系是一种关系,其中一个能源对象测量一个或多个其他能源对象的功率、能量、需求或功率属性。计量关系提供计量拓扑的视图。物理仪表可以放置在配电树中的任何位置。例如,公用电表监测并报告整个建筑物的累计功耗。从逻辑上讲,计量拓扑与布线拓扑重叠,因为仪表连接到布线拓扑。一个典型的例子是夹在现有线路上的仪表。

o An Aggregation Relationship is a relationship where one Energy Object aggregates Energy Management information of one or more other Energy Objects. The Aggregation Relationship gives a model of devices that may aggregate (sum, average, etc.) values for other devices. The Aggregation Relationship is slightly different compared to the other relationships, as this refers more to a management function.

o 聚合关系是一个能源对象聚合一个或多个其他能源对象的能源管理信息的关系。聚合关系提供了一个设备模型,可以为其他设备聚合(总和、平均值等)值。聚合关系与其他关系稍有不同,因为它更多地指的是管理功能。

In some situations, it is not possible to discover the Energy Object Relationships, and an EnMS or administrator must set them. Given that relationships can be assigned manually, the following sections describe guidelines for use.

在某些情况下,无法发现能量对象关系,必须由EnMS或管理员进行设置。鉴于可以手动分配关系,以下各节介绍了使用指南。

6.6.1. Relationship Conventions and Guidelines
6.6.1. 关系公约和准则

This Energy Management framework does not impose many "MUST" rules related to Energy Object Relationships. There are always corner cases that can be excluded by making stricter specifications for relationships. However, the framework proposes a series of guidelines, indicated with "SHOULD" and "MAY".

该能源管理框架没有强加许多与能源对象关系相关的“必须”规则。通过对关系制定更严格的规范,总是可以排除一些极端情况。然而,该框架提出了一系列准则,用“应该”和“可以”表示。

6.6.2. Guidelines: Power Source
6.6.2. 指南:电源

Power Source Relationships are intended to identify the connections between Power Interfaces. This is analogous to a Layer 2 connection in networking devices (a "one-hop connection").

电源关系旨在确定电源接口之间的连接。这类似于网络设备中的第2层连接(“单跳连接”)。

The preferred modeling would be for Power Interfaces to participate in Power Source Relationships. In some cases, Energy Objects may not have the capability to model Power Interfaces. Therefore, a Power Source Relationship can be established between two Energy Objects or two non-connected Power Interfaces.

首选的建模是电源接口参与电源关系。在某些情况下,能量对象可能无法对电源接口进行建模。因此,可以在两个能量对象或两个未连接的电源接口之间建立电源关系。

Strictly speaking, while components and Power Interfaces on the same Device do provide or receive energy from each other, the Power Source Relationship is intended to show energy transfer between Devices. Therefore, the relationship is implied when on the same Device.

严格来说,虽然同一设备上的组件和电源接口相互提供或接收能量,但电源关系旨在显示设备之间的能量传输。因此,当在同一设备上时,该关系是隐含的。

An Energy Object SHOULD NOT establish a Power Source Relationship with a component.

能量对象不应与组件建立电源关系。

o A Power Source Relationship SHOULD be established with the next known Power Interface in the wiring topology.

o 应与布线拓扑中的下一个已知电源接口建立电源关系。

o The next known Power Interface in the wiring topology would be the next device implementing the framework. In some cases, the domain of devices under management may include some devices that do not implement the framework. In these cases, the Power Source Relationship can be established with the next device in the topology that implements the framework and logically shows the Power Source of the device.

o 布线拓扑中的下一个已知电源接口将是实现该框架的下一个设备。在某些情况下,所管理的设备域可能包括一些未实现框架的设备。在这些情况下,可以与拓扑中实现框架并逻辑显示设备电源的下一个设备建立电源关系。

o Transitive Power Source Relationships SHOULD NOT be established. For example, if Energy Object A has a Power Source Relationship "Poweredby" with Energy Object B, and if Energy Object B has a Power Source Relationship "Poweredby" with Energy Object C, then Energy Object A SHOULD NOT have a Power Source Relationship "Poweredby" with Energy Object C.

o 不应建立可传递的电源关系。例如,如果能源对象A与能源对象B具有电源关系“Poweredby”,并且如果能源对象B与能源对象C具有电源关系“Poweredby”,则能源对象A不应与能源对象C具有电源关系“Poweredby”。

6.6.3. Guidelines: Metering Relationship
6.6.3. 准则:计量关系

Metering Relationships are intended to show when one device acting as a meter is measuring the power or energy at a point in a power distribution system. Since one point of a power distribution system may cover many devices within a wiring topology, this relationship type can be seen as a set.

计量关系旨在显示一个用作仪表的装置何时测量配电系统中某一点的功率或能量。由于配电系统的一个点可能覆盖布线拓扑中的许多设备,因此可以将此关系类型视为一个集合。

Some devices may include hardware that can measure power for components, outlets, or the entire device. For example, some PDUs may have the ability to measure power for each outlet and are commonly referred to as metered-by-outlet. Others may be able to control power at each power outlet but can only measure power at the power inlet -- commonly referred to as metered-by-device.

一些设备可能包括可以测量组件、插座或整个设备功率的硬件。例如,一些PDU可以测量每个插座的功率,通常称为按插座计量。其他人可能能够控制每个电源插座的功率,但只能测量电源插座的功率——通常称为通过设备计量。

While the Metering Relationship could be used to represent a device as metered-by-outlet or metered-by-device, the Metering Relationship SHOULD be used to model the relationship between a meter and all devices covered by the meter downstream in the power distribution system.

虽然计量关系可用于表示按出口计量或按装置计量的装置,但计量关系应用于模拟配电系统中仪表和仪表下游覆盖的所有装置之间的关系。

In general:

一般来说:

o A Metering Relationship MAY be established with any other Energy Object, component, or Power Interface.

o 可与任何其他能源对象、组件或电源接口建立计量关系。

o Transitive Metering Relationships MAY be used.

o 可以使用可传递的计量关系。

o When there is a series of meters for one Energy Object, the Energy Object MAY establish a Metering Relationship with one or more of the meters.

o 当一个能源对象有一系列仪表时,能源对象可与一个或多个仪表建立计量关系。

6.6.4. Guidelines: Aggregation
6.6.4. 准则:汇总

Aggregation Relationships are intended to identify when one device is used to accumulate values from other devices. Typically, this is for energy or power values among devices and not for components or Power Interfaces on the same device.

聚合关系旨在确定何时使用一个设备来累积来自其他设备的值。通常,这是针对设备之间的能量或功率值,而不是针对同一设备上的组件或电源接口。

The intent of Aggregation Relationships is to indicate when one device is providing aggregate values for a set of other devices when it is not obvious from the power source or simple containment within a device.

聚合关系的目的是,当电源或设备内的简单容器不明显时,指示一个设备何时为一组其他设备提供聚合值。

Establishing Aggregation Relationships within the same device would make modeling more complex, and the aggregated values can be implied from the use of power inlets, outlet, and Energy Object values on the same device.

在同一设备内建立聚合关系将使建模更加复杂,并且可以通过在同一设备上使用电源入口、出口和能源对象值来暗示聚合值。

Since an EnMS is naturally a point of Aggregation, it is not necessary to model Aggregation for Energy Management Systems.

由于EnMS自然是聚合点,因此无需为能源管理系统的聚合建模。

The Aggregation Relationship is intended for power and energy. It MAY be used for Aggregation of other values from the information model, but the rules and logical ability to aggregate each attribute are out of scope for this document.

聚合关系用于功率和能量。它可以用于聚合信息模型中的其他值,但是聚合每个属性的规则和逻辑能力超出了本文档的范围。

In general:

一般来说:

o A Device SHOULD NOT establish an Aggregation Relationship with components contained on the same device.

o 设备不应与同一设备上包含的组件建立聚合关系。

o A Device SHOULD NOT establish an Aggregation Relationship with the Power Interfaces contained on the same device.

o 设备不应与同一设备上包含的电源接口建立聚合关系。

o A Device SHOULD NOT establish an Aggregation Relationship with an EnMS.

o 设备不应与EnMS建立聚合关系。

o Aggregators SHOULD log or provide notification in the case of errors or missing values while performing Aggregation.

o 聚合器应在执行聚合时记录错误或缺少值时提供通知。

6.6.5. Energy Object Relationship Extensions
6.6.5. 能量对象关系扩展

This framework for Energy Management is based on three relationship types: Aggregation, Metering, and Power Source.

此能源管理框架基于三种关系类型:聚合、计量和电源。

This framework is defined with possible future extension of new Energy Object Relationships in mind.

该框架的定义考虑到新能源对象关系的未来可能扩展。

For example:

例如:

o Some Devices that may not be IP connected could be modeled with a proxy relationship to an Energy Object within the domain. This type of proxy relationship is left for further development.

o 一些可能没有IP连接的设备可以通过与域内能源对象的代理关系建模。这种类型的代理关系有待进一步发展。

o A Power Distribution Unit (PDU) that allows devices and components like outlets to be "ganged" together as a logical entity for simplified management purposes could be modeled with an extension called a "gang relationship", whose semantics would specify the Energy Objects' grouping.

o 配电单元(PDU)允许将设备和组件(如插座)作为逻辑实体“组合”在一起,以简化管理,可以使用一个称为“组合关系”的扩展进行建模,该扩展的语义将指定能源对象的分组。

7. Energy Management Information Model
7. 能源管理信息模型

This section presents an information model expression of the concepts in this framework as a reference for implementers. The information model is implemented as MIB modules in the different related IETF EMAN documents. However, other programming structures with different data models could be used as well.

本节介绍此框架中概念的信息模型表达,以供实现者参考。信息模型在不同的相关IETF EMAN文档中作为MIB模块实现。但是,也可以使用具有不同数据模型的其他编程结构。

Data modeling specifications of this information model may, where needed, specify which attributes are required or optional.

如果需要,此信息模型的数据建模规范可以指定哪些属性是必需的或可选的。

Syntax

语法

      Unified Modeling
      Language (UML)
      Construct
      [ISO-IEC-19501-2005]  Equivalent Notation
      --------------------  ----------------------------------
      Notes                 // Notes
        
      Unified Modeling
      Language (UML)
      Construct
      [ISO-IEC-19501-2005]  Equivalent Notation
      --------------------  ----------------------------------
      Notes                 // Notes
        
      Class
         (Generalization)   CLASS name {member..}
      Subclass
         (Specialization)   CLASS subclass
                                 EXTENDS superclass {member..}
      Class Member
         (Attribute)        attribute : type
        
      Class
         (Generalization)   CLASS name {member..}
      Subclass
         (Specialization)   CLASS subclass
                                 EXTENDS superclass {member..}
      Class Member
         (Attribute)        attribute : type
        

Model

模型

CLASS EnergyObject {

类能量对象{

            // identification / classification
            index        : int
            name         : string
            identifier   : uuid
            alternatekey : string
        
            // identification / classification
            index        : int
            name         : string
            identifier   : uuid
            alternatekey : string
        

// context domainName : string role : string keywords [0..n] : string importance : int

//上下文域名:字符串角色:字符串关键字[0..n]:字符串重要性:int

// relationship relationships [0..n] : Relationship

//关系[0..n]:关系

// measurements nameplate : Nameplate power : PowerMeasurement energy : EnergyMeasurement demand : DemandMeasurement

//测量铭牌:铭牌功率:功率测量能量:能量测量需求:需求测量

// control powerControl [0..n] : PowerStateSet }

//控件powerControl[0..n]:PowerStateSet}

      CLASS PowerInterface EXTENDS EnergyObject {
            eoIfType : enum { inlet, outlet, both }
      }
        
      CLASS PowerInterface EXTENDS EnergyObject {
            eoIfType : enum { inlet, outlet, both }
      }
        
      CLASS Device EXTENDS EnergyObject {
            eocategory             : enum { producer, consumer, meter,
      distributor, store }
            powerInterfaces [0..n] : PowerInterface
            components [0..n]      : Component
      }
        
      CLASS Device EXTENDS EnergyObject {
            eocategory             : enum { producer, consumer, meter,
      distributor, store }
            powerInterfaces [0..n] : PowerInterface
            components [0..n]      : Component
      }
        
      CLASS Component EXTENDS EnergyObject {
            eocategory             : enum { producer, consumer, meter,
      distributor, store }
            powerInterfaces [0..n] : PowerInterface
            components [0..n]      : Component
      }
        
      CLASS Component EXTENDS EnergyObject {
            eocategory             : enum { producer, consumer, meter,
      distributor, store }
            powerInterfaces [0..n] : PowerInterface
            components [0..n]      : Component
      }
        
      CLASS Nameplate {
            nominalPower : PowerMeasurement
            details      : URI
      }
        
      CLASS Nameplate {
            nominalPower : PowerMeasurement
            details      : URI
      }
        
      CLASS Relationship {
            relationshipType    : enum { meters, meteredby, powers,
      poweredby, aggregates, aggregatedby }
            relationshipObject  : uuid
      }
        
      CLASS Relationship {
            relationshipType    : enum { meters, meteredby, powers,
      poweredby, aggregates, aggregatedby }
            relationshipObject  : uuid
      }
        
      CLASS Measurement {
            multiplier : enum { -24..24 }
            caliber    : enum { actual, estimated, static }
            accuracy   : enum { 0..10000 } // hundreds of percent
      }
        
      CLASS Measurement {
            multiplier : enum { -24..24 }
            caliber    : enum { actual, estimated, static }
            accuracy   : enum { 0..10000 } // hundreds of percent
      }
        
      CLASS PowerMeasurement EXTENDS Measurement {
            value          : long
            units          : "W"
            powerAttribute : PowerAttribute
      }
        
      CLASS PowerMeasurement EXTENDS Measurement {
            value          : long
            units          : "W"
            powerAttribute : PowerAttribute
      }
        

CLASS EnergyMeasurement EXTENDS Measurement { startTime : time units : "kWh" provided : long used : long produced : long stored : long

类别能量测量扩展测量{开始时间:时间单位:“kWh”提供:长期使用:长期生产:长期存储:长期

}

}

      CLASS TimedMeasurement EXTENDS Measurement {
            startTime  : timestamp
            value      : Measurement
            maximum    : Measurement
      }
        
      CLASS TimedMeasurement EXTENDS Measurement {
            startTime  : timestamp
            value      : Measurement
            maximum    : Measurement
      }
        
      CLASS TimeInterval {
            value      : long
            units      : enum { seconds, milliseconds,... }
      }
        
      CLASS TimeInterval {
            value      : long
            units      : enum { seconds, milliseconds,... }
      }
        
      CLASS DemandMeasurement EXTENDS Measurement {
            intervalLength      : TimeInterval
            intervals           : long
            intervalMode        : enum { periodic, sliding, total }
            intervalWindow      : TimeInterval
            sampleRate          : TimeInterval
            status              : enum { active, inactive }
            measurements [0..n] : TimedMeasurements
      }
        
      CLASS DemandMeasurement EXTENDS Measurement {
            intervalLength      : TimeInterval
            intervals           : long
            intervalMode        : enum { periodic, sliding, total }
            intervalWindow      : TimeInterval
            sampleRate          : TimeInterval
            status              : enum { active, inactive }
            measurements [0..n] : TimedMeasurements
      }
        
      CLASS PowerStateSet {
            powerSetIdentifier : int
            name               : string
            powerStates [0..n] : PowerState
            operState          : int
            adminState         : int
            reason             : string
            configuredTime     : timestamp
      }
        
      CLASS PowerStateSet {
            powerSetIdentifier : int
            name               : string
            powerStates [0..n] : PowerState
            operState          : int
            adminState         : int
            reason             : string
            configuredTime     : timestamp
      }
        
      CLASS PowerState {
            powerStateIdentifier : int
            name                 : string
            cardinality          : int
            maximumPower         : PowerMeasurement
            totalTimeInState     : time
            entryCount           : long
      }
        
      CLASS PowerState {
            powerStateIdentifier : int
            name                 : string
            cardinality          : int
            maximumPower         : PowerMeasurement
            totalTimeInState     : time
            entryCount           : long
      }
        
      CLASS PowerAttribute {
            acQuality  : ACQuality
      }
        
      CLASS PowerAttribute {
            acQuality  : ACQuality
      }
        
      CLASS ACQuality {
            acConfiguration    : enum { SNGL, DEL, WYE }
            avgVoltage         : long
            avgCurrent         : long
            thdCurrent         : long
            frequency          : long
            unitMultiplier     : int
            accuracy           : int
            totalActivePower   : long
            totalReactivePower : long
            totalApparentPower : long
            totalPowerFactor   : long
      }
        
      CLASS ACQuality {
            acConfiguration    : enum { SNGL, DEL, WYE }
            avgVoltage         : long
            avgCurrent         : long
            thdCurrent         : long
            frequency          : long
            unitMultiplier     : int
            accuracy           : int
            totalActivePower   : long
            totalReactivePower : long
            totalApparentPower : long
            totalPowerFactor   : long
      }
        
      CLASS DelPhase EXTENDS ACQuality {
            phaseToNextPhaseVoltage : long
            thdVoltage              : long
      }
        
      CLASS DelPhase EXTENDS ACQuality {
            phaseToNextPhaseVoltage : long
            thdVoltage              : long
      }
        
      CLASS WYEPhase EXTENDS ACQuality {
            phaseToNeutralVoltage : long
            thdCurrent            : long
            thdVoltage            : long
            avgCurrent            : long
      }
        
      CLASS WYEPhase EXTENDS ACQuality {
            phaseToNeutralVoltage : long
            thdCurrent            : long
            thdVoltage            : long
            avgCurrent            : long
      }
        
8. Modeling Relationships between Devices
8. 设备间关系的建模

In this section, we give examples of how to use the EMAN information model to model physical topologies. Where applicable, we show how the framework can be applied when devices can be modeled with Power Interfaces. We also show how the framework can be applied when devices cannot be modeled with Power Interfaces but only monitored or controlled as a whole. For instance, a PDU may only be able to measure power and energy for the entire unit without the ability to distinguish among the inlets or outlets.

在本节中,我们将举例说明如何使用EMAN信息模型对物理拓扑进行建模。在适用的情况下,我们展示了当设备可以用电源接口建模时,如何应用该框架。我们还展示了当设备不能用电源接口建模,而只能作为一个整体进行监视或控制时,如何应用该框架。例如,PDU可能只能测量整个装置的功率和能量,而无法区分入口或出口。

8.1. Power Source Relationship
8.1. 电源关系

The Power Source Relationship is used to model the interconnections between devices, components, and/or Power Interfaces to indicate the source of energy for a device.

电源关系用于对设备、组件和/或电源接口之间的互连进行建模,以指示设备的能源。

In the following examples, we show variations on modeling the reference topologies using relationships.

在以下示例中,我们展示了使用关系对参考拓扑建模的各种变化。

Given for all cases:

对于所有情况:

Device W: A computer with one power supply. Power Interface 1 is an inlet for Device W.

设备W:只有一个电源的计算机。电源接口1是设备W的入口。

Device X: A computer with two power supplies. Power Interface 1 and Power Interface 2 are both inlets for Device X.

设备X:有两个电源的计算机。电源接口1和电源接口2都是设备X的入口。

Device Y: A PDU with multiple Power Interfaces numbered 0..10. Power Interface 0 is an inlet, and Power Interfaces 1..10 are outlets.

设备Y:具有编号为0..10的多个电源接口的PDU。电源接口0为入口,电源接口1..10为出口。

Device Z: A PDU with multiple Power Interfaces numbered 0..10. Power Interface 0 is an inlet, and Power Interfaces 1..10 are outlets.

设备Z:具有编号为0..10的多个电源接口的PDU。电源接口0为入口,电源接口1..10为出口。

Case 1: Simple Device with one Source

案例1:具有一个源的简单设备

Physical Topology:

物理拓扑:

o Device W inlet 1 is plugged into Device Y outlet 8.

o 装置W进口1插入装置Y出口8。

With Power Interfaces:

带电源接口:

o Device W has an Energy Object representing the computer itself as well as one Power Interface defined as an inlet.

o 设备W具有代表计算机本身的能量对象以及定义为入口的电源接口。

o Device Y would have an Energy Object representing the PDU itself (the Device), with Power Interface 0 defined as an inlet and Power Interfaces 1..10 defined as outlets.

o 设备Y将有一个表示PDU本身(设备)的能量对象,电源接口0定义为入口,电源接口1..10定义为出口。

The interfaces of the devices would have a Power Source Relationship such that:

设备的接口应具有电源关系,以便:

Device W inlet 1 is powered by Device Y outlet 8.

装置W进口1由装置Y出口8供电。

            +-------+------+       poweredBy +------+----------+
            | PDU Y | PI 8 |-----------------| PI 1 | Device W |
            +-------+------+ powers          +------+----------+
        
            +-------+------+       poweredBy +------+----------+
            | PDU Y | PI 8 |-----------------| PI 1 | Device W |
            +-------+------+ powers          +------+----------+
        

Without Power Interfaces:

没有电源接口:

o Device W has an Energy Object representing the computer.

o 设备W具有表示计算机的能量对象。

o Device Y would have an Energy Object representing the PDU.

o 设备Y将具有表示PDU的能量对象。

The devices would have a Power Source Relationship such that:

设备应具有电源关系,以便:

Device W is powered by Device Y.

设备W由设备Y供电。

            +----------+       poweredBy +------------+
            |  PDU Y   |-----------------|  Device W  |
            +----------+ powers          +------------+
        
            +----------+       poweredBy +------------+
            |  PDU Y   |-----------------|  Device W  |
            +----------+ powers          +------------+
        

Case 2: Multiple Inlets

案例2:多个入口

Physical Topology:

物理拓扑:

o Device X inlet 1 is plugged into Device Y outlet 8.

o 装置X进口1插入装置Y出口8。

o Device X inlet 2 is plugged into Device Y outlet 9.

o 装置X进口2插入装置Y出口9。

With Power Interfaces:

带电源接口:

o Device X has an Energy Object representing the computer itself. It contains two Power Interfaces defined as inlets.

o 设备X有一个表示计算机本身的能量对象。它包含两个定义为入口的电源接口。

o Device Y would have an Energy Object representing the PDU itself (the Device), with Power Interface 0 defined as an inlet and Power Interfaces 1..10 defined as outlets.

o 设备Y将有一个表示PDU本身(设备)的能量对象,电源接口0定义为入口,电源接口1..10定义为出口。

The interfaces of the devices would have a Power Source Relationship such that:

设备的接口应具有电源关系,以便:

Device X inlet 1 is powered by Device Y outlet 8.

设备X入口1由设备Y出口8供电。

Device X inlet 2 is powered by Device Y outlet 9.

设备X入口2由设备Y出口9供电。

            +-------+------+        poweredBy+------+----------+
            |       | PI 8 |-----------------| PI 1 |          |
            |       |      |powers           |      |          |
            | PDU Y +------+        poweredBy+------+ Device X |
            |       | PI 9 |-----------------| PI 2 |          |
            |       |      |powers           |      |          |
            +-------+------+                 +------+----------+
        
            +-------+------+        poweredBy+------+----------+
            |       | PI 8 |-----------------| PI 1 |          |
            |       |      |powers           |      |          |
            | PDU Y +------+        poweredBy+------+ Device X |
            |       | PI 9 |-----------------| PI 2 |          |
            |       |      |powers           |      |          |
            +-------+------+                 +------+----------+
        

Without Power Interfaces:

没有电源接口:

o Device X has an Energy Object representing the computer. Device Y has an Energy Object representing the PDU.

o 设备X有一个表示计算机的能量对象。设备Y具有表示PDU的能量对象。

The devices would have a Power Source Relationship such that:

设备应具有电源关系,以便:

Device X is powered by Device Y.

设备X由设备Y供电。

            +----------+       poweredBy +------------+
            |  PDU Y   |-----------------|  Device X  |
            +----------+ powers          +------------+
        
            +----------+       poweredBy +------------+
            |  PDU Y   |-----------------|  Device X  |
            +----------+ powers          +------------+
        

Case 3: Multiple Sources

案例3:多个来源

Physical Topology:

物理拓扑:

o Device X inlet 1 is plugged into Device Y outlet 8.

o 装置X进口1插入装置Y出口8。

o Device X inlet 2 is plugged into Device Z outlet 9.

o 装置X进口2插入装置Z出口9。

With Power Interfaces:

带电源接口:

o Device X has an Energy Object representing the computer itself. It contains two Power Interfaces defined as inlets.

o 设备X有一个表示计算机本身的能量对象。它包含两个定义为入口的电源接口。

o Device Y would have an Energy Object representing the PDU itself (the Device), with Power Interface 0 defined as an inlet and Power Interfaces 1..10 defined as outlets.

o 设备Y将有一个表示PDU本身(设备)的能量对象,电源接口0定义为入口,电源接口1..10定义为出口。

o Device Z would have an Energy Object representing the PDU itself (the Device), with Power Interface 0 defined as an inlet and Power Interfaces 1..10 defined as outlets.

o 设备Z将有一个表示PDU本身(设备)的能量对象,电源接口0定义为入口,电源接口1..10定义为出口。

The interfaces of the devices would have a Power Source Relationship such that:

设备的接口应具有电源关系,以便:

Device X inlet 1 is powered by Device Y outlet 8.

设备X入口1由设备Y出口8供电。

Device X inlet 2 is powered by Device Z outlet 9.

设备X入口2由设备Z出口9供电。

            +-------+------+        poweredBy+------+----------+
            | PDU Y | PI 8 |-----------------| PI 1 |          |
            |       |      |powers           |      |          |
            +-------+------+                 +------+          |
                                                    | Device X |
            +-------+------+        poweredBy+------+          |
            | PDU Z | PI 9 |-----------------| PI 2 |          |
            |       |      |powers           |      |          |
            +-------+------+                 +------+----------+
        
            +-------+------+        poweredBy+------+----------+
            | PDU Y | PI 8 |-----------------| PI 1 |          |
            |       |      |powers           |      |          |
            +-------+------+                 +------+          |
                                                    | Device X |
            +-------+------+        poweredBy+------+          |
            | PDU Z | PI 9 |-----------------| PI 2 |          |
            |       |      |powers           |      |          |
            +-------+------+                 +------+----------+
        

Without Power Interfaces:

没有电源接口:

o Device X has an Energy Object representing the computer. Devices Y and Z would both have respective Energy Objects representing each entire PDU.

o 设备X有一个表示计算机的能量对象。设备Y和Z都有各自的能量对象,代表每个完整的PDU。

The devices would have a Power Source Relationship such that:

设备应具有电源关系,以便:

Device X is powered by Device Y and powered by Device Z.

设备X由设备Y供电,设备Z供电。

            +----------+           poweredBy +------------+
            |  PDU Y   |---------------------|  Device X  |
            +----------+ powers              +------------+
        
            +----------+           poweredBy +------------+
            |  PDU Y   |---------------------|  Device X  |
            +----------+ powers              +------------+
        
            +----------+           poweredBy +------------+
            |  PDU Z   |---------------------|  Device X  |
            +----------+ powers              +------------+
        
            +----------+           poweredBy +------------+
            |  PDU Z   |---------------------|  Device X  |
            +----------+ powers              +------------+
        
8.2. Metering Relationship
8.2. 计量关系

A meter in a power distribution system can logically measure the power or energy for all devices downstream from the meter in the power distribution system. As such, a Metering Relationship can be seen as a relationship between a meter and all of the devices downstream from the meter.

配电系统中的仪表可以逻辑地测量配电系统中仪表下游所有设备的功率或能量。因此,计量关系可被视为计量器与计量器下游所有设备之间的关系。

We define in this case a Metering Relationship between a meter and devices downstream from the meter.

在这种情况下,我们定义了仪表和仪表下游设备之间的计量关系。

     +-----+---+    meteredBy +--------+   poweredBy +-------+
     |Meter| PI|--------------| switch |-------------| phone |
     +-----+---+ meters       +--------+ powers      +-------+
             |                                           |
             |                                 meteredBy |
             +-------------------------------------------+
              meters
        
     +-----+---+    meteredBy +--------+   poweredBy +-------+
     |Meter| PI|--------------| switch |-------------| phone |
     +-----+---+ meters       +--------+ powers      +-------+
             |                                           |
             |                                 meteredBy |
             +-------------------------------------------+
              meters
        

In cases where the Power Source topology cannot be discovered or derived from the information available in the Energy Management Domain, the Metering topology can be used to relate the upstream meter to the downstream devices in the absence of specific Power Source Relationships.

如果无法从能量管理领域中的可用信息中发现或导出电源拓扑,则可以使用计量拓扑在没有特定电源关系的情况下将上游仪表与下游设备关联起来。

A Metering Relationship can occur between devices that are not directly connected, as shown in the following figure:

未直接连接的设备之间可能存在计量关系,如下图所示:

                          +---------------+
                          |   Device 1    |
                          +---------------+
                          |      PI       |
                          +---------------+
                                  |
                          +---------------+
                          |     Meter     |
                          +---------------+
                                  .
                                  .
                                  .
                 meters        meters           meters
           +----------+   +----------+   +-----------+
           | Device A |   | Device B |   | Device C  |
           +----------+   +----------+   +-----------+
        
                          +---------------+
                          |   Device 1    |
                          +---------------+
                          |      PI       |
                          +---------------+
                                  |
                          +---------------+
                          |     Meter     |
                          +---------------+
                                  .
                                  .
                                  .
                 meters        meters           meters
           +----------+   +----------+   +-----------+
           | Device A |   | Device B |   | Device C  |
           +----------+   +----------+   +-----------+
        

An analogy to communications networks would be modeling connections between servers (meters) and clients (devices) when the complete Layer 2 topology between the servers and clients is not known.

与通信网络类似,当服务器和客户机之间的完整第2层拓扑未知时,可以对服务器(仪表)和客户机(设备)之间的连接进行建模。

8.3. Aggregation Relationship
8.3. 聚合关系

Some devices can act as Aggregation points for other devices. For example, a PDU controller device may contain the summation of power and energy readings for many PDU devices. The PDU controller will have aggregate values for power and energy for a group of PDU devices.

一些设备可以充当其他设备的聚合点。例如,PDU控制器设备可能包含许多PDU设备的功率和能量读数总和。PDU控制器将具有一组PDU设备的功率和能量的聚合值。

This Aggregation is independent of the physical power or communication topology.

此聚合独立于物理电源或通信拓扑。

The functions that the Aggregation point may perform include the calculation of values such as average, count, maximum, median, minimum, or the listing (collection) of the Aggregation values, etc.

聚合点可以执行的功能包括计算值,例如平均值、计数、最大值、中值、最小值或聚合值的列表(集合)等。

Based on IETF experience gained on Aggregations [RFC7015], the Aggregation function in the EMAN framework is limited to the summation.

根据IETF在聚合方面的经验[RFC7015],EMAN框架中的聚合功能仅限于总和。

When Aggregation occurs across a set of entities, values to be aggregated may be missing for some entities. The EMAN framework does not specify how these should be treated, as different implementations may have good reason to take different approaches. One common treatment is to define the Aggregation as missing if any of the

当跨一组实体进行聚合时,某些实体可能缺少要聚合的值。EMAN框架没有指定如何处理这些问题,因为不同的实现可能有充分的理由采取不同的方法。一种常见的处理方法是将聚合定义为缺失,如果

constituent elements are missing (useful to be most precise). Another is to treat the missing value as zero (useful to have continuous data streams).

缺少组成元素(最准确地说是有用的)。另一种方法是将缺少的值视为零(对于具有连续数据流很有用)。

The specifications of Aggregation functions are out of the scope of the EMAN framework but must be clearly specified by the equipment vendor.

聚合功能的规范不在EMAN框架的范围内,但必须由设备供应商明确规定。

9. Relationship to Other Standards
9. 与其他标准的关系

This Energy Management framework uses, as much as possible, existing standards, especially with respect to information modeling and data modeling [RFC3444].

该能源管理框架尽可能使用现有标准,尤其是在信息建模和数据建模方面[RFC3444]。

The data model for power- and energy-related objects is based on [IEC61850].

电力和能源相关对象的数据模型基于[IEC61850]。

Specific examples include:

具体例子包括:

o The scaling factor, which represents Energy Object usage magnitude, conforms to the [IEC61850] definition of unit multiplier for the SI (System International) units of measure.

o 表示能源对象使用量的比例因子符合[IEC61850]对国际单位制(SI)计量单位乘数的定义。

o The electrical characteristics are based on the ANSI and IEC Standards, which require that we use an accuracy class for power measurement. ANSI and IEC define the following accuracy classes for power measurement:

o 电气特性基于ANSI和IEC标准,这要求我们使用功率测量的精度等级。ANSI和IEC定义了功率测量的以下精度等级:

- IEC 62053-22 and 60044-1 classes 0.1, 0.2, 0.5, 1, and 3.

- IEC 62053-22和60044-1第0.1、0.2、0.5、1和3类。

- ANSI C12.20 classes 0.2 and 0.5.

- ANSI C12.20等级0.2和0.5。

o The electrical characteristics and quality adhere closely to the [IEC61850-7-4] standard for describing AC measurements.

o 电气特性和质量严格遵守描述交流测量的[IEC61850-7-4]标准。

o The Power State definitions are based on the DMTF Power State Profile and ACPI models, with operational state extensions.

o 功率状态定义基于DMTF功率状态配置文件和ACPI模型,以及操作状态扩展。

10. Security Considerations
10. 安全考虑

Regarding the data attributes specified here, some or all may be considered sensitive or vulnerable in some network environments. Reading or writing these attributes without proper protection such as encryption or access authorization will have negative effects on network capabilities. Event logs for audit purposes on configuration and other changes should be generated according to current

关于此处指定的数据属性,在某些网络环境中,部分或全部可能被视为敏感或易受攻击。在没有适当保护(如加密或访问授权)的情况下读取或写入这些属性将对网络功能产生负面影响。用于审核配置和其他更改的事件日志应根据当前

authorization, audit, and accounting principles to facilitate investigations (compromise or benign misconfigurations) or any reporting requirements.

授权、审计和会计原则,以促进调查(折衷或良性错误配置)或任何报告要求。

The information and control capabilities specified in this framework could be exploited, to the detriment of a site or deployment. Implementers of the framework SHOULD examine and mitigate security threats with respect to these new capabilities.

可以利用此框架中指定的信息和控制功能,从而损害站点或部署。框架的实现者应该检查并缓解与这些新功能相关的安全威胁。

"User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)" [RFC3414] presents a good description of threats and mitigations for SNMPv3 that can be used as a guide for implementations of this framework using other protocols.

“简单网络管理协议(SNMPv3)第3版的基于用户的安全模型(USM)”[RFC3414]很好地描述了SNMPv3的威胁和缓解措施,可作为使用其他协议实现此框架的指南。

10.1. Security Considerations for SNMP
10.1. SNMP的安全注意事项

Readable objects in MIB modules (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is important to control GET and/or NOTIFY access to these objects and possibly to encrypt the values of these objects when sending them over the network via SNMP.

在某些网络环境中,MIB模块中的可读对象(即具有最大访问权限而非不可访问权限的对象)可能被视为敏感或易受攻击。通过SNMP通过网络发送这些对象时,控制对这些对象的GET和/或NOTIFY访问,并可能加密这些对象的值,这一点很重要。

The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

在没有适当保护的非安全环境中支持SET操作可能会对网络操作产生负面影响。

For example:

例如:

o Unauthorized changes to the Energy Management Domain or business context of a device will result in misreporting or interruption of power.

o 未经授权更改设备的能源管理领域或业务环境将导致误报或电源中断。

o Unauthorized changes to a Power State will disrupt the power settings of the different devices and therefore the state of functionality of the respective devices.

o 对电源状态的未经授权的更改将破坏不同设备的电源设置,从而破坏相应设备的功能状态。

o Unauthorized changes to the demand history will disrupt proper accounting of energy usage.

o 未经授权对需求历史记录的更改将破坏能源使用的正确核算。

With respect to data transport, SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example, by using IPsec), there is still no secure control over who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in these MIB modules.

关于数据传输,SNMPv3之前的SNMP版本没有包括足够的安全性。即使网络本身是安全的(例如,通过使用IPsec),仍然无法安全控制安全网络上的谁可以访问和获取/设置(读取/更改/创建/删除)这些MIB模块中的对象。

It is recommended that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3411]), including full support for the SNMPv3 cryptographic mechanisms (for authentication and confidentiality).

建议实施者考虑SNMPv3框架提供的安全特性(参见[RCF311]),包括对SNMPv3加密机制的完全支持(用于身份验证和机密性)。

Further, deployment of SNMP versions prior to SNMPv3 is not recommended. Instead, it is recommended to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of these MIB modules is properly configured to give access to the objects only to those principals (users) that have legitimate rights to GET or SET (change/create/delete) them.

此外,不建议部署SNMPv3之前的SNMP版本。相反,建议部署SNMPv3并启用加密安全性。然后,客户/运营商有责任确保对访问这些MIB模块实例的SNMP实体进行了正确配置,以便仅向具有获取或设置(更改/创建/删除)对象的合法权限的主体(用户)授予对象访问权限。

11. IANA Considerations
11. IANA考虑
11.1. IANA Registration of New Power State Sets
11.1. IANA新电源状态集的注册

This document specifies an initial set of Power State Sets. The list of these Power State Sets with their numeric identifiers is given in Section 6. IANA maintains the lists of Power State Sets.

本文档指定了电源状态集的初始集合。第6节给出了这些电源状态集及其数字标识符的列表。IANA维护电源状态集列表。

New assignments for a Power State Set are administered by IANA through Expert Review [RFC5226], i.e., review by one of a group of experts designated by an IETF Area Director. The group of experts must check the requested state for completeness and accuracy of the description. A pure vendor-specific implementation of a Power State Set shall not be adopted, since it would lead to proliferation of Power State Sets.

电力状态集的新任务由IANA通过专家评审[RFC5226]进行管理,即由IETF区域总监指定的专家组之一进行评审。专家组必须检查所请求的状态,以确保描述的完整性和准确性。不应采用电源状态集的纯供应商特定实现,因为这将导致电源状态集的扩散。

Power States in a Power State Set are limited to 255 distinct values. A new Power State Set must be assigned the next available numeric identifier that is a multiple of 256.

电源状态集中的电源状态限制为255个不同的值。必须为新的电源状态集分配下一个可用的数字标识符(256的倍数)。

11.1.1. IANA Registration of the IEEE1621 Power State Set
11.1.1. IEEE1621电源状态集的IANA注册

This document specifies a set of values for the IEEE1621 Power State Set [IEEE1621]. The list of these values with their identifiers is given in Section 6.5.2. IANA created a new registry for IEEE1621 Power State Set identifiers and filled it with the initial list of identifiers.

本文件规定了IEEE1621电源状态集[IEEE1621]的一组值。第6.5.2节给出了这些值及其标识符的列表。IANA为IEEE1621电源状态集标识符创建了一个新的注册表,并用标识符的初始列表填充它。

New assignments (or, potentially, deprecation) for the IEEE1621 Power State Set are administered by IANA through Expert Review [RFC5226].

IEEE1621电源状态集的新分配(或可能的弃用)由IANA通过专家评审[RFC5226]进行管理。

11.1.2. IANA Registration of the DMTF Power State Set
11.1.2. DMTF电源状态集的IANA注册

This document specifies a set of values for the DMTF Power State Set [DMTF]. The list of these values with their identifiers is given in Section 6.5.3. IANA has created a new registry for DMTF Power State Set identifiers and filled it with the initial list of identifiers.

本文档为DMTF电源状态集[DMTF]指定了一组值。第6.5.3节给出了这些值及其标识符的列表。IANA为DMTF电源状态集标识符创建了一个新的注册表,并用标识符的初始列表填充它。

New assignments (or, potentially, deprecation) for the DMTF Power State Set are administered by IANA through Expert Review [RFC5226].

DMTF电源状态集的新分配(或可能的弃用)由IANA通过专家评审进行管理[RFC5226]。

The group of experts must check for conformance with the DMTF standard [DMTF] in addition to checking for completeness and accuracy of the description.

除了检查描述的完整性和准确性外,专家组还必须检查是否符合DMTF标准[DMTF]。

11.1.3. IANA Registration of the EMAN Power State Set
11.1.3. EMAN电源状态集的IANA注册

This document specifies a set of values for the EMAN Power State Set. The list of these values with their identifiers is given in Section 6.5.4. IANA has created a new registry for EMAN Power State Set identifiers and filled it with the initial list of identifiers.

本文档为EMAN电源状态集指定了一组值。第6.5.4节给出了这些值及其标识符的列表。IANA为EMAN电源状态集标识符创建了一个新的注册表,并用标识符的初始列表填充该注册表。

New assignments (or, potentially, deprecation) for the EMAN Power State Set are administered by IANA through Expert Review [RFC5226].

IANA通过专家评审[RFC5226]管理EMAN电源状态集的新分配(或可能的弃用)。

11.2. Updating the Registration of Existing Power State Sets
11.2. 更新现有电源状态集的注册

With the evolution of standards, over time, it may be important to deprecate some of the existing Power State Sets, or to add or deprecate some Power States within a Power State Set.

随着标准的发展,随着时间的推移,弃用某些现有电源状态集,或在电源状态集中添加或弃用某些电源状态可能会很重要。

The registrant shall post an Internet-Draft with the clear specification on deprecation of Power State Sets or Power States registered with IANA. The deprecation or addition shall be administered by IANA through Expert Review [RFC5226], i.e., review by one of a group of experts designated by an IETF Area Director. The process should also allow for a mechanism for cases where others have significant objections to claims regarding the deprecation of a registration.

注册人应在互联网上发布一份草案,明确说明电力状态集或在IANA注册的电力状态的弃用。IANA应通过专家评审[RFC5226]管理弃用或添加,即由IETF区域总监指定的专家组之一进行评审。该程序还应考虑到一种机制,以处理其他人对有关否决登记的主张有重大异议的情况。

12. References
12. 工具书类
12.1. Normative References
12.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, RFC 3411, December 2002.

[RFC3411]Harrington,D.,Presohn,R.,和B.Wijnen,“描述简单网络管理协议(SNMP)管理框架的体系结构”,STD 62,RFC 3411,2002年12月。

[RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

[RFC3414]Blumenthal,U.和B.Wijnen,“简单网络管理协议(SNMPv3)版本3的基于用户的安全模型(USM)”,STD 62,RFC 3414,2002年12月。

[RFC3444] Pras, A. and J. Schoenwaelder, "On the Difference between Information Models and Data Models", RFC 3444, January 2003.

[RFC3444]Pras,A.和J.Schoenwaeld,“关于信息模型和数据模型之间的差异”,RFC 3444,2003年1月。

[RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN Namespace", RFC 4122, July 2005.

[RFC4122]Leach,P.,Mealling,M.和R.Salz,“通用唯一标识符(UUID)URN名称空间”,RFC 4122,2005年7月。

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

[RFC5226]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。

[RFC6933] Bierman, A., Romascanu, D., Quittek, J., and M. Chandramouli, "Entity MIB (Version 4)", RFC 6933, May 2013.

[RFC6933]Bierman,A.,Romascanu,D.,Quittek,J.,和M.Chandramouli,“实体MIB(版本4)”,RFC 69332013年5月。

[RFC6988] Quittek, J., Ed., Chandramouli, M., Winter, R., Dietz, T., and B. Claise, "Requirements for Energy Management", RFC 6988, September 2013.

[RFC6988]Quitek,J.,Ed.,Chandramouli,M.,Winter,R.,Dietz,T.,和B.Claise,“能源管理要求”,RFC 6988,2013年9月。

[ISO-IEC-19501-2005] ISO/IEC 19501:2005, Information technology, Open Distributed Processing -- Unified Modeling Language (UML) Version 1.4.2, January 2005.

[ISO-IEC-19501-2005]ISO/IEC 19501:2005,信息技术,开放分布式处理——统一建模语言(UML)版本1.4.2,2005年1月。

12.2. Informative References
12.2. 资料性引用

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January 2005.

[RFC3986]Berners Lee,T.,Fielding,R.,和L.Masinter,“统一资源标识符(URI):通用语法”,STD 66,RFC 3986,2005年1月。

[RFC7015] Trammell, B., Wagner, A., and B. Claise, "Flow Aggregation for the IP Flow Information Export (IPFIX) Protocol", RFC 7015, September 2013.

[RFC7015]Trammell,B.,Wagner,A.,和B.Claise,“IP流信息导出(IPFIX)协议的流聚合”,RFC 7015,2013年9月。

[ACPI] "Advanced Configuration and Power Interface Specification", October 2006, <http://www.acpi.info/spec30b.htm>.

[ACPI]“高级配置和电源接口规范”,2006年10月<http://www.acpi.info/spec30b.htm>.

[IEEE1621] "Standard for User Interface Elements in Power Control of Electronic Devices Employed in Office/Consumer Environments", IEEE 1621, December 2004.

[IEEE1621]“办公/消费环境中使用的电子设备功率控制中的用户界面元件标准”,IEEE 1621,2004年12月。

[NMF] Clemm, A., "Network Management Fundamentals", ISBN-10: 1-58720-137-2, Cisco Press, November 2006.

[NMF]克莱姆,A.,“网络管理基础”,ISBN-10:1-58720-137-2,思科出版社,2006年11月。

[TMN] International Telecommunication Union, "TMN management functions", ITU-T Recommendation M.3400, February 2000.

[TMN]国际电信联盟,“TMN管理功能”,ITU-T建议M.3400,2000年2月。

[IEEE100] "The Authoritative Dictionary of IEEE Standards Terms", <http://ieeexplore.ieee.org/xpl/ mostRecentIssue.jsp?punumber=4116785>.

[IEEE100]“IEEE标准术语权威词典”<http://ieeexplore.ieee.org/xpl/ jsp?punumber=4116785>。

[ISO50001] "ISO 50001:2011 Energy management systems -- Requirements with guidance for use", June 2011, <http://www.iso.org/>.

[ISO50001]“ISO 50001:2011能源管理体系——要求及使用指南”,2011年6月<http://www.iso.org/>.

[IEC60050] "International Electrotechnical Vocabulary", <http://www.electropedia.org/iev/iev.nsf/ welcome?openform>.

[IEC60050]“国际电工词汇”<http://www.electropedia.org/iev/iev.nsf/ 欢迎光临?openform>。

[IEC61850] "Power Utility Automation", <http://www.iec.ch/smartgrid/standards/>.

[IEC61850]“电力设施自动化”<http://www.iec.ch/smartgrid/standards/>.

[IEC61850-7-2] "Abstract communication service interface (ACSI)", <http://www.iec.ch/smartgrid/standards/>.

[IEC61850-7-2]“抽象通信服务接口(ACSI)”<http://www.iec.ch/smartgrid/standards/>.

[IEC61850-7-4] "Compatible logical node classes and data classes", <http://www.iec.ch/smartgrid/standards/>.

[IEC61850-7-4]“兼容的逻辑节点类和数据类”<http://www.iec.ch/smartgrid/standards/>.

[DMTF] "Power State Management Profile", DMTF DSP1027 Version 2.0.0, December 2009, <http://www.dmtf.org/sites/default/files/standards/ documents/DSP1027_2.0.0.pdf>.

[DMTF]“电源状态管理配置文件”,DMTF DSP1027版本2.0.0,2009年12月<http://www.dmtf.org/sites/default/files/standards/ documents/DSP1027_2.0.0.pdf>。

[IPENERGY] Aldrich, R. and J. Parello, "IP-Enabled Energy Management: A Proven Strategy for Administering Energy as a Service", 2010, Wiley Publishing.

[IPENERGY]Aldrich,R.和J.Parello,“知识产权驱动的能源管理:作为服务管理能源的经验证战略”,2010年,Wiley出版社。

[X.700] CCITT Recommendation X.700, "Management framework for Open Systems Interconnection (OSI) for CCITT applications", September 1992.

[X.700]CCITT建议X.700,“CCITT应用的开放系统互连(OSI)管理框架”,1992年9月。

[ASHRAE-201] "ASHRAE Standard Project Committee 201 (SPC 201) Facility Smart Grid Information Model", <http://spc201.ashraepcs.org>.

[ASHRAE-201]“ASHRAE标准项目委员会201(SPC 201)设施智能电网信息模型”<http://spc201.ashraepcs.org>.

[CHEN] Chen, P., "The Entity-Relationship Model: Toward a Unified View of Data", ACM Transactions on Database Systems (TODS), March 1976.

[CHEN]CHEN,P.,“实体关系模型:面向数据的统一视图”,数据库系统上的ACM事务(TODS),1976年3月。

[CISCO-EW] Parello, J., Saville, R., and S. Kramling, "Cisco EnergyWise Design Guide", Cisco Validated Design (CVD), September 2011, <http://www.cisco.com/en/US/docs/solutions/ Enterprise/Borderless_Networks/Energy_Management/ energywisedg.html>.

[CISCO-EW]Parello,J.,Saville,R.,和S.Kramling,“CISCO EnergyWise设计指南”,CISCO验证设计(CVD),2011年9月<http://www.cisco.com/en/US/docs/solutions/ 企业/无国界网络/能源管理/energywisedg.html>。

13. Acknowledgments
13. 致谢

The authors would like to thank Michael Brown for his editorial work, which improved the text dramatically. Thanks to Rolf Winter for his feedback, and to Bill Mielke for his feedback and very detailed review. Thanks to Bruce Nordman for brainstorming, with numerous conference calls and discussions. Finally, the authors would like to thank the EMAN chairs: Nevil Brownlee, Bruce Nordman, and Tom Nadeau.

作者要感谢迈克尔·布朗的编辑工作,他的编辑工作极大地改进了文本。感谢罗尔夫·温特的反馈,感谢比尔·米尔克的反馈和非常详细的评论。感谢Bruce Nordman的集思广益,以及众多的电话会议和讨论。最后,作者要感谢伊曼主席:内维尔·布朗利、布鲁斯·诺德曼和汤姆·纳多。

Appendix A. Information Model Listing
附录A.信息模型清单

A. EnergyObject (Class):

A.能源对象(类别):

r index Integer An [RFC6933] entPhysicalIndex

r索引整数An[RFC6933]entPhysicalIndex

w name String An [RFC6933] entPhysicalName

w名称字符串[RFC6933]entPhysicalName

r identifier uuid An [RFC6933] entPhysicalUUID

r标识符uuid和[RFC6933]entPhysicalUUID

rw alternatekey String A manufacturer-defined string that can be used to identify the Energy Object

rw alternatekey字符串制造商定义的字符串,可用于标识能量对象

rw domainName String The name of an Energy Management Domain for the Energy Object

rw domainName字符串能源对象的能源管理域的名称

rw role String An administratively assigned name to indicate the purpose an Energy Object serves in the network

rw角色字符串管理分配的名称,用于指示能源对象在网络中的用途

rw keywords String A list of keywords or [0..n] tags that can be used to group Energy Objects for reporting or searching

rw关键字字符串关键字或[0..n]标记的列表,可用于对能源对象进行分组以进行报告或搜索

rw importance Integer Specifies a ranking of how important the Energy Object is (on a scale of 1 to 100) compared with other Energy Objects

rw重要性整数指定能量对象与其他能量对象相比的重要性排名(以1到100为尺度)

rw relationships Relationship A list of relationships between [0..n] this Energy Object and other Energy Objects

rw关系[0..n]此能量对象与其他能量对象之间的关系列表

r nameplate Nameplate The nominal PowerMeasurement of the Energy Object as specified by the device manufacturer

r铭牌——装置制造商规定的能量对象的标称功率测量值

r power PowerMeasurement The present power measurement of the Energy Object

r功率功率测量能量对象的当前功率测量

r energy EnergyMeasurement The present energy measurement for the Energy Object

r能量测量能量物体的当前能量测量

r demand DemandMeasurement The present demand measurement for the Energy Object

r需求测量能源对象的当前需求测量

r powerControl PowerStateSet A list of Power States Sets the [0..n] Energy Object supports

r powerControl PowerStateSet[0..n]能源对象支持的电源状态集列表

B. PowerInterface (Class) inherits from EnergyObject:

B.PowerInterface(类)继承自EnergyObject:

r eoIfType Enumeration Indicates whether the Power Interface is an inlet, outlet, or both

r eoIfType枚举指示电源接口是入口、出口还是两者兼有

C. Device (Class) inherits from EnergyObject:

C.设备(类)继承自EnergyObject:

rw eocategory Enumeration Broadly indicates whether the Device is a producer, consumer, meter, distributor, or store of energy

rw eocategory枚举广义上表示设备是生产者、消费者、电表、分销商还是能量存储

r powerInterfaces PowerInterface A list of PowerInterfaces [0..n] contained in this Device

r powerInterfaces PowerInterface此设备中包含的powerInterfaces[0..n]列表

r components Component A list of components [0..n] contained in this Device

r组件此设备中包含的组件[0..n]列表

D. Component (Class) inherits from EnergyObject:

D.组件(类)继承自EnergyObject:

rw eocategory Enumeration Broadly indicates whether the component is a producer, consumer, meter, distributor, or store of energy

rw eocategory枚举广义上表示组件是生产者、消费者、电表、分销商还是储能器

r powerInterfaces PowerInterface A list of PowerInterfaces [0..n] contained in this component

r powerInterfaces PowerInterface此组件中包含的powerInterfaces[0..n]列表

r components Component A list of components contained [0..n] in this component

r组件此组件中包含[0..n]的组件列表

E. Nameplate (Class):

E.铭牌(等级):

r nominalPower PowerMeasurement The nominal power of the Energy as specified by the device manufacturer

r标称功率测量装置制造商规定的能量标称功率

rw details URI An [RFC3986] URI that links to manufacturer information about the nominal power of a device

rw详细信息URI一个[RFC3986]URI,链接到有关设备标称功率的制造商信息

F. Relationship (Class):

F.关系(类别):

rw relationshipType Enumeration A description of the relationship, indicating meters, meteredby, powers, poweredby, aggregates, or aggregatedby

rw relationshipType枚举关系的描述,表示米、米、幂、幂、幂、聚合或聚合

rw relationshipObject uuid An [RFC6933] entPhysicalUUID that indicates the other participating Energy Object in the relationship

rw relationshipObject uuid一个[RFC6933]entPhysicalUUID,指示关系中的其他参与能量对象

G. Measurement (Class):

G.测量(等级):

r multiplier Enumeration The magnitude of the Measurement in the range -24..24

r乘数枚举-范围-24..24内的测量值

r caliber Enumeration Specifies how the Measurement was obtained -- actual, estimated, or static

r口径枚举指定如何获得度量值——实际、估计或静态

r accuracy Enumeration Specifies the accuracy of the measurement, if applicable, as 0..10000, indicating hundreds of percent

r精度枚举指定测量的精度(如果适用),为0..10000,表示百分之一百

H. PowerMeasurement (Class) inherits from Measurement:

H.功率测量(类)继承自测量:

r value Long A measurement value of power

r值是功率的测量值

r units "W" The units of measure for the power -- "Watts"

r单位“W”功率的测量单位--“瓦特”

r powerAttribute PowerAttribute Measurement of the electrical current -- voltage, phase, and/or frequencies for the PowerMeasurement

r功率属性电流的功率属性测量——功率测量的电压、相位和/或频率

I. EnergyMeasurement (Class) inherits from Measurement:

I.能量测量(类)继承自测量:

r startTime Time Specifies the start time of the EnergyMeasurement interval

r startTime Time指定能量测量间隔的开始时间

r units "kWh" The units of measure for the energy -- kilowatt-hours

r单位“kWh”能量的计量单位——千瓦时

r provided Long A measurement of energy provided

r提供了长时间的能量测量

r used Long A measurement of energy used/consumed

r使用了很长时间来测量所用/消耗的能量

r produced Long A measurement of energy produced

r产生的能量是对产生的能量的测量

r stored Long A measurement of energy stored

r长时间存储能量的测量

J. TimedMeasurement (Class) inherits from Measurement:

J.TimedMeasurement(类)继承自测量:

r startTime timestamp A start time of a measurement

r startTime时间戳测量的开始时间

r value Measurement A measurement value

r值测量值测量值

r maximum Measurement A maximum value measured since a previous timestamp

r最大测量自上一个时间戳以来测量的最大值

K. TimeInterval (Class):

K.时间间隔(类别):

r value Long A value of time

r值是一个很长的时间值

r units Enumeration A magnitude of time, expressed as seconds with an SI prefix (milliseconds, etc.)

r单位枚举时间的大小,表示为秒,带有SI前缀(毫秒等)

L. DemandMeasurement (Class) inherits from Measurement:

L.DemandMeasurement(类)继承自测量:

rw intervalLength TimeInterval The length of time over which to compute average energy

rw intervalLength time Interval计算平均能量的时间长度

rw intervals Long The number of intervals that can be measured

rw Interval Long可测量的间隔数

rw intervalMode Enumeration The mode of interval measurement -- periodic, sliding, or total

rw intervalMode枚举间隔测量的模式——周期、滑动或总

rw intervalWindow TimeInterval The duration between the starting time of one sliding window and the next starting time

rw intervalWindow time Interval一个滑动窗口的开始时间与下一个开始时间之间的持续时间

rw sampleRate TimeInterval The sampling rate at which to poll power in order to compute demand

rw sampleRate Time Interval为计算需求而轮询功率的采样率

rw status Enumeration A control to start or stop demand measurement -- active or inactive

rw状态枚举用于启动或停止需求测量的控件—活动或非活动

r measurements TimedMeasurement A collection of TimedMeasurements [0..n] to compute demand

r测量时间测量用于计算需求的时间测量[0..n]的集合

M. PowerStateSet (Class):

M.功率状态集(类别):

r powerSetIdentifier Integer An IANA-assigned value indicating a Power State Set

r powerSetIdentifier Integer表示电源状态集的IANA分配值

r name String A Power State Set name

r name字符串电源状态集名称

r powerStates PowerState A set of Power States for the [0..n] given identifier

r powerStates PowerState[0..n]给定标识符的一组电源状态

rw operState Integer The current operational Power State

rw operState Integer当前工作电源状态

rw adminState Integer The desired Power State

rw adminState Integer所需的电源状态

rw reason String Describes the reason for the adminState

rw原因字符串描述adminState的原因

r configuredTime timestamp Indicates the time of the desired Power State

r configuredTime时间戳表示所需电源状态的时间

N. PowerState (Class):

N.功率状态(等级):

r powerStateIdentifier Integer An IANA-assigned value indicating a Power State

r powerStateIdentifier整数表示电源状态的IANA分配值

r name String A name for the Power State

r name String电源状态的名称

r cardinality Integer A value indicating an ordering of the Power State

r基数整数表示电源状态顺序的值

rw maximumPower PowerMeasurement Indicates the maximum power for the Energy Object at this Power State

rw maximumPower power Measurement表示能量对象在此功率状态下的最大功率

r totalTimeInState Time Indicates the total time an Energy Object has been in this Power State since the last reset

r totalTimeInState Time表示自上次重置以来,能量对象处于该电源状态的总时间

r entryCount Long Indicates the number of times the Energy Object has entered or changed to this state

r entryCount Long表示能量对象进入或更改到此状态的次数

O. PowerAttribute (Class):

O.PowerAttribute(类):

r acQuality ACQuality Describes AC Power Attributes for a Measurement

ACR acQuality acQuality描述测量的交流电源属性

P. ACQuality (Class):

P.质量(等级):

r acConfiguration Enumeration Describes the physical configuration of alternating current as single phase (SNGL), three-phase delta (DEL), or three-phase Y (WYE)

r配置枚举将交流电的物理配置描述为单相(SNGL)、三相三角形(DEL)或三相Y形(WYE)

r avgVoltage Long The average of the voltage measured over an integral number of AC cycles [IEC61850-7-4] 'Vol'

r avgVoltage Long在整数个交流周期内测量的电压平均值[IEC61850-7-4]“Vol”

r avgCurrent Long The current per phase [IEC61850-7-4] 'Amp'

r平均电流长每相电流[IEC61850-7-4]“安培”

r thdCurrent Long A calculated value for the current Total Harmonic Distortion (THD). The method of calculation is not specified [IEC61850-7-4] 'ThdAmp'

r THD电流长电流总谐波失真(THD)的计算值。未规定计算方法[IEC61850-7-4]“ThdAmp”

r frequency Long Basic frequency of the AC circuit [IEC61850-7-4] 'Hz'

r频率交流电路的长基频[IEC61850-7-4]“Hz”

r unitMultiplier Integer Magnitude of watts for the usage value in this instance

r unitMultiplier此实例中使用值的瓦特整数值

r accuracy Integer Percentage value in 100ths of a percent, representing the presumed accuracy of active, reactive, and apparent power in this instance

r精度以百分之一百为单位的整数值,表示本例中有功、无功和视在功率的假定精度

r totalActivePower Long A measured value of the actual power delivered to or consumed by the load [IEC61850-7-4] 'TotW'

r totalActivePower Long负载输送或消耗的实际功率的测量值[IEC61850-7-4]“TotW”

r totalReactivePower Long A measured value of the reactive portion of the apparent power [IEC61850-7-4] 'TotVAr'

r总无功功率长视在功率的无功部分的测量值[IEC61850-7-4]“TotVAr”

r totalApparentPower Long A measured value of the voltage and current, which determines the apparent power as the vector sum of real and reactive power [IEC61850-7-4] 'TotVA'

r总视在功率——电压和电流的测量值,将视在功率确定为实际功率和无功功率的矢量和[IEC61850-7-4]“TotVA”

r totalPowerFactor Long A measured value of the ratio of the real power flowing to the load versus the apparent power [IEC61850-7-4] 'TotPF'

r总功率因数——流向负载的实际功率与视在功率之比的测量值[IEC61850-7-4]“TotPF”

Q. DelPhase (Class) inherits from ACQuality:

Q.DelPhase(类)继承自ACQuality:

r phaseToNext Long A measured value of phase to PhaseVoltage next phase voltages where the next phase is [IEC61850-7-4] 'PPV'

r相位下一个长相位下一相位电压的测量值,其中下一相位为[IEC61850-7-4]“PPV”

r thdVoltage Long A calculated value for the voltage Total Harmonic Distortion (THD) for phase to next phase. The method of calculation is not specified [IEC61850-7-4] 'ThdPPV'

r THD电压长一个计算出的相位到下一相位的电压总谐波失真(THD)值。未规定计算方法[IEC61850-7-4]“ThdPPV”

R. WYEPhase (Class) inherits from ACQuality:

R.WYEPhase(类)继承自ACQuality:

r phaseToNeutral Long A measured value of phase to Voltage neutral voltage [IEC61850-7-4] 'PhV'

r相中性点长相电压中性点电压的测量值[IEC61850-7-4]“PhV”

r thdCurrent Long A calculated value for the current Total Harmonic Distortion (THD). The method of calculation is not specified [IEC61850-7-4] 'ThdA'

r THD电流长电流总谐波失真(THD)的计算值。未规定计算方法[IEC61850-7-4]“ThdA”

r thdVoltage Long A calculated value of the voltage THD for phase to neutral [IEC61850-7-4] 'ThdPhV'

r THD电压长相对中性点电压THD的计算值[IEC61850-7-4]“ThdPhV”

r avgCurrent Long A measured value of phase currents [IEC61850-7-4] 'A'

r平均电流长A相电流的测量值[IEC61850-7-4]“A”

Authors' Addresses

作者地址

John Parello Cisco Systems, Inc. 3550 Cisco Way San Jose, CA 95134 US

美国加利福尼亚州圣何塞思科路3550号,约翰·帕雷罗思科系统公司,邮编95134

   Phone: +1 408 525 2339
   EMail: jparello@cisco.com
        
   Phone: +1 408 525 2339
   EMail: jparello@cisco.com
        

Benoit Claise Cisco Systems, Inc. De Kleetlaan 6a b1 Diegem 1813 BE

Benoit Claise Cisco Systems,Inc.De Kleetlaan 6a b1 Diegem 1813 BE

   Phone: +32 2 704 5622
   EMail: bclaise@cisco.com
        
   Phone: +32 2 704 5622
   EMail: bclaise@cisco.com
        

Brad Schoening 44 Rivers Edge Drive Little Silver, NJ 07739 US

美国新泽西州小银路44号河流边缘大道Brad Schoening 07739

   EMail: brad.schoening@verizon.net
        
   EMail: brad.schoening@verizon.net
        

Juergen Quittek NEC Europe Ltd. Network Laboratories Kurfuersten-Anlage 36 69115 Heidelberg Germany

德国海德堡Juergen Quittek NEC欧洲有限公司网络实验室Kurfuersten Anlage 36 69115

   Phone: +49 6221 90511 15
   EMail: quittek@netlab.nec.de
        
   Phone: +49 6221 90511 15
   EMail: quittek@netlab.nec.de