Internet Engineering Task Force (IETF) J. Fabini Request for Comments: 7312 Vienna University of Technology Updates: 2330 A. Morton Category: Informational AT&T Labs ISSN: 2070-1721 August 2014
Internet Engineering Task Force (IETF) J. Fabini Request for Comments: 7312 Vienna University of Technology Updates: 2330 A. Morton Category: Informational AT&T Labs ISSN: 2070-1721 August 2014
Advanced Stream and Sampling Framework for IP Performance Metrics (IPPM)
IP性能度量的高级流和采样框架(IPPM)
Abstract
摘要
To obtain repeatable results in modern networks, test descriptions need an expanded stream parameter framework that also augments aspects specified as Type-P for test packets. This memo updates the IP Performance Metrics (IPPM) Framework, RFC 2330, with advanced considerations for measurement methodology and testing. The existing framework mostly assumes deterministic connectivity, and that a single test stream will represent the characteristics of the path when it is aggregated with other flows. Networks have evolved and test stream descriptions must evolve with them; otherwise, unexpected network features may dominate the measured performance. This memo describes new stream parameters for both network characterization and support of application design using IPPM metrics.
为了在现代网络中获得可重复的结果,测试描述需要一个扩展的流参数框架,该框架还扩展了指定为测试数据包类型P的方面。本备忘录更新了IP性能度量(IPPM)框架RFC 2330,其中包含了测量方法和测试的高级注意事项。现有框架大多假设确定性连接,并且单个测试流在与其他流聚合时将表示路径的特征。网络已经进化,测试流描述也必须随之进化;否则,意外的网络特性可能会主导测量的性能。本备忘录描述了用于网络特性描述和使用IPPM度量支持应用程序设计的新流参数。
Status of This Memo
关于下段备忘
This document is not an Internet Standards Track specification; it is published for informational purposes.
本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7312.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7312.
Copyright Notice
版权公告
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2014 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Definition: Reactive Path Behavior . . . . . . . . . . . 4 1.2. Requirements Language . . . . . . . . . . . . . . . . . . 5 2. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. New or Revised Stream Parameters . . . . . . . . . . . . . . 5 3.1. Test Packet Type-P . . . . . . . . . . . . . . . . . . . 6 3.1.1. Multiple Test Packet Lengths . . . . . . . . . . . . 7 3.1.2. Test Packet Payload Content Optimization . . . . . . 7 3.2. Packet History . . . . . . . . . . . . . . . . . . . . . 8 3.3. Access Technology Change . . . . . . . . . . . . . . . . 8 3.4. Time-Slotted Randomness Cancellation . . . . . . . . . . 9 4. Quality of Metrics and Methodologies . . . . . . . . . . . . 10 4.1. Revised Definition of Repeatability . . . . . . . . . . . 10 4.2. Continuity No Longer an Alternative Repeatability Criterion . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3. Metrics Should Be Actionable . . . . . . . . . . . . . . 12 4.4. It May Not Be Possible To Be Conservative . . . . . . . . 13 4.5. Spatial and Temporal Composition Support Unbiased Sampling . . . . . . . . . . . . . . . . . . . . . . . . 13 4.6. When to Truncate the Poisson Sampling Distribution . . . 13 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 14 6. Security Considerations . . . . . . . . . . . . . . . . . . . 14 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 14 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 15 8.1. Normative References . . . . . . . . . . . . . . . . . . 15 8.2. Informative References . . . . . . . . . . . . . . . . . 16
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Definition: Reactive Path Behavior . . . . . . . . . . . 4 1.2. Requirements Language . . . . . . . . . . . . . . . . . . 5 2. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. New or Revised Stream Parameters . . . . . . . . . . . . . . 5 3.1. Test Packet Type-P . . . . . . . . . . . . . . . . . . . 6 3.1.1. Multiple Test Packet Lengths . . . . . . . . . . . . 7 3.1.2. Test Packet Payload Content Optimization . . . . . . 7 3.2. Packet History . . . . . . . . . . . . . . . . . . . . . 8 3.3. Access Technology Change . . . . . . . . . . . . . . . . 8 3.4. Time-Slotted Randomness Cancellation . . . . . . . . . . 9 4. Quality of Metrics and Methodologies . . . . . . . . . . . . 10 4.1. Revised Definition of Repeatability . . . . . . . . . . . 10 4.2. Continuity No Longer an Alternative Repeatability Criterion . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3. Metrics Should Be Actionable . . . . . . . . . . . . . . 12 4.4. It May Not Be Possible To Be Conservative . . . . . . . . 13 4.5. Spatial and Temporal Composition Support Unbiased Sampling . . . . . . . . . . . . . . . . . . . . . . . . 13 4.6. When to Truncate the Poisson Sampling Distribution . . . 13 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 14 6. Security Considerations . . . . . . . . . . . . . . . . . . . 14 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 14 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 15 8.1. Normative References . . . . . . . . . . . . . . . . . . 15 8.2. Informative References . . . . . . . . . . . . . . . . . 16
The IETF IPPM working group first created a framework for metric development in [RFC2330]. This framework has stood the test of time and enabled development of many fundamental metrics, while only being updated once in a specific area [RFC5835].
IETF IPPM工作组在[RFC2330]中首次创建了度量开发框架。该框架经受住了时间的考验,并支持许多基本指标的开发,同时在特定领域仅更新一次[RFC5835]。
The IPPM framework [RFC2330] generally relies on several assumptions, one of which is not explicitly stated but assumed: lightly loaded paths conform to the linear "serialization delay = packet size / capacity" equation, and they are state-less or history-less (with some exceptions, e.g., firewalls are mentioned). However, this does not hold true for many modern network technologies, such as reactive paths (those with demand-driven resource allocation) and links with time-slotted operation. Per-flow state can be observed on test packet streams, and such treatment will influence network characterization if it is not taken into account. Flow history will also affect the performance of applications and be perceived by their users.
IPPM框架[RFC2330]通常依赖于几个假设,其中一个没有明确说明,但假设为:轻载路径符合线性“序列化延迟=数据包大小/容量”方程,并且它们是无状态或无历史的(除了一些例外,例如提到防火墙)。然而,这并不适用于许多现代网络技术,例如反应路径(具有需求驱动的资源分配的路径)和具有时隙操作的链路。可以在测试数据包流上观察到每流状态,如果不考虑,这种处理将影响网络特性。流历史还将影响应用程序的性能,并被用户感知。
Moreover, Sections 4 and 6.2 of [RFC2330] explicitly recommend repeatable measurement metrics and methodologies. Measurements in today's access networks illustrate that methodological guidelines of [RFC2330] must be extended to capture the reactive nature of these networks. There are proposed extensions to allow methodologies to fulfill the continuity requirement stated in Section 6.2 of [RFC2330], but it is impossible to guarantee they can do so. Practical measurements confirm that some link types exhibit distinct responses to repeated measurements with identical stimulus, i.e., identical traffic patterns. If feasible, appropriate fine-tuning of measurement traffic patterns can improve measurement continuity and repeatability for these link types as shown in [IBD].
此外,[RFC2330]第4节和第6.2节明确推荐了可重复的测量指标和方法。当今接入网络中的测量表明,[RFC2330]的方法指南必须扩展,以捕获这些网络的反应性。有建议的扩展,以允许方法满足[RFC2330]第6.2节中规定的连续性要求,但无法保证它们可以做到这一点。实际测量证实,某些链路类型对具有相同刺激的重复测量表现出不同的响应,即相同的业务模式。如果可行,适当微调测量流量模式可以改善这些链路类型的测量连续性和可重复性,如[IBD]所示。
This memo updates the IPPM framework [RFC2330] with advanced considerations for measurement methodology and testing. We note that the scope of IPPM work at the time of the publication of [RFC2330] (and during more than a decade that followed) was limited to active techniques or those that generate packet streams that are dedicated to measurement and do not monitor user traffic. This memo retains that same scope.
本备忘录对IPPM框架[RFC2330]进行了更新,对测量方法和测试进行了高级考虑。我们注意到,在[RFC2330]出版时(以及在随后的十多年中),IPPM的工作范围仅限于主动技术或生成专用于测量且不监控用户流量的数据包流的技术。这份备忘录保留了同样的范围。
We stress that this update of [RFC2330] does not invalidate or require changes to the analytic metric definitions prepared in the IPPM working group to date. Rather, it adds considerations for active measurement methodologies and expands the importance of existing conventions and notions in [RFC2330], such as "packets of Type-P".
我方强调,[RFC2330]的此次更新不会使IPPM工作组迄今编制的分析度量定义失效或要求对其进行更改。相反,它增加了对主动测量方法的考虑,并扩展了[RFC2330]中现有约定和概念的重要性,如“P型数据包”。
Among the evolutionary networking changes is a phenomenon we call "reactive behavior", as defined below.
在进化网络变化中,有一种现象我们称之为“反应性行为”,定义如下。
Reactive path behavior will be observable by the test packet stream as a repeatable phenomenon where packet transfer performance characteristics *change* according to prior observations of the packet flow of interest (at the reactive host or link). Therefore, reactive path behavior is nominally deterministic with respect to the flow of interest. Other flows or traffic load conditions may result in additional performance-affecting reactions, but these are external to the characteristics of the flow of interest.
反应路径行为将由测试分组流作为可重复现象来观察,其中分组传输性能特征*根据先前对感兴趣的分组流(在反应主机或链路处)的观察而改变*。因此,相对于感兴趣的流,反应路径行为名义上是确定的。其他流量或交通荷载条件可能会导致额外的性能影响反应,但这些反应与感兴趣的流量特征无关。
In practice, a sender may not have absolute control of the ingress packet stream characteristics at a reactive host or link, but this does not change the deterministic reactions present there. If we measure a path, the arrival characteristics at the reactive host/link are determined by the sending characteristics and the transfer characteristics of intervening hosts and links. Identical traffic patterns at the sending host might generate different patterns at the input of the reactive host/link due to impairments in the intermediate subpath. The reactive host/link is expected to provide a deterministic response on identical input patterns (composed of all flows, including the flow of interest).
在实践中,发送方可能无法绝对控制反应性主机或链路上的入口分组流特性,但这不会改变那里存在的确定性反应。如果我们测量路径,则响应主机/链路的到达特性由中间主机和链路的发送特性和传输特性决定。由于中间子路径中的损伤,发送主机上的相同业务模式可能会在反应主机/链路的输入端生成不同的模式。反应式主机/链路预计将在相同的输入模式(由所有流组成,包括感兴趣的流)上提供确定性响应。
Other than the size of the payload at the layer of interest and the header itself, packet content does not influence the measurement. Reactive behavior at the IP layer is not influenced by the TCP ports in use, for example. Therefore, the indication of reactive behavior must include the layer at which measurements are instituted.
除了感兴趣层的有效载荷大小和报头本身之外,分组内容不影响测量。例如,IP层的反应行为不受正在使用的TCP端口的影响。因此,反应行为的指示必须包括进行测量的层。
Examples include links with Active/Inactive state detectors, and hosts or links that revise their traffic serving and forwarding rates (up or down) based on packet arrival history.
示例包括带有活动/非活动状态检测器的链路,以及根据数据包到达历史修改其流量服务和转发速率(上升或下降)的主机或链路。
Although difficult to handle from a measurement point of view, reactive paths' entities are usually designed to improve overall network performance and user experience, for example, by making capacity available to an active user. Reactive behavior may be an artifact of solutions to allocate scarce resources according to the demands of users; thus, it is an important problem to solve for measurement and other disciplines, such as application design.
尽管从测量的角度来看很难处理,但反应路径的实体通常被设计为改善整体网络性能和用户体验,例如,通过使容量可供活动用户使用。反应性行为可能是根据用户需求分配稀缺资源的解决方案的产物;因此,它是测量学和其他学科(如应用程序设计)需要解决的一个重要问题。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。
The purpose of this memo is to foster repeatable measurement results in modern networks by highlighting the key aspects of test streams and packets and making them part of the IPPM framework.
本备忘录的目的是通过强调测试流和数据包的关键方面并使其成为IPPM框架的一部分,在现代网络中培养可重复的测量结果。
The scope is to update key sections of [RFC2330], adding considerations that will aid the development of new measurement methodologies intended for today's IP networks. Specifically, this memo describes useful stream parameters that complement the parameters discussed in Section 11.1 of [RFC2330] and the parameters described in Section 4.2 of [RFC3432] for periodic streams.
其范围是更新[RFC2330]的关键章节,添加有助于开发适用于当今IP网络的新测量方法的注意事项。具体而言,本备忘录描述了有用的流参数,这些参数补充了[RFC2330]第11.1节中讨论的参数和[RFC3432]第4.2节中描述的周期流参数。
The memo also provides new considerations to update the criteria for metrics in Section 4 of [RFC2330], the measurement methodology in Section 6.2 of [RFC2330], and other topics related to the quality of metrics and methods (see Section 4).
备忘录还提供了更新[RFC2330]第4节中度量标准的新注意事项,[RFC2330]第6.2节中的度量方法,以及与度量和方法质量相关的其他主题(见第4节)。
Other topics in [RFC2330] that might be updated or augmented are deferred to future work. This includes the topics of passive and various forms of hybrid active/passive measurements.
[RFC2330]中可能更新或扩充的其他主题将推迟到以后的工作中。这包括被动和各种形式的混合主动/被动测量的主题。
There are several areas where measurement methodology definition and test result interpretation will benefit from an increased understanding of the stream characteristics and the (possibly unknown) network conditions that influence the measured metrics.
在一些领域,测量方法定义和测试结果解释将受益于对影响测量指标的流特征和(可能未知)网络条件的进一步了解。
1. Network treatment depends on the fullest extent on the "packet of Type-P" definition in [RFC2330], and has for some time.
1. 网络处理取决于[RFC2330]中“类型为P的数据包”定义的最大程度,并且已经有一段时间了。
* State is often maintained on the per-flow basis at various points in the path, where "flows" are determined by IP and other layers. Significant treatment differences occur with the simplest of Type-P parameters: packet length. Use of multiple lengths is RECOMMENDED.
* 状态通常在路径中的各个点以每流为基础进行维护,其中“流”由IP和其他层确定。在最简单的P型参数(数据包长度)中,会出现显著的治疗差异。建议使用多个长度。
* Payload content optimization (compression or format conversion) in intermediate segments breaks the convention of payload correspondence when correlating measurements are made at different points in a path.
* 当在路径的不同点进行相关测量时,中间段中的有效负载内容优化(压缩或格式转换)打破了有效负载对应的惯例。
2. Packet history (instantaneous or recent test rate or inactivity, also for non-test traffic) profoundly influences measured performance, in addition to all the Type-P parameters described in [RFC2330].
2. 除了[RFC2330]中描述的所有P型参数外,数据包历史(瞬时或最近的测试速率或不活动,也适用于非测试流量)深刻影响测量的性能。
3. Access technology may change during testing. A range of transfer capacities and access methods may be encountered during a test session. When different interfaces are used, the host seeking access will be aware of the technology change, which differentiates this form of path change from other changes in network state. Section 14 of [RFC2330] addresses the possibility that a host may have more than one attachment to the network, and also that assessment of the measurement path (route) is valid for some length of time (in Sections 5 and 7 of [RFC2330]). Here, we combine these two considerations under the assumption that changes may be more frequent and possibly have greater consequences on performance metrics.
3. 测试期间,访问技术可能会发生变化。测试会话期间可能会遇到一系列传输容量和访问方法。当使用不同的接口时,寻求访问的主机将意识到技术变化,这将这种形式的路径变化与网络状态的其他变化区分开来。[RFC2330]第14节阐述了主机可能具有多个网络连接的可能性,以及测量路径(路由)的评估在一段时间内有效(在[RFC2330]第5节和第7节中)。在这里,我们结合这两个考虑因素,假设更改可能更频繁,并且可能对性能指标产生更大的影响。
4. Paths including links or nodes with time-slotted service opportunities represent several challenges to measurement (when the service time period is appreciable):
4. 包括具有时隙服务机会的链路或节点的路径代表了测量的几个挑战(当服务时间段可感知时):
* Random/unbiased sampling is not possible beyond one such link in the path.
* 路径中超过一个这样的链接时,不可能进行随机/无偏采样。
* The above encourages a segmented approach to end-to-end measurement, as described in [RFC6049] for Network Characterization (as defined in [RFC6703]), to understand the full range of delay and delay variation on the path. Alternatively, if application performance estimation is the goal (also defined in [RFC6703]), then a stream with unbiased or known-bias properties [RFC3432] may be sufficient.
* 如上所述,鼓励采用分段方法进行端到端测量,如[RFC6049]中所述的网络特性描述(如[RFC6703]中所定义),以了解路径上的全部延迟和延迟变化范围。或者,如果应用程序性能估计是目标(也在[RFC6703]中定义),则具有无偏差或已知偏差属性[RFC3432]的流就足够了。
* Multi-modal delay variation makes central statistics unimportant; others must be used instead.
* Multi-modal delay variation makes central statistics unimportant; others must be used instead.translate error, please retry
Each of these topics is treated in detail below.
下面将详细介绍这些主题中的每一个。
We recommend two Type-P parameters to be added to the factors that have impact on path performance measurements, namely packet length and payload type. Carefully choosing these parameters can improve measurement methodologies in their continuity and repeatability when deployed in reactive paths.
我们建议在影响路径性能度量的因素中添加两个Type-P参数,即数据包长度和有效负载类型。在反应路径中部署时,仔细选择这些参数可以改善测量方法的连续性和可重复性。
Many instances of network characterization using IPPM metrics have relied on a single test packet length. When testing to assess application performance or an aggregate of traffic, benchmarking methods have used a range of fixed lengths and frequently augmented fixed-size tests with a mixture of sizes, or Internet Mix (IMIX) as described in [RFC6985].
许多使用IPPM度量的网络特性描述实例依赖于单个测试数据包长度。当测试以评估应用程序性能或流量总量时,基准测试方法使用了一系列固定长度和频繁增加的固定大小测试,如[RFC6985]中所述,使用大小混合或互联网混合(IMIX)。
Test packet length influences delay measurements, in that the IPPM one-way delay metric [RFC2679] includes serialization time in its first-bit to last-bit timestamping requirements. However, different sizes can have a larger influence on link delay and link delay variation than serialization would explain alone. This effect can be non-linear and change the instantaneous network performance when a different size is used, or the performance of packets following the size change.
测试包长度影响延迟测量,因为IPPM单向延迟度量[RFC2679]在其第一位到最后一位时间戳要求中包括序列化时间。然而,与序列化单独解释相比,不同的大小对链路延迟和链路延迟变化的影响更大。这种影响可能是非线性的,当使用不同的大小时,会改变瞬时网络性能,或者在大小改变后会改变数据包的性能。
Repeatability is a main measurement methodology goal as stated in Section 6.2 of [RFC2330]. To eliminate packet length as a potential measurement uncertainty factor, successive measurements must use identical traffic patterns. In practice, a combination of random payload and random start time can yield representative results as illustrated in [IRR].
重复性是[RFC2330]第6.2节所述的主要测量方法目标。为了消除作为潜在测量不确定因素的数据包长度,连续测量必须使用相同的流量模式。实际上,随机有效载荷和随机启动时间的组合可以产生[IRR]中所示的代表性结果。
The aim for efficient network resource use has resulted in deployment of server-only or client-server lossless or lossy payload compression techniques on some links or paths. These optimizers attempt to compress high-volume traffic in order to reduce network load. Files are analyzed by application-layer parsers, and parts (like comments) might be dropped. Although typically acting on HTTP or JPEG files, compression might affect measurement packets, too. In particular, measurement packets are qualified for efficient compression when they use standard plain-text payload. We note that use of transport-layer encryption will counteract the deployment of network-based analysis and may reduce the adoption of payload optimizations, however.
为了有效利用网络资源,在某些链路或路径上部署了纯服务器或客户端-服务器无损或有损有效负载压缩技术。这些优化器试图压缩高容量流量以减少网络负载。文件由应用层解析器分析,部分(如注释)可能会被删除。虽然压缩通常作用于HTTP或JPEG文件,但也可能影响测量数据包。特别是,当测量数据包使用标准纯文本有效负载时,它们能够进行有效压缩。我们注意到,使用传输层加密将抵消基于网络的分析的部署,并且可能会减少有效负载优化的采用。
IPPM-conforming measurements should add packet payload content as a Type-P parameter, which can help to improve measurement determinism. Some packet payloads are more susceptible to compression than others, but optimizers in the measurement path can be out ruled by using incompressible packet payload. This payload content could be supplied by a pseudo-random sequence generator or by using part of a compressed file (e.g., a part of a ZIP compressed archive).
符合IPPM的测量应将数据包有效负载内容添加为P型参数,这有助于提高测量确定性。一些数据包有效负载比其他数据包更容易受到压缩,但是可以通过使用不可压缩数据包有效负载排除测量路径中的优化器。该有效负载内容可以由伪随机序列生成器提供,也可以使用压缩文件的一部分(例如,ZIP压缩档案的一部分)。
Optimization can go beyond the scope of one single data or measurement stream. Many more client- or network-centric optimization technologies have been proposed or standardized so far, including Robust Header Compression (ROHC) and Voice over IP aggregation as presented, for instance, in [EEAW]. Where optimization is feasible and valuable, many more of these technologies may follow. As a general observation, the more concurrent flows an intermediate host treats and the longer the paths shared by flows are, the higher becomes the incentive of hosts to aggregate flows belonging to distinct sources. Measurements should consider this potential additional source of uncertainty with respect to repeatability. Aggregation of flows in networking devices can, for instance, result in reciprocal timing and performance influence of these flows, which may exceed typical reciprocal queueing effects by orders of magnitude.
优化可以超出单个数据或测量流的范围。到目前为止,已经提出或标准化了更多以客户端或网络为中心的优化技术,包括健壮的报头压缩(ROHC)和IP语音聚合,如[EEAW]中所述。在优化可行且有价值的地方,可能会有更多的技术跟进。一般来说,中间主机处理的并发流越多,流共享的路径越长,主机聚合属于不同源的流的动机就越高。测量应考虑这种潜在的额外的不确定性来源的可重复性。例如,网络设备中的流聚合可导致这些流的相互定时和性能影响,其可能超过典型的相互排队效应几个数量级。
Recent packet history and instantaneous data rate influence measurement results for reactive links supporting on-demand capacity allocation. Measurement uncertainty may be reduced by knowledge of measurement packet history and total host load. Additionally, small changes in history, e.g., because of lost packets along the path, can be the cause of large performance variations.
最近的数据包历史记录和瞬时数据速率影响支持按需容量分配的无功链路的测量结果。通过了解测量数据包历史和主机总负载,可以减少测量不确定性。此外,历史记录中的微小变化(例如,由于路径上的数据包丢失)可能会导致较大的性能变化。
For instance, delay in reactive 3G networks like High Speed Packet Access (HSPA) depends to a large extent on the test traffic data rate. The reactive resource allocation strategy in these networks affects the uplink direction in particular. Small changes in data rate can be the reason of more than a 200% increase in delay, depending on the specific packet size. A detailed theoretical and practical analysis of Radio Resource Control (RRC) link transitions, which can cause such behavior in Universal Mobile Terrestrial System (UMTS) networks, is presented, e.g., in [RRC].
例如,高速分组接入(HSPA)等反应式3G网络中的延迟在很大程度上取决于测试流量数据速率。这些网络中的反应性资源分配策略尤其影响上行链路方向。数据速率的微小变化可能是延迟增加200%以上的原因,具体取决于特定的数据包大小。例如,在[RRC]中,对在通用移动地面系统(UMTS)网络中可能导致这种行为的无线资源控制(RRC)链路转换进行了详细的理论和实践分析。
[RFC2330] discussed the scenario of multi-homed hosts. If hosts become aware of access technology changes (e.g., because of IP address changes or lower-layer information) and make this information available, measurement methodologies can use this information to improve measurement representativeness and relevance.
[RFC2330]讨论了多宿主主机的场景。如果主机意识到访问技术的变化(例如,由于IP地址变化或较低层信息),并提供这些信息,测量方法可以使用这些信息来提高测量的代表性和相关性。
However, today's various access network technologies can present the same physical interface to the host. A host may or may not become aware when its access technology changes on such an interface. Measurements for paths that support on-demand capacity allocation are, therefore, challenging in that it is difficult to differentiate
然而,今天的各种接入网络技术可以向主机提供相同的物理接口。当主机的访问技术在这样的接口上发生变化时,主机可能知道也可能不知道。因此,对支持按需容量分配的路径的测量具有挑战性,因为很难区分
between access technology changes (e.g., because of mobility) and reactive path behavior (e.g., because of data rate change).
在接入技术变化(例如,由于移动性)和反应路径行为(例如,由于数据速率变化)之间。
Time-slotted operation of path entities -- interfaces, routers, or links -- in a network path is a particular challenge for measurements, especially if the time-slot period is substantial. The central observation as an extension to Poisson stream sampling in [RFC2330] is that the first such time-slotted component cancels unbiased measurement stream sampling. In the worst case, time-slotted operation converts an unbiased, random measurement packet stream into a periodic packet stream. Being heavily biased, these packets may interact with periodic behavior of subsequent time-slotted network entities [TSRC].
网络路径中路径实体(接口、路由器或链路)的时隙操作对于测量来说是一个特殊的挑战,特别是当时隙周期很长时。[RFC2330]中作为泊松流采样扩展的中心观察结果是,第一个这样的时隙分量取消了无偏测量流采样。在最坏的情况下,时隙操作将无偏随机测量数据包流转换为周期数据包流。由于存在严重偏差,这些数据包可能与后续时隙网络实体[TSRC]的周期性行为交互。
Time-slotted randomness cancellation (TSRC) sources can be found in virtually any system, network component or path, their impact on measurements being a matter of the order of magnitude when compared to the metric under observation. Examples of TSRC sources include, but are not limited to, system clock resolution, operating system ticks, time-slotted component or network operation, etc. The amount of measurement bias is determined by the particular measurement stream, relative offset between allocated time slots in subsequent path entities, delay variation in these paths, and other sources of variation. Measurement results might change over time, depending on how accurately the sending host, receiving host, and time-slotted components in the measurement path are synchronized to each other and to global time. If path segments maintain flow state, flow parameter change or flow reallocations can cause substantial variation in measurement results.
时隙随机性消除(TSRC)源几乎可以在任何系统、网络组件或路径中找到,它们对测量的影响与观测指标相比是一个数量级的问题。TSRC源的示例包括但不限于系统时钟分辨率、操作系统时钟、时隙组件或网络操作等。测量偏差量由特定测量流、后续路径实体中分配的时隙之间的相对偏移、这些路径中的延迟变化确定,以及其他变异来源。测量结果可能会随着时间的推移而变化,这取决于测量路径中的发送主机、接收主机和时隙组件之间以及与全局时间同步的准确程度。如果路径段保持流动状态,流动参数变化或流动重新分配可能会导致测量结果发生重大变化。
Practical measurements confirm that such interference limits delay measurement variation to a subset of theoretical value range. Measurement samples for such cases can aggregate on artificial limits, generating multi-modal distributions as demonstrated in [IRR]. In this context, the desirable measurement sample statistics differentiate between multi-modal delay distributions caused by reactive path behavior and the ones due to time-slotted interference.
实际测量证实,这种干扰将延迟测量变化限制在理论值范围的子集内。此类情况下的测量样本可在人为限制条件下聚集,产生[IRR]中所示的多模态分布。在这种情况下,理想的测量样本统计数据区分了由无功路径行为引起的多模延迟分布和由时隙干扰引起的多模延迟分布。
Measurement methodology selection for time-slotted paths depends to a large extent on the respective viewpoint. End-to-end metrics can provide accurate measurement results for short-term sessions and low likelihood of flow state modifications. Applications or services that aim at approximating path performance for a short time interval (in the order of minutes) and expect stable path conditions should,
时隙路径的测量方法选择在很大程度上取决于各自的观点。端到端度量可以为短期会话提供准确的度量结果,并降低流状态修改的可能性。旨在在短时间间隔(以分钟为单位)内近似路径性能并期望稳定路径条件的应用程序或服务应:,
therefore, prefer end-to-end metrics. Here, stable path conditions refer to any kind of global knowledge concerning measurement path flow state and flow parameters.
因此,我们更喜欢端到端的指标。这里,稳定路径条件是指关于测量路径流状态和流参数的任何类型的全局知识。
However, if long-term forecast of time-slotted path performance is the main measurement goal, a segmented approach relying on measurement of subpath metrics is preferred. Regenerating unbiased measurement traffic at any hop can help to reveal the true range of path performance for all path segments.
然而,如果时隙路径性能的长期预测是主要的度量目标,则首选依赖于子路径度量的分段方法。在任何跃点重新生成无偏测量流量都有助于揭示所有路径段的真实路径性能范围。
[RFC6808] proposes repeatability and continuity as one of the metric and methodology properties to infer on measurement quality. Depending mainly on the set of controlled measurement parameters, measurements repeated for a specific network path using a specific methodology may or may not yield repeatable results. Challenging measurement scenarios for adequate parameter control include wireless, reactive, or time-slotted networks as discussed earlier in this document. This section presents an expanded definition of "repeatability" beyond the definition in [RFC2330] and an expanded examination of the concept of "continuity" in [RFC2330] and its limited applicability.
[RFC6808]建议将重复性和连续性作为度量和方法属性之一,以推断测量质量。主要取决于受控测量参数集,使用特定方法对特定网络路径重复的测量可能产生也可能不产生可重复的结果。充分控制参数的挑战性测量场景包括本文档前面讨论的无线、反应式或时隙网络。本节介绍了超出[RFC2330]定义的“可重复性”的扩展定义,以及[RFC2330]中“连续性”概念及其有限适用性的扩展检查。
[RFC2330] defines repeatability in a general way:
[RFC2330]以一般方式定义可重复性:
"A methodology for a metric should have the property that it is repeatable: if the methodology is used multiple times under identical conditions, the same measurements should result in the same measurements."
度量方法应具有可重复性:如果在相同条件下多次使用该方法,相同的测量结果应相同
The challenge is to develop this definition further, such that it becomes an objective measurable criterion (and does not depend on the concept of continuity discussed below). Fortunately, this topic has been treated in other IPPM work. In BCP 176 [RFC6576], the criteria of equivalent results was agreed as the surrogate for interoperability when assessing metric RFCs for Standards Track advancement. The criteria of equivalence were expressed as objective statistical requirements for comparison across the same implementations and independent implementations in the test plans specific to each RFC evaluated ([RFC2679] in the test plan of [RFC6808]).
挑战在于进一步发展这一定义,使其成为一个客观的可测量标准(而不取决于下文讨论的连续性概念)。幸运的是,这个主题已经在其他IPPM工作中讨论过。在BCP 176[RFC6576]中,在评估标准跟踪进展的度量RFC时,一致同意将等效结果标准作为互操作性的替代标准。等效标准表示为客观的统计要求,以便在针对每个被评估RFC的测试计划中(RFC6808的测试计划中的[RFC2679])在相同实施和独立实施之间进行比较。
The tests of [RFC6808] rely on nearly identical conditions to be present for analysis and accept that these conditions cannot be exactly identical in the production network paths used. The test
[RFC6808]的测试依赖于用于分析的几乎相同的条件,并接受这些条件在所使用的生产网络路径中不能完全相同。测试
plans allow some correction factors to be applied (some statistical tests are hyper-sensitive to differences in the mean of distributions) and recognize the original findings of [RFC2330] regarding excess sample sizes.
计划允许应用一些校正因子(一些统计测试对分布平均值的差异高度敏感),并承认[RFC2330]关于过多样本量的原始发现。
One way to view the reliance on identical conditions is to view it as a challenge: How few parameters and path conditions need to be controlled and still produce repeatable methods/measurements?
看待对相同条件的依赖的一种方法是将其视为一个挑战:需要控制的参数和路径条件有多少,并且仍然产生可重复的方法/测量?
Although the test plan in [RFC6808] documented numerical criteria for equivalence, we cannot specify the exact numerical criteria for repeatability *in general*. The process in the BCP [RFC6576] and statistics in [RFC6808] have been used successfully, and the numerical criteria to declare a metric repeatable should be agreed by all interested parties prior to measurement.
尽管[RFC6808]中的试验计划记录了等效性的数值标准,但我们不能规定重复性的精确数值标准*。BCP[RFC6576]中的过程和[RFC6808]中的统计数据已成功使用,并且在测量之前,所有相关方应同意宣布度量可重复的数字标准。
We revise the definition slightly, as follows:
我们对定义稍作修改如下:
A methodology for a metric should have the property that it is repeatable: if the methodology is used multiple times under identical conditions, the methods should produce equivalent measurement results.
度量方法应具有可重复性:如果在相同条件下多次使用该方法,则该方法应产生等效的测量结果。
In the original framework [RFC2330], the concept of continuity was introduced to provide a relaxed criteria for judging repeatability and was described in Section 6.2 of [RFC2330] as follows:
在原始框架[RFC2330]中,引入了连续性概念,以提供判断重复性的宽松标准,并在[RFC2330]第6.2节中描述如下:
"...a methodology for a given metric exhibits continuity if, for small variations in conditions, it results in small variations in the resulting measurements."
“……如果在条件发生微小变化时,给定度量的方法会导致产生的测量值发生微小变化,则该方法会显示连续性。”
Although there are conditions where metrics may exhibit continuity, there are others where this criteria would fail for both user traffic and active measurement traffic. Consider link fragmentation and the non-linear increase in delay when we increase packet size just beyond the limit of a single fragment. An active measurement packet would see the same delay increase when exceeding the fragment size.
尽管在某些情况下,度量可能表现出连续性,但在其他情况下,对于用户流量和活动度量流量,该标准都会失败。考虑链路碎片和非线性延迟增加时,我们增加的数据包大小刚刚超过一个单一的片段的限制。当超过片段大小时,活动测量数据包将看到相同的延迟增加。
The Bulk Transfer Capacity (BTC) [RFC3148] gives another example in Section 1, bottom of page 2:
批量传输容量(BTC)[RFC3148]在第2页底部第1节中给出了另一个示例:
There is also evidence that most TCP implementations exhibit non-linear performance over some portion of their operating region. It is possible to construct simple simulation examples where incremental improvements to a path (such as raising the link data rate) results in lower overall TCP throughput (or BTC) [Mat98].
还有证据表明,大多数TCP实现在其工作区域的某些部分表现出非线性性能。可以构造简单的模拟示例,其中路径的增量改进(如提高链路数据速率)会导致总体TCP吞吐量(或BTC)降低[Mat98]。
Clearly, the time-slotted network elements described in Section 3.4 of this document also qualify as a new exception to the ideal of continuity.
显然,本文件第3.4节中描述的时隙网络元件也可作为连续性理想的新例外。
Therefore, we deprecate continuity as an alternate criterion on metrics and prefer the more exact evaluation of repeatability instead.
因此,我们反对将连续性作为度量标准的替代标准,而更倾向于对重复性进行更精确的评估。
The IP Performance Metrics Framework [RFC2330] includes usefulness as a metric criterion:
IP性能度量框架[RFC2330]包括有用性作为度量标准:
"...The metrics must be useful to users and providers in understanding the performance they experience or provide...".
“…这些指标必须有助于用户和提供商了解他们体验或提供的性能…”。
When considering measurements as part of a maintenance process, evaluation of measurement results for a path under observation can draw attention to potential performance problems "somewhere" on the path. Anomaly detection is, therefore, an important phase and first step that already satisfies the usefulness criterion for many metrics.
当将测量视为维护过程的一部分时,对观察路径的测量结果进行评估可以引起对路径“某处”潜在性能问题的注意。因此,异常检测是一个重要的阶段和第一步,它已经满足许多度量的有用性标准。
This concept of usefulness can be extended, becoming a subset of what we refer to as "actionable" criterion in the following. We note that this is not the term from law.
这个有用性的概念可以扩展,成为下面我们所说的“可操作”标准的一个子集。我们注意到,这不是法律术语。
Central to maintenance is the isolation of the root cause of reported anomalies down to a specific subpath, link or host, and metrics should support this second step as well. While detection of path anomaly may be the result of an on-going monitoring process, the second step of cause isolation consists of specific, directed on-demand measurements on components and subpaths. Metrics must support users in this directed search, becoming actionable:
维护的核心是将报告异常的根本原因隔离到特定的子路径、链路或主机,并且度量也应该支持第二步。虽然路径异常的检测可能是持续监测过程的结果,但原因隔离的第二步包括对组件和子路径进行特定的、定向的按需测量。指标必须支持此定向搜索中的用户,使其成为可操作的:
Metrics must enable users and operators to understand path performance and SHOULD help to direct corrective actions when warranted, based on the measurement results.
指标必须使用户和运营商能够了解路径性能,并应根据测量结果,在保证的情况下帮助指导纠正措施。
Besides characterizing metrics, usefulness and actionable properties are also applicable to methodologies and measurements.
除了描述度量之外,有用性和可操作性也适用于方法和度量。
[RFC2330] adopts the term "conservative" for measurement methodologies for which:
[RFC2330]采用术语“保守”来表示以下测量方法:
"... the act of measurement does not modify, or only slightly modifies, the value of the performance metric the methodology attempts to measure."
“……测量行为不会修改或仅轻微修改方法试图测量的绩效指标的值。”
It should be noted that this definition of "conservative" in the sense of [RFC2330] depends to a large extent on the measurement path's technology and characteristics. In particular, when deployed on reactive paths, subpaths, links or hosts conforming to the definition in Section 1.1 of this document, measurement packets can originate capacity (re)allocations. In addition, small measurement flow variations can result in other users on the same path perceiving significant variations in measurement results. Therefore:
应注意的是,[RFC2330]意义上的“保守”定义在很大程度上取决于测量路径的技术和特性。特别是,当部署在符合本文件第1.1节定义的反应路径、子路径、链路或主机上时,测量数据包可以发起容量(重新)分配。此外,微小的测量流量变化可能导致同一路径上的其他用户感知到测量结果的显著变化。因此:
It is not always possible for the method to be conservative.
这种方法并不总是可能是保守的。
Concepts related to temporal and spatial composition of metrics in Section 9 of [RFC2330] have been extended in [RFC5835]. [RFC5835] defines multiple new types of metrics, including Spatial Composition, Temporal Aggregation, and Spatial Aggregation. So far, only the metrics for Spatial Composition have been standardized [RFC6049], providing the ability to estimate the performance of a complete path from subpath metrics. Spatial Composition aligns with the finding of [TSRC] that unbiased sampling is not possible beyond the first time-slotted link within a measurement path.
[RFC2330]第9节中与度量的时间和空间组成相关的概念已在[RFC5835]中扩展。[RFC5835]定义了多种新的度量类型,包括空间组合、时间聚合和空间聚合。到目前为止,只有空间组合的度量标准化[RFC6049],提供了从子路径度量估计完整路径性能的能力。空间构成与[TSRC]的发现一致,即在测量路径内的第一时间时隙链路之外不可能进行无偏采样。
In cases where unbiased measurement for all segments of a path is not feasible due to the presence of a time-slotted link, restoring randomness of measurement samples when necessary is recommended as presented in [TSRC], in combination with Spatial Composition [RFC6049].
如果由于存在时隙链路,无法对路径的所有段进行无偏测量,则建议在必要时恢复测量样本的随机性,如[TSRC]中所述,并结合空间构成[RFC6049]。
Section 11.1.1 of [RFC2330] describes Poisson sampling, where the inter-packet send times have a Poisson distribution. A path element with reactive behavior sensitive to flow inactivity could change state if the random inter-packet time is too long.
[RFC2330]第11.1.1节描述了泊松采样,其中包间发送时间具有泊松分布。如果随机包间时间过长,具有对流不活动敏感的反应行为的路径元素可能会改变状态。
It is recommended to truncate the tail of Poisson distribution when needed to avoid reactive element state changes.
当需要避免无功元件状态变化时,建议截断泊松分布的尾部。
Tail truncation has been used without issue to ensure that minimum sample sizes can be attained in a fixed-test interval.
尾部截断已被毫无疑问地使用,以确保在固定的测试间隔内可达到最小样本量。
Safeguarding repeatability as a key property of measurement methodologies is highly challenging and sometimes impossible in reactive paths. Measurements in paths with demand-driven allocation strategies must use a prototypical application packet stream to infer a specific application's performance. Measurement repetition with unbiased network and flow states (e.g., by rebooting measurement hosts) can help to avoid interference with periodic network behavior, with randomness being a mandatory feature for avoiding correlation with network timing.
保护可重复性作为测量方法的一个关键属性是非常具有挑战性的,有时在反应路径中是不可能的。具有需求驱动分配策略的路径中的度量必须使用原型应用程序数据包流来推断特定应用程序的性能。具有无偏网络和流状态的测量重复(例如,通过重新启动测量主机)有助于避免对周期性网络行为的干扰,随机性是避免与网络定时相关的强制性特征。
Inferring the path performance between one measurement session or packet stream and other sessions/streams with alternate characteristics is generally discouraged with reactive paths because of the huge set of global parameters that have influence on instantaneous path performance.
由于影响瞬时路径性能的大量全局参数,通常不鼓励使用反应性路径推断一个测量会话或数据包流与具有替代特性的其他会话/流之间的路径性能。
The security considerations that apply to any active measurement of live paths are relevant here as well. See [RFC4656] and [RFC5357].
适用于活动路径的任何主动测量的安全注意事项也与此相关。参见[RFC4656]和[RFC5357]。
When considering privacy of those involved in measurement or those whose traffic is measured, the sensitive information available to potential observers is greatly reduced when using active techniques that are within this scope of work. Passive observations of user traffic for measurement purposes raise many privacy issues. We refer the reader to the privacy considerations described in the Large Scale Measurement of Broadband Performance (LMAP) Framework [LMAP], which covers active and passive techniques.
当考虑到参与测量的人或其流量被测量的人的隐私时,当使用此工作范围内的主动技术时,潜在观察者可用的敏感信息会大大减少。出于测量目的对用户流量进行被动观测会引起许多隐私问题。我们建议读者参考大规模宽带性能测量(LMAP)框架[LMAP]中描述的隐私注意事项,该框架涵盖主动和被动技术。
The authors thank Rudiger Geib, Matt Mathis, Konstantinos Pentikousis, and Robert Sparks for their helpful comments on this memo, Alissa Cooper and Kathleen Moriarty for suggesting ways to "update the update" for heightened privacy awareness and its consequences, and Ann Cerveny for her editorial review and comments that helped to improve readability overall.
作者感谢Rudiger Geib、Matt Mathis、Konstantinos Pentikousis和Robert Sparks对本备忘录的有益评论,感谢Alissa Cooper和Kathleen Moriarty为提高隐私意识及其后果提出了“更新更新”的建议,以及Ann Cerveny的编辑评论和评论,这有助于提高整体可读性。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[RFC2330] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis, "Framework for IP Performance Metrics", RFC 2330, May 1998.
[RFC2330]Paxson,V.,Almes,G.,Mahdavi,J.,和M.Mathis,“IP性能度量框架”,RFC 2330,1998年5月。
[RFC2679] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way Delay Metric for IPPM", RFC 2679, September 1999.
[RFC2679]Almes,G.,Kalidini,S.,和M.Zekauskas,“IPPM的单向延迟度量”,RFC 2679,1999年9月。
[RFC3432] Raisanen, V., Grotefeld, G., and A. Morton, "Network performance measurement with periodic streams", RFC 3432, November 2002.
[RFC3432]Raisanen,V.,Grotefeld,G.,和A.Morton,“周期流的网络性能测量”,RFC 3432,2002年11月。
[RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M. Zekauskas, "A One-way Active Measurement Protocol (OWAMP)", RFC 4656, September 2006.
[RFC4656]Shalunov,S.,Teitelbaum,B.,Karp,A.,Boote,J.,和M.Zekauskas,“单向主动测量协议(OWAMP)”,RFC 46562006年9月。
[RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J. Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", RFC 5357, October 2008.
[RFC5357]Hedayat,K.,Krzanowski,R.,Morton,A.,Yum,K.,和J.Babiarz,“双向主动测量协议(TWAMP)”,RFC 5357,2008年10月。
[RFC5835] Morton, A. and S. Van den Berghe, "Framework for Metric Composition", RFC 5835, April 2010.
[RFC5835]Morton,A.和S.Van den Berghe,“公制组合框架”,RFC 58352010年4月。
[RFC6049] Morton, A. and E. Stephan, "Spatial Composition of Metrics", RFC 6049, January 2011.
[RFC6049]Morton,A.和E.Stephan,“度量的空间构成”,RFC 6049,2011年1月。
[RFC6576] Geib, R., Morton, A., Fardid, R., and A. Steinmitz, "IP Performance Metrics (IPPM) Standard Advancement Testing", BCP 176, RFC 6576, March 2012.
[RFC6576]Geib,R.,Morton,A.,Fardid,R.,和A.Steinmitz,“IP性能指标(IPPM)标准推进测试”,BCP 176,RFC 6576,2012年3月。
[RFC6703] Morton, A., Ramachandran, G., and G. Maguluri, "Reporting IP Network Performance Metrics: Different Points of View", RFC 6703, August 2012.
[RFC6703]Morton,A.,Ramachandran,G.,和G.Maguluri,“报告IP网络性能指标:不同观点”,RFC 67032012年8月。
[EEAW] Pentikousis, K., Piri, E., Pinola, J., Fitzek, F., Nissilae, T., and I. Harjula, "Empirical Evaluation of VoIP Aggregation over a Fixed WiMAX Testbed", Proceedings of the 4th International Conference on Testbeds and research infrastructures for the development of networks and communities (TridentCom '08), Article No. 19, March 2008, <http://dl.acm.org/citation.cfm?id=139059>.
[EEAW]Pentikousis,K.,Piri,E.,Pinola,J.,Fitzek,F.,Nissilae,T.,和I.Harjula,“固定WiMAX测试床上VoIP聚合的实证评估”,第四届网络和社区发展测试床和研究基础设施国际会议论文集(TridentCom'08),第19条,2008年3月, <http://dl.acm.org/citation.cfm?id=139059>.
[IBD] Fabini, J., Karner, W., Wallentin, L., and T. Baumgartner, "The Illusion of Being Deterministic - Application-Level Considerations on Delay in 3G HSPA Networks", Lecture Notes in Computer Science, Volume 5550, pp. 301-312 , May 2009.
[IBD]Fabini,J.,Karner,W.,Wallentin,L.,和T.Baumgartner,“确定性的幻觉-3G HSPA网络延迟的应用级考虑”,计算机科学讲稿,第5550卷,第301-312页,2009年5月。
[IRR] Fabini, J., Wallentin, L., and P. Reichl, "The Importance of Being Really Random: Methodological Aspects of IP-Layer 2G and 3G Network Delay Assessment", ICC'09 Proceedings of the 2009 IEEE International Conference on Communications, doi: 10.1109/ICC.2009.5199514, June 2009.
[IRR]Fabini,J.,Wallentin,L.,和P.Reichl,“真正随机的重要性:IP层2G和3G网络延迟评估的方法学方面”,2009年IEEE国际通信会议记录,doi:10.1109/ICC.2009.51995142009年6月。
[LMAP] Eardley, P., Morton, A., Bagnulo, M., Burbridge, T., Aitken, P., and A. Akhter, "A framework for large-scale measurement platforms (LMAP)", Work in Progress, June 2014.
[LMAP]Eardley,P.,Morton,A.,Bagnulo,M.,Burbridge,T.,Aitken,P.,和A.Akhter,“大型测量平台框架(LMAP)”,正在进行的工作,2014年6月。
[Mat98] Mathis, M., "Empirical Bulk Transfer Capacity", IP Performance Metrics Working Group report in Proceedings of the Forty-Third Internet Engineering Task Force, Orlando, FL, December 1998, <http://www.ietf.org/proceedings/43/slides/ ippm-mathis-98dec.pdf>.
[Mat98]Mathis,M.,“经验批量传输容量”,IP性能度量工作组报告,第四十三届互联网工程特别工作组会议记录,佛罗里达州奥兰多,1998年12月<http://www.ietf.org/proceedings/43/slides/ ippm-mathis-98dec.pdf>。
[RFC3148] Mathis, M. and M. Allman, "A Framework for Defining Empirical Bulk Transfer Capacity Metrics", RFC 3148, July 2001.
[RFC3148]Mathis,M.和M.Allman,“定义经验批量传输容量指标的框架”,RFC 3148,2001年7月。
[RFC6808] Ciavattone, L., Geib, R., Morton, A., and M. Wieser, "Test Plan and Results Supporting Advancement of RFC 2679 on the Standards Track", RFC 6808, December 2012.
[RFC6808]Ciavattone,L.,Geib,R.,Morton,A.,和M.Wieser,“支持在标准轨道上推进RFC 2679的测试计划和结果”,RFC 68082012年12月。
[RFC6985] Morton, A., "IMIX Genome: Specification of Variable Packet Sizes for Additional Testing", RFC 6985, July 2013.
[RFC6985]Morton,A.,“IMIX基因组:用于附加测试的可变数据包大小规范”,RFC 6985,2013年7月。
[RRC] Peraelae, P., Barbuzzi, A., Boggia, G., and K. Pentikousis, "Theory and Practice of RRC State Transitions in UMTS Networks", IEEE Globecom 2009 Workshops, doi: 10.1109/GLOCOMW.2009.5360763, November 2009.
[RRC]Peraelae,P.,Barbuzzi,A.,Boggia,G.,和K.Pentikousis,“UMTS网络中RRC状态转换的理论和实践”,IEEE Globecom 2009研讨会,doi:10.1109/GLOCOMW.2009.5360763,2009年11月。
[TSRC] Fabini, J. and M. Abmayer, "Delay Measurement Methodology Revisited: Time-slotted Randomness Cancellation", IEEE Transactions on Instrumentation and Measurement, Volume 62, Issue 10, doi:10.1109/TIM.2013.2263914, October 2013.
[TSRC]Fabini,J.和M.Abmayer,“重新审视延迟测量方法:时隙随机性消除”,《IEEE仪器与测量学报》,第62卷,第10期,doi:10.1109/TIM.2013.22639142013年10月。
Authors' Addresses
作者地址
Joachim Fabini Vienna University of Technology Gusshausstrasse 25/E389 Vienna 1040 Austria
约阿希姆法比尼维也纳理工大学GuSaSuSaseSE 25 /E38维也纳1040奥地利
Phone: +43 1 58801 38813 Fax: +43 1 58801 38898 EMail: Joachim.Fabini@tuwien.ac.at URI: http://www.tc.tuwien.ac.at/about-us/staff/joachim-fabini/
Phone: +43 1 58801 38813 Fax: +43 1 58801 38898 EMail: Joachim.Fabini@tuwien.ac.at URI: http://www.tc.tuwien.ac.at/about-us/staff/joachim-fabini/
Al Morton AT&T Labs 200 Laurel Avenue South Middletown, NJ 07748 USA
美国新泽西州劳雷尔大道南米德尔顿200号阿尔莫顿AT&T实验室,邮编:07748
Phone: +1 732 420 1571 Fax: +1 732 368 1192 EMail: acmorton@att.com URI: http://home.comcast.net/~acmacm/
Phone: +1 732 420 1571 Fax: +1 732 368 1192 EMail: acmorton@att.com URI: http://home.comcast.net/~acmacm/