Internet Engineering Task Force (IETF)                         S. Turner
Request for Comments: 7192                                          IECA
Category: Standards Track                                     April 2014
ISSN: 2070-1721
        
Internet Engineering Task Force (IETF)                         S. Turner
Request for Comments: 7192                                          IECA
Category: Standards Track                                     April 2014
ISSN: 2070-1721
        

Algorithms for Cryptographic Message Syntax (CMS) Key Package Receipt and Error Content Types

加密消息语法(CMS)密钥包接收和错误内容类型的算法

Abstract

摘要

This document describes the conventions for using several cryptographic algorithms with the Cryptographic Message Syntax (CMS) key package receipt and error content types. Specifically, it includes conventions necessary to implement SignedData, EnvelopedData, EncryptedData, and AuthEnvelopedData.

本文档描述了使用加密消息语法(CMS)密钥包接收和错误内容类型的几种加密算法的约定。具体来说,它包括实现SignedData、EnvelopedData、EncryptedData和AuthEnvelopedData所需的约定。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7192.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7192.

Copyright Notice

版权公告

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2014 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

1. Introduction
1. 介绍

This document describes the conventions for using several cryptographic algorithms with the Cryptographic Message Syntax (CMS) key package receipt and error content types [RFC7191]. Specifically, it includes conventions necessary to implement SignedData [RFC5652], EnvelopedData [RFC5652], EncryptedData [RFC5652], and AuthEnvelopedData [RFC5083].

本文档描述了使用加密消息语法(CMS)密钥包接收和错误内容类型的几种加密算法的约定[RFC7191]。具体而言,它包括实现SignedData[RFC5652]、EnvelopedData[RFC5652]、EncryptedData[RFC5652]和AuthEnvelopedData[RFC5083]所需的约定。

This document does not define any new algorithms; instead, it refers to previously defined algorithms. In fact, the algorithm requirements in this document are the same as those in [RFC5959], [RFC6033], [RFC6160], [RFC6161], and [RFC6162] with the following exceptions: the content-encryption algorithm is AES in Cipher Block Chaining (CBC) mode as opposed to AES Key Wrap with Message Length Indicator (MLI) and the key-wrap algorithm is AES Key Wrap as opposed to AES Key Wrap with MLI. The rationale for the difference is that the receipt and error content types are not keys; therefore, AES Key Wrap with MLI is not appropriate for the content-encryption algorithm. If an implementation is not using AES Key Wrap with MLI as the content-encryption algorithm, then there's no need to keep the key-wrap algorithm the same as the content encryption algorithm.

本文件未定义任何新算法;相反,它指的是以前定义的算法。事实上,本文件中的算法要求与[RFC5959]、[RFC6033]、[RFC6160]、[RFC6161]和[RFC6162]中的算法要求相同,但以下例外情况除外:内容加密算法是密码块链接(CBC)模式下的AES,而不是带消息长度指示符(MLI)的AES密钥包装密钥包裹算法是AES密钥包裹,而不是使用MLI的AES密钥包裹。区别的基本原理是收据和错误内容类型不是键;因此,带有MLI的AES密钥包装不适合于内容加密算法。如果一个实现没有使用AES Key Wrap with MLI作为内容加密算法,那么就不需要保持密钥Wrap算法与内容加密算法相同。

NOTE: [RFC7191] only requires that the key package receipt be signed.

注:[RFC7191]仅要求签署密钥包收据。

1.1. Terminology
1.1. 术语

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“建议”、“不建议”、“可”和“可选”应按照[RFC2119]中的说明进行解释。

2. SignedData
2. 签名数据

If an implementation supports SignedData, then it MUST support the signature scheme RSA [RFC3370] and SHOULD support the signature schemes RSA Probabilistic Signature Scheme (RSASSA-PSS) [RFC4056] and Digital Signature Algorithm (DSA) [RFC3370]. Additionally, implementations MUST support the hash function SHA-256 [RFC5754] in concert with these signature schemes, and they SHOULD support the hash function SHA-1 [RFC3370]. Implementations can also choose the to support Elliptic Curve Digital Signature Algorithm (ECDSA) [RFC5753] and [RFC6090].

如果实现支持SignedData,则它必须支持签名方案RSA[RFC3370],并应支持签名方案RSA概率签名方案(RSASSA-PSS)[RFC4056]和数字签名算法(DSA)[RFC3370]。此外,实现必须支持哈希函数SHA-256[RFC5754]和这些签名方案,并且它们应该支持哈希函数SHA-1[RFC3370]。实现还可以选择支持椭圆曲线数字签名算法(ECDSA)[RFC5753]和[RFC6090]。

3. EnvelopedData
3. 包络数据

If an implementation supports EnvelopedData, then it MUST implement key transport and it MAY implement key agreement.

如果实现支持EnvelopedData,那么它必须实现密钥传输,并且可以实现密钥协议。

When key transport is used, RSA encryption [RFC3370] MUST be supported, and RSA Encryption Scheme - Optimal Asymmetric Encryption Padding (RSAES-OAEP) [RFC3560] SHOULD be supported.

使用密钥传输时,必须支持RSA加密[RFC3370],并且应支持RSA加密方案-最佳非对称加密填充(RSAES-OAEP)[RFC3560]。

When key agreement is used, Diffie-Hellman (DH) ephemeral-static [RFC3370] MUST be supported. When key agreement is used, Elliptic Curve Diffie-Hellman (ECDH) [RFC5753] [RFC6090] MAY be supported.

使用密钥协议时,必须支持Diffie-Hellman(DH)瞬时静态[RFC3370]。使用密钥协商时,可能支持椭圆曲线Diffie-Hellman(ECDH)[RFC5753][RFC6090]。

Regardless of the key management technique choice, implementations MUST support AES-128 in CBC mode [AES] as the content-encryption algorithm. Implementations SHOULD support AES-256 in CBC mode [AES] as the content-encryption algorithm.

无论选择何种密钥管理技术,实现都必须支持CBC模式[AES]中的AES-128作为内容加密算法。实现应支持CBC模式下的AES-256[AES]作为内容加密算法。

When key agreement is used, the same length for the underlying block algorithm MUST be used. If the content-encryption algorithm is AES-128 in CBC mode, then the key-wrap algorithm MUST be AES-128 Key Wrap [RFC3394]. If the content-encryption algorithm is AES-256 in CBC mode, then the key-wrap algorithm MUST be AES-256 Key Wrap [RFC3394].

使用密钥协商时,必须使用与基础块算法相同的长度。如果CBC模式下的内容加密算法为AES-128,则密钥包裹算法必须为AES-128密钥包裹[RFC3394]。如果CBC模式下的内容加密算法为AES-256,则密钥包裹算法必须为AES-256密钥包裹[RFC3394]。

4. EncryptedData
4. 加密数据

If an implementation supports EncryptedData, then it MUST implement AES-128 in CBC mode [AES] and SHOULD implement AES-256 in CBC mode [AES].

如果实现支持EncryptedData,则必须在CBC模式[AES]下实现AES-128,并应在CBC模式[AES]下实现AES-256。

NOTE: EncryptedData requires that keys be managed by other means; therefore, the only algorithm specified is the content-encryption algorithm.

注:EncryptedData要求通过其他方式管理密钥;因此,指定的唯一算法是内容加密算法。

5. AuthEnvelopedData
5. AuthEnvelopedData

If an implementation supports AuthEnvelopedData, then it MUST implement the EnvelopedData recommendations except for the content-encryption algorithm, which, in this case, MUST be AES-GCM [RFC5084]; the 128-bit version MUST be implemented, and the 256-bit version SHOULD be implemented. Implementations MAY also support AES-CCM [RFC5084].

如果实现支持AuthEnvelopedData,则必须实现EnvelopedData建议,但内容加密算法除外,在本例中,该算法必须是AES-GCM[RFC5084];必须实现128位版本,并且应该实现256位版本。实现也可能支持AES-CCM[RFC5084]。

6. Public Key Sizes
6. 公钥大小

The easiest way to implement SignedData, EnvelopedData, and AuthEnvelopedData is with public key certificates [RFC5280]. If an implementation supports RSA, RSASSA-PSS, DSA, RSAES-OAEP, or Diffie-Hellman, then it MUST support key lengths from 1024-bit to 2048-bit, inclusive. If an implementation supports ECDSA or ECDH, then it MUST support keys on the P-256 curve [RFC6090].

实现SignedData、EnvelopedData和AuthEnvelopedData的最简单方法是使用公钥证书[RFC5280]。如果实现支持RSA、RSASSA-PSS、DSA、RSAES-OAEP或Diffie-Hellman,则它必须支持1024位到2048位(包括1024位)的密钥长度。如果实现支持ECDSA或ECDH,则必须支持P-256曲线上的键[RFC6090]。

7. Security Considerations
7. 安全考虑

The security considerations from [RFC3370], [RFC3394], [RFC3560], [RFC4056], [RFC5084], [RFC5652], [RFC5753], and [RFC5754] apply.

[RFC3370]、[RFC3394]、[RFC3560]、[RFC4056]、[RFC5084]、[RFC5652]、[RFC5753]和[RFC5754]中的安全注意事项适用。

[SP800-57] provides comparable bits of security for some algorithms and key sizes. [SP800-57] also provides time frames during which certain numbers of bits of security are appropriate, and some environments may find these time frames useful.

[SP800-57]为某些算法和密钥大小提供了可比的安全性。[SP800-57]还提供了一定数量的安全位适当的时间框架,一些环境可能会发现这些时间框架很有用。

8. Acknowledgements
8. 致谢

I'd like to thank Russ Housley for his early feedback on this document.

我要感谢Russ Housley对本文件的早期反馈。

9. References
9. 工具书类
9.1. Normative References
9.1. 规范性引用文件

[AES] National Institute of Standards and Technology, FIPS Pub 197: Advanced Encryption Standard (AES), 26 November 2001.

[AES]国家标准与技术研究所,FIPS Pub 197:高级加密标准(AES),2001年11月26日。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC3370] Housley, R., "Cryptographic Message Syntax (CMS) Algorithms", RFC 3370, August 2002.

[RFC3370]Housley,R.,“加密消息语法(CMS)算法”,RFC3370,2002年8月。

[RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard (AES) Key Wrap Algorithm", RFC 3394, September 2002.

[RFC3394]Schaad,J.和R.Housley,“高级加密标准(AES)密钥包裹算法”,RFC 3394,2002年9月。

[RFC3560] Housley, R., "Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message Syntax (CMS)", RFC 3560, July 2003.

[RFC3560]Housley,R.,“在加密消息语法(CMS)中使用RSAES-OAEP密钥传输算法”,RFC 3560,2003年7月。

[RFC4056] Schaad, J., "Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message Syntax (CMS)", RFC 4056, June 2005.

[RFC4056]Schaad,J.,“在加密消息语法(CMS)中使用RSASSA-PSS签名算法”,RFC 4056,2005年6月。

[RFC5083] Housley, R., "Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type", RFC 5083, November 2007.

[RFC5083]Housley,R.,“加密消息语法(CMS)认证的信封数据内容类型”,RFC 5083,2007年11月。

[RFC5084] Housley, R., "Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic Message Syntax (CMS)", RFC 5084, November 2007.

[RFC5084]Housley,R.,“在加密消息语法(CMS)中使用AES-CCM和AES-GCM认证加密”,RFC 5084,2007年11月。

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008.

[RFC5280]Cooper,D.,Santesson,S.,Farrell,S.,Boeyen,S.,Housley,R.,和W.Polk,“Internet X.509公钥基础设施证书和证书撤销列表(CRL)配置文件”,RFC 52802008年5月。

[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, September 2009.

[RFC5652]Housley,R.,“加密消息语法(CMS)”,STD 70,RFC 56522009年9月。

[RFC5753] Turner, S. and D. Brown, "Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS)", RFC 5753, January 2010.

[RFC5753]Turner,S.和D.Brown,“加密消息语法(CMS)中椭圆曲线加密(ECC)算法的使用”,RFC 5753,2010年1月。

[RFC5754] Turner, S., "Using SHA2 Algorithms with Cryptographic Message Syntax", RFC 5754, January 2010.

[RFC5754]Turner,S.,“将SHA2算法与加密消息语法结合使用”,RFC 5754,2010年1月。

[RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090, February 2011.

[RFC6090]McGrew,D.,Igoe,K.,和M.Salter,“基本椭圆曲线密码算法”,RFC 60902011年2月。

[RFC7191] Housley, R., "Cryptographic Message Syntax (CMS) Key Package Receipt and Error Content Types", RFC 7191, April 2014.

[RFC7191]Housley,R.,“加密消息语法(CMS)密钥包接收和错误内容类型”,RFC 71912014年4月。

9. Informative References
9. 资料性引用

[RFC5959] Turner, S., "Algorithms for Asymmetric Key Package Content Type", RFC 5959, August 2010.

[RFC5959]Turner,S.“非对称密钥包内容类型的算法”,RFC 59592010年8月。

[RFC6033] Turner, S., "Algorithms for Cryptographic Message Syntax (CMS) Encrypted Key Package Content Type", RFC 6033, December 2010.

[RFC6033]Turner,S.,“加密消息语法(CMS)加密密钥包内容类型的算法”,RFC 6033,2010年12月。

[RFC6160] Turner, S., "Algorithms for Cryptographic Message Syntax (CMS) Protection of Symmetric Key Package Content Types", RFC 6160, April 2011.

[RFC6160]Turner,S.“对称密钥包内容类型的加密消息语法(CMS)保护算法”,RFC 61602011年4月。

[RFC6161] Turner, S., "Elliptic Curve Algorithms for Cryptographic Message Syntax (CMS) Encrypted Key Package Content Type", RFC 6161, April 2011.

[RFC6161]Turner,S.“加密消息语法(CMS)加密密钥包内容类型的椭圆曲线算法”,RFC 61612011年4月。

[RFC6162] Turner, S., "Elliptic Curve Algorithms for Cryptographic Message Syntax (CMS) Asymmetric Key Package Content Type", RFC 6162, April 2011.

[RFC6162]Turner,S.“加密消息语法(CMS)非对称密钥包内容类型的椭圆曲线算法”,RFC 6162,2011年4月。

[SP800-57] National Institute of Standards and Technology (NIST), Special Publication 800-57: Recommendation for Key Management - Part 1 (Revised), March 2007.

[SP800-57]国家标准与技术研究所(NIST),特别出版物800-57:关键管理建议-第1部分(修订版),2007年3月。

Author's Address

作者地址

Sean Turner IECA, Inc. 3057 Nutley Street, Suite 106 Fairfax, VA 22031 USA

Sean Turner IECA,Inc.美国弗吉尼亚州费尔法克斯市努特利街3057号106室,邮编22031

   EMail: turners@ieca.com
        
   EMail: turners@ieca.com