Internet Engineering Task Force (IETF)                        U. Herberg
Request for Comments: 7182               Fujitsu Laboratories of America
Obsoletes: 6622                                               T. Clausen
Category: Standards Track                       LIX, Ecole Polytechnique
ISSN: 2070-1721                                              C. Dearlove
                                                         BAE Systems ATC
                                                              April 2014
        
Internet Engineering Task Force (IETF)                        U. Herberg
Request for Comments: 7182               Fujitsu Laboratories of America
Obsoletes: 6622                                               T. Clausen
Category: Standards Track                       LIX, Ecole Polytechnique
ISSN: 2070-1721                                              C. Dearlove
                                                         BAE Systems ATC
                                                              April 2014
        

Integrity Check Value and Timestamp TLV Definitions for Mobile Ad Hoc Networks (MANETs)

移动自组织网络(MANET)的完整性检查值和时间戳TLV定义

Abstract

摘要

This document revises, extends, and replaces RFC 6622. It describes general and flexible TLVs for representing cryptographic Integrity Check Values (ICVs) and timestamps, using the generalized Mobile Ad Hoc Network (MANET) packet/message format defined in RFC 5444. It defines two Packet TLVs, two Message TLVs, and two Address Block TLVs for affixing ICVs and timestamps to a packet, a message, and one or more addresses, respectively.

本文件修订、扩展并取代RFC 6622。它描述了使用RFC 5444中定义的通用移动自组织网络(MANET)数据包/消息格式表示密码完整性检查值(ICV)和时间戳的通用灵活TLV。它定义了两个数据包TLV、两个消息TLV和两个地址块TLV,分别用于将ICV和时间戳附加到数据包、消息和一个或多个地址。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7182.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7182.

Copyright Notice

版权公告

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2014 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................3
      1.1. Differences from RFC 6622 ..................................4
   2. Terminology .....................................................4
   3. Applicability Statement .........................................5
   4. Security Architecture ...........................................6
   5. Overview and Functioning ........................................7
   6. General ICV TLV Structure .......................................8
   7. General Timestamp TLV Structure .................................8
   8. Packet TLVs .....................................................9
      8.1. ICV Packet TLV .............................................9
      8.2. TIMESTAMP Packet TLV ......................................10
   9. Message TLVs ...................................................10
      9.1. ICV Message TLV ...........................................10
      9.2. TIMESTAMP Message TLV .....................................10
   10. Address Block TLVs ............................................11
      10.1. ICV Address Block TLV ....................................11
      10.2. TIMESTAMP Address Block TLV ..............................11
   11. ICV: Basic ....................................................11
   12. ICV: Hash Function and Cryptographic Function .................12
      12.1. General ICV TLV Structure ................................12
           12.1.1. Rationale .........................................14
           12.1.2. Parameters ........................................15
      12.2. Considerations for Calculating the ICV ...................15
           12.2.1. ICV Packet TLV ....................................15
           12.2.2. ICV Message TLV ...................................16
           12.2.3. ICV Address Block TLV .............................16
      12.3. Example of a Message Including an ICV ....................17
   13. IANA Considerations ...........................................19
      13.1. Expert Review: Evaluation Guidelines .....................19
      13.2. Packet TLV Types .........................................20
      13.3. Message TLV Types ........................................20
        
   1. Introduction ....................................................3
      1.1. Differences from RFC 6622 ..................................4
   2. Terminology .....................................................4
   3. Applicability Statement .........................................5
   4. Security Architecture ...........................................6
   5. Overview and Functioning ........................................7
   6. General ICV TLV Structure .......................................8
   7. General Timestamp TLV Structure .................................8
   8. Packet TLVs .....................................................9
      8.1. ICV Packet TLV .............................................9
      8.2. TIMESTAMP Packet TLV ......................................10
   9. Message TLVs ...................................................10
      9.1. ICV Message TLV ...........................................10
      9.2. TIMESTAMP Message TLV .....................................10
   10. Address Block TLVs ............................................11
      10.1. ICV Address Block TLV ....................................11
      10.2. TIMESTAMP Address Block TLV ..............................11
   11. ICV: Basic ....................................................11
   12. ICV: Hash Function and Cryptographic Function .................12
      12.1. General ICV TLV Structure ................................12
           12.1.1. Rationale .........................................14
           12.1.2. Parameters ........................................15
      12.2. Considerations for Calculating the ICV ...................15
           12.2.1. ICV Packet TLV ....................................15
           12.2.2. ICV Message TLV ...................................16
           12.2.3. ICV Address Block TLV .............................16
      12.3. Example of a Message Including an ICV ....................17
   13. IANA Considerations ...........................................19
      13.1. Expert Review: Evaluation Guidelines .....................19
      13.2. Packet TLV Types .........................................20
      13.3. Message TLV Types ........................................20
        
      13.4. Address Block TLV Types ..................................20
      13.5. ICV Packet TLV Type Extensions ...........................21
      13.6. TIMESTAMP Packet TLV Type Extensions .....................21
      13.7. ICV Message TLV Type Extensions ..........................22
      13.8. TIMESTAMP Message TLV Type Extensions ....................23
      13.9. ICV Address Block TLV Type Extensions ....................24
      13.10. TIMESTAMP Address Block TLV Type Extensions .............25
      13.11. Hash Functions ..........................................26
      13.12. Cryptographic Functions .................................27
   14. Security Considerations .......................................28
   15. Acknowledgements ..............................................28
   16. References ....................................................29
      16.1. Normative References .....................................29
      16.2. Informative References ...................................30
        
      13.4. Address Block TLV Types ..................................20
      13.5. ICV Packet TLV Type Extensions ...........................21
      13.6. TIMESTAMP Packet TLV Type Extensions .....................21
      13.7. ICV Message TLV Type Extensions ..........................22
      13.8. TIMESTAMP Message TLV Type Extensions ....................23
      13.9. ICV Address Block TLV Type Extensions ....................24
      13.10. TIMESTAMP Address Block TLV Type Extensions .............25
      13.11. Hash Functions ..........................................26
      13.12. Cryptographic Functions .................................27
   14. Security Considerations .......................................28
   15. Acknowledgements ..............................................28
   16. References ....................................................29
      16.1. Normative References .....................................29
      16.2. Informative References ...................................30
        
1. Introduction
1. 介绍

This document specifies a syntactical representation of security-related information for use with [RFC5444] addresses, messages, and packets. It also specifies IANA registrations of TLV types and type extension registries for these TLV types. This specification does not represent a stand-alone protocol, but it is intended for use by MANET routing protocols or security extensions thereof.

本文档指定了与[RFC5444]地址、消息和数据包一起使用的安全相关信息的语法表示。它还指定TLV类型的IANA注册以及这些TLV类型的类型扩展注册。本规范不代表独立协议,但旨在供MANET路由协议或其安全扩展使用。

Specifically, this document, which revises, extends, and replaces [RFC6622], specifies:

具体而言,本文件修订、扩展和替换[RFC6622],规定:

o Two kinds of TLV: one for carrying Integrity Check Values (ICVs) and one for timestamps in packets, messages, and Address Blocks as defined by [RFC5444].

o 两种TLV:一种用于承载完整性检查值(ICV),另一种用于[RFC5444]定义的数据包、消息和地址块中的时间戳。

o A generic framework for use of these TLVs, accounting for specific features of Packet, Message, and Address Block TLVs.

o 用于使用这些TLV的通用框架,考虑数据包、消息和地址块TLV的特定功能。

o IANA registrations for TLVs, and registries for TLV type extensions, replacing those from [RFC6622].

o TLV的IANA注册和TLV类型扩展的注册,取代[RFC6622]中的注册。

This document specifies IANA registries for recording code points for ICV TLVs and TIMESTAMP TLVs, as well as timestamps, hash functions, and cryptographic functions.

本文档指定了IANA注册表,用于记录ICV TLV和时间戳TLV的代码点,以及时间戳、哈希函数和加密函数。

Moreover, in Section 12, this document defines the following:

此外,在第12节中,本文件定义了以下内容:

o A method for generating ICVs using a combination of a cryptographic function and a hash function and for including such ICVs in the value field of a TLV.

o 一种用于使用密码函数和散列函数的组合来生成icv的方法,以及用于将此类icv包括在TLV的值字段中的方法。

1.1. Differences from RFC 6622
1.1. 与RFC 6622的差异

This document obsoletes [RFC6622], replacing that document as the specification of two TLV types, TIMESTAMP and ICV, for packets, messages and Address Blocks. For the ICV type, this document specifies a new type extension, 2 (see Section 12), in addition to including the original type extensions (0 and 1) from [RFC6622].

本文件废除了[RFC6622],将该文件替换为数据包、消息和地址块的两种TLV类型(时间戳和ICV)的规范。对于ICV类型,除了包含[RFC6622]中的原始类型扩展(0和1)外,本文件还指定了一个新的类型扩展2(见第12节)。

The TLV value of an ICV TLV with type extension = 2 has the same internal structure as an ICV TLV with type extension = 1 but is calculated also over the source address of the IP datagram carrying the packet, message, or Address Block. The rationale for adding this type extension is that some MANET protocols, such as [RFC6130], use the IP source address of the IP datagram carrying the packet, message, or Address Block, e.g., to identify links with neighbor routers. If this address is not otherwise contained in the packet, message, or Address Block payload (which is permitted, e.g., in [RFC6130]), then the address is not protected against tampering.

扩展类型为2的ICV TLV的TLV值与扩展类型为1的ICV TLV具有相同的内部结构,但也通过承载数据包、消息或地址块的IP数据报的源地址进行计算。添加这种类型扩展的基本原理是,一些MANET协议,例如[RFC6130],使用承载分组、消息或地址块的IP数据报的IP源地址,例如,识别与邻居路由器的链路。如果该地址未包含在数据包、消息或地址块有效载荷中(这是允许的,例如在[RFC6130]中),则该地址不受篡改保护。

This document also incorporates a number of editorial improvements over [RFC6622]. In particular, it makes it clear that an ICV TLV may be used to carry a truncated ICV and that a single or multivalue TIMESTAMP or ICV Address Block TLV may cover more than one address. Moreover, to be consistent with the terminology in [RFC5444], the name of the TLVs specified in this document have changed from "Packet ICV TLV" to "ICV Packet TLV" and from "Packet TIMESTAMP TLV" to "TIMESTAMP Packet TLV" (and similar for Message and Address Block TLVs).

本文件还包含了对[RFC6622]的一些编辑改进。具体而言,它明确了ICV TLV可用于承载截断的ICV,并且单值或多值时间戳或ICV地址块TLV可覆盖多个地址。此外,为了与[RFC5444]中的术语一致,本文件中指定的TLV名称已从“数据包ICV TLV”更改为“ICV数据包TLV”,并从“数据包时间戳TLV”更改为“时间戳数据包TLV”(与消息和地址块TLV类似)。

A normative requirement in Section 9.2 has changed from SHOULD to MUST in the following sentence:

第9.2节中的规范性要求在以下句子中从“应该”更改为“必须”:

      If a message contains one or more TIMESTAMP TLVs and one or more
      ICV TLVs, then the TIMESTAMP TLVs (as well as any other Message
      TLVs) MUST be added to the message before the ICV TLVs....
        
      If a message contains one or more TIMESTAMP TLVs and one or more
      ICV TLVs, then the TIMESTAMP TLVs (as well as any other Message
      TLVs) MUST be added to the message before the ICV TLVs....
        
2. Terminology
2. 术语

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“建议”、“不建议”、“可”和“可选”应按照[RFC2119]中的说明进行解释。

This document uses the terminology and notation defined in [RFC5444]. In particular, the following TLV fields and notation from [RFC5444] are used in this specification:

本文件使用[RFC5444]中定义的术语和符号。特别是,本规范中使用了[RFC5444]中的以下TLV字段和符号:

<msg-hop-limit> is the hop limit of a message, as specified in Section 5.2 of [RFC5444].

<msg hop limit>是[RFC5444]第5.2节中规定的消息的跃点限制。

<msg-hop-count> is the hop count of a message, as specified in Section 5.2 of [RFC5444].

<msg hop count>是[RFC5444]第5.2节中规定的消息的跃点计数。

<length> is the length of the value field in a TLV in octets, as specified in Section 5.4.1 of [RFC5444].

<length>是TLV中值字段的长度,以八位字节为单位,如[RFC5444]第5.4.1节所述。

single-length is the length of a single value in the value field in a TLV in octets, as specified in Section 5.4.1 of [RFC5444]. (It is equal to <length> except in a multivalue Address Block TLV.)

single length是指[RFC5444]第5.4.1节规定的TLV值字段中单个值的长度,单位为八位字节。(除多值地址块TLV外,它等于<length>。)

In addition to using the regular expressions defined in Section 2.1.1 of [RFC5444], this document defines the following:

除了使用[RFC5444]第2.1.1节中定义的正则表达式外,本文件还定义了以下内容:

+ - One or more occurrences of the preceding element or group.

+ -前面元素或组的一个或多个引用。

3. Applicability Statement
3. 适用性声明

MANET routing protocols using the format defined in [RFC5444] are accorded the ability to carry additional information in control messages and packets through the inclusion of TLVs. Information so included MAY be used by a MANET routing protocol, or by an extension of a MANET routing protocol, according to its specification.

使用[RFC5444]中定义的格式的MANET路由协议通过包含TLV被赋予在控制消息和数据包中携带附加信息的能力。根据MANET路由协议的规范,这样包括的信息可以由MANET路由协议使用,或者由MANET路由协议的扩展使用。

This document specifies how to include an ICV for a packet, a message, and addresses in an Address Block within a message, using such TLVs. This document also specifies how to treat an empty Packet TLV Block, and "mutable" fields, specifically the <msg-hop-count> and <msg-hop-limit> fields, if present in the Message Header when calculating ICVs, such that the resulting ICV can be correctly verified by any recipient.

本文档指定了如何使用此类TLV将数据包、消息和地址块中的地址包含在ICV中。本文档还规定了如何处理空数据包TLV块和“可变”字段,特别是<msg-hop-count>和<msg-hop-limit>字段(如果在计算ICV时出现在消息头中),以便任何收件人都能正确验证生成的ICV。

This document describes a generic framework for creating ICVs, and how to include these ICVs in TLVs. In Section 12, an example method for calculating such ICVs is given, using a cryptographic function and a hash function, for which two TLV type extensions are allocated.

本文档描述了创建ICV的通用框架,以及如何将这些ICV包括在TLV中。在第12节中,给出了使用加密函数和哈希函数计算此类ICV的示例方法,为其分配了两个TLV类型扩展。

This document does not specify a protocol. Protocol specifications that make use of the framework, specified in this document, will reference this document in a normative way, and they may require the implementation of some or all of the algorithms described in this document. As this document does not specify a protocol itself, key

本文档未指定协议。使用本文件中规定的框架的协议规范将以规范的方式引用本文件,它们可能需要实现本文件中描述的部分或全部算法。由于本文档未指定协议本身,密钥

management and key exchange mechanisms are out of scope and may be specified in the protocol or protocol extension using this specification.

管理和密钥交换机制超出范围,可能在协议或协议扩展中使用此规范指定。

4. Security Architecture
4. 安全体系结构

MANET routing protocol specifications may have a clause allowing a control message to be rejected as "badly formed" or "insecure" prior to the message being processed or forwarded. In particular, MANET routing protocols such as the Neighborhood Discovery Protocol (NHDP) [RFC6130] and the Optimized Link State Routing Protocol version 2 [RFC7181] recognize external reasons (such as failure to verify an ICV) for rejecting a message that would be considered "invalid for processing".

MANET路由协议规范可能有一个条款,允许在处理或转发消息之前,将控制消息作为“格式错误”或“不安全”拒绝。特别地,诸如邻域发现协议(NHDP)[RFC6130]和优化链路状态路由协议版本2[RFC7181]之类的MANET路由协议识别拒绝将被视为“处理无效”的消息的外部原因(例如未能验证ICV)。

This architecture is a result of the observation that with respect to security in MANETs, "one size rarely fits all" and that MANET routing protocol deployment domains have varying security requirements ranging from "unbreakable" to "virtually none". The virtue of this approach is that MANET routing protocol specifications (and implementations) can remain "generic", with extensions providing proper security mechanisms specific to a deployment domain.

这种体系结构是一种观察结果,即在移动自组网的安全性方面,“一刀切”很少适合所有人,并且移动自组网路由协议部署域具有从“不可破解”到“几乎没有”的不同安全要求。这种方法的优点是MANET路由协议规范(和实现)可以保持“通用”,扩展提供特定于部署域的适当安全机制。

The MANET routing protocol "security architecture", in which this specification situates itself, can therefore be summarized as follows:

因此,本规范所处的MANET路由协议“安全架构”可概括如下:

o MANET routing protocol specifications, each with a clause allowing an extension to reject a message (prior to processing/forwarding) as "badly formed" or "insecure".

o MANET路由协议规范,每个规范都有一个子句,允许扩展以“格式错误”或“不安全”为由拒绝消息(在处理/转发之前)。

o MANET routing protocol security extensions, each rejecting messages as "badly formed" or "insecure", as appropriate for a given security requirement specific to a deployment domain.

o MANET路由协议安全扩展,每一个都拒绝“格式错误”或“不安全”的消息,这适用于特定于部署域的给定安全需求。

o Code points and an exchange format for information, necessary for specification of such MANET routing protocol security extensions.

o 规范这种MANET路由协议安全扩展所必需的代码点和信息交换格式。

This document addresses the last of the points above, by specifying a common exchange format for cryptographic ICVs and timestamps, making reservations from within the Packet TLV, Message TLV, and Address Block TLV registries of [RFC5444], to be used by (and shared among) MANET routing protocol security extensions.

本文档通过指定加密ICV和时间戳的通用交换格式,在[RFC5444]的数据包TLV、消息TLV和地址块TLV注册表中进行保留,以供MANET路由协议安全扩展使用(并在它们之间共享),解决上述最后一点。

For the specific decomposition of an ICV using a cryptographic function and a hash function (specified in Section 12), this document specifies two IANA registries (see Section 13) for code points for hash functions and cryptographic functions.

对于使用加密函数和哈希函数(在第12节中指定)对ICV进行的特定分解,本文件为哈希函数和加密函数的代码点指定了两个IANA注册中心(见第13节)。

With respect to [RFC5444], this document is:

关于[RFC5444],本文件为:

o Intended to be used in the non-normative, but intended, mode of use described in Appendix B of [RFC5444].

o 拟用于[RFC5444]附录B所述的非规范性但预期的使用模式。

o A specific example of the Security Considerations section of [RFC5444] (the authentication part).

o [RFC5444](认证部分)的安全注意事项部分的具体示例。

5. Overview and Functioning
5. 概览和职能

This document specifies a syntactical representation of security-related information for use with [RFC5444] addresses, messages, and packets, and also specifies IANA registrations (see Section 13) of TLV types and type extension registries for these TLV types.

本文件规定了用于[RFC5444]地址、消息和数据包的安全相关信息的语法表示,还规定了TLV类型的IANA注册(见第13节)和这些TLV类型的类型扩展注册。

Moreover, this document provides guidelines for how MANET routing protocols, and MANET routing protocol extensions using this specification, should treat ICV and Timestamp TLVs, and mutable fields in messages. This specification does not represent a stand-alone protocol. MANET routing protocols, and MANET routing protocol extensions using this specification, MUST provide instructions as to how to handle packets, messages, and addresses with security information, associated as specified in this document.

此外,本文档提供了MANET路由协议和使用本规范的MANET路由协议扩展应如何处理ICV和时间戳TLV以及消息中的可变字段的指南。本规范不代表独立协议。MANET路由协议和使用本规范的MANET路由协议扩展必须提供有关如何处理包含安全信息的数据包、消息和地址的说明,这些信息与本文档中指定的信息相关。

This document specifies TLV type assignments (see Section 13) from the registries defined for Packet, Message, and Address Block TLVs in [RFC5444]. When a TLV type is assigned from one of these registries, a registry for type extensions for that TLV type is created by IANA. This document specifies these type extension registries, in order to specify internal structure (and accompanying processing) of the <value> field of a TLV.

本文件从[RFC5444]中为数据包、消息和地址块TLV定义的注册表中指定TLV类型分配(见第13节)。当从其中一个注册表分配TLV类型时,IANA将创建该TLV类型的类型扩展注册表。本文档指定了这些类型扩展注册表,以便指定TLV的<value>字段的内部结构(以及伴随的处理)。

For example, and as specified in this document, an ICV TLV with type extension = 0 specifies that the <value> field has no predefined internal structure, but is simply a sequence of octets. An ICV TLV with type extension = 1 specifies that the <value> field has a predefined internal structure and defines its interpretation. An ICV TLV with type extension = 2 (added in this document) is the same as an ICV TLV with type extension = 1, except that the integrity protection also covers the source address of the IP datagram carrying the packet, message, or Address Block.

例如,如本文档所述,类型扩展名为0的ICV TLV指定<value>字段没有预定义的内部结构,只是一个八位字节序列。扩展类型为1的ICV TLV指定<value>字段具有预定义的内部结构并定义其解释。类型扩展为2的ICV TLV(添加在本文档中)与类型扩展为1的ICV TLV相同,但完整性保护还包括承载数据包、消息或地址块的IP数据报的源地址。

Specifically, with type extension = 1 or type extension = 2, the <value> field contains the result of combining a cryptographic function and a hash function, calculated over the contents of the packet, message, or Address Block. The <value> field contains sub-fields indicating which hash function and cryptographic function have been used, as specified in Section 12.

具体地说,在类型扩展=1或类型扩展=2的情况下,<value>字段包含结合加密函数和哈希函数的结果,通过分组、消息或地址块的内容进行计算。<value>字段包含子字段,指示使用了哪个哈希函数和加密函数,如第12节所述。

Other documents can request assignments for other type extensions; if they do so, they MUST specify their internal structure (if any) and interpretation.

其他文档可以请求其他类型扩展的分配;如果他们这样做,他们必须指定其内部结构(如果有)和解释。

6. General ICV TLV Structure
6. 通用ICV-TLV结构

The value of the ICV TLV is:

ICV TLV的值为:

      <value> := <ICV-value>+
        
      <value> := <ICV-value>+
        

where:

哪里:

<ICV-value> is a field, of length <length> octets (except in a multivalue Address Block TLV, where each <ICV-value> is of length single-length octets) that contains the information to be interpreted by the ICV verification process, as specified by the type extension.

<ICV value>是一个长度为<length>八位字节的字段(多值地址块TLV中除外,其中每个<ICV value>的长度为单长度八位字节),其中包含ICV验证过程将解释的信息,如类型扩展所指定。

Note that this does not specify how to calculate the <ICV-value> nor the internal structure thereof, if any; such information MUST be specified by the type extension for the ICV TLV type; see Section 13. This document specifies three such type extensions: one for ICVs without predefined structures and two for ICVs constructed combining a cryptographic function and a hash function.

注意,这并没有说明如何计算<ICV值>,也没有说明其内部结构(如有);此类信息必须由ICV TLV类型的类型扩展指定;见第13节。本文档指定了三个这样的类型扩展:一个用于没有预定义结构的ICV,两个用于结合加密函数和哈希函数构造的ICV。

7. General Timestamp TLV Structure
7. 通用时间戳TLV结构

The value of the Timestamp TLV is:

时间戳TLV的值为:

      <value> := <time-value>+
        
      <value> := <time-value>+
        

where:

哪里:

<time-value> is a field, of length <length> octets (except in a multivalue Address Block TLV, where each <time-value> is of length single-length octets) that contains the timestamp.

<time value>是包含时间戳的长度为<length>八位字节的字段(多值地址块TLV中除外,其中每个<time value>的长度为单长度八位字节)。

Note that this does not specify how to calculate the <time-value> nor the internal structure thereof, if any; such information MUST be specified by the type extension for the TIMESTAMP TLV type; see Section 13.

注意,这并没有规定如何计算<时间值>或其内部结构(如有);此类信息必须由时间戳TLV类型的类型扩展指定;见第13节。

A timestamp is essentially "freshness information". As such, its setting and interpretation are to be determined by the MANET routing protocol, or MANET routing protocol extension, that uses the timestamp and can, for example, correspond to a POSIX timestamp, GPS timestamp, or a simple sequence number. Note that ensuring time synchronization in a MANET may be difficult because of the

时间戳本质上是“新鲜度信息”。因此,其设置和解释将由使用时间戳的MANET路由协议或MANET路由协议扩展来确定,并且可以例如对应于POSIX时间戳、GPS时间戳或简单序列号。注意,确保MANET中的时间同步可能很困难,因为

decentralized architecture as well as highly dynamic topology due to mobility or other factors. It is out of scope for this document to specify a time synchronization mechanism.

由于移动性或其他因素,分散的体系结构以及高度动态的拓扑结构。指定时间同步机制超出了此文档的范围。

8. Packet TLVs
8. 分组TLV

Two Packet TLVs are defined: one for including the cryptographic ICV of a packet and one for including the timestamp indicating the time at which the cryptographic ICV was calculated.

定义了两个分组tlv:一个用于包括分组的加密ICV,另一个用于包括指示计算加密ICV的时间的时间戳。

8.1. ICV Packet TLV
8.1. ICV分组TLV

An ICV Packet TLV is an example of an ICV TLV as described in Section 6. When determining the <ICV-value> for a packet, and adding an ICV Packet TLV to a packet, the following considerations MUST be applied:

ICV分组TLV是第6节中描述的ICV TLV的示例。当确定数据包的<ICV值>并将ICV数据包TLV添加到数据包时,必须应用以下注意事项:

o Because packets as defined in [RFC5444] are never forwarded by routers, no special considerations are required regarding mutable fields (i.e., <msg-hop-count> and <msg-hop-limit>), if present within any messages in the packet, when calculating the ICV.

o 由于[RFC5444]中定义的数据包从不由路由器转发,因此在计算ICV时,如果数据包中的任何消息中存在可变字段(即<msg hop count>和<msg hop limit>),则无需特别考虑。

o Any ICV Packet TLVs already present in the Packet TLV Block MUST be removed before calculating the ICV, and the Packet TLV Block size MUST be recalculated accordingly.

o 在计算ICV之前,必须移除已经存在于数据包TLV块中的任何ICV数据包TLV,并且必须相应地重新计算数据包TLV块大小。

o If the Packet TLV Block now contains no Packet TLVs, the Packet TLV Block MUST be removed, and the phastlv bit in the <pkt-flags> field in the Packet Header MUST be cleared ('0').

o 如果数据包TLV块现在不包含数据包TLV,则必须删除数据包TLV块,并且必须清除数据包头中<pkt flags>字段中的phastlv位(“0”)。

o Any removed ICV Packet TLVs MUST be restored after having calculated the ICV, and the Packet TLV Block size MUST be recalculated accordingly.

o 在计算ICV后,必须恢复任何移除的ICV数据包TLV,并且必须相应地重新计算数据包TLV块大小。

o When any removed ICV Packet TLVs, and the newly calculated ICV Packet TLV, are added to the packet, if there is no Packet TLV Block, then one MUST be added, including setting ('1') the phastlv bit in the <pkt-flags> field in the Packet Header.

o 当任何移除的ICV数据包TLV和新计算的ICV数据包TLV添加到数据包中时,如果没有数据包TLV块,则必须添加一个数据包TLV块,包括在数据包头的<pkt flags>字段中设置('1')相位TLV位。

The rationale for removing any ICV Packet TLVs already present prior to calculating the ICV is that several ICV TLVs may be added to the same packet, e.g., using different ICV cryptographic and/or hash functions. The rationale for removing an empty Packet TLV Block is because the receiver of the packet cannot tell the difference between what was an absent Packet TLV Block, and what was an empty Packet TLV Block when removing and verifying the ICV Packet TLV if no other Packet TLVs are present.

在计算ICV之前移除已经存在的任何ICV分组tlv的基本原理是,可以将多个ICV tlv添加到同一分组中,例如,使用不同的ICV加密和/或散列函数。删除空分组TLV块的基本原理是,如果不存在其他分组TLV,则在删除和验证ICV分组TLV时,分组的接收器无法区分什么是不存在的分组TLV块,什么是空分组TLV块。

8.2. TIMESTAMP Packet TLV
8.2. 时间戳包TLV

A TIMESTAMP Packet TLV is an example of a Timestamp TLV as described in Section 7. If a packet contains one or more TIMESTAMP TLVs and one or more ICV TLVs, then the TIMESTAMP TLVs (as well as any other Packet TLVs) MUST be added to the packet before the ICV TLVs, in order to include the timestamps and other TLVs in the calculation of the ICVs.

时间戳分组TLV是如第7节所述的时间戳TLV的示例。如果数据包包含一个或多个时间戳TLV和一个或多个ICV TLV,则时间戳TLV(以及任何其他数据包TLV)必须添加到ICV TLV之前的数据包中,以便在ICV的计算中包括时间戳和其他TLV。

9. Message TLVs
9. 消息TLV

Two Message TLVs are defined: one for including the cryptographic ICV of a message and one for including the timestamp indicating the time at which the cryptographic ICV was calculated.

定义了两个消息TLV:一个用于包含消息的加密ICV,另一个用于包含指示加密ICV计算时间的时间戳。

9.1. ICV Message TLV
9.1. ICV消息TLV

An ICV Message TLV is an example of an ICV TLV as described in Section 6. When determining the <ICV-value> for a message, the following considerations MUST be applied:

ICV消息TLV是第6节所述ICV TLV的一个示例。确定消息的<ICV值>时,必须考虑以下因素:

o The fields <msg-hop-limit> and <msg-hop-count>, if present in the Message Header, MUST both be assumed to have the value 0 (zero) when calculating the ICV.

o 在计算ICV时,如果消息头中存在字段<msg hop limit>和<msg hop count>,则必须假定这两个字段的值均为0(零)。

o Any ICV Message TLVs already present in the Message TLV Block MUST be removed before calculating the ICV, and the message size as well as the Message TLV Block size MUST be recalculated accordingly. Also, all relevant TLVs other than ICV TLVs MUST be added prior to ICV value calculation.

o 在计算ICV之前,必须删除消息TLV块中已经存在的任何ICV消息TLV,并且必须相应地重新计算消息大小以及消息TLV块大小。此外,在计算ICV值之前,必须添加除ICV TLV以外的所有相关TLV。

o Any removed ICV Message TLVs MUST be restored after having calculated the ICV, and the message size as well as the Message TLV Block size MUST be recalculated accordingly.

o 计算ICV后,必须恢复任何已删除的ICV消息TLV,并且必须相应地重新计算消息大小以及消息TLV块大小。

The rationale for removing any ICV Message TLVs already present prior to calculating the ICV is that several ICV TLVs may be added to the same message, e.g., using different ICV cryptographic and/or hash functions.

在计算ICV之前删除已经存在的任何ICV消息TLV的基本原理是,可以将多个ICV TLV添加到同一消息中,例如,使用不同的ICV加密和/或哈希函数。

9.2. TIMESTAMP Message TLV
9.2. 时间戳消息TLV

A TIMESTAMP Message TLV is an example of a Timestamp TLV as described in Section 7. If a message contains one or more TIMESTAMP TLVs and one or more ICV TLVs, then the TIMESTAMP TLVs (as well as any other Message TLVs) MUST be added to the message before the ICV TLVs, in order to include the timestamps and other Message TLVs in the calculation of the ICV.

时间戳消息TLV是第7节中描述的时间戳TLV的示例。如果消息包含一个或多个时间戳TLV和一个或多个ICV TLV,则时间戳TLV(以及任何其他消息TLV)必须添加到ICV TLV之前的消息中,以便在ICV计算中包括时间戳和其他消息TLV。

10. Address Block TLVs
10. 地址块TLV

Two Address Block TLVs are defined: one for associating a cryptographic ICV to one or more addresses and their associated information and one for including the timestamp indicating the time at which the cryptographic ICV was calculated.

定义了两个地址块tlv:一个用于将加密ICV与一个或多个地址及其相关信息相关联,另一个用于包括指示加密ICV计算时间的时间戳。

10.1. ICV Address Block TLV
10.1. ICV地址块TLV

An ICV Address Block TLV is an example of an ICV TLV as described in Section 6. The ICV is calculated over one or more addresses, concatenated with any other values -- for example, other Address Block TLV <value> fields -- associated with those addresses. A MANET routing protocol, or MANET routing protocol extension, using ICV Address Block TLVs MUST specify how to include any such concatenated attributes of the addresses in the calculation and verification processes for the ICV. When determining an <ICV-value> for one or more addresses, the following consideration MUST be applied:

ICV地址块TLV是第6节中描述的ICV TLV的示例。ICV在一个或多个地址上计算,并与任何其他值(例如,与这些地址相关联的其他地址块TLV<value>字段)连接。使用ICV地址块TLV的MANET路由协议或MANET路由协议扩展必须指定如何在ICV的计算和验证过程中包括地址的任何此类连接属性。确定一个或多个地址的<ICV值>时,必须考虑以下因素:

o If other TLV values are concatenated with the addresses for calculating the ICV, the corresponding TLVs MUST NOT be ICV Address Block TLVs already associated with any of the addresses.

o 如果其他TLV值与用于计算ICV的地址连接,则相应的TLV不得是已与任何地址关联的ICV地址块TLV。

The rationale for not concatenating the addresses with any ICV TLV values already associated with the addresses when calculating the ICV is that several ICVs may be added to the same address or addresses, e.g., using different ICV cryptographic and/or hash functions, and the order of addition is not known to the recipient.

当计算ICV时,不将地址与已经与地址相关联的任何ICV TLV值连接的基本原理是,可以将多个ICV添加到相同的一个或多个地址,例如,使用不同的ICV加密和/或散列函数,并且接收方不知道添加顺序。

10.2. TIMESTAMP Address Block TLV
10.2. 时间戳地址块TLV

A TIMESTAMP Address Block TLV is an example of a Timestamp TLV as described in Section 7. If one or more TIMESTAMP TLVs and one or more ICV TLVs are associated with an address, the relevant TIMESTAMP TLV <time-value>(s) MUST be included before calculating the value of the ICV to be contained in the ICV TLV value (i.e., concatenated with the associated addresses and any other values as described in Section 10.1).

时间戳地址块TLV是第7节中描述的时间戳TLV的示例。如果一个或多个时间戳TLV和一个或多个ICV TLV与地址相关联,则在计算ICV TLV值中包含的ICV值(即,与相关地址和第10.1节所述的任何其他值连接)之前,必须包括相关时间戳TLV<时间值>(s)。

11. ICV: Basic
11. ICV:基础

The basic ICV, represented by way of an ICV TLV with type extension = 0, has as TLV value a simple bit-field without specified structure (i.e, without explicitly included hash function, crypto function, key ID or other parameters). Moreover, it is not specified how to calculate the <ICV-value>. It is assumed that the mechanism specifying how ICVs are calculated and verified, as well as which parameters (if any) need to be exchanged prior to using the TLV with

基本ICV由类型扩展=0的ICV TLV表示,其TLV值为没有指定结构的简单位字段(即,没有明确包含的哈希函数、加密函数、密钥ID或其他参数)。此外,未规定如何计算<ICV值>。假设该机制规定如何计算和验证ICV,以及在使用TLV之前需要交换哪些参数(如有)

type extension = 0, is established outside of this specification, e.g., by administrative configuration or external out-of-band signaling.

类型扩展=0,在本规范之外建立,例如,通过管理配置或外部带外信令。

The <ICV-value>, when using type extension = 0, is:

当使用类型扩展=0时,<ICV值>:

      <ICV-value> := <ICV-data>
        
      <ICV-value> := <ICV-data>
        

where:

哪里:

<ICV-data> is a field, of length <length> octets (or single-length octets in a multivalue Address Block TLV) that contains the cryptographic ICV.

<ICV data>是一个包含加密ICV的长度为<length>八位字节(或多值地址块TLV中的单长度八位字节)的字段。

12. ICV: Hash Function and Cryptographic Function
12. ICV:哈希函数和加密函数

One common way of calculating an ICV is combining a cryptographic function and a hash function applied to the content. This decomposition is specified in this section, using either type extension = 1 or type extension = 2, in the ICV TLVs.

计算ICV的一种常用方法是将加密函数和应用于内容的哈希函数相结合。本节使用ICV TLV中的类型扩展=1或类型扩展=2规定了该分解。

12.1. General ICV TLV Structure
12.1. 通用ICV-TLV结构

The following data structure allows representation of a cryptographic ICV, including specification of the appropriate hash function and cryptographic function used for calculating the ICV:

以下数据结构允许表示加密ICV,包括指定用于计算ICV的适当哈希函数和加密函数:

      <ICV-value> := <hash-function>
                     <cryptographic-function>
                     <key-id-length>
                     <key-id>?
                     <ICV-data>
        
      <ICV-value> := <hash-function>
                     <cryptographic-function>
                     <key-id-length>
                     <key-id>?
                     <ICV-data>
        

where:

哪里:

<hash-function> is a one-octet unsigned integer field specifying the hash function.

<hash function>是指定哈希函数的一个八位无符号整数字段。

<cryptographic-function> is a one-octet unsigned integer field specifying the cryptographic function.

<cryptographic function>是指定加密函数的一个八位无符号整数字段。

<key-id-length> is a one-octet unsigned integer field specifying the length of the <key-id> field as a number of octets. The value zero (0x00) is reserved for using a single pre-installed, shared key.

<key id length>是一个单八位无符号整数字段,将<key id>字段的长度指定为八位字节数。值0(0x00)保留为使用单个预安装的共享密钥。

<key-id> is a field specifying the key identifier of the key that was used to calculate the ICV of the message, which allows unique identification of different keys with the same originator. It is the responsibility of each key originator to make sure that actively used keys that it issues have distinct key identifiers. If <key-id-length> equals zero (0x00), the <key-id> field is not contained in the TLV, and a single pre-installed, shared key is used.

<key id>是一个字段,用于指定用于计算消息ICV的密钥的密钥标识符,该字段允许使用同一发起者对不同密钥进行唯一标识。每个密钥发起人都有责任确保其发出的主动使用的密钥具有不同的密钥标识符。如果<key id length>等于零(0x00),则TLV中不包含<key id>字段,并使用单个预安装的共享密钥。

<ICV-data> is a field with length <length> - 3 - <key-id-length> octets (except in a multivalue Address Block TLV, in which it is single-length - 3 - <key-id-length> octets) and that contains the cryptographic ICV.

<ICV data>是一个长度为<length>-3-<key id length>八位字节的字段(多值地址块TLV中除外,其中它是单长度-3-<key id length>八位字节),包含加密ICV。

The version of this TLV, specified in this section, assumes that, unless otherwise specified, calculating the ICV can be decomposed into:

本节规定的TLV版本假设,除非另有规定,否则计算ICV可分解为:

      ICV-value = cryptographic-function(hash-function(content))
        
      ICV-value = cryptographic-function(hash-function(content))
        

In some cases, a different combination of cryptographic function and hash function may be specified. This is the case for the Hashed Message Authentication Code (HMAC) function, which is specified as defined in Section 13.12, using the hash function twice. Using cryptographic-function "none" is provided for symmetry and possible future use, but it SHOULD NOT be used with any currently specified hash function.

在某些情况下,可以指定加密函数和哈希函数的不同组合。哈希消息认证码(HMAC)函数就是这种情况,如第13.12节所定义,它使用哈希函数两次。使用加密函数“none”是为了对称和将来可能使用,但不应与当前指定的任何哈希函数一起使用。

The difference between the two type extensions is that in addition to the information covered by the ICV using type extension = 1 (which is detailed in the following sections), the ICV using type extension = 2 also MUST cover the source address of the IP datagram carrying the corresponding packet, message, or Address Block.

两种类型扩展之间的区别在于,除了使用类型扩展=1的ICV涵盖的信息(在以下章节中详细说明)之外,使用类型扩展=2的ICV还必须涵盖承载相应数据包、消息或地址块的IP数据报的源地址。

The <ICV-data> field MAY be truncated after being calculated, this is indicated by its length, calculated as described above. The truncation MUST be as specified for the relevant cryptographic function (and, if appropriate, hash function).

<ICV data>字段在计算后可能会被截断,这由其长度表示,如上所述进行计算。截断必须与相关加密函数(以及,如果合适,哈希函数)的指定一致。

o When using truncation, the guidelines for minimal ICV length set out in [NIST-SP-800-107] MUST be followed. In particular the <ICV-data> field when using HMAC MUST NOT be truncated below 4 octets.

o 使用截断时,必须遵循[NIST-SP-800-107]中规定的最小ICV长度指南。尤其是使用HMAC时,<ICV data>字段不得截断到4个八位字节以下。

o The truncated ICV length MUST be so large that the probability of success of a dictionary attack is acceptably small. Such a success will arise if the ICV of a spoofed packet or message is verified. The probability of success is a function of (a) how

o 截断的ICV长度必须大到字典攻击成功的概率可以接受的小。如果对伪造数据包或消息的ICV进行验证,则会出现这种成功。成功的概率是(a)如何成功的函数

many routers can be attacked, (b) how fast a router can receive packets or messages and attempt to verify their ICV, (c) the truncated ICV length, and (d) the lifetime of the network. If the truncated ICV length in bits is L, then 2^L packets or messages are required to attack with certainty of success. With a verification rate of R packets/messages per second, applied to N routers over an available time of T, the probability of success is given by NRT/2^L. If this is not to exceed a probability of P, then L > log2(NRT/P). For example, if N is 32, R is 1000, T is 86400 (I day) and P is 10^-6, then L must be at least 52 bits.

许多路由器都可能受到攻击,(b)路由器接收数据包或消息并尝试验证其ICV的速度,(c)被截断的ICV长度,以及(d)网络的生存期。如果截断的ICV长度(以位为单位)为L,则需要2^L个数据包或消息才能成功进行攻击。当验证速率为每秒R个数据包/消息,在T的可用时间内应用于N个路由器时,成功概率由NRT/2^L给出。如果这不超过概率P,则L>log2(NRT/P)。例如,如果N是32,R是1000,T是86400(I天),P是10^-6,那么L必须至少是52位。

Some of the cryptographic and hash functions listed in Section 13 require the length of the content to be digitally signed to be a multiple of a certain number of octets. As a consequence, they specify padding mechanisms, e.g., AES-CMAC [RFC4493] specifies a padding mechanism for message lengths that are not equal to a multiple of 16 octets. Implementations of the framework in this document MUST support appropriate padding mechanisms, as specified in the cryptographic or hash function specifications.

第13节中列出的一些加密函数和散列函数要求对内容进行数字签名的长度为一定数量的八位字节的倍数。因此,它们指定了填充机制,例如,AES-CMAC[RFC4493]为不等于16个八位字节倍数的消息长度指定了填充机制。本文档中框架的实现必须支持加密或哈希函数规范中指定的适当填充机制。

The hash function and the cryptographic function correspond to the entries in two IANA registries, which are described in Section 13.

散列函数和加密函数对应于两个IANA注册表中的条目,如第13节所述。

12.1.1. Rationale
12.1.1. 根本原因

The rationale for separating the hash function and the cryptographic function into two octets instead of having all combinations in a single octet -- possibly as a TLV type extension -- is that adding further hash functions or cryptographic functions in the future may lead to a non-contiguous number space as well as a smaller overall space.

将哈希函数和加密函数分离为两个八位字节,而不是将所有组合都放在一个八位字节中(可能是TLV类型的扩展)的基本原理是,将来添加更多的哈希函数或加密函数可能会导致非连续的数字空间以及更小的总体空间。

The rationale for not including a field that lists parameters of the cryptographic ICV in the TLV is that, before being able to validate a cryptographic ICV, routers have to exchange or acquire keys. Any additional parameters can be provided together with the keys in that bootstrap process. Therefore, it is not necessary, and would even entail an extra overhead, to transmit the parameters within every message.

在TLV中不包括列出加密ICV参数的字段的理由是,在能够验证加密ICV之前,路由器必须交换或获取密钥。在引导过程中,任何附加参数都可以与密钥一起提供。因此,在每条消息中传输参数是不必要的,甚至会带来额外的开销。

The rationale for the addition of type extension = 2 is that the source address is used in some cases, such as when processing HELLO messages in [RFC6130]. This is applicable only to packets (which only ever travel one hop) and messages (and their Address Blocks) that only travel one hop. It is not applicable to messages that may be forwarded more than one hop, such as Topology Control (TC) messages in [RFC7181].

添加type extension=2的基本原理是在某些情况下使用源地址,例如在[RFC6130]中处理HELLO消息时。这仅适用于只经过一个跃点的数据包(只经过一个跃点)和只经过一个跃点的消息(及其地址块)。它不适用于可能转发多个跃点的消息,例如[RFC7181]中的拓扑控制(TC)消息。

12.1.2. Parameters
12.1.2. 参数

As described in Section 12.1.1, parameters are selected administratively on each router before using this framework in a MANET, in addition to exchanging the keys between MANET routers. This was a design decision in [RFC6622] and is kept in this specification for reasons of backwards compatibility.

如第12.1.1节所述,在MANET中使用该框架之前,除了在MANET路由器之间交换密钥外,还将在每个路由器上管理性地选择参数。这是[RFC6622]中的设计决策,出于向后兼容性的原因,保留在本规范中。

The following parameters are RECOMMENDED and SHOULD be those chosen administratively, unless there are good reasons otherwise:

建议使用以下参数,除非另有充分理由,否则应采用管理性参数:

o For crypto function RSA:

o 对于加密函数RSA:

* Signature scheme: RSASSA-PSS with the default parameters: rSASSA-PSS-Default-Identifier (as defined in [RFC3447])

* 签名方案:RSASSA-PSS,默认参数:RSASSA-PSS默认标识符(如[RFC3447]中所定义)

* Common exponent: 65537

* 普通指数:65537

o For crypto function ECDSA:

o 对于加密功能ECDSA:

* Curve name: exchanged as part of key distribution

* 曲线名称:作为密钥分发的一部分进行交换

* Hash function: The hash function MUST be pinned to the curve, i.e., use SHA-256 for the p-256 curve, SHA-384 for p-384, etc.

* 散列函数:散列函数必须固定在曲线上,即对p-256曲线使用SHA-256,对p-384使用SHA-384,等等。

o For crypto function AES:

o 对于加密函数AES:

* Authentication algorithm: Cipher-Based Message Authentication Code (CMAC) (as defined in [RFC4493])

* 认证算法:基于密码的消息认证码(CMAC)(定义见[RFC4493])

* Hash function: None

* 哈希函数:无

12.2. Considerations for Calculating the ICV
12.2. 计算ICV的考虑因素

The considerations listed in the following subsections MUST be applied when calculating the ICV for Packet, Message, and Address Block TLVs, respectively.

在分别计算数据包、消息和地址块TLV的ICV时,必须应用以下小节中列出的注意事项。

12.2.1. ICV Packet TLV
12.2.1. ICV分组TLV

When determining the <ICV-data> for a packet, with type extension = 1:

当确定数据包的<ICV data>时,类型扩展=1:

o The ICV is calculated over the fields <hash-function>, <cryptographic-function>, <key-id-length>, and -- if present -- <key-id> (in that order), followed by the entire packet, including

o ICV通过字段<hash function>、<cryptographic function>、<key id length>、以及(如果存在)字段<key id>(按该顺序)计算,然后是整个数据包,包括

the Packet Header, including all Packet TLVs (other than ICV Packet TLVs), and all included messages. The considerations of Section 8.1 MUST be applied.

数据包头,包括所有数据包TLV(ICV数据包TLV除外)和所有包含的消息。必须应用第8.1节的注意事项。

When determining the <ICV-data> for a packet, with type extension = 2:

当确定数据包的<ICV data>时,类型扩展=2:

o The same procedure as for type extension = 1 is used, except that the data used consists of a representation of the source address of the IP datagram carrying the packet, followed by the remaining data (as for type extension = 1). The representation of the source address consists of a single octet containing the address length, in octets, followed by that many octets containing the address in network byte order.

o 使用与类型扩展=1相同的过程,不同的是所使用的数据包括承载数据包的IP数据报的源地址表示,然后是剩余的数据(对于类型扩展=1)。源地址的表示形式由一个包含地址长度的八位字节组成,以八位字节为单位,然后是包含网络字节顺序地址的多个八位字节。

12.2.2. ICV Message TLV
12.2.2. ICV消息TLV

When determining the <ICV-data> for a message, with type extension = 1:

确定消息的<ICV data>时,类型扩展=1:

o The ICV is calculated over the fields <hash-function>, <cryptographic-function>, <key-id-length>, and -- if present -- <key-id> (in that order), followed by the entire message. The considerations in Section 9.1 MUST be applied.

o ICV通过字段<hash function>、<cryptographic function>、<key id length>、以及(如果存在)字段<key id>(按该顺序)计算,然后是整个消息。必须应用第9.1节中的注意事项。

When determining the <ICV-data> for a message, with type extension = 2:

确定消息的<ICV data>时,类型扩展=2:

o The same procedure as for type extension = 1 is used, except that the data used consists of a representation of the source address of the IP datagram carrying the message, followed by the remaining data (as for type extension = 1). The representation of the source address consists of a single octet containing the address length, in octets, followed by that many octets containing the address in network byte order.

o 使用与类型扩展=1相同的过程,不同的是使用的数据包括承载消息的IP数据报的源地址表示,然后是剩余的数据(对于类型扩展=1)。源地址的表示形式由一个包含地址长度的八位字节组成,以八位字节为单位,然后是包含网络字节顺序地址的多个八位字节。

12.2.3. ICV Address Block TLV
12.2.3. ICV地址块TLV

When determining the <ICV-data> for one or more addresses, with type extension = 1:

当确定一个或多个地址的<ICV data>时,类型扩展=1:

o The ICV is calculated over the fields <hash-function>, <cryptographic-function>, <key-id-length>, and -- if present -- <key-id> (in that order), followed by the addresses, and followed by any other values -- for example, other Address Block TLV <value>s that are associated with those addresses. A MANET routing protocol, or MANET routing protocol extension, using ICV Address Block TLVs MUST specify how to include any such

o ICV通过字段<hash function>,<cryptographic function>,<key id length>,以及——如果存在——<key id>(按该顺序),然后是地址,然后是任何其他值——例如,与这些地址相关联的其他地址块TLV<value>。使用ICV地址块TLV的MANET路由协议或MANET路由协议扩展必须指定如何包括任何此类协议

concatenated attribute of the addresses in the verification process of the ICV. The consideration in Section 10.1 MUST be applied.

ICV验证过程中地址的串联属性。必须采用第10.1节中的考虑因素。

When determining the <ICV-data> for one or more addresses, with type extension = 2:

当确定一个或多个地址的<ICV data>时,类型扩展=2:

o The same procedure as for type extension = 1 is used, except that the data used consists of a representation of the source address of the IP datagram carrying the Address Block, followed by the remaining data (as for type extension = 1). The representation of the source address consists of a single octet containing the address length, in octets, followed by that many octets containing the address in network byte order.

o 使用与类型扩展=1相同的过程,不同的是使用的数据包括承载地址块的IP数据报的源地址表示,然后是剩余的数据(对于类型扩展=1)。源地址的表示形式由一个包含地址长度的八位字节组成,以八位字节为单位,然后是包含网络字节顺序地址的多个八位字节。

12.3. Example of a Message Including an ICV
12.3. 包含ICV的消息示例

The sample message depicted in Figure 1 is derived from Appendix E of [RFC5444]. The message contains an ICV Message TLV, with the value representing an ICV that is 16 octets long and a key identifier that is 4 octets long. The type extension of the Message TLV is 1, for the specific decomposition of an ICV using a cryptographic function and a hash function, as specified in Section 12.

图1所示的示例消息源自[RFC5444]的附录E。该消息包含ICV消息TLV,其值表示长度为16个八位字节的ICV和长度为4个八位字节的密钥标识符。消息TLV的类型扩展为1,用于使用加密函数和哈希函数对ICV进行特定分解,如第12节所述。

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Message Type  | MF=15 | MAL=3 |      Message Length = 82      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  Message Originator Address                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Hop Limit   |   Hop Count   |    Message Sequence Number    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Message TLV Block Length = 36 |   TLV Type    |  MTLVF = 16   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Value Len = 6 |                     Value                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Value (cont)                  |TLV Type = ICV |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  MTLVF = 144  |  MTLVExt = 1  |Value Len = 23 |   Hash Func   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Crypto Func  | KeyID Len = 4 |        Key Identifier         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Key Identifier (cont)     |           ICV Value           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       ICV Value (cont)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       ICV Value (cont)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       ICV Value (cont)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       ICV Value (cont)        | Num Addr = 2  |   ABF = 48    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Tail Len = 2  |             Mid 0             |     Mid 1     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Mid 1 (cont)  | Prefix Length |    ABTLV Block Length = 0     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Num Addr = 3  |   ABF = 128   | Head Len = 2  |     Head      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Head (cont)  |             Mid 0             |     Mid 1     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Mid 1 (cont)  |             Mid 2             |ABTLV Block ...|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |... Length = 9 |   TLV Type    |  ABTLVF = 16  | Value Len = 2 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Value             |   TLV Type    |  ABTLVF = 32  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Index Start  |  Index Stop   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Message Type  | MF=15 | MAL=3 |      Message Length = 82      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  Message Originator Address                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Hop Limit   |   Hop Count   |    Message Sequence Number    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Message TLV Block Length = 36 |   TLV Type    |  MTLVF = 16   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Value Len = 6 |                     Value                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Value (cont)                  |TLV Type = ICV |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  MTLVF = 144  |  MTLVExt = 1  |Value Len = 23 |   Hash Func   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Crypto Func  | KeyID Len = 4 |        Key Identifier         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Key Identifier (cont)     |           ICV Value           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       ICV Value (cont)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       ICV Value (cont)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       ICV Value (cont)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       ICV Value (cont)        | Num Addr = 2  |   ABF = 48    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Tail Len = 2  |             Mid 0             |     Mid 1     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Mid 1 (cont)  | Prefix Length |    ABTLV Block Length = 0     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Num Addr = 3  |   ABF = 128   | Head Len = 2  |     Head      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Head (cont)  |             Mid 0             |     Mid 1     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Mid 1 (cont)  |             Mid 2             |ABTLV Block ...|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |... Length = 9 |   TLV Type    |  ABTLVF = 16  | Value Len = 2 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Value             |   TLV Type    |  ABTLVF = 32  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Index Start  |  Index Stop   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 1: Example Message with ICV

图1:带有ICV的示例消息

MF: Message Flags, see Section 5.2 of [RFC5444]. MAL: Message Address Length, see Section 5.2 of [RFC5444]. MTLVF: Message TLV Flags, see Section 5.4.1 of [RFC5444]. MTLVExt: Message TLV Type Extension, see Section 5.4.1 of [RFC5444]. AF: Address Block Flags, see Section 5.3 of [RFC5444]. ABTLV: Address Block TLV, see Section 5.4 of [RFC5444]. ABTLVF: Address Block TLV Flags, see Section 5.4.1 of [RFC5444].

MF:消息标志,见[RFC5444]第5.2节。MAL:消息地址长度,见[RFC5444]第5.2节。MTLVF:信息TLV标志,见[RFC5444]第5.4.1节。MTLVExt:信息TLV类型扩展,见[RFC5444]第5.4.1节。AF:地址块标志,见[RFC5444]第5.3节。ABTLV:地址块TLV,见[RFC5444]第5.4节。ABTLVF:地址块TLV标志,见[RFC5444]第5.4.1节。

Example Message with ICV - Legend

带有ICV的示例消息-图例

13. IANA Considerations
13. IANA考虑

The IANA registrations for TLV Types and the TLV type extension registries given in this specification replace the identical registrations and registries from [RFC6622].

本规范中给出的TLV类型的IANA注册和TLV类型扩展注册取代了[RFC6622]中相同的注册和注册。

This specification defines the following TLV Types, replacing the original specifications in [RFC6622]:

本规范定义了以下TLV类型,取代了[RFC6622]中的原始规范:

o Two Packet TLV Types, which have been allocated from the 0-223 range of the "Packet TLV Types" repository of [RFC5444], as specified in Table 1.

o 两种数据包TLV类型,从[RFC5444]的“数据包TLV类型”存储库的0-223范围内分配,如表1所示。

o Two Message TLV Types, which have been allocated from the 0-127 range of the "Message TLV Types" repository of [RFC5444], as specified in Table 2.

o 两种消息TLV类型,从[RFC5444]的“消息TLV类型”存储库的0-127范围内分配,如表2所示。

o Two Address Block TLV Types, which have been allocated from the 0-127 range of the "Address Block TLV Types" repository of [RFC5444], as specified in Table 3.

o 两种地址块TLV类型,从[RFC5444]的“地址块TLV类型”存储库的0-127范围内分配,如表3所示。

This specification updates the following registries that were created in [RFC6622]:

本规范更新在[RFC6622]中创建的以下注册表:

o A type extension registry for each of these TLV types with values as listed in Tables 1, 2, and 3.

o 每个TLV类型的类型扩展注册表,其值如表1、2和3所示。

The following terms are used as defined in [BCP26]: "Namespace", "Registration", and "Designated Expert".

以下术语按照[BCP26]中的定义使用:“名称空间”、“注册”和“指定专家”。

The following policy is used as defined in [BCP26]: "Expert Review".

按照[BCP26]中的定义使用以下政策:“专家评审”。

13.1. Expert Review: Evaluation Guidelines
13.1. 专家审评:评价准则

For TLV type extensions registries where an Expert Review is required, the Designated Expert SHOULD take the same general recommendations into consideration as those specified by [RFC5444].

对于需要专家审查的TLV类型扩展登记处,指定专家应考虑与[RFC5444]规定的一般建议相同的一般建议。

For both TIMESTAMP and ICV TLVs, functionally similar extensions for Packet, Message, and Address Block TLVs SHOULD be numbered identically.

对于时间戳和ICV TLV,数据包、消息和地址块TLV的功能相似的扩展应相同编号。

13.2. Packet TLV Types
13.2. 分组TLV类型

IANA has, in accordance with [RFC6622], made allocations from the "Packet TLV Types" namespace of [RFC5444] for the Packet TLVs specified in Table 1. IANA has modified this allocation as indicated.

IANA已根据[RFC6622]从[RFC5444]的“数据包TLV类型”命名空间为表1中指定的数据包TLV进行分配。IANA已修改此分配,如图所示。

                    +------+-------------+-----------+
                    | Type | Description | Reference |
                    +------+-------------+-----------+
                    |  5   |     ICV     |  RFC 7182 |
                    |  6   |  TIMESTAMP  |  RFC 7182 |
                    +------+-------------+-----------+
        
                    +------+-------------+-----------+
                    | Type | Description | Reference |
                    +------+-------------+-----------+
                    |  5   |     ICV     |  RFC 7182 |
                    |  6   |  TIMESTAMP  |  RFC 7182 |
                    +------+-------------+-----------+
        

Table 1: Packet TLV Types

表1:数据包TLV类型

13.3. Message TLV Types
13.3. 消息TLV类型

IANA has, in accordance with [RFC6622], made allocations from the "Message TLV Types" namespace of [RFC5444] for the Message TLVs specified in Table 2. IANA has modified this allocation as indicated.

IANA已根据[RFC6622]从[RFC5444]的“消息TLV类型”命名空间为表2中指定的消息TLV进行分配。IANA已修改此分配,如图所示。

                    +------+-------------+-----------+
                    | Type | Description | Reference |
                    +------+-------------+-----------+
                    |  5   |     ICV     |  RFC 7182 |
                    |  6   |  TIMESTAMP  |  RFC 7182 |
                    +------+-------------+-----------+
        
                    +------+-------------+-----------+
                    | Type | Description | Reference |
                    +------+-------------+-----------+
                    |  5   |     ICV     |  RFC 7182 |
                    |  6   |  TIMESTAMP  |  RFC 7182 |
                    +------+-------------+-----------+
        

Table 2: Message TLV Types

表2:消息TLV类型

13.4. Address Block TLV Types
13.4. 地址块TLV类型

IANA has, in accordance with [RFC6622], made allocations from the "Address Block TLV Types" namespace of [RFC5444] for the Packet TLVs specified in Table 3. IANA has modified this allocation as indicated.

IANA已根据[RFC6622]从[RFC5444]的“地址块TLV类型”命名空间为表3中指定的数据包TLV进行分配。IANA已修改此分配,如图所示。

                    +------+-------------+-----------+
                    | Type | Description | Reference |
                    +------+-------------+-----------+
                    |  5   |     ICV     |  RFC 7182 |
                    |  6   |  TIMESTAMP  |  RFC 7182 |
                    +------+-------------+-----------+
        
                    +------+-------------+-----------+
                    | Type | Description | Reference |
                    +------+-------------+-----------+
                    |  5   |     ICV     |  RFC 7182 |
                    |  6   |  TIMESTAMP  |  RFC 7182 |
                    +------+-------------+-----------+
        

Table 3: Address Block TLV Types

表3:地址块TLV类型

13.5. ICV Packet TLV Type Extensions
13.5. ICV数据包TLV类型扩展

IANA has, in accordance with [RFC6622], made allocations from the "ICV Packet TLV Type Extensions" namespace of [RFC6622] for the Packet TLVs specified in Table 4. IANA has modified this allocation (including defining type extension = 2) as indicated.

IANA已根据[RFC6622]从[RFC6622]的“ICV数据包TLV类型扩展”命名空间为表4中指定的数据包TLV进行分配。IANA已修改此分配(包括定义类型扩展=2),如图所示。

   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |              ICV of a packet              |  RFC 7182 |
   |     1     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           | hash function, as specified in Section 12 |           |
   |           |              of this document             |           |
   |     2     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           |    hash function, and including the IP    |           |
   |           |  datagram source address, as specified in |           |
   |           |        Section 12 of this document        |           |
   |   3-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        
   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |              ICV of a packet              |  RFC 7182 |
   |     1     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           | hash function, as specified in Section 12 |           |
   |           |              of this document             |           |
   |     2     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           |    hash function, and including the IP    |           |
   |           |  datagram source address, as specified in |           |
   |           |        Section 12 of this document        |           |
   |   3-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        

Table 4: ICV Packet TLV Type Extensions

表4:ICV数据包TLV类型扩展

More than one ICV Packet TLV with the same type extension MAY be included in a packet if these represent different ICV calculations (e.g., with type extension 1 or 2 and different cryptographic function and/or hash function or with a different key identifier). ICV Packet TLVs that carry what is declared to be the same information MUST NOT be included in the same packet.

如果具有相同类型扩展的多个ICV分组TLV表示不同的ICV计算(例如,具有类型扩展1或2以及不同的加密函数和/或散列函数或具有不同的密钥标识符),则可以在分组中包括具有相同类型扩展的多个ICV分组TLV。携带声明为相同信息的ICV数据包TLV不得包含在同一数据包中。

13.6. TIMESTAMP Packet TLV Type Extensions
13.6. 时间戳数据包TLV类型扩展

IANA has, in accordance with [RFC6622], made allocations from the "TIMESTAMP Packet TLV Type Extensions" namespace of [RFC6622] for the Packet TLVs specified in Table 5. IANA has modified this allocation as indicated.

IANA已根据[RFC6622]从[RFC6622]的“时间戳数据包TLV类型扩展”命名空间为表5中指定的数据包TLV进行分配。IANA已修改此分配,如图所示。

   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |  Unsigned timestamp of arbitrary length,  |  RFC 7182 |
   |           | given by the TLV Length field.  The MANET |           |
   |           |   routing protocol has to define how to   |           |
   |           |          interpret this timestamp         |           |
   |     1     |  Unsigned 32-bit timestamp, as specified  |  RFC 7182 |
   |           |            in [IEEE1003.1-2008]           |           |
   |     2     |   NTP timestamp format, as specified in   |  RFC 7182 |
   |           |                 [RFC5905]                 |           |
   |     3     | Signed timestamp of arbitrary length with |  RFC 7182 |
   |           |  no constraints such as monotonicity.  In |           |
   |           |  particular, it may represent any random  |           |
   |           |                   value                   |           |
   |   4-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        
   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |  Unsigned timestamp of arbitrary length,  |  RFC 7182 |
   |           | given by the TLV Length field.  The MANET |           |
   |           |   routing protocol has to define how to   |           |
   |           |          interpret this timestamp         |           |
   |     1     |  Unsigned 32-bit timestamp, as specified  |  RFC 7182 |
   |           |            in [IEEE1003.1-2008]           |           |
   |     2     |   NTP timestamp format, as specified in   |  RFC 7182 |
   |           |                 [RFC5905]                 |           |
   |     3     | Signed timestamp of arbitrary length with |  RFC 7182 |
   |           |  no constraints such as monotonicity.  In |           |
   |           |  particular, it may represent any random  |           |
   |           |                   value                   |           |
   |   4-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        

Table 5: TIMESTAMP Packet TLV Type Extensions

表5:时间戳数据包TLV类型扩展

More than one TIMESTAMP Packet TLV with the same type extension MUST NOT be included in a packet.

一个数据包中不得包含多个具有相同类型扩展名的时间戳数据包TLV。

13.7. ICV Message TLV Type Extensions
13.7. ICV消息TLV类型扩展

IANA has, in accordance with [RFC6622], made allocations from the "ICV Message TLV Type Extensions" namespace of [RFC6622] for the Message TLVs specified in Table 6. IANA has modified this allocation (including defining type extension = 2) as indicated.

IANA已根据[RFC6622]从[RFC6622]的“ICV消息TLV类型扩展”命名空间为表6中指定的消息TLV进行分配。IANA已修改此分配(包括定义类型扩展=2),如图所示。

   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |              ICV of a message             |  RFC 7182 |
   |     1     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           | hash function, as specified in Section 12 |           |
   |           |              of this document             |           |
   |     2     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           |    hash function, and including the IP    |           |
   |           |  datagram source address, as specified in |           |
   |           |        Section 12 of this document        |           |
   |   3-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        
   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |              ICV of a message             |  RFC 7182 |
   |     1     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           | hash function, as specified in Section 12 |           |
   |           |              of this document             |           |
   |     2     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           |    hash function, and including the IP    |           |
   |           |  datagram source address, as specified in |           |
   |           |        Section 12 of this document        |           |
   |   3-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        

Table 6: ICV Message TLV Type Extensions

表6:ICV消息TLV类型扩展

More than one ICV Message TLV with the same type extension MAY be included in a message if these represent different ICV calculations (e.g., with type extension 1 or 2 and different cryptographic function and/or hash function or with a different key identifier). ICV Message TLVs that carry what is declared to be the same information MUST NOT be included in the same message.

如果具有相同类型扩展的多个ICV消息TLV表示不同的ICV计算(例如,具有类型扩展1或2以及不同的加密函数和/或散列函数或具有不同的密钥标识符),则可以在消息中包括具有相同类型扩展的多个ICV消息TLV。携带声明为相同信息的ICV信息TLV不得包含在同一信息中。

13.8. TIMESTAMP Message TLV Type Extensions
13.8. 时间戳消息TLV类型扩展

IANA has, in accordance with [RFC6622], made allocations from the "TIMESTAMP Message TLV Type Extensions" namespace of [RFC6622] for the Message TLVs specified in Table 7. IANA has modified this allocation as indicated.

IANA已根据[RFC6622]从[RFC6622]的“时间戳消息TLV类型扩展”命名空间为表7中指定的消息TLV进行分配。IANA已修改此分配,如图所示。

   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |  Unsigned timestamp of arbitrary length,  |  RFC 7182 |
   |           | given by the TLV Length field.  The MANET |           |
   |           |   routing protocol has to define how to   |           |
   |           |          interpret this timestamp         |           |
   |     1     |  Unsigned 32-bit timestamp, as specified  |  RFC 7182 |
   |           |         in POSIX [IEEE1003.1-2008]        |           |
   |     2     |   NTP timestamp format, as specified in   |  RFC 7182 |
   |           |                 [RFC5905]                 |           |
   |     3     | Signed timestamp of arbitrary length with |  RFC 7182 |
   |           |  no constraints such as monotonicity.  In |           |
   |           |  particular, it may represent any random  |           |
   |           |                   value                   |           |
   |   4-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        
   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |  Unsigned timestamp of arbitrary length,  |  RFC 7182 |
   |           | given by the TLV Length field.  The MANET |           |
   |           |   routing protocol has to define how to   |           |
   |           |          interpret this timestamp         |           |
   |     1     |  Unsigned 32-bit timestamp, as specified  |  RFC 7182 |
   |           |         in POSIX [IEEE1003.1-2008]        |           |
   |     2     |   NTP timestamp format, as specified in   |  RFC 7182 |
   |           |                 [RFC5905]                 |           |
   |     3     | Signed timestamp of arbitrary length with |  RFC 7182 |
   |           |  no constraints such as monotonicity.  In |           |
   |           |  particular, it may represent any random  |           |
   |           |                   value                   |           |
   |   4-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        

Table 7: TIMESTAMP Message TLV Type Extensions

表7:时间戳消息TLV类型扩展

More than one TIMESTAMP Message TLV with the same type extension MUST NOT be included in a message.

消息中不得包含多个具有相同类型扩展名的时间戳消息TLV。

13.9. ICV Address Block TLV Type Extensions
13.9. ICV地址块TLV类型扩展

IANA has, in accordance with [RFC6622], made allocations from the "ICV Address Block TLV Type Extensions" namespace of [RFC6622] for the Address Block TLVs specified in Table 8. IANA has modified this allocation (including defining type extension = 2) as indicated.

IANA已根据[RFC6622]从[RFC6622]的“ICV地址块TLV类型扩展”命名空间为表8中指定的地址块TLV进行分配。IANA已修改此分配(包括定义类型扩展=2),如图所示。

   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |    ICV of an object (e.g., an address)    |  RFC 7182 |
   |     1     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           | hash function, as specified in Section 12 |           |
   |           |              of this document             |           |
   |     2     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           |    hash function, and including the IP    |           |
   |           |  datagram source address, as specified in |           |
   |           |        Section 12 of this document        |           |
   |   3-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        
   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |    ICV of an object (e.g., an address)    |  RFC 7182 |
   |     1     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           | hash function, as specified in Section 12 |           |
   |           |              of this document             |           |
   |     2     | ICV, using a cryptographic function and a |  RFC 7182 |
   |           |    hash function, and including the IP    |           |
   |           |  datagram source address, as specified in |           |
   |           |        Section 12 of this document        |           |
   |   3-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        

Table 8: ICV Address Block TLV Type Extensions

表8:ICV地址块TLV类型扩展

More than one ICV Address Block TLV with the same type extension MAY be associated with an address if these represent different ICV calculations (e.g., with type extension = 1 or type extension = 2 and different cryptographic function and/or hash function or with a different key identifier). ICV Address Block TLVs that carry what is declared to be the same information MUST NOT be associated with the same address.

如果具有相同类型扩展的多个ICV地址块TLV表示不同的ICV计算(例如,具有类型扩展=1或类型扩展=2以及不同的加密函数和/或散列函数或具有不同的密钥标识符),则它们可以与地址相关联。携带声明为相同信息的ICV地址块TLV不得与相同地址关联。

13.10. TIMESTAMP Address Block TLV Type Extensions
13.10. 时间戳地址块TLV类型扩展

IANA has, in accordance with [RFC6622], made allocations from the "TIMESTAMP Address Block TLV Type Extensions" namespace of [RFC6622] for the Address Block TLVs specified in Table 9. IANA has modified this allocation as indicated.

IANA已根据[RFC6622]从[RFC6622]的“时间戳地址块TLV类型扩展”命名空间为表9中指定的地址块TLV进行分配。IANA已修改此分配,如图所示。

   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |  Unsigned timestamp of arbitrary length,  |  RFC 7182 |
   |           | given by the TLV Length field.  The MANET |           |
   |           |   routing protocol has to define how to   |           |
   |           |          interpret this timestamp         |           |
   |     1     |  Unsigned 32-bit timestamp, as specified  |  RFC 7182 |
   |           |         in POSIX [IEEE1003.1-2008]        |           |
   |     2     |   NTP timestamp format, as specified in   |  RFC 7182 |
   |           |                 [RFC5905]                 |           |
   |     3     | Signed timestamp of arbitrary length with |  RFC 7182 |
   |           |  no constraints such as monotonicity.  In |           |
   |           |  particular, it may represent any random  |           |
   |           |                   value                   |           |
   |   4-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        
   +-----------+-------------------------------------------+-----------+
   |    Type   |                Description                | Reference |
   | Extension |                                           |           |
   +-----------+-------------------------------------------+-----------+
   |     0     |  Unsigned timestamp of arbitrary length,  |  RFC 7182 |
   |           | given by the TLV Length field.  The MANET |           |
   |           |   routing protocol has to define how to   |           |
   |           |          interpret this timestamp         |           |
   |     1     |  Unsigned 32-bit timestamp, as specified  |  RFC 7182 |
   |           |         in POSIX [IEEE1003.1-2008]        |           |
   |     2     |   NTP timestamp format, as specified in   |  RFC 7182 |
   |           |                 [RFC5905]                 |           |
   |     3     | Signed timestamp of arbitrary length with |  RFC 7182 |
   |           |  no constraints such as monotonicity.  In |           |
   |           |  particular, it may represent any random  |           |
   |           |                   value                   |           |
   |   4-251   |         Unassigned; Expert Review         |           |
   |  252-255  |       Reserved for Experimental Use       |  RFC 7182 |
   +-----------+-------------------------------------------+-----------+
        

Table 9: TIMESTAMP Address Block TLV Type Extensions

表9:时间戳地址块TLV类型扩展

More than one TIMESTAMP Address Block TLV with the same type extension MUST NOT be associated with any address.

具有相同类型扩展名的多个时间戳地址块TLV不得与任何地址关联。

13.11. Hash Functions
13.11. 哈希函数

IANA has, in accordance with [RFC6622], created a registry for hash functions that can be used when creating an ICV, as specified in Section 12 of this document. The initial assignments and allocation policies are specified in Table 10. IANA has modified this allocation as indicated.

IANA已根据[RFC6622]为创建ICV时可使用的哈希函数创建了注册表,如本文件第12节所述。表10规定了初始分配和分配策略。IANA已修改此分配,如图所示。

   +---------+-----------+---------------------------------+-----------+
   |  Value  | Algorithm |           Description           | Reference |
   +---------+-----------+---------------------------------+-----------+
   |    0    |    none   |   The "identity function": The  |  RFC 7182 |
   |         |           |  hash value of an object is the |           |
   |         |           |          object itself          |           |
   |    1    |   SHA-1   |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |    2    |  SHA-224  |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |    3    |  SHA-256  |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |    4    |  SHA-384  |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |    5    |  SHA-512  |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |  6-251  |           |    Unassigned; Expert Review    |           |
   | 252-255 |           |  Reserved for Experimental Use  |  RFC 7182 |
   +---------+-----------+---------------------------------+-----------+
        
   +---------+-----------+---------------------------------+-----------+
   |  Value  | Algorithm |           Description           | Reference |
   +---------+-----------+---------------------------------+-----------+
   |    0    |    none   |   The "identity function": The  |  RFC 7182 |
   |         |           |  hash value of an object is the |           |
   |         |           |          object itself          |           |
   |    1    |   SHA-1   |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |    2    |  SHA-224  |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |    3    |  SHA-256  |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |    4    |  SHA-384  |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |    5    |  SHA-512  |        [NIST-FIPS-180-4]        |  RFC 7182 |
   |  6-251  |           |    Unassigned; Expert Review    |           |
   | 252-255 |           |  Reserved for Experimental Use  |  RFC 7182 |
   +---------+-----------+---------------------------------+-----------+
        

Table 10: Hash Function Registry

表10:哈希函数注册表

13.12. Cryptographic Functions
13.12. 密码功能

IANA has, in accordance with [RFC6622], created a registry for the cryptographic functions, as specified in Section 12 of this document. Initial assignments and allocation policies are specified in Table 11. IANA has modified this allocation as indicated.

IANA已根据[RFC6622]为本文件第12节规定的加密功能创建了一个注册表。表11规定了初始分配和分配策略。IANA已修改此分配,如图所示。

   +---------+-----------+---------------------------------+-----------+
   |  Value  | Algorithm |           Description           | Reference |
   +---------+-----------+---------------------------------+-----------+
   |    0    |    none   |   The "identity function": The  |  RFC 7182 |
   |         |           |  value of an encrypted hash is  |           |
   |         |           |         the hash itself         |           |
   |    1    |    RSA    |            [RFC3447]            |  RFC 7182 |
   |    2    |    DSA    |        [NIST-FIPS-186-4]        |  RFC 7182 |
   |    3    |    HMAC   |            [RFC2104]            |  RFC 7182 |
   |    4    |    3DES   |         [NIST-SP-800-67]        |  RFC 7182 |
   |    5    |    AES    |         [NIST-FIPS-197]         |  RFC 7182 |
   |    6    |   ECDSA   |            [RFC6090]            |  RFC 7182 |
   |  7-251  |           |    Unassigned; Expert Review    |           |
   | 252-255 |           |  Reserved for Experimental Use  |  RFC 7182 |
   +---------+-----------+---------------------------------+-----------+
        
   +---------+-----------+---------------------------------+-----------+
   |  Value  | Algorithm |           Description           | Reference |
   +---------+-----------+---------------------------------+-----------+
   |    0    |    none   |   The "identity function": The  |  RFC 7182 |
   |         |           |  value of an encrypted hash is  |           |
   |         |           |         the hash itself         |           |
   |    1    |    RSA    |            [RFC3447]            |  RFC 7182 |
   |    2    |    DSA    |        [NIST-FIPS-186-4]        |  RFC 7182 |
   |    3    |    HMAC   |            [RFC2104]            |  RFC 7182 |
   |    4    |    3DES   |         [NIST-SP-800-67]        |  RFC 7182 |
   |    5    |    AES    |         [NIST-FIPS-197]         |  RFC 7182 |
   |    6    |   ECDSA   |            [RFC6090]            |  RFC 7182 |
   |  7-251  |           |    Unassigned; Expert Review    |           |
   | 252-255 |           |  Reserved for Experimental Use  |  RFC 7182 |
   +---------+-----------+---------------------------------+-----------+
        

Table 11: Cryptographic Function Registry

表11:加密函数注册表

14. Security Considerations
14. 安全考虑

This document does not specify a protocol. It provides a syntactical component for cryptographic ICVs of messages and packets, as defined in [RFC5444]. It can be used to address security issues of a MANET routing protocol or MANET routing protocol extension. As such, it has the same security considerations as [RFC5444].

本文档未指定协议。它为[RFC5444]中定义的消息和数据包的加密ICV提供了一个语法组件。它可以用来解决MANET路由协议或MANET路由协议扩展的安全问题。因此,它具有与[RFC5444]相同的安全考虑因素。

In addition, a MANET routing protocol or MANET routing protocol extension that uses this specification MUST specify how to use the framework and the TLVs presented in this document. In addition, the protection that the MANET routing protocol or MANET routing protocol extensions attain by using this framework MUST be described.

此外,使用本规范的MANET路由协议或MANET路由协议扩展必须指定如何使用本文档中介绍的框架和TLV。此外,还必须描述MANET路由协议或MANET路由协议扩展通过使用该框架实现的保护。

As an example, a MANET routing protocol that uses this component to reject "badly formed" or "insecure" messages if a control message does not contain a valid ICV SHOULD indicate the security assumption that if the ICV is valid, the message is considered valid. It also SHOULD indicate the security issues that are counteracted by this measure (e.g., link or identity spoofing) as well as the issues that are not counteracted (e.g., compromised keys).

例如,如果控制消息不包含有效的ICV,则使用此组件拒绝“格式错误”或“不安全”消息的MANET路由协议应指示安全性假设,即如果ICV有效,则消息被视为有效。它还应指出该措施所抵消的安全问题(如链接或身份欺骗)以及未抵消的问题(如泄露的密钥)。

15. Acknowledgements
15. 致谢

The authors would like to thank Bo Berry (Cisco), Alan Cullen (BAE Systems), Justin Dean (NRL), Paul Lambert (Marvell), Jerome Milan (Ecole Polytechnique), and Henning Rogge (FGAN) for their constructive comments on [RFC6622].

作者感谢Bo Berry(Cisco)、Alan Cullen(BAE Systems)、Justin Dean(NRL)、Paul Lambert(Marvell)、Jerome Milan(Ecole Polytechnique)和Henning Rogge(FGAN)对[RFC6622]的建设性评论。

The authors also appreciate the detailed reviews of [RFC6622] from the Area Directors, in particular Stewart Bryant (Cisco), Stephen Farrell (Trinity College Dublin), and Robert Sparks (Tekelec), as well as Donald Eastlake (Huawei) from the Security Directorate.

作者还感谢区域主管对[RFC6622]的详细审查,特别是来自安全董事会的Stewart Bryant(思科)、Stephen Farrell(都柏林三一学院)、Robert Sparks(Tekelec)以及Donald Eastlake(华为)。

The authors would like to thank Justin Dean (NRL) and Henning Rogge (FGAN) for their constructive comments on this specification.

作者要感谢Justin Dean(NRL)和Henning Rogge(FGAN)对本规范的建设性意见。

16. References
16. 工具书类
16.1. Normative References
16.1. 规范性引用文件

[BCP26] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

[BCP26]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。

[IEEE1003.1-2008] IEEE, "Portable Operating System Interface (POSIX)", IEEE 1003.1-2008, Base Specifications, Issue 7, December 2008.

[IEEE1003.1-2008]IEEE,“便携式操作系统接口(POSIX)”,IEEE 1003.1-2008,基本规范,第7期,2008年12月。

[NIST-FIPS-180-4] National Institute of Standards and Technology, "Secure Hash Standard (SHS)", FIPS 180-4, March 2012.

[NIST-FIPS-180-4]国家标准与技术研究所,“安全哈希标准(SHS)”,FIPS 180-42012年3月。

[NIST-FIPS-186-4] National Institute of Standards and Technology, "Digital Signature Standard (DSS)", FIPS 186-4, July 2013.

[NIST-FIPS-186-4]国家标准与技术研究所,“数字签名标准(DSS)”,FIPS 186-42013年7月。

[NIST-FIPS-197] National Institute of Standards and Technology, "Specification for the Advanced Encryption Standard (AES)", FIPS 197, November 2001.

[NIST-FIPS-197]国家标准与技术研究所,“高级加密标准(AES)规范”,FIPS 197,2001年11月。

[NIST-SP-800-107] National Institute of Standards and Technology, "Recommendation for Applications Using Approved Hash Algorithms", SP 800-107, Revision 1, August 2012.

[NIST-SP-800-107]国家标准与技术研究所,“使用经批准哈希算法的应用建议”,SP 800-107,第1版,2012年8月。

[NIST-SP-800-67] National Institute of Standards and Technology, "Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher", Special Publication 800-67, Revision 1, January 2012.

[NIST-SP-800-67]国家标准与技术研究所,“三重数据加密算法(TDEA)分组密码建议”,特别出版物800-67,第1版,2012年1月。

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, February 1997.

[RFC2104]Krawczyk,H.,Bellare,M.,和R.Canetti,“HMAC:用于消息认证的键控哈希”,RFC 2104,1997年2月。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC 3447, February 2003.

[RFC3447]Jonsson,J.和B.Kaliski,“公钥密码标准(PKCS)#1:RSA密码规范版本2.1”,RFC 3447,2003年2月。

[RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The AES-CMAC Algorithm", RFC 4493, June 2006.

[RFC4493]Song,JH.,Poovendran,R.,Lee,J.,和T.Iwata,“AES-CMAC算法”,RFC 4493,2006年6月。

[RFC5444] Clausen, T., Dearlove, C., Dean, J., and C. Adjih, "Generalized Mobile Ad Hoc Network (MANET) Packet/Message Format", RFC 5444, February 2009.

[RFC5444]Clausen,T.,Dearlove,C.,Dean,J.,和C.Adjih,“通用移动自组网(MANET)数据包/消息格式”,RFC 54442009年2月。

[RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, June 2010.

[RFC5905]Mills,D.,Martin,J.,Burbank,J.,和W.Kasch,“网络时间协议版本4:协议和算法规范”,RFC 59052010年6月。

[RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090, February 2011.

[RFC6090]McGrew,D.,Igoe,K.,和M.Salter,“基本椭圆曲线密码算法”,RFC 60902011年2月。

16.2. Informative References
16.2. 资料性引用

[RFC6130] Clausen, T., Dearlove, C., and J. Dean, "Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP)", RFC 6130, April 2011.

[RFC6130]Clausen,T.,Dearlove,C.,和J.Dean,“移动自组织网络(MANET)邻域发现协议(NHDP)”,RFC6130,2011年4月。

[RFC6622] Herberg, U. and T. Clausen, "Integrity Check Value and Timestamp TLV Definitions for Mobile Ad Hoc Networks (MANETs)", RFC 6622, May 2012.

[RFC6622]Herberg,U.和T.Clausen,“移动自组网(MANET)的完整性检查值和时间戳TLV定义”,RFC 6622,2012年5月。

[RFC7181] Clausen, T., Dearlove, C., Jacquet, P., and U. Herberg, "The Optimized Link State Routing Protocol Version 2", RFC 7181, April 2014.

[RFC7181]Clausen,T.,Dearlove,C.,Jacquet,P.,和U.Herberg,“优化链路状态路由协议版本2”,RFC 7181,2014年4月。

Authors' Addresses

作者地址

Ulrich Herberg Fujitsu Laboratories of America 1240 E. Arques Ave. Sunnyvale, CA 94085 USA

美国加利福尼亚州桑尼维尔阿克斯大道东1240号乌尔里希·赫伯格富士通实验室,邮编94085

   EMail: ulrich@herberg.name
   URI:   http://www.herberg.name/
        
   EMail: ulrich@herberg.name
   URI:   http://www.herberg.name/
        

Thomas Heide Clausen LIX, Ecole Polytechnique 91128 Palaiseau Cedex France

托马斯·海德·克劳森·利克斯,法国塞德克斯宫91128理工学院

   Phone: +33 6 6058 9349
   EMail: T.Clausen@computer.org
   URI:   http://www.thomasclausen.org/
        
   Phone: +33 6 6058 9349
   EMail: T.Clausen@computer.org
   URI:   http://www.thomasclausen.org/
        

Christopher Dearlove BAE Systems Advanced Technology Centre West Hanningfield Road Great Baddow, Chelmsford United Kingdom

克里斯托弗·迪尔洛夫英国切姆斯福德大巴德西汉宁菲尔德路BAE系统先进技术中心

   Phone: +44 1245 242194
   EMail: chris.dearlove@baesystems.com
   URI:   http://www.baesystems.com/
        
   Phone: +44 1245 242194
   EMail: chris.dearlove@baesystems.com
   URI:   http://www.baesystems.com/