Internet Engineering Task Force (IETF)                           R. Bush
Request for Comments: 7115                     Internet Initiative Japan
BCP: 185                                                    January 2014
Category: Best Current Practice
ISSN: 2070-1721
        
Internet Engineering Task Force (IETF)                           R. Bush
Request for Comments: 7115                     Internet Initiative Japan
BCP: 185                                                    January 2014
Category: Best Current Practice
ISSN: 2070-1721
        

Origin Validation Operation Based on the Resource Public Key Infrastructure (RPKI)

基于资源公钥基础结构(RPKI)的源验证操作

Abstract

摘要

Deployment of BGP origin validation that is based on the Resource Public Key Infrastructure (RPKI) has many operational considerations. This document attempts to collect and present those that are most critical. It is expected to evolve as RPKI-based origin validation continues to be deployed and the dynamics are better understood.

部署基于资源公钥基础设施(RPKI)的BGP源验证有许多操作方面的考虑。本文件试图收集并呈现最关键的内容。随着基于RPKI的来源验证的继续部署,以及对动态的更好理解,预计它将不断发展。

Status of This Memo

关于下段备忘

This memo documents an Internet Best Current Practice.

本备忘录记录了互联网最佳实践。

This document is a product of the Internet Engineering Task Force (IETF). It has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。互联网工程指导小组(IESG)已批准将其出版。有关BCP的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7115.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7115.

Copyright Notice

版权公告

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2014 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
   2.  Suggested Reading . . . . . . . . . . . . . . . . . . . . . .   3
   3.  RPKI Distribution and Maintenance . . . . . . . . . . . . . .   3
   4.  Within a Network  . . . . . . . . . . . . . . . . . . . . . .   6
   5.  Routing Policy  . . . . . . . . . . . . . . . . . . . . . . .   6
   6.  Notes and Recommendations . . . . . . . . . . . . . . . . . .   8
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   8.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  10
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  10
        
   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
   2.  Suggested Reading . . . . . . . . . . . . . . . . . . . . . .   3
   3.  RPKI Distribution and Maintenance . . . . . . . . . . . . . .   3
   4.  Within a Network  . . . . . . . . . . . . . . . . . . . . . .   6
   5.  Routing Policy  . . . . . . . . . . . . . . . . . . . . . . .   6
   6.  Notes and Recommendations . . . . . . . . . . . . . . . . . .   8
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   8.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  10
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  10
        
1. Introduction
1. 介绍

RPKI-based origin validation relies on widespread deployment of the Resource Public Key Infrastructure (RPKI) [RFC6480]. How the RPKI is distributed and maintained globally is a serious concern from many aspects.

基于RPKI的源验证依赖于资源公钥基础设施(RPKI)的广泛部署[RFC6480]。如何在全球范围内分发和维护RPKI是一个多方面的严重问题。

While the global RPKI is in the early stages of deployment, there is no single root trust anchor, initial testing is being done by the Regional Internet Registries (RIRs), and there are technical testbeds. It is thought that origin validation based on the RPKI will continue to be deployed incrementally over the next few years. It is assumed that eventually there must be a single root trust anchor for the public address space, see [IAB].

虽然全球RPKI处于部署的早期阶段,但没有单一的根信任锚,初始测试正在由区域互联网注册中心(RIR)进行,并且有技术测试平台。据认为,基于RPKI的原产地验证将在未来几年继续以增量方式部署。假设公共地址空间最终必须有一个根信任锚,请参见[IAB]。

Origin validation needs to be done only by an AS's border routers and is designed so that it can be used to protect announcements that are originated by any network participating in Internet BGP routing: large providers, upstream and downstream routers, and by edge networks (e.g., small stub or enterprise networks).

来源验证只需由AS的边界路由器完成,其设计可用于保护由参与互联网BGP路由的任何网络发起的公告:大型提供商、上游和下游路由器以及边缘网络(例如,小型存根或企业网络)。

Origin validation has been designed to be deployed on current routers without significant hardware upgrades. It should be used in border routers by operators from large backbones to small stub/enterprise/ edge networks.

源验证设计用于在当前路由器上部署,无需进行重大硬件升级。从大型主干到小型存根/企业/边缘网络的运营商应在边界路由器中使用它。

RPKI-based origin validation has been designed so that, with prudent local routing policies, there is little risk that what is seen as today's normal Internet routing is threatened by imprudent deployment of the global RPKI; see Section 5.

基于RPKI的来源验证设计为,在谨慎的本地路由策略下,不存在因不谨慎部署全局RPKI而威胁到当今正常互联网路由的风险;见第5节。

1.1. Requirements Language
1.1. 需求语言

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in RFC 2119 [RFC2119] only when they appear in all upper case. They may also appear in lower or mixed case as English words, without normative meaning.

关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”仅当出现在所有大写字母中时,才应按照RFC 2119[RFC2119]中所述进行解释。它们也可能以小写或混用形式出现在英语单词中,没有规范意义。

2. Suggested Reading
2. 建议阅读

It is assumed that the reader understands BGP [RFC4271], the RPKI [RFC6480], the RPKI Repository Structure [RFC6481], Route Origin Authorizations (ROAs) [RFC6482], the RPKI to Router Protocol [RFC6810], RPKI-based Prefix Validation [RFC6811], and Ghostbusters Records [RFC6493].

假设读者理解BGP[RFC4271]、RPKI[RFC6480]、RPKI存储库结构[RFC6481]、路由源授权(ROA)[RFC6482]、RPKI到路由器协议[RFC6810]、基于RPKI的前缀验证[RFC6811]和Ghostbusters记录[RFC6493]。

3. RPKI Distribution and Maintenance
3. RPKI分配和维护

The RPKI is a distributed database containing certificates, Certificate Revocation Lists (CRLs), manifests, ROAs, and Ghostbusters Records as described in [RFC6481]. Policies and considerations for RPKI object generation and maintenance are discussed elsewhere.

RPKI是一个分布式数据库,包含证书、证书撤销列表(CRL)、清单、ROA和Ghostbusters记录,如[RFC6481]所述。其他地方讨论了RPKI对象生成和维护的策略和注意事项。

The RPKI repository design [RFC6481] anticipated a hierarchic organization of repositories, as this seriously improves the performance of relying parties that gather data over a non-hierarchic organization. Publishing parties MUST implement hierarchic directory structures.

RPKI存储库设计[RFC6481]预期存储库的分层组织,因为这将大大提高在非分层组织上收集数据的依赖方的性能。发布方必须实现层次目录结构。

A local relying party's valid cache containing all RPKI data may be gathered from the global distributed database using the rsync protocol [RFC5781] and a validation tool such as rcynic [rcynic].

可以使用rsync协议[RFC5781]和诸如rcynic[rcynic]的验证工具从全局分布式数据库收集包含所有RPKI数据的本地依赖方的有效缓存。

A validated cache contains all RPKI objects that the RP has verified to be valid according to the rules for validation RPKI certificates and signed objects; see [RFC6487] and [RFC6488]. Entities that trust the cache can use these RPKI objects without further validation.

验证缓存包含RP根据验证RPKI证书和签名对象的规则验证为有效的所有RPKI对象;参见[RFC6487]和[RFC6488]。信任缓存的实体可以使用这些RPKI对象,而无需进一步验证。

Validated caches may also be created and maintained from other validated caches. Network operators SHOULD take maximum advantage of this feature to minimize load on the global distributed RPKI database. Of course, the recipient relying parties should re-validate the data.

也可以从其他已验证的缓存创建和维护已验证的缓存。网络运营商应最大限度地利用此功能,以最小化全局分布式RPKI数据库的负载。当然,接收方依赖方应该重新验证数据。

As Trust Anchor Locators (TALs) [RFC6490] are critical to the RPKI trust model, operators should be very careful in their initial selection and vigilant in their maintenance.

由于信任锚定位器(TAL)[RFC6490]对RPKI信任模型至关重要,运营商在初始选择时应非常小心,并在维护时保持警惕。

Timing of inter-cache synchronization, and synchronization between caches and the global RPKI, is outside the scope of this document, and depends on things such as how often routers feed from the caches, how often the operator feels the global RPKI changes significantly, etc.

缓存间同步以及缓存与全局RPKI之间的同步的时间不在本文档的范围内,取决于路由器从缓存馈送的频率、操作员感觉全局RPKI显著变化的频率等。

As inter-cache synchronization within an operator's network does not impact global RPKI resources, an operator may choose to synchronize quite frequently.

由于运营商网络内的缓存间同步不会影响全局RPKI资源,运营商可能会选择非常频繁地进行同步。

To relieve routers of the load of performing certificate validation, cryptographic operations, etc., the RPKI-Router protocol [RFC6810] does not provide object-based security to the router. That is, the router cannot validate the data cryptographically from a well-known trust anchor. The router trusts the cache to provide correct data and relies on transport-based security for the data received from the cache. Therefore, the authenticity and integrity of the data from the cache should be well protected; see Section 7 of [RFC6810].

为了减轻路由器执行证书验证、加密操作等的负担,RPKI路由器协议[RFC6810]不向路由器提供基于对象的安全性。也就是说,路由器无法以加密方式验证来自已知信任锚的数据。路由器信任缓存提供正确的数据,并对从缓存接收的数据依赖基于传输的安全性。因此,缓存数据的真实性和完整性应该得到很好的保护;见[RFC6810]第7节。

As RPKI-based origin validation relies on the availability of RPKI data, operators SHOULD locate RPKI caches close to routers that require these data and services in order to minimize the impact of likely failures in local routing, intermediate devices, long circuits, etc. One should also consider trust boundaries, routing bootstrap reachability, etc.

由于基于RPKI的原点验证依赖于RPKI数据的可用性,运营商应定位靠近需要这些数据和服务的路由器的RPKI高速缓存,以尽量减少本地路由、中间设备、长电路等可能出现的故障的影响。等

For example, a router should bootstrap from a cache that is reachable with minimal reliance on other infrastructure such as DNS or routing protocols. If a router needs its BGP and/or IGP to converge for the router to reach a cache, once a cache is reachable, the router will then have to reevaluate prefixes already learned via BGP. Such configurations should be avoided if reasonably possible.

例如,路由器应该从一个缓存引导,该缓存可以在最小程度上依赖其他基础设施(如DNS或路由协议)的情况下访问。如果路由器需要其BGP和/或IGP聚合以使路由器到达缓存,那么一旦缓存可访问,路由器就必须重新评估通过BGP学习的前缀。如果合理可行,应避免此类配置。

If insecure transports are used between an operator's cache and their router(s), the Transport Security recommendations in [RFC6810] SHOULD be followed. In particular, operators MUST NOT use insecure transports between their routers and RPKI caches located in other Autonomous Systems.

如果在操作员的缓存与其路由器之间使用不安全的传输,则应遵循[RFC6810]中的传输安全建议。特别是,运营商不得在其路由器和位于其他自治系统中的RPKI缓存之间使用不安全的传输。

For redundancy, a router should peer with more than one cache at the same time. Peering with two or more, at least one local and others remote, is recommended.

对于冗余,路由器应同时与多个缓存对等。建议使用两个或多个(至少一个本地和其他远程)进行对等。

If an operator trusts upstreams to carry their traffic, they may also trust the RPKI data those upstreams cache and SHOULD peer with caches made available to them by those upstreams. Note that this places an

如果运营商信任上游来承载他们的流量,他们也可能信任那些上游缓存的RPKI数据,并且应该与那些上游提供给他们的缓存进行对等。请注意,这将放置一个

obligation on those upstreams to maintain fresh and reliable caches and to make them available to their customers. And, as usual, the recipient SHOULD re-validate the data.

上游有义务保持新鲜可靠的缓存,并向其客户提供这些缓存。和往常一样,收件人应该重新验证数据。

A transit provider or a network with peers SHOULD validate origins in announcements made by upstreams, downstreams, and peers. They still should trust the caches provided by their upstreams.

公交供应商或具有对等方的网络应在上游、下游和对等方发布的公告中验证来源。他们仍然应该相信上游提供的藏匿处。

Before issuing a ROA for a super-block, an operator MUST ensure that all sub-allocations from that block that are announced by other ASes, e.g., customers, have correct ROAs in the RPKI. Otherwise, issuing a ROA for the super-block will cause the announcements of sub-allocations with no ROAs to be viewed as Invalid; see [RFC6811]. While waiting for all recipients of sub-allocations to register ROAs, the owner of the super-block may use live BGP data to populate ROAs as a proxy, and then safely issue a ROA for the super-block.

在为超级区块颁发ROA之前,运营商必须确保其他ASE(如客户)宣布的来自该区块的所有子分配在RPKI中具有正确的ROA。否则,为超级区块发布ROA将导致无ROA的子分配公告被视为无效;见[RFC6811]。在等待子分配的所有接收者注册ROA时,超级块的所有者可以使用实时BGP数据作为代理填充ROA,然后安全地为超级块颁发ROA。

Use of RPKI-based origin validation removes any need to inject more specifics into BGP to protect against mis-origination of a less specific prefix. Having a ROA for the covering prefix will protect it.

使用基于RPKI的源代码验证,无需向BGP中注入更多细节,以防止不太具体的前缀错误生成。覆盖前缀具有ROA将保护它。

To aid translation of ROAs into efficient search algorithms in routers, ROAs should be as precise as possible, i.e., match prefixes as announced in BGP. For example, software and operators SHOULD avoid use of excessive max length values in ROAs unless they are operationally necessary.

为了帮助路由器将ROA转换为高效的搜索算法,ROA应尽可能精确,即匹配BGP中宣布的前缀。例如,软件和操作员应避免在ROA中使用过多的“最大长度”值,除非在操作上有必要。

One advantage of minimal ROA length is that the forged origin attack does not work for sub-prefixes that are not covered by overly long max length. For example, if, instead of 10.0.0.0/16-24, one issues 10.0.0.0/16 and 10.0.42.0/24, a forged origin attack cannot succeed against 10.0.666.0/24. They must attack the whole /16, which is more likely to be noticed because of its size.

最小ROA长度的一个优点是伪造来源攻击不适用于过长的最大长度未覆盖的子前缀。例如,如果发布的不是10.0.0.0/16-24,而是10.0.0.0/16和10.0.42.0/24,则伪造原点攻击无法成功攻击10.0.666.0/24。它们必须攻击整个/16,因为它的大小更容易引起注意。

Therefore, ROA generation software MUST use the prefix length as the max length if the user does not specify a max length.

因此,如果用户未指定最大长度,ROA生成软件必须使用前缀长度作为最大长度。

Operators should be conservative in use of max length in ROAs. For example, if a prefix will have only a few sub-prefixes announced, multiple ROAs for the specific announcements should be used as opposed to one ROA with a long max length.

操作员在使用ROA中的最大长度时应保守。例如,如果一个前缀只有几个子前缀已宣布,则应使用特定宣布的多个ROA,而不是一个最大长度较长的ROA。

Operators owning prefix P should issue ROAs for all ASes that may announce P. If a prefix is legitimately announced by more than one AS, ROAs for all of the ASes SHOULD be issued so that all are considered Valid.

拥有前缀P的运营商应为所有可能宣布P的ASE颁发ROA。如果一个前缀由多个AS合法宣布,则应为所有ASE颁发ROA,以便所有ASE都被视为有效。

In an environment where private address space is announced in External BGP (eBGP), the operator may have private RPKI objects that cover these private spaces. This will require a trust anchor created and owned by that environment; see [LTA-USE].

在外部BGP(eBGP)中公布私有地址空间的环境中,操作员可能拥有覆盖这些私有空间的私有RPKI对象。这将需要一个由该环境创建和拥有的信托锚;参见[LTA-USE]。

Operators issuing ROAs may have customers that announce their own prefixes and ASes into global eBGP, but who do not wish to go though the work to manage the relevant certificates and ROAs. Operators SHOULD offer to provision the RPKI data for these customers just as they provision many other things for them.

颁发ROA的运营商可能会有客户在全球eBGP中公布自己的前缀和ASE,但他们不希望完成相关证书和ROA的管理工作。运营商应该为这些客户提供RPKI数据,就像他们为他们提供许多其他东西一样。

An operator using RPKI data MAY choose any polling frequency they wish for ensuring they have a fresh RPKI cache. However, if they use RPKI data as an input to operational routing decisions, they SHOULD ensure local caches inside their AS are synchronized with each other at least every four to six hours.

使用RPKI数据的操作员可以选择他们希望的任何轮询频率,以确保他们有一个新的RPKI缓存。然而,如果他们使用RPKI数据作为操作路由决策的输入,他们应该确保其as中的本地缓存至少每4到6小时同步一次。

Operators should use tools that warn them of any impending ROA or certificate expiry that could affect the validity of their own data. Ghostbusters Records [RFC6493] can be used to facilitate contact with upstream Certification Authorities (CAs) to effect repair.

操作员应使用工具警告他们即将发生的可能影响其自身数据有效性的ROA或证书到期。Ghostbusters记录[RFC6493]可用于促进与上游认证机构(CA)的联系,以实现修复。

4. Within a Network
4. 在网络中

Origin validation need only be done by edge routers in a network, those which border other networks or ASes.

原点验证只需要由网络中的边缘路由器完成,这些路由器与其他网络或ASE相连。

A validating router will use the result of origin validation to influence local policy within its network; see Section 5. In deployment, this policy should fit into the AS's existing policy, preferences, etc. This allows a network to incrementally deploy validation-capable border routers.

验证路由器将使用源验证的结果来影响其网络内的本地策略;见第5节。在部署中,此策略应适合AS的现有策略、首选项等。这允许网络以增量方式部署具有验证功能的边界路由器。

The operator should be aware that RPKI-based origin validation, as any other policy change, can cause traffic shifts in their network. And, as with normal policy shift practice, a prudent operator has tools and methods to predict, measure, modify, etc.

运营商应意识到,基于RPKI的来源验证与任何其他策略更改一样,可能会导致其网络中的流量变化。而且,与正常的政策转变实践一样,谨慎的经营者拥有预测、衡量、修改等工具和方法。

5. Routing Policy
5. 路由策略

Origin validation based on the RPKI marks a received announcement as having an origin that is Valid, NotFound, or Invalid; see [RFC6811]. How this is used in routing should be specified by the operator's local policy.

基于RPKI的原产地验证将收到的公告标记为具有有效、未找到或无效的原产地;见[RFC6811]。这在路由中的使用方式应由运营商的本地策略指定。

Local policy using relative preference is suggested to manage the uncertainty associated with a system in early deployment; local policy can be applied to eliminate the threat of unreachability of

建议使用相对偏好的本地策略来管理早期部署中与系统相关的不确定性;可以应用本地策略来消除无法访问的威胁

prefixes due to ill-advised certification policies and/or incorrect certification data. For example, until the community feels comfortable relying on RPKI data, routing on Invalid origin validity, though at a low preference, MAY occur.

由于错误的认证策略和/或不正确的认证数据而导致的前缀。例如,在社区对依赖RPKI数据感到满意之前,可能会发生基于无效源有效性的路由,尽管首选项较低。

Operators should be aware that accepting Invalid announcements, no matter how de-preferenced, will often be the equivalent of treating them as fully Valid. Consider having a ROA for AS 42 for prefix 10.0.0.0/16-24. A BGP announcement for 10.0.666.0/24 from AS 666 would be Invalid. But if policy is not configured to discard it, then longest-match forwarding will send packets toward AS 666, no matter the value of local preference.

运营商应意识到,接受无效的公告,无论多么不受欢迎,通常等同于将其视为完全有效。考虑对前缀100.0.0/16-24具有42的ROA。AS 666中10.0.666.0/24的BGP公告将无效。但是,如果策略未配置为丢弃它,则最长匹配转发将向AS 666发送数据包,而不管本地首选项的值如何。

As origin validation will be rolled out incrementally, coverage will be incomplete for a long time. Therefore, routing on NotFound validity state SHOULD be done for a long time. As the transition moves forward, the number of BGP announcements with validation state NotFound should decrease. Hence, an operator's policy should not be overly strict and should prefer Valid announcements; it should attach a lower preference to, but still use, NotFound announcements, and drop or give a very low preference to Invalid announcements. Merely de-preferencing Invalid announcements is ill-advised; see previous paragraph.

由于原产地验证将逐步展开,覆盖范围将在很长一段时间内不完整。因此,基于NotFound有效状态的路由需要很长时间。随着转换的进行,具有验证状态NotFound的BGP公告的数量应该会减少。因此,运营商的政策不应过于严格,而应选择有效的公告;它应该对NotFound公告附加一个较低的首选项,但仍然使用该公告,并对无效公告放弃或给予很低的首选项。仅仅取消无效公告的优先权是不明智的;见上一段。

Some providers may choose to set Local-Preference based on the RPKI validation result. Other providers may not want the RPKI validation result to be more important than AS_PATH length -- these providers would need to map the RPKI validation result to some BGP attribute that is evaluated in BGP's path selection process after the AS_PATH is evaluated. Routers implementing RPKI-based origin validation MUST provide such options to operators.

一些提供者可能会根据RPKI验证结果选择设置本地首选项。其他提供者可能不希望RPKI验证结果比AS_路径长度更重要——这些提供者需要将RPKI验证结果映射到某个BGP属性,该属性在评估AS_路径后在BGP的路径选择过程中进行评估。实现基于RPKI的来源验证的路由器必须向运营商提供此类选项。

Local-Preference may be used to carry both the validity state of a prefix along with its traffic engineering (TE) characteristic(s). It is likely that an operator already using Local-Preference will have to change policy so they can encode these two separate characteristics in the same BGP attribute without negative impact or opening privilege escalation attacks. For example, do not encode validation state in higher bits than used for TE.

本地偏好可用于携带前缀的有效状态及其流量工程(TE)特性。已经使用本地首选项的操作员可能必须更改策略,以便能够在同一BGP属性中编码这两个单独的特征,而不会产生负面影响或引发权限提升攻击。例如,不要将验证状态编码为比TE更高的位。

When using a metric that is also influenced by other local policy, an operator should be careful not to create privilege-upgrade vulnerabilities. For example, if Local Pref is set depending on validity state, peer community signaling SHOULD NOT upgrade an Invalid announcement to Valid or better.

当使用也受其他本地策略影响的度量时,操作员应小心不要创建权限升级漏洞。例如,如果根据有效性状态设置本地Pref,则对等社区信令不应将无效公告升级为有效或更好。

Announcements with Valid origins should be preferred over those with NotFound or Invalid origins, if Invalid origins are accepted at all.

如果接受无效来源,则应优先选择具有有效来源的公告,而不是具有NotFound或无效来源的公告。

Announcements with NotFound origins should be preferred over those with Invalid origins.

应优先选择来源为NotFound的公告,而不是来源为无效的公告。

Announcements with Invalid origins SHOULD NOT be used, but may be used to meet special operational needs. In such circumstances, the announcement should have a lower preference than that given to Valid or NotFound.

不应使用来源无效的公告,但可用于满足特殊操作需要。在这种情况下,公告的优先权应低于对“有效”或“未发现”的优先权。

When first deploying origin validation, it may be prudent not to drop announcements with Invalid origins until inspection of logs, SNMP, or other data indicates that the correct result would be obtained.

在首次部署源验证时,在检查日志、SNMP或其他数据表明将获得正确的结果之前,最好不要删除具有无效源的公告。

Validity state signaling SHOULD NOT be accepted from a neighbor AS. The validity state of a received announcement has only local scope due to issues such as scope of trust, RPKI synchrony, and management of local trust anchors [LTA-USE].

有效状态信令不应接受来自邻居的AS。由于信任范围、RPKI同步和本地信任锚的管理[LTA-USE]等问题,接收到的公告的有效性状态只有本地范围。

6. Notes and Recommendations
6. 说明和建议

Like the DNS, the global RPKI presents only a loosely consistent view, depending on timing, updating, fetching, etc. Thus, one cache or router may have different data about a particular prefix than another cache or router. There is no 'fix' for this, it is the nature of distributed data with distributed caches.

与DNS一样,全局RPKI仅呈现松散一致的视图,这取决于定时、更新、获取等。因此,一个缓存或路由器可能与另一个缓存或路由器具有不同的关于特定前缀的数据。对此没有“修复”,这是具有分布式缓存的分布式数据的本质。

Operators should beware that RPKI caches are loosely synchronized, even within a single AS. Thus, changes to the validity state of prefixes could be different within an operator's network. In addition, there is no guaranteed interval from when an RPKI cache is updated to when that new information may be pushed or pulled into a set of routers via this protocol. This may result in sudden shifts of traffic in the operator's network, until all of the routers in the AS have reached equilibrium with the validity state of prefixes reflected in all of the RPKI caches.

操作员应注意RPKI缓存是松散同步的,即使在单个AS中也是如此。因此,在运营商的网络中,前缀有效状态的变化可能不同。此外,从更新RPKI缓存到通过该协议将新信息推送或拉入一组路由器之间没有保证的时间间隔。这可能导致运营商网络中的流量突然变化,直到AS中的所有路由器与所有RPKI缓存中反映的前缀的有效状态达到平衡。

It is hoped that testing and deployment will produce advice on cache loading and timing for relying parties.

希望测试和部署将为依赖方提供有关缓存加载和定时的建议。

There is some uncertainty about the origin AS of aggregates and what, if any, ROA can be used. The long-range solution to this is the deprecation of AS_SETs; see [RFC6472].

关于骨料的来源以及可使用的ROA(如有)存在一些不确定性。解决这一问题的长期方案是反对使用AS_集合;见[RFC6472]。

As reliable access to the global RPKI and an operator's caches (and possibly other hosts, e.g., DNS root servers) is important, an operator should take advantage of relying-party tools that report changes in BGP or RPKI data that would negatively affect validation of such prefixes.

由于可靠访问全局RPKI和运营商的缓存(以及可能的其他主机,如DNS根服务器)非常重要,运营商应利用依赖方工具,报告BGP或RPKI数据中的更改,这些更改将对此类前缀的验证产生负面影响。

Operators should be aware that there is a trade-off in placement of an RPKI repository in address space for which the repository's content is authoritative. On one hand, an operator will wish to maximize control over the repository. On the other hand, if there are reachability problems to the address space, changes in the repository to correct them may not be easily accessed by others.

运营商应该意识到,在存储库内容具有权威性的地址空间中放置RPKI存储库是一种权衡。一方面,运营商希望最大限度地控制存储库。另一方面,如果地址空间存在可访问性问题,那么其他人可能不容易访问存储库中的更改以更正这些问题。

Operators who manage certificates should associate RPKI Ghostbusters Records (see [RFC6493]) with each publication point they control. These are publication points holding the CRL, ROAs, and other signed objects issued by the operator, and made available to other ASes in support of routing on the public Internet.

管理证书的操作员应将RPKI Ghostbusters记录(请参见[RFC6493])与其控制的每个发布点相关联。这些发布点包含运营商发布的CRL、ROA和其他签名对象,并提供给其他ASE,以支持公共互联网上的路由。

Routers that perform RPKI-based origin validation must support Four-octet AS Numbers (see [RFC6793]), as, among other things, it is not reasonable to generate ROAs for AS 23456.

执行基于RPKI的源验证的路由器必须支持四个八位组作为数字(请参见[RFC6793]),因为除其他外,为AS 23456生成ROA是不合理的。

Software that produces filter lists or other control forms for routers where the target router does not support Four-octet AS Numbers (see [RFC6793]) must be prepared to accept four-octet AS Numbers and generate the appropriate two-octet output.

对于目标路由器不支持四个八位字节作为数字的路由器(请参见[RFC6793]),生成过滤器列表或其他控制表单的软件必须准备好接受四个八位字节作为数字,并生成相应的两个八位字节输出。

As a router must evaluate certificates and ROAs that are time dependent, routers' clocks MUST be correct to a tolerance of approximately an hour.

由于路由器必须评估与时间相关的证书和ROA,因此路由器的时钟必须正确到大约一小时的容差。

Servers should provide time service, such as NTPv4 [RFC5905], to client routers.

服务器应向客户端路由器提供时间服务,如NTPv4[RFC5905]。

7. Security Considerations
7. 安全考虑

As the BGP origin AS of an update is not signed, origin validation is open to malicious spoofing. Therefore, RPKI-based origin validation is expected to deal only with inadvertent mis-advertisement.

由于截至更新的BGP源站未签名,因此源站验证可能会受到恶意欺骗。因此,基于RPKI的原产地验证预计只能处理无意的错误广告。

Origin validation does not address the problem of AS_PATH validation. Therefore, paths are open to manipulation, either malicious or accidental.

源验证不解决AS_路径验证问题。因此,路径可能被恶意或意外操纵。

As BGP does not ensure that traffic will flow via the paths it advertises, the data plane may not follow the control plane.

由于BGP不能确保流量通过其播发的路径流动,因此数据平面可能不会跟随控制平面。

Be aware of the class of privilege escalation issues discussed in Section 5 above.

请注意上面第5节讨论的特权升级问题的类别。

8. Acknowledgments
8. 致谢

The author wishes to thank Shane Amante, Rob Austein, Steve Bellovin, Jay Borkenhagen, Wes George, Seiichi Kawamura, Steve Kent, Pradosh Mohapatra, Chris Morrow, Sandy Murphy, Eric Osterweil, Keyur Patel, Heather and Jason Schiller, John Scudder, Kotikalapudi Sriram, Maureen Stillman, and Dave Ward.

作者希望感谢Shane Amante、Rob Austein、Steve Bellovin、Jay Borkenhagen、Wes George、Seichi Kawamura、Steve Kent、Pradosh Mohapatra、Chris Morrow、Sandy Murphy、Eric Osterweil、Keyur Patel、Heather和Jason Schiller、John Scuder、Kotikalapudi Sriram、Mauren Stillman和Dave Ward。

9. References
9. 工具书类
9.1. Normative References
9.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC6481] Huston, G., Loomans, R., and G. Michaelson, "A Profile for Resource Certificate Repository Structure", RFC 6481, February 2012.

[RFC6481]Huston,G.,Loomans,R.,和G.Michaelson,“资源证书存储库结构的配置文件”,RFC 64812012年2月。

[RFC6482] Lepinski, M., Kent, S., and D. Kong, "A Profile for Route Origin Authorizations (ROAs)", RFC 6482, February 2012.

[RFC6482]Lepinski,M.,Kent,S.,和D.Kong,“路线原产地授权(ROA)的配置文件”,RFC 64822012年2月。

[RFC6490] Huston, G., Weiler, S., Michaelson, G., and S. Kent, "Resource Public Key Infrastructure (RPKI) Trust Anchor Locator", RFC 6490, February 2012.

[RFC6490]Huston,G.,Weiler,S.,Michaelson,G.,和S.Kent,“资源公钥基础设施(RPKI)信任锚定位器”,RFC 64902012年2月。

[RFC6493] Bush, R., "The Resource Public Key Infrastructure (RPKI) Ghostbusters Record", RFC 6493, February 2012.

[RFC6493]布什,R.,“资源公钥基础设施(RPKI)捉鬼记录”,RFC6493,2012年2月。

[RFC6793] Vohra, Q. and E. Chen, "BGP Support for Four-Octet Autonomous System (AS) Number Space", RFC 6793, December 2012.

[RFC6793]Vohra,Q.和E.Chen,“BGP对四个八位组自治系统(AS)数字空间的支持”,RFC 6793,2012年12月。

[RFC6810] Bush, R. and R. Austein, "The Resource Public Key Infrastructure (RPKI) to Router Protocol", RFC 6810, January 2013.

[RFC6810]Bush,R.和R.Austein,“资源公钥基础设施(RPKI)到路由器协议”,RFC 6810,2013年1月。

[RFC6811] Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R. Austein, "BGP Prefix Origin Validation", RFC 6811, January 2013.

[RFC6811]Mohapatra,P.,Scudder,J.,Ward,D.,Bush,R.,和R.Austein,“BGP前缀来源验证”,RFC 6811,2013年1月。

9.2. Informative References
9.2. 资料性引用

[LTA-USE] Bush, R., "RPKI Local Trust Anchor Use Cases", Work in Progress, September 2013.

[LTA-USE]Bush,R.,“RPKI本地信任锚用例”,正在进行的工作,2013年9月。

[RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, January 2006.

[RFC4271]Rekhter,Y.,Li,T.,和S.Hares,“边境网关协议4(BGP-4)”,RFC 42712006年1月。

[RFC5781] Weiler, S., Ward, D., and R. Housley, "The rsync URI Scheme", RFC 5781, February 2010.

[RFC5781]Weiler,S.,Ward,D.,和R.Housley,“rsync URI方案”,RFC 57812010年2月。

[RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, June 2010.

[RFC5905]Mills,D.,Martin,J.,Burbank,J.,和W.Kasch,“网络时间协议版本4:协议和算法规范”,RFC 59052010年6月。

[RFC6472] Kumari, W. and K. Sriram, "Recommendation for Not Using AS_SET and AS_CONFED_SET in BGP", BCP 172, RFC 6472, December 2011.

[RFC6472]Kumari,W.和K.Sriram,“在BGP中不使用AS_集和AS_CONFED_集的建议”,BCP 172,RFC 6472,2011年12月。

[RFC6480] Lepinski, M. and S. Kent, "An Infrastructure to Support Secure Internet Routing", RFC 6480, February 2012.

[RFC6480]Lepinski,M.和S.Kent,“支持安全互联网路由的基础设施”,RFC 6480,2012年2月。

[RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for X.509 PKIX Resource Certificates", RFC 6487, February 2012.

[RFC6487]Huston,G.,Michaelson,G.,和R.Loomans,“X.509 PKIX资源证书的配置文件”,RFC 6487,2012年2月。

[RFC6488] Lepinski, M., Chi, A., and S. Kent, "Signed Object Template for the Resource Public Key Infrastructure (RPKI)", RFC 6488, February 2012.

[RFC6488]Lepinski,M.,Chi,A.,和S.Kent,“资源公钥基础设施(RPKI)的签名对象模板”,RFC 6488,2012年2月。

[IAB] IAB, "IAB statement on the RPKI", January 2010, <http://www.iab.org/documents/ correspondence-reports-documents/docs2010/ iab-statement-on-the-rpki/>.

[IAB]IAB,“IAB关于RPKI的声明”,2010年1月<http://www.iab.org/documents/ 通信报告文件/docs2010/iab关于rpki/>的声明。

[rcynic] "rcynic RPKI validator", November 2013, <http://rpki.net/rcynic>.

[rcynic]“rcynic RPKI验证器”,2013年11月<http://rpki.net/rcynic>.

Author's Address

作者地址

Randy Bush Internet Initiative Japan 5147 Crystal Springs Bainbridge Island, Washington 98110 US

兰迪·布什互联网倡议日本5147水晶泉班布里奇岛,华盛顿98110美国

   EMail: randy@psg.com
        
   EMail: randy@psg.com