Internet Engineering Task Force (IETF)                        M. Thomson
Request for Comments: 7105                                       Mozilla
Category: Standards Track                                J. Winterbottom
ISSN: 2070-1721                                             Unaffiliated
                                                            January 2014
        
Internet Engineering Task Force (IETF)                        M. Thomson
Request for Comments: 7105                                       Mozilla
Category: Standards Track                                J. Winterbottom
ISSN: 2070-1721                                             Unaffiliated
                                                            January 2014
        

Using Device-Provided Location-Related Measurements in Location Configuration Protocols

在位置配置协议中使用设备提供的位置相关测量

Abstract

摘要

This document describes a protocol for a Device to provide location-related measurement data to a Location Information Server (LIS) within a request for location information. Location-related measurement information provides observations concerning properties related to the position of a Device; this information could be data about network attachment or about the physical environment. A LIS is able to use the location-related measurement data to improve the accuracy of the location estimate it provides to the Device. A basic set of location-related measurements are defined, including common modes of network attachment as well as assisted Global Navigation Satellite System (GNSS) parameters.

本文档描述了设备在位置信息请求中向位置信息服务器(LIS)提供位置相关测量数据的协议。与位置相关的测量信息提供与设备位置相关的特性相关的观察结果;这些信息可能是有关网络连接或物理环境的数据。LIS能够使用与位置相关的测量数据来提高其提供给设备的位置估计的准确性。定义了一组与位置相关的基本测量值,包括网络连接的常见模式以及辅助全球导航卫星系统(GNSS)参数。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7105.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7105.

Copyright Notice

版权公告

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2014 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................4
   2. Conventions Used in This Document ...............................5
   3. Location-Related Measurements in LCPs ...........................6
   4. Location-Related Measurement Data Types .........................7
      4.1. Measurement Container ......................................7
           4.1.1. Time of Measurement .................................8
           4.1.2. Expiry Time on Location-Related Measurement Data ....8
      4.2. RMS Error and Number of Samples ............................9
           4.2.1. Time RMS Error ......................................9
      4.3. Measurement Request .......................................10
      4.4. Identifying Location Provenance ...........................11
   5. Location-Related Measurement Data Types ........................13
      5.1. LLDP Measurements .........................................13
      5.2. DHCP Relay Agent Information Measurements .................14
      5.3. 802.11 WLAN Measurements ..................................15
           5.3.1. WiFi Measurement Requests ..........................18
      5.4. Cellular Measurements .....................................18
           5.4.1. Cellular Measurement Requests ......................22
      5.5. GNSS Measurements .........................................22
           5.5.1. GNSS: System Type and Signal .......................23
           5.5.2. Time ...............................................24
           5.5.3. Per-Satellite Measurement Data .....................24
           5.5.4. GNSS Measurement Requests ..........................25
      5.6. DSL Measurements ..........................................25
           5.6.1. L2TP Measurements ..................................26
           5.6.2. RADIUS Measurements ................................26
           5.6.3. Ethernet VLAN Tag Measurements .....................27
           5.6.4. ATM Virtual Circuit Measurements ...................28
        
   1. Introduction ....................................................4
   2. Conventions Used in This Document ...............................5
   3. Location-Related Measurements in LCPs ...........................6
   4. Location-Related Measurement Data Types .........................7
      4.1. Measurement Container ......................................7
           4.1.1. Time of Measurement .................................8
           4.1.2. Expiry Time on Location-Related Measurement Data ....8
      4.2. RMS Error and Number of Samples ............................9
           4.2.1. Time RMS Error ......................................9
      4.3. Measurement Request .......................................10
      4.4. Identifying Location Provenance ...........................11
   5. Location-Related Measurement Data Types ........................13
      5.1. LLDP Measurements .........................................13
      5.2. DHCP Relay Agent Information Measurements .................14
      5.3. 802.11 WLAN Measurements ..................................15
           5.3.1. WiFi Measurement Requests ..........................18
      5.4. Cellular Measurements .....................................18
           5.4.1. Cellular Measurement Requests ......................22
      5.5. GNSS Measurements .........................................22
           5.5.1. GNSS: System Type and Signal .......................23
           5.5.2. Time ...............................................24
           5.5.3. Per-Satellite Measurement Data .....................24
           5.5.4. GNSS Measurement Requests ..........................25
      5.6. DSL Measurements ..........................................25
           5.6.1. L2TP Measurements ..................................26
           5.6.2. RADIUS Measurements ................................26
           5.6.3. Ethernet VLAN Tag Measurements .....................27
           5.6.4. ATM Virtual Circuit Measurements ...................28
        
   6. Privacy Considerations .........................................28
      6.1. Measurement Data Privacy Model ............................28
      6.2. LIS Privacy Requirements ..................................29
      6.3. Measurement Data and Location URIs ........................29
      6.4. Measurement Data Provided by a Third Party ................30
   7. Security Considerations ........................................30
      7.1. Threat Model ..............................................30
           7.1.1. Acquiring Location Information without
                  Authorization ......................................31
           7.1.2. Extracting Network Topology Data ...................32
           7.1.3. Exposing Network Topology Data .....................32
           7.1.4. Lying by Proxy .....................................33
           7.1.5. Measurement Replay .................................33
           7.1.6. Environment Spoofing ...............................34
      7.2. Mitigation ................................................35
           7.2.1. Measurement Validation .............................36
                  7.2.1.1. Effectiveness .............................36
                  7.2.1.2. Limitations (Unique Observer) .............37
           7.2.2. Location Validation ................................38
                  7.2.2.1. Effectiveness .............................38
                  7.2.2.2. Limitations ...............................39
           7.2.3. Supporting Observations ............................39
                  7.2.3.1. Effectiveness .............................40
                  7.2.3.2. Limitations ...............................40
           7.2.4. Attribution ........................................40
           7.2.5. Stateful Correlation of Location Requests ..........42
      7.3. An Unauthorized or Compromised LIS ........................42
   8. Measurement Schemas ............................................42
      8.1. Measurement Container Schema ..............................43
      8.2. Measurement Source Schema .................................45
      8.3. Base Types Schema .........................................46
      8.4. LLDP Measurement Schema ...................................49
      8.5. DHCP Measurement Schema ...................................50
      8.6. WiFi Measurement Schema ...................................51
      8.7. Cellular Measurement Schema ...............................55
      8.8. GNSS Measurement Schema ...................................57
      8.9. DSL Measurement Schema ....................................59
   9. IANA Considerations ............................................61
      9.1. IANA Registry for GNSS Types ..............................61
      9.2. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc ...............62
      9.3. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm .........................63
      9.4. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:basetypes ...............63
      9.5. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:lldp ....................64
        
   6. Privacy Considerations .........................................28
      6.1. Measurement Data Privacy Model ............................28
      6.2. LIS Privacy Requirements ..................................29
      6.3. Measurement Data and Location URIs ........................29
      6.4. Measurement Data Provided by a Third Party ................30
   7. Security Considerations ........................................30
      7.1. Threat Model ..............................................30
           7.1.1. Acquiring Location Information without
                  Authorization ......................................31
           7.1.2. Extracting Network Topology Data ...................32
           7.1.3. Exposing Network Topology Data .....................32
           7.1.4. Lying by Proxy .....................................33
           7.1.5. Measurement Replay .................................33
           7.1.6. Environment Spoofing ...............................34
      7.2. Mitigation ................................................35
           7.2.1. Measurement Validation .............................36
                  7.2.1.1. Effectiveness .............................36
                  7.2.1.2. Limitations (Unique Observer) .............37
           7.2.2. Location Validation ................................38
                  7.2.2.1. Effectiveness .............................38
                  7.2.2.2. Limitations ...............................39
           7.2.3. Supporting Observations ............................39
                  7.2.3.1. Effectiveness .............................40
                  7.2.3.2. Limitations ...............................40
           7.2.4. Attribution ........................................40
           7.2.5. Stateful Correlation of Location Requests ..........42
      7.3. An Unauthorized or Compromised LIS ........................42
   8. Measurement Schemas ............................................42
      8.1. Measurement Container Schema ..............................43
      8.2. Measurement Source Schema .................................45
      8.3. Base Types Schema .........................................46
      8.4. LLDP Measurement Schema ...................................49
      8.5. DHCP Measurement Schema ...................................50
      8.6. WiFi Measurement Schema ...................................51
      8.7. Cellular Measurement Schema ...............................55
      8.8. GNSS Measurement Schema ...................................57
      8.9. DSL Measurement Schema ....................................59
   9. IANA Considerations ............................................61
      9.1. IANA Registry for GNSS Types ..............................61
      9.2. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc ...............62
      9.3. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm .........................63
      9.4. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:basetypes ...............63
      9.5. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:lldp ....................64
        
      9.6. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:dhcp ....................65
      9.7. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:wifi ....................65
      9.8. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:cell ....................66
      9.9. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:gnss ....................67
      9.10. URN Sub-Namespace Registration for
            urn:ietf:params:xml:ns:geopriv:lm:dsl ....................67
      9.11. XML Schema Registration for Measurement Source Schema ....68
      9.12. XML Schema Registration for Measurement Container
            Schema ...................................................68
      9.13. XML Schema Registration for Base Types Schema ............69
      9.14. XML Schema Registration for LLDP Schema ..................69
      9.15. XML Schema Registration for DHCP Schema ..................69
      9.16. XML Schema Registration for WiFi Schema ..................69
      9.17. XML Schema Registration for Cellular Schema ..............70
      9.18. XML Schema Registration for GNSS Schema ..................70
      9.19. XML Schema Registration for DSL Schema ...................70
   10. Acknowledgements ..............................................70
   11. References ....................................................71
      11.1. Normative References .....................................71
      11.2. Informative References ...................................73
        
      9.6. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:dhcp ....................65
      9.7. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:wifi ....................65
      9.8. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:cell ....................66
      9.9. URN Sub-Namespace Registration for
           urn:ietf:params:xml:ns:geopriv:lm:gnss ....................67
      9.10. URN Sub-Namespace Registration for
            urn:ietf:params:xml:ns:geopriv:lm:dsl ....................67
      9.11. XML Schema Registration for Measurement Source Schema ....68
      9.12. XML Schema Registration for Measurement Container
            Schema ...................................................68
      9.13. XML Schema Registration for Base Types Schema ............69
      9.14. XML Schema Registration for LLDP Schema ..................69
      9.15. XML Schema Registration for DHCP Schema ..................69
      9.16. XML Schema Registration for WiFi Schema ..................69
      9.17. XML Schema Registration for Cellular Schema ..............70
      9.18. XML Schema Registration for GNSS Schema ..................70
      9.19. XML Schema Registration for DSL Schema ...................70
   10. Acknowledgements ..............................................70
   11. References ....................................................71
      11.1. Normative References .....................................71
      11.2. Informative References ...................................73
        
1. Introduction
1. 介绍

A Location Configuration Protocol (LCP) provides a means for a Device to request information about its physical location from an access network. A Location Information Server (LIS) is the server that provides location information that is available due to the knowledge it has about the network and physical environment.

位置配置协议(LCP)为设备从接入网络请求有关其物理位置的信息提供了一种方法。位置信息服务器(LIS)是一种提供位置信息的服务器,该信息由于其对网络和物理环境的了解而可用。

As a part of the access network, the LIS is able to acquire measurement results related to Device location from network elements. The LIS also has access to information about the network topology that can be used to turn measurement data into location information. This information can be further enhanced with information acquired from the Device itself.

作为接入网的一部分,LIS能够从网元获取与设备位置相关的测量结果。LIS还可以访问有关网络拓扑的信息,这些信息可用于将测量数据转换为位置信息。可以使用从设备本身获取的信息来进一步增强该信息。

A Device is able to make observations about its network attachment, or its physical environment. The location-related measurement data might be unavailable to the LIS; alternatively, the LIS might be able to acquire the data, but at a higher cost in terms of time or some other metric. Providing measurement data gives the LIS more options in determining location; this could in turn improve the quality of

设备能够对其网络连接或物理环境进行观察。与位置相关的测量数据可能对LIS不可用;或者,LIS可能能够获取数据,但在时间或某些其他指标方面的成本较高。提供测量数据使LIS在确定位置时有更多的选择;这反过来可以提高产品质量

the service provided by the LIS. Improvements in accuracy are one potential gain, but improved response times and lower error rates are also possible.

LIS提供的服务。准确度的提高是一个潜在的好处,但响应时间的提高和错误率的降低也是可能的。

This document describes a means for a Device to report location-related measurement data to the LIS. Examples based on the HTTP-Enabled Location Delivery (HELD) [RFC5985] location configuration protocol are provided.

本文件描述了设备向LIS报告位置相关测量数据的方法。提供了基于HTTP启用的位置传递(HOLD)[RFC5985]位置配置协议的示例。

2. Conventions Used in This Document
2. 本文件中使用的公约

The terms "LIS" and "Device" are used in this document in a manner consistent with the usage in [RFC5985].

本文件中术语“LIS”和“设备”的使用方式与[RFC5985]中的用法一致。

This document also uses the following definitions:

本文件还使用以下定义:

Location Measurement: An observation about the physical properties of a particular Device's position in time and space. The result of a location measurement -- "location-related measurement data", or simply "measurement data" given sufficient context -- can be used to determine the location of a Device. Location-related measurement data does not directly identify a Device, though it could do so indirectly. Measurement data can change with time if the location of the Device also changes.

位置测量:观察特定设备在时间和空间上的位置的物理特性。位置测量的结果——“与位置相关的测量数据”,或者简单地说是给定足够上下文的“测量数据”——可用于确定设备的位置。与位置相关的测量数据不能直接识别设备,尽管它可以间接识别设备。如果设备的位置也发生变化,测量数据可能会随时间而变化。

Location-related measurement data does not necessarily contain location information directly, but it can be used in combination with contextual knowledge and/or algorithms to derive location information. Examples of location-related measurement data are radio signal strength or timing measurements, Ethernet switch identifiers, and port identifiers.

与位置相关的测量数据不一定直接包含位置信息,但它可以与上下文知识和/或算法结合使用来推导位置信息。位置相关测量数据的示例包括无线电信号强度或定时测量、以太网交换机标识符和端口标识符。

Location-related measurement data can be considered sighting information, based on the definition in [RFC3693].

Location-related measurement data can be considered sighting information, based on the definition in [RFC3693].translate error, please retry

Location Estimate: An approximation of where the Device is located. Location estimates are derived from location measurements. Location estimates are subject to uncertainty, which arises from errors in measurement results.

位置估计:设备所在位置的近似值。位置估计值来自位置测量。位置估计受到测量结果误差引起的不确定性的影响。

GNSS: Global Navigation Satellite System. A satellite-based system that provides positioning and time information -- for example, the US Global Positioning System (GPS) or the European Galileo system.

全球导航卫星系统:全球导航卫星系统。提供定位和时间信息的基于卫星的系统——例如,美国全球定位系统(GPS)或欧洲伽利略系统。

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

3. Location-Related Measurements in LCPs
3. LCP中的位置相关测量

This document defines a standard container for the conveyance of location-related measurement parameters in location configuration protocols. This is an XML container that identifies parameters by type and allows the Device to provide the results of any measurement it is able to perform. A set of measurement schemas are also defined that can be carried in the generic container.

本文件定义了一个标准容器,用于在位置配置协议中传输与位置相关的测量参数。这是一个XML容器,它按类型标识参数,并允许设备提供其能够执行的任何测量的结果。还定义了一组可在通用容器中携带的度量模式。

A simple example of measurement data conveyance is illustrated by the example message in Figure 1. This shows a HELD location request message with an Ethernet switch and port measurement taken using the Link-Layer Discovery Protocol (LLDP) [IEEE.8021AB].

图1中的示例消息说明了测量数据传输的一个简单示例。这显示了使用链路层发现协议(LLDP)[IEEE.8021AB]进行以太网交换机和端口测量的保持位置请求消息。

     <locationRequest xmlns="urn:ietf:params:xml:ns:geopriv:held">
       <locationType exact="true">civic</locationType>
       <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
             time="2008-04-29T14:33:58">
         <lldp xmlns="urn:ietf:params:xml:ns:geopriv:lm:lldp">
           <chassis type="4">0a01003c</chassis>
           <port type="6">c2</port>
         </lldp>
       </measurements>
     </locationRequest>
        
     <locationRequest xmlns="urn:ietf:params:xml:ns:geopriv:held">
       <locationType exact="true">civic</locationType>
       <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
             time="2008-04-29T14:33:58">
         <lldp xmlns="urn:ietf:params:xml:ns:geopriv:lm:lldp">
           <chassis type="4">0a01003c</chassis>
           <port type="6">c2</port>
         </lldp>
       </measurements>
     </locationRequest>
        

Figure 1: HELD Location Request with Measurement Data

图1:带测量数据的保留位置请求

This LIS can ignore measurement data that it does not support or understand. The measurements defined in this document follow this rule: extensions that could result in backward incompatibility MUST be added as new measurement definitions rather than extensions to existing types.

该LIS可以忽略其不支持或不理解的测量数据。本文档中定义的度量遵循以下规则:可能导致向后不兼容的扩展必须添加为新的度量定义,而不是现有类型的扩展。

Multiple sets of measurement data, either of the same type or from different sources, can be included in the "measurements" element. See Section 4.1.1 for details on repetition of this element.

“测量”元素中可以包含多组相同类型或不同来源的测量数据。有关该元素重复的详细信息,请参见第4.1.1节。

A LIS can choose to use or ignore location-related measurement data in determining location, as long as rules regarding use and retention (Section 6) are respected. The "method" parameter in the Presence Information Data Format - Location Object (PIDF-LO) [RFC4119] SHOULD be adjusted to reflect the method used. A correct "method" can assist location recipients in assessing the quality (both accuracy and integrity) of location information, though there could be reasons to withhold information about the source of data.

LIS可以选择在确定位置时使用或忽略与位置相关的测量数据,只要遵守有关使用和保留的规则(第6节)。应调整状态信息数据格式-位置对象(PIDF-LO)[RFC4119]中的“方法”参数,以反映所使用的方法。正确的“方法”可以帮助位置接收者评估位置信息的质量(准确性和完整性),尽管可能有理由保留有关数据源的信息。

Measurement data is typically only used to serve the request in which it is included. There may be exceptions, particularly with respect to location URIs. Section 6 provides more information on usage rules.

测量数据通常仅用于服务包含它的请求。可能存在例外情况,特别是关于位置URI。第6节提供了有关使用规则的更多信息。

Location-related measurement data need not be provided exclusively by Devices. A third-party location requester (for example, see [RFC6155]) can request location information using measurement data, if the requester is able to acquire measurement data and authorized to distribute it. There are specific privacy considerations relating to the use of measurements by third parties, which are discussed in Section 6.4.

与位置相关的测量数据不需要仅由设备提供。第三方位置请求者(例如,参见[RFC6155])可以使用测量数据请求位置信息,前提是请求者能够获取测量数据并有权分发该数据。与第三方使用测量有关的具体隐私注意事项,在第6.4节中讨论。

Location-related measurement data and its use present a number of privacy and security challenges. These are described in more detail in Sections 6 and 7.

与位置相关的测量数据及其使用带来了许多隐私和安全挑战。第6节和第7节将对其进行更详细的描述。

4. Location-Related Measurement Data Types
4. 与位置相关的测量数据类型

A common container is defined for the expression of location measurement data, as well as a simple means of identifying specific types of measurement data for the purposes of requesting them.

定义了用于表示位置测量数据的通用容器,以及用于识别特定类型测量数据以请求它们的简单方法。

The following example shows a measurement container with measurement time and expiration time included. A WiFi measurement is enclosed.

以下示例显示了包含测量时间和过期时间的测量容器。随附WiFi测量。

     <lm:measurements xmlns:lm="urn:ietf:params:xml:ns:geopriv:lm"
              time="2008-04-29T14:33:58"
              expires="2008-04-29T17:33:58">
       <wifi xmlns="urn:ietf:params:xml:ns:geopriv:lm:wifi">
         <ap serving="true">
           <bssid>00-12-F0-A0-80-EF</bssid>
           <ssid>wlan-home</ssid>
         </ap>
       </wifi>
     </lm:measurements>
        
     <lm:measurements xmlns:lm="urn:ietf:params:xml:ns:geopriv:lm"
              time="2008-04-29T14:33:58"
              expires="2008-04-29T17:33:58">
       <wifi xmlns="urn:ietf:params:xml:ns:geopriv:lm:wifi">
         <ap serving="true">
           <bssid>00-12-F0-A0-80-EF</bssid>
           <ssid>wlan-home</ssid>
         </ap>
       </wifi>
     </lm:measurements>
        

Figure 2: Measurement Example

图2:测量示例

4.1. Measurement Container
4.1. 测量容器

The "measurements" element is used to encapsulate measurement data that is collected at a certain point in time. It contains time-based attributes that are common to all forms of measurement data, and it permits the inclusion of arbitrary measurement data. The elements that are included within the "measurements" element are generically referred to as "measurement elements".

“测量”元素用于封装在特定时间点收集的测量数据。它包含所有形式的测量数据所共有的基于时间的属性,并允许包含任意测量数据。“测量”元素中包含的元素一般称为“测量元素”。

This container can be added to a request for location information in any protocol capable of carrying XML, such as a HELD location request [RFC5985].

该容器可以添加到任何能够承载XML的协议中的位置信息请求中,例如保持位置请求[RFC5985]。

4.1.1. Time of Measurement
4.1.1. 测量时间

The "time" attribute records the time that the measurement or observation was made. This time can be different from the time that the measurement information was reported. Time information can be used to populate a timestamp on the location result or to determine if the measurement information is used.

“时间”属性记录进行测量或观察的时间。此时间可能与报告测量信息的时间不同。时间信息可用于填充位置结果上的时间戳,或确定是否使用测量信息。

The "time" attribute SHOULD be provided whenever possible. This allows a LIS to avoid selecting an arbitrary timestamp. Exceptions to this, where omitting time might make sense, include relatively static types of measurement (for instance, the DSL measurements in Section 5.6) or for legacy Devices that don't record time information (such as the Home Location Register/Home Subscriber Server for cellular).

应尽可能提供“时间”属性。这允许LIS避免选择任意时间戳。省略时间可能有意义的例外情况包括相对静态的测量类型(例如,第5.6节中的DSL测量)或不记录时间信息的传统设备(例如蜂窝电话的归属位置寄存器/归属订户服务器)。

The "time" attribute is attached to the root "measurement" element. Multiple measurements can often be given the same timestamp, even when the measurements were not actually taken at the same time (consider a set of measurements taken sequentially, where the difference in time between observations is not significant). Measurements cannot be grouped if they have different types or if there is a need for independent time values on each measurement. In these instances, multiple measurement sets are necessary.

“time”属性附加到根“measurement”元素。多个测量通常可以被赋予相同的时间戳,即使测量不是在同一时间进行的(考虑一组连续进行的测量,其中观测之间的时间差不显著)。如果测量值的类型不同,或者每个测量值都需要独立的时间值,则不能对测量值进行分组。在这些情况下,需要多个测量集。

4.1.2. Expiry Time on Location-Related Measurement Data
4.1.2. 位置相关测量数据的失效时间

A Device is able to indicate an expiry time in the location measurement using the "expires" attribute. Nominally, this attribute indicates how long information is expected to be valid, but it can also indicate a time limit on the retention and use of the measurement data. A Device can use this attribute to request that the LIS not retain measurement data beyond the indicated time.

设备能够使用“expires”(过期)属性在位置测量中指示过期时间。名义上,该属性表示预期信息有效的时间,但也可以表示保留和使用测量数据的时间限制。设备可以使用此属性请求LIS在指定时间之后不保留测量数据。

Note: Movement of the Device might result in the measurement data being invalidated before the expiry time.

注意:设备的移动可能会导致测量数据在到期之前失效。

A Device is advised to set the "expires" attribute to the earlier of the time that measurements are likely to be unusable and the time that it desires to have measurements discarded by the LIS. A Device that does not desire measurement data to be retained can omit the "expires" attribute. Section 6 describes more specific rules regarding measurement data retention.

建议设备将“expires”属性设置为可能无法使用测量值的时间和希望LIS丢弃测量值的时间中较早的时间。不希望保留测量数据的设备可以省略“expires”属性。第6节描述了有关测量数据保留的更具体规则。

4.2. RMS Error and Number of Samples
4.2. RMS误差和样本数

Often a measurement is taken more than once. Reporting the average of a number of measurement results mitigates the effects of random errors that occur in the measurement process.

通常一次测量不止一次。报告多个测量结果的平均值可以减轻测量过程中出现的随机误差的影响。

Reporting each measurement individually can be the most effective method of reporting multiple measurements. This is achieved by providing multiple measurement elements for different times.

单独报告每个测量值可能是报告多个测量值的最有效方法。这是通过为不同的时间提供多个测量元素来实现的。

The alternative is to aggregate multiple measurements and report a mean value across the set of measurements. Additional information about the distribution of the results can be useful in determining location uncertainty.

另一种方法是聚合多个测量值,并报告整个测量集的平均值。关于结果分布的附加信息可用于确定位置不确定性。

Two attributes are provided for use on some measurement values:

提供两个属性用于某些测量值:

rmsError: The root-mean-squared (RMS) error of the set of measurement values used in calculating the result. RMS error is expressed in the same units as the measurement, unless otherwise stated. If an accurate value for the RMS error is not known, this value can be used to indicate an upper bound or estimate for the RMS error.

rmsError:用于计算结果的一组测量值的均方根(RMS)误差。除非另有说明,均方根误差以与测量值相同的单位表示。如果RMS误差的准确值未知,则该值可用于指示RMS误差的上限或估计值。

samples: The number of samples that were taken in determining the measurement value. If omitted, this value can be assumed to be large enough that the RMS error is an indication of the standard deviation of the sample set.

样本数:确定测量值时采集的样本数。如果省略,可以假设该值足够大,使得RMS误差表示样本集的标准偏差。

For some measurement techniques, measurement error is largely dependent on the measurement technique employed. In these cases, measurement error is largely a product of the measurement technique and not the specific circumstances, so the RMS error does not need to be actively measured. A fixed value MAY be provided for the RMS error where appropriate.

对于某些测量技术,测量误差在很大程度上取决于所采用的测量技术。在这些情况下,测量误差很大程度上是测量技术的产物,而不是特定情况的产物,因此不需要主动测量RMS误差。适当时,可为RMS误差提供固定值。

The "rmsError" and "samples" elements are added as attributes of specific measurement data types.

“rmsError”和“samples”元素被添加为特定测量数据类型的属性。

4.2.1. Time RMS Error
4.2.1. 时间均方根误差

Measurement of time can be significant in certain circumstances. The GNSS measurements included in this document are one such case where a small error in time can result in a large error in location. Factors such as clock drift and errors in time synchronization can result in small, but significant, time errors. Including an indication of the quality of time measurements can be helpful.

在某些情况下,时间测量可能很重要。本文件中包括的全球导航卫星系统测量就是这样一种情况,在这种情况下,时间上的小误差可能导致位置上的大误差。时钟漂移和时间同步中的错误等因素可能会导致较小但显著的时间错误。包括时间测量质量的指示可能会有所帮助。

A "timeError" attribute MAY be added to the "measurement" element to indicate the RMS error in time. "timeError" indicates an upper bound on the time RMS error in seconds.

可在“测量”元素中添加“timeError”属性,以指示时间上的RMS误差。“timeError”表示时间RMS错误的上限(以秒为单位)。

The "timeError" attribute does not apply where multiple samples of a measurement are taken over time. If multiple samples are taken, each SHOULD be included in a different "measurement" element.

“timeError”属性不适用于随时间采集多个测量样本的情况。如果采集了多个样本,每个样本应包含在不同的“测量”元素中。

4.3. Measurement Request
4.3. 测量请求

A measurement request is used by a protocol peer to describe a set of measurement data that it desires. A "measurementRequest" element is defined that can be included in a protocol exchange.

协议对等方使用测量请求来描述所需的一组测量数据。定义了“measurementRequest”元素,该元素可以包含在协议交换中。

For instance, a LIS can use a measurement request in HELD responses. If the LIS is unable to provide location information, but it believes that a particular measurement type would enable it to provide a location, it can include a measurement request in an error response.

例如,LIS可以在保留的响应中使用度量请求。如果LIS无法提供位置信息,但认为特定的测量类型将使其能够提供位置,则可以在错误响应中包含测量请求。

The "measurement" element of the measurement request identifies the type of measurement that is requested. The "type" attribute of this element indicates the type of measurement, as identified by an XML qualified name. A "samples" attribute MAY be used to indicate how many samples of the identified measurement are requested.

测量请求的“测量”元素标识所请求的测量类型。此元素的“type”属性表示由XML限定名标识的度量类型。“样本”属性可用于指示所识别测量的样本数量。

The "measurement" element can be repeated to request multiple (or alternative) measurement types.

可以重复“测量”元素以请求多种(或替代)测量类型。

Additional XML content might be defined for a particular measurement type that is used to further refine a request. These elements either constrain what is requested or specify non-mandatory components of the measurement data that are needed. These are defined along with the specific measurement type.

可以为用于进一步细化请求的特定度量类型定义其他XML内容。这些元素要么约束所请求的内容,要么指定所需测量数据的非强制性组件。这些是与特定测量类型一起定义的。

In the HELD protocol, the inclusion of a measurement request in an error response with a code of "locationUnknown" indicates that providing measurements would increase the likelihood of a subsequent request being successful.

在HOLD协议中,将测量请求包含在错误响应中,代码为“locationUnknown”,表示提供测量将增加后续请求成功的可能性。

The following example shows a HELD error response that indicates that WiFi measurement data would be useful if a later request were made. Additional elements indicate that received signal strength for an 802.11n access point is requested.

下面的示例显示了一个保留的错误响应,该响应指示如果稍后提出请求,WiFi测量数据将非常有用。附加元件指示请求802.11n接入点的接收信号强度。

     <error xmlns="urn:ietf:params:xml:ns:geopriv:held"
        code="locationUnknown">
       <message xml:lang="en">Insufficient measurement data</message>
       <measurementRequest
       xmlns="urn:ietf:params:xml:ns:geopriv:lm"
       xmlns:wifi="urn:ietf:params:xml:ns:geopriv:lm:wifi">
         <measurement type="wifi:wifi">
           <wifi:type>n</wifi:type>
           <wifi:parameter context="ap">wifi:rcpi</wifi:parameter>
         </measurement>
       </measurementRequest>
     </error>
        
     <error xmlns="urn:ietf:params:xml:ns:geopriv:held"
        code="locationUnknown">
       <message xml:lang="en">Insufficient measurement data</message>
       <measurementRequest
       xmlns="urn:ietf:params:xml:ns:geopriv:lm"
       xmlns:wifi="urn:ietf:params:xml:ns:geopriv:lm:wifi">
         <measurement type="wifi:wifi">
           <wifi:type>n</wifi:type>
           <wifi:parameter context="ap">wifi:rcpi</wifi:parameter>
         </measurement>
       </measurementRequest>
     </error>
        

Figure 3: HELD Error Requesting Measurement Data

图3:请求测量数据的保留错误

A measurement request that is included in other HELD messages has undefined semantics and can be safely ignored. Other specifications might define semantics for measurement requests under other conditions.

包含在其他保留消息中的度量请求具有未定义的语义,可以安全地忽略。其他规范可能定义其他条件下测量请求的语义。

4.4. Identifying Location Provenance
4.4. 确定位置来源

An extension is made to the PIDF-LO [RFC4119] that allows a location recipient to identify the source (or sources) of location information and the measurement data that was used to determine that location information.

对PIDF-LO[RFC4119]进行了扩展,允许位置接收者识别位置信息的来源和用于确定该位置信息的测量数据。

The "source" element is added to the "geopriv" element of the PIDF-LO. This element does not identify specific entities. Instead, it identifies the type of measurement source.

“源”元素添加到PIDF-LO的“geopriv”元素中。此元素不标识特定实体。相反,它标识了测量源的类型。

The following values are defined for the "source" element:

为“源”元素定义了以下值:

lis: Location information is based on measurement data that the LIS or sources that it trusts have acquired. This label MAY be used if measurement data provided by the Device has been completely validated by the LIS.

lis:位置信息基于lis或其信任的来源获得的测量数据。如果设备提供的测量数据已由LIS完全验证,则可使用此标签。

device: A LIS MUST include this value if the location information is based (in whole or in part) on measurement data provided by the Device and if the measurement data isn't completely validated.

设备:如果位置信息(全部或部分)基于设备提供的测量数据,并且测量数据未完全验证,则LIS必须包含此值。

other: Location information is based on measurement data that a third party has provided. This might be an authorized third party that uses identity parameters [RFC6155] or any other entity. The LIS MUST include this, unless the third party is trusted by the LIS to provide measurement data.

其他:位置信息基于第三方提供的测量数据。这可能是使用标识参数[RFC6155]或任何其他实体的授权第三方。LIS必须包括这一点,除非LIS信任第三方提供测量数据。

No assertion is made about the veracity of the measurement data from sources other than the LIS. A combination of tags MAY be included to indicate that measurement data from multiple types of sources was used.

对于LIS以外来源的测量数据的准确性,未做出任何断言。可以包括标签的组合,以指示使用了来自多种来源的测量数据。

For example, the first tuple of the following PIDF-LO indicates that measurement data from a LIS and a Device was combined to produce the result; the second tuple was produced by the LIS alone.

例如,以下PIDF-LO的第一元组指示来自LIS和设备的测量数据被组合以产生结果;第二个元组仅由LIS生成。

     <presence xmlns="urn:ietf:params:xml:ns:pidf"
           xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
           xmlns:gml="http://www.opengis.net/gml"
           xmlns:gs="http://www.opengis.net/pidflo/1.0"
           xmlns:lmsrc="urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc"
           entity="pres:lm@example.com">
       <tuple id="deviceLoc">
         <status>
           <gp:geopriv>
             <gp:location-info>
               <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326">
                 <gml:pos>7.34324 134.47162</gml:pos>
                 <gs:radius uom="urn:ogc:def:uom:EPSG::9001">
                   850.24
                 </gs:radius>
               </gs:Circle>
             </gp:location-info>
             <gp:usage-rules/>
             <gp:method>OTDOA</gp:method>
             <lmsrc:source>lis device</lmsrc:source>
           </gp:geopriv>
         </status>
       </tuple>
       <tuple id="lisLoc">
         <status>
           <gp:geopriv>
             <gp:location-info>
               <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326">
                 <gml:pos>7.34379 134.46484</gml:pos>
                 <gs:radius uom="urn:ogc:def:uom:EPSG::9001">
                   9000
                 </gs:radius>
               </gs:Circle>
        
     <presence xmlns="urn:ietf:params:xml:ns:pidf"
           xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
           xmlns:gml="http://www.opengis.net/gml"
           xmlns:gs="http://www.opengis.net/pidflo/1.0"
           xmlns:lmsrc="urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc"
           entity="pres:lm@example.com">
       <tuple id="deviceLoc">
         <status>
           <gp:geopriv>
             <gp:location-info>
               <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326">
                 <gml:pos>7.34324 134.47162</gml:pos>
                 <gs:radius uom="urn:ogc:def:uom:EPSG::9001">
                   850.24
                 </gs:radius>
               </gs:Circle>
             </gp:location-info>
             <gp:usage-rules/>
             <gp:method>OTDOA</gp:method>
             <lmsrc:source>lis device</lmsrc:source>
           </gp:geopriv>
         </status>
       </tuple>
       <tuple id="lisLoc">
         <status>
           <gp:geopriv>
             <gp:location-info>
               <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326">
                 <gml:pos>7.34379 134.46484</gml:pos>
                 <gs:radius uom="urn:ogc:def:uom:EPSG::9001">
                   9000
                 </gs:radius>
               </gs:Circle>
        
             </gp:location-info>
             <gp:usage-rules/>
             <gp:method>Cell</gp:method>
             <lmsrc:source>lis</lmsrc:source>
           </gp:geopriv>
         </status>
       </tuple>
     </presence>
        
             </gp:location-info>
             <gp:usage-rules/>
             <gp:method>Cell</gp:method>
             <lmsrc:source>lis</lmsrc:source>
           </gp:geopriv>
         </status>
       </tuple>
     </presence>
        

PIDF-LO Document with Source Labels

带源标签的PIDF-LO文档

5. Location-Related Measurement Data Types
5. 与位置相关的测量数据类型

This document defines location-related measurement data types for a range of common network types.

本文档定义了一系列常见网络类型的位置相关测量数据类型。

All included measurement data definitions allow for arbitrary extension in the corresponding schema. New parameters that are applicable to location determination are added as new XML elements in a unique namespace, not by adding elements to an existing namespace.

所有包含的测量数据定义都允许在相应的模式中进行任意扩展。适用于位置确定的新参数作为唯一命名空间中的新XML元素添加,而不是通过向现有命名空间添加元素。

5.1. LLDP Measurements
5.1. LLDP测量

Link-Layer Discovery Protocol (LLDP) [IEEE.8021AB] messages are sent between adjacent nodes in an IEEE 802 network (e.g., wired Ethernet, WiFi, 802.16). These messages all contain identification information for the sending node; the identification information can be used to determine location information. A Device that receives LLDP messages can report this information as a location-related measurement to the LIS, which is then able to use the measurement data in determining the location of the Device.

链路层发现协议(LLDP)[IEEE.8021AB]消息在IEEE 802网络(例如,有线以太网、WiFi、802.16)中的相邻节点之间发送。这些消息都包含发送节点的标识信息;识别信息可用于确定位置信息。接收LLDP消息的设备可以将此信息作为与位置相关的测量报告给LIS,然后LIS可以使用测量数据确定设备的位置。

Note: The LLDP extensions defined in LLDP Media Endpoint Discovery (LLDP-MED) [ANSI-TIA-1057] provide the ability to acquire location information directly from an LLDP endpoint. Where this information is available, it might be unnecessary to use any other form of location configuration.

注:LLDP媒体端点发现(LLDP-MED)[ANSI-TIA-1057]中定义的LLDP扩展提供了直接从LLDP端点获取位置信息的能力。如果此信息可用,则可能不需要使用任何其他形式的位置配置。

Values are provided as hexadecimal sequences. The Device MUST report the values directly as they were provided by the adjacent node. Attempting to adjust or translate the type of identifier is likely to cause the measurement data to be useless.

值以十六进制序列的形式提供。设备必须直接报告相邻节点提供的值。试图调整或转换标识符类型可能会导致测量数据无效。

Where a Device has received LLDP messages from multiple adjacent nodes, it should provide information extracted from those messages by repeating the "lldp" element.

如果设备已从多个相邻节点接收到LLDP消息,则应通过重复“LLDP”元素来提供从这些消息中提取的信息。

An example of an LLDP measurement is shown in Figure 4. This shows an adjacent node (chassis) that is identified by the IP address 192.0.2.45 (hexadecimal c000022d), and the port on that node is numbered using an agent circuit ID [RFC3046] of 162 (hexadecimal a2).

LLDP测量示例如图4所示。这显示了由IP地址192.0.2.45(十六进制c000022d)标识的相邻节点(机箱),该节点上的端口使用162(十六进制a2)的代理电路ID[RFC3046]进行编号。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <lldp xmlns="urn:ietf:params:xml:ns:geopriv:lm:lldp">
         <chassis type="4">c000022d</chassis>
         <port type="6">a2</port>
       </lldp>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <lldp xmlns="urn:ietf:params:xml:ns:geopriv:lm:lldp">
         <chassis type="4">c000022d</chassis>
         <port type="6">a2</port>
       </lldp>
     </measurements>
        

Figure 4: LLDP Measurement Example

图4:LLDP测量示例

IEEE 802 Devices that are able to obtain information about adjacent network switches and their attachment to them by other means MAY use this data type to convey this information.

能够通过其他方式获得关于相邻网络交换机及其连接的信息的IEEE 802设备可以使用该数据类型来传送该信息。

5.2. DHCP Relay Agent Information Measurements
5.2. DHCP中继代理信息测量

The DHCP Relay Agent Information option [RFC3046] provides measurement data about the network attachment of a Device. This measurement data can be included in the "dhcp-rai" element.

DHCP中继代理信息选项[RFC3046]提供有关设备网络连接的测量数据。该测量数据可包含在“dhcp rai”元素中。

The elements in the DHCP relay agent information options are opaque data types assigned by the DHCP relay agent. The three items MAY be omitted if unknown: circuit identifier ("circuit", circuit [RFC3046], or Interface-Id [RFC3315]), remote identifier ("remote", Remote ID [RFC3046], or remote-id [RFC4649]), and subscriber identifier ("subscriber", subscriber-id [RFC3993], or Subscriber-ID [RFC4580]). The DHCPv6 remote-id has an associated enterprise number [IANA.enterprise] as an XML attribute.

DHCP中继代理信息选项中的元素是由DHCP中继代理分配的不透明数据类型。如果未知,可省略三项:电路标识符(“电路”、电路[RFC3046]或接口Id[RFC3315])、远程标识符(“远程”、远程Id[RFC3046]或远程Id[RFC4649])和用户标识符(“用户”、用户Id[RFC3993]或用户Id[RFC4580])。DHCPv6远程id具有关联的企业编号[IANA.enterprise]作为XML属性。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dhcp-rai xmlns="urn:ietf:params:xml:ns:geopriv:lm:dhcp">
         <giaddr>192.0.2.158</giaddr>
         <circuit>108b</circuit>
       </dhcp-rai>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dhcp-rai xmlns="urn:ietf:params:xml:ns:geopriv:lm:dhcp">
         <giaddr>192.0.2.158</giaddr>
         <circuit>108b</circuit>
       </dhcp-rai>
     </measurements>
        

Figure 5: DHCP Relay Agent Information Measurement Example

图5:DHCP中继代理信息测量示例

The "giaddr" element is specified as a dotted quad IPv4 address or an RFC 4291 [RFC4291] IPv6 address, using the forms defined in [RFC3986]; IPv6 addresses SHOULD use the form described in [RFC5952]. The enterprise number is specified as a decimal integer. All other information is included verbatim from the DHCP request in hexadecimal format.

使用[RFC3986]中定义的形式,将“giaddr”元素指定为虚线四元组IPv4地址或RFC 4291[RFC4291]IPv6地址;IPv6地址应使用[RFC5952]中所述的格式。企业编号指定为十进制整数。所有其他信息都以十六进制格式逐字包含在DHCP请求中。

The "subscriber" element could be considered sensitive. This information MUST NOT be provided to a LIS that is not authorized to receive information about the access network. See Section 7.1.3 for more details.

“订户”元素可能被视为敏感元素。不得将此信息提供给未经授权接收有关接入网络信息的LIS。详见第7.1.3节。

5.3. 802.11 WLAN Measurements
5.3. 802.11无线局域网测量

In WiFi, or 802.11 [IEEE.80211], networks, a Device might be able to provide information about the access point (AP) to which it is attached, or other WiFi points it is able to see. This is provided using the "wifi" element, as shown in Figure 6, which shows a single complete measurement for a single access point.

在WiFi或802.11[IEEE.80211]网络中,设备可能能够提供有关其所连接的接入点(AP)或其能够看到的其他WiFi点的信息。这是使用“wifi”元素提供的,如图6所示,它显示了单个接入点的单个完整测量。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2011-04-29T14:33:58">
       <wifi xmlns="urn:ietf:params:xml:ns:geopriv:lm:wifi">
         <nicType>Intel(r)PRO/Wireless 2200BG</nicType>
         <ap serving="true">
           <bssid>AB-CD-EF-AB-CD-EF</bssid>
           <ssid>example</ssid>
           <channel>5</channel>
           <location>
             <gml:Point xmlns:gml="http://opengis.net/gml">
               <gml:pos>-34.4 150.8</gml:pos>
             </gml:Point>
           </location>
           <type>a</type>
           <band>5</band>
           <regclass country="AU">2</regclass>
           <antenna>2</antenna>
           <flightTime rmsError="4e-9" samples="1">2.56e-9</flightTime>
           <apSignal>
             <transmit>23</transmit>
             <gain>5</gain>
             <rcpi dBm="true" rmsError="12" samples="1">-59</rcpi>
             <rsni rmsError="15" samples="1">23</rsni>
           </apSignal>
           <deviceSignal>
             <transmit>10</transmit>
             <gain>9</gain>
             <rcpi dBm="true" rmsError="9.5" samples="1">-98.5</rcpi>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2011-04-29T14:33:58">
       <wifi xmlns="urn:ietf:params:xml:ns:geopriv:lm:wifi">
         <nicType>Intel(r)PRO/Wireless 2200BG</nicType>
         <ap serving="true">
           <bssid>AB-CD-EF-AB-CD-EF</bssid>
           <ssid>example</ssid>
           <channel>5</channel>
           <location>
             <gml:Point xmlns:gml="http://opengis.net/gml">
               <gml:pos>-34.4 150.8</gml:pos>
             </gml:Point>
           </location>
           <type>a</type>
           <band>5</band>
           <regclass country="AU">2</regclass>
           <antenna>2</antenna>
           <flightTime rmsError="4e-9" samples="1">2.56e-9</flightTime>
           <apSignal>
             <transmit>23</transmit>
             <gain>5</gain>
             <rcpi dBm="true" rmsError="12" samples="1">-59</rcpi>
             <rsni rmsError="15" samples="1">23</rsni>
           </apSignal>
           <deviceSignal>
             <transmit>10</transmit>
             <gain>9</gain>
             <rcpi dBm="true" rmsError="9.5" samples="1">-98.5</rcpi>
        
             <rsni rmsError="6" samples="1">7.5</rsni>
           </deviceSignal>
         </ap>
       </wifi>
     </measurements>
        
             <rsni rmsError="6" samples="1">7.5</rsni>
           </deviceSignal>
         </ap>
       </wifi>
     </measurements>
        

Figure 6: 802.11 WLAN Measurement Example

图6:802.11 WLAN测量示例

A "wifi" element is made up of one or more access points, and a "nicType" element, which MAY be omitted. Each access point is described using the "ap" element, which is comprised of the following fields:

“wifi”元素由一个或多个接入点和“nicType”元素组成,可以省略。使用“ap”元素描述每个接入点,该元素由以下字段组成:

bssid: The Basic Service Set (BSS) identifier. In an Infrastructure BSS network, the bssid is the 48-bit MAC address of the access point.

bssid:基本服务集(BSS)标识符。在基础设施BSS网络中,bssid是接入点的48位MAC地址。

The "verified" attribute of this element describes whether the Device has verified the MAC address or it authenticated the access point or the network operating the access point (for example, a captive portal accessed through the access point has been authenticated). This attribute defaults to a value of "false" when omitted.

此元素的“已验证”属性描述设备是否已验证MAC地址,或是否已验证接入点或操作接入点的网络(例如,通过接入点访问的捕获门户已验证)。省略时,此属性的默认值为“false”。

ssid: The service set identifier (SSID) for the wireless network served by the access point.

ssid:由接入点提供服务的无线网络的服务集标识符(ssid)。

The SSID is a 32-octet identifier that is commonly represented as an ASCII [ASCII] or UTF-8 [RFC3629] encoded string. To represent octets that cannot be directly included in an XML element, escaping is used. Sequences of octets that do not represent a valid UTF-8 encoding can be escaped using a backslash ('\') followed by two case-insensitive hexadecimal digits representing the value of a single octet.

SSID是一个32字节的标识符,通常表示为ASCII[ASCII]或UTF-8[RFC3629]编码字符串。为了表示不能直接包含在XML元素中的八位字节,使用转义。不表示有效UTF-8编码的八位字节序列可以使用反斜杠(“\”)后跟表示单个八位字节值的两个不区分大小写的十六进制数字进行转义。

The canonical or value-space form of an SSID is a sequence of up to 32 octets that is produced from the concatenation of UTF-8 encoded sequences of unescaped characters and octets derived from escaped components.

SSID的规范或值空间形式是最多32个八位字节的序列,由未转义字符的UTF-8编码序列和从转义组件派生的八位字节串联而成。

channel: The channel number (frequency) on which the access point operates.

信道:接入点操作的信道号(频率)。

location: The location of the access point, as reported by the access point. This element contains any valid location, using the rules for a "location-info" element, as described in [RFC5491].

位置:接入点报告的接入点位置。此元素包含任何有效位置,使用“位置信息”元素的规则,如[RFC5491]中所述。

type: The network type for the network access. This element includes the alphabetic suffix of the 802.11 specification that introduced the radio interface, or PHY, e.g., "a", "b", "g", or "n".

类型:网络访问的网络类型。该元素包括引入无线接口或PHY的802.11规范的字母后缀,例如“a”、“b”、“g”或“n”。

band: The frequency band for the radio, in gigahertz (GHz). 802.11 [IEEE.80211] specifies PHY layers that use 2.4, 3.7, and 5 gigahertz frequency bands.

频带:无线电的频带,单位为千兆赫兹(GHz)。802.11[IEEE.80211]指定使用2.4、3.7和5千兆赫兹频带的物理层。

regclass: The operating class (regulatory domain and class in older versions of 802.11); see Annex E of [IEEE.80211]. The "country" attribute optionally includes the applicable two-character country identifier (dot11CountryString), which can be followed by an 'O', 'I', or 'X'. The element text content includes the value of the regulatory class: an 8-bit integer in decimal form.

regclass:操作类(802.11旧版本中的监管域和类);参见[IEEE.80211]的附录E。“country”属性可选地包括适用的两个字符的国家标识符(dot11CountryString),后面可以跟一个“O”、“I”或“X”。元素文本内容包括监管类的值:十进制形式的8位整数。

antenna: The antenna identifier for the antenna that the access point is using to transmit the measured signals.

天线:接入点用于传输测量信号的天线的天线标识符。

flightTime: Flight time is the difference between the time of departure (TOD) of signal from a transmitting station and time of arrival (TOA) of signal at a receiving station, as defined in [IEEE.80211]. Measurement of this value requires that stations synchronize their clocks. This value can be measured by an access point or Device; because the flight time is assumed to be the same in either direction -- aside from measurement errors -- only a single element is provided. This element permits the use of the "rmsError" and "samples" attributes. RMS error might be derived from the reported RMS error in TOD and TOA.

飞行时间:飞行时间是信号从发射站出发的时间(TOD)与信号到达接收站的时间(TOA)之间的差值,如[IEEE.80211]中所定义。该值的测量要求站点同步其时钟。该值可由接入点或设备测量;因为飞行时间在两个方向上都是相同的——除了测量误差——所以只提供了一个元素。此元素允许使用“rmsError”和“samples”属性。RMS错误可能来自TOD和TOA中报告的RMS错误。

apSignal: Measurement information for the signal transmitted by the access point, as observed by the Device. Some of these values are derived from 802.11v [IEEE.80211] messages exchanged between the Device and access point. The contents of this element include:

apSignal:设备观察到的由接入点传输的信号的测量信息。其中一些值来自设备和接入点之间交换的802.11v[IEEE.80211]消息。该要素的内容包括:

transmit: The transmit power reported by the access point, in dBm.

传输:接入点报告的传输功率,单位为dBm。

gain: The gain of the access point antenna reported by the access point, in dB.

增益:接入点报告的接入点天线的增益,单位为dB。

rcpi: The received channel power indicator for the access point signal, as measured by the Device. This value SHOULD be in units of dBm (with RMS error in dB). If power is measured in a different fashion, the "dBm" attribute MUST be set to "false". Signal strength reporting on current hardware uses a range of different mechanisms; therefore, the value of the "nicType" element SHOULD be included if the units are not known to be in

rcpi:接入点信号的接收信道功率指示器,由设备测量。该值应以dBm为单位(均方根误差以dB为单位)。如果以不同的方式测量功率,“dBm”属性必须设置为“false”。当前硬件上的信号强度报告使用一系列不同的机制;因此,如果不知道单位是否在,则应包括“nicType”元素的值

dBm, and the value reported by the hardware should be included without modification. This element permits the use of the "rmsError" and "samples" attributes.

dBm,硬件报告的值应包括在内,不得修改。此元素允许使用“rmsError”和“samples”属性。

rsni: The received signal-to-noise indicator in dB. This element permits the use of the "rmsError" and "samples" attributes.

rsni:接收到的信噪比指示器,单位为dB。此元素允许使用“rmsError”和“samples”属性。

deviceSignal: Measurement information for the signal transmitted by the Device, as reported by the access point. This element contains the same child elements as the "ap" element, with the access point and Device roles reversed.

deviceSignal:设备传输的信号的测量信息,由接入点报告。此元素包含与“ap”元素相同的子元素,访问点和设备角色颠倒。

The only mandatory element in this structure is "bssid".

此结构中唯一必需的元素是“bssid”。

The "nicType" element is used to specify the make and model of the wireless network interface in the Device. Different 802.11 chipsets report measurements in different ways, so knowing the network interface type aids the LIS in determining how to use the provided measurement data. The content of this field is unconstrained, and no mechanisms are specified to ensure uniqueness. This field is unlikely to be useful, except under tightly controlled circumstances.

“nicType”元素用于指定设备中无线网络接口的品牌和型号。不同的802.11芯片组以不同的方式报告测量结果,因此了解网络接口类型有助于LIS确定如何使用提供的测量数据。此字段的内容不受约束,并且未指定任何机制来确保唯一性。除非在严格控制的情况下,否则该字段不太可能有用。

5.3.1. WiFi Measurement Requests
5.3.1. WiFi测量请求

Two elements are defined for requesting WiFi measurements in a measurement request:

定义了两个元素,用于在测量请求中请求WiFi测量:

type: The "type" element identifies the desired type (or types that are requested).

类型:“类型”元素标识所需的类型(或请求的类型)。

parameter: The "parameter" element identifies measurements that are requested for each measured access point. An element is identified by its qualified name. The "context" parameter can be used to specify if an element is included as a child of the "ap" or "device" elements; omission indicates that it applies to both.

参数:“参数”元素标识为每个测量的接入点请求的测量。元素由其限定名称标识。“context”参数可用于指定元素是否包含为“ap”或“device”元素的子元素;省略表明它适用于这两种情况。

Multiple types or parameters can be requested by repeating either element.

可以通过重复任一元素来请求多个类型或参数。

5.4. Cellular Measurements
5.4. 细胞测量

Cellular Devices are common throughout the world, and base station identifiers can provide a good source of coarse location information. Cellular measurements can be provided to a LIS run by the cellular operator, or may be provided to an alternative LIS operator that has access to one of several global cell-id to location mapping databases.

蜂窝设备在世界各地都很常见,基站标识符可以提供粗略位置信息的良好来源。蜂窝测量可提供给蜂窝运营商运行的LIS,或可提供给可访问多个全局蜂窝id到位置映射数据库之一的备选LIS运营商。

A number of advanced location determination methods have been developed for cellular networks. For these methods, a range of measurement parameters can be collected by the network, Device, or both in cooperation. This document includes a basic identifier for the wireless transmitter only; future efforts might define additional parameters that enable more accurate methods of location determination.

已经为蜂窝网络开发了许多先进的位置确定方法。对于这些方法,可以由网络、设备或两者协同收集一系列测量参数。本文件仅包括无线发射机的基本标识符;未来的工作可能会定义更多的参数,以实现更精确的定位方法。

The cellular measurement set allows a Device to report to a LIS any LTE (Figure 7), UMTS (Figure 8), GSM (Figure 9), or CDMA (Figure 10) cells that it is able to observe. Cells are reported using their global identifiers. All Third Generation Partnership Project (3GPP) cells are identified by a public land mobile network (PLMN), which comprises a mobile country code (MCC) and mobile network code (MNC); specific fields are added for each network type.

蜂窝测量集允许设备向LIS报告其能够观察到的任何LTE(图7)、UMTS(图8)、GSM(图9)或CDMA(图10)小区。单元格使用其全局标识符进行报告。所有第三代合作伙伴项目(3GPP)小区由公共陆地移动网络(PLMN)标识,该网络包括移动国家代码(MCC)和移动网络代码(MNC);将为每种网络类型添加特定字段。

Formats for 3GPP cell identifiers are described in [TS.3GPP.23.003]. Bit-level formats for CDMA cell identifiers are described in [TIA-2000.5]; decimal representations are used.

[TS.3GPP.23.003]中描述了3GPP小区标识符的格式。[TIA-2000.5]中描述了CDMA小区标识符的位级格式;使用十进制表示法。

MCC and MNC are provided as decimal digit sequences; a leading zero in an MCC or MNC is significant. All other values are decimal integers.

MCC和MNC作为十进制数字序列提供;MCC或MNC中的前导零非常重要。所有其他值都是十进制整数。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <servingCell>
           <mcc>465</mcc><mnc>20</mnc><eucid>80936424</eucid>
         </servingCell>
         <observedCell>
           <mcc>465</mcc><mnc>06</mnc><eucid>10736789</eucid>
         </observedCell>
       </cellular>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <servingCell>
           <mcc>465</mcc><mnc>20</mnc><eucid>80936424</eucid>
         </servingCell>
         <observedCell>
           <mcc>465</mcc><mnc>06</mnc><eucid>10736789</eucid>
         </observedCell>
       </cellular>
     </measurements>
        

Long term evolution (LTE) cells are identified by a 28-bit cell identifier (eucid).

长期演进(LTE)小区由28位小区标识符(eucid)标识。

Figure 7: Example LTE Cellular Measurement

图7:LTE蜂窝测量示例

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <servingCell>
           <mcc>465</mcc><mnc>20</mnc>
           <rnc>2000</rnc><cid>65000</cid>
         </servingCell>
         <observedCell>
           <mcc>465</mcc><mnc>06</mnc>
           <lac>16383</lac><cid>32767</cid>
         </observedCell>
       </cellular>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <servingCell>
           <mcc>465</mcc><mnc>20</mnc>
           <rnc>2000</rnc><cid>65000</cid>
         </servingCell>
         <observedCell>
           <mcc>465</mcc><mnc>06</mnc>
           <lac>16383</lac><cid>32767</cid>
         </observedCell>
       </cellular>
     </measurements>
        

Universal mobile telephony service (UMTS) cells are identified by a 12- or 16-bit radio network controller (rnc) id and a 16-bit cell id (cid).

通用移动电话服务(UMTS)小区由12位或16位无线网络控制器(rnc)id和16位小区id(cid)标识。

Figure 8: Example UMTS Cellular Measurement

图8:UMTS蜂窝测量示例

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <servingCell>
           <mcc>465</mcc><mnc>06</mnc>
           <lac>16383</lac><cid>32767</cid>
         </servingCell>
       </cellular>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <servingCell>
           <mcc>465</mcc><mnc>06</mnc>
           <lac>16383</lac><cid>32767</cid>
         </servingCell>
       </cellular>
     </measurements>
        

Global System for Mobile communication (GSM) cells are identified by a 16-bit location area code (lac) and a 16-bit cell id (cid).

全球移动通信系统(GSM)小区由16位位置区号(lac)和16位小区id(cid)标识。

Figure 9: Example GSM Cellular Measurement

图9:GSM蜂窝测量示例

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <servingCell>
           <sid>15892</sid><nid>4723</nid><baseid>12</baseid>
         </servingCell>
         <observedCell>
           <sid>15892</sid><nid>4723</nid><baseid>13</baseid>
         </observedCell>
       </cellular>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <servingCell>
           <sid>15892</sid><nid>4723</nid><baseid>12</baseid>
         </servingCell>
         <observedCell>
           <sid>15892</sid><nid>4723</nid><baseid>13</baseid>
         </observedCell>
       </cellular>
     </measurements>
        

Code division multiple access (CDMA) cells are not identified by a PLMN; instead, these use a 15-bit system id (sid), a 16-bit network id (nid), and a 16-bit base station id (baseid).

码分多址(CDMA)小区不由PLMN识别;相反,它们使用15位系统id(sid)、16位网络id(nid)和16位基站id(baseid)。

Figure 10: Example CDMA Cellular Measurement

图10:CDMA蜂窝测量示例

In general, a cellular Device will be attached to the cellular network, so the notion of a serving cell exists. Cellular networks also provide overlap between neighboring sites, so a mobile Device can hear more than one cell. The measurement schema supports sending both the serving cell and any other cells that the mobile might be able to hear. In some cases, the Device could simply be listening to cell information without actually attaching to the network; mobiles without a SIM are an example of this. In this case, the Device could report cells it can hear without identifying any particular cell as a serving cell. An example of this is shown in Figure 11.

通常,蜂窝设备将连接到蜂窝网络,因此存在服务蜂窝的概念。蜂窝网络还提供相邻站点之间的重叠,因此移动设备可以听到多个蜂窝。测量模式支持发送服务小区和移动设备可能能够听到的任何其他小区。在某些情况下,设备可能只是监听小区信息,而没有实际连接到网络;没有SIM卡的手机就是一个例子。在这种情况下,设备可以报告它能听到的小区,而不将任何特定小区识别为服务小区。图11显示了一个示例。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <observedCell>
           <mcc>465</mcc><mnc>20</mnc>
           <rnc>2000</rnc><cid>65000</cid>
         </observedCell>
         <observedCell>
           <mcc>465</mcc><mnc>06</mnc>
           <lac>16383</lac><cid>32767</cid>
         </observedCell>
       </cellular>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <cellular xmlns="urn:ietf:params:xml:ns:geopriv:lm:cell">
         <observedCell>
           <mcc>465</mcc><mnc>20</mnc>
           <rnc>2000</rnc><cid>65000</cid>
         </observedCell>
         <observedCell>
           <mcc>465</mcc><mnc>06</mnc>
           <lac>16383</lac><cid>32767</cid>
         </observedCell>
       </cellular>
     </measurements>
        

Figure 11: Example Observed Cellular Measurement

图11:观察到的细胞测量示例

5.4.1. Cellular Measurement Requests
5.4.1. 蜂窝测量请求

Two elements can be used in measurement requests for cellular measurements:

在蜂窝测量的测量请求中可以使用两个元素:

type: A label indicating the type of identifier to provide: one of "gsm", "umts", "lte", or "cdma".

类型:指示要提供的标识符类型的标签:“gsm”、“umts”、“lte”或“cdma”之一。

network: The network portion of the cell identifier. For 3GPP networks, this is the combination of MCC and MNC; for CDMA, this is the network identifier.

网络:单元标识符的网络部分。对于3GPP网络,这是MCC和MNC的组合;对于CDMA,这是网络标识符。

Multiple identifier types or networks can be identified by repeating either element.

可以通过重复任一元素来标识多个标识符类型或网络。

5.5. GNSS Measurements
5.5. 全球导航卫星系统测量

A Global Navigation Satellite System (GNSS) uses orbiting satellites to transmit signals. A Device with a GNSS receiver is able to take measurements from the satellite signals. The results of these measurements can be used to determine time and the location of the Device.

全球导航卫星系统(GNSS)使用轨道卫星发射信号。带有GNSS接收器的设备能够从卫星信号中进行测量。这些测量结果可用于确定设备的时间和位置。

Determining location and time in autonomous GNSS receivers follows three steps:

确定自主GNSS接收机中的位置和时间遵循三个步骤:

Signal acquisition: During the signal acquisition stage, the receiver searches for the repeating code that is sent by each GNSS satellite. Successful operation typically requires measurement data for a minimum of 5 satellites. At this stage, measurement data is available to the Device.

信号采集:在信号采集阶段,接收器搜索每个GNSS卫星发送的重复代码。成功运行通常需要至少5颗卫星的测量数据。在此阶段,测量数据可供设备使用。

Navigation message decode: Once the signal has been acquired, the receiver then receives information about the configuration of the satellite constellation. This information is broadcast by each satellite and is modulated with the base signal at a low rate; for instance, GPS sends this information at about 50 bits per second.

导航信息解码:一旦获得信号,接收器就会接收有关卫星星座配置的信息。该信息由每颗卫星广播,并以低速率用基本信号进行调制;例如,GPS以每秒约50位的速度发送此信息。

Calculation: The measurement data is combined with the data on the satellite constellation to determine the location of the receiver and the current time.

计算:测量数据与卫星星座上的数据相结合,以确定接收器的位置和当前时间。

A Device that uses a GNSS receiver is able to report measurements after the first stage of this process. A LIS can use the results of these measurements to determine a location. In the case where there are fewer results available than the optimal minimum, the LIS might be able to use other sources of measurement information and combine these with the available measurement data to determine a position.

使用全球导航卫星系统接收器的设备能够在该过程的第一阶段之后报告测量结果。LIS可以使用这些测量的结果来确定位置。在可用结果少于最佳最小值的情况下,LIS可能能够使用其他测量信息源,并将其与可用测量数据相结合以确定位置。

Note: The use of different sets of GNSS assistance data can reduce the amount of time required for the signal acquisition stage and obviate the need for the receiver to extract data on the satellite constellation. Provision of assistance data is outside the scope of this document.

注:使用不同的全球导航卫星系统辅助数据集可以减少信号采集阶段所需的时间,并避免接收机提取卫星星座数据的需要。提供协助数据不在本文件范围内。

Figure 12 shows an example of GNSS measurement data. The measurement shown is for the GPS satellite system and includes measurement data for three satellites only.

图12显示了全球导航卫星系统测量数据的示例。显示的测量值适用于GPS卫星系统,仅包括三颗卫星的测量数据。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58" timeError="2e-5">
       <gnss xmlns="urn:ietf:params:xml:ns:geopriv:lm:gnss"
         system="gps" signal="L1">
         <sat num="19">
           <doppler>499.9395</doppler>
           <codephase rmsError="1.6e-9">0.87595747</codephase>
           <cn0>45</cn0>
         </sat>
         <sat num="27">
           <doppler>378.2657</doppler>
           <codephase rmsError="1.6e-9">0.56639479</codephase>
           <cn0>52</cn0>
         </sat>
         <sat num="20">
           <doppler>-633.0309</doppler>
           <codephase rmsError="1.6e-9">0.57016835</codephase>
           <cn0>48</cn0>
         </sat>
       </gnss>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58" timeError="2e-5">
       <gnss xmlns="urn:ietf:params:xml:ns:geopriv:lm:gnss"
         system="gps" signal="L1">
         <sat num="19">
           <doppler>499.9395</doppler>
           <codephase rmsError="1.6e-9">0.87595747</codephase>
           <cn0>45</cn0>
         </sat>
         <sat num="27">
           <doppler>378.2657</doppler>
           <codephase rmsError="1.6e-9">0.56639479</codephase>
           <cn0>52</cn0>
         </sat>
         <sat num="20">
           <doppler>-633.0309</doppler>
           <codephase rmsError="1.6e-9">0.57016835</codephase>
           <cn0>48</cn0>
         </sat>
       </gnss>
     </measurements>
        

Figure 12: Example GNSS Measurement

图12:全球导航卫星系统测量示例

Each "gnss" element represents a single set of GNSS measurement data, taken at a single point in time. Measurements taken at different times can be included in different "gnss" elements to enable iterative refinement of results.

每个“全球导航卫星系统”要素代表在单个时间点获取的一组全球导航卫星系统测量数据。在不同时间进行的测量可以包括在不同的“全球导航卫星系统”要素中,以便能够对结果进行迭代改进。

GNSS measurement parameters are described in more detail in the following sections.

全球导航卫星系统的测量参数将在以下各节中详细介绍。

5.5.1. GNSS: System Type and Signal
5.5.1. 全球导航卫星系统:系统类型和信号

The GNSS measurement structure is designed to be generic and to apply to different GNSS types. Different signals within those systems are also accounted for and can be measured separately.

全球导航卫星系统的测量结构是通用的,适用于不同的全球导航卫星系统类型。这些系统中的不同信号也可以考虑,并且可以单独测量。

The GNSS type determines the time system that is used. An indication of the type of system and signal can ensure that the LIS is able to correctly use measurements.

GNSS类型确定所使用的时间系统。系统类型和信号指示可确保LIS能够正确使用测量值。

Measurements for multiple GNSS types and signals can be included by repeating the "gnss" element.

通过重复“GNSS”元素,可以包括多种GNSS类型和信号的测量。

This document creates an IANA registry for GNSS types. Two satellite systems are registered by this document: GPS [GPS.ICD] and Galileo [Galileo.ICD]. Details for the registry are included in Section 9.1.

本文档为GNSS类型创建IANA注册表。本文件登记了两个卫星系统:GPS[GPS.ICD]和Galileo[Galileo.ICD]。第9.1节包含了注册的详细信息。

5.5.2. Time
5.5.2. 时间

Each set of GNSS measurements is taken at a specific point in time. The "time" attribute is used to indicate the time that the measurement was acquired, if the receiver knows how the time system used by the GNSS relates to UTC time.

每组全球导航卫星系统测量都是在特定的时间点进行的。如果接收器知道全球导航卫星系统使用的时间系统与UTC时间的关系,则“时间”属性用于指示获取测量的时间。

Alternative to (or in addition to) the measurement time, the "gnssTime" element MAY be included. The "gnssTime" element includes a relative time in milliseconds using the time system native to the satellite system. For the GPS satellite system, the "gnssTime" element includes the time of week in milliseconds. For the Galileo system, the "gnssTime" element includes the time of day in milliseconds.

除测量时间外(或除测量时间外),还可包括“gnssTime”元素。“gnssTime”元素使用卫星系统固有的时间系统,包括以毫秒为单位的相对时间。对于GPS卫星系统,“gnssTime”元素包括以毫秒为单位的每周时间。对于伽利略系统,“gnssTime”元素包括一天中的时间(以毫秒为单位)。

The accuracy of the time measurement provided is critical in determining the accuracy of the location information derived from GNSS measurements. The receiver SHOULD indicate an estimated time error for any time that is provided. An RMS error can be included for the "gnssTime" element, with a value in milliseconds.

所提供的时间测量的准确性对于确定从全球导航卫星系统测量得到的位置信息的准确性至关重要。接收器应指示所提供任何时间的估计时间误差。“gnssTime”元素可以包含RMS错误,其值以毫秒为单位。

5.5.3. Per-Satellite Measurement Data
5.5.3. 每卫星测量数据

Multiple satellites are included in each set of GNSS measurements using the "sat" element. Each satellite is identified by a number in the "num" attribute. The satellite number is consistent with the identifier used in the given GNSS.

使用“sat”元素在每组GNSS测量中包括多颗卫星。每个卫星由“num”属性中的一个数字标识。卫星号与给定全球导航卫星系统中使用的标识符一致。

Both the GPS and Galileo systems use satellite numbers between 1 and 64.

GPS和伽利略系统都使用1到64之间的卫星号。

The GNSS receiver measures the following parameters for each satellite:

全球导航卫星系统接收器为每颗卫星测量以下参数:

doppler: The observed Doppler shift of the satellite signal, measured in meters per second. This is converted from a value in Hertz by the receiver to allow the measurement to be used without

多普勒:观测到的卫星信号的多普勒频移,单位为米/秒。接收器将其从赫兹值转换为允许在无干扰的情况下使用测量值

knowledge of the carrier frequency of the satellite system. This value permits the use of RMS error attributes, also measured in meters per second.

了解卫星系统的载波频率。该值允许使用RMS错误属性,也以米/秒为单位。

codephase: The observed code phase for the satellite signal, measured in milliseconds. This is converted from the system-specific value of chips or wavelengths into a system-independent value. Larger values indicate larger distances from satellite to receiver. This value permits the use of RMS error attributes, also measured in milliseconds.

codephase:卫星信号的观测码相位,以毫秒为单位。这从芯片或波长的系统特定值转换为系统独立值。较大的值表示从卫星到接收器的距离较大。此值允许使用RMS错误属性,也以毫秒为单位。

cn0: The signal-to-noise ratio for the satellite signal, measured in decibel-Hertz (dB-Hz). The expected range is between 20 and 50 dB-Hz.

cn0:卫星信号的信噪比,单位为分贝赫兹(dB Hz)。预期范围在20至50 dB Hz之间。

mp: An estimation of the amount of error that multipath signals contribute in meters. This parameter MAY be omitted.

mp:对多径信号造成的误差量的估计,单位为米。此参数可以省略。

cq: An indication of the carrier quality. Two attributes are included: "continuous" (which can be either "true" or "false") and "direct" (which can be either "direct" or "inverted"). This parameter MAY be omitted.

cq:载波质量的指示。包括两个属性:“连续”(可以是“真”或“假”)和“直接”(可以是“直接”或“反向”)。此参数可以省略。

adr: The accumulated Doppler range, measured in meters. This parameter MAY be omitted and is not useful unless multiple sets of GNSS measurements are provided or differential positioning is being performed.

adr:累积多普勒范围,以米为单位。除非提供多组全球导航卫星系统测量值或进行差分定位,否则该参数可能会被忽略,并且没有用处。

All values are converted from measures native to the satellite system to generic measures to ensure consistency of interpretation. Unless necessary, the schema does not constrain these values.

所有值均从卫星系统固有的测量值转换为通用测量值,以确保解释的一致性。除非必要,否则模式不会约束这些值。

5.5.4. GNSS Measurement Requests
5.5.4. 全球导航卫星系统测量要求

Measurement requests can include a "gnss" element, which includes the "system" and "signal" attributes. Multiple elements can be included to indicate requests for GNSS measurements from multiple systems or signals.

测量请求可以包括“gnss”元素,其中包括“系统”和“信号”属性。可以包括多个元素,以指示来自多个系统或信号的GNSS测量请求。

5.6. DSL Measurements
5.6. DSL测量

Digital Subscriber Line (DSL) networks rely on a range of network technologies. DSL deployments regularly require cooperation between multiple organizations. These fall into two broad categories: infrastructure providers and Internet service providers (ISPs). For the same end user, an infrastructure and Internet service can be provided by different entities. Infrastructure providers manage the bulk of the physical infrastructure, including cabling. End users

数字用户线(DSL)网络依赖于一系列网络技术。DSL部署通常需要多个组织之间的合作。这些服务分为两大类:基础设施提供商和互联网服务提供商(ISP)。对于同一最终用户,不同实体可以提供基础设施和互联网服务。基础设施提供商管理大部分物理基础设施,包括布线。最终用户

obtain their service from an ISP, which manages all aspects visible to the end user, including IP address allocation and operation of a LIS. See [DSL.TR025] and [DSL.TR101] for further information on DSL network deployments and the parameters that are available.

从ISP获得服务,ISP管理最终用户可见的所有方面,包括IP地址分配和LIS操作。有关DSL网络部署和可用参数的更多信息,请参阅[DSL.TR025]和[DSL.TR101]。

Exchange of measurement information between these organizations is necessary for location information to be correctly generated. The ISP LIS needs to acquire location information from the infrastructure provider. However, since the infrastructure provider could have no knowledge of Device identifiers, it can only identify a stream of data that is sent to the ISP. This is resolved by passing measurement data relating to the Device to a LIS operated by the infrastructure provider.

为了正确生成位置信息,必须在这些组织之间交换测量信息。ISP LIS需要从基础设施提供商处获取位置信息。然而,由于基础设施提供商可能不知道设备标识符,因此它只能识别发送给ISP的数据流。这可以通过将与设备相关的测量数据传递给基础设施提供商操作的LIS来解决。

5.6.1. L2TP Measurements
5.6.1. L2TP测量

The Layer 2 Tunneling Protocol (L2TP) [RFC2661] is a common means of linking the infrastructure provider and the ISP. The infrastructure provider LIS requires measurement data that identifies a single L2TP tunnel, from which it can generate location information. Figure 13 shows an example L2TP measurement.

第二层隧道协议(L2TP)[RFC2661]是连接基础设施提供商和ISP的常用方法。基础设施提供商LIS需要识别单个L2TP隧道的测量数据,从中可以生成位置信息。图13显示了一个L2TP测量示例。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dsl xmlns="urn:ietf:params:xml:ns:geopriv:lm:dsl">
         <l2tp>
           <src>192.0.2.10</src>
           <dest>192.0.2.61</dest>
           <session>528</session>
         </l2tp>
       </dsl>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dsl xmlns="urn:ietf:params:xml:ns:geopriv:lm:dsl">
         <l2tp>
           <src>192.0.2.10</src>
           <dest>192.0.2.61</dest>
           <session>528</session>
         </l2tp>
       </dsl>
     </measurements>
        

Figure 13: Example DSL L2TP Measurement

图13:DSL L2TP测量示例

5.6.2. RADIUS Measurements
5.6.2. 半径测量

When authenticating network access, the infrastructure provider might employ a RADIUS [RFC2865] proxy at the DSL Access Module (DSLAM) or Access Node (AN). These messages provide the ISP RADIUS server with an identifier for the DSLAM or AN, plus the slot and port to which the Device is attached. These data can be provided as a measurement that allows the infrastructure provider LIS to generate location information.

当认证网络接入时,基础设施提供商可能在DSL接入模块(DSLAM)或接入节点(AN)处使用RADIUS[RFC2865]代理。这些消息为ISP RADIUS服务器提供DSLAM或an的标识符,以及设备连接到的插槽和端口。这些数据可以作为一种度量提供,使基础设施提供商LIS能够生成位置信息。

The format of the AN, slot, and port identifiers is not defined in the RADIUS protocol. The slot and port together identify a circuit on the AN, analogous to the circuit identifier in [RFC3046]. These items are provided directly, as they would be in the RADIUS message. An example is shown in Figure 14.

RADIUS协议中未定义AN、插槽和端口标识符的格式。插槽和端口一起标识AN上的电路,类似于[RFC3046]中的电路标识符。这些项目是直接提供的,就像在RADIUS消息中一样。图14显示了一个示例。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dsl xmlns="urn:ietf:params:xml:ns:geopriv:lm:dsl">
         <an>AN-7692</an>
         <slot>3</slot>
         <port>06</port>
       </dsl>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dsl xmlns="urn:ietf:params:xml:ns:geopriv:lm:dsl">
         <an>AN-7692</an>
         <slot>3</slot>
         <port>06</port>
       </dsl>
     </measurements>
        

Figure 14: Example DSL RADIUS Measurement

图14:DSL半径测量示例

5.6.3. Ethernet VLAN Tag Measurements
5.6.3. 以太网VLAN标记测量

For Ethernet-based DSL access networks, the DSLAM or AN provides two VLAN tags on packets. A C-TAG is used to identify the incoming residential circuit, while the S-TAG is used to identify the DSLAM or AN. The C-TAG and S-TAG together can be used to identify a single point of network attachment. An example is shown in Figure 15.

对于基于以太网的DSL接入网络,DSLAM或AN在数据包上提供两个VLAN标记。C标签用于识别进入的住宅电路,而S标签用于识别DSLAM或接入电路。C-TAG和S-TAG一起可用于标识网络连接的单个点。图15显示了一个示例。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dsl xmlns="urn:ietf:params:xml:ns:geopriv:lm:dsl">
         <stag>613</stag>
         <ctag>1097</ctag>
       </dsl>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dsl xmlns="urn:ietf:params:xml:ns:geopriv:lm:dsl">
         <stag>613</stag>
         <ctag>1097</ctag>
       </dsl>
     </measurements>
        

Figure 15: Example DSL VLAN Tag Measurement

图15:DSL VLAN标记测量示例

Alternatively, the C-TAG can be replaced by data on the slot and port to which the Device is attached. This information might be included in RADIUS requests that are proxied from the infrastructure provider to the ISP RADIUS server.

或者,可以用设备连接到的插槽和端口上的数据替换C标签。此信息可能包含在从基础结构提供商代理到ISP RADIUS服务器的RADIUS请求中。

5.6.4. ATM Virtual Circuit Measurements
5.6.4. ATM虚拟电路测量

An ATM virtual circuit can be employed between the ISP and infrastructure provider. Providing the virtual port ID (VPI) and virtual circuit ID (VCI) for the virtual circuit gives the infrastructure provider LIS the ability to identify a single data stream. A sample measurement is shown in Figure 16.

可以在ISP和基础设施提供商之间使用ATM虚拟电路。为虚拟电路提供虚拟端口ID(VPI)和虚拟电路ID(VCI),使基础设施提供商LIS能够识别单个数据流。样本测量如图16所示。

     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dsl xmlns="urn:ietf:params:xml:ns:geopriv:lm:dsl">
         <vpi>55</vpi>
         <vci>6323</vci>
       </dsl>
     </measurements>
        
     <measurements xmlns="urn:ietf:params:xml:ns:geopriv:lm"
           time="2008-04-29T14:33:58">
       <dsl xmlns="urn:ietf:params:xml:ns:geopriv:lm:dsl">
         <vpi>55</vpi>
         <vci>6323</vci>
       </dsl>
     </measurements>
        

Figure 16: Example DSL ATM Measurement

图16:DSL ATM测量示例

6. Privacy Considerations
6. 隐私考虑

Location-related measurement data can be as privacy sensitive as location information [RFC6280].

与位置相关的测量数据可能与位置信息一样对隐私敏感[RFC6280]。

Measurement data is effectively equivalent to location information if the contextual knowledge necessary to generate one from the other is readily accessible. Even where contextual knowledge is difficult to acquire, there can be no assurance that an authorized recipient of the contextual knowledge is also authorized to receive location information.

如果从另一个数据生成一个数据所需的上下文知识易于获取,那么测量数据实际上相当于位置信息。即使在难以获得上下文知识的情况下,也不能保证上下文知识的授权接收者也有权接收位置信息。

In order to protect the privacy of the subject of location-related measurement data, measurement data MUST be protected with the same degree of protection as location information. The confidentiality and authentication provided by Transport Layer Security (TLS) MUST be used in order to convey measurement data over HELD [RFC5985]. Other protocols MUST provide comparable guarantees.

为了保护与位置相关的测量数据主体的隐私,必须以与位置信息相同的保护程度保护测量数据。必须使用传输层安全性(TLS)提供的机密性和身份验证,以便通过保持传输测量数据[RFC5985]。其他协议必须提供类似的保证。

6.1. Measurement Data Privacy Model
6.1. 测量数据隐私模型

It is not necessary to distribute measurement data in the same fashion as location information. Measurement data is less useful to location recipients than location information. A simple distribution model is described in this document.

不需要以与位置信息相同的方式分发测量数据。与位置信息相比,测量数据对位置接收者的用处较小。本文描述了一个简单的分布模型。

In this simple model, the Device is the only entity that is able to distribute measurement data. To use an analogy from the GEOPRIV architecture, the Device -- as the Location Generator or the Measurement Data Generator -- is the sole entity that can act in the role of both Rule Maker and Location Server.

在这个简单的模型中,设备是唯一能够分发测量数据的实体。使用GEOPRIV体系结构的类比,该设备——作为位置生成器或测量数据生成器——是可以同时充当规则制定者和位置服务器角色的唯一实体。

A Device that provides location-related measurement data MUST only do so as explicitly authorized by a Rule Maker. This depends on having an interface that allows Rule Makers (for instance, users or administrators) to control where and how measurement data is provided.

提供位置相关测量数据的设备只能在规则制定者明确授权的情况下提供。这取决于是否有一个允许规则制定者(例如,用户或管理员)控制提供度量数据的位置和方式的界面。

No entity is permitted to redistribute measurement data. The Device directs other entities regarding how measurement data is used and retained.

不允许任何实体重新分发测量数据。该设备指导其他实体如何使用和保留测量数据。

The GEOPRIV model [RFC6280] protects the location of a Target using direction provided by a Rule Maker. For the purposes of measurement data distribution, this model relies on the assumptions made in Section 3 of HELD [RFC5985]. These assumptions effectively declare the Device to be a proxy for both Target and Rule Maker.

GEOPRIV模型[RFC6280]使用规则制定者提供的方向来保护目标的位置。为了测量数据分布的目的,该模型依赖于[RFC5985]第3节中的假设。这些假设有效地将设备声明为目标和规则制定者的代理。

6.2. LIS Privacy Requirements
6.2. LIS隐私要求

A LIS MUST NOT reveal location-related measurement data to any other entity. A LIS MUST NOT reveal location information based on measurement data to any other entity unless directed to do so by the Device.

LIS不得向任何其他实体透露与位置相关的测量数据。LIS不得向任何其他实体透露基于测量数据的位置信息,除非设备指示这样做。

By adding measurement data to a request for location information, the Device implicitly grants permission for the LIS to generate the requested location information using the measurement data. Permission to use this data for any other purpose is not implied.

通过向位置信息请求添加测量数据,设备隐式授予LIS使用测量数据生成所请求位置信息的权限。不暗示允许将此数据用于任何其他目的。

As long as measurement data is only used in serving the request that contains it, rules regarding data retention are not necessary. A LIS MUST discard location-related measurement data after servicing a request, unless the Device grants permission to use that information for other purposes.

只要度量数据只用于服务包含它的请求,就不需要关于数据保留的规则。LIS必须在处理请求后丢弃与位置相关的测量数据,除非设备授予将该信息用于其他目的的权限。

6.3. Measurement Data and Location URIs
6.3. 测量数据和位置URI

A LIS MAY use measurement data provided by the Device to serve requests to location URIs, if the Device permits it. A Device permits this by including measurement data in a request that explicitly requests a location URI. By requesting a location URI,

如果设备允许,LIS可以使用设备提供的测量数据来服务对位置URI的请求。设备通过在显式请求位置URI的请求中包含测量数据来实现这一点。通过请求位置URI,

the Device grants permission for the LIS to use the measurement data in serving requests to that location URI. The LIS cannot provide location recipients with measurement data, as defined in Section 6.1.

设备授予LIS在向该位置URI提供请求时使用测量数据的权限。根据第6.1节的定义,LIS不能向位置接收者提供测量数据。

Note: In HELD, the "any" type is not an explicit request for a location URI, though a location URI might be provided.

注意:在HOLD中,“any”类型不是对位置URI的显式请求,尽管可能会提供位置URI。

The usefulness of measurement data that is provided in this fashion is limited. The measurement data is only valid at the time that it was acquired by the Device. At the time that a request is made to a location URI, the Device might have moved, rendering the measurement data incorrect.

以这种方式提供的测量数据的有用性是有限的。测量数据仅在设备获取时有效。在向位置URI发出请求时,设备可能已移动,从而导致测量数据不正确。

A Device is able to explicitly limit the time that a LIS retains measurement data by adding an expiry time to the measurement data. A LIS MUST NOT retain location-related measurement data in memory, storage, or logs beyond the time indicated in the "expires" attribute (Section 4.1.2). A LIS MUST NOT retain measurement data if the "expires" attribute is absent.

设备能够通过向测量数据添加到期时间来明确限制LIS保留测量数据的时间。LIS在内存、存储器或日志中保留位置相关测量数据的时间不得超过“过期”属性(第4.1.2节)中规定的时间。如果没有“expires”属性,LIS不得保留测量数据。

6.4. Measurement Data Provided by a Third Party
6.4. 第三方提供的测量数据

An authorized third-party request for the location of a Device (see [RFC6155]) can include location-related measurement data. This is possible where the third party is able to make observations about the Device.

设备位置的授权第三方请求(见[RFC6155])可包括与位置相关的测量数据。当第三方能够对设备进行观察时,这是可能的。

A third party that provides measurement data MUST be authorized to provide the specific measurement for the identified Device. Either a third party MUST be trusted by the LIS for the purposes of providing measurement data of the provided type, or the measurement data MUST be validated (see Section 7.2.1) before being used.

必须授权提供测量数据的第三方为识别设备提供特定测量。为了提供所提供类型的测量数据,LIS必须信任第三方,或者测量数据在使用前必须经过验证(见第7.2.1节)。

How a third party authenticates its identity or gains authorization to use measurement data is not covered by this document.

本文件不包括第三方如何认证其身份或获得使用测量数据的授权。

7. Security Considerations
7. 安全考虑

The use of location-related measurement data has privacy considerations that are discussed in Section 6.

与位置相关的测量数据的使用有隐私方面的考虑,这将在第6节中讨论。

7.1. Threat Model
7.1. 威胁模型

The threat model for location-related measurement data concentrates on the Device providing falsified, stolen, or incorrect measurement data.

位置相关测量数据的威胁模型集中于提供伪造、被盗或不正确测量数据的设备。

A Device that provides location-related measurement data might use data to:

提供位置相关测量数据的设备可能会使用数据:

o acquire the location of another Device, without authorization;

o 未经授权获取其他设备的位置;

o extract information about network topology; or

o 提取网络拓扑信息;或

o coerce the LIS into providing falsified location information based on the measurement data.

o 强制LIS根据测量数据提供伪造的位置信息。

Location-related measurement data describes the physical environment or network attachment of a Device. A third-party adversary in the proximity of the Device might be able to alter the physical environment such that the Device provides measurement data that is controlled by the third party. This might be used to indirectly control the location information that is derived from measurement data.

位置相关测量数据描述设备的物理环境或网络连接。设备附近的第三方对手可能能够改变物理环境,以便设备提供由第三方控制的测量数据。这可用于间接控制从测量数据导出的位置信息。

7.1.1. Acquiring Location Information without Authorization
7.1.1. 未经授权获取位置信息

Requiring authorization for location requests is an important part of privacy protections of a location protocol. A location configuration protocol usually operates under a restricted policy that allows a requester to obtain their own location. HELD identity extensions [RFC6155] allow other entities to be authorized, conditional on a Rule Maker providing sufficient authorization.

对位置请求进行授权是位置协议隐私保护的重要组成部分。位置配置协议通常在允许请求者获取自己位置的受限策略下运行。持有身份扩展[RFC6155]允许授权其他实体,前提是规则制定者提供足够的授权。

The intent of these protections is to ensure that a location recipient is authorized to acquire location information. Location-related measurement data could be used by an attacker to circumvent such authorization checks if the association between measurement data and Target Device is not validated by a LIS.

这些保护的目的是确保位置接收者有权获取位置信息。如果LIS未验证测量数据与目标设备之间的关联,则攻击者可以使用与位置相关的测量数据来规避此类授权检查。

A LIS can be coerced into providing location information for a Device that a location recipient is not authorized to receive. A request identifies one Device (implicitly or explicitly), but measurement data is provided for another Device. If the LIS does not check that the measurement data is for the identified Device, it could incorrectly authorize the request.

可以强制LIS为位置接收者无权接收的设备提供位置信息。请求标识一个设备(隐式或显式),但为另一个设备提供测量数据。如果LIS没有检查测量数据是否用于已识别的设备,则可能会错误地授权请求。

By using unverified measurement data to generate a response, the LIS provides information about a Device without appropriate authorization.

通过使用未经验证的测量数据生成响应,LIS在未经适当授权的情况下提供有关设备的信息。

The feasibility of this attack depends on the availability of information that links a Device with measurement data. In some cases, measurement data that is correlated with a Target is readily available. For instance, LLDP measurements (Section 5.1) are

这种攻击的可行性取决于将设备与测量数据链接起来的信息的可用性。在某些情况下,与目标相关的测量数据很容易获得。例如,LLDP测量(第5.1节)为

broadcast to all nodes on the same network segment. An attacker on that network segment can easily gain measurement data that relates a Device with measurements.

广播到同一网段上的所有节点。该网段上的攻击者可以轻松获取与设备相关的测量数据。

For some types of measurement data, it's necessary for an attacker to know the location of the Target in order to determine what measurements to use. This attack is meaningless for types of measurement data that require that the attacker first know the location of the Target before measurement data can be acquired or fabricated. GNSS measurements (Section 5.5) share this trait with many wireless location determination methods.

对于某些类型的度量数据,攻击者有必要知道目标的位置,以便确定要使用的度量。对于需要攻击者在获取或制造测量数据之前首先知道目标位置的测量数据类型,此攻击毫无意义。全球导航卫星系统测量(第5.5节)与许多无线定位方法具有相同的特点。

7.1.2. Extracting Network Topology Data
7.1.2. 提取网络拓扑数据

Allowing requests with measurements might be used to collect information about network topology.

允许带有测量值的请求可用于收集有关网络拓扑的信息。

Network topology can be considered sensitive information by a network operator for commercial or security reasons. While it is impossible to completely prevent a Device from acquiring some knowledge of network topology if a location service is provided, a network operator might desire to limit how much of this information is made available.

出于商业或安全原因,网络运营商可以将网络拓扑视为敏感信息。虽然如果提供了位置服务,则不可能完全阻止设备获取网络拓扑的一些知识,但网络运营商可能希望限制这些信息的可用性。

Mapping a network topology does not require that an attacker be able to associate measurement data with a particular Device. If a requester is able to try a number of measurements, it is possible to acquire information about network topology.

映射网络拓扑不要求攻击者能够将测量数据与特定设备关联。如果请求者能够尝试一些测量,则可以获取有关网络拓扑的信息。

It is not even necessary that the measurements are valid; random guesses are sufficient, provided that there is no penalty or cost associated with attempting to use the measurements.

甚至不需要测量值是有效的;只要不存在与尝试使用测量相关的惩罚或成本,随机猜测就足够了。

7.1.3. Exposing Network Topology Data
7.1.3. 公开网络拓扑数据

A Device could reveal information about a network to entities outside of that network if it provides location measurement data to a LIS that is outside of that network. With the exception of GNSS measurements, the measurements in this document provide information about an access network that could reveal topology information to an unauthorized recipient.

如果设备向网络外部的LIS提供位置测量数据,则可以向网络外部的实体透露网络信息。除全球导航卫星系统测量外,本文件中的测量提供了可能向未经授权的接收者透露拓扑信息的接入网络信息。

A Device MUST NOT provide information about network topology without a clear signal that the recipient is authorized. A LIS that is discovered using DHCP as described in LIS discovery [RFC5986] can be considered to be authorized to receive information about the access network.

如果没有明确的信号表明收件人已获得授权,则设备不得提供有关网络拓扑的信息。如LIS发现[RFC5986]中所述,使用DHCP发现的LIS可被视为被授权接收有关接入网络的信息。

7.1.4. Lying by Proxy
7.1.4. 代理说谎

Location information, which includes measurement data, is a function of its inputs. Thus, falsified measurement data can be used to alter the location information that is provided by a LIS.

位置信息(包括测量数据)是其输入的函数。因此,伪造的测量数据可用于改变LIS提供的位置信息。

Some types of measurement data are relatively easy to falsify in a way that causes the resulting location information to be selected with little or no error. For instance, GNSS measurements are easy to use for this purpose because all the contextual information necessary to calculate a position using measurements is broadcast by the satellites [HARPER].

某些类型的测量数据相对容易伪造,从而导致选择结果位置信息时几乎没有错误。例如,全球导航卫星系统测量很容易用于此目的,因为使用测量计算位置所需的所有上下文信息都由卫星广播[HARPER]。

An attacker that falsifies measurement data gains little if they are the only recipient of the result. The attacker knows that the location information is bad. The attacker only gains if the information can somehow be attributed to the LIS by another location recipient. By coercing the LIS into providing falsified location information, any credibility that the LIS might have -- that the attacker does not -- is gained by the attacker.

如果攻击者是结果的唯一接收者,那么伪造测量数据的攻击者获得的收益微乎其微。攻击者知道位置信息不正确。只有当信息以某种方式被另一个位置接收者归因于LIS时,攻击者才能获得该信息。通过强制LIS提供伪造的位置信息,攻击者可以获得LIS可能拥有的任何可信度(攻击者没有)。

A third party that is reliant on the integrity of the location information might base an evaluation of the credibility of the information on the source of the information. If that third party is able to attribute location information to the LIS, then an attacker might gain.

依赖于位置信息完整性的第三方可以根据信息来源评估信息的可信度。如果该第三方能够将位置信息归因于LIS,则攻击者可能会获得。

Location information that is provided to the Device without any means to identify the LIS as its source is not subject to this attack. The Device is identified as the source of the data when it distributes the location information to location recipients.

向设备提供的位置信息没有任何手段将LIS识别为其来源,不会受到此攻击。当设备将位置信息分发给位置接收者时,该设备被标识为数据源。

Location information is attributed to the LIS either through the use of digital signatures or by having the location recipient directly interact with the LIS. A LIS that digitally signs location information becomes identifiable as the source of the data. Similarly, the LIS is identified as a source of data if a location recipient acquires information directly from a LIS using a location URI.

通过使用数字签名或让位置接收者直接与LIS交互,将位置信息归于LIS。对位置信息进行数字签名的LIS可识别为数据源。类似地,如果位置接收者使用位置URI直接从LIS获取信息,则LIS被标识为数据源。

7.1.5. Measurement Replay
7.1.5. 测量回放

The values of some measured properties do not change over time for a single location. The time invariance of network properties is often a direct result of the practicalities of operating the network. Limiting the changes to a network ensures greater consistency of service. A largely static network also greatly simplifies the data management tasks involved with providing a location service.

对于单个位置,某些测量特性的值不会随时间变化。网络特性的时间不变性通常是网络操作实用性的直接结果。限制对网络的更改可确保更高的服务一致性。基本上是静态的网络也大大简化了提供位置服务所涉及的数据管理任务。

However, time-invariant properties allow for simple replay attacks, where an attacker acquires measurements that can later be used without being detected as being invalid.

但是,时间不变属性允许简单的重播攻击,攻击者获取的度量值可以在以后使用,而不会被检测为无效。

Measurement data is frequently an observation of a time-invariant property of the environment at the subject location. For measurements of this nature, nothing in the measurement itself is sufficient proof that the Device is present at the resulting location. Measurement data might have been previously acquired and reused.

测量数据通常是对目标位置环境的时不变特性的观察。对于这种性质的测量,测量本身中的任何内容都不足以证明设备存在于最终位置。测量数据可能是先前获得并重新使用的。

For instance, the identity of a radio transmitter, if broadcast by that transmitter, can be collected and stored. An attacker that wishes it known that they exist at a particular location can claim to observe this transmitter at any time. Nothing inherent in the claim reveals it to be false.

例如,可以收集和存储无线电发射机的标识(如果由该发射机广播)。如果攻击者希望知道他们存在于特定位置,则可以声称随时观察此发射机。这一主张中没有任何固有的东西表明它是虚假的。

7.1.6. Environment Spoofing
7.1.6. 环境欺骗

Some types of measurement data can be altered or influenced by a third party so that a Device unwittingly provides falsified data. If it is possible for a third party to alter the measured phenomenon, then any location information that is derived from this data can be indirectly influenced.

某些类型的测量数据可能会被第三方更改或影响,从而导致设备无意中提供伪造数据。如果第三方有可能改变测量的现象,则由此数据得出的任何位置信息都可能受到间接影响。

Altering the environment in this fashion might not require involvement with either a Device or LIS. Measurement that is passive -- where the Device observes a signal or other phenomenon without direct interaction -- is most susceptible to alteration by third parties.

以这种方式改变环境可能不需要涉及设备或LIS。被动测量——设备在没有直接交互的情况下观察信号或其他现象——最容易被第三方改变。

Measurement of radio signal characteristics is especially vulnerable, since an adversary need only be in the general vicinity of the Device and be able to transmit a signal. For instance, a GNSS spoofer is able to produce fake signals that claim to be transmitted by any satellite or set of satellites (see [GPS.SPOOF]).

无线电信号特性的测量尤其容易受到攻击,因为敌方只需在设备附近,并且能够发射信号。例如,全球导航卫星系统欺骗器能够产生声称由任何卫星或一组卫星发射的假信号(见[GPS.SPOOF])。

Measurements that require direct interaction increase the complexity of the attack. For measurements relating to the communication medium, a third party cannot avoid direct interaction; they need only be on the communications path (that is, man in the middle).

需要直接交互的度量增加了攻击的复杂性。对于与通信介质有关的测量,第三方不能避免直接交互;它们只需要在通信路径上(即中间人)。

Even if the entity that is interacted with is authenticated, this does not provide any assurance about the integrity of measurement data. For instance, the Device might authenticate the identity of a radio transmitter through the use of cryptographic means and obtain signal strength measurements for that transmitter. Radio signal

即使与之交互的实体经过身份验证,也不能保证测量数据的完整性。例如,设备可以通过使用密码手段认证无线电发射机的身份,并获得该发射机的信号强度测量值。无线电信号

strength is trivial for an attacker to increase simply by receiving and amplifying the raw signal; it is not necessary for the attacker to be able to understand the signal content.

对于攻击者来说,仅仅通过接收和放大原始信号来增加强度是微不足道的;攻击者无需能够理解信号内容。

Note: This particular "attack" is more often completely legitimate. Radio repeaters are a commonplace mechanism used to increase radio coverage.

注意:这种特殊的“攻击”通常是完全合法的。无线电中继器是用于增加无线电覆盖范围的常见机制。

Attacks that rely on altering the observed environment of a Device require countermeasures that affect the measurement process. For radio signals, countermeasures could include the use of authenticated signals, or altered receiver design. In general, countermeasures are highly specific to the individual measurement process. An exhaustive discussion of these issues is left to the relevant literature for each measurement technology.

依赖于改变设备观察环境的攻击需要影响测量过程的对策。对于无线电信号,对策可能包括使用经过认证的信号,或改变接收机设计。一般而言,应对措施对个体测量过程具有高度的特异性。关于这些问题的详尽讨论留给每种测量技术的相关文献。

A Device that provides measurement data is assumed to be responsible for applying appropriate countermeasures against this type of attack.

假设提供测量数据的设备负责针对此类攻击应用适当的对策。

Where a Device is the sole recipient of location information derived from measurement data, a LIS might choose to provide location information without any validation. The responsibility for ensuring the veracity of the measurement data lies with the Device.

如果设备是从测量数据导出的位置信息的唯一接收者,则LIS可以选择提供位置信息而无需任何验证。确保测量数据准确性的责任在于设备。

Measurement data that is susceptible to this sort of influence SHOULD be treated as though it were produced by an untrusted Device for those cases where a location recipient might attribute the location information to the LIS. GNSS measurements and radio signal strength measurements can be affected relatively cheaply, though almost all other measurement types can be affected with varying costs to an attacker, with the largest cost often being a requirement for physical access. To the extent that it is feasible, measurement data SHOULD be subjected to the same validation as for other types of attacks that rely on measurement falsification.

对于位置接收者可能将位置信息归因于LIS的情况,易受此类影响的测量数据应视为由不受信任的设备生成。全球导航卫星系统测量和无线电信号强度测量受到影响的成本相对较低,但几乎所有其他测量类型都会受到影响,攻击者的成本各不相同,最大的成本往往是物理访问的要求。在可行的范围内,测量数据应与依赖于测量伪造的其他类型的攻击进行相同的验证。

Note: Altered measurement data might be provided by a Device that has no knowledge of the alteration. Thus, an otherwise trusted Device might still be an unreliable source of measurement data.

注:更改的测量数据可能由不知道更改的设备提供。因此,其他受信任的设备可能仍然是不可靠的测量数据源。

7.2. Mitigation
7.2. 缓解

The following measures can be applied to limit or prevent attacks. The effectiveness of each depends on the type of measurement data and how that measurement data is acquired.

以下措施可用于限制或防止攻击。每种方法的有效性取决于测量数据的类型以及测量数据的获取方式。

Two general approaches are identified for dealing with untrusted measurement data:

确定了两种处理不可信测量数据的一般方法:

1. Require independent validation of measurement data or the location information that is produced.

1. 要求对测量数据或生成的位置信息进行独立验证。

2. Identify the types of sources that provided the measurement data from which that location information was derived.

2. 确定提供测量数据的源类型,从中获取位置信息。

This section goes into more detail on the different forms of validation in Sections 7.2.1, 7.2.2, and 7.2.3. The impact of attributing location information to sources is discussed in more detail in Section 7.2.4.

本节将在第7.2.1节、第7.2.2节和第7.2.3节中详细介绍不同形式的验证。第7.2.4节详细讨论了将位置信息归因于源的影响。

Any costs in validation are balanced against the degree of integrity desired from the resulting location information.

验证过程中的任何成本都与由此产生的位置信息所要求的完整性程度相平衡。

7.2.1. Measurement Validation
7.2.1. 测量验证

Recognizing that measurement data has been falsified is difficult in the absence of integrity mechanisms.

在缺乏完整性机制的情况下,很难认识到测量数据被篡改。

Independent confirmation of the veracity of measurement data ensures that the measurement is accurate and that it applies to the correct Device. When it's possible to gather the same measurement data from a trusted and independent source without undue expense, the LIS can use the trusted data in place of what the untrusted Device has sent. In cases where that is impractical, the untrusted data can provide hints that allow corroboration of the data (see Section 7.2.1.1).

对测量数据准确性的独立确认可确保测量准确,并适用于正确的设备。当可以从可信的独立来源收集相同的测量数据而不产生不必要的费用时,LIS可以使用可信数据代替不可信设备发送的数据。在不可行的情况下,不可信数据可提供提示,以支持数据的确证(见第7.2.1.1节)。

Measurement information might not contain any inherent indication that it is falsified. In addition, it can be difficult to obtain information that would provide any degree of assurance that the measurement device is physically at any particular location. Measurements that are difficult to verify require other forms of assurance before they can be used.

测量信息可能不包含任何内在迹象,表明它是伪造的。此外,很难获得能够保证测量装置实际位于任何特定位置的信息。难以验证的测量需要其他形式的保证才能使用。

7.2.1.1. Effectiveness
7.2.1.1. 有效性

Measurement validation MUST be used if measurement data for a particular Device can be easily acquired by unauthorized location recipients, as described in Section 7.1.1. This prevents unauthorized access to location information using measurement data.

如第7.1.1节所述,如果未经授权的位置接收者可以轻松获取特定设备的测量数据,则必须使用测量验证。这可防止未经授权使用测量数据访问位置信息。

Validation of measurement data can be significantly more effective than independent acquisition of the same. For instance, a Device in a large Ethernet network could provide a measurement indicating its point of attachment using LLDP measurements. For a LIS, acquiring

测量数据的验证比独立获取测量数据要有效得多。例如,大型以太网中的设备可以使用LLDP测量值提供指示其连接点的测量值。对于LIS,获取

the same measurement data might require a request to all switches in that network. With the measurement data, validation can target the identified switch with a specific query.

相同的测量数据可能需要向该网络中的所有交换机发出请求。使用测量数据,验证可以通过特定查询针对已识别的交换机。

Validation is effective in identifying falsified measurement data (Section 7.1.4), including attacks involving replay of measurement data (Section 7.1.5). Validation also limits the amount of network topology information (Section 7.1.2) made available to Devices to that portion of the network topology to which they are directly attached.

验证可有效识别伪造的测量数据(第7.1.4节),包括涉及测量数据重放的攻击(第7.1.5节)。验证还将设备可用的网络拓扑信息量(第7.1.2节)限制在其直接连接的网络拓扑部分。

Measurement validation has no effect if the underlying environment is being altered (Section 7.1.6).

如果基础环境发生改变,则测量验证无效(第7.1.6节)。

7.2.1.2. Limitations (Unique Observer)
7.2.1.2. 限制(唯一观察者)

A Device is often in a unique position to make a measurement. It alone occupies the point in space-time that the location determination process seeks to determine. The Device becomes a unique observer for a particular property.

设备通常位于进行测量的唯一位置。它单独占据了位置确定过程试图确定的时空点。设备成为特定属性的唯一观察者。

The ability of the Device to become a unique observer makes the Device invaluable to the location determination process. As a unique observer, it also makes the claims of a Device difficult to validate and easy to spoof.

设备成为唯一观察者的能力使得设备对位置确定过程非常宝贵。作为一个独特的观察者,它也使得设备的声明很难验证,也很容易被欺骗。

As long as no other entity is capable of making the same measurements, there is also no other entity that can independently check that the measurements are correct and applicable to the Device. A LIS might be unable to validate all or part of the measurement data it receives from a unique observer. For instance, a signal strength measurement of the signal from a radio tower cannot be validated directly.

只要没有其他实体能够进行相同的测量,也没有其他实体能够独立检查测量是否正确且适用于设备。LIS可能无法验证其从唯一观察者接收的全部或部分测量数据。例如,无法直接验证来自无线电发射塔的信号的信号强度测量。

Some portion of the measurement data might still be independently verified, even if all information cannot. In the previous example, the radio tower might be able to provide verification that the Device is present if it is able to observe a radio signal sent by the Device.

即使所有信息都无法验证,部分测量数据仍可能被独立验证。在前面的示例中,如果无线电发射塔能够观察到设备发送的无线电信号,则它可能能够提供设备存在的验证。

If measurement data can only be partially validated, the extent to which it can be validated determines the effectiveness of validation against these attacks.

如果测量数据只能部分验证,那么验证的程度决定了验证对这些攻击的有效性。

The advantage of having the Device as a unique observer is that it makes it difficult for an attacker to acquire measurements without the assistance of the Device. Attempts to use measurements to gain unauthorized access to measurement data (Section 7.1.1) are largely ineffectual against a unique observer.

将设备作为唯一观察者的优势在于,攻击者很难在没有设备帮助的情况下获取测量值。试图使用测量来获得对测量数据的未经授权访问(第7.1.1节)在很大程度上对唯一观察者无效。

7.2.2. Location Validation
7.2.2. 位置验证

Location information that is derived from location-related measurement data can also be verified against trusted location information. Rather than validating inputs to the location determination process, suspect locations are identified at the output of the process.

从与位置相关的测量数据导出的位置信息也可以根据可信位置信息进行验证。在位置确定过程的输出处识别可疑位置,而不是验证位置确定过程的输入。

Trusted location information is acquired using sources of measurement data that are trusted. Untrusted location information is acquired using measurement data provided from untrusted sources, which might include the Device. These two locations are compared. If the untrusted location agrees with the trusted location, the untrusted location information is used.

使用受信任的测量数据源获取受信任的位置信息。不受信任的位置信息是使用从不受信任的来源(可能包括设备)提供的测量数据获取的。比较这两个位置。如果不受信任的位置与受信任的位置一致,则使用不受信任的位置信息。

Algorithms for the comparison of location information are not included in this document. However, a simple comparison for agreement might require that the untrusted location be entirely contained within the uncertainty region of the trusted location.

本文件不包括用于比较位置信息的算法。然而,协议的简单比较可能要求不受信任的位置完全包含在受信任位置的不确定区域内。

There is little point in using a less accurate, less trusted location. Untrusted location information that has worse accuracy than trusted information can be immediately discarded. There are multiple factors that affect accuracy, uncertainty and currency being the most important. How location information is compared for accuracy is not defined in this document.

使用不太准确、不太可信的位置没有什么意义。不受信任的位置信息的准确性比受信任的信息差,可以立即丢弃。影响准确性的因素有很多,不确定性和货币是最重要的因素。本文件未定义如何比较位置信息的准确性。

7.2.2.1. Effectiveness
7.2.2.1. 有效性

Location validation limits the extent to which falsified -- or erroneous -- measurement data can cause an incorrect location to be reported.

位置验证限制了伪造或错误的测量数据可能导致报告错误位置的程度。

Location validation can be more efficient than validation of inputs, particularly for a unique observer (Section 7.2.1.2).

位置验证可能比输入验证更有效,特别是对于唯一的观察者(第7.2.1.2节)。

Validating location ensures that the Device is at or near the resulting location. Location validation can be used to limit or prevent all of the attacks identified in this document.

验证位置可确保设备位于结果位置或其附近。位置验证可用于限制或防止本文档中确定的所有攻击。

7.2.2.2. Limitations
7.2.2.2. 局限性

The trusted location that is used for validation is always less accurate than the location that is being checked. The amount by which the untrusted location is more accurate, is the same amount that an attacker can exploit.

用于验证的受信任位置始终不如正在检查的位置准确。不受信任位置更准确的数量与攻击者可以利用的数量相同。

For example, a trusted location might indicate an uncertainty region with a radius of five kilometers. An untrusted location that describes a 100-meter uncertainty within the larger region might be accepted as more accurate. An attacker might still falsify measurement data to select any location within the larger uncertainty region. While the 100-meter uncertainty that is reported seems more accurate, a falsified location could be anywhere in the five-kilometer region.

例如,可信位置可能表示半径为5公里的不确定区域。在较大区域内描述100米不确定性的不可信位置可能被认为更准确。攻击者仍可能伪造测量数据以选择较大不确定区域内的任何位置。虽然报道的100米不确定性似乎更准确,但伪造的位置可能在5公里范围内的任何地方。

Where measurement data might have been falsified, the actual uncertainty is effectively much higher. Local policy might allow differing degrees of trust to location information derived from untrusted measurement data. This might be a boolean operation with only two possible outcomes: untrusted location information might be used entirely or not at all. Alternatively, untrusted location information could be combined with trusted location information using different weightings, based on a value set in local policy.

在测量数据可能被伪造的地方,实际不确定度实际上要高得多。本地策略可能允许对来自不可信测量数据的位置信息有不同程度的信任。这可能是一个布尔操作,只有两种可能的结果:不受信任的位置信息可能被完全使用,也可能根本不被使用。或者,可以根据本地策略中设置的值,使用不同的权重将不受信任的位置信息与受信任的位置信息组合在一起。

7.2.3. Supporting Observations
7.2.3. 支持性意见

Replay attacks using previously acquired measurement data are particularly hard to detect without independent validation. Rather than validate the measurement data directly, supplementary data might be used to validate measurements or the location information derived from those measurements.

如果没有独立验证,使用先前获取的测量数据的重放攻击尤其难以检测。与直接验证测量数据不同,补充数据可用于验证测量或从这些测量中获得的位置信息。

These supporting observations could be used to convey information that provides additional assurance that measurement data from the Device was acquired at a specific time and place. In effect, the Device is requested to provide proof of its presence at the resulting location.

这些支持性观察结果可用于传达信息,从而进一步确保在特定时间和地点获取设备的测量数据。实际上,该装置被要求提供其存在于最终位置的证据。

For instance, a Device that measures attributes of a radio signal could also be asked to provide a sample of the measured radio signal. If the LIS is able to observe the same signal, the two observations could be compared. Providing that the signal cannot be predicted in advance by the Device, this could be used to support the claim that the Device is able to receive the signal. Thus, the Device is likely to be within the range that the signal is transmitted. A LIS could use this to attribute a higher level of trust in the associated measurement data or resulting location.

例如,可以要求测量无线电信号属性的设备提供测量无线电信号的样本。如果LIS能够观察到相同的信号,则可以比较这两个观察结果。假设设备不能预先预测信号,这可用于支持设备能够接收信号的主张。因此,该装置很可能在发送信号的范围内。LIS可以使用此属性来确定相关测量数据或结果位置的更高信任级别。

7.2.3.1. Effectiveness
7.2.3.1. 有效性

The use of supporting observations is limited by the ability of the LIS to acquire and validate these observations. The advantage of selecting observations independent of measurement data is that observations can be selected based on how readily available the data is for both LIS and Device. The amount and quality of the data can be selected based on the degree of assurance that is desired.

支持性观察的使用受到LIS获取和验证这些观察的能力的限制。选择独立于测量数据的观测值的优点是,可以根据LIS和设备的数据可用程度来选择观测值。可以根据所需的保证程度来选择数据的数量和质量。

The use of supporting observations is similar to both measurement validation and location validation. All three methods rely on independent validation of one or more properties. The applicability of each method is similar.

支持性观察的使用类似于测量验证和位置验证。所有三种方法都依赖于一种或多种属性的独立验证。每种方法的适用性相似。

The use of supporting observations can be used to limit or prevent all of the attacks identified in this document.

支持性观察的使用可用于限制或防止本文件中确定的所有攻击。

7.2.3.2. Limitations
7.2.3.2. 局限性

The effectiveness of the validation method depends on the quality of the supporting observation: how hard it is for the entity performing the validation to obtain the data at a different time or place, how difficult it is to guess, and what other costs might be involved in acquiring this data.

验证方法的有效性取决于支持性观察的质量:执行验证的实体在不同时间或地点获取数据的难度、猜测的难度以及获取该数据可能涉及的其他成本。

In the example of an observed radio signal, requesting a sample of the signal only provides an assurance that the Device is able to receive the signal transmitted by the measured radio transmitter. This only provides some assurance that the Device is within range of the transmitter.

在观察到的无线电信号的示例中,请求信号样本仅提供设备能够接收被测无线电发射机发送的信号的保证。这只能在一定程度上保证装置在变送器的范围内。

As with location validation, a Device might still be able to provide falsified measurements that could alter the value of the location information as long as the result is within this region.

与位置验证一样,设备可能仍然能够提供伪造的测量,只要结果在该区域内,就可能改变位置信息的值。

Requesting additional supporting observations can reduce the size of the region over which location information can be altered by an attacker, or increase trust in the result, but each additional measurement imposes an acquisition cost. Supporting observations contribute little or nothing toward the primary goal of determining the location of the Device.

请求额外的支持性观察可以减少攻击者可以更改位置信息的区域大小,或者增加对结果的信任,但是每个额外的测量都会增加获取成本。支持性观察对确定设备位置的主要目标几乎没有贡献。

7.2.4. Attribution
7.2.4. 归属

Lying by proxy (Section 7.1.4) relies on the location recipient being able to attribute location information to a LIS. The effectiveness of this attack is negated if location information is explicitly attributed to a particular source.

代理说谎(第7.1.4节)依赖于位置接收者能够将位置信息归因于LIS。如果位置信息明确归因于特定来源,则此攻击的有效性将被否定。

This requires an extension to the location object that explicitly identifies the source (or sources) of each item of location information.

这需要对location对象进行扩展,明确标识每个位置信息项的源。

Rather than relying on a process that seeks to ensure that location information is accurate, this approach instead provides a location recipient with the information necessary to reach their own conclusion about the trustworthiness of the location information.

这种方法不是依赖于寻求确保位置信息准确的过程,而是为位置接收者提供必要的信息,以得出他们自己关于位置信息可信度的结论。

Including an authenticated identity for all sources of measurement data presents a number of technical and operational challenges. It is possible that the LIS has a transient relationship with a Device. A Device is not expected to share authentication information with a LIS. There is no assurance that Device identification is usable by a potential location recipient. Privacy concerns might also prevent the sharing of identification information, even if it were available and usable.

包括所有测量数据源的认证身份带来了许多技术和操作挑战。LIS可能与设备存在瞬态关系。设备不应与LIS共享身份验证信息。无法保证潜在位置接收者可以使用设备标识。隐私问题也可能妨碍身份信息的共享,即使身份信息可用。

Identifying the type of measurement source allows a location recipient to make a decision about the trustworthiness of location information without depending on having authenticated identity information for each source. An element for this purpose is defined in Section 4.4.

识别测量源的类型允许位置接收者做出关于位置信息可信度的决定,而无需依赖于每个源的身份验证信息。第4.4节定义了用于此目的的元素。

When including location information that is based on measurement data from sources that might be untrusted, a LIS SHOULD include alternative location information that is derived from trusted sources of measurement data. Each item of location information can then be labeled with the source of that data.

当包含基于来自可能不受信任的源的测量数据的位置信息时,LIS应包含来自受信任的测量数据源的替代位置信息。然后,每个位置信息项都可以标记为该数据的源。

A location recipient that is able to identify a specific source of measurement data (whether it be LIS or Device) can use this information to attribute location information to either entity or to both entities. The location recipient is then better able to make decisions about trustworthiness based on the source of the data.

能够识别特定测量数据源(无论是LIS还是设备)的位置接收者可以使用此信息将位置信息归属于任一实体或两个实体。然后,位置接收者能够更好地根据数据源做出关于可信度的决策。

A location recipient that does not understand the "source" element is unable to make this distinction. When constructing a PIDF-LO document, trusted location information MUST be placed in the PIDF-LO so that it is given higher priority to any untrusted location information according to Rule #8 of [RFC5491].

不理解“源”元素的位置收件人无法进行此区分。构建PIDF-LO文档时,必须将受信任的位置信息放置在PIDF-LO中,以便根据[RFC5491]的规则#8将其赋予任何不受信任的位置信息更高的优先级。

Attribution of information does nothing to address attacks that alter the observed parameters that are used in location determination (Section 7.1.6).

信息的归属对于解决改变位置确定中使用的观察参数的攻击没有任何作用(第7.1.6节)。

7.2.5. Stateful Correlation of Location Requests
7.2.5. 位置请求的状态关联

Stateful examination of requests can be used to prevent a Device from attempting to map network topology using requests for location information (Section 7.1.2).

请求的状态检查可用于防止设备尝试使用位置信息请求映射网络拓扑(第7.1.2节)。

Simply limiting the rate of requests from a single Device reduces the amount of data that a Device can acquire about network topology. A LIS could also make observations about the movements of a Device. A Device that is attempting to gather topology information is likely to be assigned a location that changes significantly between subsequent requests, possibly violating physical laws (or lower limits that might still be unlikely) with respect to speed and acceleration.

简单地限制来自单个设备的请求速率可以减少设备可以获取的有关网络拓扑的数据量。LIS还可以对设备的运动进行观察。试图收集拓扑信息的设备可能被分配到一个位置,该位置在后续请求之间发生显著变化,可能违反了速度和加速度方面的物理定律(或可能仍然不太可能达到的下限)。

7.3. An Unauthorized or Compromised LIS
7.3. 未经授权或泄露的信息系统

A compromised LIS, or a compromise in LIS discovery [RFC5986], could lead to an unauthorized entity obtaining measurement data. This information could then be used or redistributed. A Device MUST ensure that it authenticates a LIS, as described in Section 9 of [RFC5985].

泄露的LIS或LIS发现[RFC5986]中的泄露可能导致未经授权的实体获取测量数据。然后可以使用或重新分发这些信息。设备必须确保其对LIS进行认证,如[RFC5985]第9节所述。

An entity that is able to acquire measurement data can, in addition to using those measurements to learn the location of a Device, also use that information for other purposes. This information can be used to provide insight into network topology (Section 7.1.2).

能够获取测量数据的实体除了可以使用这些测量来了解设备的位置外,还可以将该信息用于其他目的。此信息可用于深入了解网络拓扑(第7.1.2节)。

Measurement data might also be exploited in other ways. For example, revealing the type of 802.11 transceiver that a Device uses could allow an attacker to use specific vulnerabilities to attack a Device. Similarly, revealing information about network elements could enable targeted attacks on that infrastructure.

测量数据也可能以其他方式被利用。例如,暴露设备使用的802.11收发器类型可能会允许攻击者使用特定漏洞攻击设备。类似地,披露有关网络元素的信息可能会对该基础设施发起有针对性的攻击。

8. Measurement Schemas
8. 度量模式

The schemas are broken up into their respective functions. A base container schema into which all measurements are placed is defined, including the definition of a measurement request (Section 8.1). A PIDF-LO extension is defined in a separate schema (Section 8.2). A basic Types Schema contains common definitions, including the "rmsError" and "samples" attributes, plus types for IPv4, IPv6, and MAC addresses (Section 8.3). Each of the specific measurement types is defined in a separate schema.

模式被分解为各自的功能。定义了放置所有度量的基本容器模式,包括度量请求的定义(第8.1节)。PIDF-LO扩展在单独的模式中定义(第8.2节)。基本类型模式包含常见定义,包括“rmsError”和“samples”属性,以及IPv4、IPv6和MAC地址的类型(第8.3节)。每个特定的度量类型都在单独的模式中定义。

8.1. Measurement Container Schema
8.1. 度量容器模式
   <?xml version="1.0"?>
   <xs:schema
       xmlns:lm="urn:ietf:params:xml:ns:geopriv:lm"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
   <?xml version="1.0"?>
   <xs:schema
       xmlns:lm="urn:ietf:params:xml:ns:geopriv:lm"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a framework for location measurements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a framework for location measurements.
       </xs:documentation>
     </xs:annotation>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
     <xs:element name="measurements">
       <xs:complexType>
         <xs:complexContent>
           <xs:restriction base="xs:anyType">
             <xs:sequence>
           <xs:any namespace="##other" processContents="lax"
                   minOccurs="0" maxOccurs="unbounded"/>
             </xs:sequence>
             <xs:attribute name="time" type="xs:dateTime"/>
             <xs:attribute name="timeError" type="bt:positiveDouble"/>
             <xs:attribute name="expires" type="xs:dateTime"/>
             <xs:anyAttribute namespace="##any" processContents="lax"/>
           </xs:restriction>
         </xs:complexContent>
       </xs:complexType>
     </xs:element>
        
     <xs:element name="measurements">
       <xs:complexType>
         <xs:complexContent>
           <xs:restriction base="xs:anyType">
             <xs:sequence>
           <xs:any namespace="##other" processContents="lax"
                   minOccurs="0" maxOccurs="unbounded"/>
             </xs:sequence>
             <xs:attribute name="time" type="xs:dateTime"/>
             <xs:attribute name="timeError" type="bt:positiveDouble"/>
             <xs:attribute name="expires" type="xs:dateTime"/>
             <xs:anyAttribute namespace="##any" processContents="lax"/>
           </xs:restriction>
         </xs:complexContent>
       </xs:complexType>
     </xs:element>
        
     <xs:element name="measurementRequest"
             type="lm:measurementRequestType"/>
     <xs:complexType name="measurementRequestType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element ref="lm:measurement"
                         minOccurs="0" maxOccurs="unbounded"/>
        
     <xs:element name="measurementRequest"
             type="lm:measurementRequestType"/>
     <xs:complexType name="measurementRequestType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element ref="lm:measurement"
                         minOccurs="0" maxOccurs="unbounded"/>
        
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:element name="measurement" type="lm:measurementType"/>
     <xs:complexType name="measurementType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:attribute name="type" type="xs:QName" use="required"/>
           <xs:attribute name="samples" type="xs:positiveInteger"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:element name="measurement" type="lm:measurementType"/>
     <xs:complexType name="measurementType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:attribute name="type" type="xs:QName" use="required"/>
           <xs:attribute name="samples" type="xs:positiveInteger"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <!-- PIDF-LO extension for source -->
     <xs:element name="source" type="lm:sourceType"/>
     <xs:simpleType name="sourceType">
       <xs:list>
         <xs:simpleType>
           <xs:restriction base="xs:token">
             <xs:enumeration value="lis"/>
             <xs:enumeration value="device"/>
             <xs:enumeration value="other"/>
           </xs:restriction>
         </xs:simpleType>
       </xs:list>
     </xs:simpleType>
   </xs:schema>
        
     <!-- PIDF-LO extension for source -->
     <xs:element name="source" type="lm:sourceType"/>
     <xs:simpleType name="sourceType">
       <xs:list>
         <xs:simpleType>
           <xs:restriction base="xs:token">
             <xs:enumeration value="lis"/>
             <xs:enumeration value="device"/>
             <xs:enumeration value="other"/>
           </xs:restriction>
         </xs:simpleType>
       </xs:list>
     </xs:simpleType>
   </xs:schema>
        

Measurement Container Schema

度量容器模式

8.2. Measurement Source Schema
8.2. 度量源模式
   <?xml version="1.0"?>
   <xs:schema
       xmlns:lmsrc="urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
   <?xml version="1.0"?>
   <xs:schema
       xmlns:lmsrc="urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:pidf:geopriv10:lmsrc">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines an extension to PIDF-LO that indicates
           the type of measurement source that produced the measurement
           data used in generating the associated location information.
       </xs:documentation>
     </xs:annotation>
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:pidf:geopriv10:lmsrc">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines an extension to PIDF-LO that indicates
           the type of measurement source that produced the measurement
           data used in generating the associated location information.
       </xs:documentation>
     </xs:annotation>
        
     <xs:element name="source" type="lmsrc:sourceType"/>
     <xs:simpleType name="sourceType">
       <xs:list>
         <xs:simpleType>
           <xs:restriction base="xs:token">
             <xs:enumeration value="lis"/>
             <xs:enumeration value="device"/>
             <xs:enumeration value="other"/>
           </xs:restriction>
         </xs:simpleType>
       </xs:list>
     </xs:simpleType>
   </xs:schema>
        
     <xs:element name="source" type="lmsrc:sourceType"/>
     <xs:simpleType name="sourceType">
       <xs:list>
         <xs:simpleType>
           <xs:restriction base="xs:token">
             <xs:enumeration value="lis"/>
             <xs:enumeration value="device"/>
             <xs:enumeration value="other"/>
           </xs:restriction>
         </xs:simpleType>
       </xs:list>
     </xs:simpleType>
   </xs:schema>
        

Measurement Source PIDF-LO Extension Schema

测量源PIDF-LO扩展模式

8.3. Base Types Schema
8.3. 基类型模式

Note that the pattern rules in the following schema wrap due to length constraints. None of the patterns contain whitespace.

请注意,由于长度限制,以下模式中的模式规则将自动换行。所有模式都不包含空格。

   <?xml version="1.0"?>
   <xs:schema
     xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
     xmlns:xs="http://www.w3.org/2001/XMLSchema"
     targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
     elementFormDefault="qualified"
     attributeFormDefault="unqualified">
        
   <?xml version="1.0"?>
   <xs:schema
     xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
     xmlns:xs="http://www.w3.org/2001/XMLSchema"
     targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
     elementFormDefault="qualified"
     attributeFormDefault="unqualified">
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:basetypes">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of base type elements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:basetypes">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of base type elements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:simpleType name="byteType">
       <xs:restriction base="xs:integer">
         <xs:minInclusive value="0"/>
         <xs:maxInclusive value="255"/>
       </xs:restriction>
     </xs:simpleType>
     <xs:simpleType name="twoByteType">
       <xs:restriction base="xs:integer">
         <xs:minInclusive value="0"/>
         <xs:maxInclusive value="65535"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="byteType">
       <xs:restriction base="xs:integer">
         <xs:minInclusive value="0"/>
         <xs:maxInclusive value="255"/>
       </xs:restriction>
     </xs:simpleType>
     <xs:simpleType name="twoByteType">
       <xs:restriction base="xs:integer">
         <xs:minInclusive value="0"/>
         <xs:maxInclusive value="65535"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="nonNegativeDouble">
       <xs:restriction base="xs:double">
         <xs:minInclusive value="0.0"/>
       </xs:restriction>
     </xs:simpleType>
     <xs:simpleType name="positiveDouble">
       <xs:restriction base="bt:nonNegativeDouble">
         <xs:minExclusive value="0.0"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="nonNegativeDouble">
       <xs:restriction base="xs:double">
         <xs:minInclusive value="0.0"/>
       </xs:restriction>
     </xs:simpleType>
     <xs:simpleType name="positiveDouble">
       <xs:restriction base="bt:nonNegativeDouble">
         <xs:minExclusive value="0.0"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:complexType name="doubleWithRMSError">
       <xs:simpleContent>
         <xs:extension base="xs:double">
           <xs:attribute name="rmsError" type="bt:positiveDouble"/>
           <xs:attribute name="samples" type="xs:positiveInteger"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
     <xs:complexType name="nnDoubleWithRMSError">
       <xs:simpleContent>
         <xs:restriction base="bt:doubleWithRMSError">
           <xs:minInclusive value="0"/>
         </xs:restriction>
       </xs:simpleContent>
     </xs:complexType>
        
     <xs:complexType name="doubleWithRMSError">
       <xs:simpleContent>
         <xs:extension base="xs:double">
           <xs:attribute name="rmsError" type="bt:positiveDouble"/>
           <xs:attribute name="samples" type="xs:positiveInteger"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
     <xs:complexType name="nnDoubleWithRMSError">
       <xs:simpleContent>
         <xs:restriction base="bt:doubleWithRMSError">
           <xs:minInclusive value="0"/>
         </xs:restriction>
       </xs:simpleContent>
     </xs:complexType>
        
     <xs:simpleType name="ipAddressType">
       <xs:union memberTypes="bt:IPv6AddressType bt:IPv4AddressType"/>
     </xs:simpleType>
        
     <xs:simpleType name="ipAddressType">
       <xs:union memberTypes="bt:IPv6AddressType bt:IPv4AddressType"/>
     </xs:simpleType>
        
     <!-- IPv6 format definition -->
     <xs:simpleType name="IPv6AddressType">
       <xs:annotation>
         <xs:documentation>
             An IP version 6 address, based on RFC 4291.
         </xs:documentation>
       </xs:annotation>
       <xs:restriction base="xs:token">
         <!-- Fully specified address -->
         <xs:pattern value="[0-9A-Fa-f]{1,4}(:[0-9A-Fa-f]{1,4}){7}"/>
         <!-- Double colon start -->
         <xs:pattern value=":(:[0-9A-Fa-f]{1,4}){1,7}"/>
         <!-- Double colon middle -->
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,6}
                            (:[0-9A-Fa-f]{1,4}){1}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,5}
                            (:[0-9A-Fa-f]{1,4}){1,2}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,4}
                            (:[0-9A-Fa-f]{1,4}){1,3}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,3}
                            (:[0-9A-Fa-f]{1,4}){1,4}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,2}
                            (:[0-9A-Fa-f]{1,4}){1,5}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1}
                            (:[0-9A-Fa-f]{1,4}){1,6}"/>
         <!-- Double colon end -->
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,7}:"/>
        
     <!-- IPv6 format definition -->
     <xs:simpleType name="IPv6AddressType">
       <xs:annotation>
         <xs:documentation>
             An IP version 6 address, based on RFC 4291.
         </xs:documentation>
       </xs:annotation>
       <xs:restriction base="xs:token">
         <!-- Fully specified address -->
         <xs:pattern value="[0-9A-Fa-f]{1,4}(:[0-9A-Fa-f]{1,4}){7}"/>
         <!-- Double colon start -->
         <xs:pattern value=":(:[0-9A-Fa-f]{1,4}){1,7}"/>
         <!-- Double colon middle -->
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,6}
                            (:[0-9A-Fa-f]{1,4}){1}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,5}
                            (:[0-9A-Fa-f]{1,4}){1,2}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,4}
                            (:[0-9A-Fa-f]{1,4}){1,3}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,3}
                            (:[0-9A-Fa-f]{1,4}){1,4}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,2}
                            (:[0-9A-Fa-f]{1,4}){1,5}"/>
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1}
                            (:[0-9A-Fa-f]{1,4}){1,6}"/>
         <!-- Double colon end -->
         <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,7}:"/>
        
         <!-- IPv4-Compatible and IPv4-Mapped Addresses -->
         <xs:pattern value="((:(:0{1,4}){0,3}:[fF]{4})|(0{1,4}:
             (:0{1,4}){0,2}:[fF]{4})|((0{1,4}:){2}
             (:0{1,4})?:[fF]{4})|((0{1,4}:){3}:[fF]{4})
             |((0{1,4}:){4}[fF]{4})):(25[0-5]|2[0-4][0-9]|
             [0-1]?[0-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|[0-1]
             ?[0-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|[0-1]?
             [0-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|[0-1]?
             [0-9]?[0-9])"/>
         <!-- The unspecified address -->
         <xs:pattern value="::"/>
       </xs:restriction>
     </xs:simpleType>
        
         <!-- IPv4-Compatible and IPv4-Mapped Addresses -->
         <xs:pattern value="((:(:0{1,4}){0,3}:[fF]{4})|(0{1,4}:
             (:0{1,4}){0,2}:[fF]{4})|((0{1,4}:){2}
             (:0{1,4})?:[fF]{4})|((0{1,4}:){3}:[fF]{4})
             |((0{1,4}:){4}[fF]{4})):(25[0-5]|2[0-4][0-9]|
             [0-1]?[0-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|[0-1]
             ?[0-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|[0-1]?
             [0-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|[0-1]?
             [0-9]?[0-9])"/>
         <!-- The unspecified address -->
         <xs:pattern value="::"/>
       </xs:restriction>
     </xs:simpleType>
        
     <!-- IPv4 format definition -->
     <xs:simpleType name="IPv4AddressType">
       <xs:restriction base="xs:token">
         <xs:pattern value="(25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?[0-9])\.
                            (25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?[0-9])\.
                            (25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?[0-9])\.
                            (25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?[0-9])"/>
       </xs:restriction>
     </xs:simpleType>
        
     <!-- IPv4 format definition -->
     <xs:simpleType name="IPv4AddressType">
       <xs:restriction base="xs:token">
         <xs:pattern value="(25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?[0-9])\.
                            (25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?[0-9])\.
                            (25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?[0-9])\.
                            (25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?[0-9])"/>
       </xs:restriction>
     </xs:simpleType>
        
     <!-- MAC address (EUI-48) or EUI-64 address -->
     <xs:simpleType name="macAddressType">
       <xs:restriction base="xs:token">
         <xs:pattern
     value="[\da-fA-F]{2}(-[\da-fA-F]{2}){5}((-[\da-fA-F]{2}){2})?"/>
       </xs:restriction>
     </xs:simpleType>
   </xs:schema>
        
     <!-- MAC address (EUI-48) or EUI-64 address -->
     <xs:simpleType name="macAddressType">
       <xs:restriction base="xs:token">
         <xs:pattern
     value="[\da-fA-F]{2}(-[\da-fA-F]{2}){5}((-[\da-fA-F]{2}){2})?"/>
       </xs:restriction>
     </xs:simpleType>
   </xs:schema>
        

Base Types Schema

基类型模式

8.4. LLDP Measurement Schema
8.4. LLDP测量方案
   <?xml version="1.0"?>
   <xs:schema
       xmlns:lldp="urn:ietf:params:xml:ns:geopriv:lm:lldp"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:lldp"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
   <?xml version="1.0"?>
   <xs:schema
       xmlns:lldp="urn:ietf:params:xml:ns:geopriv:lm:lldp"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:lldp"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:lldp">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of LLDP location measurements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:lldp">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of LLDP location measurements.
       </xs:documentation>
     </xs:annotation>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
     <xs:element name="lldp" type="lldp:lldpMeasurementType"/>
     <xs:complexType name="lldpMeasurementType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="chassis" type="lldp:lldpDataType"/>
             <xs:element name="port" type="lldp:lldpDataType"/>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:element name="lldp" type="lldp:lldpMeasurementType"/>
     <xs:complexType name="lldpMeasurementType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="chassis" type="lldp:lldpDataType"/>
             <xs:element name="port" type="lldp:lldpDataType"/>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="lldpDataType">
       <xs:simpleContent>
         <xs:extension base="lldp:lldpOctetStringType">
           <xs:attribute name="type" type="bt:byteType"
                         use="required"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
        
     <xs:complexType name="lldpDataType">
       <xs:simpleContent>
         <xs:extension base="lldp:lldpOctetStringType">
           <xs:attribute name="type" type="bt:byteType"
                         use="required"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
        
     <xs:simpleType name="lldpOctetStringType">
       <xs:restriction base="xs:hexBinary">
         <xs:minLength value="1"/>
         <xs:maxLength value="255"/>
       </xs:restriction>
     </xs:simpleType>
   </xs:schema>
        
     <xs:simpleType name="lldpOctetStringType">
       <xs:restriction base="xs:hexBinary">
         <xs:minLength value="1"/>
         <xs:maxLength value="255"/>
       </xs:restriction>
     </xs:simpleType>
   </xs:schema>
        

LLDP Measurement Schema

LLDP测量方案

8.5. DHCP Measurement Schema
8.5. DHCP测量模式
   <?xml version="1.0"?>
   <xs:schema
       xmlns:dhcp="urn:ietf:params:xml:ns:geopriv:lm:dhcp"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:dhcp"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
   <?xml version="1.0"?>
   <xs:schema
       xmlns:dhcp="urn:ietf:params:xml:ns:geopriv:lm:dhcp"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:dhcp"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:dhcp">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of DHCP location measurements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:dhcp">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of DHCP location measurements.
       </xs:documentation>
     </xs:annotation>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
     <!-- DHCP Relay Agent Information option -->
     <xs:element name="dhcp-rai" type="dhcp:dhcpType"/>
     <xs:complexType name="dhcpType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="giaddr" type="bt:ipAddressType"/>
             <xs:element name="circuit"
                         type="xs:hexBinary" minOccurs="0"/>
             <xs:element name="remote"
                         type="dhcp:dhcpRemoteType" minOccurs="0"/>
             <xs:element name="subscriber"
                         type="xs:hexBinary" minOccurs="0"/>
        
     <!-- DHCP Relay Agent Information option -->
     <xs:element name="dhcp-rai" type="dhcp:dhcpType"/>
     <xs:complexType name="dhcpType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="giaddr" type="bt:ipAddressType"/>
             <xs:element name="circuit"
                         type="xs:hexBinary" minOccurs="0"/>
             <xs:element name="remote"
                         type="dhcp:dhcpRemoteType" minOccurs="0"/>
             <xs:element name="subscriber"
                         type="xs:hexBinary" minOccurs="0"/>
        
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="dhcpRemoteType">
       <xs:simpleContent>
         <xs:extension base="xs:hexBinary">
           <xs:attribute name="enterprise" type="xs:positiveInteger"
                         use="optional"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
   </xs:schema>
        
     <xs:complexType name="dhcpRemoteType">
       <xs:simpleContent>
         <xs:extension base="xs:hexBinary">
           <xs:attribute name="enterprise" type="xs:positiveInteger"
                         use="optional"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
   </xs:schema>
        

DHCP Measurement Schema

DHCP测量模式

8.6. WiFi Measurement Schema
8.6. WiFi测量方案
   <?xml version="1.0"?>
   <xs:schema
       xmlns:wifi="urn:ietf:params:xml:ns:geopriv:lm:wifi"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:gml="http://www.opengis.net/gml"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:wifi"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
   <?xml version="1.0"?>
   <xs:schema
       xmlns:wifi="urn:ietf:params:xml:ns:geopriv:lm:wifi"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:gml="http://www.opengis.net/gml"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:wifi"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:wifi">
         802.11 location measurements
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a basic set of 802.11 location
           measurements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:wifi">
         802.11 location measurements
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a basic set of 802.11 location
           measurements.
       </xs:documentation>
     </xs:annotation>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
     <xs:import namespace="http://www.opengis.net/gml"/>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
     <xs:import namespace="http://www.opengis.net/gml"/>
        
     <xs:element name="wifi" type="wifi:wifiNetworkType"/>
        
     <xs:element name="wifi" type="wifi:wifiNetworkType"/>
        
     <xs:complexType name="wifiNetworkType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="nicType" type="xs:token"
                         minOccurs="0"/>
             <xs:element name="ap" type="wifi:wifiType"
                         maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="wifiNetworkType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="nicType" type="xs:token"
                         minOccurs="0"/>
             <xs:element name="ap" type="wifi:wifiType"
                         maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="wifiType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="bssid" type="wifi:bssidType"/>
             <xs:element name="ssid" type="wifi:ssidType"
                         minOccurs="0"/>
             <xs:element name="channel" type="xs:nonNegativeInteger"
                         minOccurs="0"/>
             <xs:element name="location" minOccurs="0"
                         type="xs:anyType"/>
             <xs:element name="type" type="wifi:networkType"
                         minOccurs="0"/>
             <xs:element name="regclass" type="wifi:regclassType"
                         minOccurs="0"/>
             <xs:element name="antenna" type="wifi:octetType"
                         minOccurs="0"/>
             <xs:element name="flightTime" minOccurs="0"
                         type="bt:nnDoubleWithRMSError"/>
             <xs:element name="apSignal" type="wifi:signalType"
                         minOccurs="0"/>
             <xs:element name="deviceSignal" type="wifi:signalType"
                         minOccurs="0"/>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:attribute name="serving" type="xs:boolean"
                         default="false"/>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
        
     <xs:complexType name="wifiType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="bssid" type="wifi:bssidType"/>
             <xs:element name="ssid" type="wifi:ssidType"
                         minOccurs="0"/>
             <xs:element name="channel" type="xs:nonNegativeInteger"
                         minOccurs="0"/>
             <xs:element name="location" minOccurs="0"
                         type="xs:anyType"/>
             <xs:element name="type" type="wifi:networkType"
                         minOccurs="0"/>
             <xs:element name="regclass" type="wifi:regclassType"
                         minOccurs="0"/>
             <xs:element name="antenna" type="wifi:octetType"
                         minOccurs="0"/>
             <xs:element name="flightTime" minOccurs="0"
                         type="bt:nnDoubleWithRMSError"/>
             <xs:element name="apSignal" type="wifi:signalType"
                         minOccurs="0"/>
             <xs:element name="deviceSignal" type="wifi:signalType"
                         minOccurs="0"/>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:attribute name="serving" type="xs:boolean"
                         default="false"/>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
        
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="bssidType">
       <xs:simpleContent>
         <xs:extension base="bt:macAddressType">
           <xs:attribute name="verified" type="xs:boolean"
                         default="false"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
        
     <xs:complexType name="bssidType">
       <xs:simpleContent>
         <xs:extension base="bt:macAddressType">
           <xs:attribute name="verified" type="xs:boolean"
                         default="false"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
        
     <!-- Note that this pattern does not prevent multibyte UTF-8
          sequences that result in an SSID longer than 32 octets. -->
     <xs:simpleType name="ssidType">
       <xs:restriction base="xs:token">
         <xs:pattern value="(\\[\da-fA-F]{2}|[^\\]){0,32}"/>
       </xs:restriction>
     </xs:simpleType>
        
     <!-- Note that this pattern does not prevent multibyte UTF-8
          sequences that result in an SSID longer than 32 octets. -->
     <xs:simpleType name="ssidType">
       <xs:restriction base="xs:token">
         <xs:pattern value="(\\[\da-fA-F]{2}|[^\\]){0,32}"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="networkType">
       <xs:restriction base="xs:token">
         <xs:pattern value="[a-zA-Z]+"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="networkType">
       <xs:restriction base="xs:token">
         <xs:pattern value="[a-zA-Z]+"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:complexType name="regclassType">
       <xs:simpleContent>
         <xs:extension base="wifi:octetType">
           <xs:attribute name="country">
             <xs:simpleType>
               <xs:restriction base="xs:token">
                 <xs:pattern value="[A-Z]{2}[OIX]?"/>
               </xs:restriction>
             </xs:simpleType>
           </xs:attribute>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
        
     <xs:complexType name="regclassType">
       <xs:simpleContent>
         <xs:extension base="wifi:octetType">
           <xs:attribute name="country">
             <xs:simpleType>
               <xs:restriction base="xs:token">
                 <xs:pattern value="[A-Z]{2}[OIX]?"/>
               </xs:restriction>
             </xs:simpleType>
           </xs:attribute>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
        
     <xs:simpleType name="octetType">
       <xs:restriction base="xs:nonNegativeInteger">
         <xs:maxInclusive value="255"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="octetType">
       <xs:restriction base="xs:nonNegativeInteger">
         <xs:maxInclusive value="255"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:complexType name="signalType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="transmit" type="xs:double"
                         minOccurs="0"/>
             <xs:element name="gain" type="xs:double" minOccurs="0"/>
             <xs:element name="rcpi" type="wifi:rssiType"
                         minOccurs="0"/>
             <xs:element name="rsni" type="bt:doubleWithRMSError"
                         minOccurs="0"/>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="signalType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="transmit" type="xs:double"
                         minOccurs="0"/>
             <xs:element name="gain" type="xs:double" minOccurs="0"/>
             <xs:element name="rcpi" type="wifi:rssiType"
                         minOccurs="0"/>
             <xs:element name="rsni" type="bt:doubleWithRMSError"
                         minOccurs="0"/>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="rssiType">
       <xs:simpleContent>
         <xs:extension base="bt:doubleWithRMSError">
           <xs:attribute name="dBm" type="xs:boolean" default="true"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
        
     <xs:complexType name="rssiType">
       <xs:simpleContent>
         <xs:extension base="bt:doubleWithRMSError">
           <xs:attribute name="dBm" type="xs:boolean" default="true"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
        
     <!-- Measurement Request elements -->
     <xs:element name="type" type="wifi:networkType"/>
     <xs:element name="parameter" type="wifi:parameterType"/>
        
     <!-- Measurement Request elements -->
     <xs:element name="type" type="wifi:networkType"/>
     <xs:element name="parameter" type="wifi:parameterType"/>
        
     <xs:complexType name="parameterType">
       <xs:simpleContent>
         <xs:extension base="xs:QName">
           <xs:attribute name="context" use="optional">
             <xs:simpleType>
               <xs:restriction base="xs:token">
                 <xs:enumeration value="ap"/>
                 <xs:enumeration value="device"/>
               </xs:restriction>
             </xs:simpleType>
           </xs:attribute>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
   </xs:schema>
        
     <xs:complexType name="parameterType">
       <xs:simpleContent>
         <xs:extension base="xs:QName">
           <xs:attribute name="context" use="optional">
             <xs:simpleType>
               <xs:restriction base="xs:token">
                 <xs:enumeration value="ap"/>
                 <xs:enumeration value="device"/>
               </xs:restriction>
             </xs:simpleType>
           </xs:attribute>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>
   </xs:schema>
        

WiFi Measurement Schema

WiFi测量方案

8.7. Cellular Measurement Schema
8.7. 细胞测量模式
   <?xml version="1.0"?>
   <xs:schema
       xmlns:cell="urn:ietf:params:xml:ns:geopriv:lm:cell"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:cell"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
   <?xml version="1.0"?>
   <xs:schema
       xmlns:cell="urn:ietf:params:xml:ns:geopriv:lm:cell"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:cell"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:cell">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of cellular location measurements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:cell">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of cellular location measurements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:element name="cellular" type="cell:cellularType"/>
        
     <xs:element name="cellular" type="cell:cellularType"/>
        
     <xs:complexType name="cellularType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:choice>
               <xs:element name="servingCell" type="cell:cellType"/>
               <xs:element name="observedCell" type="cell:cellType"/>
             </xs:choice>
             <xs:element name="observedCell" type="cell:cellType"
                         minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="cellularType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:choice>
               <xs:element name="servingCell" type="cell:cellType"/>
               <xs:element name="observedCell" type="cell:cellType"/>
             </xs:choice>
             <xs:element name="observedCell" type="cell:cellType"
                         minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="cellType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:choice>
             <xs:sequence>
               <xs:element name="mcc" type="cell:mccType"/>
               <xs:element name="mnc" type="cell:mncType"/>
               <xs:choice>
                 <xs:sequence>
                   <xs:choice>
        
     <xs:complexType name="cellType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:choice>
             <xs:sequence>
               <xs:element name="mcc" type="cell:mccType"/>
               <xs:element name="mnc" type="cell:mncType"/>
               <xs:choice>
                 <xs:sequence>
                   <xs:choice>
        
                     <xs:element name="rnc" type="cell:cellIdType"/>
                     <xs:element name="lac" type="cell:cellIdType"/>
                   </xs:choice>
                   <xs:element name="cid" type="cell:cellIdType"/>
                 </xs:sequence>
                 <xs:element name="eucid" type="cell:cellIdType"/>
               </xs:choice>
               <xs:any namespace="##other" processContents="lax"
                       minOccurs="0" maxOccurs="unbounded"/>
             </xs:sequence>
             <xs:sequence>
               <xs:element name="sid" type="cell:cellIdType"/>
               <xs:element name="nid" type="cell:cellIdType"/>
               <xs:element name="baseid" type="cell:cellIdType"/>
               <xs:any namespace="##other" processContents="lax"
                       minOccurs="0" maxOccurs="unbounded"/>
             </xs:sequence>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:choice>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
                     <xs:element name="rnc" type="cell:cellIdType"/>
                     <xs:element name="lac" type="cell:cellIdType"/>
                   </xs:choice>
                   <xs:element name="cid" type="cell:cellIdType"/>
                 </xs:sequence>
                 <xs:element name="eucid" type="cell:cellIdType"/>
               </xs:choice>
               <xs:any namespace="##other" processContents="lax"
                       minOccurs="0" maxOccurs="unbounded"/>
             </xs:sequence>
             <xs:sequence>
               <xs:element name="sid" type="cell:cellIdType"/>
               <xs:element name="nid" type="cell:cellIdType"/>
               <xs:element name="baseid" type="cell:cellIdType"/>
               <xs:any namespace="##other" processContents="lax"
                       minOccurs="0" maxOccurs="unbounded"/>
             </xs:sequence>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:choice>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:simpleType name="mccType">
       <xs:restriction base="xs:token">
         <xs:pattern value="[0-9]{3}"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="mccType">
       <xs:restriction base="xs:token">
         <xs:pattern value="[0-9]{3}"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="mncType">
       <xs:restriction base="xs:token">
         <xs:pattern value="[0-9]{2,3}"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="mncType">
       <xs:restriction base="xs:token">
         <xs:pattern value="[0-9]{2,3}"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="cellIdType">
       <xs:restriction base="xs:nonNegativeInteger">
         <xs:maxInclusive value="268435455"/> <!-- 2^28 (eucid) -->
       </xs:restriction>
     </xs:simpleType>
        
     <xs:simpleType name="cellIdType">
       <xs:restriction base="xs:nonNegativeInteger">
         <xs:maxInclusive value="268435455"/> <!-- 2^28 (eucid) -->
       </xs:restriction>
     </xs:simpleType>
        
     <!-- Measurement Request elements -->
     <xs:element name="type" type="cell:typeType"/>
     <xs:simpleType name="typeType">
       <xs:restriction base="xs:token">
         <xs:enumeration value="gsm"/>
         <xs:enumeration value="umts"/>
        
     <!-- Measurement Request elements -->
     <xs:element name="type" type="cell:typeType"/>
     <xs:simpleType name="typeType">
       <xs:restriction base="xs:token">
         <xs:enumeration value="gsm"/>
         <xs:enumeration value="umts"/>
        
         <xs:enumeration value="lte"/>
         <xs:enumeration value="cdma"/>
       </xs:restriction>
     </xs:simpleType>
        
         <xs:enumeration value="lte"/>
         <xs:enumeration value="cdma"/>
       </xs:restriction>
     </xs:simpleType>
        
     <xs:element name="network" type="cell:networkType"/>
     <xs:complexType name="networkType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:choice>
             <xs:sequence>
               <xs:element name="mcc" type="cell:mccType"/>
               <xs:element name="mnc" type="cell:mncType"/>
             </xs:sequence>
             <xs:element name="nid" type="cell:cellIdType"/>
           </xs:choice>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
   </xs:schema>
        
     <xs:element name="network" type="cell:networkType"/>
     <xs:complexType name="networkType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:choice>
             <xs:sequence>
               <xs:element name="mcc" type="cell:mccType"/>
               <xs:element name="mnc" type="cell:mncType"/>
             </xs:sequence>
             <xs:element name="nid" type="cell:cellIdType"/>
           </xs:choice>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
   </xs:schema>
        

Cellular Measurement Schema

细胞测量模式

8.8. GNSS Measurement Schema
8.8. 全球导航卫星系统测量方案
   <?xml version="1.0"?>
   <xs:schema
       xmlns:gnss="urn:ietf:params:xml:ns:geopriv:lm:gnss"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:gnss"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
   <?xml version="1.0"?>
   <xs:schema
       xmlns:gnss="urn:ietf:params:xml:ns:geopriv:lm:gnss"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:gnss"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:gnss">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of GNSS location measurements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:gnss">
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a set of GNSS location measurements.
       </xs:documentation>
     </xs:annotation>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
     <!-- GNSS -->
     <xs:element name="gnss" type="gnss:gnssMeasurementType">
       <xs:unique name="gnssSatellite">
         <xs:selector xpath="sat"/>
         <xs:field xpath="@num"/>
       </xs:unique>
     </xs:element>
        
     <!-- GNSS -->
     <xs:element name="gnss" type="gnss:gnssMeasurementType">
       <xs:unique name="gnssSatellite">
         <xs:selector xpath="sat"/>
         <xs:field xpath="@num"/>
       </xs:unique>
     </xs:element>
        
     <xs:complexType name="gnssMeasurementType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="gnssTime" type="bt:nnDoubleWithRMSError"
                         minOccurs="0"/>
             <xs:element name="sat" type="gnss:gnssSatelliteType"
                         minOccurs="1" maxOccurs="64"/>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:attribute name="system" type="xs:token" use="required"/>
           <xs:attribute name="signal" type="xs:token"/>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="gnssMeasurementType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="gnssTime" type="bt:nnDoubleWithRMSError"
                         minOccurs="0"/>
             <xs:element name="sat" type="gnss:gnssSatelliteType"
                         minOccurs="1" maxOccurs="64"/>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:attribute name="system" type="xs:token" use="required"/>
           <xs:attribute name="signal" type="xs:token"/>
           <xs:anyAttribute namespace="##any" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="gnssSatelliteType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="doppler" type="bt:doubleWithRMSError"/>
             <xs:element name="codephase"
                         type="bt:nnDoubleWithRMSError"/>
             <xs:element name="cn0" type="bt:nonNegativeDouble"/>
             <xs:element name="mp" type="bt:positiveDouble"
                         minOccurs="0"/>
             <xs:element name="cq" type="gnss:codePhaseQualityType"
                         minOccurs="0"/>
             <xs:element name="adr" type="xs:double" minOccurs="0"/>
           </xs:sequence>
           <xs:attribute name="num" type="xs:positiveInteger"
                         use="required"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="gnssSatelliteType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="doppler" type="bt:doubleWithRMSError"/>
             <xs:element name="codephase"
                         type="bt:nnDoubleWithRMSError"/>
             <xs:element name="cn0" type="bt:nonNegativeDouble"/>
             <xs:element name="mp" type="bt:positiveDouble"
                         minOccurs="0"/>
             <xs:element name="cq" type="gnss:codePhaseQualityType"
                         minOccurs="0"/>
             <xs:element name="adr" type="xs:double" minOccurs="0"/>
           </xs:sequence>
           <xs:attribute name="num" type="xs:positiveInteger"
                         use="required"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:complexType name="codePhaseQualityType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:attribute name="continuous" type="xs:boolean"
                         default="true"/>
           <xs:attribute name="direct" use="required">
             <xs:simpleType>
               <xs:restriction base="xs:token">
                 <xs:enumeration value="direct"/>
                 <xs:enumeration value="inverted"/>
               </xs:restriction>
             </xs:simpleType>
           </xs:attribute>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
   </xs:schema>
        
     <xs:complexType name="codePhaseQualityType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:attribute name="continuous" type="xs:boolean"
                         default="true"/>
           <xs:attribute name="direct" use="required">
             <xs:simpleType>
               <xs:restriction base="xs:token">
                 <xs:enumeration value="direct"/>
                 <xs:enumeration value="inverted"/>
               </xs:restriction>
             </xs:simpleType>
           </xs:attribute>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
   </xs:schema>
        

GNSS Measurement Schema

全球导航卫星系统测量方案

8.9. DSL Measurement Schema
8.9. DSL测量模式
   <?xml version="1.0"?>
   <xs:schema
       xmlns:dsl="urn:ietf:params:xml:ns:geopriv:lm:dsl"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:dsl"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
   <?xml version="1.0"?>
   <xs:schema
       xmlns:dsl="urn:ietf:params:xml:ns:geopriv:lm:dsl"
       xmlns:bt="urn:ietf:params:xml:ns:geopriv:lm:basetypes"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       targetNamespace="urn:ietf:params:xml:ns:geopriv:lm:dsl"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:dsl">
         DSL measurement definitions
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a basic set of DSL location measurements.
       </xs:documentation>
     </xs:annotation>
        
     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:geopriv:lm:dsl">
         DSL measurement definitions
       </xs:appinfo>
       <xs:documentation
           source="http://www.rfc-editor.org/rfc/rfc7105.txt">
           This schema defines a basic set of DSL location measurements.
       </xs:documentation>
     </xs:annotation>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
    <xs:import namespace="urn:ietf:params:xml:ns:geopriv:lm:basetypes"/>
        
     <xs:element name="dsl" type="dsl:dslVlanType"/>
     <xs:complexType name="dslVlanType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:choice>
             <xs:element name="l2tp">
               <xs:complexType>
                 <xs:complexContent>
                   <xs:restriction base="xs:anyType">
                     <xs:sequence>
                       <xs:element name="src" type="bt:ipAddressType"/>
                       <xs:element name="dest" type="bt:ipAddressType"/>
                       <xs:element name="session"
                                   type="xs:nonNegativeInteger"/>
                     </xs:sequence>
                   </xs:restriction>
                 </xs:complexContent>
               </xs:complexType>
             </xs:element>
             <xs:sequence>
               <xs:element name="an" type="xs:token"/>
               <xs:group ref="dsl:dslSlotPort"/>
             </xs:sequence>
             <xs:sequence>
               <xs:element name="stag" type="dsl:vlanIDType"/>
               <xs:choice>
                 <xs:sequence>
                   <xs:element name="ctag" type="dsl:vlanIDType"/>
                   <xs:group ref="dsl:dslSlotPort" minOccurs="0"/>
                 </xs:sequence>
                 <xs:group ref="dsl:dslSlotPort"/>
               </xs:choice>
             </xs:sequence>
             <xs:sequence>
               <xs:element name="vpi" type="bt:byteType"/>
               <xs:element name="vci" type="bt:twoByteType"/>
             </xs:sequence>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:choice>
           <xs:anyAttribute namespace="##other" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:element name="dsl" type="dsl:dslVlanType"/>
     <xs:complexType name="dslVlanType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:choice>
             <xs:element name="l2tp">
               <xs:complexType>
                 <xs:complexContent>
                   <xs:restriction base="xs:anyType">
                     <xs:sequence>
                       <xs:element name="src" type="bt:ipAddressType"/>
                       <xs:element name="dest" type="bt:ipAddressType"/>
                       <xs:element name="session"
                                   type="xs:nonNegativeInteger"/>
                     </xs:sequence>
                   </xs:restriction>
                 </xs:complexContent>
               </xs:complexType>
             </xs:element>
             <xs:sequence>
               <xs:element name="an" type="xs:token"/>
               <xs:group ref="dsl:dslSlotPort"/>
             </xs:sequence>
             <xs:sequence>
               <xs:element name="stag" type="dsl:vlanIDType"/>
               <xs:choice>
                 <xs:sequence>
                   <xs:element name="ctag" type="dsl:vlanIDType"/>
                   <xs:group ref="dsl:dslSlotPort" minOccurs="0"/>
                 </xs:sequence>
                 <xs:group ref="dsl:dslSlotPort"/>
               </xs:choice>
             </xs:sequence>
             <xs:sequence>
               <xs:element name="vpi" type="bt:byteType"/>
               <xs:element name="vci" type="bt:twoByteType"/>
             </xs:sequence>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:choice>
           <xs:anyAttribute namespace="##other" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>
        
     <xs:simpleType name="vlanIDType">
       <xs:restriction base="xs:nonNegativeInteger">
         <xs:maxInclusive value="4095"/>
       </xs:restriction>
     </xs:simpleType>
     <xs:group name="dslSlotPort">
       <xs:sequence>
         <xs:element name="slot" type="xs:token"/>
         <xs:element name="port" type="xs:token"/>
       </xs:sequence>
     </xs:group>
   </xs:schema>
        
     <xs:simpleType name="vlanIDType">
       <xs:restriction base="xs:nonNegativeInteger">
         <xs:maxInclusive value="4095"/>
       </xs:restriction>
     </xs:simpleType>
     <xs:group name="dslSlotPort">
       <xs:sequence>
         <xs:element name="slot" type="xs:token"/>
         <xs:element name="port" type="xs:token"/>
       </xs:sequence>
     </xs:group>
   </xs:schema>
        

DSL Measurement Schema

DSL测量模式

9. IANA Considerations
9. IANA考虑

This section creates a registry for GNSS types (Section 5.5) and registers the namespaces and schemas defined in Section 8.

本节为GNSS类型创建注册表(第5.5节),并注册第8节中定义的名称空间和模式。

9.1. IANA Registry for GNSS Types
9.1. 全球导航卫星系统类型IANA登记册

This document establishes a new IANA registry for "Global Navigation Satellite System (GNSS)" types. The registry includes tokens for the GNSS type and for each of the signals within that type. Referring to [RFC5226], this registry operates under "Specification Required" rules. The IESG will appoint an Expert Reviewer who will advise IANA promptly on each request for a new or updated GNSS type.

本文件为“全球导航卫星系统(GNSS)”类型建立了新的IANA登记册。注册表包括GNSS类型和该类型内每个信号的令牌。参考[RFC5226],该注册表按照“要求规范”规则运行。IESG将任命一名专家评审员,该评审员将在每次提出新的或更新的GNSS类型的请求时立即向IANA提供建议。

Each entry in the registry requires the following information:

注册表中的每个条目都需要以下信息:

GNSS Name: the name of the GNSS

全球导航卫星系统名称:全球导航卫星系统的名称

Brief Description: a brief description of the GNSS

简要说明:全球导航卫星系统的简要说明

GNSS Token: a token that can be used to identify the GNSS

GNSS令牌:可用于标识GNSS的令牌

Signals: a set of tokens that represent each of the signals that the system provides

信号:表示系统提供的每个信号的一组令牌

Documentation Reference: a reference to one or more stable, public specifications that outline usage of the GNSS, including (but not limited to) signal specifications and time systems

文件参考:一个或多个概述全球导航卫星系统使用情况的稳定的公共规范的参考,包括(但不限于)信号规范和时间系统

The registry initially includes two registrations:

注册处最初包括两个注册:

GNSS Name: Global Positioning System (GPS)

全球导航卫星系统名称:全球定位系统(GPS)

Brief Description: a system of satellites that use spread-spectrum transmission, operated by the US military for commercial and military applications

简要说明:一种使用扩频传输的卫星系统,由美国军方操作,用于商业和军事应用

GNSS Token: gps

全球导航卫星系统令牌:全球定位系统

Signals: L1, L2, L1C, L2C, L5

信号:L1、L2、L1C、L2C、L5

Documentation Reference: Navstar GPS Space Segment/Navigation User Interface [GPS.ICD]

文件参考:Navstar GPS空间段/导航用户界面[GPS.ICD]

GNSS Name: Galileo

全球导航卫星系统名称:伽利略

Brief Description: a system of satellites that operate in the same spectrum as GPS, operated by the European Union for commercial applications

简要说明:一种卫星系统,在与GPS相同的频谱内运行,由欧盟运营,用于商业应用

GNSS Token: galileo

全球导航卫星系统令牌:伽利略

Signals: L1, E5A, E5B, E5A+B, E6

信号:L1、E5A、E5B、E5A+B、E6

Documentation Reference: Galileo Open Service Signal In Space Interface Control Document (SIS ICD) [Galileo.ICD]

文件参考:伽利略空间开放服务信号接口控制文件(SIS ICD)[Galileo.ICD]

9.2.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc
        
9.2.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc
        

This section registers a new XML namespace, "urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc", as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册了一个新的XML名称空间“urn:ietf:params:XML:ns:pidf:geopriv10:lmsrc”。

      URI: urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc
        
      URI: urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

XML:

XML:

         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>Measurement Source for PIDF-LO</title>
         </head>
        
         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>Measurement Source for PIDF-LO</title>
         </head>
        
         <body>
           <h1>Namespace for Location Measurement Source</h1>
           <h2>urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
         <body>
           <h1>Namespace for Location Measurement Source</h1>
           <h2>urn:ietf:params:xml:ns:pidf:geopriv10:lmsrc</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
9.3.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm
        
9.3.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm
        

This section registers a new XML namespace, "urn:ietf:params:xml:ns:geopriv:lm", as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册了一个新的XML名称空间“urn:ietf:params:XML:ns:geopriv:lm”。

      URI: urn:ietf:params:xml:ns:geopriv:lm
        
      URI: urn:ietf:params:xml:ns:geopriv:lm
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

XML:

XML:

         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>Measurement Container</title>
         </head>
         <body>
           <h1>Namespace for Location Measurement Container</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>Measurement Container</title>
         </head>
         <body>
           <h1>Namespace for Location Measurement Container</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
9.4.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:basetypes
        
9.4.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:basetypes
        

This section registers a new XML namespace, "urn:ietf:params:xml:ns:geopriv:lm:basetypes", as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册了一个新的XML名称空间“urn:ietf:params:XML:ns:geopriv:lm:basetypes”。

      URI: urn:ietf:params:xml:ns:geopriv:lm:basetypes
        
      URI: urn:ietf:params:xml:ns:geopriv:lm:basetypes
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

XML:

XML:

         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>Base Device Types</title>
         </head>
         <body>
           <h1>Namespace for Base Types</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:basetypes</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>Base Device Types</title>
         </head>
         <body>
           <h1>Namespace for Base Types</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:basetypes</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
9.5.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:lldp
        
9.5.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:lldp
        

This section registers a new XML namespace, "urn:ietf:params:xml:ns:geopriv:lm:lldp", as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册了一个新的XML名称空间“urn:ietf:params:XML:ns:geopriv:lm:lldp”。

      URI: urn:ietf:params:xml:ns:geopriv:lm:lldp
        
      URI: urn:ietf:params:xml:ns:geopriv:lm:lldp
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

XML:

XML:

         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>LLDP Measurement Set</title>
         </head>
        
         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>LLDP Measurement Set</title>
         </head>
        
         <body>
           <h1>Namespace for LLDP Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:lldp</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
         <body>
           <h1>Namespace for LLDP Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:lldp</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
9.6.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:dhcp
        
9.6.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:dhcp
        

This section registers a new XML namespace, "urn:ietf:params:xml:ns:geopriv:lm:dhcp", as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册了一个新的XML名称空间“urn:ietf:params:XML:ns:geopriv:lm:dhcp”。

      URI: urn:ietf:params:xml:ns:geopriv:lm:dhcp
        
      URI: urn:ietf:params:xml:ns:geopriv:lm:dhcp
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

XML:

XML:

         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>DHCP Measurement Set</title>
         </head>
         <body>
           <h1>Namespace for DHCP Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:dhcp</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>DHCP Measurement Set</title>
         </head>
         <body>
           <h1>Namespace for DHCP Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:dhcp</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
9.7.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:wifi
        
9.7.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:wifi
        

This section registers a new XML namespace, "urn:ietf:params:xml:ns:geopriv:lm:wifi", as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册了一个新的XML名称空间“urn:ietf:params:XML:ns:geopriv:lm:wifi”。

      URI: urn:ietf:params:xml:ns:geopriv:lm:wifi
        
      URI: urn:ietf:params:xml:ns:geopriv:lm:wifi
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

XML:

XML:

         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>WiFi Measurement Set</title>
         </head>
         <body>
           <h1>Namespace for WiFi Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:wifi</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>WiFi Measurement Set</title>
         </head>
         <body>
           <h1>Namespace for WiFi Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:wifi</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
9.8.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:cell
        
9.8.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:cell
        

This section registers a new XML namespace, "urn:ietf:params:xml:ns:geopriv:lm:cell", as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册了一个新的XML名称空间“urn:ietf:params:XML:ns:geopriv:lm:cell”。

      URI: urn:ietf:params:xml:ns:geopriv:lm:cell
        
      URI: urn:ietf:params:xml:ns:geopriv:lm:cell
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

XML:

XML:

         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>Cellular Measurement Set</title>
         </head>
        
         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>Cellular Measurement Set</title>
         </head>
        
         <body>
           <h1>Namespace for Cellular Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:cell</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
         <body>
           <h1>Namespace for Cellular Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:cell</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
9.9.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:gnss
        
9.9.  URN Sub-Namespace Registration for
      urn:ietf:params:xml:ns:geopriv:lm:gnss
        

This section registers a new XML namespace, "urn:ietf:params:xml:ns:geopriv:lm:gnss", as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册了一个新的XML名称空间“urn:ietf:params:XML:ns:geopriv:lm:gnss”。

      URI: urn:ietf:params:xml:ns:geopriv:lm:gnss
        
      URI: urn:ietf:params:xml:ns:geopriv:lm:gnss
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

XML:

XML:

         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>GNSS Measurement Set</title>
         </head>
         <body>
           <h1>Namespace for GNSS Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:gnss</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>GNSS Measurement Set</title>
         </head>
         <body>
           <h1>Namespace for GNSS Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:gnss</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
9.10.  URN Sub-Namespace Registration for
       urn:ietf:params:xml:ns:geopriv:lm:dsl
        
9.10.  URN Sub-Namespace Registration for
       urn:ietf:params:xml:ns:geopriv:lm:dsl
        

This section registers a new XML namespace, "urn:ietf:params:xml:ns:geopriv:lm:dsl", as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册了一个新的XML名称空间“urn:ietf:params:XML:ns:geopriv:lm:dsl”。

      URI: urn:ietf:params:xml:ns:geopriv:lm:dsl
        
      URI: urn:ietf:params:xml:ns:geopriv:lm:dsl
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

XML:

XML:

         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>DSL Measurement Set</title>
         </head>
         <body>
           <h1>Namespace for DSL Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:dsl</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
         BEGIN
       <?xml version="1.0"?>
       <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
       <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
         <head>
           <title>DSL Measurement Set</title>
         </head>
         <body>
           <h1>Namespace for DSL Measurement Set</h1>
           <h2>urn:ietf:params:xml:ns:geopriv:lm:dsl</h2>
           <p>See <a href="http://www.rfc-editor.org/rfc/rfc7105.txt">
              RFC 7105</a>.</p>
         </body>
       </html>
         END
        
9.11. XML Schema Registration for Measurement Source Schema
9.11. 测量源架构的XML架构注册

This section registers an XML schema as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册XML模式。

   URI:  urn:ietf:params:xml:schema:pidf:geopriv10:lmsrc
        
   URI:  urn:ietf:params:xml:schema:pidf:geopriv10:lmsrc
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

Schema: The XML for this schema can be found in Section 8.2 of this document.

模式:此模式的XML可在本文档第8.2节中找到。

9.12. XML Schema Registration for Measurement Container Schema
9.12. 度量容器架构的XML架构注册

This section registers an XML schema as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册XML模式。

   URI:  urn:ietf:params:xml:schema:geopriv:lm
        
   URI:  urn:ietf:params:xml:schema:geopriv:lm
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

Schema: The XML for this schema can be found in Section 8.1 of this document.

模式:此模式的XML可在本文档第8.1节中找到。

9.13. XML Schema Registration for Base Types Schema
9.13. 基本模式类型的XML模式注册

This section registers an XML schema as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册XML模式。

   URI:  urn:ietf:params:xml:schema:geopriv:lm:basetypes
        
   URI:  urn:ietf:params:xml:schema:geopriv:lm:basetypes
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

Schema: The XML for this schema can be found in Section 8.3 of this document.

模式:此模式的XML可在本文档第8.3节中找到。

9.14. XML Schema Registration for LLDP Schema
9.14. LLDP模式的XML模式注册

This section registers an XML schema as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册XML模式。

   URI:  urn:ietf:params:xml:schema:geopriv:lm:lldp
        
   URI:  urn:ietf:params:xml:schema:geopriv:lm:lldp
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

Schema: The XML for this schema can be found in Section 8.4 of this document.

模式:此模式的XML可在本文档第8.4节中找到。

9.15. XML Schema Registration for DHCP Schema
9.15. DHCP模式的XML模式注册

This section registers an XML schema as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册XML模式。

   URI:  urn:ietf:params:xml:schema:geopriv:lm:dhcp
        
   URI:  urn:ietf:params:xml:schema:geopriv:lm:dhcp
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

Schema: The XML for this schema can be found in Section 8.5 of this document.

模式:此模式的XML可在本文档第8.5节中找到。

9.16. XML Schema Registration for WiFi Schema
9.16. WiFi模式的XML模式注册

This section registers an XML schema as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册XML模式。

   URI:  urn:ietf:params:xml:schema:geopriv:lm:wifi
        
   URI:  urn:ietf:params:xml:schema:geopriv:lm:wifi
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

Schema: The XML for this schema can be found in Section 8.6 of this document.

模式:此模式的XML可在本文档第8.6节中找到。

9.17. XML Schema Registration for Cellular Schema
9.17. 蜂窝模式的XML模式注册

This section registers an XML schema as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册XML模式。

   URI:  urn:ietf:params:xml:schema:geopriv:lm:cell
        
   URI:  urn:ietf:params:xml:schema:geopriv:lm:cell
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

Schema: The XML for this schema can be found in Section 8.7 of this document.

模式:此模式的XML可在本文档第8.7节中找到。

9.18. XML Schema Registration for GNSS Schema
9.18. GNSS模式的XML模式注册

This section registers an XML schema as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册XML模式。

   URI:  urn:ietf:params:xml:schema:geopriv:lm:gnss
        
   URI:  urn:ietf:params:xml:schema:geopriv:lm:gnss
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

Schema: The XML for this schema can be found in Section 8.8 of this document.

模式:此模式的XML可在本文档第8.8节中找到。

9.19. XML Schema Registration for DSL Schema
9.19. DSL模式的XML模式注册

This section registers an XML schema as per the guidelines in [RFC3688].

本节根据[RFC3688]中的指南注册XML模式。

   URI:  urn:ietf:params:xml:schema:geopriv:lm:dsl
        
   URI:  urn:ietf:params:xml:schema:geopriv:lm:dsl
        

Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@gmail.com).

注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@gmail.com).

Schema: The XML for this schema can be found in Section 8.9 of this document.

模式:此模式的XML可在本文档第8.9节中找到。

10. Acknowledgements
10. 致谢

Thanks go to Simon Cox for his comments relating to terminology; his comments have helped ensure that this document is aligned with ongoing work in the Open Geospatial Consortium (OGC). Thanks to Neil Harper for his review and comments on the GNSS sections of this

感谢Simon Cox对术语的评论;他的评论有助于确保本文件与开放地理空间联盟(OGC)正在进行的工作保持一致。感谢尼尔·哈珀(Neil Harper)对本书GNSS部分的回顾和评论

document. Thanks to Noor-E-Gagan Singh, Gabor Bajko, Russell Priebe, and Khalid Al-Mufti for their significant input to, and suggestions for, improving the 802.11 measurements. Thanks to Cullen Jennings for feedback and suggestions. Bernard Aboba provided review and feedback on a range of measurement data definitions. Mary Barnes and Geoff Thompson provided a review and corrections. David Waitzman and John Bressler both noted shortcomings with 802.11 measurements. Keith Drage and Darren Pawson provided expert LTE knowledge.

文件感谢Noor-E-Gagan Singh、Gabor Bajko、Russell Priebe和Khalid Al-Mufti对改进802.11测量的重要投入和建议。感谢Cullen Jennings的反馈和建议。Bernard Aboba对一系列测量数据定义进行了审查和反馈。Mary Barnes和Geoff Thompson提供了回顾和更正。David Waitzman和John Bressler都指出了802.11测量的缺点。Keith Drage和Darren Pawson提供了LTE方面的专业知识。

11. References
11. 工具书类
11.1. Normative References
11.1. 规范性引用文件

[ASCII] ANSI, "US-ASCII. Coded Character Set - 7-Bit American Standard Code for Information Interchange. Standard ANSI X3.4-1986", 1986.

[ASCII]ANSI,“US-ASCII编码字符集-信息交换用7位美国标准代码。标准ANSI X3.4-1986”,1986年。

[GPS.ICD] "Navstar GPS Space Segment/Navigation User Interface", ICD GPS-200, April 2000.

[GPS.ICD]“导航星GPS空间段/导航用户界面”,ICD GPS-200,2000年4月。

[Galileo.ICD] GJU, "Galileo Open Service Signal In Space Interface Control Document (SIS ICD)", May 2006.

[Galileo.ICD]GJU,“伽利略开放式服务信号在空间接口控制文件(SIS ICD)”,2006年5月。

[IANA.enterprise] IANA, "Private Enterprise Numbers", 2014, <http://www.iana.org/assignments/enterprise-numbers>.

[IANA.enterprise]IANA,“私营企业编号”,2014年<http://www.iana.org/assignments/enterprise-numbers>.

[IEEE.80211] IEEE, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE Std 802.11-2012, March 2012.

[IEEE.80211]IEEE,“无线局域网介质访问控制(MAC)和物理层(PHY)规范”,IEEE标准802.11-2012,2012年3月。

[IEEE.8021AB] IEEE, "IEEE Standard for Local and Metropolitan Area Networks, Station and Media Access Control Connectivity Discovery", IEEE Std 802.1AB-2009, September 2009.

[IEEE.8021AB]IEEE,“局域网和城域网、站点和媒体访问控制连接发现的IEEE标准”,IEEE标准802.1AB-2009,2009年9月。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC3046] Patrick, M., "DHCP Relay Agent Information Option", RFC 3046, January 2001.

[RFC3046]Patrick,M.,“DHCP中继代理信息选项”,RFC3046,2001年1月。

[RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003.

[RFC3315]Droms,R.,Bound,J.,Volz,B.,Lemon,T.,Perkins,C.,和M.Carney,“IPv6的动态主机配置协议(DHCPv6)”,RFC3315,2003年7月。

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003.

[RFC3629]Yergeau,F.,“UTF-8,ISO 10646的转换格式”,STD 63,RFC 3629,2003年11月。

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January 2005.

[RFC3986]Berners Lee,T.,Fielding,R.,和L.Masinter,“统一资源标识符(URI):通用语法”,STD 66,RFC 3986,2005年1月。

[RFC3993] Johnson, R., Palaniappan, T., and M. Stapp, "Subscriber-ID Suboption for the Dynamic Host Configuration Protocol (DHCP) Relay Agent Option", RFC 3993, March 2005.

[RFC3993]Johnson,R.,Palaniappan,T.,和M.Stapp,“动态主机配置协议(DHCP)中继代理选项的用户ID子选项”,RFC 3993,2005年3月。

[RFC4119] Peterson, J., "A Presence-based GEOPRIV Location Object Format", RFC 4119, December 2005.

[RFC4119]Peterson,J.,“一种基于状态的GEOPRIV定位对象格式”,RFC41192005年12月。

[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, February 2006.

[RFC4291]Hinden,R.和S.Deering,“IP版本6寻址体系结构”,RFC 42912006年2月。

[RFC4580] Volz, B., "Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Agent Subscriber-ID Option", RFC 4580, June 2006.

[RFC4580]Volz,B.,“IPv6(DHCPv6)中继代理用户ID选项的动态主机配置协议”,RFC4580,2006年6月。

[RFC4649] Volz, B., "Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Agent Remote-ID Option", RFC 4649, August 2006.

[RFC4649]Volz,B.,“IPv6(DHCPv6)中继代理远程ID选项的动态主机配置协议”,RFC 4649,2006年8月。

[RFC5491] Winterbottom, J., Thomson, M., and H. Tschofenig, "GEOPRIV Presence Information Data Format Location Object (PIDF-LO) Usage Clarification, Considerations, and Recommendations", RFC 5491, March 2009.

[RFC5491]Winterbottom,J.,Thomson,M.,和H.Tschofenig,“GEOPRIV存在信息数据格式位置对象(PIDF-LO)使用说明、注意事项和建议”,RFC 54912009年3月。

[RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6 Address Text Representation", RFC 5952, August 2010.

[RFC5952]Kawamura,S.和M.Kawashima,“IPv6地址文本表示的建议”,RFC 59522010年8月。

[RFC5985] Barnes, M., "HTTP-Enabled Location Delivery (HELD)", RFC 5985, September 2010.

[RFC5985]Barnes,M.,“支持HTTP的位置传递(保留)”,RFC 59852010年9月。

[RFC5986] Thomson, M. and J. Winterbottom, "Discovering the Local Location Information Server (LIS)", RFC 5986, September 2010.

[RFC5986]Thomson,M.和J.Winterbottom,“发现本地位置信息服务器(LIS)”,RFC 59862010年9月。

[TIA-2000.5] TIA/EIA, "Upper Layer (Layer 3) Signaling Standard for cdma2000(R) Spread Spectrum Systems", TR-45.5 / TSG-C TIA-2000.5-E / C.S0005-E v1.0, September 2009.

[TIA-2000.5]TIA/EIA,“cdma2000(R)扩频系统的上层(第3层)信令标准”,TR-45.5/TSG-C TIA-2000.5-E/C.S0005-E v1.0,2009年9月。

[TS.3GPP.23.003] 3GPP, "Numbering, addressing and identification", 3GPP TS 23.003 12.0.0, September 2013, <http://www.3gpp.org/ftp/Specs/html-info/23003.htm>.

[TS.3GPP.23.003]3GPP,“编号、寻址和标识”,3GPP TS 23.003 12.0.012013年9月<http://www.3gpp.org/ftp/Specs/html-info/23003.htm>.

11.2. Informative References
11.2. 资料性引用

[ANSI-TIA-1057] ANSI/TIA, "Link Layer Discovery Protocol for Media Endpoint Devices", TIA 1057, April 2006.

[ANSI-TIA-1057]ANSI/TIA,“媒体终端设备的链路层发现协议”,TIA 1057,2006年4月。

[DSL.TR025] Wang, R., "Core Network Architecture Recommendations for Access to Legacy Data Networks over ADSL", September 1999.

[DSL.TR025]Wang,R.,“通过ADSL访问传统数据网络的核心网络架构建议”,1999年9月。

[DSL.TR101] Cohen, A. and E. Shrum, "Migration to Ethernet-Based DSL Aggregation", April 2006.

[DSL.TR101]Cohen,A.和E.Shrum,“迁移到基于以太网的DSL聚合”,2006年4月。

[GPS.SPOOF] Scott, L., "Anti-Spoofing and Authenticated Signal Architectures for Civil Navigation Signals", ION-GNSS Portland, Oregon, 2003.

[GPS.SPOOF]Scott,L.,“民用导航信号的反欺骗和认证信号架构”,俄勒冈州波特兰ION-GNSS,2003年。

[HARPER] Harper, N., "Server-side GPS and Assisted-GPS in Java", December 2009.

[哈珀]哈珀,N.,“爪哇的服务器端GPS和辅助GPS”,2009年12月。

[RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"", RFC 2661, August 1999.

[RFC2661]汤斯利,W.,瓦伦西亚,A.,鲁本斯,A.,帕尔,G.,佐恩,G.,和B.帕尔特,“第二层隧道协议“L2TP”,RFC 26611999年8月。

[RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson, "Remote Authentication Dial In User Service (RADIUS)", RFC 2865, June 2000.

[RFC2865]Rigney,C.,Willens,S.,Rubens,A.,和W.Simpson,“远程认证拨入用户服务(RADIUS)”,RFC 28652000年6月。

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, January 2004.

[RFC3688]Mealling,M.“IETF XML注册表”,BCP 81,RFC 3688,2004年1月。

[RFC3693] Cuellar, J., Morris, J., Mulligan, D., Peterson, J., and J. Polk, "Geopriv Requirements", RFC 3693, February 2004.

[RFC3693]Cuellar,J.,Morris,J.,Mulligan,D.,Peterson,J.,和J.Polk,“地质驱动要求”,RFC 3693,2004年2月。

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

[RFC5226]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。

[RFC6155] Winterbottom, J., Thomson, M., Tschofenig, H., and R. Barnes, "Use of Device Identity in HTTP-Enabled Location Delivery (HELD)", RFC 6155, March 2011.

[RFC6155]Winterbottom,J.,Thomson,M.,Tschofenig,H.,和R.Barnes,“在支持HTTP的位置交付中使用设备标识(保留)”,RFC 61552011年3月。

[RFC6280] Barnes, R., Lepinski, M., Cooper, A., Morris, J., Tschofenig, H., and H. Schulzrinne, "An Architecture for Location and Location Privacy in Internet Applications", BCP 160, RFC 6280, July 2011.

[RFC6280]Barnes,R.,Lepinski,M.,Cooper,A.,Morris,J.,Tschofenig,H.,和H.Schulzrinne,“互联网应用中的位置和位置隐私架构”,BCP 160,RFC 62802011年7月。

Authors' Addresses

作者地址

Martin Thomson Mozilla Suite 300 650 Castro Street Mountain View, CA 94041 US

美国加利福尼亚州山景城卡斯特罗街650号Martin Thomson Mozilla 300套房,邮编94041

   EMail: martin.thomson@gmail.com
        
   EMail: martin.thomson@gmail.com
        

James Winterbottom Unaffiliated AU

詹姆斯·温特巴顿非附属非盟

   EMail: a.james.winterbottom@gmail.com
        
   EMail: a.james.winterbottom@gmail.com