Internet Engineering Task Force (IETF)              H. van Helvoort, Ed.
Request for Comments: 7087                             L. Andersson, Ed.
Category: Informational                              Huawei Technologies
ISSN: 2070-1721                                         N. Sprecher, Ed.
                                            Nokia Solutions and Networks
                                                           December 2013
        
Internet Engineering Task Force (IETF)              H. van Helvoort, Ed.
Request for Comments: 7087                             L. Andersson, Ed.
Category: Informational                              Huawei Technologies
ISSN: 2070-1721                                         N. Sprecher, Ed.
                                            Nokia Solutions and Networks
                                                           December 2013
        

A Thesaurus for the Interpretation of Terminology Used in MPLS Transport Profile (MPLS-TP) Internet-Drafts and RFCs in the Context of the ITU-T's Transport Network Recommendations

在ITU-T传输网络建议的背景下,用于解释MPLS传输配置文件(MPLS-TP)互联网草案和RFC中使用的术语的词典

Abstract

摘要

The MPLS Transport Profile (MPLS-TP) is based on a profile of the MPLS and Pseudowire (PW) procedures as specified in the MPLS Traffic Engineering (MPLS-TE), PW, and Multi-Segment Pseudowire (MS-PW) architectures developed by the Internet Engineering Task Force (IETF). The International Telecommunication Union Telecommunication Standardization Sector (ITU-T) has specified a Transport Network architecture.

MPLS传输配置文件(MPLS-TP)基于互联网工程任务组(IETF)开发的MPLS流量工程(MPLS-TE)、PW和多段伪线(MS-PW)体系结构中规定的MPLS和伪线(PW)过程配置文件。国际电信联盟电信标准化部门(ITU-T)规定了一种传输网络体系结构。

This document provides a thesaurus for the interpretation of MPLS-TP terminology within the context of the ITU-T Transport Network Recommendations.

本文件提供了一个在ITU-T传输网络建议范围内解释MPLS-TP术语的同义词表。

It is important to note that MPLS-TP is applicable in a wider set of contexts than just Transport Networks. The definitions presented in this document do not provide exclusive or complete interpretations of MPLS-TP concepts. This document simply allows the MPLS-TP terms to be applied within the Transport Network context.

需要注意的是,MPLS-TP不仅适用于传输网络,还适用于更广泛的环境。本文件中给出的定义不提供MPLS-TP概念的唯一或完整解释。本文档仅允许在传输网络上下文中应用MPLS-TP术语。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7087.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7087.

Copyright Notice

版权公告

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2013 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................4
      1.1. Abbreviations ..............................................4
   2. Terminology .....................................................5
      2.1. MPLS-TP Terminology Sources ................................5
      2.2. ITU-T Transport Network Terminology Sources ................6
      2.3. Common Terminology Sources .................................6
   3. Thesaurus .......................................................6
      3.1. Associated Bidirectional Path ..............................6
      3.2. Bidirectional Path .........................................6
      3.3. Client-Layer Network .......................................6
      3.4. Communication Channel ......................................7
      3.5. Concatenated Segment .......................................7
      3.6. Control Plane ..............................................7
      3.7. Co-Routed Bidirectional Path ...............................7
      3.8. Data Communication Network (DCN) ...........................7
      3.9. Defect .....................................................8
      3.10. Domain ....................................................8
      3.11. Embedded Communication Channel (ECC) ......................8
      3.12. Equipment Management Function (EMF) .......................8
      3.13. Failure ...................................................8
      3.14. Fault .....................................................8
      3.15. Layer Network .............................................9
      3.16. Link ......................................................9
      3.17. Maintenance Entity (ME) ...................................9
      3.18. Maintenance Entity Group (MEG) ...........................10
      3.19. Maintenance Entity Group End Point (MEP) .................10
      3.20. Maintenance Entity Group Intermediate Point (MIP) ........11
      3.21. Management Communication Channel (MCC) ...................11
      3.22. Management Communication Network (MCN) ...................11
        
   1. Introduction ....................................................4
      1.1. Abbreviations ..............................................4
   2. Terminology .....................................................5
      2.1. MPLS-TP Terminology Sources ................................5
      2.2. ITU-T Transport Network Terminology Sources ................6
      2.3. Common Terminology Sources .................................6
   3. Thesaurus .......................................................6
      3.1. Associated Bidirectional Path ..............................6
      3.2. Bidirectional Path .........................................6
      3.3. Client-Layer Network .......................................6
      3.4. Communication Channel ......................................7
      3.5. Concatenated Segment .......................................7
      3.6. Control Plane ..............................................7
      3.7. Co-Routed Bidirectional Path ...............................7
      3.8. Data Communication Network (DCN) ...........................7
      3.9. Defect .....................................................8
      3.10. Domain ....................................................8
      3.11. Embedded Communication Channel (ECC) ......................8
      3.12. Equipment Management Function (EMF) .......................8
      3.13. Failure ...................................................8
      3.14. Fault .....................................................8
      3.15. Layer Network .............................................9
      3.16. Link ......................................................9
      3.17. Maintenance Entity (ME) ...................................9
      3.18. Maintenance Entity Group (MEG) ...........................10
      3.19. Maintenance Entity Group End Point (MEP) .................10
      3.20. Maintenance Entity Group Intermediate Point (MIP) ........11
      3.21. Management Communication Channel (MCC) ...................11
      3.22. Management Communication Network (MCN) ...................11
        
      3.23. Monitoring ...............................................11
           3.23.1. Path Segment Tunnel (PST) .........................11
           3.23.2. Sub-Path Maintenance Element (SPME) ...............12
           3.23.3. Tandem Connection .................................12
      3.24. MPLS Section .............................................12
      3.25. MPLS Transport Profile (MPLS-TP) .........................12
      3.26. MPLS-TP NE ...............................................13
      3.27. MPLS-TP Network ..........................................13
      3.28. MPLS-TP Recovery .........................................13
           3.28.1. End-to-End Recovery ...............................13
           3.28.2. Link Recovery .....................................13
           3.28.3. Segment Recovery ..................................13
      3.29. MPLS-TP Ring Topology ....................................13
           3.29.1. MPLS-TP Logical Ring ..............................14
           3.29.2. MPLS-TP Physical Ring .............................14
      3.30. OAM Flow .................................................14
      3.31. Operations Support System (OSS) ..........................14
      3.32. Path .....................................................14
      3.33. Protection Priority ......................................14
      3.34. Section-Layer Network ....................................14
      3.35. Segment ..................................................15
      3.36. Server Layer .............................................15
      3.37. Server MEPs ..............................................15
      3.38. Signaling Communication Channel (SCC) ....................16
      3.39. Signaling Communication Network (SCN) ....................16
      3.40. Span .....................................................16
      3.41. Sublayer .................................................16
      3.42. Transport Entity .........................................16
           3.42.1. Working Entity ....................................16
           3.42.2. Protection Entity .................................16
           3.42.3. Recovery Entity ...................................16
      3.43. Transmission Media Layer .................................17
      3.44. Transport Network ........................................17
      3.45. Transport Path ...........................................17
      3.46. Transport-Path Layer .....................................17
      3.47. Transport-Service Layer ..................................17
      3.48. Unidirectional Path ......................................17
   4. Guidance on the Application of This Thesaurus ..................18
   5. Management Considerations ......................................18
   6. Security Considerations ........................................18
   7. Acknowledgments ................................................18
   8. Contributors ...................................................18
   9. References .....................................................19
      9.1. Normative References ......................................19
      9.2. Informative References ....................................20
        
      3.23. Monitoring ...............................................11
           3.23.1. Path Segment Tunnel (PST) .........................11
           3.23.2. Sub-Path Maintenance Element (SPME) ...............12
           3.23.3. Tandem Connection .................................12
      3.24. MPLS Section .............................................12
      3.25. MPLS Transport Profile (MPLS-TP) .........................12
      3.26. MPLS-TP NE ...............................................13
      3.27. MPLS-TP Network ..........................................13
      3.28. MPLS-TP Recovery .........................................13
           3.28.1. End-to-End Recovery ...............................13
           3.28.2. Link Recovery .....................................13
           3.28.3. Segment Recovery ..................................13
      3.29. MPLS-TP Ring Topology ....................................13
           3.29.1. MPLS-TP Logical Ring ..............................14
           3.29.2. MPLS-TP Physical Ring .............................14
      3.30. OAM Flow .................................................14
      3.31. Operations Support System (OSS) ..........................14
      3.32. Path .....................................................14
      3.33. Protection Priority ......................................14
      3.34. Section-Layer Network ....................................14
      3.35. Segment ..................................................15
      3.36. Server Layer .............................................15
      3.37. Server MEPs ..............................................15
      3.38. Signaling Communication Channel (SCC) ....................16
      3.39. Signaling Communication Network (SCN) ....................16
      3.40. Span .....................................................16
      3.41. Sublayer .................................................16
      3.42. Transport Entity .........................................16
           3.42.1. Working Entity ....................................16
           3.42.2. Protection Entity .................................16
           3.42.3. Recovery Entity ...................................16
      3.43. Transmission Media Layer .................................17
      3.44. Transport Network ........................................17
      3.45. Transport Path ...........................................17
      3.46. Transport-Path Layer .....................................17
      3.47. Transport-Service Layer ..................................17
      3.48. Unidirectional Path ......................................17
   4. Guidance on the Application of This Thesaurus ..................18
   5. Management Considerations ......................................18
   6. Security Considerations ........................................18
   7. Acknowledgments ................................................18
   8. Contributors ...................................................18
   9. References .....................................................19
      9.1. Normative References ......................................19
      9.2. Informative References ....................................20
        
1. Introduction
1. 介绍

The MPLS Transport Profile (MPLS-TP) has been developed by the IETF to facilitate the Operations, Administration, and Maintenance (OAM) of Label Switched Paths (LSPs) to be used in a Transport Network environment as defined by the ITU-T.

MPLS传输配置文件(MPLS-TP)由IETF开发,以便于在ITU-T定义的传输网络环境中使用标签交换路径(LSP)的操作、管理和维护(OAM)。

The ITU-T has specified a Transport Network architecture for the transfer of signals from different technologies. This architecture forms the basis of many Recommendations within the ITU-T.

ITU-T为不同技术的信号传输指定了传输网络架构。该体系结构构成了ITU-T中许多建议的基础。

Because of the difference in historic background of MPLS, and inherently MPLS-TP (the Internet) and the Transport Network (ITU Telecommunication Sector), the terminology used is different.

由于MPLS的历史背景以及固有的MPLS-TP(互联网)和传输网络(ITU电信部门)的不同,使用的术语也不同。

This document provides a thesaurus (the analogy to the Rosetta Stone has been used within the working groups) for the interpretation of MPLS-TP terminology within the context of the ITU-T Transport Network Recommendations. This allows MPLS-TP documents to be generally understood by those familiar with MPLS RFCs. The definitions presented in this document do not provide exclusive or complete interpretations of the ITU-T Transport Network concepts.

本文件提供了一个主题词表(工作组内使用了类似于罗塞塔石碑的术语),用于在ITU-T传输网络建议的背景下解释MPLS-TP术语。这使得熟悉MPLS RFC的人能够普遍理解MPLS-TP文档。本文件中给出的定义不提供对ITU-T传输网络概念的唯一或完整解释。

1.1. Abbreviations
1.1. 缩写

CE Customer Edge

客户优势

DCC Data Communication Channel

数据通信信道

DCN Data Communication Network

数据通信网

ECC Embedded Communication Channel

嵌入式通信信道

EMF Equipment Management Function

EMF设备管理功能

EMS Element Management System

EMS元件管理系统

GAL Generic Associated Channel Label

GAL通用关联通道标签

LER Label Edge Router

标签边缘路由器

LSR Label Switching Router

标签交换路由器

MCC Management Communication Channel

MCC管理通信信道

MCN Management Communication Network

管理通信网

ME Maintenance Entity

ME维护实体

MEG Maintenance Entity Group

MEG维护实体组

MEP Maintenance Entity Group End Point

MEP维护实体组终点

MIP Maintenance Entity Group Intermediate Point

MIP维护实体组中间点

MPLS Multiprotocol Label Switching

多协议标签交换

MPLS-TP MPLS Transport Profile

MPLS-TP MPLS传输配置文件

MS-PW Multi-Segment Pseudowire

多段伪导线

NE Network Element

网元

NEF Network Element Function

网元功能

OAM Operations, Administration, and Maintenance

OAM操作、管理和维护

OSS Operations Support System

OSS操作支持系统

PM Performance Monitoring

PM性能监测

PST Path Segment Tunnel

线路段隧道

PW Pseudowire

伪线

S-PE Switching Provider Edge

S-PE交换提供程序边缘

SCC Signaling Communication Channel

信令通信信道

SCN Signaling Communication Network

信令通信网

SPME Sub-Path Maintenance Element

子路径维护元件

T-PE Terminating Provider Edge

T-PE端接提供程序边缘

TCM Tandem Connection Monitoring

变速器控制模块串联连接监控

2. Terminology
2. 术语

This section provides an overview regarding terminology used in this document.

本节概述了本文档中使用的术语。

2.1. MPLS-TP Terminology Sources
2.1. MPLS-TP术语源

MPLS-TP terminology is principally defined in [RFC3031]. Other documents, including [RFC4397], provide further key definitions.

MPLS-TP术语主要在[RFC3031]中定义。其他文件,包括[RFC4397],提供了进一步的关键定义。

2.2. ITU-T Transport Network Terminology Sources
2.2. ITU-T传输网络术语来源

The ITU-T Transport Network is specified in a number of Recommendations: generic functional architectures and requirements are specified in [ITU-T_G.805], [ITU-T_G.806], and [ITU-T_G.872]. ITU-T Recommendation G.8101/Y.1355 [ITU-T_G.8101] contains an overview of the terms and definitions for transport MPLS.

许多建议中规定了ITU-T传输网络:通用功能架构和要求在[ITU-T_G.805]、[ITU-T_G.806]和[ITU-T_G.872]中规定。ITU-T建议G.8101/Y.1355[ITU-T_G.8101]概述了传输MPLS的术语和定义。

2.3. Common Terminology Sources
2.3. 通用术语来源

The work in this document builds on the shared view of MPLS requirements. It is intended to provide a source for common MPLS-TP terminology. In general, the original terminology is used.

本文档中的工作以MPLS需求的共享视图为基础。它旨在为通用MPLS-TP术语提供来源。通常使用原始术语。

The following sources are used:

使用了以下来源:

o IETF framework and requirements RFCs: [RFC6371], [RFC6372], [RFC5654], [RFC5921], [RFC5860], [RFC5951], [RFC3031], and [RFC4397].

o IETF框架和需求RFC:[RFC6371]、[RFC6372]、[RFC5654]、[RFC5921]、[RFC5860]、[RFC5951]、[RFC3031]和[RFC4397]。

o ITU-T architecture and requirements Recommendations: [ITU-T_G.8101], [ITU-T_G.805], [ITU-T_G.806], [ITU-T_G.872], [ITU-T_G.7710], and [ITU-T_Y.2611].

o ITU-T架构和需求建议:[ITU-T_G.8101]、[ITU-T_G.805]、[ITU-T_G.806]、[ITU-T_G.872]、[ITU-T_G.7710]和[ITU-T_Y.2611]。

3. Thesaurus
3. 同义词词典
3.1. Associated Bidirectional Path
3.1. 关联双向路径

An associated bidirectional path is a path that supports traffic flow in both directions but that is constructed from a pair of unidirectional paths (one for each direction) that are associated with one another at the path's ingress/egress points. An associated bidirectional path need not be a single management and operational entity. The forward and backward directions are set up, monitored, and protected independently. As a consequence, they may or may not follow the same route (links and nodes) across the network.

相关联的双向路径是支持两个方向上的交通流的路径,但该路径由一对单向路径(每个方向一条)构成,该对单向路径在路径的入口/出口点处彼此相关联。关联的双向路径不需要是单个管理和操作实体。向前和向后方向独立设置、监控和保护。因此,它们可能在网络中遵循或不遵循相同的路由(链路和节点)。

3.2. Bidirectional Path
3.2. 双向路径

A bidirectional path refers to a path that supports traffic flow in two opposite directions, i.e., the forward and backward direction.

双向路径是指支持两个相反方向的交通流的路径,即向前和向后方向。

3.3. Client-Layer Network
3.3. 客户层网络

In a client/server relationship (see [ITU-T_G.805]), the client-layer network receives a (transport) service from the lower server-layer network (usually the layer network under consideration).

在客户机/服务器关系中(参见[ITU-T_G.805]),客户机层网络从较低的服务器层网络(通常是考虑中的层网络)接收(传输)服务。

3.4. Communication Channel
3.4. 通信信道

A Communication Channel is a logical channel between network elements (NEs) that can be used, e.g., for management-plane applications or control-plane applications. The physical channel supporting the Communication Channel is technology specific. See [RFC5951], Appendix A.

通信信道是可用于管理平面应用或控制平面应用等的网元(ne)之间的逻辑信道。支持通信信道的物理信道是特定于技术的。见[RFC5951],附录A。

3.5. Concatenated Segment
3.5. 连接段

A concatenated segment is a serial-compound link connection as defined in [ITU-T_G.805]. A concatenated segment is a contiguous part of an LSP or MS-PW that comprises a set of segments and their interconnecting nodes in sequence. See also "Segment" (Section 3.35).

级联段是[ITU-T_G.805]中定义的串行复合链路连接。连接段是LSP或MS-PW的连续部分,由一组段及其顺序互连节点组成。另见“段”(第3.35节)。

3.6. Control Plane
3.6. 控制平面

Within the scope of [RFC5654], the control plane performs transport path control functions. Through signaling, the control plane sets up, modifies, and releases transport paths and may recover a transport path in case of a failure. The control plane also performs other functions in support of transport path control, such as routing information dissemination. It is possible to operate an MPLS-TP network without using a control plane.

在[RFC5654]的范围内,控制平面执行传输路径控制功能。通过信令,控制平面设置、修改和释放传输路径,并在发生故障时恢复传输路径。控制平面还执行支持传输路径控制的其他功能,例如路由信息传播。可以在不使用控制平面的情况下操作MPLS-TP网络。

3.7. Co-Routed Bidirectional Path
3.7. 共路由双向路径

A co-routed bidirectional path is a path where the forward and backward directions follow the same route (links and nodes) across the network. A co-routed bidirectional path is managed and operated as a single entity. Both directions are set up, monitored, and protected as a single entity. A Transport Network path is typically co-routed.

共路由双向路径是一种路径,其中向前和向后方向在网络中遵循相同的路由(链路和节点)。共同路由的双向路径作为单个实体进行管理和操作。两个方向都作为一个实体进行设置、监控和保护。传输网络路径通常是共同路由的。

3.8. Data Communication Network (DCN)
3.8. 数据通信网络(DCN)

A DCN is a network that supports Layer 1 (physical layer), Layer 2 (data-link layer), and Layer 3 (network layer) functionality for distributed management communications related to the management plane, for distributed routing and signaling communications related to the control plane, and for other operations communications (e.g., order-wire/voice communications, software downloads, etc.).

DCN是支持第1层(物理层)、第2层(数据链路层)和第3层(网络层)功能的网络,用于与管理平面相关的分布式管理通信、与控制平面相关的分布式路由和信令通信以及其他操作通信(例如,订购有线/语音通信、软件下载等)。

3.9. Defect
3.9. 缺点

"Defect" refers to the situation for which the density of anomalies has reached a level where the ability to perform a required function has been interrupted. Defects are used as input for Performance Monitoring (PM), the control of consequent actions, and the determination of fault cause. See also [ITU-T_G.806].

“缺陷”是指异常密度已达到执行所需功能的能力中断的水平的情况。缺陷被用作性能监控(PM)、后续行动控制和故障原因确定的输入。另见[ITU-T_G.806]。

3.10. Domain
3.10. 领域

A domain represents a collection of entities (for example, network elements) that are grouped for a particular purpose, examples of which are administrative and/or managerial responsibilities, trust relationships, addressing schemes, infrastructure capabilities, aggregation, survivability techniques, distributions of control functionality, etc. Examples of such domains include IGP areas and Autonomous Systems.

域表示为特定目的而分组的实体(例如,网络元素)的集合,例如,行政和/或管理责任、信任关系、寻址方案、基础设施能力、聚合、生存能力技术、控制功能的分布,此类领域的示例包括IGP区域和自治系统。

3.11. Embedded Communication Channel (ECC)
3.11. 嵌入式通信信道(ECC)

An ECC is a logical operations channel between network elements (NEs) that can be utilized by multiple applications (e.g., management-plane applications, control-plane applications, etc.). The physical channel supporting the ECC is technology specific. An example of a physical channel supporting the ECC is a Data Communication Channel (DCC) within the Synchronous Digital Hierarchy (SDH).

ECC是可由多个应用程序(例如,管理平面应用程序、控制平面应用程序等)使用的网元(NE)之间的逻辑操作通道。支持ECC的物理通道是特定于技术的。支持ECC的物理信道的一个示例是同步数字体系(SDH)中的数据通信信道(DCC)。

3.12. Equipment Management Function (EMF)
3.12. 设备管理功能(EMF)

The equipment management function (EMF) provides the means through which an element management system (EMS) and other managing entities manage the network element function (NEF). See [ITU-T_G.7710].

设备管理功能(EMF)提供了网元管理系统(EMS)和其他管理实体管理网元功能(NEF)的方法。见[ITU-T_G.7710]。

3.13. Failure
3.13. 失败

A failure is a detected fault. A failure will be declared when the fault cause persisted long enough to consider that a required transport function cannot be performed. The item may be considered as failed; a fault has now been detected. See also [ITU-T_G.806]. A failure can be used as a trigger for corrective actions.

故障是检测到的故障。当故障原因持续足够长以考虑无法执行所需的传输函数时,将声明失败。该项目可能被视为失败;现已检测到故障。另见[ITU-T_G.806]。故障可作为纠正措施的触发器。

3.14. Fault
3.14. 过错

A fault is the inability of a transport function to perform a required action. This does not include an inability due to preventive maintenance, lack of external resources, or planned actions. See also [ITU-T_G.806].

故障是指传输功能无法执行所需操作。这不包括由于预防性维护、缺乏外部资源或计划的行动而导致的无能力。另见[ITU-T_G.806]。

3.15. Layer Network
3.15. 层网络

"Layer network" is defined in [ITU-T_G.805]. A layer network provides for the transfer of client information and independent operation of the client OAM. A layer network may be described in a service context as follows: one layer network may provide a (transport) service to a higher client-layer network and may, in turn, be a client to a lower-layer network. A layer network is a logical construction somewhat independent of arrangement or composition of physical network elements. A particular physical network element may topologically belong to more than one layer network, depending on the actions it takes on the encapsulation associated with the logical layers (e.g., the label stack) and thus could be modeled as multiple logical elements. A layer network may consist of one or more sublayers. For additional explanation of how layer networks relate to the OSI concept of layering, see Appendix I of [ITU-T_Y.2611].

“分层网络”的定义见[ITU-T_G.805]。层网络提供客户端信息的传输和客户端OAM的独立操作。层网络可以在服务上下文中描述如下:一层网络可以向更高的客户端层网络提供(传输)服务,并且反过来可以是低层网络的客户端。层网络是一种逻辑结构,在某种程度上独立于物理网络元素的排列或组成。一个特定的物理网络元素可能在拓扑上属于一个以上的层网络,这取决于它对与逻辑层(例如,标签堆栈)相关联的封装所采取的行动,因此可以建模为多个逻辑元素。层网络可以由一个或多个子层组成。有关分层网络如何与OSI分层概念相关的更多解释,请参见[ITU-T_Y.2611]的附录I。

3.16. Link
3.16. 链接

A link as discussed in this document refers to a physical or logical connection between a pair of Label Switching Routers (LSRs) that are adjacent at the (sub)layer network under consideration. A link may carry zero, one, or more LSPs or PWs. A packet entering a link will emerge with the same label-stack entry values.

本文中讨论的链路是指在所考虑的(子)层网络上相邻的一对标签交换路由器(LSR)之间的物理或逻辑连接。链路可以承载零个、一个或多个LSP或PW。进入链路的数据包将显示相同的标签堆栈条目值。

A link as defined in [ITU-T_G.805] is used to describe a fixed relationship between two ports.

[ITU-T_G.805]中定义的链路用于描述两个端口之间的固定关系。

3.17. Maintenance Entity (ME)
3.17. 维护实体(ME)

A Maintenance Entity (ME) can be viewed as the association of two (or more) Maintenance Entity Group End Points (MEPs) that should be configured and managed in order to bound the OAM responsibilities of an OAM flow across a network or sub-network, i.e., a transport path or segment in the specific layer network that is being monitored and managed. See also Section 3.1 of [RFC6371] and Clause 6.1 of [ITU-T_G.8113.1] and [ITU-T_G.8113.2].

维护实体(ME)可被视为两个(或多个)维护实体组端点(MEP)的关联,这些维护实体组端点(MEP)应进行配置和管理,以便跨网络或子网络(即,正在监视和管理的特定层网络中的传输路径或段)绑定OAM流的OAM职责。另见[RFC6371]第3.1节、[ITU-T_G.8113.1]和[ITU-T_G.8113.2]第6.1条。

A Maintenance Entity may be defined to monitor and manage bidirectional or unidirectional point-to-point connectivity or point-to-multipoint connectivity in an MPLS-TP layer network.

维护实体可被定义为监视和管理MPLS-TP层网络中的双向或单向点对点连接或点对多点连接。

Therefore, in the context of an MPLS-TP LSP ME or PW ME, Label Edge Routers (LERs) and PW Terminating Provider Edges (T-PEs) can be MEPs, while LSRs and PW Switching Provider Edges (S-PEs) can be MIPs. In the case of an ME for a tandem connection, LSRs and S-PEs can be either MEPs or MIPs.

因此,在MPLS-TP LSP ME或PW ME的上下文中,标签边缘路由器(LER)和PW端接提供商边缘(T-PE)可以是MEP,而LSR和PW交换提供商边缘(S-PE)可以是MIP。对于串联连接的ME,LSR和S-PE可以是MEP或MIPs。

The following properties apply to all MPLS-TP MEs:

以下属性适用于所有MPLS-TP MEs:

- OAM entities can be nested but not overlapped.

- OAM实体可以嵌套,但不能重叠。

- Each OAM flow is associated with a unique Maintenance Entity.

- 每个OAM流都与唯一的维护实体相关联。

- OAM packets are subject to the same forwarding treatment as the data traffic, but they are distinct from the data traffic by the Generic Associated Channel Label (GAL).

- OAM数据包与数据流量受到相同的转发处理,但它们通过通用关联信道标签(GAL)与数据流量不同。

3.18. Maintenance Entity Group (MEG)
3.18. 维护实体组(MEG)

A Maintenance Entity Group is defined, for the purpose of connection monitoring, between a set of connection points within a connection. This set of connection points may be located at the boundary of one administrative domain or a protection domain or the boundaries of two adjacent administrative domains. The MEG may consist of one or more Maintenance Entities (MEs). See also Section 3.1 of [RFC6371] and Clause 6.2 of [ITU-T_G.8113.1] and [ITU-T_G.8113.2].

为了监控连接,在连接中的一组连接点之间定义了维护实体组。这组连接点可位于一个管理域或保护域的边界或两个相邻管理域的边界。MEG可能由一个或多个维护实体(MEs)组成。另见[RFC6371]第3.1节、[ITU-T_G.8113.1]和[ITU-T_G.8113.2]第6.2条。

In an MPLS-TP layer network, a MEG consists of only one ME.

在MPLS-TP层网络中,MEG仅由一个ME组成。

3.19. Maintenance Entity Group End Point (MEP)
3.19. 维修实体组终点(MEP)

Maintenance Entity Group End Points (MEPs) are the end points of a pre-configured (through the management or control planes) ME. MEPs are responsible for activating and controlling all of the OAM functionality for the ME. A source MEP may initiate an OAM packet to be transferred to its corresponding peer MEP (called the sink MEP) or to an intermediate MIP that is part of the ME. See also Section 3.3 of [RFC6371] and Clause 6.3 of [ITU-T_G.8113.1] and [ITU-T_G.8113.2].

维修实体组端点(MEP)是预配置(通过管理或控制平面)ME的端点。MEP负责激活和控制ME的所有OAM功能。源MEP可发起OAM分组以传送到其对应的对等MEP(称为接收器MEP)或传送到作为ME的一部分的中间MIP。另见[RFC6371]第3.3节、[ITU-T_G.8113.1]和[ITU-T_G.8113.2]第6.3条。

A sink MEP terminates all the OAM packets that it receives corresponding to its ME and does not forward them further along the path.

sink-MEP终止它接收到的与其ME对应的所有OAM包,并且不沿着路径进一步转发它们。

All OAM packets coming into a source MEP are tunneled via label stacking and are not processed within the ME as they belong either to the client network layers or to a higher Tandem Connection Monitoring (TCM) level.

进入源MEP的所有OAM数据包都通过标签堆叠进行隧道传输,并且不在ME内处理,因为它们属于客户端网络层或更高的串联连接监控(TCM)级别。

A MEP in a tandem connection is not coincident with the termination of the MPLS-TP transport path (LSP or PW), though it can monitor its connectivity (e.g., counts packets). A MEP of an MPLS-TP network transport path is coincident with transport path termination and monitors its connectivity (e.g., counts packets).

串联连接中的MEP与MPLS-TP传输路径(LSP或PW)的终止不一致,尽管它可以监控其连接(例如,统计数据包)。MPLS-TP网络传输路径的MEP与传输路径终止一致,并监控其连接性(例如,统计数据包)。

An MPLS-TP sink MEP can notify a fault condition to its MPLS-TP client-layer network.

MPLS-TP接收器MEP可以向其MPLS-TP客户端层网络通知故障情况。

3.20. Maintenance Entity Group Intermediate Point (MIP)
3.20. 维护实体组中间点(MIP)

A Maintenance Entity Group Intermediate Point (MIP) is a point between the two MEPs in an ME and is capable of responding to some OAM packets and forwarding all OAM packets while ensuring fate sharing with data-plane packets. A MIP responds only to OAM packets that are sent on the ME it belongs to and that are addressed to the MIP; it does not initiate OAM messages. See also Section 3.4 of [RFC6371] and Clause 6.4 of [ITU-T_G.8113.1] and [ITU-T_G.8113.2].

维护实体组中间点(MIP)是ME中两个MEP之间的点,能够响应一些OAM分组并转发所有OAM分组,同时确保与数据平面分组的命运共享。MIP仅响应在其所属的ME上发送并寻址到MIP的OAM分组;它不会启动OAM消息。另见[RFC6371]第3.4节、[ITU-T_G.8113.1]和[ITU-T_G.8113.2]第6.4条。

3.21. Management Communication Channel (MCC)
3.21. 管理通信通道(MCC)

A Communication Channel dedicated to management-plane communications is referred to as a Management Communication Channel (MCC).

专用于管理平面通信的通信信道称为管理通信信道(MCC)。

3.22. Management Communication Network (MCN)
3.22. 管理通信网络(MCN)

A DCN supporting management-plane communication is referred to as a Management Communication Network (MCN).

支持管理平面通信的DCN称为管理通信网络(MCN)。

3.23. Monitoring
3.23. 监测

Monitoring is applying OAM functionality to verify and to maintain the performance and the quality guarantees of a transport path. There is a need to not only monitor the whole transport path (e.g., LSP or MS-PW), but also arbitrary parts of transport paths. The connection between any two arbitrary points along a transport path is described in one of three ways:

监控是应用OAM功能来验证和维护传输路径的性能和质量保证。不仅需要监控整个传输路径(如LSP或MS-PW),还需要监控传输路径的任意部分。沿传输路径的任意两个点之间的连接用以下三种方式之一描述:

- as a Path Segment Tunnel,

- 作为路段隧道,

- as a Sub-Path Maintenance Element, or

- 作为子路径维护元素,或

- as a Tandem Connection.

- 作为串联连接。

3.23.1. Path Segment Tunnel (PST)
3.23.1. 通道段隧道(PST)

A path segment is either a segment or a concatenated segment. Path Segment Tunnels (PSTs) are instantiated to provide monitoring of a portion of a set of co-routed transport paths (LSPs or MS-PWs). PSTs can also be employed to meet the requirement to provide Tandem Connection Monitoring. See "Tandem Connection" (Section 3.23.3).

路径段是段或连接段。路径段隧道(PST)被实例化以提供对一组共路由传输路径(LSP或MS PW)的一部分的监控。PST也可用于满足提供串联连接监控的要求。参见“串联连接”(第3.23.3节)。

3.23.2. Sub-Path Maintenance Element (SPME)
3.23.2. 子路径维护元素(SPME)

To monitor, protect, and manage a portion (i.e., segment or concatenated segment) of an LSP, a hierarchical LSP [RFC3031] can be instantiated. A hierarchical LSP instantiated for this purpose is called a Sub-Path Maintenance Element (SPME). Note that by definition, an SPME does not carry user traffic as a direct client.

为了监视、保护和管理LSP的一部分(即段或连接段),可以实例化分层LSP[RFC3031]。为此目的而实例化的分层LSP称为子路径维护元素(SPME)。请注意,根据定义,SPME不作为直接客户端承载用户流量。

An SPME is defined between the edges of the portion of the LSP that needs to be monitored, protected, or managed. The SPME forms an MPLS-TP Section that carries the original LSP over this portion of the network as a client. OAM messages can be initiated at the edge of the SPME and sent to the peer edge of the SPME or to a MIP along the SPME. A P router only pushes or pops a label if it is at the end of an SPME. In this mode, it is an LER for the SPME.

SPME定义在需要监控、保护或管理的LSP部分的边缘之间。SPME形成一个MPLS-TP部分,该部分作为客户端在网络的这一部分承载原始LSP。OAM消息可以在SPME的边缘启动,并发送到SPME的对等边缘或沿SPME发送到MIP。P路由器仅在SPME末尾推送或弹出标签。在此模式下,它是SPME的LER。

3.23.3. Tandem Connection
3.23.3. 串联连接

A tandem connection is an arbitrary part of a transport path that can be monitored (via OAM) independently from the end-to-end monitoring (OAM). It may be a monitored segment, a monitored concatenated segment, or any other monitored ordered sequence of contiguous hops and/or segments (and their interconnecting nodes) of a transport path.

串联连接是传输路径的任意部分,可以独立于端到端监控(OAM)进行监控(通过OAM)。它可以是传输路径的受监控段、受监控连接段或任何其他受监控的连续跃点和/或段(及其互连节点)的有序序列。

Tandem Connection Monitoring (TCM) for a given path segment of a transport path is implemented by creating a Path Segment Tunnel that has a 1:1 association with the path segment of the transport path that is to be uniquely monitored. This means that the PST used to provide TCM can carry one and only one transport path, thus allowing direct correlation between all fault-management and performance-monitoring information gathered for the PST and the monitored path segment of the end-to-end transport path. The PST is monitored using normal LSP monitoring. See also Section 3.2 of [RFC6371] and Clause 6.2.1 of [ITU-T_G.8113.1] and [ITU-T_G.8113.2].

传输路径的给定路径段的串联连接监控(TCM)通过创建与要唯一监控的传输路径的路径段具有1:1关联的路径段隧道来实现。这意味着,用于提供TCM的PST只能承载一条传输路径,从而允许为PST收集的所有故障管理和性能监控信息与端到端传输路径的监控路径段之间直接关联。PST使用正常LSP监控进行监控。另见[RFC6371]第3.2节、[ITU-T_G.8113.1]第6.2.1条和[ITU-T_G.8113.2]第6.2.1条。

3.24. MPLS Section
3.24. MPLS部分

An MPLS Section is a network segment between two LSRs that are immediately adjacent at the MPLS layer.

MPLS部分是在MPLS层上相邻的两个LSR之间的网段。

3.25. MPLS Transport Profile (MPLS-TP)
3.25. MPLS传输配置文件(MPLS-TP)

An MPLS Transport Profile refers to the set of MPLS functions used to support packet transport services and network operations.

MPLS传输配置文件是指用于支持分组传输服务和网络操作的一组MPLS功能。

3.26. MPLS-TP NE
3.26. MPLS-TP-NE

A network element (NE) that supports MPLS-TP functions is referred to as an MPLS-TP NE.

支持MPLS-TP功能的网元(NE)称为MPLS-TP网元。

3.27. MPLS-TP Network
3.27. MPLS-TP网络

An MPLS-TP network is a network in which MPLS-TP NEs are deployed.

MPLS-TP网络是部署MPLS-TP网元的网络。

3.28. MPLS-TP Recovery
3.28. MPLS-TP恢复
3.28.1. End-to-End Recovery
3.28.1. 端到端恢复

MPLS-TP end-to-end recovery refers to the recovery of an entire LSP, from its ingress to its egress node.

MPLS-TP端到端恢复是指将整个LSP从其入口节点恢复到其出口节点。

3.28.2. Link Recovery
3.28.2. 链路恢复

MPLS-TP link recovery refers to the recovery of an individual link (and hence all or a subset of the LSPs routed over the link) between two MPLS-TP nodes. For example, link recovery may be provided by server-layer recovery.

MPLS-TP链路恢复是指恢复两个MPLS-TP节点之间的单个链路(以及通过链路路由的所有LSP或LSP的子集)。例如,链路恢复可以由服务器层恢复提供。

3.28.3. Segment Recovery
3.28.3. 段恢复

MPLS-TP segment recovery refers to the recovery of an LSP segment (i.e., segment and concatenated segment) between two nodes and is used to recover from the failure of one or more links or nodes.

MPLS-TP段恢复是指两个节点之间LSP段(即段和连接段)的恢复,用于从一个或多个链路或节点的故障中恢复。

An LSP segment comprises one or more contiguous hops on the path of the LSP. [RFC5654] defines two terms: a "segment" is a single hop along the path of an LSP, while a "concatenated segment" is more than one hop along the path of an LSP.

LSP段包括LSP路径上的一个或多个连续跳。[RFC5654]定义了两个术语:“段”是沿着LSP路径的单跳,而“串联段”是沿着LSP路径的多跳。

3.29. MPLS-TP Ring Topology
3.29. MPLS-TP环拓扑

In an MPLS-TP ring topology, each LSR is connected to exactly two other LSRs, each via a single point-to-point bidirectional MPLS-TP capable link. A ring may also be constructed from only two LSRs where there are also exactly two links. Rings may be connected to other LSRs to form a larger network. Traffic originating or terminating outside the ring may be carried over the ring. Client network nodes (such as Customer Edges (CEs)) may be connected directly to an LSR in the ring.

在MPLS-TP环形拓扑中,每个LSR通过一个支持MPLS-TP的单点对点双向链路连接到另外两个LSR。环也可以仅由两个LSR构成,其中也正好有两个链路。环可以连接到其他LSR以形成更大的网络。环外始发或终止的流量可通过环进行。客户机网络节点(例如客户边缘(ce))可以直接连接到环中的LSR。

3.29.1. MPLS-TP Logical Ring
3.29.1. MPLS-TP逻辑环

An MPLS-TP logical ring is constructed from a set of LSRs and logical data links (such as MPLS-TP LSP tunnels or MPLS-TP pseudowires) and physical data links that form a ring topology.

MPLS-TP逻辑环由一组LSR和逻辑数据链路(如MPLS-TP LSP隧道或MPLS-TP伪线)以及形成环拓扑的物理数据链路构成。

3.29.2. MPLS-TP Physical Ring
3.29.2. MPLS-TP物理环

An MPLS-TP physical ring is constructed from a set of LSRs and physical data links that form a ring topology.

MPLS-TP物理环由形成环拓扑的一组LSR和物理数据链路构成。

3.30. OAM Flow
3.30. OAM流量

An OAM flow is the set of all OAM packets originating with a specific source MEP that measure the performance of one direction of a MEG (or possibly both in the special case of data-plane loopback).

OAM流是由特定源MEP发起的所有OAM分组的集合,该源MEP测量MEG的一个方向的性能(或者在数据平面环回的特殊情况下,可能同时测量两个方向的性能)。

3.31. Operations Support System (OSS)
3.31. 运营支持系统(OSS)

An OSS is a system that performs the functions that support processing of information related to Operations, Administration, Maintenance, and Provisioning (OAM&P) for the networks, including surveillance and testing functions to support customer access maintenance.

OSS是一个系统,它执行支持处理与网络的操作、管理、维护和供应(OAM&P)相关的信息的功能,包括支持客户访问维护的监视和测试功能。

3.32. Path
3.32. 路径

See "Transport Path" (Section 3.45).

参见“运输路径”(第3.45节)。

3.33. Protection Priority
3.33. 保护优先权

Fault conditions (e.g., signal failed), external commands (e.g, forced switch, manual switch), and protection states (e.g., no request) are defined to have a relative priority with respect to each other. Priority is applied to these conditions/command/states locally at each end point and between the two end points.

故障条件(例如,信号故障)、外部命令(例如,强制开关、手动开关)和保护状态(例如,无请求)被定义为彼此具有相对优先级。优先级在每个端点和两个端点之间本地应用于这些条件/命令/状态。

3.34. Section-Layer Network
3.34. 剖面层网络

A section layer is a server layer (which may be MPLS-TP or a different technology) that provides for the transfer of the section-layer client information between adjacent nodes in the transport-path layer or transport-service layer. A section layer may provide for aggregation of multiple MPLS-TP clients. Note that [ITU-T_G.805] defines the section layer as one of the two layer networks in a transmission-media-layer network. The other layer network is the physical-media-layer network.

部分层是服务器层(可以是MPLS-TP或不同的技术),用于在传输路径层或传输服务层中的相邻节点之间传输部分层客户端信息。部分层可提供多个MPLS-TP客户端的聚合。注意,[ITU-T_G.805]将部分层定义为传输媒体层网络中的两层网络之一。另一层网络是物理媒体层网络。

Section-layer networks are concerned with all the functions that provide for the transfer of information between locations in path-layer networks.

截面层网络涉及路径层网络中提供位置之间信息传输的所有功能。

Physical-media-layer networks are concerned with the actual fibers, metallic wires, or radio frequency channels that support a section-layer network.

物理媒体层网络涉及支持分区层网络的实际光纤、金属线或射频信道。

3.35. Segment
3.35. 段

A segment is a link connection as defined in [ITU-T_G.805]. A segment is the part of an LSP that traverses a single link or the part of a PW that traverses a single link (i.e., that connects a pair of adjacent S-PEs and/or T-PEs). See also "Concatenated Segment" (Section 3.5).

段是[ITU-T_G.805]中定义的链路连接。段是LSP中穿过单个链路的部分或PW中穿过单个链路的部分(即,连接一对相邻S-PE和/或T-PE)。另见“连接段”(第3.5节)。

3.36. Server Layer
3.36. 服务器层

A server layer is a layer network in which transport paths are used to carry a customer's (individual or bundled) service (may be point-to-point, point-to-multipoint, or multipoint-to-multipoint services).

服务器层是一种层网络,其中传输路径用于承载客户(单个或捆绑)服务(可以是点对点、点对多点或多点对多点服务)。

In a client/server relationship (see [ITU-T_G.805]), the server-layer network provides a (transport) service to the higher client-layer network (usually the layer network under consideration).

在客户机/服务器关系中(参见[ITU-T_G.805]),服务器层网络向更高的客户层网络(通常是考虑中的层网络)提供(传输)服务。

3.37. Server MEPs
3.37. 服务器MEP

A server MEP is a MEP of an ME that is defined in a layer network below the MPLS-TP layer network being referenced. A server MEP coincides with either a MIP or a MEP in the client-layer (MPLS-TP) network. See also Section 3.5 of [RFC6371] and Clause 6.5 of [ITU-T_G.8113.1].

服务器MEP是在被引用的MPLS-TP层网络下方的层网络中定义的ME的MEP。服务器MEP与客户端层(MPLS-TP)网络中的MIP或MEP一致。另见[RFC6371]第3.5节和[ITU-T_G.8113.1]第6.5条。

For example, a server MEP can be one of the following:

例如,服务器MEP可以是以下之一:

o A termination point of a physical link (e.g., IEEE 802.3), an SDH Virtual Circuit (VC), or OTN Optical Data Unit (ODU) for the MPLS-TP Section layer network, defined in [RFC6371], Section 4.1;

o [RFC6371]第4.1节中定义的MPLS-TP段层网络的物理链路(例如IEEE 802.3)、SDH虚拟电路(VC)或OTN光数据单元(ODU)的终止点;

o An MPLS-TP Section MEP for MPLS-TP LSPs, defined in [RFC6371], Section 4.2;

o [RFC6371]第4.2节中定义的MPLS-TP LSP的MPLS-TP部分MEP;

o An MPLS-TP LSP MEP for MPLS-TP PWs, defined in [RFC6371], Section 4.3; or

o [RFC6371]第4.3节中定义的MPLS-TP PWs的MPLS-TP LSP MEP;或

o An MPLS-TP TCM MEP for higher-level TCMs, defined in [RFC6371], Section 3.2.

o [RFC6371]第3.2节中定义的用于更高级别TCM的MPLS-TP TCM MEP。

The server MEP can run appropriate OAM functions for fault detection and notifies a fault indication to the MPLS-TP layer network.

服务器MEP可以运行适当的OAM功能进行故障检测,并向MPLS-TP层网络通知故障指示。

3.38. Signaling Communication Channel (SCC)
3.38. 信令通信信道(SCC)

A Signaling Communication Channel is a Communication Channel dedicated to control-plane communications. The SCC may be used for GMPLS / Automatically Switched Optical Network (ASON) signaling and/or other control-plane messages (e.g., routing messages).

信令通信信道是专用于控制平面通信的通信信道。SCC可用于GMPLS/自动交换光网络(ASON)信令和/或其他控制平面消息(例如,路由消息)。

3.39. Signaling Communication Network (SCN)
3.39. 信令通信网(SCN)

A DCN supporting control-plane communication is referred to as a Signaling Communication Network (SCN).

支持控制平面通信的DCN称为信令通信网络(SCN)。

3.40. Span
3.40. 跨度

A span is synonymous with a link.

跨距是链接的同义词。

3.41. Sublayer
3.41. 小层

"Sublayer" is defined in [ITU-T_G.805]. The distinction between a layer network and a sublayer is that a sublayer is not directly accessible to clients outside of its encapsulating layer network and offers no direct transport service for a higher-layer (client) network.

“子层”的定义见[ITU-T_G.805]。层网络和子层之间的区别在于,子层不能直接访问其封装层网络之外的客户端,并且不能为更高层(客户端)网络提供直接传输服务。

3.42. Transport Entity
3.42. 运输实体

A transport entity is a node, link, transport path segment, concatenated transport path segment, or entire transport path.

传输实体是节点、链路、传输路径段、串联传输路径段或整个传输路径。

3.42.1. Working Entity
3.42.1. 工作实体

A working entity is a transport entity that carries traffic during normal network operation.

工作实体是在正常网络运行期间承载流量的传输实体。

3.42.2. Protection Entity
3.42.2. 保护实体

A protection entity is a transport entity that is pre-allocated and used to protect and transport traffic when the working entity fails.

保护实体是预先分配的传输实体,用于在工作实体发生故障时保护和传输流量。

3.42.3. Recovery Entity
3.42.3. 恢复实体

A recovery entity is a transport entity that is used to recover and transport traffic when the working entity fails.

恢复实体是一种传输实体,用于在工作实体出现故障时恢复和传输通信量。

3.43. Transmission Media Layer
3.43. 传输媒体层

A transmission media layer is a layer network, consisting of a section-layer network and a physical-layer network as defined in [ITU-T_G.805], that provides sections (two-port point-to-point connections) to carry the aggregate of network-transport path or network-service layers on various physical media.

传输介质层是一种层网络,由[ITU-T_G.805]中定义的部分层网络和物理层网络组成,提供部分(两端口点到点连接),以承载各种物理介质上的网络传输路径或网络服务层的集合。

3.44. Transport Network
3.44. 传输网络

A Transport Network provides transmission of traffic between attached client devices by establishing and maintaining point-to-point or point-to-multipoint connections between such devices. A Transport Network is independent of any higher-layer network that may exist between clients, except to the extent required to supply this transmission service. In addition to client traffic, a Transport Network may carry traffic to facilitate its own operation, such as that required to support connection control, network management, and OAM functions.

传输网络通过在连接的客户端设备之间建立和维护点对点或点对多点连接来提供业务传输。传输网络独立于客户端之间可能存在的任何更高层网络,但提供此传输服务所需的范围除外。除了客户端通信量之外,传输网络还可以承载通信量以促进其自身的操作,例如支持连接控制、网络管理和OAM功能所需的通信量。

3.45. Transport Path
3.45. 运输路径

A transport path is a network connection as defined in [ITU-T_G.805]. In an MPLS-TP environment, a transport path corresponds to an LSP or a PW.

传输路径是[ITU-T_G.805]中定义的网络连接。在MPLS-TP环境中,传输路径对应于LSP或PW。

3.46. Transport-Path Layer
3.46. 传输路径层

A transport-path layer is a (sub)layer network that provides point-to-point or point-to-multipoint transport paths. It provides OAM that is independent of the clients that it is transporting.

传输路径层是提供点到点或点到多点传输路径的(子)层网络。它提供独立于它正在传输的客户端的OAM。

3.47. Transport-Service Layer
3.47. 传输服务层

A transport-service layer is a layer network in which transport paths are used to carry a customer's (individual or bundled) service (may be point-to-point, point-to-multipoint, or multipoint-to-multipoint services).

传输服务层是一种层网络,其中传输路径用于承载客户(单个或捆绑)服务(可以是点对点、点对多点或多点对多点服务)。

3.48. Unidirectional Path
3.48. 单向路径

A unidirectional path is a path that supports traffic flow in only one direction.

单向路径是仅支持单向交通流的路径。

4. Guidance on the Application of This Thesaurus
4. 本词典的应用指南

As discussed in the introduction to this document, this thesaurus is intended to bring the concepts and terms associated with MPLS-TP into the context of the ITU-T's Transport Network architecture. Thus, it should help those familiar with MPLS to see how they may use the features and functions of the Transport Network in order to meet the requirements of MPLS-TP.

如本文件导言所述,本词典旨在将与MPLS-TP相关的概念和术语纳入ITU-T传输网络体系结构的上下文中。因此,它应该帮助那些熟悉MPLS的人了解如何使用传输网络的特性和功能,以满足MPLS-TP的要求。

5. Management Considerations
5. 管理考虑

Networks based on MPLS-TP require management. The MPLS-TP specifications described in [RFC5654], [RFC5860], [RFC5921], [RFC5951], [RFC6371], [RFC6372], [ITU-T_G.8110.1], and [ITU-T_G.7710] include considerable efforts to provide operator control and monitoring as well as OAM functionality.

基于MPLS-TP的网络需要管理。[RFC5654]、[RFC5860]、[RFC5921]、[RFC5951]、[RFC6371]、[RFC6372]、[ITU-T_G.8110.1]和[ITU-T_G.7710]中描述的MPLS-TP规范包括提供操作员控制和监控以及OAM功能的大量工作。

These concepts are, however, out of the scope of this document.

然而,这些概念超出了本文件的范围。

6. Security Considerations
6. 安全考虑

Security is a significant requirement of MPLS-TP. See [RFC6941] for more information.

安全性是MPLS-TP的重要要求。有关更多信息,请参阅[RFC6941]。

However, this informational document is intended only to provide a lexicography, and the security concerns are, therefore, out of the scope of this document.

但是,本信息性文档仅用于提供词典编纂,因此,安全问题不在本文档范围内。

7. Acknowledgments
7. 致谢

The authors would like to thank all members of the teams (the Joint Working Team, the MPLS Interoperability Design Team in the IETF, and the MPLS-TP Ad Hoc Group in the ITU-T) involved in the definition and specification of the MPLS Transport Profile. We would in particular like to acknowledge the contributions by Tom Petch to improve the quality of this document. Abdussalam Baryun also reviewed this document.

作者要感谢参与MPLS传输概要定义和规范的所有团队成员(联合工作团队、IETF中的MPLS互操作性设计团队和ITU-T中的MPLS-TP特设小组)。我们特别感谢Tom Petch为提高本文件质量所做的贡献。Abdussalam Baryun还审查了该文件。

8. Contributors
8. 贡献者

The following individuals contributed to this document: Italo Busi, Ben Niven-Jenkins, Enrique Hernandez-Valencia, Lieven Levrau, Dinesh Mohan, Stewart Bryant, Dan Frost, Matthew Bocci, Vincenzo Sestito, Martin Vigoureux, and Yaacov Weingarten.

以下个人对本文件做出了贡献:Italo Busi、Ben Niven Jenkins、Enrique Hernandez Valencia、Lieven Levrau、Dinesh Mohan、Stewart Bryant、Dan Frost、Matthew Bocci、Vincenzo Sestito、Martin Vigoureux和Yaacov Weingarten。

9. References
9. 工具书类
9.1. Normative References
9.1. 规范性引用文件

[RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol Label Switching Architecture", RFC 3031, January 2001.

[RFC3031]Rosen,E.,Viswanathan,A.,和R.Callon,“多协议标签交换体系结构”,RFC 30312001年1月。

[RFC5654] Niven-Jenkins, B., Ed., Brungard, D., Ed., Betts, M., Ed., Sprecher, N., and S. Ueno, "Requirements of an MPLS Transport Profile", RFC 5654, September 2009.

[RFC5654]Niven Jenkins,B.,Ed.,Brungard,D.,Ed.,Betts,M.,Ed.,Sprecher,N.,和S.Ueno,“MPLS传输配置文件的要求”,RFC 56542009年9月。

[RFC5860] Vigoureux, M., Ed., Ward, D., Ed., and M. Betts, Ed., "Requirements for Operations, Administration, and Maintenance (OAM) in MPLS Transport Networks", RFC 5860, May 2010.

[RFC5860]Vigoureux,M.,Ed.,Ward,D.,Ed.,和M.Betts,Ed.,“MPLS传输网络中的操作、管理和维护(OAM)要求”,RFC 58602010年5月。

[RFC5921] Bocci, M., Ed., Bryant, S., Ed., Frost, D., Ed., Levrau, L., and L. Berger, "A Framework for MPLS in Transport Networks", RFC 5921, July 2010.

[RFC5921]Bocci,M.,Ed.,Bryant,S.,Ed.,Frost,D.,Ed.,Levrau,L.,和L.Berger,“传输网络中MPLS的框架”,RFC 59212010年7月。

[RFC5951] Lam, K., Mansfield, S., and E. Gray, "Network Management Requirements for MPLS-based Transport Networks", RFC 5951, September 2010.

[RFC5951]Lam,K.,Mansfield,S.,和E.Gray,“基于MPLS的传输网络的网络管理要求”,RFC 59512010年9月。

[RFC6371] Busi, I., Ed., and D. Allan, Ed., "Operations, Administration, and Maintenance Framework for MPLS-Based Transport Networks", RFC 6371, September 2011.

[RFC6371]Busi,I.,Ed.和D.Allan,Ed.“基于MPLS的传输网络的操作、管理和维护框架”,RFC 63712011年9月。

[RFC6372] Sprecher, N., Ed., and A. Farrel, Ed., "MPLS Transport Profile (MPLS-TP) Survivability Framework", RFC 6372, September 2011.

[RFC6372]Sprecher,N.,Ed.,和A.Farrel,Ed.,“MPLS传输配置文件(MPLS-TP)生存能力框架”,RFC 6372,2011年9月。

[ITU-T_G.805] ITU-T Recommendation G.805, "Generic functional architecture of transport networks", March 2000, <http://www.itu.int/rec/T-REC/>.

[ITU-T_G.805]ITU-T建议G.805,“传输网络的通用功能架构”,2000年3月<http://www.itu.int/rec/T-REC/>.

[ITU-T_G.806] ITU-T Recommendation G.806, "Characteristics of transport equipment - Description methodology and generic functionality", March 2006, <http://www.itu.int/rec/T-REC/>.

[ITU-T_G.806]ITU-T建议G.806,“运输设备的特性-描述方法和通用功能”,2006年3月<http://www.itu.int/rec/T-REC/>.

[ITU-T_G.872] ITU-T Recommendation G.872, "Architecture of optical transport networks", November 2001, <http://www.itu.int/rec/T-REC/>.

[ITU-T_G.872]ITU-T建议G.872,“光传输网络体系结构”,2001年11月<http://www.itu.int/rec/T-REC/>.

[ITU-T_G.7710] ITU-T Recommendation G.7710, "Common equipment management function requirements", July 2007, <http://www.itu.int/rec/T-REC/>.

[ITU-T_G.7710]ITU-T建议G.7710,“通用设备管理功能要求”,2007年7月<http://www.itu.int/rec/T-REC/>.

[ITU-T_G.8101] ITU-T Recommendation G.8101/Y.1355, "Terms and definitions for MPLS Transport Profile", September 2013, <http://www.itu.int/rec/T-REC/>.

[ITU-T_G.8101]ITU-T建议G.8101/Y.1355,“MPLS传输模式的术语和定义”,2013年9月<http://www.itu.int/rec/T-REC/>.

[ITU-T_G.8110.1] ITU-T Recommendation G.8110.1/Y.1370.1, "Architecture of the Multi-Protocol Label Switching transport profile layer network", December 2011, <http://www.itu.int/rec/T-REC/>.

[ITU-T_G.8110.1]ITU-T建议G.8110.1/Y.1370.1,“多协议标签交换传输配置文件层网络的体系结构”,2011年12月<http://www.itu.int/rec/T-REC/>.

[ITU-T_G.8113.1] ITU-T Recommendation G.8113.1/Y.1372.1, "Operations, administration and maintenance mechanism for MPLS-TP in packet transport network (PTN)", November 2012, <http://www.itu.int/rec/T-REC/>.

[ITU-T_G.8113.1]ITU-T建议G.8113.1/Y.1372.1,“分组传输网络(PTN)中MPLS-TP的操作、管理和维护机制”,2012年11月<http://www.itu.int/rec/T-REC/>.

[ITU-T_G.8113.2] ITU-T Recommendation G.8113.2/Y.1372.2, "Operations, administration and maintenance mechanisms for MPLS-TP networks using the tools defined for MPLS", November 2012, <http://www.itu.int/rec/T-REC/>.

[ITU-T_G.8113.2]ITU-T建议G.8113.2/Y.1372.2,“使用为MPLS定义的工具的MPLS-TP网络的操作、管理和维护机制”,2012年11月<http://www.itu.int/rec/T-REC/>.

[ITU-T_Y.2611] ITU-T Recommendation Y.2611, "High-level architecture of future packet-based networks", December 2006, <http://www.itu.int/rec/T-REC/>.

[ITU-T_Y.2611]ITU-T建议Y.2611,“未来基于分组的网络的高级架构”,2006年12月<http://www.itu.int/rec/T-REC/>.

9.2. Informative References
9.2. 资料性引用

[RFC4397] Bryskin, I. and A. Farrel, "A Lexicography for the Interpretation of Generalized Multiprotocol Label Switching (GMPLS) Terminology within the Context of the ITU-T's Automatically Switched Optical Network (ASON) Architecture", RFC 4397, February 2006.

[RFC4397]Bryskin,I.和A.Farrel,“在ITU-T自动交换光网络(ASON)体系结构背景下解释通用多协议标签交换(GMPLS)术语的词典编纂”,RFC 4397,2006年2月。

[RFC6941] Fang, L., Ed., Niven-Jenkins, B., Ed., Mansfield, S., Ed., and R. Graveman, Ed., "MPLS Transport Profile (MPLS-TP) Security Framework", RFC 6941, April 2013.

[RFC6941]Fang,L.,Ed.,Niven Jenkins,B.,Ed.,Mansfield,S.,Ed.,和R.Graveman,Ed.,“MPLS传输配置文件(MPLS-TP)安全框架”,RFC 69412013年4月。

Authors' Addresses

作者地址

Huub van Helvoort (editor) Huawei Technologies Co., Ltd.

Huub van Helvoort(编辑)华为技术有限公司。

   EMail: Huub.van.Helvoort@huawei.com
        
   EMail: Huub.van.Helvoort@huawei.com
        

Loa Andersson (editor) Huawei Technologies Co., Ltd.

安达信(编辑)华为技术有限公司。

   EMail: loa@mail01.huawei.com
        
   EMail: loa@mail01.huawei.com
        

Nurit Sprecher (editor) Nokia Solutions and Networks

Nurit Sprecher(编辑)诺基亚解决方案和网络

   EMail: nurit.sprecher@nsn.com
        
   EMail: nurit.sprecher@nsn.com