Internet Engineering Task Force (IETF)                          H. Singh
Request for Comments: 7084                                     W. Beebee
Obsoletes: 6204                                      Cisco Systems, Inc.
Category: Informational                                        C. Donley
ISSN: 2070-1721                                                CableLabs
                                                                B. Stark
                                                           November 2013
Internet Engineering Task Force (IETF)                          H. Singh
Request for Comments: 7084                                     W. Beebee
Obsoletes: 6204                                      Cisco Systems, Inc.
Category: Informational                                        C. Donley
ISSN: 2070-1721                                                CableLabs
                                                                B. Stark
                                                           November 2013

Basic Requirements for IPv6 Customer Edge Routers




This document specifies requirements for an IPv6 Customer Edge (CE) router. Specifically, the current version of this document focuses on the basic provisioning of an IPv6 CE router and the provisioning of IPv6 hosts attached to it. The document also covers IP transition technologies. Two transition technologies in RFC 5969's IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) and RFC 6333's Dual-Stack Lite (DS-Lite) are covered in the document. The document obsoletes RFC 6204.

本文档规定了IPv6客户边缘(CE)路由器的要求。具体而言,本文档的当前版本重点介绍IPv6 CE路由器的基本配置以及连接到该路由器的IPv6主机的配置。该文件还涉及IP转换技术。本文档介绍了RFC 5969在IPv4基础设施上的IPv6快速部署(6rd)和RFC 6333的双栈Lite(DS Lite)中的两种过渡技术。该文件废除了RFC 6204。

Status of This Memo


This document is not an Internet Standards Track specification; it is published for informational purposes.


This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2013 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents


   1. Introduction ....................................................3
      1.1. Requirements Language ......................................3
   2. Terminology .....................................................4
   3. Architecture ....................................................5
      3.1. Current IPv4 End-User Network Architecture .................5
      3.2. IPv6 End-User Network Architecture .........................5
           3.2.1. Local Communication .................................7
   4. Requirements ....................................................7
      4.1. General Requirements .......................................7
      4.2. WAN-Side Configuration .....................................8
      4.3. LAN-Side Configuration ....................................12
      4.4. Transition Technologies Support ...........................14
           4.4.1. 6rd ................................................14
           4.4.2. Dual-Stack Lite (DS-Lite) ..........................15
      4.5. Security Considerations ...................................16
   5. Acknowledgements ...............................................17
   6. Contributors ...................................................17
   7. References .....................................................18
      7.1. Normative References ......................................18
      7.2. Informative References ....................................20
   1. Introduction ....................................................3
      1.1. Requirements Language ......................................3
   2. Terminology .....................................................4
   3. Architecture ....................................................5
      3.1. Current IPv4 End-User Network Architecture .................5
      3.2. IPv6 End-User Network Architecture .........................5
           3.2.1. Local Communication .................................7
   4. Requirements ....................................................7
      4.1. General Requirements .......................................7
      4.2. WAN-Side Configuration .....................................8
      4.3. LAN-Side Configuration ....................................12
      4.4. Transition Technologies Support ...........................14
           4.4.1. 6rd ................................................14
           4.4.2. Dual-Stack Lite (DS-Lite) ..........................15
      4.5. Security Considerations ...................................16
   5. Acknowledgements ...............................................17
   6. Contributors ...................................................17
   7. References .....................................................18
      7.1. Normative References ......................................18
      7.2. Informative References ....................................20
1. Introduction
1. 介绍

This document defines basic IPv6 features for a residential or small-office router, referred to as an "IPv6 CE router", in order to establish an industry baseline for features to be implemented on such a router.

本文档定义了住宅或小型办公室路由器(称为“IPv6 CE路由器”)的基本IPv6功能,以便为在此类路由器上实施的功能建立行业基准。

These routers typically also support IPv4.


Mixed environments of dual-stack hosts and IPv6-only hosts (behind the CE router) can be more complex if the IPv6-only devices are using a translator to access IPv4 servers [RFC6144]. Support for such mixed environments is not in scope of this document.


This document specifies how an IPv6 CE router automatically provisions its WAN interface, acquires address space for provisioning of its LAN interfaces, and fetches other configuration information from the service provider network. Automatic provisioning of more complex topology than a single router with multiple LAN interfaces is out of scope for this document.

本文档指定了IPv6 CE路由器如何自动配置其WAN接口、获取用于配置其LAN接口的地址空间,以及如何从服务提供商网络获取其他配置信息。自动提供比具有多个LAN接口的单个路由器更复杂的拓扑超出了本文档的范围。

See [RFC4779] for a discussion of options available for deploying IPv6 in service provider access networks.


The document also covers the IP transition technologies that were available at the time this document was written. Two transition technologies in 6rd [RFC5969] and DS-Lite [RFC6333] are covered in the document.

本文档还涵盖了编写本文档时可用的IP转换技术。本文档介绍了6rd[RFC5969]和DS Lite[RFC6333]中的两种转换技术。

1.1. Requirements Language
1.1. 需求语言

Take careful note: Unlike other IETF documents, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are not used as described in RFC 2119 [RFC2119]. This document uses these keywords not strictly for the purpose of interoperability, but rather for the purpose of establishing industry-common baseline functionality. As such, the document points to several other specifications (preferable in RFC or stable form) to provide additional guidance to implementers regarding any protocol implementation required to produce a successful CE router that interoperates successfully with a particular subset of currently deploying and planned common IPv6 access networks.

请注意:与其他IETF文件不同,本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”未按照RFC 2119[RFC2119]中的描述使用。本文档使用这些关键字并不是为了实现互操作性,而是为了建立行业通用的基线功能。因此,本文件指出了几个其他规范(最好是RFC或稳定形式),以向实施者提供有关任何协议实施的额外指导,这些协议实施是生产成功的CE路由器所必需的,该路由器可与当前部署和计划中的公共IPv6接入网络的特定子集成功互操作。

2. Terminology
2. 术语

End-User Network one or more links attached to the IPv6 CE router that connect IPv6 hosts.

最终用户网络连接到连接IPv6主机的IPv6 CE路由器的一个或多个链路。

IPv6 Customer Edge Router a node intended for home or small-office use that forwards IPv6 packets not explicitly addressed to itself. The IPv6 CE router connects the end-user network to a service provider network.

IPv6客户边缘路由器用于家庭或小型办公室的节点,用于转发未明确寻址到自身的IPv6数据包。IPv6 CE路由器将最终用户网络连接到服务提供商网络。

IPv6 Host any device implementing an IPv6 stack receiving IPv6 connectivity through the IPv6 CE router.

IPv6主机任何实现IPv6堆栈的设备,通过IPv6 CE路由器接收IPv6连接。

LAN Interface an IPv6 CE router's attachment to a link in the end-user network. Examples are Ethernet (simple or bridged), 802.11 wireless, or other LAN technologies. An IPv6 CE router may have one or more network-layer LAN interfaces.

LAN接口IPv6 CE路由器与最终用户网络中链路的连接。例如以太网(简单或桥接)、802.11无线或其他局域网技术。IPv6 CE路由器可能有一个或多个网络层LAN接口。

Service Provider an entity that provides access to the Internet. In this document, a service provider specifically offers Internet access using IPv6, and it may also offer IPv4 Internet access. The service provider can provide such access over a variety of different transport methods such as DSL, cable, wireless, and others.

服务提供商提供互联网接入的实体。在本文档中,服务提供商专门提供使用IPv6的Internet访问,并且还可以提供IPv4 Internet访问。服务提供商可以通过各种不同的传输方法(例如DSL、有线、无线等)提供这种访问。

WAN Interface an IPv6 CE router's attachment to a link used to provide connectivity to the service provider network; example link technologies include Ethernet (simple or bridged), PPP links, Frame Relay, or ATM networks, as well as Internet-layer (or higher-layer) "tunnels", such as tunnels over IPv4 or IPv6 itself.

WAN接口IPv6 CE路由器与链路的连接,用于提供与服务提供商网络的连接;示例链路技术包括以太网(简单或桥接)、PPP链路、帧中继或ATM网络,以及Internet层(或更高层)“隧道”,例如IPv4或IPv6本身上的隧道。

3. Architecture
3. 建筑学
3.1. Current IPv4 End-User Network Architecture
3.1. 当前IPv4最终用户网络体系结构

An end-user network will likely support both IPv4 and IPv6. It is not expected that an end user will change their existing network topology with the introduction of IPv6. There are some differences in how IPv6 works and is provisioned; these differences have implications for the network architecture. A typical IPv4 end-user network consists of a "plug and play" router with NAT functionality and a single link behind it, connected to the service provider network.


A typical IPv4 NAT deployment by default blocks all incoming connections. Opening of ports is typically allowed using a Universal Plug and Play Internet Gateway Device (UPnP IGD) [UPnP-IGD] or some other firewall control protocol.

默认情况下,典型的IPv4 NAT部署会阻止所有传入连接。通常允许使用通用即插即用互联网网关设备(UPnP IGD)[UPnP IGD]或其他防火墙控制协议打开端口。

Another consequence of using private address space in the end-user network is that it provides stable addressing; that is, it never changes even when you change service providers, and the addresses are always there even when the WAN interface is down or the customer edge router has not yet been provisioned.


Many existing routers support dynamic routing (which learns routes from other routers), and advanced end-users can build arbitrary, complex networks using manual configuration of address prefixes combined with a dynamic routing protocol.


3.2. IPv6 End-User Network Architecture
3.2. IPv6最终用户网络体系结构

The end-user network architecture for IPv6 should provide equivalent or better capabilities and functionality than the current IPv4 architecture.


The end-user network is a stub network. Figure 1 illustrates the model topology for the end-user network.


                   +-------+-------+                      \
                   |   Service     |                       \
                   |   Provider    |                        | Service
                   |    Router     |                        | Provider
                   +-------+-------+                        | Network
                           |                               /
                           | Customer                     /
                           | Internet Connection         /
                    +------+--------+                    \
                    |     IPv6      |                     \
                    | Customer Edge |                      \
                    |    Router     |                      /
                    +---+-------+-+-+                     /
        Network A       |       |   Network B            | End-User
  ---+-------------+----+-    --+--+-------------+---    | Network(s)
     |             |               |             |        \
 +----+-----+ +-----+----+     +----+-----+ +-----+----+   \
 |IPv6 Host | |IPv6 Host |     | IPv6 Host| |IPv6 Host |   /
 |          | |          |     |          | |          |  /
 +----------+ +-----+----+     +----------+ +----------+ /
                   +-------+-------+                      \
                   |   Service     |                       \
                   |   Provider    |                        | Service
                   |    Router     |                        | Provider
                   +-------+-------+                        | Network
                           |                               /
                           | Customer                     /
                           | Internet Connection         /
                    +------+--------+                    \
                    |     IPv6      |                     \
                    | Customer Edge |                      \
                    |    Router     |                      /
                    +---+-------+-+-+                     /
        Network A       |       |   Network B            | End-User
  ---+-------------+----+-    --+--+-------------+---    | Network(s)
     |             |               |             |        \
 +----+-----+ +-----+----+     +----+-----+ +-----+----+   \
 |IPv6 Host | |IPv6 Host |     | IPv6 Host| |IPv6 Host |   /
 |          | |          |     |          | |          |  /
 +----------+ +-----+----+     +----------+ +----------+ /

Figure 1: An Example of a Typical End-User Network


This architecture describes the:


o Basic capabilities of an IPv6 CE router

o IPv6 CE路由器的基本功能

o Provisioning of the WAN interface connecting to the service provider

o 提供连接到服务提供商的WAN接口

o Provisioning of the LAN interfaces

o 局域网接口的供应

For IPv6 multicast traffic, the IPv6 CE router may act as a Multicast Listener Discovery (MLD) proxy [RFC4605] and may support a dynamic multicast routing protocol.

对于IPv6多播流量,IPv6 CE路由器可充当多播侦听器发现(MLD)代理[RFC4605],并可支持动态多播路由协议。

The IPv6 CE router may be manually configured in an arbitrary topology with a dynamic routing protocol. Automatic provisioning and configuration are described for a single IPv6 CE router only.

可以使用动态路由协议在任意拓扑中手动配置IPv6 CE路由器。仅针对单个IPv6 CE路由器描述了自动资源调配和配置。

3.2.1. Local Communication
3.2.1. 本地通信

Link-local IPv6 addresses are used by hosts communicating on a single link. Unique Local IPv6 Unicast Addresses (ULAs) [RFC4193] are used by hosts communicating within the end-user network across multiple links, but without requiring the application to use a globally routable address. The IPv6 CE router defaults to acting as the demarcation point between two networks by providing a ULA boundary, a multicast zone boundary, and ingress and egress traffic filters.

链路本地IPv6地址由在单个链路上通信的主机使用。唯一本地IPv6单播地址(ULA)[RFC4193]由最终用户网络内跨多个链路通信的主机使用,但不要求应用程序使用全局可路由地址。IPv6 CE路由器默认充当两个网络之间的分界点,提供ULA边界、多播区域边界以及入口和出口流量过滤器。

At the time of this writing, several host implementations do not handle the case where they have an IPv6 address configured and no IPv6 connectivity, either because the address itself has a limited topological reachability (e.g., ULA) or because the IPv6 CE router is not connected to the IPv6 network on its WAN interface. To support host implementations that do not handle multihoming in a multi-prefix environment [MULTIHOMING-WITHOUT-NAT], the IPv6 CE router should not, as detailed in the requirements below, advertise itself as a default router on the LAN interface(s) when it does not have IPv6 connectivity on the WAN interface or when it is not provisioned with IPv6 addresses. For local IPv6 communication, the mechanisms specified in [RFC4191] are used.

在撰写本文时,由于地址本身具有有限的拓扑可达性(例如,ULA),或者由于IPv6 CE路由器未在其WAN接口上连接到IPv6网络,一些主机实现没有处理配置了IPv6地址且没有IPv6连接的情况。为了支持在多前缀环境中不处理多主的主机实现[multihoming-WITHOUT-NAT],IPv6 CE路由器不应如以下要求中所述,在LAN接口上作为默认路由器进行宣传当它在WAN接口上没有IPv6连接或未配置IPv6地址时。对于本地IPv6通信,使用[RFC4191]中指定的机制。

ULA addressing is useful where the IPv6 CE router has multiple LAN interfaces with hosts that need to communicate with each other. If the IPv6 CE router has only a single LAN interface (IPv6 link), then link-local addressing can be used instead.

当IPv6 CE路由器与需要相互通信的主机具有多个LAN接口时,ULA寻址非常有用。如果IPv6 CE路由器只有一个LAN接口(IPv6链路),则可以使用链路本地寻址。

Coexistence with IPv4 requires any IPv6 CE router(s) on the LAN to conform to these recommendations, especially requirements ULA-5 and L-4 below.

与IPv4共存需要LAN上的任何IPv6 CE路由器符合这些建议,特别是下面的ULA-5和L-4要求。

4. Requirements
4. 要求
4.1. General Requirements
4.1. 一般要求

The IPv6 CE router is responsible for implementing IPv6 routing; that is, the IPv6 CE router must look up the IPv6 destination address in its routing table to decide to which interface it should send the packet.

IPv6 CE路由器负责实现IPv6路由;也就是说,IPv6 CE路由器必须在其路由表中查找IPv6目标地址,以决定将数据包发送到哪个接口。

In this role, the IPv6 CE router is responsible for ensuring that traffic using its ULA addressing does not go out the WAN interface and does not originate from the WAN interface.

在这个角色中,IPv6 CE路由器负责确保使用其ULA寻址的流量不会从WAN接口流出,也不会来自WAN接口。

G-1: An IPv6 CE router is an IPv6 node according to the IPv6 Node Requirements specification [RFC6434].

G-1:根据IPv6节点需求规范[RFC6434],IPv6 CE路由器是IPv6节点。

G-2: The IPv6 CE router MUST implement ICMPv6 according to [RFC4443]. In particular, point-to-point links MUST be handled as described in Section 3.1 of [RFC4443].

G-2:IPv6 CE路由器必须根据[RFC4443]实现ICMPv6。特别是,必须按照[RFC4443]第3.1节的规定处理点对点链路。

G-3: The IPv6 CE router MUST NOT forward any IPv6 traffic between its LAN interface(s) and its WAN interface until the router has successfully completed the IPv6 address and the delegated prefix acquisition process.

G-3:IPv6 CE路由器在成功完成IPv6地址和授权前缀获取过程之前,不得在其LAN接口和WAN接口之间转发任何IPv6流量。

G-4: By default, an IPv6 CE router that has no default router(s) on its WAN interface MUST NOT advertise itself as an IPv6 default router on its LAN interfaces. That is, the "Router Lifetime" field is set to zero in all Router Advertisement messages it originates [RFC4861].

G-4:默认情况下,在其WAN接口上没有默认路由器的IPv6 CE路由器不得在其LAN接口上作为IPv6默认路由器进行宣传。也就是说,在它发起的所有路由器广告消息中,“路由器寿命”字段设置为零[RFC4861]。

G-5: By default, if the IPv6 CE router is an advertising router and loses its IPv6 default router(s) and/or detects loss of connectivity on the WAN interface, it MUST explicitly invalidate itself as an IPv6 default router on each of its advertising interfaces by immediately transmitting one or more Router Advertisement messages with the "Router Lifetime" field set to zero [RFC4861].

G-5:默认情况下,如果IPv6 CE路由器是一个播发路由器,并且丢失了其IPv6默认路由器和/或检测到WAN接口上的连接丢失,则它必须通过立即使用发送一个或多个路由器播发消息,在其每个播发接口上显式地使自己作为IPv6默认路由器失效“路由器寿命”字段设置为零[RFC4861]。

4.2. WAN-Side Configuration
4.2. 广域网端配置

The IPv6 CE router will need to support connectivity to one or more access network architectures. This document describes an IPv6 CE router that is not specific to any particular architecture or service provider and that supports all commonly used architectures.

IPv6 CE路由器需要支持与一个或多个接入网络体系结构的连接。本文档描述的IPv6 CE路由器不特定于任何特定的体系结构或服务提供商,它支持所有常用的体系结构。

IPv6 Neighbor Discovery and DHCPv6 protocols operate over any type of IPv6-supported link layer, and there is no need for a link-layer-specific configuration protocol for IPv6 network-layer configuration options as in, e.g., PPP IP Control Protocol (IPCP) for IPv4. This section makes the assumption that the same mechanism will work for any link layer, be it Ethernet, the Data Over Cable Service Interface Specification (DOCSIS), PPP, or others.

IPv6邻居发现和DHCPv6协议在任何类型的IPv6支持的链路层上运行,并且不需要针对IPv6网络层配置选项使用特定于链路层的配置协议,如IPv4的PPP IP控制协议(IPCP)。本节假设相同的机制适用于任何链路层,无论是以太网、有线数据服务接口规范(DOCSIS)、PPP还是其他。

WAN-side requirements:


W-1: When the router is attached to the WAN interface link, it MUST act as an IPv6 host for the purposes of stateless [RFC4862] or stateful [RFC3315] interface address assignment.


W-2: The IPv6 CE router MUST generate a link-local address and finish Duplicate Address Detection according to [RFC4862] prior to sending any Router Solicitations on the interface. The source address used in the subsequent Router Solicitation MUST be the link-local address on the WAN interface.

W-2:IPv6 CE路由器必须在接口上发送任何路由器请求之前,根据[RFC4862]生成链路本地地址并完成重复地址检测。后续路由器请求中使用的源地址必须是WAN接口上的链路本地地址。

W-3: Absent other routing information, the IPv6 CE router MUST use Router Discovery as specified in [RFC4861] to discover a default router(s) and install a default route(s) in its routing table with the discovered router's address as the next hop.

W-3:如果没有其他路由信息,IPv6 CE路由器必须使用[RFC4861]中指定的路由器发现来发现默认路由器,并在其路由表中安装默认路由,发现的路由器地址作为下一跳。

W-4: The router MUST act as a requesting router for the purposes of DHCPv6 prefix delegation ([RFC3633]).


W-5: The IPv6 CE router MUST use a persistent DHCP Unique Identifier (DUID) for DHCPv6 messages. The DUID MUST NOT change between network-interface resets or IPv6 CE router reboots.

W-5:IPv6 CE路由器必须为DHCPv6消息使用持久DHCP唯一标识符(DUID)。DUID不得在网络接口重置或IPv6 CE路由器重新启动之间更改。

W-6: The WAN interface of the CE router SHOULD support a Port Control Protocol (PCP) client as specified in [RFC6887] for use by applications on the CE router. The PCP client SHOULD follow the procedure specified in Section 8.1 of [RFC6887] to discover its PCP server. This document takes no position on whether such functionality is enabled by default or mechanisms by which users would configure the functionality. Handling PCP requests from PCP clients in the LAN side of the CE router is out of scope.


Link-layer requirements:


WLL-1: If the WAN interface supports Ethernet encapsulation, then the IPv6 CE router MUST support IPv6 over Ethernet [RFC2464].

WLL-1:如果WAN接口支持以太网封装,则IPv6 CE路由器必须支持以太网上的IPv6[RFC2464]。

WLL-2: If the WAN interface supports PPP encapsulation, the IPv6 CE router MUST support IPv6 over PPP [RFC5072].

WLL-2:如果WAN接口支持PPP封装,IPv6 CE路由器必须支持IPv6 over PPP[RFC5072]。

WLL-3: If the WAN interface supports PPP encapsulation, in a dual-stack environment with IPCP and IPV6CP running over one PPP logical channel, the Network Control Protocols (NCPs) MUST be treated as independent of each other and start and terminate independently.


Address assignment requirements:


WAA-1: The IPv6 CE router MUST support Stateless Address Autoconfiguration (SLAAC) [RFC4862].

WAA-1:IPv6 CE路由器必须支持无状态地址自动配置(SLAAC)[RFC4862]。

WAA-2: The IPv6 CE router MUST follow the recommendations in Section 4 of [RFC5942], and in particular the handling of the L flag in the Router Advertisement Prefix Information option.

WAA-2:IPv6 CE路由器必须遵循[RFC5942]第4节中的建议,尤其是路由器广告前缀信息选项中L标志的处理。

WAA-3: The IPv6 CE router MUST support DHCPv6 [RFC3315] client behavior.

WAA-3:IPv6 CE路由器必须支持DHCPv6[RFC3315]客户端行为。

WAA-4: The IPv6 CE router MUST be able to support the following DHCPv6 options: Identity Association for Non-temporary Address (IA_NA), Reconfigure Accept [RFC3315], and DNS_SERVERS [RFC3646]. The IPv6 CE router SHOULD be able to support the DNS Search List (DNSSL) option as specified in [RFC3646].

WAA-4:IPv6 CE路由器必须能够支持以下DHCPv6选项:非临时地址(IA_NA)的标识关联、重新配置接受[RFC3315]和DNS_服务器[RFC3646]。IPv6 CE路由器应能够支持[RFC3646]中指定的DNS搜索列表(DNSSL)选项。

WAA-5: The IPv6 CE router SHOULD implement the Network Time Protocol (NTP) as specified in [RFC5905] to provide a time reference common to the service provider for other protocols, such as DHCPv6, to use. If the CE router implements NTP, it requests the NTP Server DHCPv6 option [RFC5908] and uses the received list of servers as primary time reference, unless explicitly configured otherwise. LAN side support of NTP is out of scope for this document.

WAA-5:IPv6 CE路由器应实现[RFC5905]中规定的网络时间协议(NTP),以提供服务提供商通用的时间参考,供其他协议(如DHCPv6)使用。如果CE路由器实现NTP,它将请求NTP服务器DHCPv6选项[RFC5908],并使用收到的服务器列表作为主要时间参考,除非另有明确配置。NTP的LAN端支持超出了本文档的范围。

WAA-6: If the IPv6 CE router receives a Router Advertisement message (described in [RFC4861]) with the M flag set to 1, the IPv6 CE router MUST do DHCPv6 address assignment (request an IA_NA option).

WAA-6:如果IPv6 CE路由器接收到M标志设置为1的路由器公告消息(如[RFC4861]所述),IPv6 CE路由器必须执行DHCPv6地址分配(请求IA_NA选项)。

WAA-7: If the IPv6 CE router does not acquire a global IPv6 address(es) from either SLAAC or DHCPv6, then it MUST create a global IPv6 address(es) from its delegated prefix(es) and configure those on one of its internal virtual network interfaces, unless configured to require a global IPv6 address on the WAN interface.

WAA-7:如果IPv6 CE路由器未从SLAAC或DHCPv6获取全局IPv6地址,则它必须从其委派前缀创建全局IPv6地址,并在其内部虚拟网络接口之一上配置这些地址,除非配置为需要WAN接口上的全局IPv6地址。

WAA-8: The CE router MUST support the SOL_MAX_RT option [RFC7083] and request the SOL_MAX_RT option in an Option Request Option (ORO).


WAA-9: As a router, the IPv6 CE router MUST follow the weak host (Weak End System) model [RFC1122]. When originating packets from an interface, it will use a source address from another one of its interfaces if the outgoing interface does not have an address of suitable scope.

WAA-9:作为路由器,IPv6 CE路由器必须遵循弱主机(弱端系统)模型[RFC1122]。当从接口发起数据包时,如果传出接口没有合适范围的地址,它将使用来自另一个接口的源地址。

WAA-10: The IPv6 CE router SHOULD implement the Information Refresh Time option and associated client behavior as specified in [RFC4242].

WAA-10:IPv6 CE路由器应实现[RFC4242]中规定的信息刷新时间选项和相关客户端行为。

Prefix delegation requirements:


WPD-1: The IPv6 CE router MUST support DHCPv6 prefix delegation requesting router behavior as specified in [RFC3633] (Identity Association for Prefix Delegation (IA_PD) option).

WPD-1:IPv6 CE路由器必须支持[RFC3633](前缀委派的标识关联(IA_PD)选项)中指定的DHCPv6前缀委派请求路由器行为。

WPD-2: The IPv6 CE router MAY indicate as a hint to the delegating router the size of the prefix it requires. If so, it MUST ask for a prefix large enough to assign one /64 for each of its interfaces, rounded up to the nearest nibble, and SHOULD be configurable to ask for more.

WPD-2:IPv6 CE路由器可能会向委托路由器指示其所需前缀的大小作为提示。如果是这样,它必须请求一个足够大的前缀,以便为其每个接口分配1/64,四舍五入到最近的半字节,并且应该可以配置为请求更多。

WPD-3: The IPv6 CE router MUST be prepared to accept a delegated prefix size different from what is given in the hint. If the delegated prefix is too small to address all of its interfaces, the IPv6 CE router SHOULD log a system management error. [RFC6177] covers the recommendations for service providers for prefix allocation sizes.

WPD-3:IPv6 CE路由器必须准备好接受不同于提示中给出的委派前缀大小。如果委派前缀太小,无法寻址其所有接口,IPv6 CE路由器应记录系统管理错误。[RFC6177]介绍了服务提供商对前缀分配大小的建议。

WPD-4: By default, the IPv6 CE router MUST initiate DHCPv6 prefix delegation when either the M or O flags are set to 1 in a received Router Advertisement (RA) message. Behavior of the CE router to use DHCPv6 prefix delegation when the CE router has not received any RA or received an RA with the M and the O bits set to zero is out of scope for this document.

WPD-4:默认情况下,当收到的路由器公告(RA)消息中的M或O标志设置为1时,IPv6 CE路由器必须启动DHCPv6前缀委派。当CE路由器未收到任何RA或收到M和O位设置为零的RA时,CE路由器使用DHCPv6前缀委派的行为超出本文档的范围。

WPD-5: Any packet received by the CE router with a destination address in the prefix(es) delegated to the CE router but not in the set of prefixes assigned by the CE router to the LAN must be dropped. In other words, the next hop for the prefix(es) delegated to the CE router should be the null destination. This is necessary to prevent forwarding loops when some addresses covered by the aggregate are not reachable [RFC4632].


(a) The IPv6 CE router SHOULD send an ICMPv6 Destination Unreachable message in accordance with Section 3.1 of [RFC4443] back to the source of the packet, if the packet is to be dropped due to this rule.

(a) IPv6 CE路由器应根据[RFC4443]第3.1节将ICMPv6目的地不可到达消息发送回数据包源,如果数据包因该规则而被丢弃。

WPD-6: If the IPv6 CE router requests both an IA_NA and an IA_PD option in DHCPv6, it MUST accept an IA_PD option in DHCPv6 Advertise/Reply messages, even if the message does not contain any addresses, unless configured to only obtain its WAN IPv6 address via DHCPv6; see [DHCPv6-STATEFUL-ISSUES].

WPD-6:如果IPv6 CE路由器请求DHCPv6中的IA_-NA和IA_-PD选项,则它必须接受DHCPv6播发/回复消息中的IA_-PD选项,即使消息不包含任何地址,除非配置为仅通过DHCPv6获取其WAN IPv6地址;请参阅[DHCPv6有状态问题]。

WPD-7: By default, an IPv6 CE router MUST NOT initiate any dynamic routing protocol on its WAN interface.

WPD-7:默认情况下,IPv6 CE路由器不得在其WAN接口上启动任何动态路由协议。

WPD-8: The IPv6 CE router SHOULD support the [RFC6603] Prefix Exclude option.

WPD-8:IPv6 CE路由器应支持[RFC6603]前缀排除选项。

4.3. LAN-Side Configuration
4.3. 局域网端配置

The IPv6 CE router distributes configuration information obtained during WAN interface provisioning to IPv6 hosts and assists IPv6 hosts in obtaining IPv6 addresses. It also supports connectivity of these devices in the absence of any working WAN interface.

IPv6 CE路由器将在WAN接口配置期间获得的配置信息分发给IPv6主机,并协助IPv6主机获取IPv6地址。它还支持在没有任何工作WAN接口的情况下连接这些设备。

An IPv6 CE router is expected to support an IPv6 end-user network and IPv6 hosts that exhibit the following characteristics:

IPv6 CE路由器预计将支持具有以下特征的IPv6最终用户网络和IPv6主机:

1. Link-local addresses may be insufficient for allowing IPv6 applications to communicate with each other in the end-user network. The IPv6 CE router will need to enable this communication by providing globally scoped unicast addresses or ULAs [RFC4193], whether or not WAN connectivity exists.

1. 链路本地地址可能不足以允许IPv6应用程序在最终用户网络中相互通信。IPv6 CE路由器需要通过提供全局范围的单播地址或ULA[RFC4193]来启用此通信,无论是否存在WAN连接。

2. IPv6 hosts should be capable of using SLAAC and may be capable of using DHCPv6 for acquiring their addresses.

2. IPv6主机应该能够使用SLAAC,并且可能能够使用DHCPv6获取其地址。

3. IPv6 hosts may use DHCPv6 for other configuration information, such as the DNS_SERVERS option for acquiring DNS information.

3. IPv6主机可以将DHCPv6用于其他配置信息,例如用于获取DNS信息的DNS_服务器选项。

Unless otherwise specified, the following requirements apply to the IPv6 CE router's LAN interfaces only.

除非另有规定,以下要求仅适用于IPv6 CE路由器的LAN接口。

ULA requirements:


ULA-1: The IPv6 CE router SHOULD be capable of generating a ULA prefix [RFC4193].

ULA-1:IPv6 CE路由器应能够生成ULA前缀[RFC4193]。

ULA-2: An IPv6 CE router with a ULA prefix MUST maintain this prefix consistently across reboots.

ULA-2:具有ULA前缀的IPv6 CE路由器必须在重新启动期间保持此前缀一致。

ULA-3: The value of the ULA prefix SHOULD be configurable.


ULA-4: By default, the IPv6 CE router MUST act as a site border router according to Section 4.3 of [RFC4193] and filter packets with local IPv6 source or destination addresses accordingly.

ULA-4:根据[RFC4193]第4.3节,默认情况下,IPv6 CE路由器必须充当站点边界路由器,并相应地过滤具有本地IPv6源地址或目标地址的数据包。

ULA-5: An IPv6 CE router MUST NOT advertise itself as a default router with a Router Lifetime greater than zero whenever all of its configured and delegated prefixes are ULA prefixes.

ULA-5:IPv6 CE路由器不得在其所有配置和委派的前缀均为ULA前缀时,将自身作为路由器生存期大于零的默认路由器进行公告。

LAN requirements:


L-1: The IPv6 CE router MUST support router behavior according to Neighbor Discovery for IPv6 [RFC4861].

L-1:根据IPv6的邻居发现[RFC4861],IPv6 CE路由器必须支持路由器行为。

L-2: The IPv6 CE router MUST assign a separate /64 from its delegated prefix(es) (and ULA prefix if configured to provide ULA addressing) for each of its LAN interfaces.

L-2:IPv6 CE路由器必须为其每个LAN接口从其委派前缀(和ULA前缀,如果配置为提供ULA寻址)中分配单独的/64。

L-3: An IPv6 CE router MUST advertise itself as a router for the delegated prefix(es) (and ULA prefix if configured to provide ULA addressing) using the "Route Information Option" specified in Section 2.3 of [RFC4191]. This advertisement is independent of having or not having IPv6 connectivity on the WAN interface.

L-3:IPv6 CE路由器必须使用[RFC4191]第2.3节中规定的“路由信息选项”,将自身作为代理前缀(以及ULA前缀,如果配置为提供ULA寻址)的路由器进行公告。此播发与WAN接口上是否具有IPv6连接无关。

L-4: An IPv6 CE router MUST NOT advertise itself as a default router with a Router Lifetime [RFC4861] greater than zero if it has no prefixes configured or delegated to it.

L-4:如果IPv6 CE路由器未配置或委托前缀,则不得将其自身作为路由器生存期[RFC4861]大于零的默认路由器进行公告。

L-5: The IPv6 CE router MUST make each LAN interface an advertising interface according to [RFC4861].

L-5:IPv6 CE路由器必须根据[RFC4861]使每个LAN接口成为广告接口。

L-6: In Router Advertisement messages ([RFC4861]), the Prefix Information option's A and L flags MUST be set to 1 by default.


L-7: The A and L flags' ([RFC4861]) settings SHOULD be user configurable.


L-8: The IPv6 CE router MUST support a DHCPv6 server capable of IPv6 address assignment according to [RFC3315] OR a stateless DHCPv6 server according to [RFC3736] on its LAN interfaces.

L-8:IPv6 CE路由器必须在其LAN接口上支持能够根据[RFC3315]分配IPv6地址的DHCPv6服务器或根据[RFC3736]分配无状态DHCPv6服务器。

L-9: Unless the IPv6 CE router is configured to support the DHCPv6 IA_NA option, it SHOULD set the M flag to zero and the O flag to 1 in its Router Advertisement messages [RFC4861].

L-9:除非IPv6 CE路由器配置为支持DHCPv6 IA_NA选项,否则它应该在其路由器公告消息中将M标志设置为零,将O标志设置为1[RFC4861]。

L-10: The IPv6 CE router MUST support providing DNS information in the DHCPv6 DNS_SERVERS and DOMAIN_LIST options [RFC3646].

L-10:IPv6 CE路由器必须支持在DHCPv6 DNS_服务器和域_列表选项中提供DNS信息[RFC3646]。

L-11: The IPv6 CE router MUST support providing DNS information in the Router Advertisement Recursive DNS Server (RDNSS) and DNS Search List options. Both options are specified in [RFC6106].

L-11:IPv6 CE路由器必须支持在路由器广告递归DNS服务器(RDNS)和DNS搜索列表选项中提供DNS信息。[RFC6106]中规定了这两个选项。

L-12: The IPv6 CE router SHOULD make available a subset of DHCPv6 options (as listed in Section 5.3 of [RFC3736]) received from the DHCPv6 client on its WAN interface to its LAN-side DHCPv6 server.

L-12:IPv6 CE路由器应提供DHCPv6选项的子集(如[RFC3736]第5.3节所列),这些选项是通过其WAN接口从DHCPv6客户端接收到其LAN端DHCPv6服务器的。

L-13: If the delegated prefix changes, i.e., the current prefix is replaced with a new prefix without any overlapping time period, then the IPv6 CE router MUST immediately advertise the old prefix with a Preferred Lifetime of zero and a Valid Lifetime of either a) zero or b) the lower of the current Valid Lifetime and two hours (which must be decremented in real time) in a Router Advertisement message as described in Section 5.5.3, (e) of [RFC4862].

L-13:如果委派前缀发生变化,即当前前缀被替换为新前缀,且没有任何重叠的时间段,则IPv6 CE路由器必须立即公布旧前缀,首选生存期为零,有效生存期为a)零或b)当前有效生存期和两小时中的较低者(必须实时递减)在[RFC4862]第5.5.3,(e)节所述的路由器广告消息中。

L-14: The IPv6 CE router MUST send an ICMPv6 Destination Unreachable message, code 5 (Source address failed ingress/egress policy) for packets forwarded to it that use an address from a prefix that has been invalidated.

L-14:IPv6 CE路由器必须发送一条ICMPv6目的地不可访问消息,代码为5(源地址失败的入口/出口策略),用于转发到它的数据包,该数据包使用的地址来自已失效的前缀。

4.4. Transition Technologies Support
4.4. 过渡技术支持
4.4.1. 6rd
4.4.1. 第六

6rd [RFC5969] specifies an automatic tunneling mechanism tailored to advance deployment of IPv6 to end users via a service provider's IPv4 network infrastructure. Key aspects include automatic IPv6 prefix delegation to sites, stateless operation, simple provisioning, and service that is equivalent to native IPv6 at the sites that are served by the mechanism. It is expected that such traffic is forwarded over the CE router's native IPv4 WAN interface and not encapsulated in another tunnel.

第6条[RFC5969]指定了一种自动隧道机制,该机制专门用于通过服务提供商的IPv4网络基础设施向最终用户提前部署IPv6。关键方面包括自动向站点委派IPv6前缀、无状态操作、简单的资源调配,以及在该机制服务的站点上提供与本机IPv6等效的服务。预计此类流量将通过CE路由器的本机IPv4 WAN接口转发,而不是封装在另一个隧道中。

The CE router SHOULD support 6rd functionality. If 6rd is supported, it MUST be implemented according to [RFC5969]. The following CE Requirements also apply:


6rd requirements:


6RD-1: The IPv6 CE router MUST support 6rd configuration via the 6rd DHCPv4 Option 212. If the CE router has obtained an IPv4 network address through some other means such as PPP, it SHOULD use the DHCPINFORM request message [RFC2131] to request the 6rd DHCPv4 Option. The IPv6 CE router MAY use other mechanisms to configure 6rd parameters. Such mechanisms are outside the scope of this document.

6RD-1:IPv6 CE路由器必须通过第6RD DHCPv4选项212支持第6RD配置。如果CE路由器通过PPP等其他方式获得IPv4网络地址,则应使用DHCPINFORM请求消息[RFC2131]来请求第六个DHCPv4选项。IPv6 CE路由器可以使用其他机制来配置第6个参数。这些机制不在本文件的范围之内。

6RD-2: If the IPv6 CE router is capable of automated configuration of IPv4 through IPCP (i.e., over a PPP connection), it MUST support user-entered configuration of 6rd.

第6RD-2条:如果IPv6 CE路由器能够通过IPCP(即通过PPP连接)自动配置IPv4,则它必须支持用户输入的第6RD条配置。

6RD-3: If the CE router supports configuration mechanisms other than the 6rd DHCPv4 Option 212 (user-entered, TR-069 [TR-069], etc.), the CE router MUST support 6rd in "hub and spoke" mode. 6rd in "hub and spoke" requires all IPv6 traffic to go to the 6rd Border Relay. In effect, this requirement removes the "direct connect to 6rd" route defined in Section 7.1.1 of [RFC5969].

6RD-3:如果CE路由器支持除第6RD DHCPv4选项212(用户输入、TR-069[TR-069]等)以外的配置机制,则CE路由器必须在“集线器和辐条”模式下支持第6RD。“中心辐射”中的第6条要求所有IPv6流量都转到第6条边界中继。实际上,该要求删除了[RFC5969]第7.1.1节中定义的“直接连接到第六条”路线。

6RD-4: A CE router MUST allow 6rd and native IPv6 WAN interfaces to be active alone as well as simultaneously in order to support coexistence of the two technologies during an incremental migration period such as a migration from 6rd to native IPv6.

6RD-4:CE路由器必须允许6RD和本机IPv6 WAN接口单独或同时处于活动状态,以便在增量迁移期间(如从6RD迁移到本机IPv6)支持这两种技术共存。

6RD-5: Each packet sent on a 6rd or native WAN interface MUST be directed such that its source IP address is derived from the delegated prefix associated with the particular interface from which the packet is being sent (Section 4.3 of [RFC3704]).


6RD-6: The CE router MUST allow different as well as identical delegated prefixes to be configured via each (6rd or native) WAN interface.


6RD-7: In the event that forwarding rules produce a tie between 6rd and native IPv6, by default, the IPv6 CE router MUST prefer native IPv6.

6RD-7:如果转发规则在6RD和本机IPv6之间产生联系,默认情况下,IPv6 CE路由器必须首选本机IPv6。

4.4.2. Dual-Stack Lite (DS-Lite)
4.4.2. 双栈精简版(DS精简版)

Dual-Stack Lite [RFC6333] enables both continued support for IPv4 services and incentives for the deployment of IPv6. It also de-couples IPv6 deployment in the service provider network from the rest of the Internet, making incremental deployment easier. Dual-Stack Lite enables a broadband service provider to share IPv4


addresses among customers by combining two well-known technologies: IP in IP (IPv4-in-IPv6) and Network Address Translation (NAT). It is expected that DS-Lite traffic is forwarded over the CE router's native IPv6 WAN interface, and not encapsulated in another tunnel.

通过结合两种众所周知的技术:IP-in-IP(IPv4-in-IPv6)和网络地址转换(NAT)解决客户之间的地址问题。预计DS Lite流量将通过CE路由器的本机IPv6 WAN接口转发,而不是封装在另一个隧道中。

The IPv6 CE router SHOULD implement DS-Lite functionality. If DS-Lite is supported, it MUST be implemented according to [RFC6333]. This document takes no position on simultaneous operation of Dual-Stack Lite and native IPv4. The following CE router requirements also apply:

IPv6 CE路由器应实现DS Lite功能。如果支持DS Lite,则必须按照[RFC6333]实现。本文档对双栈Lite和本机IPv4的同时操作不持任何立场。以下CE路由器要求也适用:

WAN requirements:


DLW-1: The CE router MUST support configuration of DS-Lite via the DS-Lite DHCPv6 option [RFC6334]. The IPv6 CE router MAY use other mechanisms to configure DS-Lite parameters. Such mechanisms are outside the scope of this document.

DLW-1:CE路由器必须支持通过DS Lite DHCPv6选项[RFC6334]配置DS Lite。IPv6 CE路由器可以使用其他机制来配置DS Lite参数。这些机制不在本文件的范围之内。

DLW-2: The IPv6 CE router MUST NOT perform IPv4 Network Address Translation (NAT) on IPv4 traffic encapsulated using DS-Lite.

DLW-2:IPv6 CE路由器不得对使用DS Lite封装的IPv4流量执行IPv4网络地址转换(NAT)。

DLW-3: If the IPv6 CE router is configured with an IPv4 address on its WAN interface, then the IPv6 CE router SHOULD disable the DS-Lite Basic Bridging BroadBand (B4) element.

DLW-3:如果IPv6 CE路由器在其WAN接口上配置了IPv4地址,则IPv6 CE路由器应禁用DS Lite基本桥接宽带(B4)元素。

4.5. Security Considerations
4.5. 安全考虑

It is considered a best practice to filter obviously malicious traffic (e.g., spoofed packets, "Martian" addresses, etc.). Thus, the IPv6 CE router ought to support basic stateless egress and ingress filters. The CE router is also expected to offer mechanisms to filter traffic entering the customer network; however, the method by which vendors implement configurable packet filtering is beyond the scope of this document.

它被认为是过滤明显恶意流量(例如,伪造数据包、“火星”地址等)的最佳实践。因此,IPv6 CE路由器应该支持基本的无状态出入口过滤器。CE路由器还应提供过滤进入客户网络流量的机制;然而,供应商实现可配置数据包过滤的方法超出了本文档的范围。

Security requirements:


S-1: The IPv6 CE router SHOULD support [RFC6092]. In particular, the IPv6 CE router SHOULD support functionality sufficient for implementing the set of recommendations in [RFC6092], Section 4. This document takes no position on whether such functionality is enabled by default or mechanisms by which users would configure it.

S-1:IPv6 CE路由器应支持[RFC6092]。特别是,IPv6 CE路由器应支持足以实现[RFC6092]第4节中建议集的功能。本文档不确定默认情况下是否启用了此类功能,也不确定用户配置这些功能的机制。

S-2: The IPv6 CE router SHOULD support ingress filtering in accordance with BCP 38 [RFC2827]. Note that this requirement was downgraded from a MUST from RFC 6204 due to the difficulty of implementation in the CE router and the feature's redundancy with upstream router ingress filtering.

S-2:IPv6 CE路由器应根据BCP 38[RFC2827]支持入口过滤。请注意,由于CE路由器中的实施困难以及上游路由器入口过滤功能的冗余,该要求从RFC 6204中的必须降级。

S-3: If the IPv6 CE router firewall is configured to filter incoming tunneled data, the firewall SHOULD provide the capability to filter decapsulated packets from a tunnel.

S-3:如果IPv6 CE路由器防火墙配置为过滤传入的隧道数据,则防火墙应提供过滤隧道中已解除封装的数据包的功能。

5. Acknowledgements
5. 致谢

Thanks to the following people (in alphabetical order) for their guidance and feedback:


Mikael Abrahamsson, Tore Anderson, Merete Asak, Rajiv Asati, Scott Beuker, Mohamed Boucadair, Rex Bullinger, Brian Carpenter, Tassos Chatzithomaoglou, Lorenzo Colitti, Remi Denis-Courmont, Gert Doering, Alain Durand, Katsunori Fukuoka, Brian Haberman, Tony Hain, Thomas Herbst, Ray Hunter, Joel Jaeggli, Kevin Johns, Erik Kline, Stephen Kramer, Victor Kuarsingh, Francois-Xavier Le Bail, Arifumi Matsumoto, David Miles, Shin Miyakawa, Jean-Francois Mule, Michael Newbery, Carlos Pignataro, John Pomeroy, Antonio Querubin, Daniel Roesen, Hiroki Sato, Teemu Savolainen, Matt Schmitt, David Thaler, Mark Townsley, Sean Turner, Bernie Volz, Dan Wing, Timothy Winters, James Woodyatt, Carl Wuyts, and Cor Zwart.

米凯尔·阿布拉罕松、托尔·安德森、梅雷特·阿萨克、拉吉夫·阿萨蒂、斯科特·比克、穆罕默德·布卡代尔、雷克斯·布林格、布莱恩·卡彭特、塔索斯·查齐托马格鲁、洛伦佐·科利蒂、雷米·丹尼斯·库尔蒙、格特·多林、阿兰·杜兰德、卡苏诺里·福冈、布莱恩·哈伯曼、托尼·海恩、托马斯·赫伯斯特、雷·亨特、乔尔·贾格利、凯文·约翰斯、埃里克·克莱恩、斯蒂芬·克莱默、,Victor Kuarsingh、Francois Xavier Le Bail、Arifumi Matsumoto、David Miles、Shin Miyakawa、Jean-Francois Mule、Michael Newbery、Carlos Pignataro、John Pomeroy、Antonio Querubin、Daniel Roesen、Hiroki Sato、Teemu Savolainen、Matt Schmitt、David Thaler、Mark Townsley、Sean Turner、Bernie Volz、Dan Wing、Timothy Winters、James Woodyatt、Carl Wuyts、,还有科尔兹瓦特。

This document is based in part on CableLabs' eRouter specification. The authors wish to acknowledge the additional contributors from the eRouter team:


Ben Bekele, Amol Bhagwat, Ralph Brown, Eduardo Cardona, Margo Dolas, Toerless Eckert, Doc Evans, Roger Fish, Michelle Kuska, Diego Mazzola, John McQueen, Harsh Parandekar, Michael Patrick, Saifur Rahman, Lakshmi Raman, Ryan Ross, Ron da Silva, Madhu Sudan, Dan Torbet, and Greg White.

Ben Bekele、Amol Bhagwat、Ralph Brown、Eduardo Cardona、Margo Dolas、Toerless Eckert、Doc Evans、Roger Fish、Michelle Kuska、Diego Mazzola、John McQueen、Harsh Parandekar、Michael Patrick、Saifer Rahman、Lakshmi Raman、Ryan Ross、Ron da Silva、Madhu Sudan、Dan Torbet和Greg White。

6. Contributors
6. 贡献者

The following people have participated as co-authors or provided substantial contributions to this document: Ralph Droms, Kirk Erichsen, Fred Baker, Jason Weil, Lee Howard, Jean-Francois Tremblay, Yiu Lee, John Jason Brzozowski, and Heather Kirksey. Thanks to Ole Troan for editorship in the original RFC 6204 document.

以下人士作为共同作者参与了本文件的撰写或为本文件做出了重大贡献:拉尔夫·德罗姆斯、柯克·埃里克森、弗雷德·贝克、杰森·威尔、李·霍华德、让·弗朗索瓦·特雷姆布雷、姚·李、约翰·杰森·布尔佐夫斯基和希瑟·柯克西。感谢Ole Troan在原始RFC 6204文件中担任编辑。

7. References
7. 工具书类
7.1. Normative References
7.1. 规范性引用文件

[RFC1122] Braden, R., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, October 1989.

[RFC1122]Braden,R.,“互联网主机的要求-通信层”,标准3,RFC 1122,1989年10月。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997.


[RFC2464] Crawford, M., "Transmission of IPv6 Packets over Ethernet Networks", RFC 2464, December 1998.


[RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", BCP 38, RFC 2827, May 2000.

[RFC2827]Ferguson,P.和D.Senie,“网络入口过滤:击败利用IP源地址欺骗的拒绝服务攻击”,BCP 38,RFC 2827,2000年5月。

[RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003.


[RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6", RFC 3633, December 2003.

[RFC3633]Troan,O.和R.Droms,“动态主机配置协议(DHCP)版本6的IPv6前缀选项”,RFC 3633,2003年12月。

[RFC3646] Droms, R., "DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3646, December 2003.

[RFC3646]Droms,R.,“IPv6动态主机配置协议(DHCPv6)的DNS配置选项”,RFC 36462003年12月。

[RFC3704] Baker, F. and P. Savola, "Ingress Filtering for Multihomed Networks", BCP 84, RFC 3704, March 2004.

[RFC3704]Baker,F.和P.Savola,“多宿网络的入口过滤”,BCP 84,RFC 37042004年3月。

[RFC3736] Droms, R., "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6", RFC 3736, April 2004.

[RFC3736]Droms,R.,“IPv6的无状态动态主机配置协议(DHCP)服务”,RFC 3736,2004年4月。

[RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and More-Specific Routes", RFC 4191, November 2005.

[RFC4191]Draves,R.和D.Thaler,“默认路由器首选项和更具体的路由”,RFC 41912005年11月。

[RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast Addresses", RFC 4193, October 2005.

[RFC4193]Hinden,R.和B.Haberman,“唯一本地IPv6单播地址”,RFC 41932005年10月。

[RFC4242] Venaas, S., Chown, T., and B. Volz, "Information Refresh Time Option for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 4242, November 2005.

[RFC4242]Venaas,S.,Chown,T.,和B.Volz,“IPv6动态主机配置协议(DHCPv6)的信息刷新时间选项”,RFC 4242,2005年11月。

[RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", RFC 4443, March 2006.

[RFC4443]Conta,A.,Deering,S.和M.Gupta,“互联网协议版本6(IPv6)规范的互联网控制消息协议(ICMPv6)”,RFC 4443,2006年3月。

[RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick, "Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("IGMP/MLD Proxying")", RFC 4605, August 2006.

[RFC4605]Fenner,B.,He,H.,Haberman,B.,和H.Sandick,“基于Internet组管理协议(IGMP)/多播侦听器发现(MLD)的多播转发(“IGMP/MLD代理”)”,RFC 4605,2006年8月。

[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, August 2006.

[RFC4632]Fuller,V.和T.Li,“无类域间路由(CIDR):互联网地址分配和聚合计划”,BCP 122,RFC 4632,2006年8月。

[RFC4779] Asadullah, S., Ahmed, A., Popoviciu, C., Savola, P., and J. Palet, "ISP IPv6 Deployment Scenarios in Broadband Access Networks", RFC 4779, January 2007.

[RFC4779]Asadullah,S.,Ahmed,A.,Popoviciu,C.,Savola,P.,和J.Palet,“宽带接入网络中的ISP IPv6部署场景”,RFC 4779,2007年1月。

[RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, September 2007.

[RFC4861]Narten,T.,Nordmark,E.,Simpson,W.,和H.Soliman,“IP版本6(IPv6)的邻居发现”,RFC 48612007年9月。

[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address Autoconfiguration", RFC 4862, September 2007.

[RFC4862]Thomson,S.,Narten,T.,和T.Jinmei,“IPv6无状态地址自动配置”,RFC 48622007年9月。

[RFC5072] Varada, S., Haskins, D., and E. Allen, "IP Version 6 over PPP", RFC 5072, September 2007.

[RFC5072]Varada,S.,Haskins,D.,和E.Allen,“PPP上的IP版本6”,RFC 5072,2007年9月。

[RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, June 2010.

[RFC5905]Mills,D.,Martin,J.,Burbank,J.,和W.Kasch,“网络时间协议版本4:协议和算法规范”,RFC 59052010年6月。

[RFC5908] Gayraud, R. and B. Lourdelet, "Network Time Protocol (NTP) Server Option for DHCPv6", RFC 5908, June 2010.

[RFC5908]Gayraud,R.和B.Lourdelet,“DHCPv6的网络时间协议(NTP)服务器选项”,RFC 5908,2010年6月。

[RFC5942] Singh, H., Beebee, W., and E. Nordmark, "IPv6 Subnet Model: The Relationship between Links and Subnet Prefixes", RFC 5942, July 2010.

[RFC5942]Singh,H.,Beebee,W.和E.Nordmark,“IPv6子网模型:链路和子网前缀之间的关系”,RFC 59422010年7月。

[RFC5969] Townsley, W. and O. Troan, "IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) -- Protocol Specification", RFC 5969, August 2010.

[RFC5969]Townsley,W.和O.Troan,“IPv4基础设施上的IPv6快速部署(第6条)——协议规范”,RFC 5969,2010年8月。

[RFC6092] Woodyatt, J., "Recommended Simple Security Capabilities in Customer Premises Equipment (CPE) for Providing Residential IPv6 Internet Service", RFC 6092, January 2011.

[RFC6092]Woodyatt,J.,“提供住宅IPv6互联网服务的客户场所设备(CPE)中推荐的简单安全功能”,RFC 6092,2011年1月。

[RFC6106] Jeong, J., Park, S., Beloeil, L., and S. Madanapalli, "IPv6 Router Advertisement Options for DNS Configuration", RFC 6106, November 2010.

[RFC6106]Jeong,J.,Park,S.,Beloeil,L.,和S.Madanapalli,“DNS配置的IPv6路由器广告选项”,RFC 61062010年11月。

[RFC6177] Narten, T., Huston, G., and L. Roberts, "IPv6 Address Assignment to End Sites", BCP 157, RFC 6177, March 2011.

[RFC6177]Narten,T.,Huston,G.和L.Roberts,“终端站点的IPv6地址分配”,BCP 157,RFC 6177,2011年3月。

[RFC6333] Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion", RFC 6333, August 2011.

[RFC6333]Durand,A.,Droms,R.,Woodyatt,J.,和Y.Lee,“IPv4耗尽后的双栈Lite宽带部署”,RFC 63332011年8月。

[RFC6334] Hankins, D. and T. Mrugalski, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite", RFC 6334, August 2011.

[RFC6334]Hankins,D.和T.Mrugalski,“双栈Lite的IPv6动态主机配置协议(DHCPv6)选项”,RFC 63342011年8月。

[RFC6434] Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node Requirements", RFC 6434, December 2011.

[RFC6434]Jankiewicz,E.,Loughney,J.和T.Narten,“IPv6节点要求”,RFC 64342011年12月。

[RFC6603] Korhonen, J., Savolainen, T., Krishnan, S., and O. Troan, "Prefix Exclude Option for DHCPv6-based Prefix Delegation", RFC 6603, May 2012.

[RFC6603]Korhonen,J.,Savolainen,T.,Krishnan,S.,和O.Troan,“基于DHCPv6的前缀委托的前缀排除选项”,RFC 6603,2012年5月。

[RFC6887] Wing, D., Cheshire, S., Boucadair, M., Penno, R., and P. Selkirk, "Port Control Protocol (PCP)", RFC 6887, April 2013.

[RFC6887]南柴郡Wing,D.,布卡达尔,M.,佩诺,R.,和P.Selkirk,“港口控制协议(PCP)”,RFC 6887,2013年4月。

[RFC7083] Droms, R., "Modification to Default Values of SOL_MAX_RT and INF_MAX_RT", RFC 7083, November 2013.

[RFC7083]Droms,R.,“修改SOL_MAX_RT和INF_MAX_RT的默认值”,RFC 7083,2013年11月。

7.2. Informative References
7.2. 资料性引用

[DHCPv6-STATEFUL-ISSUES] Troan, O. and B. Volz, "Issues with multiple stateful DHCPv6 options", Work in Progress, May 2013.


[MULTIHOMING-WITHOUT-NAT] Troan, O., Ed., Miles, D., Matsushima, S., Okimoto, T., and D. Wing, "IPv6 Multihoming without Network Address Translation", Work in Progress, December 2010.


[RFC6144] Baker, F., Li, X., Bao, C., and K. Yin, "Framework for IPv4/IPv6 Translation", RFC 6144, April 2011.

[RFC6144]Baker,F.,Li,X.,Bao,C.,和K.Yin,“IPv4/IPv6转换框架”,RFC 61442011年4月。

[TR-069] Broadband Forum, "CPE WAN Management Protocol", TR-069 Amendment 4, July 2011, <>.

[TR-069]宽带论坛,“CPE WAN管理协议”,TR-069修正案4,2011年7月<>.

[UPnP-IGD] UPnP Forum, , "InternetGatewayDevice:2 Device Template Version 1.01", December 2010, <>.

[UPnP IGD]UPnP论坛,“InternetGatewayDevice:2设备模板版本1.01”,2010年12月<>.

Authors' Addresses


Hemant Singh Cisco Systems, Inc. 1414 Massachusetts Ave. Boxborough, MA 01719 USA

Hemant Singh Cisco Systems,Inc.美国马萨诸塞州Boxborough大道1414号,邮编01719

   Phone: +1 978 936 1622
   Phone: +1 978 936 1622

Wes Beebee Cisco Systems, Inc. 1414 Massachusetts Ave. Boxborough, MA 01719 USA

Wes Beebee Cisco Systems,Inc.美国马萨诸塞州Boxborough大道1414号,邮编01719

   Phone: +1 978 936 2030
   Phone: +1 978 936 2030

Chris Donley CableLabs 858 Coal Creek Circle Louisville, CO 80027 USA

Chris Donley CableLabs 858美国科罗拉多州路易斯维尔市煤溪圈80027


Barbara Stark AT&T 1057 Lenox Park Blvd. NE Atlanta, GA 30319 USA