Internet Engineering Task Force (IETF) M. Thomson Request for Comments: 7035 Microsoft Category: Standards Track B. Rosen ISSN: 2070-1721 Neustar D. Stanley Aruba Networks G. Bajko Nokia A. Thomson Lookingglass October 2013
Internet Engineering Task Force (IETF) M. Thomson Request for Comments: 7035 Microsoft Category: Standards Track B. Rosen ISSN: 2070-1721 Neustar D. Stanley Aruba Networks G. Bajko Nokia A. Thomson Lookingglass October 2013
Relative Location Representation
相对位置表示法
Abstract
摘要
This document defines an extension to the Presence Information Data Format Location Object (PIDF-LO) (RFC 4119) for the expression of location information that is defined relative to a reference point. The reference point may be expressed as a geodetic or civic location, and the relative offset may be one of several shapes. An alternative binary representation is described.
本文档定义了存在信息数据格式位置对象(PIDF-LO)(RFC 4119)的扩展,用于表示相对于参考点定义的位置信息。参考点可以表示为大地坐标或城市位置,相对偏移可以是几种形状之一。描述了另一种二进制表示法。
Optionally, a reference to a secondary document (such as a map image) can be included, along with the relationship of the map coordinate system to the reference/offset coordinate system, to allow display of the map with the reference point and the relative offset.
可选地,可以包括对辅助文档(例如地图图像)的参考,以及地图坐标系与参考/偏移坐标系的关系,以允许显示带有参考点和相对偏移的地图。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7035.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7035.
Copyright Notice
版权公告
Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2013 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................4 2. Conventions Used in This Document ...............................4 3. Overview ........................................................4 4. Relative Location ...............................................7 4.1. Relative Coordinate System .................................8 4.2. Placement of XML Elements ..................................8 4.3. Binary Format ..............................................9 4.4. Distances and Angles .......................................9 4.5. Value Encoding ............................................10 4.6. Relative Location Restrictions ............................10 4.7. Baseline TLVs .............................................10 4.8. Reference TLVs ............................................10 4.9. Shapes ....................................................11 4.9.1. Point ..............................................11 4.9.2. Circle or Sphere Shape .............................12 4.9.3. Ellipse or Ellipsoid Shape .........................13 4.9.4. Polygon or Prism Shape .............................15 4.9.5. Arc-Band Shape .....................................18 4.10. Dynamic Location TLVs ....................................20 4.10.1. Orientation .......................................20 4.10.2. Speed .............................................20 4.10.3. Heading ...........................................20 4.11. Secondary Map Metadata ...................................21 4.11.1. Map URL ...........................................21 4.11.2. Map Coordinate Reference System ...................21 4.11.3. Map Example .......................................24 5. Examples .......................................................24 5.1. Civic PIDF with Polygon Offset ............................24 5.2. Geo PIDF with Circle Offset ...............................26 5.3. Civic TLV with Point Offset ...............................27 6. Schema Definition ..............................................28 7. Security Considerations ........................................30 8. IANA Considerations ............................................31 8.1. Relative Location Registry ................................31 8.2. URN Sub-Namespace Registration ............................33 8.3. XML Schema Registration ...................................33 8.4. Geopriv Identifiers Registry ..............................34 8.4.1. Registration of Two-Dimensional Relative Coordinate Reference System URN ....................35 8.4.2. Registration of Three-Dimensional Relative Coordinate Reference System URN ....................35 9. Acknowledgements ...............................................35 10. References ....................................................36 10.1. Normative References .....................................36 10.2. Informative References ...................................38
1. Introduction ....................................................4 2. Conventions Used in This Document ...............................4 3. Overview ........................................................4 4. Relative Location ...............................................7 4.1. Relative Coordinate System .................................8 4.2. Placement of XML Elements ..................................8 4.3. Binary Format ..............................................9 4.4. Distances and Angles .......................................9 4.5. Value Encoding ............................................10 4.6. Relative Location Restrictions ............................10 4.7. Baseline TLVs .............................................10 4.8. Reference TLVs ............................................10 4.9. Shapes ....................................................11 4.9.1. Point ..............................................11 4.9.2. Circle or Sphere Shape .............................12 4.9.3. Ellipse or Ellipsoid Shape .........................13 4.9.4. Polygon or Prism Shape .............................15 4.9.5. Arc-Band Shape .....................................18 4.10. Dynamic Location TLVs ....................................20 4.10.1. Orientation .......................................20 4.10.2. Speed .............................................20 4.10.3. Heading ...........................................20 4.11. Secondary Map Metadata ...................................21 4.11.1. Map URL ...........................................21 4.11.2. Map Coordinate Reference System ...................21 4.11.3. Map Example .......................................24 5. Examples .......................................................24 5.1. Civic PIDF with Polygon Offset ............................24 5.2. Geo PIDF with Circle Offset ...............................26 5.3. Civic TLV with Point Offset ...............................27 6. Schema Definition ..............................................28 7. Security Considerations ........................................30 8. IANA Considerations ............................................31 8.1. Relative Location Registry ................................31 8.2. URN Sub-Namespace Registration ............................33 8.3. XML Schema Registration ...................................33 8.4. Geopriv Identifiers Registry ..............................34 8.4.1. Registration of Two-Dimensional Relative Coordinate Reference System URN ....................35 8.4.2. Registration of Three-Dimensional Relative Coordinate Reference System URN ....................35 9. Acknowledgements ...............................................35 10. References ....................................................36 10.1. Normative References .....................................36 10.2. Informative References ...................................38
This document describes a format for the expression of relative location information.
本文档描述了相对位置信息的表达格式。
A relative location is formed of a reference location plus a relative offset from that reference location. The reference location can be represented in either civic or geodetic form. The reference location can also have dynamic components such as velocity. The relative offset is specified in meters using a Cartesian coordinate system.
相对位置由参考位置加上相对于该参考位置的相对偏移构成。参考位置可以用civic或大地测量形式表示。参考位置也可以具有动态组件,例如速度。使用笛卡尔坐标系以米为单位指定相对偏移。
In addition to the relative location, an optional URI can be provided to a document that contains a map, floor plan, or other spatially oriented information. Applications could use this information to display the relative location. Additional fields allow the map to be oriented and scaled correctly.
除了相对位置之外,还可以向包含地图、平面图或其他面向空间的信息的文档提供可选URI。应用程序可以使用此信息显示相对位置。其他字段允许地图正确定向和缩放。
Two formats are included: an XML form that is intended for use in PIDF-LO [RFC4119] and a TLV format for use in other protocols such as those that already convey binary representation of location information defined in [RFC4776].
包括两种格式:用于PIDF-LO[RFC4119]的XML格式和用于其他协议的TLV格式,如已经传输[RFC4776]中定义的位置信息二进制表示的协议。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。
This document describes an extension to PIDF-LO [RFC4119] as updated by [RFC5139] and [RFC5491], to allow the expression of a location as an offset relative to a reference.
本文档描述了由[RFC5139]和[RFC5491]更新的PIDF-LO[RFC4119]的扩展,以允许将位置表示为相对于参考的偏移量。
Reference Location o \ \ Offset \ _\| x Relative Location
参考位置o\\Offset\\u124; x相对位置
This extension allows the creator of a location object to include two location values plus an offset. The two location values, named "baseline" and "reference", combine to form the origin of the offset.
此扩展允许位置对象的创建者包括两个位置值加上偏移量。名为“基线”和“参考”的两个位置值组合形成偏移的原点。
The final, relative location is described relative to this reference point.
最后的相对位置是相对于该参考点描述的。
..--"""--.. .-' `-. ,' `. / Reference \ / o \ | \ | | \ | | \ | \ _\| / `. x .' \_ Baseline `._ Relative _.' Location `--..___..--'
..--"""--.. .-' `-. ,' `. / Reference \ / o \ | \ | | \ | | \ | \ _\| / `. x .' \_ Baseline `._ Relative _.' Location `--..___..--'
The baseline location is included outside of the <relative-location> element. The baseline location is visible to a client that does not understand relative location (i.e., it ignores the <relative-location> element).
基线位置包含在<relative location>元素之外。基线位置对不了解相对位置的客户端可见(即,它忽略<relative location>元素)。
A client that does understand relative location will interpret the location within the relative element as a refinement of the baseline location. This document defines both a reference location, which serves as a refinement of the baseline location and the starting point, and an offset, which describes the location of the Target based on this starting point.
理解相对位置的客户机会将相对元素中的位置解释为基线位置的细化。本文档定义了参考位置(用作基线位置和起点的细化)和偏移量(用于描述基于该起点的目标位置)。
Creators of location objects with relative location thus have a choice of how much information to put into the baseline location and how much to put into the reference location. For example, the baseline location value could be precise enough to specify a building that contains the relative location, and the reference location could specify a point within the building from which the offset is measured.
因此,具有相对位置的位置对象的创建者可以选择将多少信息放入基线位置和将多少信息放入参考位置。例如,基线位置值可以精确到足以指定包含相对位置的建筑,而参考位置可以指定建筑内测量偏移的点。
Location objects SHOULD NOT have all location information in the baseline location. Doing this would cause clients that do not understand relative location to incorrectly interpret the baseline location (i.e., the reference point) as the actual, precise location of the client. The baseline location is intended to carry a location that encompasses both the reference location and the relative location (i.e., the reference location plus offset).
位置对象不应在基线位置中包含所有位置信息。这样做会导致不了解相对位置的客户错误地将基线位置(即参考点)解释为客户的实际精确位置。基线位置旨在承载一个包含参考位置和相对位置(即,参考位置加偏移)的位置。
It is possible to provide a valid relative location with no information in the baseline. However, this provides recipients who do not understand relative location with no information. A baseline location SHOULD include sufficient information to encompass both the
可以在基线中没有信息的情况下提供有效的相对位置。但是,这为不了解相对位置的收件人提供了无信息的信息。基线位置应包括足够的信息,以涵盖
reference and relative locations while providing a baseline that is as accurate as possible.
参考和相对位置,同时提供尽可能准确的基线。
Both the baseline and the reference location are defined as either a geodetic location [OGC.GeoShape] or a civic address [RFC4776]. If the baseline location was expressed as a geodetic location, the reference MUST be geodetic. If the baseline location was expressed as a civic address, the reference MUST be civic.
基线和参考位置均定义为大地测量位置[OGC.GeoShape]或公民地址[RFC4776]。如果基线位置表示为大地测量位置,则参考必须是大地测量的。如果基线位置表示为公民地址,则引用必须为公民地址。
Baseline and reference locations MAY also include dynamic location information [RFC5962].
基线和参考位置也可能包括动态位置信息[RFC5962]。
The relative location can be expressed using a point (2- or 3-dimensional) or a shape that includes uncertainty: circle, sphere, ellipse, ellipsoid, polygon, prism, or arc-band. Descriptions of these shapes can be found in [RFC5491].
相对位置可以使用点(二维或三维)或包含不确定性的形状表示:圆、球体、椭圆、椭球体、多边形、棱镜或弧带。有关这些形状的说明,请参见[RFC5491]。
Optionally, a reference to a 'map' document can be provided. The reference is a URI [RFC3986]. The document could be an image or dataset that represents a map, floor plan, or other form. The type of document the URI points to is described as a MIME media type [RFC2046]. Metadata in the relative location can include the location of the reference point in the map as well as an orientation (angle from North) and scale to align the document Coordinate Reference System (CRS) with the World Geodetic System 1984 (WGS84) [WGS84] CRS. The document is assumed to be usable by the application receiving the PIDF with the relative location to locate the reference point in the map. This document does not describe any mechanisms for displaying or manipulating the document other than providing the reference location, orientation, and scale.
或者,可以提供对“地图”文档的引用。该引用是一个URI[RFC3986]。文档可以是表示地图、平面图或其他形式的图像或数据集。URI指向的文档类型被描述为MIME媒体类型[RFC2046]。相对位置中的元数据可以包括地图中参考点的位置以及将文档坐标参考系(CRS)与1984年世界大地测量系统(WGS84)[WGS84]CRS对齐的方向(与北方的角度)和比例。假定接收PIDF的应用程序可以使用该文档,该PIDF具有在地图中定位参考点的相对位置。除提供参考位置、方向和比例外,本文档不描述任何显示或操作文档的机制。
As an example, consider a relative location expressed as a point, relative to a civic location:
作为一个例子,考虑一个相对位置表示为一个点,相对于公民位置:
<presence xmlns="urn:ietf:params:xml:ns:pidf" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr" xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" entity="pres:relative@example.com"> <dm:device id="relative1"> <gp:geopriv> <gp:location-info> <ca:civicAddress xml:lang="en-AU"> <ca:country>AU</ca:country> <ca:A1>NSW</ca:A1>
<presence xmlns="urn:ietf:params:xml:ns:pidf" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr" xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" entity="pres:relative@example.com"> <dm:device id="relative1"> <gp:geopriv> <gp:location-info> <ca:civicAddress xml:lang="en-AU"> <ca:country>AU</ca:country> <ca:A1>NSW</ca:A1>
<ca:A3>Wollongong</ca:A3> <ca:A4>North Wollongong</ca:A4> <ca:RD>Flinders</ca:RD> <ca:STS>Street</ca:STS> <ca:HNO>123</ca:HNO> </ca:civicAddress> <rel:relative-location> <rel:reference> <ca:civicAddress xml:lang="en-AU"> <ca:LMK>Front Door</ca:LMK> </ca:civicAddress> </rel:reference> <rel:offset> <gml:Point xmlns:gml="http://www.opengis.net/gml" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>100 50</gml:pos> </gml:Point> </rel:offset> </rel:relative-location> </gp:location-info> <gp:usage-rules/> <gp:method>GPS</gp:method> <rel:map> <rel:url type="image/png"> http://example.com/location/map.png </rel:url> <rel:offset>20. 120.</rel:offset> <rel:orientation>29.</rel:orientation> <rel:scale>20. -20.</rel:scale> </rel:map> </gp:geopriv> <dm:deviceID>mac:1234567890ab</dm:deviceID> <dm:timestamp>2007-06-22T20:57:29Z</dm:timestamp> </dm:device> </presence>
<ca:A3>Wollongong</ca:A3> <ca:A4>North Wollongong</ca:A4> <ca:RD>Flinders</ca:RD> <ca:STS>Street</ca:STS> <ca:HNO>123</ca:HNO> </ca:civicAddress> <rel:relative-location> <rel:reference> <ca:civicAddress xml:lang="en-AU"> <ca:LMK>Front Door</ca:LMK> </ca:civicAddress> </rel:reference> <rel:offset> <gml:Point xmlns:gml="http://www.opengis.net/gml" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>100 50</gml:pos> </gml:Point> </rel:offset> </rel:relative-location> </gp:location-info> <gp:usage-rules/> <gp:method>GPS</gp:method> <rel:map> <rel:url type="image/png"> http://example.com/location/map.png </rel:url> <rel:offset>20. 120.</rel:offset> <rel:orientation>29.</rel:orientation> <rel:scale>20. -20.</rel:scale> </rel:map> </gp:geopriv> <dm:deviceID>mac:1234567890ab</dm:deviceID> <dm:timestamp>2007-06-22T20:57:29Z</dm:timestamp> </dm:device> </presence>
Relative location is a shape (e.g., point, circle, ellipse). The shape is defined with a CRS that has a datum defined as the reference (which appears as a civic address or geodetic location in the tuple) and the shape coordinates as meter offsets North/East of the datum measured in meters (with an optional Z offset relative to datum altitude). An optional angle allows the reference CRS be to rotated with respect to North.
相对位置是一个形状(例如,点、圆、椭圆)。形状由一个CRS定义,该CRS的基准定义为参考(在元组中显示为城市地址或大地测量位置),形状坐标为以米为单位测量的基准的北/东米偏移(可选Z偏移相对于基准高度)。可选角度允许参考CRS相对于北方旋转。
The relative coordinate reference system uses a coordinate system with two or three axes.
相对坐标参考系使用具有两个或三个轴的坐标系。
The baseline and reference locations are used to define a relative datum. The reference location defines the origin of the coordinate system. The centroid of the reference location is used when the reference location contains any uncertainty.
基线和参考位置用于定义相对基准。参考位置定义坐标系的原点。当参考位置包含任何不确定性时,使用参考位置的质心。
The axes in this coordinate system are originally oriented based on the directions of East, North, and Up from the reference location: the first (x) axis increases to the East, the second (y) axis points North, and the optional third (z) axis points Up. All axes of the coordinate system use meters as a basic unit.
此坐标系中的轴最初是基于参考位置的东、北和向上方向定向的:第一(x)轴向东增加,第二(y)轴指向北,可选的第三(z)轴向上。坐标系的所有轴都使用米作为基本单位。
Any coordinates in the relative shapes use the described Cartesian coordinate system. In the XML form, this uses a URN of "urn:ietf:params:geopriv:relative:2d" for two-dimensional shapes and "urn:ietf:params:geopriv:relative:3d" for three-dimensional shapes. The binary form uses different shape type identifiers for 2D and 3D shapes.
相对形状中的任何坐标都使用所述笛卡尔坐标系。在XML格式中,二维形状使用“URN:ietf:params:geopriv:relative:2d”,三维形状使用“URN:ietf:params:geopriv:relative:3d”。二进制表单对二维和三维形状使用不同的形状类型标识符。
Dynamic location information [RFC5962] in the baseline or reference location alters the relative coordinate system. The resulting Cartesian coordinate system axes are rotated so that the y axis is oriented along the direction described by the <orientation> element. The coordinate system also moves as described by the <speed> and <heading> elements.
基线或参考位置中的动态位置信息[RFC5962]会改变相对坐标系。旋转生成的笛卡尔坐标系轴,以便y轴沿<orientation>元素描述的方向定向。坐标系也会按照<speed>和<heading>元素的描述移动。
The single timestamp included in the tuple (or equivalent) element applies to all location elements, including all three components of a relative location: baseline, reference, and relative. This is particularly important when there are dynamic components to these items. A location generator is responsible for ensuring the consistency of these fields.
tuple(或等效)元素中包含的单个时间戳适用于所有位置元素,包括相对位置的所有三个组件:基线、引用和相对。当这些项目包含动态组件时,这一点尤为重要。位置生成器负责确保这些字段的一致性。
The baseline of the reference location is represented as <location-info> like a normal PIDF-LO. Relative location adds a new <relative-location> element to <location-info>. Within <relative-location>, <reference> and <offset> elements are described. Within <offset> are the shape elements described below. This document extends PIDF-LO as described in [RFC6848].
参考位置的基线表示为<location info>,类似于正常的PIDF-LO。相对位置将新的<Relative location>元素添加到<location info>。在<relative location>中,描述了<reference>和<offset>元素。<offset>中包含以下描述的形状元素。本文件扩展了[RFC6848]中所述的PIDF-LO。
This document describes a way to encode the relative location in a binary TLV form for use in other protocols that use TLVs to represent location.
本文档描述了以二进制TLV形式对相对位置进行编码的方法,以便在使用TLV表示位置的其他协议中使用。
A type-length-value encoding is used.
使用类型长度值编码。
+------+------+------+------+------+------+------+ | Type |Length| Value ... +------+------+------+------+------+------+------+ | T | N | Value ... +------+------+------+------+------+------+------+
+------+------+------+------+------+------+------+ | Type |Length| Value ... +------+------+------+------+------+------+------+ | T | N | Value ... +------+------+------+------+------+------+------+
Figure 1: TLV Tuple Format
图1:TLV元组格式
The Type field (T) is an 8-bit unsigned integer. The type codes used are registered in an IANA-managed "Relative Location Parameters" registry defined by this document and restricted to not include the values defined by the "Civic Address Types (CAtypes)" registry. This restriction permits a location reference and offset to be coded within the same object without type collisions.
类型字段(T)是一个8位无符号整数。使用的类型代码在本文件定义的IANA管理的“相对位置参数”注册表中注册,并限制不包括“公民地址类型(CAtypes)”注册表定义的值。此限制允许在同一对象内对位置引用和偏移进行编码,而不会发生类型冲突。
The Length field (N) is defined as an 8-bit unsigned integer. This field can encode values from 0 to 255. The length field describes the number of bytes in the Value. Length does not count the bytes used for the Type or Length.
长度字段(N)定义为8位无符号整数。此字段可以对0到255之间的值进行编码。长度字段描述值中的字节数。长度不计算用于类型或长度的字节数。
The Value field is defined separately for each type.
值字段为每种类型分别定义。
Each element of the relative location has a unique TLV assignment. A relative location encoded in TLV form includes both baseline and reference location TLVs and relative location TLVs. The reference TLVs are followed by the relative offset and optional map TLVs described in this document.
相对位置的每个元素都有一个唯一的TLV分配。以TLV形式编码的相对位置包括基线和参考位置TLV以及相对位置TLV。参考TLV后面是本文件中描述的相对偏移和可选地图TLV。
All distance measures used in shapes are expressed in meters.
形状中使用的所有距离度量单位均以米表示。
All orientation angles used in shapes are expressed in degrees. Orientation angles are measured from WGS84 Northing to Easting with zero at Northing. Orientation angles in the relative coordinate system start from the second coordinate axis (y or Northing) and increase toward the first axis (x or Easting).
形状中使用的所有方向角均以度表示。方位角从WGS84北距向东测量,北距为零。相对坐标系中的方向角从第二个坐标轴(y或北距)开始,向第一个坐标轴(x或东距)增加。
The binary form uses single-precision floating-point values [IEEE.754] to represent coordinates, distance, and angle measures. Single-precision values are 32-bit values with a sign bit, 8 exponent bits, and 23 fractional bits. This uses the interchange format defined in [IEEE.754] and Section 3.6 of [RFC1014], that is: sign, biased exponent and significand, with the most significant bit first.
二进制形式使用单精度浮点值[IEEE.754]来表示坐标、距离和角度度量。单精度值是具有符号位、8个指数位和23个小数位的32位值。这使用了[IEEE.754]和[RFC1014]第3.6节中定义的交换格式,即:符号、偏置指数和有效位,最高有效位优先。
Binary-encoded coordinate values are considered to be a single value without uncertainty. When encoding a value that cannot be exactly represented, the best approximation MUST be selected according to [Clinger1990].
二进制编码的坐标值被认为是没有不确定性的单一值。对无法准确表示的值进行编码时,必须根据[Clanger1990]选择最佳近似值。
More than one relative shape MUST NOT be included in either a PIDF-LO or TLV encoding of location for a given reference point.
给定参考点位置的PIDF-LO或TLV编码中不得包含多个相对形状。
Any error in the reference point transfers to the location described by the relative location. Any errors arising from an implementation not supporting or understanding elements of the reference point directly increases the error (or uncertainty) in the resulting location.
参考点中的任何错误都会转移到相对位置所描述的位置。由于实施不支持或不理解参考点的元素而产生的任何误差都会直接增加结果位置的误差(或不确定性)。
Baseline locations are described using the formats defined in [RFC4776] or [RFC6225].
使用[RFC4776]或[RFC6225]中定义的格式描述基线位置。
When a reference is encoded in binary form, the baseline and reference locations are combined in a reference TLV. This TLV is identified with the code 111 and contains civic address TLVs (if the baseline was a civic) or geo TLVs (if the baseline was a geo).
当引用以二进制形式编码时,基线和引用位置组合在引用TLV中。该TLV由代码111标识,并包含公民地址TLV(如果基线为公民)或地理TLV(如果基线为地理)。
+------+------+------+------+------+------+ | 111 |Length| Reference TLVs | +------+------+------+------+------+------+
+------+------+------+------+------+------+ | 111 |Length| Reference TLVs | +------+------+------+------+------+------+
Figure 2: Reference TLV
图2:参考TLV
Shape data is used to represent regions of uncertainty for the reference and relative locations. Shape data in the reference location uses a WGS84 [WGS84] CRS. Shape data in the relative location uses a relative CRS.
形状数据用于表示参考位置和相对位置的不确定区域。参考位置中的形状数据使用WGS84[WGS84]CRS。相对位置中的形状数据使用相对CRS。
The XML form for shapes uses Geography Markup Language (GML) [OGC.GML-3.1.1], consistent with the rules in [RFC5491]. Reference locations use the CRS URNs specified in [RFC5491]; relative locations use either a 2D CRS ("urn:ietf:params:geopriv:relative:2d") or a 3D ("urn:ietf:params:geopriv:relative:3d"), depending on the shape type.
形状的XML表单使用地理标记语言(GML)[OGC.GML-3.1.1],与[RFC5491]中的规则一致。参考位置使用[RFC5491]中规定的CRS URN;相对位置使用2D CRS(“urn:ietf:params:geopriv:relative:2D”)或3D(“urn:ietf:params:geopriv:relative:3D”),具体取决于形状类型。
The binary form of each shape uses a different shape type for 2D and 3D shapes.
每个形状的二进制形式对二维和三维形状使用不同的形状类型。
Nine shape type codes are defined.
定义了九种形状类型代码。
A point "shape" describes a single point with unknown uncertainty. It consists of a single set of coordinates.
点“形状”描述具有未知不确定性的单个点。它由一组坐标组成。
In a two-dimensional CRS, the coordinate includes two values; in a three-dimensional CRS, the coordinate includes three values.
在二维CRS中,坐标包括两个值;在三维CRS中,坐标包括三个值。
A point is represented in GML using the following template:
使用以下模板以GML表示点:
<gml:Point xmlns:gml="http://www.opengis.net/gml" srsName="$CRS-URN$"> <gml:pos>$Coordinate-1 $Coordinate-2$ $Coordinate-3$</gml:pos> </gml:Point>
<gml:Point xmlns:gml="http://www.opengis.net/gml" srsName="$CRS-URN$"> <gml:pos>$Coordinate-1 $Coordinate-2$ $Coordinate-3$</gml:pos> </gml:Point>
Figure 3: GML Point Template
图3:GML点模板
Where "$CRS-URN$" is replaced by a "urn:ietf:params:geopriv:relative:2d" or "urn:ietf:params:geopriv:relative:3d" and "$Coordinate-3$" is omitted if the CRS is two-dimensional.
其中“$CRS-URN$”替换为“URN:ietf:params:geopriv:relative:2d”或“URN:ietf:params:geopriv:relative:3d”,如果CRS是二维的,则省略“$Coordinate-3$”。
The point shape is introduced by a TLV of 113 for a 2D point and 114 for a 3D point.
点形状由TLV引入,2D点为113,3D点为114。
+------+------+ | 113/4|Length| +------+------+------+------+ | Coordinate-1 | +------+------+------+------+ | Coordinate-2 | +------+------+------+------+ | (3D-only) Coordinate-3 | +------+------+------+------+
+------+------+ | 113/4|Length| +------+------+------+------+ | Coordinate-1 | +------+------+------+------+ | Coordinate-2 | +------+------+------+------+ | (3D-only) Coordinate-3 | +------+------+------+------+
Figure 4: Point Encoding
图4:点编码
A circle or sphere describes a single point with a single uncertainty value in meters.
圆或球体描述具有单个不确定度值(以米为单位)的单个点。
In a two-dimensional CRS, the coordinate includes two values, and the resulting shape forms a circle. In a three-dimensional CRS, the coordinate includes three values, and the resulting shape forms a sphere.
在二维CRS中,坐标包括两个值,生成的形状形成一个圆。在三维CRS中,坐标包括三个值,生成的形状形成一个球体。
A circle is represented in and converted from GML using the following template:
圆在GML中表示,并使用以下模板从GML转换而来:
<gs:Circle xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>$Coordinate-1 $Coordinate-2$</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001"> $Radius$ </gs:radius> </gs:Circle>
<gs:Circle xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>$Coordinate-1 $Coordinate-2$</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001"> $Radius$ </gs:radius> </gs:Circle>
Figure 5: GML Circle Template
图5:GML圆模板
A sphere is represented in and converted from GML using the following template:
球体在GML中表示,并使用以下模板从GML转换而来:
<gs:Sphere xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:3d"> <gml:pos>$Coordinate-1 $Coordinate-2$ $Coordinate-3$</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001"> $Radius$ </gs:radius> </gs:Sphere>
<gs:Sphere xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:3d"> <gml:pos>$Coordinate-1 $Coordinate-2$ $Coordinate-3$</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001"> $Radius$ </gs:radius> </gs:Sphere>
Figure 6: GML Sphere Template
图6:GML球体模板
A circular shape is introduced by a type code of 115. A spherical shape is introduced by a type code of 116.
圆形由类型代码115引入。球形由116型代码引入。
+------+------+ | 115/6|Length| +------+------+------+------+ | Coordinate-1 | +------+------+------+------+ | Coordinate-2 | +------+------+------+------+ | (3D-only) Coordinate-3 | +------+------+------+------+ | Radius | +------+------+------+------+
+------+------+ | 115/6|Length| +------+------+------+------+ | Coordinate-1 | +------+------+------+------+ | Coordinate-2 | +------+------+------+------+ | (3D-only) Coordinate-3 | +------+------+------+------+ | Radius | +------+------+------+------+
Figure 7: Circle or Sphere Encoding
图7:圆或球体编码
An ellipse or ellipsoid describes a point with an elliptical or ellipsoidal uncertainty region.
椭圆或椭球体描述具有椭圆或椭球不确定区域的点。
In a two-dimensional CRS, the coordinate includes two values plus a semi-major axis, a semi-minor axis, a semi-major axis orientation (clockwise from North). In a three-dimensional CRS, the coordinate includes three values, and in addition to the two-dimensional values, an altitude uncertainty (semi-vertical) is added.
在二维CRS中,坐标包括两个值加上半长轴、半短轴和半长轴方向(从北顺时针方向)。在三维CRS中,坐标包括三个值,除二维值外,还增加了高度不确定性(半垂直)。
An ellipse is represented in and converted from GML using the following template:
椭圆在GML中表示,并使用以下模板从GML转换而来:
<gs:Ellipse xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>$Coordinate-1 $Coordinate-2$</gml:pos> <gs:semiMajorAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Major$ </gs:semiMajorAxis> <gs:semiMinorAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Minor$ </gs:semiMinorAxis> <gs:orientation uom="urn:ogc:def:uom:EPSG::9102"> $Orientation$ </gs:orientation> </gs:Ellipse>
<gs:Ellipse xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>$Coordinate-1 $Coordinate-2$</gml:pos> <gs:semiMajorAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Major$ </gs:semiMajorAxis> <gs:semiMinorAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Minor$ </gs:semiMinorAxis> <gs:orientation uom="urn:ogc:def:uom:EPSG::9102"> $Orientation$ </gs:orientation> </gs:Ellipse>
Figure 8: GML Ellipse Template
图8:GML椭圆模板
An ellipsoid is represented in and converted from GML using the following template:
椭球体在GML中表示,并使用以下模板从GML转换而来:
<gs:Ellipsoid xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:3d"> <gml:pos>$Coordinate-1 $Coordinate-2$ $Coordinate-3$</gml:pos> <gs:semiMajorAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Major$ </gs:semiMajorAxis> <gs:semiMinorAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Minor$ </gs:semiMinorAxis> <gs:verticalAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Vertical$ </gs:verticalAxis> <gs:orientation uom="urn:ogc:def:uom:EPSG::9102"> $Orientation$ </gs:orientation> </gs:Ellipsoid>
<gs:Ellipsoid xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:3d"> <gml:pos>$Coordinate-1 $Coordinate-2$ $Coordinate-3$</gml:pos> <gs:semiMajorAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Major$ </gs:semiMajorAxis> <gs:semiMinorAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Minor$ </gs:semiMinorAxis> <gs:verticalAxis uom="urn:ogc:def:uom:EPSG::9001"> $Semi-Vertical$ </gs:verticalAxis> <gs:orientation uom="urn:ogc:def:uom:EPSG::9102"> $Orientation$ </gs:orientation> </gs:Ellipsoid>
Figure 9: GML Ellipsoid Template
图9:GML椭球体模板
An ellipse is introduced by a type code of 117, and an ellipsoid is introduced by a type code of 118.
椭圆由类型代码117引入,椭球由类型代码118引入。
+------+------+ | 117/8|Length| +------+------+------+------+ | Coordinate-1 | +------+------+------+------+ | Coordinate-2 | +------+------+------+------+ | (3D-only) Coordinate-3 | +------+------+------+------+------+------+------+------+ | Semi-Major Axis | Semi-Minor Axis | +------+------+------+------+------+------+------+------+ | Orientation | (3D) Semi-Vertical Axis | +------+------+------+------+------+------+------+------+
+------+------+ | 117/8|Length| +------+------+------+------+ | Coordinate-1 | +------+------+------+------+ | Coordinate-2 | +------+------+------+------+ | (3D-only) Coordinate-3 | +------+------+------+------+------+------+------+------+ | Semi-Major Axis | Semi-Minor Axis | +------+------+------+------+------+------+------+------+ | Orientation | (3D) Semi-Vertical Axis | +------+------+------+------+------+------+------+------+
Figure 10: Ellipse or Ellipsoid Encoding
图10:椭圆或椭球体编码
A polygon or prism includes a number of points that describe the outer boundary of an uncertainty region. A prism also includes an altitude for each point and prism height.
多边形或棱柱体包含多个描述不确定区域外边界的点。棱镜还包括每个点的高度和棱镜高度。
At least 3 points MUST be included in a polygon. In order to interoperate with existing systems, an encoding SHOULD include 15 or fewer points, unless the recipient is known to support larger numbers.
多边形中必须至少包含3个点。为了与现有系统互操作,编码应包含15个或更少的点,除非已知接收者支持更大的数字。
A polygon is represented in and converted from GML using the following template:
多边形在GML中表示,并使用以下模板从GML转换而来:
<gml:Polygon xmlns:gml="http://www.opengis.net/gml" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:exterior> <gml:LinearRing> <gml:posList> $Coordinate1-1$ $Coordinate1-2$ $Coordinate2-1$ $Coordinate2-2$ $Coordinate3-1$ ... ... $CoordinateN-1$ $CoordinateN-2$ $Coordinate1-1$ $Coordinate1-2$ </gml:posList> </gml:LinearRing> </gml:exterior> </gml:Polygon>
<gml:Polygon xmlns:gml="http://www.opengis.net/gml" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:exterior> <gml:LinearRing> <gml:posList> $Coordinate1-1$ $Coordinate1-2$ $Coordinate2-1$ $Coordinate2-2$ $Coordinate3-1$ ... ... $CoordinateN-1$ $CoordinateN-2$ $Coordinate1-1$ $Coordinate1-2$ </gml:posList> </gml:LinearRing> </gml:exterior> </gml:Polygon>
Figure 11: GML Polygon Template
图11:GML多边形模板
Alternatively, a series of <pos> elements can be used in place of the single "posList". Each <pos> element contains two or three coordinate values.
或者,可以使用一系列<pos>元素代替单个“posList”。每个<pos>元素包含两个或三个坐标值。
Note that the first point is repeated at the end of the sequence of coordinates and no explicit count of the number of points is provided.
请注意,第一个点在坐标序列的末尾重复,并且没有提供点数量的明确计数。
A GML polygon that includes altitude cannot be represented perfectly in TLV form. When converting to the binary representation, a two-dimensional CRS is used, and altitude is removed from each coordinate.
包含高度的GML多边形不能以TLV形式完美表示。转换为二进制表示时,使用二维CRS,并从每个坐标中删除高度。
A prism is represented in and converted from GML using the following template:
棱镜在GML中表示,并使用以下模板从GML转换而来:
<gs:Prism xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:3d"> <gs:base> <gml:Polygon> <gml:exterior> <gml:LinearRing> <gml:posList> $Coordinate1-1$ $Coordinate1-2$ $Coordinate1-3$ $Coordinate2-1$ $Coordinate2-2$ $Coordinate2-3$ $Coordinate2-1$ ... ... ... $CoordinateN-1$ $CoordinateN-2$ $CoordinateN-3$ $Coordinate1-1$ $Coordinate1-2$ $Coordinate1-3$ </gml:posList> </gml:LinearRing> </gml:exterior> </gml:Polygon> </gs:base> <gs:height uom="urn:ogc:def:uom:EPSG::9001"> $Height$ </gs:height> </gs:Prism>
<gs:Prism xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:3d"> <gs:base> <gml:Polygon> <gml:exterior> <gml:LinearRing> <gml:posList> $Coordinate1-1$ $Coordinate1-2$ $Coordinate1-3$ $Coordinate2-1$ $Coordinate2-2$ $Coordinate2-3$ $Coordinate2-1$ ... ... ... $CoordinateN-1$ $CoordinateN-2$ $CoordinateN-3$ $Coordinate1-1$ $Coordinate1-2$ $Coordinate1-3$ </gml:posList> </gml:LinearRing> </gml:exterior> </gml:Polygon> </gs:base> <gs:height uom="urn:ogc:def:uom:EPSG::9001"> $Height$ </gs:height> </gs:Prism>
Figure 12: GML Prism Template
图12:GML棱镜模板
Alternatively, a series of <pos> elements can be used in place of the single "posList". Each <pos> element contains three coordinate values.
或者,可以使用一系列<pos>元素代替单个“posList”。每个<pos>元素包含三个坐标值。
A polygon containing 2D points uses a type code of 119. A polygon with 3D points uses a type code of 120. A prism uses a type code of 121. The number of points can be inferred from the length of the TLV.
包含二维点的多边形使用类型代码119。具有三维点的多边形使用类型代码120。棱柱体使用类型代码121。可根据TLV的长度推断点数。
+------+------+ |119-21|Length| +------+------+------+------+ | (3D-only) Height | +------+------+------+------+ | Coordinate1-1 | +------+------+------+------+ | Coordinate1-2 | +------+------+------+------+ | (3D-only) Coordinate1-3 | +------+------+------+------+ | Coordinate2-1 | +------+------+------+------+ ... +------+------+------+------+ | CoordinateN-1 | +------+------+------+------+ | CoordinateN-2 | +------+------+------+------+ | (3D-only) CoordinateN-3 | +------+------+------+------+
+------+------+ |119-21|Length| +------+------+------+------+ | (3D-only) Height | +------+------+------+------+ | Coordinate1-1 | +------+------+------+------+ | Coordinate1-2 | +------+------+------+------+ | (3D-only) Coordinate1-3 | +------+------+------+------+ | Coordinate2-1 | +------+------+------+------+ ... +------+------+------+------+ | CoordinateN-1 | +------+------+------+------+ | CoordinateN-2 | +------+------+------+------+ | (3D-only) CoordinateN-3 | +------+------+------+------+
Figure 13: Polygon or Prism Encoding
图13:多边形或棱柱体编码
Note that unlike the polygon representation in GML, the first and last points are not the same point in the TLV representation. The duplicated point is removed from the binary form.
请注意,与GML中的多边形表示不同,TLV表示中的第一个点和最后一个点不是同一点。复制的点将从二进制形式中删除。
An arc-band describes a region constrained by a range of angles and distances from a predetermined point. This shape can only be provided for a two-dimensional CRS.
弧带描述了一个区域,该区域受与预定点的角度和距离范围的约束。此形状只能用于二维CRS。
Distance and angular measures are defined in meters and degrees, respectively. Both are encoded as single-precision floating-point values.
距离和角度度量值分别以米和度为单位定义。两者都编码为单精度浮点值。
An arc-band is represented in and converted from GML using the following template:
弧带在GML中表示,并使用以下模板从GML转换而来:
<gs:ArcBand xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>$Coordinate-1$ $Coordinate-2$</gml:pos> <gs:innerRadius uom="urn:ogc:def:uom:EPSG::9001"> $Inner-Radius$ </gs:innerRadius> <gs:outerRadius uom="urn:ogc:def:uom:EPSG::9001"> $Outer-Radius$ </gs:outerRadius> <gs:startAngle uom="urn:ogc:def:uom:EPSG::9102"> $Start-Angle$ </gs:startAngle> <gs:openingAngle uom="urn:ogc:def:uom:EPSG::9102"> $Opening-Angle$ </gs:openingAngle> </gs:ArcBand>
<gs:ArcBand xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>$Coordinate-1$ $Coordinate-2$</gml:pos> <gs:innerRadius uom="urn:ogc:def:uom:EPSG::9001"> $Inner-Radius$ </gs:innerRadius> <gs:outerRadius uom="urn:ogc:def:uom:EPSG::9001"> $Outer-Radius$ </gs:outerRadius> <gs:startAngle uom="urn:ogc:def:uom:EPSG::9102"> $Start-Angle$ </gs:startAngle> <gs:openingAngle uom="urn:ogc:def:uom:EPSG::9102"> $Opening-Angle$ </gs:openingAngle> </gs:ArcBand>
Figure 14: GML Arc-Band Template
图14:GML电弧带模板
An arc-band is introduced by a type code of 122.
弧带由类型代码122引入。
+------+------+ | 122 |Length| +------+------+------+------+ | Coordinate | +------+------+------+------+ | Coordinate | +------+------+------+------+------+------+------+------+ | Inner Radius | Outer Radius | +------+------+------+------+------+------+------+------+ | Start Angle | Opening Angle | +------+------+------+------+------+------+------+------+
+------+------+ | 122 |Length| +------+------+------+------+ | Coordinate | +------+------+------+------+ | Coordinate | +------+------+------+------+------+------+------+------+ | Inner Radius | Outer Radius | +------+------+------+------+------+------+------+------+ | Start Angle | Opening Angle | +------+------+------+------+------+------+------+------+
Figure 15: Arc-Band Encoding
图15:弧带编码
Dynamic location elements use the definitions in [RFC5962].
动态位置元素使用[RFC5962]中的定义。
The orientation of the Target is described using one or two angles. Orientation uses a type code of 123.
使用一个或两个角度来描述目标的方向。方向使用类型代码123。
+------+------+ | 123 |Length| +------+------+------+------+ | Angle | +------+------+------+------+ | (Optional) Angle | +------+------+------+------+
+------+------+ | 123 |Length| +------+------+------+------+ | Angle | +------+------+------+------+ | (Optional) Angle | +------+------+------+------+
Figure 16: Dynamic Orientation TLVs
图16:动态定向TLV
The speed of the Target is a scalar value in meters per second. Speed uses a type code of 124.
目标速度是以米/秒为单位的标量值。速度使用类型代码124。
+------+------+ | 124 |Length| +------+------+------+------+ | Speed | +------+------+------+------+
+------+------+ | 124 |Length| +------+------+------+------+ | Speed | +------+------+------+------+
Figure 17: Dynamic Speed TLVs
图17:动态速度TLV
The heading, or direction of travel, is described using one or two angles. Heading uses a type code of 125.
航向或行驶方向用一个或两个角度来描述。标题使用类型代码125。
+------+------+ | 125 |Length| +------+------+------+------+ | Angle | +------+------+------+------+ | (Optional) Angle | +------+------+------+------+
+------+------+ | 125 |Length| +------+------+------+------+ | Angle | +------+------+------+------+ | (Optional) Angle | +------+------+------+------+
Figure 18: Dynamic Heading TLVs
图18:动态航向TLV
The optional "map" URL can be used to provide a user of relative location with a visual reference for the location information. This document does not describe how the recipient uses the map nor how it locates the reference or offset within the map. Maps can be simple images, vector files, 2D or 3D geospatial databases, or any other form of representation understood by both the sender and recipient.
可选的“地图”URL可用于为相对位置的用户提供位置信息的可视参考。本文档不描述收件人如何使用地图,也不描述收件人如何在地图中定位参考或偏移。地图可以是简单的图像、矢量文件、二维或三维地理空间数据库,也可以是发送者和接收者都能理解的任何其他形式的表示。
In XML, the map is a <map> element defined within <relative-location> and contains the URL. The URL is encoded as a UTF-8-encoded string. An "http:" [RFC2616] or "https:" [RFC2818] URL MUST be used unless the entity creating the PIDF-LO is able to ensure that authorized recipients of this data are able to use other URI schemes. A "type" attribute MUST be present and specifies the kind of map the URL points to. Map types are specified as MIME media types as recorded in the IANA Media Types registry, for example, <map type="image/png"> https://www.example.com/floorplans/123South/floor-2</map>.
在XML中,映射是在<relative location>中定义的<map>元素,包含URL。URL编码为UTF-8编码字符串。除非创建PIDF-LO的实体能够确保此数据的授权收件人能够使用其他URI方案,否则必须使用“http:[RFC2616]或“https:[RFC2818]URL”。“type”属性必须存在,并指定URL指向的映射类型。映射类型指定为IANA媒体类型注册表中记录的MIME媒体类型,例如,<Map type=“image/png”>https://www.example.com/floorplans/123South/floor-2</map>。
In binary, the map type is a separate TLV from the map URL. The media type uses a type code of 126; the URL uses a type code of 127.
在二进制中,映射类型是与映射URL分离的TLV。媒体类型使用类型代码126;URL使用的类型代码为127。
+------+------+------+------+------+------+------+ | 126 |Length| Map Media Type ... +------+------+------+------+------+------+------+ | 127 |Length| Map Image URL ... +------+------+------+------+------+------+------+
+------+------+------+------+------+------+------+ | 126 |Length| Map Media Type ... +------+------+------+------+------+------+------+ | 127 |Length| Map Image URL ... +------+------+------+------+------+------+------+
Figure 19: Map URL TLVs
图19:映射URL TLV
Note that the binary form restricts data to 255 octets. This restriction could be problematic for URLs in particular. Applications that use the XML form, but cannot guarantee that a binary form won't be used, are encouraged to limit the size of the URL to fit within this restriction.
请注意,二进制形式将数据限制为255个八位字节。这种限制对于URL来说尤其有问题。鼓励使用XML表单但不能保证不会使用二进制表单的应用程序限制URL的大小,以符合此限制。
The CRS used by the map depends on the type of map. For example, a map described by a 3-D geometric model of the building may contain a complete CRS description in it. For some kinds of maps, typically described as images, the CRS used within the map must define the following:
地图使用的CR取决于地图的类型。例如,由建筑物的三维几何模型描述的地图可能包含完整的CRS描述。对于某些类型的地图(通常称为图像),地图中使用的CR必须定义以下内容:
o The CRS origin
o CRS的起源
o The CRS axes used and their orientation
o 使用的CRS轴及其方向
o The unit of measure used
o 使用的度量单位
This document provides elements that allow for a mapping between the local coordinate reference system used for the relative location and the coordinate reference system used for the map where they are not the same.
本文档提供的元素允许在用于相对位置的本地坐标参考系和用于地图的坐标参考系之间进行映射,两者不相同。
This optional element identifies the coordinates of the reference point as it appears in the map. This value is measured in a map-type-dependent manner, using the coordinate system of the map.
此可选元素标识地图中显示的参考点的坐标。使用地图的坐标系,以地图类型相关的方式测量此值。
For image maps, coordinates start from the upper left corner, and coordinates are first counted by column with positive values to the right; then, rows are counted with positive values toward the bottom of the image. For such an image, the first item is columns, the second rows, and any third value applies to any third dimension used in the image coordinate space.
对于图像地图,坐标从左上角开始,坐标首先按列计算,右边为正值;然后,在图像底部用正值对行进行计数。对于这样的图像,第一项是列,第二行,第三个值应用于图像坐标空间中使用的任何三维。
The <offset> element contains 2 (or 3) coordinates similar to a GML <pos>. For example:
<offset>元素包含2(或3)个类似于GML<pos>的坐标。例如:
<offset> 2670.0 1124.0 1022.0</offset>
<offset> 2670.0 1124.0 1022.0</offset>
The map reference point uses a type code of 129.
地图参考点使用类型代码129。
+------+------+ | 129 |Length| +------+------+------+------+ | Coordinate-1 | +------+------+------+------+ | Coordinate-2 | +------+------+------+------+ | (3D-only) Coordinate-3 | +------+------+------+------+
+------+------+ | 129 |Length| +------+------+------+------+ | Coordinate-1 | +------+------+------+------+ | Coordinate-2 | +------+------+------+------+ | (3D-only) Coordinate-3 | +------+------+------+------+
Figure 20: Map Reference Point Coordinates TLV
图20:地图参考点坐标TLV
If omitted, a value containing all zeros is assumed. If the coordinates provided contain fewer values than are needed, the first value from the set is applied in place of any absent values. Thus, if a single value is provided, that value is used for Coordinate-2
如果省略,则假定值包含所有零。如果提供的坐标包含的值少于需要的值,则将应用集合中的第一个值来代替任何缺少的值。因此,如果提供单个值,则该值将用于坐标-2
and Coordinate-3 (if required). If two values are provided and three are required, the value of Coordinate-1 is used in place of Coordinate-3.
和坐标-3(如果需要)。如果提供两个值且需要三个值,则使用坐标-1的值代替坐标-3。
The map orientation includes the orientation of the map direction in relation to the Earth. Map orientation is expressed relative to the orientation of the relative coordinate system. This means that map orientation with respect to WGS84 North is the sum of the orientation field and any orientation included in a dynamic portion of the reference location. Both values default to zero if no value is specified.
地图方向包括地图方向相对于地球的方向。地图方向相对于相对坐标系的方向表示。这意味着相对于WGS84 North的地图方向是方向字段和参考位置动态部分中包含的任何方向的总和。如果未指定值,则这两个值都默认为零。
This type uses a single-precision floating-point value of degrees relative to North.
此类型使用相对于北的度数的单精度浮点值。
In XML, the <orientation> element contains a single floating-point value, for example, <orientation>67.00</orientation>. In TLV form, map orientation uses the code 130:
在XML中,<orientation>元素包含一个浮点值,例如,<orientation>67.00</orientation>。在TLV表格中,地图方向使用代码130:
+------+------+------+------+------+------+ | 130 |Length| Angle | +------+------+------+------+------+------+
+------+------+------+------+------+------+ | 130 |Length| Angle | +------+------+------+------+------+------+
Figure 21: Map Orientation TLV
图21:地图方向TLV
The optional map scale describes the relationship between the units of measure used in the map, relative to the meters unit used in the relative coordinate system.
可选地图比例描述了地图中使用的测量单位与相对坐标系中使用的米单位之间的关系。
This type uses a sequence of IEEE 754 [IEEE.754] single-precision floating-point values to represent scale as a sequence of numeric values. The units of these values are dependent on the type of map and could, for example, be pixels per meter for an image.
此类型使用IEEE 754[IEEE.754]单精度浮点值序列将比例表示为数值序列。这些值的单位取决于贴图的类型,例如,可以是图像的每米像素数。
A scaling factor is provided for each axis in the coordinate system. For a two-dimensional coordinate system, two values are included to allow for different scaling along the x and y axes independently. For a three-dimensional coordinate system, three values are specified for the x, y, and z axes. Decoders can determine the number of scaling factors by examining the length field.
为坐标系中的每个轴提供比例因子。对于二维坐标系,包含两个值,以允许沿x轴和y轴分别进行不同的缩放。对于三维坐标系,为x、y和z轴指定三个值。解码器可以通过检查长度字段来确定缩放因子的数量。
Alternatively, a single scaling value MAY be used to apply the same scaling factor to all coordinate components.
或者,可以使用单个缩放值将相同的缩放因子应用于所有坐标组件。
Images that use a rows/columns coordinate system often use a left-handed coordinate system. A negative value for the y/rows axis scaling value can be used to account for any change in direction between the y axis used in the relative coordinate system and the rows axis of the image coordinate system.
使用行/列坐标系的图像通常使用左手坐标系。y/行轴缩放值的负值可用于说明在相对坐标系中使用的y轴与图像坐标系的行轴之间的任何方向更改。
In XML, the <scale> element MAY contain a single scale value or MAY contain 2 (or 3) values in XML list form. In TLV form, scale uses a type code of 131. The length of the TLV determines how many scale values are present:
在XML中,<scale>元素可以包含单个比例值,也可以包含XML列表形式的2(或3)个值。在TLV形式中,scale使用类型代码131。TLV的长度决定存在多少比例值:
+------+------+------+------+------+------+ | 131 |Length| Scale(s) ... +------+------+------+------+------+------+
+------+------+------+------+------+------+ | 131 |Length| Scale(s) ... +------+------+------+------+------+------+
Figure 22: Map Scale TLV
图22:地图比例TLV
An example of expressing a map is:
表达地图的一个示例是:
<rel:map> <rel:url type="image/jpeg"> http://example.com/map.jpg </rel:url> <rel:offset>200 210</rel:offset> <rel:orientation>68</rel:orientation> <rel:scale>2.90 -2.90</rel:scale> </rel:map>
<rel:map> <rel:url type="image/jpeg"> http://example.com/map.jpg </rel:url> <rel:offset>200 210</rel:offset> <rel:orientation>68</rel:orientation> <rel:scale>2.90 -2.90</rel:scale> </rel:map>
Figure 23: Map Example
图23:地图示例
The examples in this section combine elements from [RFC3863], [RFC4119], [RFC4479], [RFC5139], and [OGC.GeoShape].
本节中的示例结合了[RFC3863]、[RFC4119]、[RFC4479]、[RFC5139]和[OGC.GeoShape]中的元素。
<presence xmlns="urn:ietf:params:xml:ns:pidf" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr" xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" entity="pres:ness@example.com"> <dm:device id="nesspc-1">
<presence xmlns="urn:ietf:params:xml:ns:pidf" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr" xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" entity="pres:ness@example.com"> <dm:device id="nesspc-1">
<gp:geopriv> <gp:location-info> <ca:civicAddress xml:lang="en-AU"> <ca:country>AU</ca:country> <ca:A1>NSW</ca:A1> <ca:A3>Wollongong</ca:A3> <ca:A4>North Wollongong</ca:A4> <ca:RD>Flinders</ca:RD> <ca:STS>Street</ca:STS> <ca:HNO>123</ca:HNO> </ca:civicAddress> <rel:relative-location> <rel:reference> <ca:civicAddress xml:lang="en-AU"> <ca:LMK>Front Door</ca:LMK> <ca:BLD>A</ca:BLD> <ca:FLR>I</ca:FLR> <ca:ROOM>113</ca:ROOM> </ca:civicAddress> </rel:reference> <rel:offset> <gml:Polygon xmlns:gml="http://www.opengis.net/gml" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:exterior> <gml:LinearRing> <gml:pos>433.0 -734.0</gml:pos> <!--A--> <gml:pos>431.0 -733.0</gml:pos> <!--F--> <gml:pos>431.0 -732.0</gml:pos> <!--E--> <gml:pos>433.0 -731.0</gml:pos> <!--D--> <gml:pos>434.0 -732.0</gml:pos> <!--C--> <gml:pos>434.0 -733.0</gml:pos> <!--B--> <gml:pos>433.0 -734.0</gml:pos> <!--A--> </gml:LinearRing> </gml:exterior> </gml:Polygon> </rel:offset> </rel:relative-location> </gp:location-info> <gp:usage-rules/> <gp:method>GPS</gp:method> </gp:geopriv> <dm:deviceID>mac:1234567890ab</dm:deviceID> <dm:timestamp>2007-06-22T20:57:29Z</dm:timestamp> </dm:device> </presence>
<gp:geopriv> <gp:location-info> <ca:civicAddress xml:lang="en-AU"> <ca:country>AU</ca:country> <ca:A1>NSW</ca:A1> <ca:A3>Wollongong</ca:A3> <ca:A4>North Wollongong</ca:A4> <ca:RD>Flinders</ca:RD> <ca:STS>Street</ca:STS> <ca:HNO>123</ca:HNO> </ca:civicAddress> <rel:relative-location> <rel:reference> <ca:civicAddress xml:lang="en-AU"> <ca:LMK>Front Door</ca:LMK> <ca:BLD>A</ca:BLD> <ca:FLR>I</ca:FLR> <ca:ROOM>113</ca:ROOM> </ca:civicAddress> </rel:reference> <rel:offset> <gml:Polygon xmlns:gml="http://www.opengis.net/gml" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:exterior> <gml:LinearRing> <gml:pos>433.0 -734.0</gml:pos> <!--A--> <gml:pos>431.0 -733.0</gml:pos> <!--F--> <gml:pos>431.0 -732.0</gml:pos> <!--E--> <gml:pos>433.0 -731.0</gml:pos> <!--D--> <gml:pos>434.0 -732.0</gml:pos> <!--C--> <gml:pos>434.0 -733.0</gml:pos> <!--B--> <gml:pos>433.0 -734.0</gml:pos> <!--A--> </gml:LinearRing> </gml:exterior> </gml:Polygon> </rel:offset> </rel:relative-location> </gp:location-info> <gp:usage-rules/> <gp:method>GPS</gp:method> </gp:geopriv> <dm:deviceID>mac:1234567890ab</dm:deviceID> <dm:timestamp>2007-06-22T20:57:29Z</dm:timestamp> </dm:device> </presence>
<?xml version="1.0" encoding="UTF-8"?> <presence xmlns="urn:ietf:params:xml:ns:pidf" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" entity="pres:point2d@example.com"> <dm:device id="point2d"> <gp:geopriv> <gp:location-info> <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326"> <gml:pos>-34.407 150.883</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001"> 50.0 </gs:radius> </gs:Circle> <rel:relative-location> <rel:reference> <gml:Point srsName="urn:ogc:def:crs:EPSG::4326"> <gml:pos>-34.407 150.883</gml:pos> </gml:Point> </rel:reference> <rel:offset> <gs:Circle xmlns:gml="http://www.opengis.net/gml" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>500.0 750.0</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001"> 5.0 </gs:radius> </gs:Circle> </rel:offset> <rel:map> <rel:url type="image/png"> https://www.example.com/flrpln/123South/flr-2 </rel:url> <rel:offset>2670.0 1124.0 1022.0</rel:offset> <rel:orientation>67.00</rel:orientation> <rel:scale>10 -10</rel:scale> </rel:map> </rel:relative-location> </gp:location-info> <gp:usage-rules/> <gp:method>Wiremap</gp:method> </gp:geopriv> <dm:deviceID>mac:1234567890ab</dm:deviceID>
<?xml version="1.0" encoding="UTF-8"?> <presence xmlns="urn:ietf:params:xml:ns:pidf" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0" entity="pres:point2d@example.com"> <dm:device id="point2d"> <gp:geopriv> <gp:location-info> <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326"> <gml:pos>-34.407 150.883</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001"> 50.0 </gs:radius> </gs:Circle> <rel:relative-location> <rel:reference> <gml:Point srsName="urn:ogc:def:crs:EPSG::4326"> <gml:pos>-34.407 150.883</gml:pos> </gml:Point> </rel:reference> <rel:offset> <gs:Circle xmlns:gml="http://www.opengis.net/gml" srsName="urn:ietf:params:geopriv:relative:2d"> <gml:pos>500.0 750.0</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001"> 5.0 </gs:radius> </gs:Circle> </rel:offset> <rel:map> <rel:url type="image/png"> https://www.example.com/flrpln/123South/flr-2 </rel:url> <rel:offset>2670.0 1124.0 1022.0</rel:offset> <rel:orientation>67.00</rel:orientation> <rel:scale>10 -10</rel:scale> </rel:map> </rel:relative-location> </gp:location-info> <gp:usage-rules/> <gp:method>Wiremap</gp:method> </gp:geopriv> <dm:deviceID>mac:1234567890ab</dm:deviceID>
<dm:timestamp>2007-06-22T20:57:29Z</dm:timestamp> </dm:device> </presence>
<dm:timestamp>2007-06-22T20:57:29Z</dm:timestamp> </dm:device> </presence>
+--------+-------------------------------------------------+ | Type | Value | +--------+-------------------------------------------------+ | 0 | en | | | | | 1 | IL | | | | | 3 | Chicago | | | | | 34 | Wacker | | | | | 18 | Drive | | | | | 19 | 3400 | | | | | 112 | Reference | | | | | 25 | Building A | | | | | 27 | Floor 6 | | | | | 26 | Suite 213 | | | | | 28 | Reception Area | | | | | 115 | 100 70 | | | | | 126 | image/png | | | | | 127 | http://maps.example.com/3400Wacker/A6 | | | | | 129 | 0.0 4120.0 | | | | | 130 | 113.0 | | | | | 131 | 10.6 | +--------+-------------------------------------------------+
+--------+-------------------------------------------------+ | Type | Value | +--------+-------------------------------------------------+ | 0 | en | | | | | 1 | IL | | | | | 3 | Chicago | | | | | 34 | Wacker | | | | | 18 | Drive | | | | | 19 | 3400 | | | | | 112 | Reference | | | | | 25 | Building A | | | | | 27 | Floor 6 | | | | | 26 | Suite 213 | | | | | 28 | Reception Area | | | | | 115 | 100 70 | | | | | 126 | image/png | | | | | 127 | http://maps.example.com/3400Wacker/A6 | | | | | 129 | 0.0 4120.0 | | | | | 130 | 113.0 | | | | | 131 | 10.6 | +--------+-------------------------------------------------+
Note: The pattern value for "mimeType" has been folded onto multiple lines. Whitespace has been added to conform to comply with document formatting restrictions. Extra whitespace around the line endings MUST be removed before using this schema.
注意:“mimeType”的模式值已折叠到多行上。已添加空白以符合文档格式限制。在使用此架构之前,必须删除行尾周围的额外空白。
<?xml version="1.0"?> <xs:schema xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:gml="http://www.opengis.net/gml" targetNamespace="urn:ietf:params:xml:ns:pidf:geopriv10:relative" elementFormDefault="qualified" attributeFormDefault="unqualified">
<?xml version="1.0"?> <xs:schema xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:gml="http://www.opengis.net/gml" targetNamespace="urn:ietf:params:xml:ns:pidf:geopriv10:relative" elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:annotation> <xs:appinfo source="urn:ietf:params:xml:schema:pidf:geopriv10:relative"> Relative Location for PIDF-LO </xs:appinfo> <xs:documentation source="http://ietf.org/rfc/rfc7035.txt"> This schema defines a location representation that allows for the description of locations that are relative to another. An optional map reference is also defined. </xs:documentation> </xs:annotation>
<xs:annotation> <xs:appinfo source="urn:ietf:params:xml:schema:pidf:geopriv10:relative"> Relative Location for PIDF-LO </xs:appinfo> <xs:documentation source="http://ietf.org/rfc/rfc7035.txt"> This schema defines a location representation that allows for the description of locations that are relative to another. An optional map reference is also defined. </xs:documentation> </xs:annotation>
<xs:import namespace="http://www.opengis.net/gml"/>
<xs:import namespace="http://www.opengis.net/gml"/>
<xs:element name="relative-location" type="rel:relativeType"/>
<xs:element name="relative-location" type="rel:relativeType"/>
<xs:complexType name="relativeType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:sequence> <xs:element name="reference" type="rel:referenceType"/> <xs:element name="offset" type="rel:offsetType"/> <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> <xs:anyAttribute namespace="##other" processContents="lax"/> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:complexType name="relativeType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:sequence> <xs:element name="reference" type="rel:referenceType"/> <xs:element name="offset" type="rel:offsetType"/> <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> <xs:anyAttribute namespace="##other" processContents="lax"/> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:complexType name="referenceType"> <xs:complexContent>
<xs:complexType name="referenceType"> <xs:complexContent>
<xs:restriction base="xs:anyType"> <xs:sequence> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:restriction base="xs:anyType"> <xs:sequence> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:complexType name="offsetType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:sequence> <xs:element ref="gml:_Geometry"/> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:complexType name="offsetType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:sequence> <xs:element ref="gml:_Geometry"/> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:element name="map" type="rel:mapType"/> <xs:complexType name="mapType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:sequence> <xs:element name="url" type="rel:mapUrlType"/> <xs:element name="offset" type="rel:doubleList" minOccurs="0"/> <xs:element name="orientation" type="rel:doubleList" minOccurs="0"/> <xs:element name="scale" type="rel:doubleList" minOccurs="0"/> </xs:sequence> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:element name="map" type="rel:mapType"/> <xs:complexType name="mapType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:sequence> <xs:element name="url" type="rel:mapUrlType"/> <xs:element name="offset" type="rel:doubleList" minOccurs="0"/> <xs:element name="orientation" type="rel:doubleList" minOccurs="0"/> <xs:element name="scale" type="rel:doubleList" minOccurs="0"/> </xs:sequence> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:complexType name="mapUrlType"> <xs:simpleContent> <xs:extension base="xs:anyURI"> <xs:attribute name="type" type="rel:mimeType" default="application/octet-stream"/> </xs:extension> </xs:simpleContent> </xs:complexType>
<xs:complexType name="mapUrlType"> <xs:simpleContent> <xs:extension base="xs:anyURI"> <xs:attribute name="type" type="rel:mimeType" default="application/octet-stream"/> </xs:extension> </xs:simpleContent> </xs:complexType>
<xs:simpleType name="mimeType">
<xs:simpleType name="mimeType">
<xs:restriction base="xs:token"> <xs:pattern value="[!#$%&'\*\+\-\.\dA-Z^_`a-z\|~]+ /[!#$%&'\*\+\-\.\dA-Z^_`a-z\|~]+([\t ]*;([\t ])*[!#$%& '\*\+\-\.\dA-Z^_`a-z\|~]+=([!#$%&'\*\+\-\.\dA-Z^_`a-z\|~]+| "([!#-\[\]-~]|[\t ]*|\\[\t !-~])*"))*"/> </xs:restriction> </xs:simpleType>
<xs:restriction base="xs:token"> <xs:pattern value="[!#$%&'\*\+\-\.\dA-Z^_`a-z\|~]+ /[!#$%&'\*\+\-\.\dA-Z^_`a-z\|~]+([\t ]*;([\t ])*[!#$%& '\*\+\-\.\dA-Z^_`a-z\|~]+=([!#$%&'\*\+\-\.\dA-Z^_`a-z\|~]+| "([!#-\[\]-~]|[\t ]*|\\[\t !-~])*"))*"/> </xs:restriction> </xs:simpleType>
<xs:simpleType name="doubleList"> <xs:list itemType="xs:double"/> </xs:simpleType>
<xs:simpleType name="doubleList"> <xs:list itemType="xs:double"/> </xs:simpleType>
</xs:schema>
</xs:schema>
This document describes a data format. To a large extent, security properties of this depend on how this data is used.
本文档描述了一种数据格式。在很大程度上,此数据的安全属性取决于如何使用此数据。
Privacy for location data is typically important. Adding relative location may increase the precision of the location but does not otherwise alter its privacy considerations, which are discussed in [RFC4119].
位置数据的隐私通常很重要。添加相对位置可能会提高位置的精度,但不会改变其隐私考虑,这在[RFC4119]中进行了讨论。
The map URL provided in a relative location could accidentally reveal information if a Location Recipient uses the URL to acquire the map. The coverage area of a map, or parameters of the URL itself, could provide information about the location of a Target. In combination with other information that could reveal the set of potential Targets that the Location Recipient has location information for, acquiring a map could leak significant information. In particular, it is important to note that the Target and Location Recipient are often the same entity.
如果位置收件人使用相对位置中提供的地图URL获取地图,则相对位置中提供的地图URL可能会意外泄露信息。地图的覆盖区域或URL本身的参数可以提供有关目标位置的信息。与其他可能揭示位置接收者拥有位置信息的潜在目标集的信息相结合,获取地图可能会泄露重要信息。特别需要注意的是,目标接收者和地点接收者通常是同一实体。
Access to map URLs MUST be secured with TLS [RFC5246] (that is, restricting the map URL to be an https URI), unless the map URL cannot leak information about the Target's location. This restricts information about the map URL to the entity serving the map request. If the map URL conveys more information about a Target than a map server is authorized to receive, that URL MUST NOT be included in the PIDF-LO.
必须使用TLS[RFC5246]保护对地图URL的访问(即,将地图URL限制为https URI),除非地图URL不能泄漏有关目标位置的信息。这将有关映射URL的信息限制为服务于映射请求的实体。如果地图URL传递的有关目标的信息比地图服务器授权接收的信息多,则该URL不得包含在PIDF-LO中。
This document creates a new registry called "Relative Location Parameters". This shares a page, titled "Civic Address Types Registry" with the existing "Civic Address Types (CAtypes)" registry. As defined in [RFC5226], this new registry operates under "IETF Review" rules.
本文档创建了一个名为“相对位置参数”的新注册表。这与现有的“公民地址类型(CAtypes)”注册表共享一个名为“公民地址类型注册表”的页面。如[RFC5226]所定义,该新注册中心按照“IETF审查”规则运行。
The content of this registry includes:
本登记册的内容包括:
Relative Location Code (RLtype): Numeric identifier, assigned by IANA.
相对位置代码(RLtype):由IANA分配的数字标识符。
Brief description: Short description identifying the meaning of the element.
简短描述:识别元素含义的简短描述。
Reference to published specification: A stable reference to an RFC that describes the value in sufficient detail so that interoperability between independent implementations is possible.
对已发布规范的引用:对RFC的稳定引用,RFC充分详细地描述了该值,从而使独立实现之间的互操作性成为可能。
Values requested to be assigned into this registry MUST NOT conflict with values assigned in the "Civic Address Types (CAtypes)" registry or vice versa, unless the IANA Considerations section for the new value explicitly overrides this prohibition and the document defining the value describes how conflicting TLV codes will be interpreted by implementations. To ensure this, the CAtypes entries are explicitly reserved in the initial values table below. Those reserved entries can be changed, but only with caution, as explained here.
请求分配到此注册表的值不得与“公民地址类型(CAtypes)”注册表中分配的值冲突,反之亦然,除非新值的IANA注意事项部分明确覆盖该禁止,并且定义该值的文档描述了实现如何解释冲突的TLV代码。为了确保这一点,CAtypes条目在下面的“初始值”表中显式保留。这些保留条目可以更改,但必须谨慎,如下所述。
To make this clear for future users of the registry, the following note is added to the "Civic Address Types (CAtypes)" registry:
为了让注册中心的未来用户明白这一点,在“公民地址类型(类别)”注册中心中添加了以下注释:
The registration of new values should be accompanied by a corresponding reservation in the Relative Location Parameters registry.
新值的注册应伴随相对位置参数注册表中的相应保留。
Similarly, the "Relative Location Parameters" registry bears the note:
类似地,“相对位置参数”注册表带有以下注释:
The registration of new values should be accompanied by a corresponding reservation in the Civic Address Types (CAtypes) registry.
新值的注册应附带公民地址类型(CAtypes)注册表中的相应保留。
The values defined are:
定义的值为:
+--------+----------------------------------------+-----------+ | RLtype | description | Reference | +--------+----------------------------------------+-----------+ | 0-40 | RESERVED by CAtypes registry | RFC 7035 &| | 128 | | RFC 4776 | +--------+----------------------------------------+-----------+ | 111 | relative location reference | RFC 7035 | | 113 | relative location shape 2D point | RFC 7035 | | 114 | relative location shape 3D point | RFC 7035 | | 115 | relative location shape circular | RFC 7035 | | 116 | relative location shape spherical | RFC 7035 | | 117 | relative location shape elliptical | RFC 7035 | | 118 | relative location shape ellipsoid | RFC 7035 | | 119 | relative location shape 2D polygon | RFC 7035 | | 120 | relative location shape 3D polygon | RFC 7035 | | 121 | relative location shape prism | RFC 7035 | | 122 | relative location shape arc-band | RFC 7035 | | 123 | relative location dynamic orientation | RFC 7035 | | 124 | relative location dynamic speed | RFC 7035 | | 125 | relative location dynamic heading | RFC 7035 | | 126 | relative location map type | RFC 7035 | | 127 | relative location map URI | RFC 7035 | | 129 | relative location map coordinates | RFC 7035 | | 130 | relative location map angle | RFC 7035 | | 131 | relative location map scale | RFC 7035 | +--------+----------------------------------------+-----------+
+--------+----------------------------------------+-----------+ | RLtype | description | Reference | +--------+----------------------------------------+-----------+ | 0-40 | RESERVED by CAtypes registry | RFC 7035 &| | 128 | | RFC 4776 | +--------+----------------------------------------+-----------+ | 111 | relative location reference | RFC 7035 | | 113 | relative location shape 2D point | RFC 7035 | | 114 | relative location shape 3D point | RFC 7035 | | 115 | relative location shape circular | RFC 7035 | | 116 | relative location shape spherical | RFC 7035 | | 117 | relative location shape elliptical | RFC 7035 | | 118 | relative location shape ellipsoid | RFC 7035 | | 119 | relative location shape 2D polygon | RFC 7035 | | 120 | relative location shape 3D polygon | RFC 7035 | | 121 | relative location shape prism | RFC 7035 | | 122 | relative location shape arc-band | RFC 7035 | | 123 | relative location dynamic orientation | RFC 7035 | | 124 | relative location dynamic speed | RFC 7035 | | 125 | relative location dynamic heading | RFC 7035 | | 126 | relative location map type | RFC 7035 | | 127 | relative location map URI | RFC 7035 | | 129 | relative location map coordinates | RFC 7035 | | 130 | relative location map angle | RFC 7035 | | 131 | relative location map scale | RFC 7035 | +--------+----------------------------------------+-----------+
This document registers a new XML namespace, as per the guidelines in [RFC3688].
根据[RFC3688]中的指南,本文档注册了一个新的XML名称空间。
URI: urn:ietf:params:xml:ns:pidf:geopriv10:relative
URI: urn:ietf:params:xml:ns:pidf:geopriv10:relative
Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@skype.net).
注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@skype.net).
XML:
XML:
BEGIN <?xml version="1.0"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <title>GEOPRIV Relative Location</title> </head> <body> <h1>Format for representing relative location</h1> <h2>urn:ietf:params:xml:ns:pidf:geopriv10:relative</h2> <p>See <a href="http://www.rfc-editor.org/rfc/rfc7035.txt"> RFC 7035</a>.</p> </body> </html>
BEGIN <?xml version="1.0"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <title>GEOPRIV Relative Location</title> </head> <body> <h1>Format for representing relative location</h1> <h2>urn:ietf:params:xml:ns:pidf:geopriv10:relative</h2> <p>See <a href="http://www.rfc-editor.org/rfc/rfc7035.txt"> RFC 7035</a>.</p> </body> </html>
END
终止
This section registers an XML schema as per the procedures in [RFC3688].
本节按照[RFC3688]中的步骤注册XML模式。
URI: urn:ietf:params:xml:schema:pidf:geopriv10:relative
URI: urn:ietf:params:xml:schema:pidf:geopriv10:relative
Registrant Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@skype.net)
注册人联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@skype.net)
Schema: The XML for this schema is found in Section 6 of this document.
模式:此模式的XML可在本文档第6节中找到。
This section registers two URNs for use in identifying relative coordinate reference systems. These are added to a new "Geopriv Identifiers" registry according to the procedures in Section 4 of [RFC3553]. The "Geopriv Identifiers" registry is entered under the "Uniform Resource Name (URN) Namespace for IETF Use" category.
本节注册了两个URN,用于标识相对坐标参考系。根据[RFC3553]第4节中的程序,将其添加到新的“Geopriv标识符”注册表中。“Geopriv标识符”注册表在“IETF使用的统一资源名称(URN)命名空间”类别下输入。
Registrations in this registry follow the "IETF Review" [RFC5226] policy.
此注册表中的注册遵循“IETF审查”[RFC5226]政策。
Registry name: Geopriv Identifiers
注册表名称:Geopriv标识符
URN Prefix: urn:ietf:params:geopriv:
URN前缀:URN:ietf:params:geopriv:
Specification: RFC 7035 (this document)
规格:RFC 7035(本文件)
Repository: http://www.iana.org/assignments/geopriv-identifiers
Repository: http://www.iana.org/assignments/geopriv-identifiers
Index value: Values in this registry are URNs or URN prefixes that start with the prefix "urn:ietf:params:geopriv:". Each is registered independently.
索引值:此注册表中的值是以前缀“URN:ietf:params:geopriv:”开头的URN或URN前缀。每个都是独立注册的。
Each registration in the "Geopriv Identifiers" registry requires the following information:
“Geopriv标识符”注册表中的每个注册都需要以下信息:
URN: The complete URN that is used or the prefix for that URN.
URN:使用的完整URN或该URN的前缀。
Description: A summary description for the URN or URN prefix.
描述:URN或URN前缀的摘要描述。
Specification: A reference to a specification describing the URN or URN prefix.
规范:对描述URN或URN前缀的规范的引用。
Contact: Email for the person or groups making the registration.
联系人:进行注册的个人或团体的电子邮件。
Index value: As described in [RFC3553], URN prefixes that are registered include a description of how the URN is constructed. This is not applicable for specific URNs.
索引值:如[RFC3553]中所述,注册的URN前缀包括URN构造方式的说明。这不适用于特定的骨灰盒。
The "Geopriv Identifiers" registry has two initial registrations, included in the following sections.
“Geopriv标识符”注册表有两个初始注册,包括在以下部分中。
8.4.1. Registration of Two-Dimensional Relative Coordinate Reference System URN
8.4.1. 二维相对坐标系URN的配准
This section registers the "urn:ietf:params:geopriv:relative:2d" URN in the "Geopriv Identifiers" registry.
本节将“urn:ietf:params:geopriv:relative:2d”urn注册到“geopriv标识符”注册表中。
URN: urn:ietf:params:geopriv:relative:2d
URN: urn:ietf:params:geopriv:relative:2d
Description: A two-dimensional relative coordinate reference system
描述:二维相对坐标参考系
Specification: RFC 7035 (this document)
规格:RFC 7035(本文件)
Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@skype.net)
联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@skype.net)
Index value: N/A
索引值:不适用
8.4.2. Registration of Three-Dimensional Relative Coordinate Reference System URN
8.4.2. 三维相对坐标系URN的配准
This section registers the "urn:ietf:params:geopriv:relative:3d" URN in the "Geopriv Identifiers" registry.
本节将“urn:ietf:params:geopriv:relative:3d”urn注册到“geopriv标识符”注册表中。
URN: urn:ietf:params:geopriv:relative:3d
URN: urn:ietf:params:geopriv:relative:3d
Description: A three-dimensional relative coordinate reference system
描述:一个三维相对坐标参考系统
Specification: RFC 7035 (this document)
规格:RFC 7035(本文件)
Contact: IETF, GEOPRIV working group (geopriv@ietf.org), Martin Thomson (martin.thomson@skype.net)
联系人:IETF、GEOPRIV工作组(geopriv@ietf.org),马丁·汤姆森(马丁。thomson@skype.net)
Index value: N/A
索引值:不适用
This document is the product of a design team on relative location. Besides the authors, this team included Marc Linsner, James Polk, and James Winterbottom.
本文件是相对位置设计团队的产品。除了作者之外,这个团队还包括马克·林纳、詹姆斯·波尔克和詹姆斯·温特巴顿。
[Clinger1990] Clinger, W., "How to Read Floating Point Numbers Accurately", Proceedings of Conference on Programming Language Design and Implementation, pp. 92-101, 1990.
[Clinger1990]Clinger,W.“如何准确读取浮点数”,《编程语言设计与实现会议录》,第92-101页,1990年。
[IEEE.754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE Standard 754-2008, August 2008.
[IEEE.754]IEEE,“IEEE浮点运算标准”,IEEE标准754-2008,2008年8月。
[OGC.GML-3.1.1] Cox, S., Daisey, P., Lake, R., Portele, C., and A. Whiteside, "Geographic information - Geography Markup Language (GML)", OpenGIS 03-105r1, April 2004, <http://portal.opengeospatial.org/files/ ?artifact_id=4700>.
[OGC.GML-3.1.1]Cox,S.,Daisey,P.,Lake,R.,Portele,C.,和A.Whiteside,“地理信息-地理标记语言(GML)”,OpenGIS 03-105r1,2004年4月<http://portal.opengeospatial.org/files/ ?工件id=4700>。
[OGC.GeoShape] Thomson, M. and C. Reed, "GML 3.1.1 PIDF-LO Shape Application Schema for use by the Internet Engineering Task Force (IETF)", OGC Best Practice 06-142r1, Version: 1.0, April 2007.
[OGC.GeoShape]Thomson,M.和C.Reed,“互联网工程任务组(IETF)使用的GML 3.1.1 PIDF-LO形状应用程序模式”,OGC最佳实践06-142r1,版本:1.0,2007年4月。
[RFC1014] Sun Microsystems, Inc., "XDR: External Data Representation standard", RFC 1014, June 1987.
[RFC1014]太阳微系统公司,“XDR:外部数据表示标准”,RFC10141987年6月。
[RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types", RFC 2046, November 1996.
[RFC2046]Freed,N.和N.Borenstein,“多用途Internet邮件扩展(MIME)第二部分:媒体类型”,RFC 20461996年11月。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.
[RFC2616]菲尔丁,R.,盖蒂斯,J.,莫卧儿,J.,弗莱斯蒂克,H.,马斯特,L.,利奇,P.,和T.伯纳斯李,“超文本传输协议——HTTP/1.1”,RFC 2616,1999年6月。
[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.
[RFC2818]Rescorla,E.,“TLS上的HTTP”,RFC2818,2000年5月。
[RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An IETF URN Sub-namespace for Registered Protocol Parameters", BCP 73, RFC 3553, June 2003.
[RFC3553]Mealling,M.,Masinter,L.,Hardie,T.,和G.Klyne,“注册协议参数的IETF URN子命名空间”,BCP 73,RFC 3553,2003年6月。
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, January 2004.
[RFC3688]Mealling,M.“IETF XML注册表”,BCP 81,RFC 3688,2004年1月。
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January 2005.
[RFC3986]Berners Lee,T.,Fielding,R.,和L.Masinter,“统一资源标识符(URI):通用语法”,STD 66,RFC 3986,2005年1月。
[RFC4119] Peterson, J., "A Presence-based GEOPRIV Location Object Format", RFC 4119, December 2005.
[RFC4119]Peterson,J.,“一种基于状态的GEOPRIV定位对象格式”,RFC41192005年12月。
[RFC4776] Schulzrinne, H., "Dynamic Host Configuration Protocol (DHCPv4 and DHCPv6) Option for Civic Addresses Configuration Information", RFC 4776, November 2006.
[RFC4776]Schulzrinne,H.,“Civic地址配置信息的动态主机配置协议(DHCPv4和DHCPv6)选项”,RFC 4776,2006年11月。
[RFC5139] Thomson, M. and J. Winterbottom, "Revised Civic Location Format for Presence Information Data Format Location Object (PIDF-LO)", RFC 5139, February 2008.
[RFC5139]Thomson,M.和J.Winterbottom,“状态信息数据格式位置对象(PIDF-LO)的修订公民位置格式”,RFC 5139,2008年2月。
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.
[RFC5226]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August 2008.
[RFC5246]Dierks,T.和E.Rescorla,“传输层安全(TLS)协议版本1.2”,RFC 5246,2008年8月。
[RFC5491] Winterbottom, J., Thomson, M., and H. Tschofenig, "GEOPRIV Presence Information Data Format Location Object (PIDF-LO) Usage Clarification, Considerations, and Recommendations", RFC 5491, March 2009.
[RFC5491]Winterbottom,J.,Thomson,M.,和H.Tschofenig,“GEOPRIV存在信息数据格式位置对象(PIDF-LO)使用说明、注意事项和建议”,RFC 54912009年3月。
[RFC5962] Schulzrinne, H., Singh, V., Tschofenig, H., and M. Thomson, "Dynamic Extensions to the Presence Information Data Format Location Object (PIDF-LO)", RFC 5962, September 2010.
[RFC5962]Schulzrinne,H.,Singh,V.,Tschofenig,H.,和M.Thomson,“状态信息数据格式位置对象(PIDF-LO)的动态扩展”,RFC 59622010年9月。
[RFC6225] Polk, J., Linsner, M., Thomson, M., and B. Aboba, "Dynamic Host Configuration Protocol Options for Coordinate-Based Location Configuration Information", RFC 6225, July 2011.
[RFC6225]Polk,J.,Linsner,M.,Thomson,M.,和B.Aboba,“基于坐标的位置配置信息的动态主机配置协议选项”,RFC 62252011年7月。
[RFC6848] Winterbottom, J., Thomson, M., Barnes, R., Rosen, B., and R. George, "Specifying Civic Address Extensions in the Presence Information Data Format Location Object (PIDF-LO)", RFC 6848, January 2013.
[RFC6848]温特巴顿,J.,汤姆森,M.,巴恩斯,R.,罗森,B.,和R.乔治,“在状态信息数据格式位置对象(PIDF-LO)中指定公民地址扩展”,RFC 6848,2013年1月。
[WGS84] US National Imagery and Mapping Agency, "Department of Defense (DoD) World Geodetic System 1984 (WGS 84), Third Edition", NIMA TR8350.2, January 2000.
[WGS84]美国国家图像和测绘局,“国防部1984年世界大地测量系统(WGS 84),第三版”,NIMA TR8350.22000年1月。
[RFC3863] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and J. Peterson, "Presence Information Data Format (PIDF)", RFC 3863, August 2004.
[RFC3863]Sugano,H.,Fujimoto,S.,Klyne,G.,Batman,A.,Carr,W.,和J.Peterson,“状态信息数据格式(PIDF)”,RFC 38632004年8月。
[RFC4479] Rosenberg, J., "A Data Model for Presence", RFC 4479, July 2006.
[RFC4479]Rosenberg,J.,“存在的数据模型”,RFC 4479,2006年7月。
Authors' Addresses
作者地址
Martin Thomson Microsoft 3210 Porter Drive Palo Alto, CA 94304 US
美国加利福尼亚州帕洛阿尔托波特大道3210号马丁·汤姆森微软公司,邮编94304
Phone: +1 650-353-1925 EMail: martin.thomson@skype.net
Phone: +1 650-353-1925 EMail: martin.thomson@skype.net
Brian Rosen Neustar 470 Conrad Dr Mars, PA 16046 US
布莱恩·罗森·纽斯塔470康拉德·马尔斯博士,宾夕法尼亚州,美国16046
EMail: br@brianrosen.net
EMail: br@brianrosen.net
Dorothy Stanley Aruba Networks 1322 Crossman Ave Sunnyvale, CA 94089 US
美国加利福尼亚州桑尼维尔市克罗斯曼大道1322号多萝西·斯坦利·阿鲁巴网络公司,邮编94089
EMail: dstanley@arubanetworks.com
EMail: dstanley@arubanetworks.com
Gabor Bajko Nokia 323 Fairchild Drive Mountain View, CA 94043 US
美国加利福尼亚州山景镇飞兆半导体大道323号,邮编94043
EMail: gabor.bajko@nokia.com
EMail: gabor.bajko@nokia.com
Allan Thomson Lookingglass Cyber Solutions 1001 S Kenwood Avenue Baltimore, MD 21224 US
美国马里兰州巴尔的摩肯伍德大道南1001号艾伦·汤姆森Lookingglass网络解决方案,邮编:21224
EMail: athomson@lgscout.com
EMail: athomson@lgscout.com