Internet Engineering Task Force (IETF)                   A. Mancuso, Ed.
Request for Comments: 6953                                        Google
Category: Informational                                      S. Probasco
ISSN: 2070-1721
                                                                B. Patil
                                                           Cisco Systems
                                                                May 2013
        
Internet Engineering Task Force (IETF)                   A. Mancuso, Ed.
Request for Comments: 6953                                        Google
Category: Informational                                      S. Probasco
ISSN: 2070-1721
                                                                B. Patil
                                                           Cisco Systems
                                                                May 2013
        

Protocol to Access White-Space (PAWS) Databases: Use Cases and Requirements

访问空白(PAWS)数据库的协议:用例和需求

Abstract

摘要

Portions of the radio spectrum that are assigned to a particular use but are unused or unoccupied at specific locations and times are defined as "white space". The concept of allowing additional transmissions (which may or may not be licensed) in white space is a technique to "unlock" existing spectrum for new use. This document includes the problem statement for the development of a protocol to access a database of white-space information followed by use cases and requirements for that protocol. Finally, requirements associated with the protocol are presented.

分配给特定用途但在特定位置和时间未使用或未占用的无线电频谱部分被定义为“空白”。允许在空白处进行额外传输(可能有许可证,也可能没有许可证)的概念是一种“解锁”现有频谱以供新用途的技术。本文档包括开发访问空白信息数据库的协议的问题陈述,以及该协议的用例和要求。最后,给出了与该协议相关的需求。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6953.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6953.

Copyright Notice

版权公告

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2013 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Introduction to White Space  . . . . . . . . . . . . . . .  3
     1.2.  Scope  . . . . . . . . . . . . . . . . . . . . . . . . . .  4
       1.2.1.  In Scope . . . . . . . . . . . . . . . . . . . . . . .  4
       1.2.2.  Out of Scope . . . . . . . . . . . . . . . . . . . . .  4
   2.  Conventions Used in This Document  . . . . . . . . . . . . . .  5
     2.1.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  5
     2.2.  Requirements Language  . . . . . . . . . . . . . . . . . .  5
   3.  Problem Statement  . . . . . . . . . . . . . . . . . . . . . .  6
     3.1.  Global Applicability . . . . . . . . . . . . . . . . . . .  6
     3.2.  Database Discovery . . . . . . . . . . . . . . . . . . . .  8
     3.3.  Device Registration  . . . . . . . . . . . . . . . . . . .  8
     3.4.  Protocol . . . . . . . . . . . . . . . . . . . . . . . . .  9
     3.5.  Data Model Definition  . . . . . . . . . . . . . . . . . .  9
   4.  Use Cases  . . . . . . . . . . . . . . . . . . . . . . . . . .  9
     4.1.  Master-Slave White-Space Networks  . . . . . . . . . . . .  9
     4.2.  Offloading: Moving Traffic to a White-Space Network  . . . 11
     4.3.  White Space Serving as Backhaul  . . . . . . . . . . . . . 13
     4.4.  Rapid Network Deployment during Emergencies  . . . . . . . 14
     4.5.  White Space Used for Local TV Broadcaster  . . . . . . . . 15
   5.  Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 16
     5.1.  Data Model Requirements  . . . . . . . . . . . . . . . . . 16
     5.2.  Protocol Requirements  . . . . . . . . . . . . . . . . . . 17
     5.3.  Operational Requirements . . . . . . . . . . . . . . . . . 19
     5.4.  Guidelines . . . . . . . . . . . . . . . . . . . . . . . . 19
   6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 20
   7.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 22
   8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 22
     8.1.  Normative References . . . . . . . . . . . . . . . . . . . 22
     8.2.  Informative References . . . . . . . . . . . . . . . . . . 22
        
   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Introduction to White Space  . . . . . . . . . . . . . . .  3
     1.2.  Scope  . . . . . . . . . . . . . . . . . . . . . . . . . .  4
       1.2.1.  In Scope . . . . . . . . . . . . . . . . . . . . . . .  4
       1.2.2.  Out of Scope . . . . . . . . . . . . . . . . . . . . .  4
   2.  Conventions Used in This Document  . . . . . . . . . . . . . .  5
     2.1.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  5
     2.2.  Requirements Language  . . . . . . . . . . . . . . . . . .  5
   3.  Problem Statement  . . . . . . . . . . . . . . . . . . . . . .  6
     3.1.  Global Applicability . . . . . . . . . . . . . . . . . . .  6
     3.2.  Database Discovery . . . . . . . . . . . . . . . . . . . .  8
     3.3.  Device Registration  . . . . . . . . . . . . . . . . . . .  8
     3.4.  Protocol . . . . . . . . . . . . . . . . . . . . . . . . .  9
     3.5.  Data Model Definition  . . . . . . . . . . . . . . . . . .  9
   4.  Use Cases  . . . . . . . . . . . . . . . . . . . . . . . . . .  9
     4.1.  Master-Slave White-Space Networks  . . . . . . . . . . . .  9
     4.2.  Offloading: Moving Traffic to a White-Space Network  . . . 11
     4.3.  White Space Serving as Backhaul  . . . . . . . . . . . . . 13
     4.4.  Rapid Network Deployment during Emergencies  . . . . . . . 14
     4.5.  White Space Used for Local TV Broadcaster  . . . . . . . . 15
   5.  Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 16
     5.1.  Data Model Requirements  . . . . . . . . . . . . . . . . . 16
     5.2.  Protocol Requirements  . . . . . . . . . . . . . . . . . . 17
     5.3.  Operational Requirements . . . . . . . . . . . . . . . . . 19
     5.4.  Guidelines . . . . . . . . . . . . . . . . . . . . . . . . 19
   6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 20
   7.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 22
   8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 22
     8.1.  Normative References . . . . . . . . . . . . . . . . . . . 22
     8.2.  Informative References . . . . . . . . . . . . . . . . . . 22
        
1. Introduction
1. 介绍
1.1. Introduction to White Space
1.1. 空白介绍

Wireless spectrum is a commodity that is regulated by governments. The spectrum is used for various purposes, which include, but are not limited to, entertainment (e.g., radio and television), communication (e.g., telephony and Internet access), military (e.g., radars, etc.), and navigation (e.g., satellite communication, GPS). Portions of the radio spectrum that are assigned to a licensed (primary) user but are unused or unoccupied at specific locations and times are defined as "white space". The concept of allowing additional (secondary) transmissions (which may or may not be licensed) in white space is a technique to "unlock" existing spectrum for new use.

无线频谱是一种受政府管制的商品。频谱用于各种用途,包括但不限于娱乐(如广播和电视)、通信(如电话和互联网接入)、军事(如雷达等)和导航(如卫星通信、GPS)。分配给许可(主要)用户但在特定位置和时间未使用或未占用的无线电频谱部分被定义为“空白”。允许在空白处进行额外(二次)传输(可能有许可证,也可能没有许可证)的概念是一种为新用途“解锁”现有频谱的技术。

An obvious requirement is that these secondary transmissions do not interfere with the assigned use of the spectrum. One interesting observation is that often, in a given physical location, the primary user(s) may not be using the entire band assigned to them. The available spectrum for secondary transmissions would then depend on the location of the secondary user. The fundamental issue is how to determine, for a specific location and specific time, if any of the assigned spectrum is available for secondary use.

一个明显的要求是,这些二次传输不会干扰频谱的指定使用。一个有趣的观察结果是,在给定的物理位置上,主用户可能没有使用分配给他们的整个频带。然后,用于二次传输的可用频谱将取决于二次用户的位置。基本问题是如何确定在特定位置和特定时间内,是否有任何指定频谱可供二次使用。

Academia and industry have studied multiple cognitive radio [CRADIO] mechanisms for use in such a scenario. One simple mechanism is to use a geospatial database that contains the spatial and temporal profile of all primary licensees' spectrum usage, and require secondary users to query the database for available spectrum that they can use at their location. Such databases can be accessible and queryable by secondary users on the Internet.

学术界和工业界已经研究了在这种情况下使用的多种认知无线电(CRADIO)机制。一种简单的机制是使用地理空间数据库,该数据库包含所有主要许可证持有人频谱使用的空间和时间概况,并要求次要用户查询数据库,以获取他们可以在其所在地使用的可用频谱。互联网上的二级用户可以访问和查询此类数据库。

Any entity that is assigned spectrum that is not densely used may be asked by a governmental regulatory agency to share it to allow for more intensive use of the spectrum. Providing a mechanism by which secondary users share the spectrum with the primary user is attractive in many bands, in many countries.

政府监管机构可能会要求任何被分配了未被密集使用的频谱的实体共享该频谱,以便更密集地使用该频谱。在许多国家,提供一种二级用户与一级用户共享频谱的机制在许多频段具有吸引力。

This document includes the problem statement followed by use cases and requirements associated with the use of white-space spectrum by secondary users via a database query protocol. The final sections include the requirements associated with such a protocol. Note that the IETF has undertaken to develop a database query protocol (see [PAWS]).

本文档包括问题陈述,以及与二级用户通过数据库查询协议使用空白频谱相关的用例和需求。最后一节包括与该协议相关的要求。请注意,IETF已承诺开发数据库查询协议(见[PAWS])。

1.2. Scope
1.2. 范围
1.2.1. In Scope
1.2.1. 范围内

This document covers the requirements for a protocol to allow a device to access a database to obtain spectrum availability information. Such a protocol should allow a device to perform the following actions:

本文件涵盖了允许设备访问数据库以获取频谱可用性信息的协议要求。此类协议应允许设备执行以下操作:

1. Determine the relevant database to query.

1. 确定要查询的相关数据库。

2. Connect to and optionally register with the database using a well-defined protocol.

2. 使用定义良好的协议连接到数据库并选择性地向数据库注册。

3. Provide geolocation and perhaps other data to the database using a well-defined format for querying the database.

3. 使用用于查询数据库的定义良好的格式向数据库提供地理位置和其他数据。

4. Receive in response to the query a list of available white-space frequencies at the specified geolocation using a well-defined format for the information.

4. 接收指定地理位置的可用空白频率列表,以响应查询,该列表使用定义良好的信息格式。

5. Send an acknowledgment to the database with information containing channels selected for use by the device and other device operation parameters.

5. 向数据库发送确认,确认信息包含设备选择使用的通道和其他设备操作参数。

Note: The above protocol actions should explicitly or implicitly support the ability of devices to re-register and/or re-query the database when they change their locations or operating parameters. This will allow them to receive permission to operate in their new locations and/or with their new operating parameters, and to send acknowledgments to the database that include information on their new operating parameters.

注:上述协议操作应显式或隐式支持设备在更改位置或操作参数时重新注册和/或重新查询数据库的能力。这将允许他们获得在其新位置和/或使用其新操作参数操作的许可,并向数据库发送确认,其中包括有关其新操作参数的信息。

1.2.2. Out of Scope
1.2.2. 超出范围

The following topics are out of scope for this specification:

以下主题超出本规范的范围:

1. It is the device's responsibility to query the database for new spectrum when the device moves, changes operating parameters, loses connectivity, etc. Other synchronization mechanisms are out of scope.

1. 当设备移动、更改操作参数、失去连接等时,设备负责查询数据库中的新频谱。其他同步机制超出范围。

2. A rogue device may operate without contacting the database to obtain available spectrum. Hence, enforcement of spectrum usage by devices is out of scope.

2. 恶意设备可以在不联系数据库获取可用频谱的情况下运行。因此,强制设备使用频谱超出了范围。

3. The protocol defines communications between the database and devices. The protocol for communications between devices is out of scope.

3. 该协议定义了数据库和设备之间的通信。设备间通信的协议超出范围。

4. Coexistence and interference avoidance of white-space devices within the same spectrum are out of scope.

4. 同一频谱内的空白区设备的共存和干扰避免超出范围。

5. Provisioning (releasing new spectrum for white-space use) is out of scope.

5. 资源调配(发布新频谱以供空白使用)超出范围。

2. Conventions Used in This Document
2. 本文件中使用的公约
2.1. Terminology
2.1. 术语

Database: A database is an entity that contains current information about available spectrum at a given location and time, as well as other types of information related to spectrum availability and usage.

数据库:数据库是一个实体,包含给定位置和时间的可用频谱的当前信息,以及与频谱可用性和使用相关的其他类型的信息。

Device Class: Identifies classes of devices including fixed, mobile, portable, etc. May also indicate if the device is indoor or outdoor.

设备类别:标识设备类别,包括固定设备、移动设备、便携式设备等。还可以指示设备是室内还是室外。

Device ID: An identifier for a device.

设备ID:设备的标识符。

Master Device: A device that queries the database, on its own behalf and/or on behalf of a slave device, to obtain available spectrum information.

主设备:代表其自身和/或代表从属设备查询数据库以获取可用频谱信息的设备。

Slave Device: A device that queries the database through a master device.

从设备:通过主设备查询数据库的设备。

Trusted Database: A database that is trusted by a device or provides data objects that are trusted by a device.

可信数据库:设备信任的数据库或提供设备信任的数据对象的数据库。

White Space (WS): Radio spectrum that is available for secondary use at a specific location and time.

空白(WS):在特定位置和时间可供二次使用的无线电频谱。

White-Space Device (WSD): A device that uses white-space spectrum as a secondary user. A white-space device can be a fixed or portable device such as an access point, base station, or cell phone.

空白设备(WSD):将空白频谱用作辅助用户的设备。空白区设备可以是固定或便携式设备,如接入点、基站或手机。

2.2. Requirements Language
2.2. 需求语言

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。

3. Problem Statement
3. 问题陈述

The use of white-space spectrum is enabled via the capability of a device to query a database and obtain information about the availability of spectrum for use at a given location. The databases are reachable via the Internet, and the devices querying these databases are expected to have some form of Internet connectivity, directly or indirectly. While databases are expected to support the rule set(s) of one or more regulatory domains, and the regulations and available spectrum associated with each rule set may vary, the fundamental operation of the protocol must be independent of any particular regulatory environment.

通过设备查询数据库并获取关于在给定位置使用的频谱可用性的信息,可以使用空白频谱。数据库可通过互联网访问,查询这些数据库的设备应具有某种形式的互联网连接(直接或间接)。虽然预期数据库将支持一个或多个监管领域的规则集,并且与每个规则集相关的法规和可用范围可能会有所不同,但协议的基本操作必须独立于任何特定监管环境。

An example of the high-level architecture of the devices and databases is shown in Figure 1.

设备和数据库的高级架构示例如图1所示。

                 -----------
                 | Master  |
                 |WS Device|                              ------------
                 |Lat: X   |\           .---.    /--------|Database A|
                 |Long: Y  | \         (     )  /         ------------
                 -----------  \-------/       \/               o
                                     ( Internet)               o
                 -----------  /------(         )\              o
                 | Master  | /        (       )  \             o
                 |WS Device|/          (_____)    \       ------------
                 |Lat: X   |                       \------|Database B|
                 |Long: Y  |                              ------------
                 -----------
        
                 -----------
                 | Master  |
                 |WS Device|                              ------------
                 |Lat: X   |\           .---.    /--------|Database A|
                 |Long: Y  | \         (     )  /         ------------
                 -----------  \-------/       \/               o
                                     ( Internet)               o
                 -----------  /------(         )\              o
                 | Master  | /        (       )  \             o
                 |WS Device|/          (_____)    \       ------------
                 |Lat: X   |                       \------|Database B|
                 |Long: Y  |                              ------------
                 -----------
        

Figure 1: High-Level View of White-Space Database Architecture

图1:空白数据库体系结构的高级视图

Note that there could be multiple databases serving white-space devices. In some countries, such as the U.S., the regulator has determined that multiple databases may provide service to white-space devices.

请注意,可能有多个数据库为空白设备提供服务。在一些国家,如美国,监管机构已确定多个数据库可为空白设备提供服务。

A messaging interface between the white-space devices and the database is required for operating a network using the white-space spectrum. The following sections discuss various aspects of such an interface and the need for a standard.

使用空白频谱操作网络时,需要空白设备和数据库之间的消息传递接口。以下各节讨论了此类接口的各个方面以及对标准的需求。

3.1. Global Applicability
3.1. 全球适用性

The use of white-space spectrum is currently approved or being considered in multiple regulatory domains, whose rules may differ. However, the need for devices that intend to use the spectrum to communicate with a database remains a common feature. The database

目前,多个监管领域批准或考虑使用空白频谱,其规则可能有所不同。然而,对打算使用频谱与数据库通信的设备的需求仍然是一个共同特征。数据库

implements rules that protect all primary users, independent of the characteristics of the white-space devices. It also provides a way to specify a schedule of use, since some primary users (for example, wireless microphones) only operate in limited time slots.

实现保护所有主要用户的规则,独立于空白区域设备的特征。它还提供了一种指定使用时间表的方法,因为一些主要用户(例如,无线话筒)仅在有限的时间段内工作。

Devices need to be able to query a database, directly or indirectly, over the public Internet and/or private IP networks prior to operating in available spectrum. Information about available spectrum, schedule, power, etc., are provided by the database as a response to the query from a device. The messaging interface needs to be:

在可用频谱中运行之前,设备需要能够通过公共互联网和/或专用IP网络直接或间接地查询数据库。有关可用频谱、时间表、功率等的信息由数据库提供,作为对设备查询的响应。消息传递接口需要:

1. Interface agnostic - An interface between a master white-space device and database can be wired or unwired (e.g., a radio/air interface technology such as IEEE 802.11af, IEEE 802.15.4m, IEEE 802.16, IEEE 802.22, LTE, etc.) However, the messaging interface between a master white-space device and the database should be agnostic to the interface used for such messaging while being cognizant of the characteristics of the interface technology and the need to include any relevant attributes in the query to the database.

1. 接口不可知-主空白区设备和数据库之间的接口可以有线或非有线(例如,无线/空中接口技术,如IEEE 802.11af、IEEE 802.15.4m、IEEE 802.16、IEEE 802.22、LTE等),主空白设备和数据库之间的消息传递接口应与用于此类消息传递的接口无关,同时应了解接口技术的特征以及在数据库查询中包含任何相关属性的需要。

2. Spectrum agnostic - The spectrum used by primary and secondary users varies by country. Some spectrum bands have an explicit notion of a "channel": a defined swath of spectrum within a band that has some assigned identifier. Other spectrum bands may be subject to white-space sharing, but only have actual frequency low/high parameters to define primary and secondary use. The protocol should be able to be used in any spectrum band where white-space sharing is permitted.

2. 频谱不可知-主要和次要用户使用的频谱因国家而异。一些频带有一个明确的“信道”概念:频带内具有指定标识符的已定义频谱带。其他频段可能需要共享空白,但只有实际的频率低/高参数来定义主要和次要用途。该协议应该能够在允许共享空白的任何频段中使用。

3. Globally applicable - A common messaging interface between white-space devices and databases will enable the use of such spectrum for various purposes on a global basis. Devices can operate in any location where such spectrum is available and a common interface ensures uniformity in implementations and deployment. To allow the global use of white-space devices in different countries (whatever the regulatory domain), the protocol should support the database that communicates the applicable regulatory rule-set information to the white-space device.

3. 全球适用-空白设备和数据库之间的通用消息传递接口将允许在全球范围内将此类频谱用于各种目的。设备可以在任何频谱可用的位置运行,公共接口确保实现和部署的一致性。为了允许在不同的国家(无论监管领域如何)在全球范围内使用空白区设备,协议应支持将适用的监管规则集信息传达给空白区设备的数据库。

4. Built on flexible and extensible data structures - Different databases are likely to have different requirements for the kinds of data required for registration (different regulatory rule sets that apply to the registration of devices) and other messages sent by the device to the database. For instance, different regulators might require different device-characteristic information to be passed to the database.

4. 建立在灵活和可扩展的数据结构之上-不同的数据库可能对注册所需的数据类型(适用于设备注册的不同监管规则集)和设备发送到数据库的其他消息有不同的要求。例如,不同的调节器可能需要将不同的设备特征信息传递到数据库。

3.2. Database Discovery
3.2. 数据库发现

The master device must obtain the address of a trusted database, which it will query for available white-space spectrum. If the master device uses a discovery service to locate a trusted database, it may perform the following steps (this description is intended as descriptive, not prescriptive):

主设备必须获取可信数据库的地址,它将查询该数据库中的可用空白频谱。如果主设备使用发现服务来定位受信任的数据库,则它可以执行以下步骤(此描述旨在说明,而非规定):

1. The master device constructs and sends a request (e.g., over the Internet) to a trusted discovery service.

1. 主设备构造并向可信发现服务发送请求(例如,通过互联网)。

2. If no acceptable response is received within a pre-configured time limit, the master device concludes that no trusted database is available. If at least one response is received, the master device evaluates the response(s) to determine if a trusted database can be identified where the master device is able to receive service from the database. If so, it establishes contact with the trusted database.

2. 如果在预先配置的时间限制内没有接收到可接受的响应,则主设备会得出结论,即没有可用的可信数据库。如果至少接收到一个响应,则主设备评估该响应以确定是否可以在主设备能够从数据库接收服务的位置识别受信任的数据库。如果是这样,它将与受信任的数据库建立联系。

3. The master device establishes a white-space network as described in Section 4.

3. 如第4节所述,主设备建立空白网络。

Optionally, and in place of steps 1-2 above, the master device can be pre-configured with the address (e.g., URI) of one or more trusted databases. The master device can establish contact with one of these trusted databases.

可选地,并且代替上面的步骤1-2,可以使用一个或多个受信任数据库的地址(例如,URI)预配置主设备。主设备可以与这些受信任的数据库之一建立联系。

3.3. Device Registration
3.3. 设备注册

The master device may register with the database before it queries the database for available spectrum. A registration process may consist of the following steps:

主设备可以在查询数据库中的可用频谱之前向数据库注册。注册过程可能包括以下步骤:

1. The master device sends registration information to the database. This information may include the device ID; serial number assigned by the manufacturer; device location; device antenna height above ground; name of the individual or business that owns the device; and the name, postal address, email address, and phone number of a contact person responsible for the device's operation.

1. 主设备向数据库发送注册信息。该信息可以包括设备ID;制造商指定的序列号;设备位置;装置天线离地高度;拥有该设备的个人或企业的名称;以及负责设备操作的联系人的姓名、邮政地址、电子邮件地址和电话号码。

2. The database responds to the registration request with an acknowledgment to indicate the success of the registration request or with an error if the registration was unsuccessful. Additional information may be provided by the database in its response to the master device.

2. 数据库响应注册请求时会发出一个确认,以指示注册请求成功,如果注册不成功,则会发出一个错误。数据库可在其对主设备的响应中提供附加信息。

3.4. Protocol
3.4. 协议

A protocol that enables a white-space device to query a database to obtain information about available spectrum is needed. A device may be required to register with the database with some credentials prior to being allowed to query. The requirements for such a protocol are specified in this document.

需要一种协议,使空白区设备能够查询数据库以获取有关可用频谱的信息。在允许查询之前,可能需要使用某些凭据向数据库注册设备。本文件规定了此类协议的要求。

3.5. Data Model Definition
3.5. 数据模型定义

The contents of the queries and response need to be specified. A data model is required; it must enable the white-space device to query the database while including all the relevant information, such as geolocation, radio technology, power characteristics, etc., which may be country, spectrum, and regulatory dependent. All databases are able to interpret the data model and respond to the queries using the same data model that is understood by all devices.

需要指定查询和响应的内容。需要一个数据模型;它必须使空白区设备能够查询数据库,同时包括所有相关信息,如地理位置、无线电技术、功率特性等,这些信息可能取决于国家、频谱和监管。所有数据库都能够解释数据模型,并使用所有设备都能理解的相同数据模型响应查询。

4. Use Cases
4. 用例

There are many potential use cases for white-space spectrum -- for example, providing broadband Internet access in urban and densely populated hotspots, as well as rural and remote, underserved areas. Available white-space spectrum may also be used to provide Internet 'backhaul' for traditional Wi-Fi hotspots or for use by towns and cities to monitor/control traffic lights, read utility meters, and the like. Still other use cases include the ability to offload data traffic from another Internet access network (e.g., 3G cellular network) or to deliver data, information, or a service to a user based on the user's location. Some of these use cases are described in the following sections.

空白频谱有许多潜在的使用案例——例如,在城市和人口密集的热点地区以及农村和偏远、服务不足的地区提供宽带互联网接入。可用的空白频谱还可用于为传统Wi-Fi热点提供互联网“回程”,或供城镇用于监测/控制交通信号灯、读取公用电表等。还有其他用例包括从另一因特网接入网络(例如,3G蜂窝网络)卸载数据流量或基于用户的位置向用户交付数据、信息或服务的能力。以下部分将介绍其中一些用例。

4.1. Master-Slave White-Space Networks
4.1. 主从式空白空间网络

There are a number of common scenarios in which a master white-space device will act as proxy or mediator for one or more slave devices using its connection to the Internet to query the database for available spectrum for itself and for one or more slave devices. These slave devices may be fixed or mobile, in close proximity with each other (indoor network or urban hotspot), or at a distance (rural or remote WAN). Once slave devices switch to white-space spectrum for their communications, they may connect through the master to the Internet or use white-space spectrum for intra-network communications only. The master device can continue to arbitrate and control white-space communications by slave devices, and it may notify them when they are required to change white-space frequencies or cease white-space communications.

有许多常见的场景,其中主空白区设备将充当一个或多个从设备的代理或中介,使用其与Internet的连接来查询数据库,以获取其自身和一个或多个从设备的可用频谱。这些从设备可以是固定的或移动的,彼此靠近(室内网络或城市热点),或者在一定距离(农村或远程WAN)。一旦从设备切换到空白频谱进行通信,它们可以通过主设备连接到互联网,或者仅将空白频谱用于网络内通信。主设备可以继续仲裁和控制从设备的空白通信,并且可以在需要更改空白频率或停止空白通信时通知它们。

Figure 2 depicts the general architecture of such a simple master-slave network in which the master device communicates with a database on its own behalf and on behalf of slave devices.

图2描述了这样一个简单的主从网络的一般架构,其中主设备代表自己和从设备与数据库通信。

          --------
          |Slave |
          |Device| \             \|/                          ----------
          |  1   |  (Air)         |                           |Database|
          --------       \        |                 (----)   /|--------|
             |            \ ------|------          (      ) /
             |             \|  Master   |         /        \
           --------        /|           |======= ( Internet )
           |Slave |       / |  Device   |         \        /
           |Device|  (Air)  |           |          (      )
           |  2   | /       |-----------|           (----)
           --------        /
             o   |        /
             o   |     (Air)
             o   |      /
           --------    /
           |Slave |   /
           |Device|  /
           |  n   |
           --------
        
          --------
          |Slave |
          |Device| \             \|/                          ----------
          |  1   |  (Air)         |                           |Database|
          --------       \        |                 (----)   /|--------|
             |            \ ------|------          (      ) /
             |             \|  Master   |         /        \
           --------        /|           |======= ( Internet )
           |Slave |       / |  Device   |         \        /
           |Device|  (Air)  |           |          (      )
           |  2   | /       |-----------|           (----)
           --------        /
             o   |        /
             o   |     (Air)
             o   |      /
           --------    /
           |Slave |   /
           |Device|  /
           |  n   |
           --------
        

Figure 2: Master-Slave White-Space Network

图2:主从式空白空间网络

The protocol requirements for these master-slave devices and other similar scenarios is essentially the same: the protocol must support the ability of a master device to make available-spectrum query requests on behalf of slave devices, passing device identification, geolocation, and other slave device parameters to the database as required to obtain a list of white-space spectrum available for use by one or more slave devices. Of course, different use cases will use this spectrum information in different ways, and the details of master/slave communications may be different for different use cases.

这些主从设备和其他类似场景的协议要求基本相同:协议必须支持主设备代表从设备发出可用频谱查询请求、传递设备标识、地理位置、,以及其他从设备参数,以获取一个或多个从设备可用的空白频谱列表。当然,不同的用例将以不同的方式使用该频谱信息,并且对于不同的用例,主/从通信的细节可能不同。

Common steps that may occur in master-slave networks include the following:

主从网络中可能出现的常见步骤包括:

1. The master device powers up.

1. 主设备通电。

2. Slave devices may power up and associate with the master device via Wi-Fi or some other over-the-air, non-white-space spectrum. Until the slave device is allocated white-space spectrum, any master-slave or slave-slave communications occurs over such non-white-space spectrum.

2. 从设备可通过Wi-Fi或其他无线、非空白频谱通电并与主设备关联。在从设备被分配空白频谱之前,任何主-从或从-从通信都发生在此类非空白频谱上。

3. The master has Internet connectivity, determines (or knows) its location, and establishes a connection to a trusted database (see Section 3.2).

3. 主机具有Internet连接,确定(或知道)其位置,并建立到受信任数据库的连接(见第3.2节)。

4. The master may register with the trusted database (see Section 3.3).

4. 主机可向受信任数据库注册(见第3.3节)。

5. The master sends a query to the trusted database requesting a list of available white-space spectrum based upon its geolocation. Query parameters may include the master's location, device identifier, and antenna height. The master may send available-spectrum requests to the database on behalf of slave devices.

5. 主机向可信数据库发送一个查询,请求基于其地理位置的可用空白频谱列表。查询参数可能包括主机的位置、设备标识符和天线高度。主设备可代表从设备向数据库发送可用频谱请求。

6. The database responds to the master's query with a list of available white-space spectrum, associated maximum power levels, and durations of time for spectrum use. If the master made requests on behalf of slave devices, the master may transmit the obtained available-spectrum lists to the slaves (or the master may allocate spectrum to slaves from the obtained spectrum lists).

6. 数据库通过可用空白频谱、相关最大功率水平和频谱使用时间的列表响应主机的查询。如果主设备代表从设备发出请求,则主设备可以将获得的可用频谱列表发送给从设备(或者主设备可以从获得的频谱列表向从设备分配频谱)。

7. The master may inform the database of the spectrum and power level it selects from the available spectrum list. If a slave device has been allocated available white-space spectrum, the slave may inform the master of the spectrum and power level it has chosen, and the master may, in turn, relay such slave device usage to the database.

7. 主机可将其从可用频谱列表中选择的频谱和功率级通知数据库。如果从设备已被分配可用空白频谱,则从设备可将其选择的频谱和功率电平通知主设备,并且主设备可反过来将该从设备使用情况中继到数据库。

8. Further communication among masters and slaves over the white-space network may occur via the selected/allocated white-space spectrum frequencies.

8. 主设备和从设备之间通过空白网络的进一步通信可通过所选/分配的空白频谱频率发生。

Note: Steps 5 through 7 may be repeated by the master device when it (or a slave device that uses the master as a proxy to communicate with the database) changes its location or operating parameters -- for example, after a master changes location, it may query the database for available spectrum at its new location, then acknowledge the subsequent response received from the database with information on the spectrum and power levels it is using at the new location.

注:当主设备(或使用主设备作为代理与数据库通信的从设备)更改其位置或操作参数时,主设备可能会重复步骤5至7——例如,在主设备更改位置后,它可能会在其新位置查询数据库中的可用频谱,然后确认从数据库接收到的后续响应,以及它在新位置使用的频谱和功率级别的信息。

4.2. Offloading: Moving Traffic to a White-Space Network
4.2. 卸载:将流量移动到空白网络

This scenario is a variant of the master-slave network described in the previous use case. In this scenario, an access point (AP) offers a white-space service that offloads Internet traffic as an alternative data path to a more congested or costly Internet wire, wireless, or satellite service.

此场景是前一个用例中描述的主从网络的变体。在这种情况下,接入点(AP)提供空白空间服务,将互联网流量作为替代数据路径卸载到更拥挤或更昂贵的互联网有线、无线或卫星服务。

Figure 3 shows an example of deployment of this scenario.

图3显示了此场景的部署示例。

                              \|/
                               |
                            |--|----------|
          \|/              /|Access Point |\
           |       (Air)--/ |-------------| \
         --|------ /                         \               -----------
        |Portable|/                           \      (----)  | Database|
        | Device |                             \    (      ) /----------
        |--------|\                             \  /        \
                   \                             X( Internet )
                    \                           /  \        /
                     (Air)                     /    (      )
                        \                     /      (----)
                         \                   /
                          \|---------------|/
                           |    Metered    |
                           |    Service    |
                           |---------------|
        
                              \|/
                               |
                            |--|----------|
          \|/              /|Access Point |\
           |       (Air)--/ |-------------| \
         --|------ /                         \               -----------
        |Portable|/                           \      (----)  | Database|
        | Device |                             \    (      ) /----------
        |--------|\                             \  /        \
                   \                             X( Internet )
                    \                           /  \        /
                     (Air)                     /    (      )
                        \                     /      (----)
                         \                   /
                          \|---------------|/
                           |    Metered    |
                           |    Service    |
                           |---------------|
        

Figure 3: Offloading Traffic to a White-Space Network

图3:将流量卸载到空白网络

A simplified operation scenario of offloading content, such as video stream, from a congested or costly Internet connection to a white-space service provided by an AP consists of the following steps:

将内容(例如视频流)从拥挤或昂贵的互联网连接卸载到AP提供的空白空间服务的简化操作场景包括以下步骤:

1. The AP contacts the database to determine channels it can use.

1. AP联系数据库以确定其可以使用的通道。

2. The portable device connects to a paid Internet service and selects a video for streaming.

2. 便携式设备连接到付费互联网服务并选择视频流。

3. The portable device determines if it can offload to a white-space AP:

3. 便携式设备确定是否可以卸载到空白AP:

A. If the portable device knows its location, it

A.如果便携式设备知道其位置,则

1. asks the database (using the paid service) for available white-space spectrum;

1. 询问数据库(使用付费服务)可用的空白频谱;

2. listens for and connects to the AP over the permitted white-space spectrum.

2. 通过允许的空白频谱侦听AP并连接AP。

B. If the portable device does not have GPS or other means to determine its position, it

B.如果便携式设备没有GPS或其他方法来确定其位置,则

1. uses non-white-space spectrum to listen for and connect to the AP;

1. 使用非空白频谱监听和连接AP;

2. asks the AP to query the database for permitted white-space spectrum on its behalf;

2. 要求AP代表其查询数据库中允许的空白频谱;

3. uses the permitted white-space spectrum to connect to the AP.

3. 使用允许的空白频谱连接到AP。

4. The portable device accesses the Internet through the AP to stream the selected video.

4. 便携式设备通过AP访问互联网以流式传输所选视频。

4.3. White Space Serving as Backhaul
4.3. 用作回程的空白

In this use case, an Internet connectivity service is provided to users over a common wireless standard, such as Wi-Fi, with a white-space master/slave network providing backhaul connectivity to the Internet. Note that Wi-Fi is referenced in Figure 4 and the following discussion, but any other technology can be substituted in its place.

在此用例中,通过公共无线标准(如Wi-Fi)向用户提供互联网连接服务,空白主/从网络提供到互联网的回程连接。请注意,图4和下面的讨论中引用了Wi-Fi,但可以替代任何其他技术。

   Figure 4 shows an example of deployment of this scenario.
                         \|/   White      \|/    \|/     Wi-Fi \|/
                          |    Space       |      |             |
                          |                |      |           |-|----|
            (----)      |-|----|         |-|------|-|         | Wi-Fi|
           (      )     |Master|         | Slave    |--(Air)--| Dev  |
          /        \    |      |--(Air)--| Bridge   |         |------|
         ( Internet )---|      |         | to Wi-Fi |
          \        /    |------|         |----------|           \|/
           (      )                                  \           |
            (----)                                    \(Air)   |-|----|
                                                            \--| Wi-Fi|
                                                               | Dev  |
                                                               |------|
        
   Figure 4 shows an example of deployment of this scenario.
                         \|/   White      \|/    \|/     Wi-Fi \|/
                          |    Space       |      |             |
                          |                |      |           |-|----|
            (----)      |-|----|         |-|------|-|         | Wi-Fi|
           (      )     |Master|         | Slave    |--(Air)--| Dev  |
          /        \    |      |--(Air)--| Bridge   |         |------|
         ( Internet )---|      |         | to Wi-Fi |
          \        /    |------|         |----------|           \|/
           (      )                                  \           |
            (----)                                    \(Air)   |-|----|
                                                            \--| Wi-Fi|
                                                               | Dev  |
                                                               |------|
        

Figure 4: White-Space Network Used for Backhaul

图4:用于回程的空白网络

Once the bridged device (Slave Bridge + Wi-Fi) is connected to a master and WS network, a simplified operation scenario of backhaul for Wi-Fi consists of the following steps:

一旦桥接设备(从网桥+Wi-Fi)连接到主网络和WS-network,Wi-Fi回程的简化操作场景包括以下步骤:

1. A bridged slave device (Slave Bridge + Wi-Fi) is connected to a master device operating in the WS spectrum (the master obtains available white-space spectrum as described in Section 4.1).

1. 桥接从设备(从网桥+Wi-Fi)连接到在WS频谱中运行的主设备(主设备获得第4.1节所述的可用空白频谱)。

2. Once the slave device is connected to the master, the Wi-Fi access point has Internet connectivity as well.

2. 一旦从设备连接到主设备,Wi-Fi接入点也可以连接互联网。

3. End users attach to the Wi-Fi network via their Wi-Fi-enabled devices and receive Internet connectivity.

3. 最终用户通过支持Wi-Fi的设备连接到Wi-Fi网络,并接收互联网连接。

4.4. Rapid Network Deployment during Emergencies
4.4. 紧急情况下的快速网络部署

Organizations involved in handling emergency operations maintain an infrastructure that relies on dedicated spectrum for their operations. However, such infrastructures are often affected by the disasters they handle. To set up a replacement network, spectrum needs to be quickly cleared and reallocated to the crisis response organization. Automation of this allocation and assignment is often the best solution. A preferred option is to make use of a robust protocol that has been adopted and implemented by radio manufacturers. A typical network topology solution might include wireless access links to the public Internet or private network, wireless ad hoc network radios working independently of a fixed infrastructure, and satellite links for backup where lack of coverage, overload, or outage of wireless access links can occur.

参与处理紧急行动的组织维护一个基础设施,该基础设施的运作依赖于专用频谱。然而,这些基础设施往往受到它们所处理的灾害的影响。为了建立替代网络,需要快速清理频谱并将其重新分配给危机响应组织。这种分配和分配的自动化通常是最好的解决方案。首选方案是利用无线电制造商采用和实施的健壮协议。典型的网络拓扑解决方案可能包括到公共互联网或专用网络的无线接入链路、独立于固定基础设施工作的无线自组织网络无线电,以及用于备份的卫星链路,其中可能出现无线接入链路的覆盖不足、过载或中断。

Figure 5 shows an example of deployment of this scenario.

图5显示了此场景的部署示例。

                                \|/
                                 | ad hoc
                                 |
                               |-|-------------|
                               | Master node   |    |-------------|
          \|/                  | with          |    | White-Space |
           | ad hoc           /| backhaul link |    | Database    |
           |             /---/ |---------------|    |-------------|
        ---|------------/                |      \           /
        | Master node   |                |       |      (--/--)
        | without       |                |        -----(       )
        | backhaul link |                |  Wireless  / Private \
        ----------------\                |    Access (   net or  )
                         \                |           \ Internet )
                          \    \|/        |      ------(        /
                           \    | ad hoc  |      |      (------)
                            \   |         |      /          \
                             \--|-------------  /Satellite   ----------
                             | Master node   | / Link        | Other  |
                             | with          |/              | nodes  |
                             | backhaul link |               ----------
                             -----------------
        
                                \|/
                                 | ad hoc
                                 |
                               |-|-------------|
                               | Master node   |    |-------------|
          \|/                  | with          |    | White-Space |
           | ad hoc           /| backhaul link |    | Database    |
           |             /---/ |---------------|    |-------------|
        ---|------------/                |      \           /
        | Master node   |                |       |      (--/--)
        | without       |                |        -----(       )
        | backhaul link |                |  Wireless  / Private \
        ----------------\                |    Access (   net or  )
                         \                |           \ Internet )
                          \    \|/        |      ------(        /
                           \    | ad hoc  |      |      (------)
                            \   |         |      /          \
                             \--|-------------  /Satellite   ----------
                             | Master node   | / Link        | Other  |
                             | with          |/              | nodes  |
                             | backhaul link |               ----------
                             -----------------
        

Figure 5: Rapidly Deployed Network with Partly Connected Nodes

图5:具有部分连接节点的快速部署网络

In the ad hoc network, all nodes are master nodes that allocate radio frequency (RF) channels from the database (as described in Section 4.1). However, the backhaul link may not be available to all nodes, such as depicted for the left node in the above figure. To handle RF channel allocation for such nodes, a master node with a

在ad hoc网络中,所有节点都是从数据库分配射频(RF)信道的主节点(如第4.1节所述)。但是,回程链路可能并非对所有节点都可用,如上图中左侧节点所示。要处理此类节点的射频信道分配,具有

backhaul link relays or proxies the database query for them. So master nodes without a backhaul link follow the procedure as defined for clients. The ad hoc network radios utilize the provided RF channels. Details on forming and maintenance of the ad hoc network, including repair of segmented networks caused by segments operating on different RF channels, is out of scope of spectrum allocation.

回程链路中继或代理它们的数据库查询。因此,没有回程链路的主节点遵循为客户端定义的过程。adhoc网络无线电利用所提供的RF信道。有关形成和维护自组织网络的详细信息,包括修复在不同射频信道上运行的分段网络,不在频谱分配范围内。

4.5. White Space Used for Local TV Broadcaster
4.5. 用于本地电视广播的空白区域

Available white-space spectrum can be deployed in novel ways to leverage the public use of hand-held and portable devices. One such use is white-space spectrum used for local TV transmission of audio-video content to portable devices used by individuals in attendance at an event. In this use case, audience members at a seminar, entertainment event, or other venue plug a miniature TV receiver fob into their laptop, computer tablet, cell phone, or other portable device. A master device obtains a list of available white-space spectrum (as described in Section 4.1), then broadcasts audio-video content locally to the audience over one of the available frequencies. Audience members receive the content through their miniature TV receivers tuned to the appropriate white-space band for display on the monitors of their portable devices.

可用的空白频谱可以以新颖的方式部署,以充分利用手持和便携式设备的公共用途。其中一种用途是将用于本地电视的音频视频内容传输到便携式设备的空白频谱,供参加活动的个人使用。在本用例中,研讨会、娱乐活动或其他场所的观众将微型电视接收器fob插入他们的笔记本电脑、平板电脑、手机或其他便携式设备。主设备获得可用空白频谱列表(如第4.1节所述),然后通过一个可用频率向观众本地广播音频视频内容。观众通过他们的微型电视接收器接收内容,该接收器调谐到适当的空白波段,以便在便携式设备的显示器上显示。

Figure 6 shows an example of deployment of this scenario.

图6显示了此场景的部署示例。

                                                |------------|
                                                |White-Space |
                                                | Database   |
                                      .---.   / |------------|
              |-----------|          (     ) /
              |  Master   |         /       \
              |           |========( Internet)
              |-----------|         \       /
                    |                (     )
                   /|\                (---)
        
                                                |------------|
                                                |White-Space |
                                                | Database   |
                                      .---.   / |------------|
              |-----------|          (     ) /
              |  Master   |         /       \
              |           |========( Internet)
              |-----------|         \       /
                    |                (     )
                   /|\                (---)
        

(White-Space Broadcast)

(空白广播)

         \|/   \|/   \|/   \|/   \|/   \|/   \|/
          |     |     |     |     |     |     |     .................
        ----- ----- ----- ----- ----- ----- -----
        |   | |   | |   | |   | |   | |   | |   |
        |   | |   | |   | |   | |   | |   | |   |
        ----- ----- ----- ----- ----- ----- -----
       USB TV receivers connected to laptops, cell phones, tablets ...
        
         \|/   \|/   \|/   \|/   \|/   \|/   \|/
          |     |     |     |     |     |     |     .................
        ----- ----- ----- ----- ----- ----- -----
        |   | |   | |   | |   | |   | |   | |   |
        |   | |   | |   | |   | |   | |   | |   |
        ----- ----- ----- ----- ----- ----- -----
       USB TV receivers connected to laptops, cell phones, tablets ...
        

Figure 6: White Space Used for Local TV Broadcast

图6:用于本地电视广播的空白

5. Requirements
5. 要求
5.1. Data Model Requirements
5.1. 数据模型要求

D.1 The data model MUST support specifying the geolocation of the white-space device, the uncertainty in meters, the height and its uncertainty, and the percentage of confidence in the location determination. The data model MUST support [WGS84].

D.1数据模型必须支持指定空白区域设备的地理位置、以米为单位的不确定度、高度及其不确定度以及位置确定的置信度百分比。数据模型必须支持[WGS84]。

D.2 The data model MUST support specifying the data and other applicable requirements of the rule set that applies to the white-space device at a specified location.

D.2数据模型必须支持指定适用于指定位置空白设备的规则集的数据和其他适用要求。

D.3 The data model MUST support device description data that identifies a white-space device (serial number, certification IDs, etc.) and describes device characteristics, such as device class (fixed, mobile, portable, indoor, outdoor, etc.), Radio Access Technology (RAT), etc.

D.3数据模型必须支持识别空白设备(序列号、认证ID等)并描述设备特征的设备描述数据,如设备类别(固定、移动、便携式、室内、室外等)、无线接入技术(RAT)等。

D.4 The data model MUST support specifying a manufacturer's serial number for a white-space device.

D.4数据模型必须支持指定空白设备的制造商序列号。

D.5 The data model MUST support specifying the antenna- and radiation-related parameters of the white-space device, such as:

D.5数据模型必须支持指定空白区域设备的天线和辐射相关参数,例如:

antenna height

天线高度

antenna gain

天线增益

maximum output power, Equivalent Isotropic Radiated Power (EIRP) in dBm (decibels referenced to 1 milliwatt)

最大输出功率,等效各向同性辐射功率(EIRP),单位为dBm(分贝参考1毫瓦)

antenna radiation pattern (directional dependence of the strength of the radio signal from the antenna)

天线辐射方向图(天线无线电信号强度的方向依赖性)

spectrum mask with lowest and highest possible frequency

具有最低和最高可能频率的频谱屏蔽

spectrum mask in dBr (decibels referenced to an arbitrary reference level) from peak transmit power in EIRP, with specific power limit at any frequency linearly interpolated between adjacent points of the spectrum mask

以dBr为单位的频谱屏蔽(参考任意参考电平的分贝)来自EIRP中的峰值发射功率,任何频率下的特定功率限制在频谱屏蔽相邻点之间线性插值

measurement resolution bandwidth for EIRP measurements

EIRP测量的测量分辨率带宽

D.6 The data model MUST support specifying owner and operator contact information for a transmitter. This includes the name of the transmitter owner and the name, postal address, email address, and phone number of the transmitter operator.

D.6数据模型必须支持指定变送器的所有者和操作员联系信息。这包括发射机所有者的姓名以及发射机操作员的姓名、邮政地址、电子邮件地址和电话号码。

D.7 The data model MUST support specifying spectrum availability. Spectrum units are specified by low and high frequencies and may have an optional channel identifier. The data model MUST support a schedule including start time and stop time for spectrum unit availability. The data model MUST support maximum power level for each spectrum unit.

D.7数据模型必须支持指定频谱可用性。频谱单位由低频和高频指定,并且可能具有可选的信道标识符。数据模型必须支持一个时间表,包括频谱单元可用性的开始时间和停止时间。数据模型必须支持每个频谱单元的最大功率电平。

D.8 The data model MUST support specifying spectrum availability information for a single location and an area (e.g., a polygon defined by multiple location points or a geometric shape such as a circle).

D.8数据模型必须支持指定单个位置和区域(例如,由多个位置点定义的多边形或圆形等几何形状)的频谱可用性信息。

D.9 The data model MUST support specifying the frequencies and power levels selected for use by a white-space device in the acknowledgment message.

D.9数据模型必须支持在确认消息中指定空白设备选择使用的频率和功率级别。

5.2. Protocol Requirements
5.2. 协议要求

P.1 The master device identifies a database to which it can register, make spectrum availability requests, etc. The protocol MUST support the discovery of an appropriate database given a location provided by the master device. The master device MAY select a database by discovery at run time or by means of a pre-programmed URI. The master device MAY validate discovered or configured database addresses against a list of known databases (e.g., a list of databases approved by a regulatory body).

P.1主设备识别其可注册的数据库,提出频谱可用性请求等。协议必须支持在主设备提供的位置发现适当的数据库。主设备可以通过在运行时发现或通过预编程的URI来选择数据库。主设备可对照已知数据库列表(例如,经监管机构批准的数据库列表)验证发现或配置的数据库地址。

P.2 The protocol MUST support the database informing the master of the regulatory rules (rule set) that applies to the master device (or any slave devices on whose behalf the master is contacting the database) at a specified location.

P.2协议必须支持在指定位置向主机通知适用于主机设备(或主机代表其联系数据库的任何从机设备)的监管规则(规则集)的数据库。

P.3 The protocol MUST provide the ability for the database to authenticate the master device.

P.3协议必须提供数据库验证主设备的能力。

P.4 The protocol MUST provide the ability for the master device to verify the authenticity of the database with which it is interacting.

P.4协议必须为主设备提供验证与其交互的数据库真实性的能力。

P.5 The messages sent by the master device to the database and the messages sent by the database to the master device MUST support integrity protection.

P.5主设备发送到数据库的消息和数据库发送到主设备的消息必须支持完整性保护。

P.6 The protocol MUST provide the capability for messages sent by the master device and database to be encrypted.

P.6协议必须提供对主设备和数据库发送的消息进行加密的能力。

P.7 Tracking of master or slave device uses of white-space spectrum by database administrators, regulatory agencies, and others who have access to a white-space database could be considered invasive of privacy, including privacy regulations in specific environments. The PAWS protocol SHOULD support privacy-sensitive handling of device-provided data where such protection is feasible, allowed, and desired.

P.7数据库管理员、监管机构和其他有权访问空白数据库的人对主设备或从设备使用空白频谱的跟踪可能被视为侵犯隐私,包括特定环境中的隐私规定。PAWS协议应支持对设备提供的数据进行隐私敏感处理,前提是此类保护是可行的、允许的和需要的。

P.8 The protocol MUST support the master device registering with the database; see Device Registration (Section 3.3).

P.8协议必须支持主设备向数据库注册;参见设备注册(第3.3节)。

P.9 The protocol MUST support a registration acknowledgment indicating the success or failure of the master device registration.

P.9协议必须支持注册确认,表明主设备注册成功或失败。

P.10 The protocol MUST support an available spectrum request from the master device to the database, which may include one or more of the data items listed in Data Model Requirements (Section 5.1). The request may include data that the master device sends on its own behalf and/or on behalf of one or more slave devices.

P.10协议必须支持从主设备到数据库的可用频谱请求,该请求可能包括数据模型要求(第5.1节)中列出的一个或多个数据项。请求可以包括主设备代表其自身和/或代表一个或多个从设备发送的数据。

P.11 The protocol MUST support an available spectrum response from the database to the master device, which may include one or more of the data items listed in Data Model Requirements (Section 5.1). The response may include data related to master and/or slave device operation.

P.11协议必须支持从数据库到主设备的可用频谱响应,其中可能包括数据模型要求(第5.1节)中列出的一个或多个数据项。响应可以包括与主设备和/或从设备操作相关的数据。

P.12 The protocol MUST support a spectrum usage message from the master device to the database, which may include one or more of the data items listed in Data Model Requirements (Section 5.1). The message may include data that the master device sends on its own behalf and/or on behalf of one or more slave devices.

P.12协议必须支持从主设备到数据库的频谱使用信息,其中可能包括数据模型要求(第5.1节)中列出的一个或多个数据项。消息可以包括主设备代表其自身和/或代表一个或多个从设备发送的数据。

P.13 The protocol MUST support a spectrum usage message acknowledgment.

P.13协议必须支持频谱使用消息确认。

P.14 The protocol MUST support a validation request from the master device to the database to validate a slave device, which should include information necessary to identify the slave device to the database.

P.14协议必须支持从主设备到数据库的验证请求,以验证从设备,其中应包括向数据库标识从设备所需的信息。

P.15 The protocol MUST support a validation response from the database to the master to indicate if the slave device is validated by the database. The validation response MUST indicate the success or failure of the validation request.

P.15协议必须支持从数据库到主设备的验证响应,以指示从设备是否由数据库验证。验证响应必须指示验证请求的成功或失败。

P.16 The protocol MUST support the capability for the database to inform master devices of changes to spectrum availability information.

P.16协议必须支持数据库通知主设备频谱可用性信息变化的能力。

5.3. Operational Requirements
5.3. 操作要求

This section contains operational requirements of a database-device system, independent of the requirements of the protocol for communication between the database and devices.

本节包含数据库设备系统的操作要求,与数据库和设备之间通信协议的要求无关。

O.1 The master device must be able to connect to the database to send requests to the database and receive responses to, and acknowledgments of, its requests from the database.

O.1主设备必须能够连接到数据库,向数据库发送请求,并从数据库接收对其请求的响应和确认。

O.2 A master device MUST be able to determine its location including uncertainty and confidence level. A fixed master device may use a location programmed at installation.

O.2主设备必须能够确定其位置,包括不确定性和置信水平。固定主设备可使用安装时编程的位置。

O.3 The master device MUST be configured to understand and comply with the requirements of the rule set of the regulatory body that apply to its operation at its location.

O.3主设备的配置必须理解并符合监管机构适用于其所在地操作的规则集的要求。

O.4 A master device MUST query the database for the available spectrum at a specified location before starting radio transmission in white space at that location.

O.4在指定位置的空白处开始无线电传输之前,主设备必须查询数据库中指定位置的可用频谱。

O.5 A master device MUST be able to query the database for the available spectrum on behalf of a slave device at a specified location before the slave device starts radio transmission in white space at that location.

O.5在从设备在指定位置开始无线传输之前,主设备必须能够代表从设备在指定位置查询数据库中的可用频谱。

O.6 The database MUST respond to an available spectrum request.

O.6数据库必须响应可用频谱请求。

5.4. Guidelines
5.4. 指导方针

White-space technology itself is expected to evolve and include attributes such as coexistence and interference avoidance, spectrum brokering, alternative spectrum bands, etc. The design of the data model and protocol should be cognizant of the evolving nature of white-space technology and consider the following set of guidelines in the development of the data model and protocol:

预计白空间技术本身将不断发展,并包括共存和干扰避免、频谱代理、替代频段、,数据模型和协议的设计应该认识到白空间技术的不断发展的性质,并在数据模型和协议的开发中考虑以下准则:

1. The data model SHOULD provide a modular design separating messaging-specific, administrative-specific, and spectrum-specific parts into distinct modules.

1. 数据模型应提供模块化设计,将特定于消息传递、特定于管理和特定于频谱的部分划分为不同的模块。

2. The protocol SHOULD support determination of which administrative-specific and spectrum-specific modules are used.

2. 协议应支持确定使用哪些管理特定模块和频谱特定模块。

6. Security Considerations
6. 安全考虑

PAWS is a protocol whereby a master device requests a schedule of available spectrum at its location (or the location of its slave devices) before it (or they) can operate using those frequencies. Whereas the information provided by the database must be accurate and conform to applicable regulatory rules, the database cannot enforce, through the protocol, that a client device uses only the spectrum it provided. In other words, devices can put energy in the air and cause interference without asking the database. Hence, PAWS security considerations do not include protection against malicious use of the white-space spectrum.

PAWS是一种协议,在主设备(或从设备)可以使用这些频率工作之前,主设备请求其所在位置(或从设备所在位置)的可用频谱计划。鉴于数据库提供的信息必须准确且符合适用的监管规则,数据库不能通过协议强制客户设备仅使用其提供的频谱。换句话说,设备可以在不询问数据库的情况下向空气中注入能量并造成干扰。因此,PAWS的安全考虑不包括防止恶意使用空白频谱。

Threat model for the PAWS protocol:

PAWS协议的威胁模型:

Assumptions:

假设:

The link between the master device and the database can be wired or wireless and provides IP connectivity. It is assumed that an attacker has full access to the network medium between the master device and the database. The attacker may be able to eavesdrop on any communications between these entities.

主设备和数据库之间的链路可以是有线或无线的,并提供IP连接。假定攻击者可以完全访问主设备和数据库之间的网络介质。攻击者可以窃听这些实体之间的任何通信。

Threat 1: User modifies a device to masquerade as another valid certified device

威胁1:用户修改设备以伪装成另一个有效的认证设备

A master device identifies itself to the database in order to obtain information about available spectrum. Without suitable protection mechanisms, devices can listen to registration exchanges and later register with the database by claiming the identity of another device.

主设备向数据库标识自身,以获取有关可用频谱的信息。如果没有合适的保护机制,设备可以侦听注册交换,然后通过声明另一设备的身份向数据库注册。

Threat 2: Spoofed database

威胁2:伪造数据库

A master device attempts to discover a database (or databases) that it can query for available spectrum information. An attacker may attempt to spoof a database and provide responses to a master device that are malicious and result in the master device causing interference to the primary user of the spectrum.

主设备试图发现它可以查询可用频谱信息的数据库。攻击者可能试图欺骗数据库并向主设备提供恶意响应,从而导致主设备对频谱的主要用户造成干扰。

Threat 3: Modifying or jamming a query request

威胁3:修改或干扰查询请求

An attacker may modify or jam the query request sent by a master device to a database. The attacker may change the location of the device or its capabilities (transmit power, antenna height, etc.), and, as a result, the database responds with incorrect information about available spectrum or maximum

攻击者可以修改或阻塞主设备发送到数据库的查询请求。攻击者可能会更改设备的位置或其功能(发射功率、天线高度等),因此,数据库会以有关可用频谱或最大功率的错误信息进行响应

transmit power allowed. The result of such an attack is that the master device can cause interference to the primary user of the spectrum. It may also result in a denial of service to the master device if the modified database response indicates that no channels are available to the master device or when a jammed query prevents the request from reaching the database.

允许发射功率。这种攻击的结果是主设备可能对频谱的主要用户造成干扰。如果修改后的数据库响应指示主设备没有可用的通道,或者当阻塞的查询阻止请求到达数据库时,也可能导致拒绝向主设备提供服务。

Threat 4: Modifying or jamming a query response

威胁4:修改或干扰查询响应

An attacker may modify or jam the query response sent by the database to a master device. For example, an attacker may modify the available spectrum or power-level information carried in the database response. As a result, a master device may use spectrum that is not available at a location or may transmit at a greater power level than allowed. Such unauthorized use can result in interference to the primary user of that spectrum. Alternatively, an attacker may modify a database response to indicate that no spectrum is available at a location (or jam the response), resulting in a denial of service to the master device.

攻击者可以修改或阻塞数据库发送到主设备的查询响应。例如,攻击者可能会修改数据库响应中包含的可用频谱或功率级别信息。结果,主设备可能使用在某个位置不可用的频谱,或者可能以比允许的更大的功率水平发射。这种未经授权的使用可能会对该频谱的主要用户造成干扰。或者,攻击者可以修改数据库响应以指示某个位置没有可用频谱(或干扰响应),从而导致对主设备的拒绝服务。

Threat 5: Third-party tracking of white-space device location and identity

威胁5:第三方跟踪空白区域设备的位置和身份

A master device may provide its identity in addition to its location in the query request. Such location/identity information can be gleaned by an eavesdropper and used for unauthorized tracking purposes.

主设备除了在查询请求中的位置外,还可以提供其标识。窃听者可以收集此类位置/身份信息,并将其用于未经授权的跟踪目的。

Threat 6: Malicious individual acts as a database to terminate or unfairly limit spectrum access of devices

威胁6:恶意个人充当数据库,终止或不公平地限制设备的频谱访问

A database may include a mechanism by which service and spectrum allocated to a master device can be revoked by sending a revoke message to a master device. A malicious user can pretend to be a database and send a revoke message to that device. This results in denial of service to the master device.

数据库可以包括通过向主设备发送撤销消息来撤销分配给主设备的服务和频谱的机制。恶意用户可以假装是数据库并向该设备发送撤销消息。这将导致对主设备的拒绝服务。

The security requirements arising from the above threats are captured in the requirements of Section 5.2.

上述威胁产生的安全要求见第5.2节的要求。

7. Acknowledgments
7. 致谢

The authors acknowledge Gabor Bajko, Teco Boot, Nancy Bravin, Rex Buddenberg, Vincent Chen, Gerald Chouinard, Stephen Farrell, Michael Fitch, Joel M. Halpern, Jussi Kahtava, Paul Lambert, Barry Leiba, Subramanian Moonesamy, Pete Resnick, Brian Rosen, Andy Sago, Peter Stanforth, John Stine, and Juan Carlos Zuniga for their contributions to this document.

作者承认加博·巴伊科、Teco Boot、南希·布拉文、雷克斯·布登伯格、文森特·陈、杰拉尔德·朱纳德、斯蒂芬·法雷尔、迈克尔·菲奇、乔尔·哈尔彭、朱西·卡塔瓦、保罗·兰伯特、巴里·莱巴、Subramanian Moonesamy、皮特·雷斯尼克、布莱恩·罗森、安迪·萨戈、彼得·斯坦福斯、约翰·斯汀、,感谢胡安·卡洛斯·祖尼加对这份文件的贡献。

8. References
8. 工具书类
8.1. Normative References
8.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[WGS84] National Imagery and Mapping Agency, "Department of Defense World Geodetic System 1984, Its Definition and Relationships with Local Geodetic Systems", NIMA TR8350.2 Third Edition Amendment 1, January 2000, <http://earth-info.nga.mil/GandG/publications/tr8350.2/ wgs84fin.pdf>.

[WGS84]美国国家图像和测绘局,“1984年国防部世界大地测量系统,其定义及其与当地大地测量系统的关系”,NIMA TR8350.2第三版修正案1,2000年1月<http://earth-info.nga.mil/GandG/publications/tr8350.2/ wgs84fin.pdf>。

8.2. Informative References
8.2. 资料性引用

[CRADIO] Cognitive Radio Technologies Proceeding (CRTP), "Federal Communications Commission", ET Docket No. 03-108, August 2010, <http://fcc.gov/oet/cognitiveradio>.

[CRADIO]认知无线电技术进展(CRTP),“联邦通信委员会”,ET卷宗号03-108,2010年8月<http://fcc.gov/oet/cognitiveradio>.

[PAWS] Chen, V., Ed., Das, S., Zhu, L., Malyar, J., and P. McCann, "Protocol to Access Spectrum Database", Work in Progress, May 2013.

[PAWS]Chen,V.,Ed.,Das,S.,Zhu,L.,Malyar,J.,和P.McCann,“访问频谱数据库的协议”,正在进行的工作,2013年5月。

Authors' Addresses

作者地址

Anthony Mancuso (editor) Google 1600 Amphitheatre Parkway Mountain View, CA 94043 US

安东尼·曼库索(编辑)谷歌1600竞技场公园道山景,加利福尼亚州94043美国

   EMail: amancuso@google.com
        
   EMail: amancuso@google.com
        

Scott Probasco

斯科特·普罗巴斯科

   EMail: scott@probasco.me
        
   EMail: scott@probasco.me
        

Basavaraj Patil Cisco Systems 2250 East President George Bush Highway Richardson, TX 75082 US

Basavaraj Patil Cisco Systems 2250东总统乔治·布什公路美国德克萨斯州理查森75082

   EMail: basavpat@cisco.com
        
   EMail: basavpat@cisco.com