Internet Engineering Task Force (IETF) H. Schulzrinne, Ed. Request for Comments: 6772 Columbia University Category: Standards Track H. Tschofenig, Ed. ISSN: 2070-1721 Nokia Siemens Networks J. Cuellar Siemens J. Polk Cisco J. Morris
Internet Engineering Task Force (IETF) H. Schulzrinne, Ed. Request for Comments: 6772 Columbia University Category: Standards Track H. Tschofenig, Ed. ISSN: 2070-1721 Nokia Siemens Networks J. Cuellar Siemens J. Polk Cisco J. Morris
M. Thomson Microsoft January 2013
M.Thomson微软公司2013年1月
Geolocation Policy: A Document Format for Expressing Privacy Preferences for Location Information
地理位置策略:表示位置信息隐私偏好的文档格式
Abstract
摘要
This document defines an authorization policy language for controlling access to location information. It extends the Common Policy authorization framework to provide location-specific access control. More specifically, this document defines condition elements specific to location information in order to restrict access to data based on the current location of the Target.
本文档定义了用于控制位置信息访问的授权策略语言。它扩展了公共策略授权框架,以提供特定于位置的访问控制。更具体地说,本文档定义了特定于位置信息的条件元素,以便基于目标的当前位置限制对数据的访问。
Furthermore, this document defines two algorithms for reducing the granularity of returned location information. The first algorithm is defined for usage with civic location information, whereas the other one applies to geodetic location information. Both algorithms come with limitations. There are circumstances where the amount of location obfuscation provided is less than what is desired. These algorithms might not be appropriate for all application domains.
此外,本文档定义了两种算法,用于降低返回位置信息的粒度。第一种算法定义用于城市位置信息,而另一种算法适用于大地测量位置信息。这两种算法都有局限性。在某些情况下,所提供的位置模糊处理的数量小于所需的数量。这些算法可能不适用于所有应用程序域。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6772.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6772.
Copyright Notice
版权公告
Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2013 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Generic Processing . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Structure of Geolocation Authorization Documents . . . . . 7 3.2. Rule Transport . . . . . . . . . . . . . . . . . . . . . . 7 4. Location-Specific Conditions . . . . . . . . . . . . . . . . . 7 4.1. Geodetic Location Condition Profile . . . . . . . . . . . 8 4.2. Civic Location Condition Profile . . . . . . . . . . . . . 9 5. Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6. Transformations . . . . . . . . . . . . . . . . . . . . . . . 9 6.1. Set Retransmission-Allowed . . . . . . . . . . . . . . . . 9 6.2. Set Retention-Expiry . . . . . . . . . . . . . . . . . . . 10 6.3. Set Note-Well . . . . . . . . . . . . . . . . . . . . . . 10 6.4. Keep Ruleset Reference . . . . . . . . . . . . . . . . . . 10 6.5. Provide Location . . . . . . . . . . . . . . . . . . . . . 11 6.5.1. Civic Location Profile . . . . . . . . . . . . . . . . 12 6.5.2. Geodetic Location Profile . . . . . . . . . . . . . . 13 7. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7.1. Rule Example with Civic Location Condition . . . . . . . . 15 7.2. Rule Example with Geodetic Location Condition . . . . . . 16 7.3. Rule Example with Civic and Geodetic Location Condition . 17 7.4. Rule Example with Location-Based Transformations . . . . . 18 7.5. Location Obfuscation Example . . . . . . . . . . . . . . . 19 8. XML Schema for Basic Location Profiles . . . . . . . . . . . . 23 9. XML Schema for Geolocation Policy . . . . . . . . . . . . . . 24 10. XCAP Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 25 10.1. Application Unique ID . . . . . . . . . . . . . . . . . . 26 10.2. XML Schema . . . . . . . . . . . . . . . . . . . . . . . . 26 10.3. Default Namespace . . . . . . . . . . . . . . . . . . . . 26 10.4. MIME Media Type . . . . . . . . . . . . . . . . . . . . . 26 10.5. Validation Constraints . . . . . . . . . . . . . . . . . . 26 10.6. Data Semantics . . . . . . . . . . . . . . . . . . . . . . 26 10.7. Naming Conventions . . . . . . . . . . . . . . . . . . . . 26 10.8. Resource Interdependencies . . . . . . . . . . . . . . . . 26 10.9. Authorization Policies . . . . . . . . . . . . . . . . . . 27 11. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 27 11.1. Geolocation Policy XML Schema Registration . . . . . . . . 27 11.2. Geolocation Policy Namespace Registration . . . . . . . . 27 11.3. Geolocation Policy Location Profile Registry . . . . . . . 28 11.4. Basic Location Profile XML Schema Registration . . . . . . 28 11.5. Basic Location Profile Namespace Registration . . . . . . 29 11.6. XCAP Application Usage ID . . . . . . . . . . . . . . . . 29 12. Internationalization Considerations . . . . . . . . . . . . . 30 13. Security Considerations . . . . . . . . . . . . . . . . . . . 30 13.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 30 13.2. Obfuscation . . . . . . . . . . . . . . . . . . . . . . . 31
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Generic Processing . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Structure of Geolocation Authorization Documents . . . . . 7 3.2. Rule Transport . . . . . . . . . . . . . . . . . . . . . . 7 4. Location-Specific Conditions . . . . . . . . . . . . . . . . . 7 4.1. Geodetic Location Condition Profile . . . . . . . . . . . 8 4.2. Civic Location Condition Profile . . . . . . . . . . . . . 9 5. Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6. Transformations . . . . . . . . . . . . . . . . . . . . . . . 9 6.1. Set Retransmission-Allowed . . . . . . . . . . . . . . . . 9 6.2. Set Retention-Expiry . . . . . . . . . . . . . . . . . . . 10 6.3. Set Note-Well . . . . . . . . . . . . . . . . . . . . . . 10 6.4. Keep Ruleset Reference . . . . . . . . . . . . . . . . . . 10 6.5. Provide Location . . . . . . . . . . . . . . . . . . . . . 11 6.5.1. Civic Location Profile . . . . . . . . . . . . . . . . 12 6.5.2. Geodetic Location Profile . . . . . . . . . . . . . . 13 7. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7.1. Rule Example with Civic Location Condition . . . . . . . . 15 7.2. Rule Example with Geodetic Location Condition . . . . . . 16 7.3. Rule Example with Civic and Geodetic Location Condition . 17 7.4. Rule Example with Location-Based Transformations . . . . . 18 7.5. Location Obfuscation Example . . . . . . . . . . . . . . . 19 8. XML Schema for Basic Location Profiles . . . . . . . . . . . . 23 9. XML Schema for Geolocation Policy . . . . . . . . . . . . . . 24 10. XCAP Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 25 10.1. Application Unique ID . . . . . . . . . . . . . . . . . . 26 10.2. XML Schema . . . . . . . . . . . . . . . . . . . . . . . . 26 10.3. Default Namespace . . . . . . . . . . . . . . . . . . . . 26 10.4. MIME Media Type . . . . . . . . . . . . . . . . . . . . . 26 10.5. Validation Constraints . . . . . . . . . . . . . . . . . . 26 10.6. Data Semantics . . . . . . . . . . . . . . . . . . . . . . 26 10.7. Naming Conventions . . . . . . . . . . . . . . . . . . . . 26 10.8. Resource Interdependencies . . . . . . . . . . . . . . . . 26 10.9. Authorization Policies . . . . . . . . . . . . . . . . . . 27 11. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 27 11.1. Geolocation Policy XML Schema Registration . . . . . . . . 27 11.2. Geolocation Policy Namespace Registration . . . . . . . . 27 11.3. Geolocation Policy Location Profile Registry . . . . . . . 28 11.4. Basic Location Profile XML Schema Registration . . . . . . 28 11.5. Basic Location Profile Namespace Registration . . . . . . 29 11.6. XCAP Application Usage ID . . . . . . . . . . . . . . . . 29 12. Internationalization Considerations . . . . . . . . . . . . . 30 13. Security Considerations . . . . . . . . . . . . . . . . . . . 30 13.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 30 13.2. Obfuscation . . . . . . . . . . . . . . . . . . . . . . . 31
13.3. Algorithm Limitations . . . . . . . . . . . . . . . . . . 32 13.4. Usability . . . . . . . . . . . . . . . . . . . . . . . . 33 13.5. Limitations of Obscuring Locations . . . . . . . . . . . . 33 14. References . . . . . . . . . . . . . . . . . . . . . . . . . . 35 14.1. Normative References . . . . . . . . . . . . . . . . . . . 35 14.2. Informative References . . . . . . . . . . . . . . . . . . 35 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 38 Appendix B. Pseudocode . . . . . . . . . . . . . . . . . . . . . 39
13.3. Algorithm Limitations . . . . . . . . . . . . . . . . . . 32 13.4. Usability . . . . . . . . . . . . . . . . . . . . . . . . 33 13.5. Limitations of Obscuring Locations . . . . . . . . . . . . 33 14. References . . . . . . . . . . . . . . . . . . . . . . . . . . 35 14.1. Normative References . . . . . . . . . . . . . . . . . . . 35 14.2. Informative References . . . . . . . . . . . . . . . . . . 35 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 38 Appendix B. Pseudocode . . . . . . . . . . . . . . . . . . . . . 39
Location information needs to be protected against unauthorized access to preserve the privacy of humans. In RFC 6280 [RFC6280], a protocol-independent model for access to geographic information is defined. The model includes a Location Generator (LG) that determines location information, a Location Server (LS) that authorizes access to location information, a Location Recipient (LR) that requests and receives location information, and a Rule Maker (RM) that writes authorization policies. An authorization policy is a set of rules that regulates an entity's activities with respect to privacy-sensitive information, such as location information.
需要保护位置信息,防止未经授权的访问,以保护人类的隐私。在RFC 6280[RFC6280]中,定义了访问地理信息的协议独立模型。该模型包括确定位置信息的位置生成器(LG)、授权访问位置信息的位置服务器(LS)、请求和接收位置信息的位置接收者(LR)以及编写授权策略的规则制定者(RM)。授权策略是一组规则,用于规范实体在隐私敏感信息(如位置信息)方面的活动。
The data object containing location information in the context of this document is referred to as a Location Object (LO). The basic rule set defined in the Presence Information Data Format Location Object (PIDF-LO) [RFC4119] can restrict how long the Location Recipient is allowed to retain the information, and it can prohibit further distribution. It also contains a reference to an enhanced rule set and a human-readable privacy policy. The basic rule set does not protect access to location information. It only conveys the user's privacy preferences. This document describes an enhanced rule set that provides richer constraints on the distribution of LOs.
本文档上下文中包含位置信息的数据对象称为位置对象(LO)。存在信息数据格式位置对象(PIDF-LO)[RFC4119]中定义的基本规则集可以限制位置接收者可以保留信息的时间,并且可以禁止进一步分发。它还包含对增强的规则集和人类可读的隐私策略的引用。基本规则集不保护对位置信息的访问。它只传达用户的隐私偏好。本文档描述了一个增强的规则集,该规则集对服务水平的分布提供了更丰富的约束。
The enhanced rule set allows the entity that uses the rules defined in this document to restrict the retention and to enforce access restrictions on location data, including prohibiting any dissemination to particular individuals, during particular times or when the Target is located in a specific region. The RM can also stipulate that only certain parts of the Location Object are to be distributed to recipients or that the resolution is reduced for parts of the Location Object.
增强的规则集允许使用本文档中定义的规则的实体限制位置数据的保留和访问限制,包括禁止在特定时间或目标位于特定区域时向特定个人传播。RM还可以规定仅将位置对象的某些部分分发给收件人,或者降低位置对象部分的分辨率。
In the typical sequence of operations, a Location Server receives a query for location information for a particular Target. The authenticated identity of the Location Recipient, together with other information provided with the request or generally available to the server, is then used for searching through the rule set. If more than one rule matches the condition element, then the combined
在典型的操作序列中,位置服务器接收特定目标的位置信息查询。然后,使用位置接收者的经过身份验证的身份以及请求提供的或服务器通常可用的其他信息来搜索规则集。如果多个规则与condition元素匹配,则组合
permission is evaluated according to the description in Section 10 of [RFC4745]. The result of the rule evaluation is applied to the location information, yielding a possibly modified Location Object that is delivered to the Location Recipient.
根据[RFC4745]第10节中的描述评估许可。规则评估的结果将应用于位置信息,生成一个可能已修改的位置对象,并将其传递给位置接收者。
This document does not describe the protocol used to convey location information from the Location Server to the Location Recipient.
本文档不描述用于将位置信息从位置服务器传送到位置收件人的协议。
This document extends the Common Policy framework defined in [RFC4745]. That document provides an abstract framework for expressing authorization rules. As specified there, each such rule consists of conditions, actions, and transformations. Conditions determine under which circumstances the entity executing the rules, such as a Location Server, is permitted to apply actions and transformations. In a location information context, transformations regulate how a Location Server modifies the information elements that are returned to the requestor by, for example, reducing the granularity of returned location information.
本文档扩展了[RFC4745]中定义的通用策略框架。该文档提供了表示授权规则的抽象框架。正如这里所指定的,每个这样的规则都由条件、操作和转换组成。条件决定在何种情况下执行规则的实体(如位置服务器)可以应用操作和转换。在位置信息上下文中,转换调节位置服务器如何修改返回给请求者的信息元素,例如,降低返回位置信息的粒度。
This document defines two algorithms for reducing the granularity of returned location information. The first algorithm is defined for usage with civic location information (see Section 6.5.1) while the other one applies to geodetic location information (see Section 6.5.2). Both algorithms come with limitations, i.e., they provide location obfuscation under certain conditions and may therefore not be appropriate for all application domains. These limitations are documented within the Security Consideration section (see Section 13). The geodetic transformation algorithm in Section 6.5.2 mitigates privacy risks for both stationary and moving Targets. However, moving Targets will reveal additional information to an adversary. To cover applications that have more sophisticated privacy requirements, additional algorithms may need to be defined. This document foresees extensions in the form of new algorithms and therefore defines a registry (see Section 11.3).
本文档定义了两种算法,用于降低返回位置信息的粒度。第一种算法适用于城市位置信息(见第6.5.1节),而另一种算法适用于大地测量位置信息(见第6.5.2节)。这两种算法都有局限性,即它们在某些条件下提供位置模糊,因此可能不适用于所有应用程序域。这些限制记录在安全考虑部分(见第13节)。第6.5.2节中的大地坐标变换算法降低了固定和移动目标的隐私风险。然而,移动目标会向对手透露更多信息。为了涵盖具有更复杂隐私要求的应用程序,可能需要定义其他算法。本文件预见了新算法形式的扩展,因此定义了注册表(见第11.3节)。
The XML schema defined in Section 9 extends the Common Policy schema by introducing new child elements to the condition and transformation elements. This document does not define child elements for the action part of a rule.
第9节中定义的XML模式通过在条件和转换元素中引入新的子元素来扩展公共策略模式。此文档不为规则的操作部分定义子元素。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。
This document reuses the terminology of RFC 6280 [RFC6280], such as Location Server (LS), Location Recipient (LR), Rule Maker (RM), Target, Location Generator (LG), and Location Object (LO). This document uses the following terminology:
本文档重用了RFC 6280[RFC6280]的术语,如位置服务器(LS)、位置接收者(LR)、规则制定者(RM)、目标、位置生成器(LG)和位置对象(LO)。本文件使用以下术语:
Presentity or Target:
存在实体或目标:
RFC 6280 [RFC6280] uses the term "Target" to identify the object or person of which location information is required. The presence model described in RFC 2778 [RFC2778] uses the term "presentity" to describe the entity that provides presence information to a presence service. A presentity in a presence system is a Target in a location information system.
RFC 6280[RFC6280]使用术语“目标”来识别需要位置信息的对象或人员。RFC 2778[RFC2778]中描述的存在模型使用术语“存在实体”来描述向存在服务提供存在信息的实体。存在系统中的存在实体是位置信息系统中的目标。
Watcher or Location Recipient:
观察者或位置接收者:
The receiver of location information is the Location Recipient (LR) in the terminology of RFC 6280 [RFC6280]. A watcher in a presence system, i.e., an entity that requests presence information about a presentity, is a Location Recipient in a location information system.
按照RFC 6280[RFC6280]的术语,位置信息的接收者是位置接收者(LR)。存在系统中的观察者,即请求关于存在实体的存在信息的实体,是位置信息系统中的位置接收者。
Authorization policy:
授权策略:
An authorization policy is given by a rule set. A rule set contains an unordered list of (policy) rules. Each rule has a condition, an action, and a transformation component.
授权策略由规则集提供。规则集包含(策略)规则的无序列表。每个规则都有一个条件、一个操作和一个转换组件。
Permission:
许可:
The term "permission" refers to the action and transformation components of a rule.
术语“权限”是指规则的操作和转换组件。
Location Servers:
位置服务器:
Entities that evaluate the geolocation authorization policies.
评估地理位置授权策略的实体。
Presence Servers:
状态服务器:
The geolocation privacy architecture is, as described in RFC 4079 [RFC4079], aligned with the presence architecture, and a "Presence Server" is therefore an entity that distributes location information along with other presence-specific XML data elements.
如RFC 4079[RFC4079]中所述,地理位置隐私体系结构与状态体系结构一致,因此,“状态服务器”是一个将位置信息与其他特定于状态的XML数据元素一起分发的实体。
A geolocation authorization document is an XML document, formatted according to the schema defined in [RFC4745]. Geolocation authorization documents inherit the media type of Common Policy documents, application/auth-policy+xml. As described in [RFC4745], this document is composed of rules that contain three parts: conditions, actions, and transformations. Each action or transformation, which is also called a permission, has the property of being a positive grant of information to the Location Recipient. As a result, there is a well-defined mechanism for combining actions and transformations obtained from several sources. This mechanism is privacy enabling, since the lack of any action or transformation can only result in less information being presented to a Location Recipient.
地理位置授权文档是一个XML文档,根据[RFC4745]中定义的模式进行格式化。地理位置授权文档继承常用策略文档的媒体类型,即应用程序/auth策略+xml。如[RFC4745]所述,本文档由包含三部分的规则组成:条件、操作和转换。每个操作或转换(也称为权限)都具有向位置接收者授予正信息的属性。因此,有一个定义良好的机制来组合从多个源获得的操作和转换。这种机制支持隐私,因为缺少任何操作或转换只会导致向位置接收者提供的信息减少。
There are two ways the authorization rules described in this document may be conveyed between different parties:
本文件中描述的授权规则可通过两种方式在不同各方之间传达:
o RFC 4119 [RFC4119] allows enhanced authorization policies to be referenced via a Uniform Resource Locator (URL) in the 'ruleset-reference' element. The 'ruleset-reference' element is part of the basic rules that always travel with the Location Object.
o RFC 4119[RFC4119]允许通过“规则集引用”元素中的统一资源定位器(URL)引用增强的授权策略。“ruleset reference”元素是基本规则的一部分,它始终随Location对象移动。
o Authorization policies might, for example, also be stored at a Location Server / Presence Server. The Rule Maker therefore needs to use a protocol to create, modify, and delete the authorization policies defined in this document. Such a protocol is available with the Extensible Markup Language (XML) Configuration Access Protocol (XCAP) [RFC4825].
o 例如,授权策略也可以存储在位置服务器/状态服务器上。因此,规则制定者需要使用协议来创建、修改和删除本文档中定义的授权策略。这种协议可通过可扩展标记语言(XML)配置访问协议(XCAP)[RFC4825]获得。
This section describes the location-specific conditions of a rule. The <conditions> element contains zero or more <location-condition> child element(s). The <conditions> element only evaluates to TRUE if all child elements evaluate to TRUE; therefore, multiple <location-condition> elements are not normally useful.
本节介绍规则的特定于位置的条件。<conditions>元素包含零个或多个<location condition>子元素。如果所有子元素的计算结果都为TRUE,则<conditions>元素的计算结果仅为TRUE;因此,多个<location condition>元素通常不有用。
The <location-condition> element MUST contain at least one <location> child element. The <location-condition> element evaluates to TRUE if any of its child <location> elements matches the location of the Target, i.e., <location> elements are combined using a logical OR.
<location condition>元素必须至少包含一个子元素。如果其任何子<location>元素与目标位置匹配,则<location condition>元素的计算结果为TRUE,即使用逻辑OR组合<location>元素。
The three attributes of <location> are 'profile', 'xml:lang', and 'label'. The 'profile' indicates the location profile that is included as child elements in the <location> element. Two location profiles, geodetic and civic, are defined in Sections 4.1 and 4.2. Each profile describes under what conditions a <location> element evaluates to TRUE.
<location>的三个属性是“profile”、“xml:lang”和“label”。“配置文件”表示作为子元素包含在<location>元素中的位置配置文件。第4.1节和第4.2节定义了两个位置剖面,大地剖面和城市剖面。每个概要文件描述了<location>元素在什么条件下计算为TRUE。
The 'label' attribute allows a human-readable description to be added to each <location> element. The 'xml:lang' attribute contains a language tag providing further information for rendering of the content of the 'label' attribute.
“label”属性允许向每个<location>元素添加人类可读的描述。“xml:lang”属性包含一个语言标记,为“label”属性内容的呈现提供进一步的信息。
The <location-condition> and the <location> elements provide extension points. If an extension is not understood by the entity evaluating the rules, then this rule evaluates to FALSE. This causes a <conditions> element to evaluate to FALSE if a <location-condition> element is unsupported. A <location-condition> is considered TRUE if any of the <location> elements understood by the rule evaluator is TRUE.
<location condition>和<location>元素提供扩展点。如果评估规则的实体不理解扩展,则此规则的评估结果为FALSE。如果<location condition>元素不受支持,这将导致<conditions>元素的计算结果为FALSE。如果规则计算器理解的任何<location>元素为TRUE,则<location condition>被视为TRUE。
The geodetic location profile is identified by the token 'geodetic-condition'. Rule Makers use this profile by placing a Geography Markup Language [GML] <Circle> element within the <location> element (as described in Section 5.2.3 of [RFC5491]).
大地位置剖面由标记“大地条件”标识。规则制定者通过将地理标记语言[GML]<Circle>元素放置在<location>元素中(如[RFC5491]第5.2.3节所述)来使用此配置文件。
The <location> element containing the information for the geodetic location profile evaluates to TRUE if the current location of the Target is completely within the described location (see Section 6.1.15.3 of [OGC-06-103r4]). Note that the Target's actual location might be represented by any of the location shapes described in [RFC5491]. If the geodetic location of the Target is unknown, then the <location> element containing the information for the geodetic location profile evaluates to FALSE.
如果目标的当前位置完全在所述位置内(见[OGC-06-103r4]第6.1.15.3节),则包含大地测量位置剖面信息的<location>元素计算为真。请注意,目标的实际位置可能由[RFC5491]中描述的任何位置形状表示。如果目标的大地测量位置未知,则包含大地测量位置纵断面信息的<location>元素的计算结果为FALSE。
Implementations MUST support the World Geodetic System 1984 (WGS 84) [NIMA.TR8350.2-3e] coordinate reference system using the formal identifier from the European Petroleum Survey Group (EPSG) Geodetic Parameter Dataset (as formalized by the Open Geospatial Consortium (OGC)):
实施必须支持1984年世界大地测量系统(WGS 84)[NIMA.TR8350.2-3e]坐标参考系统,使用欧洲石油勘探集团(EPSG)大地测量参数数据集的正式标识符(由开放地理空间联盟(OGC)正式确定):
2D: WGS 84 (latitude, longitude), as identified by the URN "urn:ogc:def:crs:EPSG::4326". This is a two-dimensional CRS.
2D:WGS 84(纬度、经度),由URN“URN:ogc:def:crs:EPSG::4326”标识。这是一个二维CRS。
A Coordinate Reference System (CRS) MUST be specified using the above URN notation only; implementations do not need to support user-defined CRSs.
必须仅使用上述URN符号指定坐标参考系(CRS);实现不需要支持用户定义的CRS。
Implementations MUST specify the CRS using the "srsName" attribute on the outermost geometry element. The CRS MUST NOT be changed for any sub-elements. The "srsDimension" attribute MUST be omitted, since the number of dimensions in these CRSs is known.
实现必须使用最外层几何体元素上的“srsName”属性指定CRS。不得更改任何子元件的CRS。“srsDimension”属性必须省略,因为这些CRS中的维度数量是已知的。
The civic location profile is identified by the token 'civic-condition'. Rule Makers use this profile by placing a <civicAddress> element, defined in [RFC5139], within the <location> element.
Civil位置配置文件由标记“Civil condition”标识。规则制定者通过在<location>元素中放置[RFC5139]中定义的<civicAddress>元素来使用此配置文件。
All child elements of a <location> element that carry <civicAddress> elements MUST evaluate to TRUE (i.e., logical AND) in order for the <location> element to evaluate to TRUE. For each child element, the value of that element is compared to the value of the same element in the Target's civic location. The child element evaluates to TRUE if the two values are identical based on an octet-by-octet comparison.
包含<civicAddress>元素的<location>元素的所有子元素必须计算为TRUE(即逻辑AND),才能使<location>元素计算为TRUE。对于每个子元素,将该元素的值与目标位置中相同元素的值进行比较。如果两个值基于八位字节对八位字节的比较是相同的,则子元素的计算结果为TRUE。
A <location> element containing a <civic-condition> profile evaluates to FALSE if a civic address is not present for the Target. For example, this could occur if location information has been removed by other rules or other transmitters of location information or if only the geodetic location is known. In general, it is RECOMMENDED behavior for an LS not to apply a translation from geodetic location to civic location (i.e., geocode the location).
如果目标不存在公民地址,则包含<civic condition>配置文件的<location>元素将计算为FALSE。例如,如果位置信息已被其他规则或位置信息的其他发送器删除,或者只有大地测量位置已知,则可能发生这种情况。通常,建议LS不要将大地测量位置转换为城市位置(即,对位置进行地理编码)。
This document does not define location-specific actions.
本文档未定义特定于位置的操作。
This document defines several elements that allow Rule Makers to specify transformations that
本文档定义了几个元素,允许规则制定者指定
o reduce the accuracy of the returned location information, and
o 降低返回位置信息的准确性,以及
o set the basic authorization policies carried inside the PIDF-LO.
o 设置PIDF-LO中携带的基本授权策略。
This element specifies a change to or the creation of a value for the <retransmission-allowed> element in the PIDF-LO. The data type of the <set-retransmission-allowed> element is a boolean.
此元素指定对PIDF-LO中<retransmission allowed>元素的更改或创建值。<set retransmission allowed>元素的数据类型是布尔值。
If the value of the <set-retransmission-allowed> element is set to TRUE, then the <retransmission-allowed> element in the PIDF-LO MUST be set to TRUE. If the value of the <set-retransmission-allowed>
If the value of the <set-retransmission-allowed> element is set to TRUE, then the <retransmission-allowed> element in the PIDF-LO MUST be set to TRUE. If the value of the <set-retransmission-allowed>
element is set to FALSE, then the <retransmission-allowed> element in the PIDF-LO MUST be set to FALSE.
元素设置为FALSE,则PIDF-LO中的<retransmission allowed>元素必须设置为FALSE。
If the <set-retransmission-allowed> element is absent, then the value of the <retransmission-allowed> element in the PIDF-LO MUST be kept unchanged, or if the PIDF-LO is created for the first time, then the value MUST be set to FALSE.
如果缺少<set retransmission allowed>元素,则PIDF-LO中<retransmission allowed>元素的值必须保持不变,或者如果PIDF-LO是第一次创建的,则该值必须设置为FALSE。
This transformation asks the LS to change or set the value of the <retention-expiry> element in the PIDF-LO. The data type of the <set-retention-expiry> element is a non-negative integer.
此转换要求LS更改或设置PIDF-LO中<retention expiry>元素的值。<set retention expiry>元素的数据类型是非负整数。
The value provided with the <set-retention-expiry> element indicates seconds, and these seconds are added to the time that the LS provides location. A value of zero requests that the information is not retained.
<set retention Expire>元素提供的值表示秒,这些秒将添加到LS提供位置的时间中。值为零表示不保留信息。
If the <set-retention-expiry> element is absent, then the value of the <retention-expiry> element in the PIDF-LO is kept unchanged, or if the PIDF-LO is created for the first time, then the value MUST be set to the current date.
如果缺少<set retention Expire>元素,则PIDF-LO中<retention Expire>元素的值保持不变,或者如果PIDF-LO是第一次创建的,则必须将该值设置为当前日期。
This transformation asks the LS to change or set the value of the <note-well> element in the PIDF-LO. The data type of the <set-note-well> element is a string.
此转换要求LS更改或设置PIDF-LO中<note well>元素的值。<set note well>元素的数据类型是字符串。
The value provided with the <set-note-well> element contains a privacy statement as a human-readable text string, and an 'xml:lang' attribute denotes the language of the human-readable text.
<set note well>元素提供的值包含作为人类可读文本字符串的隐私声明,“xml:lang”属性表示人类可读文本的语言。
If the <set-note-well> element is absent, then the value of the <note-well> element in the PIDF-LO is kept unchanged, or if the PIDF-LO is created for the first time, then no content is provided for the <note-well> element.
如果缺少<set note well>元素,则PIDF-LO中<note well>元素的值保持不变,或者如果PIDF-LO是第一次创建的,则不为<note well>元素提供任何内容。
This transformation specifies whether the <external-ruleset> element in the PIDF-LO carries the extended authorization rules defined in [RFC4745]. The data type of the <keep-rule-reference> element is boolean.
此转换指定PIDF-LO中的<external ruleset>元素是否携带[RFC4745]中定义的扩展授权规则。<keep rule reference>元素的数据类型为布尔型。
If the value of the <keep-rule-reference> element is set to TRUE, then the <external-ruleset> element in the PIDF-LO is kept unchanged
If the value of the <keep-rule-reference> element is set to TRUE, then the <external-ruleset> element in the PIDF-LO is kept unchanged
when included. If the value of the <keep-rule-reference> element is set to FALSE, then the <external-ruleset> element in the PIDF-LO MUST NOT contain a reference to an external rule set. The reference to the ruleset is removed, and no rules are carried as MIME bodies (in case of Content-ID (cid:) URIs [RFC2392]).
包括在内时。如果<keep rule reference>元素的值设置为FALSE,则PIDF-LO中的<external ruleset>元素不得包含对外部规则集的引用。删除了对规则集的引用,并且没有任何规则作为MIME主体携带(对于内容ID(cid:)URI[RFC2392])。
If the <keep-rule-reference> element is absent, then the value of the <external-ruleset> element in the PIDF-LO is kept unchanged when available, or if the PIDF-LO is created for the first time, then the <external-ruleset> element MUST NOT be included.
如果缺少<keep rule reference>元素,则PIDF-LO中<external ruleset>元素的值在可用时保持不变,或者如果PIDF-LO是第一次创建的,则不得包含<external ruleset>元素。
The <provide-location> element contains child elements of a specific location profile that controls the granularity of returned location information. This form of location granularity reduction is also called 'obfuscation' and is defined in [DUCKHAM05] as
元素包含控制返回位置信息粒度的特定位置配置文件的子元素。这种形式的位置粒度缩减也称为“模糊处理”,在[DUCKHAM05]中定义为
the means of deliberately degrading the quality of information about an individual's location in order to protect that individual's location privacy.
为了保护个人的位置隐私,故意降低个人位置信息质量的手段。
Location obscuring presents a number of technical challenges. The algorithms provided in this document are provided as examples only. A discussion of the technical constraints on location obscuring is included in Section 13.5.
位置模糊带来了许多技术挑战。本文件中提供的算法仅作为示例提供。第13.5节讨论了位置遮挡的技术限制。
The functionality of location granularity reduction depends on the type of location provided as input. This document defines two profiles for reduction, namely:
位置粒度缩减的功能取决于作为输入提供的位置类型。本文件定义了两个用于减少的配置文件,即:
o civic-transformation: If the <provide-location> element has a <provide-civic> child element, then civic location information is disclosed as described in Section 6.5.1, subject to availability.
o civic转换:如果<provide location>元素具有<provide civic>子元素,则根据可用性,按照第6.5.1节所述披露civic位置信息。
o geodetic-transformation: If the <provide-location> element has a <provide-geo> child element, then geodetic location information is disclosed as described in Section 6.5.2, subject to availability.
o 大地坐标变换:如果<provide location>元素具有<provide geo>子元素,则根据可用性,按照第6.5.2节所述披露大地坐标位置信息。
The <provide-location> element MUST contain the 'profile' attribute if it contains child elements, and the child elements MUST be appropriate for the profile.
如果<provide location>元素包含子元素,则该元素必须包含“profile”属性,并且子元素必须适合该概要文件。
If the <provide-location> element has no child elements, then civic as well as geodetic location information is disclosed without reducing its granularity, subject to availability. In this case, the profile attribute MUST NOT be included.
如果<provide location>元素没有子元素,则根据可用性,在不降低其粒度的情况下公开civic以及大地测量位置信息。在这种情况下,不能包括profile属性。
This profile uses the token 'civic-transformation'. This profile allows civic location transformations to be specified by means of the <provide-civic> element that restricts the level of civic location information the LS is permitted to disclose. The symbols of these levels are: 'country', 'region', 'city', 'building', and 'full'. Each level is given by a set of civic location data items such as <country> and <A1>, ..., <POM>, as defined in [RFC5139]. Each level includes all elements included by the lower levels.
此配置文件使用标记“civic transformation”。此配置文件允许通过限制允许LS披露的城市位置信息级别的<provide civic>元素指定城市位置转换。这些级别的符号是:“国家”、“地区”、“城市”、“建筑”和“完整”。每个级别由一组城市位置数据项给出,如[RFC5139]中定义的<country>和<A1>,…,<POM>。每个级别包括较低级别包含的所有元素。
The 'country' level includes only the <country> element; the 'region' level adds the <A1> element; the 'city' level adds the <A2> and <A3> elements; the 'building' level and the 'full' level add further civic location data as shown below.
“国家”级别仅包括<country>元素;“区域”级别添加<A1>元素;“城市”级别添加了<A2>和<A3>元素;“建筑”层和“完整”层添加了更多的城市位置数据,如下所示。
full {<country>, <A1>, <A2>, <A3>, <A4>, <A5>, <A6>, <PRD>, <POD>, <STS>, <HNO>, <HNS>, <LMK>, <LOC>, <PC>, <NAM>, <FLR>, <BLD>,<UNIT>,<ROOM>,<PLC>, <PCN>, <POBOX>, <ADDCODE>, <SEAT> <RD>, <RDSEC>, <RDBR>, <RDSUBBR>, <PRM>, <POM>} | | building {<country>, <A1>, <A2>, <A3>, <A4>, <A5>, <A6>, <PRD> <POD>, <STS>, <HNO>, <HNS>, <LMK>, <PC>, <RD>, <RDSEC>, <RDBR>, <RDSUBBR> <PRM>, <POM>} | | city {<country>, <A1>, <A2>, <A3>} | | region {<country>, <A1>} | | country {<country>} | | none {}
full {<country>, <A1>, <A2>, <A3>, <A4>, <A5>, <A6>, <PRD>, <POD>, <STS>, <HNO>, <HNS>, <LMK>, <LOC>, <PC>, <NAM>, <FLR>, <BLD>,<UNIT>,<ROOM>,<PLC>, <PCN>, <POBOX>, <ADDCODE>, <SEAT> <RD>, <RDSEC>, <RDBR>, <RDSUBBR>, <PRM>, <POM>} | | building {<country>, <A1>, <A2>, <A3>, <A4>, <A5>, <A6>, <PRD> <POD>, <STS>, <HNO>, <HNS>, <LMK>, <PC>, <RD>, <RDSEC>, <RDBR>, <RDSUBBR> <PRM>, <POM>} | | city {<country>, <A1>, <A2>, <A3>} | | region {<country>, <A1>} | | country {<country>} | | none {}
The default value is "none".
默认值为“无”。
The schema of the <provide-civic> element is defined in Section 8.
第8节定义了<provide civic>元素的模式。
This profile uses the token 'geodetic-transformation' and refers only to the Coordinate Reference System (CRS) WGS 84 (urn:ogc:def:crs:EPSG::4326, 2D). This profile allows geodetic location transformations to be specified by means of the <provide-geo> element that may restrict the returned geodetic location information based on the value provided in the 'radius' attribute. The value of the 'radius' attribute expresses the radius in meters.
该剖面使用标记“大地坐标变换”,仅参考坐标参考系(CRS)WGS 84(urn:ogc:def:CRS:EPSG::4326,2D)。此配置文件允许通过<provide geo>元素指定大地测量位置转换,该元素可根据“radius”属性中提供的值限制返回的大地测量位置信息。“半径”属性的值以米为单位表示半径。
The schema of the <provide-geo> element is defined in Section 8.
第8节定义了<provide geo>元素的模式。
The algorithm proceeds in six steps. The first two steps are independent of the measured position to be obscured and should be run only once or very infrequently for each region and desired uncertainty. The steps are:
该算法分六步进行。前两个步骤独立于要遮挡的测量位置,对于每个区域和所需的不确定性,应仅运行一次或很少运行。这些步骤是:
1. Choose a geodesic projection with Cartesian coordinates and a surface you want to cover. Limit the worst-case distortion of the map as noted below.
1. 选择具有笛卡尔坐标的测地线投影和要覆盖的曲面。限制贴图的最坏情况失真,如下所述。
2. Given a desired uncertainty radius "d", choose a grid of so-called "landmarks" at a distance of at least d units apart from each other.
2. 给定所需的不确定度半径“d”,选择一个所谓的“地标”栅格,间距至少为d个单位。
3. Given a measured location M=(m,n) on the surface, calculate its 4 closest landmarks on the grid, with coordinates: SW = (l,b), SE=(r,b), NW=(l,t), NE=(r,t). Thus, l<=m<r and b<=n<t. See notes below.
3. 给定表面上的测量位置M=(M,n),计算网格上最近的4个地标,坐标为:SW=(l,b),SE=(r,b),NW=(l,t),NE=(r,t)。因此,l<=m<r,b<=n<t。见下文注释。
4. Let x=(m-l)/(r-l) and y=(n-b)/(t-b).
4. 设x=(m-l)/(r-l)和y=(n-b)/(t-b)。
x and y are thus the scaled local coordinates of the point M in the small grid square that contains it, where x and y range between 0 and 1.
因此,x和y是包含它的小方格网中点M的缩放局部坐标,其中x和y的范围在0和1之间。
5. Let p = 0.2887 (=sqrt(3)/6) and q = 0.7113 (=1-p). Determine which of the following eight cases holds:
5. 设p=0.2887(=sqrt(3)/6)和q=0.7113(=1-p)。确定以下八种情况中的哪一种适用:
C1. x < p and y < p C2. p <= x < q and y < x and y < 1-x C3. q <= x and y < p
C1. x < p and y < p C2. p <= x < q and y < x and y < 1-x C3. q <= x and y < p
C4. p <= y < q and x <= y and y < 1-x C5. p <= y < q and y < x and 1-x <= y
C4. p <= y < q and x <= y and y < 1-x C5. p <= y < q and y < x and 1-x <= y
C6. x < p and q <= y C7. p <= x < q and x <= y and 1-x <= y C8. q <= x and q <= y
C6. x < p and q <= y C7. p <= x < q and x <= y and 1-x <= y C8. q <= x and q <= y
6. Depending on the case, let C (=Center) be
6. 根据情况,设C(=中心)为
C1: SW C2: SW or SE C3: SE
C1:SW C2:SW或SE C3:SE
C4: SW or NW C5: SE or NE
C4:西南或西北C5:东南或东北
C6: NW C7: NW or NE C8: NE
C6:NW C7:NW或NE C8:NE
Return the circle with center C and radius d.
返回圆心为C、半径为d的圆。
Notes:
笔记:
Regarding Step 1:
关于第1步:
The scale of a map is the ratio of a distance (a straight line) on the map to the corresponding air distance on the ground. For maps covering larger areas, a map projection from a sphere (or ellipsoid) to the plane will introduce distortion, and the scale of the map is not constant. Also, note that the real distance on the ground is taken along great circles, which may not correspond to straight lines on the map, depending on the projection used. Let us measure the (length) distortion of the map as the quotient between the maximal and the minimal scales on the map. The distortion MUST be below 1.5. (The minimum distortion is 1.0: if the region of the map is small, then the scale may be taken as a constant over the whole map).
地图的比例是地图上的距离(直线)与地面上相应的空中距离之比。对于覆盖较大区域的地图,从球体(或椭球体)到平面的地图投影将导致扭曲,并且地图的比例不是恒定的。另外,请注意,地面上的实际距离是沿着大圆测量的,这可能与地图上的直线不一致,具体取决于所使用的投影。让我们测量地图的(长度)失真,作为地图上最大和最小比例之间的商。失真度必须低于1.5。(最小失真为1.0:如果地图区域较小,则整个地图上的比例可作为常数)。
Regarding Step 3:
关于第3步:
SW is mnemonic for southwest, b for bottom, l for left (SW=(l,b)), etc., but the directions of the geodesic projection may be arbitrary, and thus SW may not be southwest of M, but it will be left and below M *on the map*.
SW表示西南,b表示底部,l表示左侧(SW=(l,b)),等等,但测地投影的方向可能是任意的,因此SW可能不在M的西南,但它将位于地图*上M*的左侧和下方。
This section provides a few examples for authorization rules using the extensions defined in this document.
本节提供了一些使用本文档中定义的扩展的授权规则示例。
This example illustrates a single rule that employs the civic location condition. It matches if the current location of the Target equals the content of the child elements of the <location> element. Requests match only if the Target is at a civic location with country set to 'Germany', state (A1) set to 'Bavaria', city (A3) set to 'Munich', city division (A4) set to 'Perlach', street name (A6) set to 'Otto-Hahn-Ring', and house number (HNO) set to '6'.
此示例演示了一个使用Civil location条件的规则。如果目标的当前位置等于<location>元素的子元素的内容,则匹配。仅当目标位于城市位置且国家设置为“德国”、州(A1)设置为“巴伐利亚”、城市(A3)设置为“慕尼黑”、城市分区(A4)设置为“佩拉赫”、街道名称(A6)设置为“奥托哈恩环”、门牌号(HNO)设置为“6”时,请求才匹配。
No actions and transformation child elements are provided in this rule example. The actions and transformation could include presence-specific information when the Geolocation Policy framework is applied to the Presence Policy framework (see [RFC5025]).
此规则示例中未提供任何操作和转换子元素。当地理位置策略框架应用于状态策略框架时,操作和转换可能包括特定于状态的信息(请参见[RFC5025])。
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy">
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy">
<rule id="AA56i09"> <conditions> <gp:location-condition> <gp:location profile="civic-condition" xml:lang="en" label="Siemens Neuperlach site 'Legoland'" xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"> <country>DE</country> <A1>Bavaria</A1> <A3>Munich</A3> <A4>Perlach</A4> <A6>Otto-Hahn-Ring</A6> <HNO>6</HNO> </gp:location> </gp:location-condition> </conditions> <actions/> <transformations/> </rule> </ruleset>
<rule id="AA56i09"> <conditions> <gp:location-condition> <gp:location profile="civic-condition" xml:lang="en" label="Siemens Neuperlach site 'Legoland'" xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"> <country>DE</country> <A1>Bavaria</A1> <A3>Munich</A3> <A4>Perlach</A4> <A6>Otto-Hahn-Ring</A6> <HNO>6</HNO> </gp:location> </gp:location-condition> </conditions> <actions/> <transformations/> </rule> </ruleset>
This example illustrates a rule that employs the geodetic location condition. The rule matches if the current location of the Target is inside the area specified by the polygon. The polygon uses the EPSG 4326 coordinate reference system. No altitude is included in this example.
此示例演示了使用大地测量位置条件的规则。如果目标的当前位置在多边形指定的区域内,则规则匹配。多边形使用EPSG 4326坐标系。本例中不包括海拔高度。
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0">
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0">
<rule id="BB56A19"> <conditions> <gp:location-condition> <gp:location xml:lang="en" label="Sydney Opera House" profile="geodetic-condition"> <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326"> <gml:pos>-33.8570029378 151.2150070761</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001">1500 </gs:radius> </gs:Circle> </gp:location> </gp:location-condition> </conditions> <transformations/> </rule> </ruleset>
<rule id="BB56A19"> <conditions> <gp:location-condition> <gp:location xml:lang="en" label="Sydney Opera House" profile="geodetic-condition"> <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326"> <gml:pos>-33.8570029378 151.2150070761</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001">1500 </gs:radius> </gs:Circle> </gp:location> </gp:location-condition> </conditions> <transformations/> </rule> </ruleset>
This example illustrates a rule that employs a mixed civic and geodetic location condition. Depending on the available type of location information, namely civic or geodetic location information, one of the location elements may match.
此示例演示了一个规则,该规则使用了混合的civic和大地测量位置条件。根据位置信息的可用类型,即城市或大地位置信息,其中一个位置元素可能匹配。
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0">
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy" xmlns:gml="http://www.opengis.net/gml" xmlns:gs="http://www.opengis.net/pidflo/1.0">
<rule id="AA56i09"> <conditions> <gp:location-condition> <gp:location profile="civic-condition" xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"> <country>DE</country> <A1>Bavaria</A1> <A3>Munich</A3> <A4>Perlach</A4> <A6>Otto-Hahn-Ring</A6> <HNO>6</HNO> </gp:location> <gp:location profile="geodetic-condition"> <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326"> <gml:pos>-34.410649 150.87651</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001">1500 </gs:radius> </gs:Circle> </gp:location> </gp:location-condition> </conditions> <actions/> <transformations/> </rule> </ruleset>
<rule id="AA56i09"> <conditions> <gp:location-condition> <gp:location profile="civic-condition" xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"> <country>DE</country> <A1>Bavaria</A1> <A3>Munich</A3> <A4>Perlach</A4> <A6>Otto-Hahn-Ring</A6> <HNO>6</HNO> </gp:location> <gp:location profile="geodetic-condition"> <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326"> <gml:pos>-34.410649 150.87651</gml:pos> <gs:radius uom="urn:ogc:def:uom:EPSG::9001">1500 </gs:radius> </gs:Circle> </gp:location> </gp:location-condition> </conditions> <actions/> <transformations/> </rule> </ruleset>
This example shows the transformations specified in this document. The <provide-civic> element indicates that the available civic location information is reduced to building level granularity. If geodetic location information is requested, then a granularity reduction is provided as well.
此示例显示了本文档中指定的转换。<provide civic>元素表示可用的civic位置信息降低到建筑级别的粒度。如果请求大地测量位置信息,则还将提供粒度缩减。
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy" xmlns:lp="urn:ietf:params:xml:ns:basic-location-profiles">
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy" xmlns:lp="urn:ietf:params:xml:ns:basic-location-profiles">
<rule id="AA56i09"> <conditions/> <actions/> <transformations> <gp:set-retransmission-allowed>false </gp:set-retransmission-allowed> <gp:set-retention-expiry>86400</gp:set-retention-expiry> <gp:set-note-well xml:lang="en">My privacy policy goes here. </gp:set-note-well> <gp:keep-rule-reference>false </gp:keep-rule-reference>
<rule id="AA56i09"> <conditions/> <actions/> <transformations> <gp:set-retransmission-allowed>false </gp:set-retransmission-allowed> <gp:set-retention-expiry>86400</gp:set-retention-expiry> <gp:set-note-well xml:lang="en">My privacy policy goes here. </gp:set-note-well> <gp:keep-rule-reference>false </gp:keep-rule-reference>
<gp:provide-location profile="civic-transformation"> <lp:provide-civic>building</lp:provide-civic> </gp:provide-location>
<gp:provide-location profile="civic-transformation"> <lp:provide-civic>building</lp:provide-civic> </gp:provide-location>
<gp:provide-location profile="geodetic-transformation"> <lp:provide-geo radius="500"/> </gp:provide-location>
<gp:provide-location profile="geodetic-transformation"> <lp:provide-geo radius="500"/> </gp:provide-location>
</transformations> </rule> </ruleset>
</transformations> </rule> </ruleset>
The following rule describes the shorthand notation for making the current location of the Target available to Location Recipients without granularity reduction.
以下规则描述了在不降低粒度的情况下使目标的当前位置可供位置收件人使用的简写符号。
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy">
<?xml version="1.0" encoding="UTF-8"?> <ruleset xmlns="urn:ietf:params:xml:ns:common-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy">
<rule id="AA56ia9"> <conditions/> <actions/> <transformations> <gp:provide-location/> </transformations> </rule> </ruleset>
<rule id="AA56ia9"> <conditions/> <actions/> <transformations> <gp:provide-location/> </transformations> </rule> </ruleset>
Suppose you want to obscure positions in the continental USA.
假设你想模糊美国大陆的位置。
Step 1:
步骤1:
First, you choose a geodesic projection. If you are measuring location as latitude and longitude, a natural choice is to take a rectangular projection. One latitudinal degree corresponds to approximately 110.6 kilometers, while a good approximation of a longitudinal degree at latitude phi is (pi/180)*M*cos(phi), where pi is approximately 3.1415, and M is the Earth's average meridional radius, approximately 6,367.5 km. For instance, one longitudinal degree at 30 degrees (say, New Orleans) is 96.39 km, while the formula given offers an estimation of 96.24, which is good enough for our purposes.
首先,选择测地线投影。如果您以经度和纬度来测量位置,那么自然的选择是采用矩形投影。一个纬度对应于大约110.6公里,而纬度φ处的一个良好的纵向度近似值为(π/180)*M*cos(φ),其中π约为3.1415,M为地球的平均经向半径,约为6367.5公里。例如,30度(比如新奥尔良)处的一个纵向角度为96.39公里,而给出的公式估计为96.24公里,这对于我们的目的来说已经足够好了。
We will set up a grid not only for the continental USA, but for the whole earth between latitudes 25 and 50 degrees, and thus will cover also the Mediterranean, South Europe, Japan, and the north of China. As will be seen below, the grid distortion (for not too large grids in this region) is approx cos(25)/cos(50), which is 1.4099.
我们将建立一个网格,不仅适用于美国大陆,而且适用于纬度在25度到50度之间的整个地球,因此还将覆盖地中海、南欧、日本和中国北部。如下所示,网格变形(对于该区域中不太大的网格)约为cos(25)/cos(50),即1.4099。
As origin of our grid, we choose the point at latitude 25 degrees and longitude 0 (Greenwich). The latitude 25 degrees is chosen to be just south of Florida and thus south of the continental USA. (On the Southern Hemisphere, the origin should be north of the region to be covered; if the region crosses the Equator, the
作为网格的原点,我们选择纬度25度和经度0(格林威治)处的点。选择的纬度25度正好位于佛罗里达州南部,因此位于美国大陆南部。(在南半球,原点应位于要覆盖区域的北部;如果该区域穿过赤道,则
origin should be on the Equator. In this way, it is guaranteed that the latitudinal degree has the largest distance at the latitude of the origin).
原点应该在赤道上。这样,就可以保证纬度在原点的纬度上具有最大的距离)。
At 25 degrees, one degree in east-west direction corresponds to approximately (pi/180)*M*cos(25) = 100.72 km.
在25度时,东西方向的一度对应于大约(pi/180)*M*cos(25)=100.72 km。
The same procedure, basically, produces grids for
基本上,相同的过程会生成网格
* 45 degrees south to 45 degrees north: Tropics and subtropics, Africa, Australia
* 南纬45度到北纬45度:热带和亚热带,非洲,澳大利亚
* 25 to 50 degrees (both north or south): Continental United States, Mediterranean, most of China; most of Chile and Argentina, New Zealand
* 25至50度(北或南):美国大陆,地中海,中国大部分地区;智利、阿根廷、新西兰的大部分地区
* 35 to 55 degrees (both north or south): Southern and Central Europe
* 35至55度(北或南):欧洲南部和中部
* 45 to 60 degrees (both north or south): Central and Northern Europe, Canada
* 45至60度(北纬或南纬):中欧和北欧,加拿大
* 55 to 65 degrees (both north or south): most of Scandinavia
* 55到65度(北或南):斯堪的纳维亚半岛的大部分地区
* 60 to 70 degrees (both north or south): Alaska
* 60到70度(北或南):阿拉斯加
Since we do not want to change the grid system often (this would leak more information about obscured locations when they are repeatedly visited), the algorithm should prefer to use the grids discussed above, with origin at the Greenwich meridian and at latitudes o=0, o=25, o=35, o=45, 0=55, and o=60 degrees (north) or at latitudes o=-25, o=-35, o=-45, 0=-55, and o=-60 degrees (the minus to indicate "south").
由于我们不希望经常更改网格系统(这会在反复访问模糊位置时泄漏更多信息),因此算法应更倾向于使用上面讨论的网格,原点位于格林威治子午线,纬度为o=0,o=25,o=35,o=45,0=55,o=60度(北),或纬度为o=-25,o=-35,o=-45、0=-55和o=-60度(负号表示“南”)。
Our choice for the continental USA is o=25.
我们对美国大陆的选择是o=25。
For locations close to the poles, a different projection should be used (not discussed here).
对于靠近电杆的位置,应使用不同的投影(此处未讨论)。
Step 2:
步骤2:
To construct the grid, we start with our chosen origin and place grid points at regular intervals along each of the axes (north-south and east-west) with a distance d between each.
为了构建网格,我们从我们选择的原点开始,沿着每个轴(南北和东西)以固定的间隔放置网格点,每个轴之间的距离为d。
We will now construct a grid for a desired uncertainty of d = 100km. At our origin, 100 km correspond roughly to d1 = 100/ 100.72 = 0.993 degrees in an east-west direction and to d2 = 100/ 110.6 = 0.904 degrees in a north-south direction.
我们现在将为d=100km的期望不确定性构建一个网格。在我们的原点,100 km大致对应于东西方向的d1=100/100.72=0.993度,南北方向的d2=100/110.6=0.904度。
The (i,j)-point in the grid (i and j are integers) has longitude d1*i and latitude 25+d2*j, measured in degrees. More generally, if the grid has origin at coordinates (0,o), measured in degrees, the (i,j)-point in the grid has coordinates (longitude = d1*i, latitude = o+d2*j). The grid has almost no distortion at the latitude of the origin, but it does as we go further away from it.
网格中的(i,j)-点(i和j是整数)的经度为d1*i,纬度为25+d2*j,单位为度。更一般地说,如果栅格的原点位于坐标(0,o)(以度为单位)处,则栅格中的(i,j)-点具有坐标(经度=d1*i,纬度=o+d2*j)。网格在原点的纬度上几乎没有变形,但当我们离它越远的时候,它就会变形。
The distance between two points in the grid at 25 degrees latitude is indeed approximately 100 km, but just above the Canadian border, on the 50th degree, it is 0.993*(pi/180)*M*cos(50) = 70.92km. Thus, the grid distortion is 100/70.92 = 1.41, which is acceptable (<1.5). (In the north-south direction, the grid has roughly no distortion; the vertical distance between two neighboring grid points is approximately 100 km).
在25度纬度的网格中,两点之间的距离实际上约为100公里,但就在加拿大边界上方,在50度,距离为0.993*(pi/180)*M*cos(50)=70.92公里。因此,网格畸变为100/70.92=1.41,这是可接受的(<1.5)。(在南北方向,栅格大致没有变形;两个相邻栅格点之间的垂直距离约为100 km)。
Step 3:
步骤3:
Now suppose you measure a position at M, with longitude -105 (the minus sign is used to denote 105 degrees *west*; without minus, the point is in China, 105 degrees east) and latitude 40 degrees (just north of Denver, CO). The point M is 105 degrees west and 15 degrees north of our origin (which has longitude 0 and latitude 25).
现在假设你在M处测量一个位置,经度为-105(负号表示105度*西*;没有负号,该点位于中国,东经105度),纬度为40度(科罗拉多州丹佛市以北)。M点位于我们的原点(经度0,纬度25)以西105度,以北15度。
Let "floor" be the function that returns the largest integer smaller or equal to a floating point number. To calculate SW, the closest point of the grid on the southwest of M=(m,n), we calculate
设“floor”为返回小于或等于浮点数的最大整数的函数。为了计算SW,即M=(M,n)西南方向网格的最近点,我们计算
i= floor(m/d1) = floor(-105/0.993) = -106
i= floor(m/d1) = floor(-105/0.993) = -106
j= floor(n-o/d2) = floor(15/0.904) = 16
j= floor(n-o/d2) = floor(15/0.904) = 16
Those are the indexes of SW on the grid. The coordinates of SW are then: (d1*i, 25+d2*j) = (-105.242, 39.467).
Those are the indexes of SW on the grid. The coordinates of SW are then: (d1*i, 25+d2*j) = (-105.242, 39.467).
Thus:
因此:
l=d1*floor(m/d1) = -105.243
l=d1*floor(m/d1) = -105.243
r=l+d1 = -105.243+0.993 = -104.250
r=l+d1 = -105.243+0.993 = -104.250
b=o+d2*floor(n-o/d2) = 39.467
b=o+d2*floor(n-o/d2) = 39.467
t=b+d2 = 39.467+0.904 = 40.371
t=b+d2 = 39.467+0.904 = 40.371
These are the formulas for l, r, b, and t in the general case of Cartesian projections based on latitude and longitude.
这些是基于纬度和经度的笛卡尔投影的一般情况下l、r、b和t的公式。
Step 4:
步骤4:
Calculate x and y, the local coordinates of the point M in the small grid square that contains it. This is easy:
计算x和y,即包含它的小方格网中点M的局部坐标。这很简单:
x=(m-l)/(r-l) = [-105 -(-105.243)]/0.993 = 0.245
x=(m-l)/(r-l) = [-105 -(-105.243)]/0.993 = 0.245
y=(n-b)/(t-b) = [40 - 39.467]/0.904 = 0.590
y=(n-b)/(t-b) = [40 - 39.467]/0.904 = 0.590
Step 5:
步骤5:
First, compare x with p (0.2887) and 1-p (0.7113). x is smaller than p. Therefore, only cases 1, 4, or 6 could hold.
首先,将x与p(0.2887)和1-p(0.7113)进行比较。x比p小。因此,只有案例1、4或6可以成立。
Also, compare y with p (0.2887) and 1-p (0.7113). y is between them: p <= y < q. Thus, we must be in case 4. To check, compare y (0.59) with x (0.245) and 1-x. y is larger than x and smaller than 1-x. We are in case C4 (p <= y < q and x <= y and y < 1-x).
此外,将y与p(0.2887)和1-p(0.7113)进行比较。y介于两者之间:p<=y<q。因此,我们必须在案例4中找到答案。要进行检查,请将y(0.59)与x(0.245)和1-x进行比较。y大于x且小于1-x。我们是案例C4(p<=y<q和x<=y和y<1-x)。
Step 6:
步骤6:
Now we choose either SW or NW as the center of the circle.
现在我们选择西南或西北作为圆的中心。
The obscured location is the circle with radius 100 km and center in SW (coordinates: -105.243, 39.467) or NW (coordinates: -105.243, 40.371).
被遮挡的位置是半径为100km的圆,圆心为西南(坐标:-105.243、39.467)或西北(坐标:-105.243、40.371)。
This section defines the location profiles used as child elements of the transformation element.
本节定义了用作转换元素的子元素的位置配置文件。
<?xml version="1.0" encoding="UTF-8"?> <xs:schema targetNamespace="urn:ietf:params:xml:ns:basic-location-profiles" xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
<?xml version="1.0" encoding="UTF-8"?> <xs:schema targetNamespace="urn:ietf:params:xml:ns:basic-location-profiles" xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
<!-- profile="civic-transformation" -->
<!-- profile="civic-transformation" -->
<xs:element name="provide-civic" default="none"> <xs:simpleType> <xs:restriction base="xs:string"> <xs:enumeration value="full"/> <xs:enumeration value="building"/> <xs:enumeration value="city"/> <xs:enumeration value="region"/> <xs:enumeration value="country"/> <xs:enumeration value="none"/> </xs:restriction> </xs:simpleType> </xs:element>
<xs:element name="provide-civic" default="none"> <xs:simpleType> <xs:restriction base="xs:string"> <xs:enumeration value="full"/> <xs:enumeration value="building"/> <xs:enumeration value="city"/> <xs:enumeration value="region"/> <xs:enumeration value="country"/> <xs:enumeration value="none"/> </xs:restriction> </xs:simpleType> </xs:element>
<!-- profile="geodetic-transformation" -->
<!-- profile="geodetic-transformation" -->
<xs:element name="provide-geo"> <xs:complexType> <xs:attribute name="radius" type="xs:integer"/> </xs:complexType> </xs:element>
<xs:element name="provide-geo"> <xs:complexType> <xs:attribute name="radius" type="xs:integer"/> </xs:complexType> </xs:element>
</xs:schema>
</xs:schema>
This section presents the XML schema that defines the Geolocation Policy schema described in this document. The Geolocation Policy schema extends the Common Policy schema (see [RFC4745]).
本节介绍定义本文档中描述的地理位置策略模式的XML模式。地理位置策略模式扩展了公共策略模式(请参见[RFC4745])。
<?xml version="1.0" encoding="UTF-8"?> <xs:schema targetNamespace="urn:ietf:params:xml:ns:geolocation-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy" xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
<?xml version="1.0" encoding="UTF-8"?> <xs:schema targetNamespace="urn:ietf:params:xml:ns:geolocation-policy" xmlns:gp="urn:ietf:params:xml:ns:geolocation-policy" xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
<!-- Import Common Policy--> <xs:import namespace="urn:ietf:params:xml:ns:common-policy"/>
<!-- Import Common Policy--> <xs:import namespace="urn:ietf:params:xml:ns:common-policy"/>
<!-- This import brings in the XML language attribute xml:lang--> <xs:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="http://www.w3.org/2001/xml.xsd"/>
<!-- This import brings in the XML language attribute xml:lang--> <xs:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="http://www.w3.org/2001/xml.xsd"/>
<!-- Geopriv Conditions -->
<!-- Geopriv Conditions -->
<xs:element name="location-condition" type="gp:locationconditionType"/>
<xs:element name="location-condition" type="gp:locationconditionType"/>
<xs:complexType name="locationconditionType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:choice minOccurs="1" maxOccurs="unbounded"> <xs:element name="location" type="gp:locationType" minOccurs="1" maxOccurs="unbounded"/> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:choice> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:complexType name="locationconditionType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:choice minOccurs="1" maxOccurs="unbounded"> <xs:element name="location" type="gp:locationType" minOccurs="1" maxOccurs="unbounded"/> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:choice> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:complexType name="locationType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:choice minOccurs="1" maxOccurs="unbounded"> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:choice> <xs:attribute name="profile" type="xs:string"/> <xs:attribute name="label" type="xs:string"/>
<xs:complexType name="locationType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:choice minOccurs="1" maxOccurs="unbounded"> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:choice> <xs:attribute name="profile" type="xs:string"/> <xs:attribute name="label" type="xs:string"/>
<xs:attribute ref="xml:lang" /> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:attribute ref="xml:lang" /> </xs:restriction> </xs:complexContent> </xs:complexType>
<!-- Geopriv transformations --> <xs:element name="set-retransmission-allowed" type="xs:boolean" default="false"/> <xs:element name="set-retention-expiry" type="xs:integer" default="0"/> <xs:element name="set-note-well" type="gp:notewellType"/> <xs:element name="keep-rule-reference" type="xs:boolean" default="false"/>
<!-- Geopriv transformations --> <xs:element name="set-retransmission-allowed" type="xs:boolean" default="false"/> <xs:element name="set-retention-expiry" type="xs:integer" default="0"/> <xs:element name="set-note-well" type="gp:notewellType"/> <xs:element name="keep-rule-reference" type="xs:boolean" default="false"/>
<xs:element name="provide-location" type="gp:providelocationType"/>
<xs:element name="provide-location" type="gp:providelocationType"/>
<xs:complexType name="notewellType"> <xs:simpleContent> <xs:extension base="xs:string"> <xs:attribute ref="xml:lang" /> </xs:extension> </xs:simpleContent> </xs:complexType>
<xs:complexType name="notewellType"> <xs:simpleContent> <xs:extension base="xs:string"> <xs:attribute ref="xml:lang" /> </xs:extension> </xs:simpleContent> </xs:complexType>
<xs:complexType name="providelocationType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:choice minOccurs="0" maxOccurs="unbounded"> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:choice> <xs:attribute name="profile" type="xs:string" /> </xs:restriction> </xs:complexContent> </xs:complexType>
<xs:complexType name="providelocationType"> <xs:complexContent> <xs:restriction base="xs:anyType"> <xs:choice minOccurs="0" maxOccurs="unbounded"> <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </xs:choice> <xs:attribute name="profile" type="xs:string" /> </xs:restriction> </xs:complexContent> </xs:complexType>
</xs:schema>
</xs:schema>
This section defines the details necessary for clients to manipulate geolocation privacy documents from a server using XCAP. If used as part of a presence system, it uses the same Application Unique ID (AUID) as those rules. See [RFC5025] for a description of the XCAP usage in context with presence authorization rules.
本节定义了客户端使用XCAP从服务器操作地理位置隐私文档所需的详细信息。如果用作状态系统的一部分,它将使用与这些规则相同的应用程序唯一ID(AUID)。请参阅[RFC5025],了解在存在授权规则的上下文中使用XCAP的说明。
XCAP requires application usages to define a unique Application Unique ID (AUID) in either the IETF tree or a vendor tree. This specification defines the "geolocation-policy" AUID within the IETF tree, via the IANA registration in Section 11.
XCAP要求应用程序使用在IETF树或供应商树中定义唯一的应用程序唯一ID(AUID)。本规范通过第11节中的IANA注册,在IETF树中定义“地理定位策略”AUID。
XCAP requires application usages to define a schema for their documents. The schema for geolocation authorization documents is described in Section 9.
XCAP要求应用程序使用为其文档定义模式。第9节描述了地理位置授权文件的模式。
XCAP requires application usages to define the default namespace for their documents. The default namespace is urn:ietf:params:xml:ns:geolocation-policy.
XCAP要求应用程序使用为其文档定义默认名称空间。默认名称空间是urn:ietf:params:xml:ns:geolocationpolicy。
XCAP requires application usages to define the MIME media type for documents they carry. Geolocation privacy authorization documents inherit the MIME type of Common Policy documents, application/ auth-policy+xml.
XCAP要求应用程序使用为其携带的文档定义MIME媒体类型。地理位置隐私授权文档继承通用策略文档的MIME类型,即application/auth Policy+xml。
This specification does not define additional constraints.
本规范未定义其他约束。
This document discusses the semantics of a geolocation privacy authorization.
本文档讨论地理位置隐私授权的语义。
When a Location Server receives a request to access location information of some user foo, it will look for all documents within http://[xcaproot]/geolocation-policy/users/foo and use all documents found beneath that point to guide authorization policy.
当位置服务器收到访问某个用户foo的位置信息的请求时,它将查找http://[xcaproot]/geolocation policy/users/foo中的所有文档,并使用在该点下找到的所有文档指导授权策略。
This application usage does not define additional resource interdependencies.
此应用程序用法不定义其他资源相互依赖关系。
This application usage does not modify the default XCAP authorization policy, which is that only a user can read, write, or modify his/her own documents. A server can allow privileged users to modify documents that they do not own, but the establishment and indication of such policies is outside the scope of this document.
此应用程序用法不会修改默认的XCAP授权策略,即只有用户可以读取、写入或修改自己的文档。服务器可以允许特权用户修改他们不拥有的文档,但此类策略的建立和指示超出了本文档的范围。
There are several IANA considerations associated with this specification.
与本规范相关的IANA注意事项有几个。
This section registers an XML schema in the IETF XML Registry as per the guidelines in [RFC3688].
本节根据[RFC3688]中的指南在IETF XML注册表中注册XML模式。
URI: urn:ietf:params:xml:schema:geolocation-policy
URI: urn:ietf:params:xml:schema:geolocation-policy
Registrant Contact: IETF Geopriv Working Group (geopriv@ietf.org), Hannes Tschofenig (hannes.tschofenig@nsn.com).
注册人联系人:IETF Geopriv工作组(geopriv@ietf.org),Hannes Tschofenig(Hannes。tschofenig@nsn.com).
XML: The XML schema to be registered is contained in Section 9. Its first line is
XML:要注册的XML模式包含在第9节中。它的第一行是
<?xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-8"?>
and its last line is
最后一行是
</xs:schema>
</xs:schema>
This section registers a new XML namespace in the IETF XML Registry as per the guidelines in [RFC3688].
本节根据[RFC3688]中的指南在IETF XML注册表中注册一个新的XML命名空间。
URI: urn:ietf:params:xml:ns:geolocation-policy
URI: urn:ietf:params:xml:ns:geolocation-policy
Registrant Contact: IETF Geopriv Working Group (geopriv@ietf.org), Hannes Tschofenig (hannes.tschofenig@nsn.com).
注册人联系人:IETF Geopriv工作组(geopriv@ietf.org),Hannes Tschofenig(Hannes。tschofenig@nsn.com).
XML:
XML:
BEGIN <?xml version="1.0"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN" "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="content-type" content="text/html;charset=iso-8859-1"/> <title>Geolocation Policy Namespace</title> </head> <body> <h1>Namespace for Geolocation Authorization Policies</h1> <h2>urn:ietf:params:xml:schema:geolocation-policy</h2> <p>See <a href="http://www.rfc-editor.org/rfc/rfc6772.txt"> RFC 6772</a>.</p> </body> </html> END
BEGIN <?xml version="1.0"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN" "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="content-type" content="text/html;charset=iso-8859-1"/> <title>Geolocation Policy Namespace</title> </head> <body> <h1>Namespace for Geolocation Authorization Policies</h1> <h2>urn:ietf:params:xml:schema:geolocation-policy</h2> <p>See <a href="http://www.rfc-editor.org/rfc/rfc6772.txt"> RFC 6772</a>.</p> </body> </html> END
This document creates a registry of location profile names for the Geolocation Policy framework. Profile names are XML tokens. This registry will operate in accordance with RFC 5226 [RFC5226], Specification Required.
本文档为地理位置策略框架创建位置配置文件名称的注册表。配置文件名称是XML标记。该登记处将按照RFC 5226[RFC5226]的要求进行操作,并符合所需规范。
This document defines the following profile names:
本文档定义了以下配置文件名称:
geodetic-condition: Defined in Section 4.1. civic-condition: Defined in Section 4.2. geodetic-transformation: Defined in Section 6.5.2. civic-transformation: Defined in Section 6.5.1.
大地测量条件:定义见第4.1节。公民条件:定义见第4.2节。大地坐标变换:定义见第6.5.2节。城市改造:定义见第6.5.1节。
This section registers an XML schema in the IETF XML Registry as per the guidelines in [RFC3688].
本节根据[RFC3688]中的指南在IETF XML注册表中注册XML模式。
URI: urn:ietf:params:xml:schema:basic-location-profiles
URI: urn:ietf:params:xml:schema:basic-location-profiles
Registrant Contact: IETF Geopriv Working Group (geopriv@ietf.org), Hannes Tschofenig (hannes.tschofenig@nsn.com).
注册人联系人:IETF Geopriv工作组(geopriv@ietf.org),Hannes Tschofenig(Hannes。tschofenig@nsn.com).
XML: The XML schema to be registered is contained in Section 8. Its first line is
XML:要注册的XML模式包含在第8节中。它的第一行是
<?xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-8"?>
and its last line is
最后一行是
</xs:schema>
</xs:schema>
This section registers a new XML namespace in the IETF XML Registry as per the guidelines in [RFC3688].
本节根据[RFC3688]中的指南在IETF XML注册表中注册一个新的XML命名空间。
URI: urn:ietf:params:xml:ns:basic-location-profiles
URI: urn:ietf:params:xml:ns:basic-location-profiles
Registrant Contact: IETF Geopriv Working Group (geopriv@ietf.org), Hannes Tschofenig (hannes.tschofenig@nsn.com).
注册人联系人:IETF Geopriv工作组(geopriv@ietf.org),Hannes Tschofenig(Hannes。tschofenig@nsn.com).
XML:
XML:
BEGIN <?xml version="1.0"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN" "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="content-type" content="text/html;charset=iso-8859-1"/> <title>Basic Location Profile Namespace</title> </head> <body> <h1>Namespace for Basic Location Profile</h1> <h2>urn:ietf:params:xml:schema:basic-location-profiles</h2> <p>See <a href="http://www.rfc-editor.org/rfc/rfc6772.txt"> RFC 6772</a>.</p> </body> </html> END
BEGIN <?xml version="1.0"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN" "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="content-type" content="text/html;charset=iso-8859-1"/> <title>Basic Location Profile Namespace</title> </head> <body> <h1>Namespace for Basic Location Profile</h1> <h2>urn:ietf:params:xml:schema:basic-location-profiles</h2> <p>See <a href="http://www.rfc-editor.org/rfc/rfc6772.txt"> RFC 6772</a>.</p> </body> </html> END
This section registers an XCAP Application Unique ID (AUID) in the "XML-XCAP Application Unique IDs" registry according to the IANA procedures defined in [RFC4825].
本节根据[RFC4825]中定义的IANA过程,在“XML-XCAP应用程序唯一ID”注册表中注册XCAP应用程序唯一ID(AUID)。
Name of the AUID: geolocation-policy
AUID名称:地理定位策略
Description: Geolocation privacy rules are documents that describe the permissions that a Target has granted to Location Recipients that access information about his/her geographic location.
描述:地理位置隐私规则是描述目标向访问其地理位置信息的位置收件人授予的权限的文档。
The policies described in this document are mostly meant for machine-to-machine communications; as such, many of its elements are tokens not meant for direct human consumption. If these tokens are presented to the end user, some localization may need to occur. The policies are, however, supposed to be created with the help of humans, and some of the elements and attributes are subject to internationalization considerations. The content of the <label> element is meant to be provided by a human (the Rule Maker) and also displayed to a human. Furthermore, the location condition element (<location-condition>, using the civic location profile, see Section 4.2) and the <set-note-well> element (see Section 6.3) may contain non-US-ASCII letters.
本文档中描述的策略主要用于机器间通信;因此,它的许多元素都是不用于人类直接消费的代币。如果将这些令牌呈现给最终用户,则可能需要进行一些本地化。然而,这些策略应该是在人类的帮助下创建的,其中一些元素和属性需要考虑国际化。<label>元素的内容将由人(规则制定者)提供,并向人显示。此外,位置条件元素(<location condition>,使用civic位置配置文件,参见第4.2节)和<set note well>元素(参见第6.3节)可能包含非美国ASCII字母。
The geolocation policies utilize XML, and all XML processors are required to understand UTF-8 and UTF-16 encodings. Therefore, all entities processing these policies MUST understand UTF-8- and UTF-16- encoded XML. Additionally, geolocation policy-aware entities MUST NOT encode XML with encodings other than UTF-8 or UTF-16.
地理定位策略使用XML,所有XML处理器都需要理解UTF-8和UTF-16编码。因此,处理这些策略的所有实体都必须理解UTF-8和UTF-16编码的XML。此外,地理位置策略感知实体不得使用UTF-8或UTF-16以外的编码对XML进行编码。
This document aims to allow users to prevent unauthorized access to location information and to restrict access to information dependent on the location of the Target, using location-based conditions. This is accomplished using authorization policies. This work builds on a series of other documents: security requirements are described in [RFC6280] and a discussion of generic security threats is available with [RFC3694]. Aspects of combining permissions in cases of multiple occurrence are addressed in [RFC4745].
本文档旨在允许用户使用基于位置的条件,防止未经授权访问位置信息,并限制对依赖于目标位置的信息的访问。这是使用授权策略实现的。这项工作建立在一系列其他文件的基础上:安全要求在[RFC6280]中有描述,通用安全威胁的讨论可在[RFC3694]中找到。[RFC4745]介绍了在多次出现的情况下组合权限的各个方面。
In addition to the authorization policies, mechanisms for obfuscating location information are described. A theoretical treatment of location obfuscation is provided in [DUCKHAM05] and in [IFIP07]. [DUCKHAM05] provides the foundation, and [IFIP07] illustrates three different types of location obfuscation by enlarging the radius, by shifting the center, and by reducing the radius. The algorithm in Section 6.5.2 for geodetic location information obfuscation uses these techniques.
除了授权策略外,还描述了混淆位置信息的机制。[DUCKHAM05]和[IFIP07]中提供了位置模糊的理论处理。[DukHAM05]提供了基础,并且[IFIP07]通过扩大半径、通过移动中心和减少半径来说明三种不同类型的位置混淆。第6.5.2节中的大地测量位置信息模糊算法使用了这些技术。
The requirements for protecting privacy-sensitive location information vary. The two obfuscation algorithms in this document provide a basis for protecting against unauthorized disclosure of location information, but they have limitations. Application and user requirements vary widely; therefore, an extension mechanism is support for defining and using different algorithms.
保护隐私敏感位置信息的要求各不相同。本文中的两种模糊处理算法为防止未经授权泄露位置信息提供了基础,但它们有局限性。应用和用户需求差异很大;因此,支持定义和使用不同的算法是一种扩展机制。
Whenever location information is returned to a Location Recipient, it contains the location of the Target. This is also true when location is obfuscated, i.e., the Location Server does not lie about the Target's location but instead hides it within a larger location shape. Even without the Target's movement, there is a danger that information will be revealed over time. While the Target's location is not revealed within a particular region of the grid, the size of that returned region matters as well as the precise location of the Target within that region. Returning location shapes that are randomly computed will over time reveal more and more information about the Target.
每当位置信息返回给位置收件人时,它都包含目标的位置。当位置被模糊化时,也就是说,位置服务器不在目标位置附近,而是将其隐藏在更大的位置形状中。即使没有目标的移动,随着时间的推移,信息也有被泄露的危险。虽然目标的位置不会显示在网格的特定区域内,但返回区域的大小以及目标在该区域内的精确位置都很重要。返回随机计算的位置形状将随着时间的推移显示有关目标的越来越多的信息。
Consider Figure 1, which shows three ellipses, a dotted area in the middle, and the Target's true location marked as 'x'. The ellipses illustrate the location shapes as received by a potential Location Recipient over time for requests of a Target's location information. Collecting information about the returned location information over time allows the Location Recipient to narrow the potential location of the Target down to the dotted area in the center of the graph.
考虑图1,它显示三个椭圆,中间有一个虚线区域,目标的真实位置标记为“x”。椭圆表示潜在位置接收者在一段时间内收到的目标位置信息请求的位置形状。随着时间的推移收集有关返回位置信息的信息,位置接收者可以将目标的潜在位置缩小到图形中心的虚线区域。
For this purpose, the algorithm described in Section 6.5.2 uses a grid that ensures the same location information is reported while the Target remains in the same geographical area. ,-----. ,----,-'. `-. ,-' / `-. \ ,' / _...._ `. \ / ,-'......`._\ : ; /|...........\: | | / :.....x......+ ; : | \...........;| / \ | \........./ | / `. \ `-.....,' ,'' '-.\ `-----'| ``.-----' ,' `._ _,' `'''
For this purpose, the algorithm described in Section 6.5.2 uses a grid that ensures the same location information is reported while the Target remains in the same geographical area. ,-----. ,----,-'. `-. ,-' / `-. \ ,' / _...._ `. \ / ,-'......`._\ : ; /|...........\: | | / :.....x......+ ; : | \...........;| / \ | \........./ | / `. \ `-.....,' ,'' '-.\ `-----'| ``.-----' ,' `._ _,' `'''
Figure 1: Obfuscation: A Static Target
图1:模糊处理:静态目标
An obscuring method that returns different results for consecutive requests can be exploited by recipients wishing to use this property. Rate limiting the generation of new obscured locations or providing the same obscured location to recipients for the same location might limit the information that can be obtained. Note, however, that providing a new obscured location based on a change in location provides some information to recipients when they observe a change in location.
希望使用此属性的收件人可以利用为连续请求返回不同结果的隐藏方法。限制生成新的模糊位置的速率或为同一位置的收件人提供相同的模糊位置可能会限制可以获得的信息。但是,请注意,根据位置的变化提供一个新的模糊位置可以在收件人观察到位置变化时为他们提供一些信息。
When the Target is moving, then the location transformations reveal information when switching from one privacy region to another one. For example, when a transformation indicates that civic location is provided at a 'building' level of granularity, floor levels, room numbers, and other details normally internal to a building would be hidden. However, when the Target moves from one building to the next one, then the movement would still be recognizable as the disclosed location information would be reflected by the new civic location information indicating the new building. With additional knowledge about building entrances and floor plans, it would be possible to learn additional information.
当目标移动时,位置变换会在从一个隐私区域切换到另一个隐私区域时显示信息。例如,当转换指示城市位置在“建筑”粒度级别提供时,楼层级别、房间号和通常位于建筑内部的其他细节将被隐藏。然而,当目标从一座建筑物移动到下一座建筑物时,由于显示新建筑物的新市政位置信息将反映所披露的位置信息,因此该移动仍然可以识别。有了更多关于建筑物入口和平面图的知识,就有可能了解更多信息。
The algorithm presented in Section 6.5.2 has some issues where information is leaked: when moving, when switching from one privacy region to another one, and also when the user regularly visits the same location.
第6.5.2节中介绍的算法存在一些信息泄漏的问题:移动时,从一个隐私区域切换到另一个隐私区域时,以及用户定期访问同一位置时。
The first issue arises if the algorithm provides different location information (privacy region) only when the previous one becomes inapplicable. The algorithm discloses new information the moment that the Target is on the border of the old privacy region.
如果算法仅在前一个位置信息变得不适用时才提供不同的位置信息(隐私区域),则会出现第一个问题。该算法在目标位于旧隐私区域的边界上的时刻公开新的信息。
Another issue arises if the algorithm produces the different values for the same location that is repeatedly visited. Suppose a user goes home every night. If the reported obfuscated locations are all randomly chosen, an analysis can reveal the home location with high precision.
如果算法为重复访问的同一位置生成不同的值,则会出现另一个问题。假设用户每晚回家。如果报告的模糊位置都是随机选择的,则分析可以高精度地显示出原始位置。
In addition to these concerns, the combination of an obscured location with public geographic information (highways, lakes, mountains, cities, etc.) may yield much more precise location information than is desired. But even without it, just observing movements, once or multiple times, any obscuring algorithm can leak information about velocities or positions. Suppose a user wants to disclose location information with a radius of r. The privacy region, a circle with that radius, has an area of A = pi * r^2. An adversary, observing the movements, will deduce that the target is
除了这些问题,模糊位置与公共地理信息(公路、湖泊、山脉、城市等)的结合可能会产生比预期更精确的位置信息。但即使没有它,只要观察运动一次或多次,任何模糊算法都可能泄露速度或位置的信息。假设用户想要公开半径为r的位置信息。隐私区域是一个半径为a=pi*r^2的圆。敌方观察到这些动作,就会推断目标正在移动
visiting, was visiting, or regularly visits, a region of size A1, smaller than A. The ratio A1/A should be, even in the worst case, larger than a fixed known number, in order that the user can predict the worst-case information leakage. The choices of Section 6.5.2 are such that this maximum leakage can be established: by any statistical procedures, without using external information (highways, etc., as discussed above), the quotient A1/A is larger than 0.13 (= 1/(5*1.5) ). Thus, for instance, when choosing a provided location of size 1000 km^2, he will be leaking, in worst case, the location within a region of size 130 km^2.
访问、正在访问或定期访问大小为A1、小于a的区域。即使在最坏情况下,A1/a的比率也应大于固定的已知数字,以便用户能够预测最坏情况下的信息泄漏。第6.5.2节的选择是这样的:通过任何统计程序,在不使用外部信息(如上所述,公路等)的情况下,商数A1/A大于0.13(=1/(5*1.5))。因此,例如,当选择提供的1000 km^2的位置时,在最坏的情况下,他将泄漏130 km^2区域内的位置。
There is the risk that end users are specifying their location-based policies in such a way that very small changes in location yields a significantly different level of information disclosure. For example, a user might want to set authorization policies differently when they are in a specific geographical area (e.g., at home, in the office). Location might be the only factor in the policy that triggers a very different action and transformation to be executed. The accuracy of location information is not always sufficient to unequivocally determine whether a location is within a specific boundary [GEOPRIV-UNCERTAINTY]. In some situations, uncertainty in location information could produce unexpected results for end users. Providing adequate user feedback about potential errors arising from these limitation can help prevent unintentional information leakage.
存在这样一种风险,即最终用户指定其基于位置的策略时,位置的微小变化会导致信息披露水平显著不同。例如,当用户在特定的地理区域(例如,在家中、办公室)时,他们可能希望以不同的方式设置授权策略。位置可能是策略中触发要执行的非常不同的操作和转换的唯一因素。位置信息的准确性并不总是足以明确确定位置是否在特定边界内[GEOPRIV-不确定性]。在某些情况下,位置信息的不确定性可能会给最终用户带来意想不到的结果。为这些限制引起的潜在错误提供充分的用户反馈有助于防止意外信息泄漏。
Users might create policies that are nonsensical. To avoid such cases, the software used to create the authorization policies should perform consistency checks, and when authorization policies are uploaded to the policy servers, then further checks can be performed. When XCAP is used to upload authorization policies, then built-in features of XCAP can be utilized to convey error messages back to the user about an error condition. Section 8.2.5 of [RFC4825] indicates that some degree of application-specific checking is provided when authorization policies are added, modified, or deleted. The XCAP protocol may return a 409 response with a response that may contain a detailed conflict report containing the <constraint-failure> element. A human-readable description of the problem can be indicated in the 'phrase' attribute of that element.
用户可能会创建毫无意义的策略。为了避免这种情况,用于创建授权策略的软件应该执行一致性检查,并且当授权策略上载到策略服务器时,可以执行进一步的检查。当使用XCAP上载授权策略时,可以利用XCAP的内置功能将错误消息传递回用户,告知用户错误情况。[RFC4825]第8.2.5节指出,在添加、修改或删除授权策略时,会提供某种程度的特定于应用程序的检查。XCAP协议可能返回409响应,该响应可能包含包含<constraint failure>元素的详细冲突报告。可以在该元素的“短语”属性中指出问题的可读描述。
Location-obscuring attempts to remove information about the location of a Target. The effectiveness of location obscuring is determined by how much uncertainty a Location Recipient has about the location of the Target. A location-obscuring algorithm is effective if the
位置模糊尝试删除有关目标位置的信息。位置模糊的有效性取决于位置接收者对目标位置的不确定性程度。如果
Location Recipient cannot recover a location with better uncertainty than the obscuring algorithm was instructed to add.
位置接收者无法恢复比指示的模糊算法添加的位置更不确定的位置。
Effective location obscuring is difficult. The amount of information that can be recovered by a determined and resourceful Location Recipient can be considerably more than is immediately apparent. A concise summary of the challenges is included in [DUCKHAM10].
有效的位置模糊是困难的。由一个确定的、资源丰富的位置接收者可以恢复的信息量可能远远超过显而易见的数量。[10]中包含了对这些挑战的简要总结。
A Location Recipient in possession of external information about the Target or geographical area that is reported can make assumptions or guesses aided by that information to recover more accurate location information. This is true even when a single location is reported, but it is especially true when multiple locations are reported for the same Target over time.
拥有所报告目标或地理区域外部信息的位置接收者可以借助该信息进行假设或猜测,以恢复更准确的位置信息。即使在报告单个位置时也是如此,但在一段时间内报告同一目标的多个位置时尤其如此。
Furthermore, a Location Recipient that attempts to recover past locations for a Target can use later-reported locations to further refine any recovered location. A location-obscuring algorithm typically does not have any information about the future location of the Target.
此外,尝试为目标恢复过去位置的位置接收者可以使用以后报告的位置进一步优化任何恢复的位置。位置模糊算法通常没有关于目标未来位置的任何信息。
The degree to which location information can be effectively degraded by an obscuring algorithm depends on the information that is used by the obscuring algorithm. If the information available to the obscuring algorithm is both more extensive and more effectively employed than the information available to the Location Recipient, then location obscuring might be effective.
遮挡算法可以有效降低位置信息的程度取决于遮挡算法使用的信息。如果模糊算法可用的信息比位置接收者可用的信息更广泛、更有效,那么位置模糊可能是有效的。
Obscured locations can still serve a purpose where a Location Recipient is willing to respect privacy. A privacy-respecting Location Recipient can choose to interpret the existence of uncertainty as a request from a Rule Maker to not recover location.
模糊的位置仍然可以用于位置接收者愿意尊重隐私的目的。尊重隐私的位置接收者可以选择将不确定性的存在解释为规则制定者不恢复位置的请求。
Location obscuring is unlikely to be effective against a more determined or resourceful adversary. Withholding location information entirely is perhaps the most effective method of ensuring that it is not recovered.
位置模糊不太可能对更坚定或更机智的对手有效。完全保留位置信息可能是确保不恢复位置信息的最有效方法。
As a final caution, we note that omitted data also conveys some information. Selective withholding of information reveals that there is something worth hiding. That information might be used to reveal something of the information that is being withheld. For example, if location is only obscured around a user's home and office, then the lack of location for that user and the current time will likely mean that the user is at home at night and in the office during the day, defeating the purpose of the controls.
作为最后的警告,我们注意到省略的数据也传递了一些信息。有选择地隐瞒信息表明有些东西值得隐藏。这些信息可能会被用来揭示一些被隐瞒的信息。例如,如果位置仅在用户的家和办公室周围模糊,则该用户的位置和当前时间的缺失很可能意味着用户晚上在家,白天在办公室,无法达到控制的目的。
[GML] OpenGIS, "OpenGIS Geography Markup Language (GML) Implementation Specification, Version 3.1.1, OGC 03-105r1", July 2004, <http://portal.opengeospatial.org/files/ ?artifact_id=4700>.
[GML]OpenGIS,“OpenGIS地理标记语言(GML)实现规范,3.1.1版,OGC 03-105r1”,2004年7月<http://portal.opengeospatial.org/files/ ?工件id=4700>。
[NIMA.TR8350.2-3e] "Department of Defense (DoD) World Geodetic System 1984 (WGS 84), Third Edition", NIMA TR8350.2, January 2000.
[NIMA.TR8350.2-3e]“国防部1984年世界大地测量系统(WGS 84),第三版”,NIMA TR8350.2,2000年1月。
[OGC-06-103r4] OpenGIS, "OpenGIS Implementation Specification for Geographic information - Simple feature access - Part 1: Common architecture", May 2011, <http://www.opengeospatial.org/standards/sfa?>.
[OGC-06-103r4]OpenGIS,“地理信息的OpenGIS实施规范-简单特征访问-第1部分:通用架构”,2011年5月<http://www.opengeospatial.org/standards/sfa?>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, January 2004.
[RFC3688]Mealling,M.“IETF XML注册表”,BCP 81,RFC 3688,2004年1月。
[RFC4745] Schulzrinne, H., Tschofenig, H., Morris, J., Cuellar, J., Polk, J., and J. Rosenberg, "Common Policy: A Document Format for Expressing Privacy Preferences", RFC 4745, February 2007.
[RFC4745]Schulzrinne,H.,Tschofenig,H.,Morris,J.,Cuellar,J.,Polk,J.,和J.Rosenberg,“共同政策:表达隐私偏好的文件格式”,RFC 47452007年2月。
[RFC5139] Thomson, M. and J. Winterbottom, "Revised Civic Location Format for Presence Information Data Format Location Object (PIDF-LO)", RFC 5139, February 2008.
[RFC5139]Thomson,M.和J.Winterbottom,“状态信息数据格式位置对象(PIDF-LO)的修订公民位置格式”,RFC 5139,2008年2月。
[RFC5491] Winterbottom, J., Thomson, M., and H. Tschofenig, "GEOPRIV Presence Information Data Format Location Object (PIDF-LO) Usage Clarification, Considerations, and Recommendations", RFC 5491, March 2009.
[RFC5491]Winterbottom,J.,Thomson,M.,和H.Tschofenig,“GEOPRIV存在信息数据格式位置对象(PIDF-LO)使用说明、注意事项和建议”,RFC 54912009年3月。
[DUCKHAM05] Duckham, M. and L. Kulik, "A Formal Model of Obfuscation and Negotiation for Location Privacy", In Proc. of the 3rd International Conference PERVASIVE 2005, Munich, Germany, May 2005.
[DUCKHAM05]Duckham,M.和L.Kulik,“位置隐私模糊和协商的正式模型”,在Proc。2005年5月在德国慕尼黑举行的第三届国际会议。
[DUCKHAM10] Duckham, M., "Moving Forward: Location Privacy and Location Awareness", In Proc. 3rd ACM SIGSPATIAL Workshop on Security and Privacy in GIS and LBS (SPRINGL), ACM, November 2010.
[Duckham 10]Duckham,M.,“前进:位置隐私和位置意识”,在Proc。第三届ACM SIGSPATIAL GIS和LBS安全和隐私研讨会(SPRINGL),ACM,2010年11月。
[GEO-SHAPE] Thomson, M., "Geodetic Shapes for the Representation of Uncertainty in PIDF-LO", Work in Progress, December 2006.
[GEO-SHAPE]Thomson,M.,“PIDF-LO中不确定性表示的大地形状”,正在进行的工作,2006年12月。
[GEOPRIV-UNCERTAINTY] Thomson, M. and J. Winterbottom, "Representation of Uncertainty and Confidence in PIDF-LO", Work in Progress, March 2012.
[GEOPRIV-Uncertability]Thomson,M.和J.Winterbottom,“PIDF-LO中不确定性和信心的表示”,正在进行的工作,2012年3月。
[IFIP07] Ardagna, C., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., and P. Samarati, "Location Privacy Protection through Obfuscation-Based Techniques", Proceedings of the 21st Annual IFIP WG 11.3 Working Conference on Data and Applications Security, Redondo Beach, CA, USA, July 2007.
[IFIP07]Ardagna,C.,Cremonini,M.,Damiani,E.,De Capitani di Vimercati,S.,和P.Samarati,“通过基于模糊技术的位置隐私保护”,第21届年度IFIP工作组11.3数据和应用程序安全工作会议记录,加利福尼亚州雷东多海滩,2007年7月。
[RFC2392] Levinson, E., "Content-ID and Message-ID Uniform Resource Locators", RFC 2392, August 1998.
[RFC2392]Levinson,E.“内容ID和消息ID统一资源定位器”,RFC 2392,1998年8月。
[RFC2778] Day, M., Rosenberg, J., and H. Sugano, "A Model for Presence and Instant Messaging", RFC 2778, February 2000.
[RFC2778]Day,M.,Rosenberg,J.,和H.Sugano,“状态和即时信息模型”,RFC 27782000年2月。
[RFC3694] Danley, M., Mulligan, D., Morris, J., and J. Peterson, "Threat Analysis of the Geopriv Protocol", RFC 3694, February 2004.
[RFC3694]Danley,M.,Mulligan,D.,Morris,J.,和J.Peterson,“Geopriv协议的威胁分析”,RFC 3694,2004年2月。
[RFC4079] Peterson, J., "A Presence Architecture for the Distribution of GEOPRIV Location Objects", RFC 4079, July 2005.
[RFC4079]Peterson,J.,“GEOPRIV定位对象分布的存在架构”,RFC 4079,2005年7月。
[RFC4119] Peterson, J., "A Presence-based GEOPRIV Location Object Format", RFC 4119, December 2005.
[RFC4119]Peterson,J.,“一种基于状态的GEOPRIV定位对象格式”,RFC41192005年12月。
[RFC4825] Rosenberg, J., "The Extensible Markup Language (XML) Configuration Access Protocol (XCAP)", RFC 4825, May 2007.
[RFC4825]Rosenberg,J.,“可扩展标记语言(XML)配置访问协议(XCAP)”,RFC4825,2007年5月。
[RFC5025] Rosenberg, J., "Presence Authorization Rules", RFC 5025, December 2007.
[RFC5025]Rosenberg,J.,“在场授权规则”,RFC 50252,2007年12月。
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.
[RFC5226]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。
[RFC6280] Barnes, R., Lepinski, M., Cooper, A., Morris, J., Tschofenig, H., and H. Schulzrinne, "An Architecture for Location and Location Privacy in Internet Applications", BCP 160, RFC 6280, July 2011.
[RFC6280]Barnes,R.,Lepinski,M.,Cooper,A.,Morris,J.,Tschofenig,H.,和H.Schulzrinne,“互联网应用中的位置和位置隐私架构”,BCP 160,RFC 62802011年7月。
This document is informed by the discussions within the IETF GEOPRIV working group, including discussions at the GEOPRIV interim meeting in Washington, D.C., in 2003.
本文件通过IETF GEOPRIV工作组内的讨论(包括2003年在华盛顿特区举行的GEOPRIV临时会议上的讨论)获得信息。
We particularly want to thank Allison Mankin <mankin@psg.com>, Randall Gellens <rg+ietf@qualcomm.com>, Andrew Newton <anewton@ecotroph.net>, Ted Hardie <hardie@qualcomm.com>, and Jon Peterson <jon.peterson@neustar.biz> for their help in improving the quality of this document.
我们特别要感谢Allison Mankin<mankin@psg.com>,Randall Gellens<rg+ietf@qualcomm.com>,安德鲁·牛顿<anewton@ecotroph.net>,特德·哈迪<hardie@qualcomm.com>和乔恩·彼得森。peterson@neustar.biz>感谢他们对提高本文件质量的帮助。
We would like to thank Christian Guenther for his help with an earlier version of this document. Furthermore, we would like to thank Johnny Vrancken for his document reviews in September 2006, December 2006 and January 2007. James Winterbottom provided a detailed review in November 2006. Richard Barnes gave a detailed review in February 2008.
我们要感谢Christian Guenther对本文件早期版本的帮助。此外,我们还要感谢Johnny Vrancken在2006年9月、2006年12月和2007年1月进行的文件审查。James Winterbottom在2006年11月提供了详细的回顾。理查德·巴恩斯(Richard Barnes)在2008年2月进行了详细的回顾。
This document uses text from "Geodetic Shapes for the Representation of Uncertainty in PIDF-LO" [GEO-SHAPE], authored by Martin Thomson.
本文件使用马丁·汤姆森(Martin Thomson)所著的“PIDF-LO中表示不确定性的大地测量形状”[GEO-SHAPE]中的文本。
We would like to thank Matt Lepinski and Richard Barnes for their comments regarding the geodetic location transformation procedure. Richard provided us with a detailed text proposal.
我们要感谢Matt Lepinski和Richard Barnes对大地测量位置转换程序的评论。理查德向我们提供了一份详细的文本提案。
Robert Sparks, and Warren Kumari deserve thanks for their input on the location obfuscation discussion. Robert implemented various versions of the algorithm in the graphical language "Processing" and thereby helped us tremendously to understand problems with the previously illustrated algorithm.
罗伯特·斯帕克斯(Robert Sparks)和沃伦·库马里(Warren Kumari)值得感谢,感谢他们对位置模糊化讨论的投入。Robert用图形语言“Processing”实现了算法的各种版本,从而极大地帮助我们理解了前面演示的算法的问题。
We would like to thank Dan Romascanu, Yoshiko Chong, and Jari Urpalainen for their last call comments.
我们要感谢Dan Romascanu、Yoshiko Chong和Jari Urpalainen的最后一次通话评论。
Finally, we would like to thank the following individuals for their feedback as part of the IESG, GenArt, and SecDir review: Jari Arkko, Lisa Dusseault, Eric Gray, Sam Hartman, Russ Housley, Cullen Jennings, Chris Newman, Jon Peterson, Tim Polk, Carl Reed, and Brian Rosen.
最后,我们要感谢以下个人作为IESG、GenArt和SecDir审查的一部分提供的反馈:Jari Arkko、Lisa Dusseault、Eric Gray、Sam Hartman、Russ Housley、Cullen Jennings、Chris Newman、Jon Peterson、Tim Polk、Carl Reed和Brian Rosen。
Although John Morris is currently employed by the U.S. Government, he participated in the development of this document in his personal capacity, and the views expressed in the document may not reflect those of his employer.
尽管John Morris目前受雇于美国政府,但他以个人身份参与了本文件的编制,文件中表达的观点可能并不反映其雇主的观点。
This section provides an informal description for the algorithm described in 6.5.2 and 7.5 as pseudocode. In addition to the algorithm, it randomly chooses among equidistant landmarks based on the previous location.
本节对6.5.2和7.5中描述为伪代码的算法进行了非正式描述。除此之外,该算法还基于先前的位置在等距地标中随机选择。
Constants
常数
P = sqrt(3)/6 // approx 0.2887 q = 1 - p // approx 0.7113
P = sqrt(3)/6 // approx 0.2887 q = 1 - p // approx 0.7113
Parameters
参数
prob: real // prob is a parameter in the range // 0.5 <= prob <=1 // recommended is a value for prob between 0.7 and 0.9 // the default of prob is 0.8
prob: real // prob is a parameter in the range // 0.5 <= prob <=1 // recommended is a value for prob between 0.7 and 0.9 // the default of prob is 0.8
Inputs
投入
M = (m,n) : real * real // M is a pair of reals: m and n // m is the longitude and n the latitude, // respectively, of the measured location // The values are given as real numbers, in the // range: -180 < m <= 180; -90 < n < 90 // minus values for longitude m correspond to "West" // minus values for latitude n correspond to "South"
M = (m,n) : real * real // M is a pair of reals: m and n // m is the longitude and n the latitude, // respectively, of the measured location // The values are given as real numbers, in the // range: -180 < m <= 180; -90 < n < 90 // minus values for longitude m correspond to "West" // minus values for latitude n correspond to "South"
radius : integer // the 'radius' or uncertainty, // measured in meters
radius : integer // the 'radius' or uncertainty, // measured in meters
prev-M = (prev-m1, prev-n1): real * real // the *previously* provided location, if available // prev-m1 is the longitude and // prev-n1 the latitude, respectively
prev-M = (prev-m1, prev-n1): real * real // the *previously* provided location, if available // prev-m1 is the longitude and // prev-n1 the latitude, respectively
o : real
o :真实的
// this is the reference latitude for the geodesic projection // The value of 'o' is chosen according to the table below. // The area you want to project MUST be included in // between a minimal latitude and a maximal latitude // given by the two first columns of the table. // (Otherwise the transformation is not available).
// this is the reference latitude for the geodesic projection // The value of 'o' is chosen according to the table below. // The area you want to project MUST be included in // between a minimal latitude and a maximal latitude // given by the two first columns of the table. // (Otherwise the transformation is not available).
// +------+------+--------------------------+-------+ // | min | max | | | // | lat | lat | Examples | o | // +------+------+--------------------------+-------+ // | | | Tropics and subtropics | | // | -45 | 45 | Africa | 0 | // | | | Australia | | // +------+------+--------------------------+-------+ // | | | Continental US | | // | 25 | 50 | Mediterranean | 25 | // | | | most of China | | // +------+------+--------------------------+-------+ // | | | | | // | 35 | 55 | Southern and Central | 35 | // | | | Europe | | // +------+------+--------------------------+-------+ // | | | | | // | 45 | 60 | Central and Northern | 45 | // | | | Europe | | // +------+------+--------------------------+-------+ // | | | | | // | 55 | 65 | most of Scandinavia | 55 | // | | | | | // +------+------+--------------------------+-------+ // | | | | | // | 60 | 70 | | 60 | // | | | | | // +------+------+--------------------------+-------+ // | | | most of | | // | -50 | -25 | Chile and Argentina | -50 | // | | | New Zealand | | // +------+------+--------------------------+-------+ // | | | | | // | -35 | -55 | | -35 | // | | | | | // +------+------+--------------------------+-------+ // | | | | | // | -45 | -60 | | -45 | // | | | | | // +------+------+--------------------------+-------+ // | | | | | // | -55 | -65 | | -55 | // | | | | | // +------+------+--------------------------+-------+ // | | | | | // | -60 | -70 | | -60 | // | | | | | // +------+------+--------------------------+-------+
// +------+------+--------------------------+-------+ // | min | max | | | // | lat | lat | Examples | o | // +------+------+--------------------------+-------+ // | | | Tropics and subtropics | | // | -45 | 45 | Africa | 0 | // | | | Australia | | // +------+------+--------------------------+-------+ // | | | Continental US | | // | 25 | 50 | Mediterranean | 25 | // | | | most of China | | // +------+------+--------------------------+-------+ // | | | | | // | 35 | 55 | Southern and Central | 35 | // | | | Europe | | // +------+------+--------------------------+-------+ // | | | | | // | 45 | 60 | Central and Northern | 45 | // | | | Europe | | // +------+------+--------------------------+-------+ // | | | | | // | 55 | 65 | most of Scandinavia | 55 | // | | | | | // +------+------+--------------------------+-------+ // | | | | | // | 60 | 70 | | 60 | // | | | | | // +------+------+--------------------------+-------+ // | | | most of | | // | -50 | -25 | Chile and Argentina | -50 | // | | | New Zealand | | // +------+------+--------------------------+-------+ // | | | | | // | -35 | -55 | | -35 | // | | | | | // +------+------+--------------------------+-------+ // | | | | | // | -45 | -60 | | -45 | // | | | | | // +------+------+--------------------------+-------+ // | | | | | // | -55 | -65 | | -55 | // | | | | | // +------+------+--------------------------+-------+ // | | | | | // | -60 | -70 | | -60 | // | | | | | // +------+------+--------------------------+-------+
Outputs
输出
M1 = (m1,n1) : real * real // longitude and latitude, // respectively, of the provided location
M1 = (m1,n1) : real * real // longitude and latitude, // respectively, of the provided location
Local Variables
局部变量
d, d1, d2, l, r, b, t, x, y: real SW, SE, NW, NE: real * real // pairs of real numbers, interpreted as coordinates // longitude and latitude, respectively
d, d1, d2, l, r, b, t, x, y: real SW, SE, NW, NE: real * real // pairs of real numbers, interpreted as coordinates // longitude and latitude, respectively
temp : Integer[1..8]
温度:整数[1..8]
Function choose(Ma, Mb: real * real): real * real; // This function chooses either Ma or Mb // depending on the parameter 'prob' // and on prev-M1, the previous value of M1: // If prev-M1 == Ma choose Ma with probability 'prob' // If prev-M1 == Mb choose Mb with probability 'prob' // Else choose Ma or Mb with probability 1/2 Begin rand:= Random[0,1]; // a real random number between 0 and 1 If prev-M1 == Ma Then If rand < prob Then choose := Ma; Else choose := Mb; EndIf Elseif prev-M1 == Mb Then If rand < prob Then choose := Mb; Else choose := Ma; EndIf Else If rand < 0.5 Then choose := Ma; Else choose := Mb; EndIf End // Function choose
Function choose(Ma, Mb: real * real): real * real; // This function chooses either Ma or Mb // depending on the parameter 'prob' // and on prev-M1, the previous value of M1: // If prev-M1 == Ma choose Ma with probability 'prob' // If prev-M1 == Mb choose Mb with probability 'prob' // Else choose Ma or Mb with probability 1/2 Begin rand:= Random[0,1]; // a real random number between 0 and 1 If prev-M1 == Ma Then If rand < prob Then choose := Ma; Else choose := Mb; EndIf Elseif prev-M1 == Mb Then If rand < prob Then choose := Mb; Else choose := Ma; EndIf Else If rand < 0.5 Then choose := Ma; Else choose := Mb; EndIf End // Function choose
Main // main procedure Begin d := radius/1000; // uncertainty, measured in km
Main // main procedure Begin d := radius/1000; // uncertainty, measured in km
d1:= (d * 180) / (pi*M*cos(o));
d1:= (d * 180) / (pi*M*cos(o));
d2:= d / 110.6;
d2:= d / 110.6;
l := d1*floor(m/d1) // "floor" returns the largest integer // smaller or equal to a floating point number r := l+d1;
l := d1*floor(m/d1) // "floor" returns the largest integer // smaller or equal to a floating point number r := l+d1;
b := o+d2*floor(n-o/d2); t := b+d2;
b := o+d2*floor(n-o/d2); t := b+d2;
x := (m-l)/(r-l); y := (n-b)/(t-b);
x := (m-l)/(r-l); y := (n-b)/(t-b);
SW := (l,b); SE := (r,b); NW := (l,t); NE := (r,t);
SW := (l,b); SE := (r,b); NW := (l,t); NE := (r,t);
If x < p and y < p Then M1 := SW; Elseif x < p and q <= y Then M1 := NW; Elseif q <= x and y < p Then M1 := SE; Elseif q <= x and q <= y Then M1 := NE; Elseif p <= x and x < q and y < x and y < 1-x Then M1 := choose(SW,SE); Elseif p <= y and y < q and x <= y and y < 1-x Then M1 := choose(SW,NW); Elseif p <= y and y < q and y < x and 1-x <= y Then M1 := choose(SE,NE); Elseif p <= x and x < q and x <= y and 1-x <= y Then M1 := choose(NW,NE); Endif
If x < p and y < p Then M1 := SW; Elseif x < p and q <= y Then M1 := NW; Elseif q <= x and y < p Then M1 := SE; Elseif q <= x and q <= y Then M1 := NE; Elseif p <= x and x < q and y < x and y < 1-x Then M1 := choose(SW,SE); Elseif p <= y and y < q and x <= y and y < 1-x Then M1 := choose(SW,NW); Elseif p <= y and y < q and y < x and 1-x <= y Then M1 := choose(SE,NE); Elseif p <= x and x < q and x <= y and 1-x <= y Then M1 := choose(NW,NE); Endif
End // Main
完//Main
Authors' Addresses
作者地址
Henning Schulzrinne (editor) Columbia University Department of Computer Science 450 Computer Science Building New York, NY 10027 USA
Henning Schulzrinne(编辑)美国纽约州纽约市哥伦比亚大学计算机科学系计算机科学大楼450号,邮编10027
Phone: +1 212-939-7042 EMail: schulzrinne@cs.columbia.edu URI: http://www.cs.columbia.edu/~hgs
Phone: +1 212-939-7042 EMail: schulzrinne@cs.columbia.edu URI: http://www.cs.columbia.edu/~hgs
Hannes Tschofenig (editor) Nokia Siemens Networks Linnoitustie 6 Espoo 02600 Finland
Hannes Tschofenig(编辑)芬兰诺基亚西门子网络公司Linnoitustie 6 Espoo 02600
Phone: +358 (50) 4871445 EMail: Hannes.Tschofenig@gmx.net URI: http://www.tschofenig.priv.at
Phone: +358 (50) 4871445 EMail: Hannes.Tschofenig@gmx.net URI: http://www.tschofenig.priv.at
Jorge R. Cuellar Siemens Otto-Hahn-Ring 6 Munich, Bavaria 81739 Germany
德国巴伐利亚州慕尼黑6环豪尔赫R.库利亚尔西门子奥托哈恩81739
EMail: Jorge.Cuellar@siemens.com
EMail: Jorge.Cuellar@siemens.com
James Polk Cisco 2200 East President George Bush Turnpike Richardson, Texas 75082 USA
詹姆斯·波尔克思科2200美国德克萨斯州乔治·布什收费公路理查森,邮编75082
Phone: +1 817-271-3552 EMail: jmpolk@cisco.com
Phone: +1 817-271-3552 EMail: jmpolk@cisco.com
John B. Morris, Jr.
小约翰·B·莫里斯。
EMail: ietf@jmorris.org
EMail: ietf@jmorris.org
Martin Thomson Microsoft 3210 Porter Drive Palo Alto, CA 94304 USA
美国加利福尼亚州帕洛阿尔托波特大道3210号马丁·汤姆森微软公司,邮编94304
Phone: +1 650-353-1925 EMail: martin.thomson@gmail.com
Phone: +1 650-353-1925 EMail: martin.thomson@gmail.com