Internet Engineering Task Force (IETF)                          J. Arkko
Request for Comments: 6619                                      Ericsson
Category: Standards Track                                      L. Eggert
ISSN: 2070-1721                                                   NetApp
                                                             M. Townsley
                                                                   Cisco
                                                               June 2012
        
Internet Engineering Task Force (IETF)                          J. Arkko
Request for Comments: 6619                                      Ericsson
Category: Standards Track                                      L. Eggert
ISSN: 2070-1721                                                   NetApp
                                                             M. Townsley
                                                                   Cisco
                                                               June 2012
        

Scalable Operation of Address Translators with Per-Interface Bindings

具有每个接口绑定的地址转换器的可扩展操作

Abstract

摘要

This document explains how to employ address translation in networks that serve a large number of individual customers without requiring a correspondingly large amount of private IPv4 address space.

本文档说明了如何在为大量个人客户服务的网络中使用地址转换,而不需要相应的大量专用IPv4地址空间。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6619.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6619.

Copyright Notice

版权公告

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2012 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

1. Introduction
1. 介绍

This document explains how to employ address translation without consuming a large amount of private address space. This is important in networks that serve a large number of individual customers. Networks that serve more than 2^24 (16 million) users cannot assign a unique private IPv4 address to each user, because the largest reserved private address block reserved is 10/8 [RFC1918]. Many networks are already hitting these limits today -- for instance, in the consumer Internet service market. Even some individual devices may approach these limits -- for instance, cellular network gateways or mobile IP home agents.

本文档说明如何在不占用大量专用地址空间的情况下使用地址转换。这在为大量个人客户服务的网络中非常重要。为超过2^24(1600万)个用户提供服务的网络无法为每个用户分配唯一的专用IPv4地址,因为保留的最大专用地址块为10/8[RFC1918]。如今,许多网络已经达到了这些极限——例如,在消费者互联网服务市场。甚至一些单独的设备也可能接近这些限制——例如,蜂窝网络网关或移动IP家庭代理。

If ample IPv4 address space were available, this would be a non-issue, because the current practice of assigning public IPv4 addresses to each user would remain viable, and the complications associated with using the more limited private address space could be avoided. However, as the IPv4 address pool is becoming depleted, this practice is becoming increasingly difficult to sustain.

如果有足够的IPv4地址空间可用,这将不是问题,因为目前为每个用户分配公共IPv4地址的做法仍然可行,并且可以避免与使用更有限的私有地址空间相关的复杂性。然而,随着IPv4地址池的耗尽,这种做法越来越难以维持。

It has been suggested that more of the unassigned IPv4 space should be converted for private use, in order to allow the provisioning of larger networks with private IPv4 address space. At the time of this writing, the IANA "free pool" contained only 12 unallocated unicast IPv4 /8 prefixes. Although reserving a few of those for private use would create some breathing room for such deployments, it would not result in a solution with long-term viability. It would result in significant operational and management overheads, and it would further reduce the number of available IPv4 addresses.

有人建议,应将更多未分配的IPv4空间转换为专用空间,以便为更大的网络提供专用IPv4地址空间。在撰写本文时,IANA“空闲池”仅包含12个未分配的单播IPv4/8前缀。虽然保留其中一些供私人使用会为此类部署创造一些喘息空间,但这不会产生具有长期可行性的解决方案。这将导致巨大的运营和管理开销,并将进一步减少可用IPv4地址的数量。

Segmenting a network into areas of overlapping private address space is another possible technique, but it severely complicates the design and operation of a network.

将网络分割为重叠的专用地址空间区域是另一种可能的技术,但它会使网络的设计和操作严重复杂化。

Finally, the transition to IPv6 will eventually eliminate these addressing limitations. However, during the migration period when IPv4 and IPv6 have to coexist, address or protocol translation will be needed in order to reach IPv4 destinations.

最后,向IPv6的过渡将最终消除这些寻址限制。但是,在IPv4和IPv6必须共存的迁移期间,需要进行地址或协议转换才能到达IPv4目的地。

The rest of this document is organized as follows. Section 2 gives an outline of the solution, Section 3 introduces some terms, Section 4 specifies the required behavior for managing NAT bindings, and Section 5 discusses the use of this technique with IPv6.

本文件其余部分的组织如下。第2节给出了解决方案的概要,第3节介绍了一些术语,第4节指定了管理NAT绑定所需的行为,第5节讨论了此技术在IPv6中的使用。

2. Solution Outline
2. 解决方案大纲

The need for address or protocol translation during the migration period to IPv6 creates the opportunity to deploy these mechanisms in a way that allows the support of a large user base without the need for a correspondingly large IPv4 address block.

在向IPv6的迁移期间需要地址或协议转换,这就为部署这些机制创造了机会,使其能够支持大用户群,而不需要相应的大IPv4地址块。

A Network Address Translator (NAT) is typically configured to connect a network domain that uses private IPv4 addresses to the public Internet. The NAT device, which is configured with a public IPv4 address, creates and maintains a mapping for each communication session from a device inside the domain it serves to devices in the public Internet. It does that by translating the packet flow of each session such that the externally visible traffic uses only public addresses.

网络地址转换器(NAT)通常配置为将使用专用IPv4地址的网络域连接到公共Internet。配置了公共IPv4地址的NAT设备为每个通信会话创建并维护从其服务的域内的设备到公共Internet中的设备的映射。它通过转换每个会话的数据包流来做到这一点,使得外部可见的通信量只使用公共地址。

In many NAT deployments, the network domain connected by the NAT to the public Internet is a broadcast network sharing the same media, where each individual device must have a private IPv4 address that is unique within this network. In such deployments, it is natural also to implement the NAT functionality such that it uses the private IPv4 address when looking up which mapping should be used to translate a given communication session.

在许多NAT部署中,由NAT连接到公共Internet的网络域是共享相同媒体的广播网络,其中每个设备必须具有在该网络中唯一的专用IPv4地址。在这样的部署中,自然还需要实现NAT功能,以便在查找应用于转换给定通信会话的映射时使用专用IPv4地址。

It is important to note, however, that this is not an inherent requirement. When other methods of identifying the correct mapping are available, and the NAT is not connecting a shared-media broadcast network to the Internet, there is no need to assign each device in the domain a unique IPv4 address.

然而,重要的是要注意,这不是一个固有的要求。当识别正确映射的其他方法可用时,且NAT未将共享媒体广播网络连接到Internet,则无需为域中的每个设备分配唯一的IPv4地址。

This is the case, for example, when the NAT connects devices to the Internet that connect to it with individual point-to-point links. In this case, it becomes possible to use the same private addresses many times, making it possible to support any number of devices behind a NAT using very few IPv4 addresses.

例如,当NAT将通过单个点对点链接连接到它的设备连接到Internet时,就是这种情况。在这种情况下,可以多次使用相同的专用地址,从而可以使用很少的IPv4地址支持NAT后面的任意数量的设备。

There are tunneling-based techniques that can obtain the same benefits by establishing new tunnels over any IP network [RFC6333]. However, where the point-to-point links already exist, creating an additional layer of tunneling is unnecessary (and even potentially harmful due to effects on the Maximum Transfer Unit (MTU) settings). The approach described in this document can be implemented and deployed within a single device and has no effect on hosts behind it. In addition, as no additional layers of tunneling are introduced, there is no effect on the MTU. It is also unnecessary to implement tunnel endpoint discovery, security mechanisms, or other aspects of a tunneling solution. In fact, there are no changes to the devices behind the NAT.

有一些基于隧道的技术可以通过在任何IP网络上建立新的隧道获得同样的好处[RFC6333]。但是,在已经存在点到点链路的情况下,创建额外的隧道层是不必要的(甚至由于对最大传输单元(MTU)设置的影响而可能有害)。本文档中描述的方法可以在单个设备中实现和部署,并且对其背后的主机没有影响。此外,由于没有引入额外的隧道层,因此对MTU没有影响。也不需要实现隧道端点发现、安全机制或隧道解决方案的其他方面。事实上,NAT背后的设备没有变化。

Note, however, that existing tunnels are a common special case of point-to-point links. For instance, cellular network gateways terminate a large number of tunnels that are already needed for mobility management reasons. Implementing the approach described in this document is particularly attractive in such environments, given that no additional tunneling mechanisms, negotiation, or host changes are required. In addition, since there is no additional tunneling, packets continue to take the same path as they would normally take. Other commonly used network technologies that may be of interest include Point-to-Point Protocol (PPP) [RFC1661] links, PPP over Ethernet (PPPoE) [RFC2516] encapsulation, Asynchronous Transfer Mode (ATM) Permanent Virtual Circuits (PVCs), and per-subscriber virtual LAN (VLAN) allocation in consumer broadband networks.

但是,请注意,现有隧道是点到点连接的常见特殊情况。例如,由于移动性管理的原因,蜂窝网络网关终止了大量已经需要的隧道。鉴于不需要额外的隧道机制、协商或主机更改,因此在此类环境中实施本文档中描述的方法尤其具有吸引力。此外,由于没有额外的隧道,数据包继续采用它们通常采用的相同路径。可能感兴趣的其他常用网络技术包括点对点协议(PPP)[RFC1661]链路、以太网PPP(PPPoE)[RFC2516]封装、异步传输模式(ATM)永久虚拟电路(PVC)和消费者宽带网络中的每用户虚拟LAN(VLAN)分配。

The approach described here also results in overlapping private address space, like the segmentation of the network to different areas. However, this overlap is applied only at the network edges and does not impact routing or reachability of servers in a negative way.

这里描述的方法也会导致私有地址空间重叠,就像将网络分割到不同的区域一样。但是,这种重叠仅应用于网络边缘,不会以负面方式影响服务器的路由或可达性。

3. Terms
3. 条款

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

"NAT" in this document includes both "Basic NAT" and "Network Address Port Translation (NAPT)" as defined by [RFC2663]. The term "NAT Session" is adapted from [RFC5382] and is defined as follows.

本文件中的“NAT”包括[RFC2663]定义的“基本NAT”和“网络地址端口转换(NAPT)”。术语“NAT会话”改编自[RFC5382],定义如下。

NAT Session - A NAT session is an association between a transport layer session as seen in the internal realm and a session as seen in the external realm, by virtue of NAT translation. The NAT session will provide the translation glue between the two session representations.

NAT会话-NAT会话是通过NAT转换,在内部领域中看到的传输层会话和外部领域中看到的会话之间的关联。NAT会话将在两个会话表示之间提供转换粘合剂。

This document uses the term "mapping" as defined in [RFC4787] to refer to state at the NAT necessary for network address and port translation of sessions.

本文档使用[RFC4787]中定义的术语“映射”来表示会话的网络地址和端口转换所需的NAT状态。

4. Per-Interface Bindings
4. 每个接口绑定

To support a mode of operation that uses a fixed number of IPv4 addresses to serve an arbitrary number of devices, a NAT MUST manage its mappings on a per-interface basis, by associating a particular NAT session not only with the five tuples used for the transport connection on both sides of the NAT but also with the internal interface on which the user device is connected to the NAT. This

为了支持使用固定数量的IPv4地址为任意数量的设备提供服务的操作模式,NAT必须基于每个接口管理其映射,通过将特定NAT会话不仅与NAT两侧用于传输连接的五个元组相关联,而且还与用户设备连接到NAT的内部接口相关联。这

approach allows each internal interface to use the same private IPv4 address range. Note that the interface need not be physical; it may also correspond to a tunnel, VLAN, or other identifiable communications channel.

该方法允许每个内部接口使用相同的专用IPv4地址范围。注意,接口不需要是物理的;它还可以对应于隧道、VLAN或其他可识别的通信信道。

For deployments where exactly one user device is connected with a separate tunnel interface and all tunnels use the same IPv4 address for the user devices, it is redundant to store this address in the mapping in addition to the internal interface identifier. When the internal interface identifier is shorter than a 32-bit IPv4 address, this may decrease the storage requirements of a mapping entry by a small measure, which may aid NAT scalability. For other deployments, it is likely necessary to store both the user device IPv4 address and the internal interface identifier, which slightly increases the size of the mapping entry.

对于仅一个用户设备与单独的隧道接口连接且所有隧道对用户设备使用相同IPv4地址的部署,除了内部接口标识符之外,在映射中存储此地址是多余的。当内部接口标识符短于32位IPv4地址时,这可能会减少映射项的存储需求,这可能有助于NAT的可伸缩性。对于其他部署,可能需要同时存储用户设备IPv4地址和内部接口标识符,这会略微增加映射项的大小。

This mode of operation is only suitable in deployments where user devices connect to the NAT over point-to-point links. If supported, this mode of operation SHOULD be configurable, and it should be disabled by default in general-purpose NAT devices.

此操作模式仅适用于用户设备通过点到点链路连接到NAT的部署。如果支持,这种操作模式应该是可配置的,并且在通用NAT设备中默认情况下应该禁用。

All address translators make it hard to address devices behind them. The same is true of the particular NAT variant described in this document. An additional constraint is caused by the use of the same address space for different devices behind the NAT, which prevents the use of unique private addresses for communication between devices behind the same NAT.

所有的地址转换器都很难对其背后的设备进行地址转换。本文档中描述的特定NAT变体也是如此。另一个限制是由于NAT后面的不同设备使用相同的地址空间造成的,这会阻止在同一NAT后面的设备之间使用唯一的专用地址进行通信。

5. IPv6 Considerations
5. IPv6注意事项

Private address space conservation is important even during the migration to IPv6, because it will be necessary to communicate with the IPv4 Internet for a long time. This document specifies two recommended deployment models for IPv6. In the first deployment model, the mechanisms specified in this document are useful. In the second deployment model, no additional mechanisms are needed, because IPv6 addresses are already sufficient to distinguish mappings from each other.

即使在迁移到IPv6的过程中,私有地址空间的保护也很重要,因为需要与IPv4 Internet进行长时间的通信。本文档指定了两种推荐的IPv6部署模型。在第一个部署模型中,本文档中指定的机制非常有用。在第二种部署模型中,不需要额外的机制,因为IPv6地址已经足以区分映射。

The first deployment model employs dual stack [RFC4213]. The IPv6 side of dual stack operates based on global addresses and direct end-to-end communication. However, on the IPv4 side, private addressing and NATs are a necessity. The use of per-interface NAT mappings is RECOMMENDED for the IPv4 side under these circumstances. Per-interface mappings help the NAT scale, while dual-stack operation helps reduce the pressure on the NAT device by moving key types of traffic to IPv6, eliminating the need for NAT processing.

第一种部署模型采用双堆栈[RFC4213]。双栈的IPv6端基于全局地址和直接端到端通信进行操作。然而,在IPv4方面,私有寻址和NAT是必要的。在这些情况下,建议IPv4端使用每接口NAT映射。每接口映射有助于NAT扩展,而双堆栈操作通过将关键类型的通信量移动到IPv6,消除了NAT处理的需要,从而有助于减轻NAT设备的压力。

The second deployment model involves the use of address and protocol translation, such as the one defined in [RFC6146]. In this deployment model, there is no IPv4 in the internal network at all. This model is applicable only in situations where all relevant devices and applications are IPv6 capable. In this situation, per-interface mappings could be employed as specified above, but they are generally unnecessary, as the IPv6 address space is large enough to provide a sufficient number of mappings.

第二种部署模型涉及地址和协议转换的使用,如[RFC6146]中定义的转换。在此部署模型中,内部网络中根本没有IPv4。此模型仅适用于所有相关设备和应用程序都支持IPv6的情况。在这种情况下,可以如上所述使用每个接口映射,但它们通常是不必要的,因为IPv6地址空间足够大,可以提供足够数量的映射。

6. Security Considerations
6. 安全考虑

The practices outlined in this document do not affect the security properties of address translation. The binding method specified in this document is not observable to a device that is on the outside of the NAT; i.e., a regular NAT and a NAT specified here cannot be distinguished. However, the use of point-to-point links implies naturally that the devices behind the NAT cannot communicate with each other directly without going through the NAT (or a router). The use of the same address space for different devices implies in addition that a NAT operation must occur between two devices in order for them to communicate.

本文档中概述的实践不会影响地址转换的安全属性。本文件中规定的绑定方法对于NAT外部的设备不可见;i、 例如,无法区分常规NAT和此处指定的NAT。然而,点到点链路的使用自然意味着NAT后面的设备不通过NAT(或路由器)就不能直接彼此通信。另外,为不同的设备使用相同的地址空间意味着两个设备之间必须进行NAT操作才能进行通信。

The security implications of address translation in general have been discussed in many previous documents, including [RFC2663], [RFC2993], [RFC4787], and [RFC5382].

在以前的许多文档中,包括[RFC2663]、[RFC2993]、[RFC4787]和[RFC5382],都讨论了地址转换的安全含义。

7. References
7. 工具书类
7.1. Normative References
7.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

7.2. Informative References
7.2. 资料性引用

[L2NAT] Miles, D., Ed., and M. Townsley, "Layer2-Aware NAT", Work in Progress, March 2009.

[L2NAT]Miles,D.,Ed.和M.Townsley,“第二层感知NAT”,正在进行的工作,2009年3月。

[RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994.

[RFC1661]辛普森,W.,编辑,“点对点协议(PPP)”,标准51,RFC1661,1994年7月。

[RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., de Groot, G., and E. Lear, "Address Allocation for Private Internets", BCP 5, RFC 1918, February 1996.

[RFC1918]Rekhter,Y.,Moskowitz,R.,Karrenberg,D.,de Groot,G.,和E.Lear,“私人互联网地址分配”,BCP 5,RFC 1918,1996年2月。

[RFC2516] Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D., and R. Wheeler, "A Method for Transmitting PPP Over Ethernet (PPPoE)", RFC 2516, February 1999.

[RFC2516]Mamakos,L.,Lidl,K.,Evarts,J.,Carrel,D.,Simone,D.,和R.Wheeler,“通过以太网传输PPP(PPPoE)的方法”,RFC 2516,1999年2月。

[RFC2663] Srisuresh, P. and M. Holdrege, "IP Network Address Translator (NAT) Terminology and Considerations", RFC 2663, August 1999.

[RFC2663]Srisuresh,P.和M.Holdrege,“IP网络地址转换器(NAT)术语和注意事项”,RFC 2663,1999年8月。

[RFC2993] Hain, T., "Architectural Implications of NAT", RFC 2993, November 2000.

[RFC2993]Hain,T.,“NAT的建筑含义”,RFC 29932000年11月。

[RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms for IPv6 Hosts and Routers", RFC 4213, October 2005.

[RFC4213]Nordmark,E.和R.Gilligan,“IPv6主机和路由器的基本转换机制”,RFC 4213,2005年10月。

[RFC4787] Audet, F., Ed., and C. Jennings, "Network Address Translation (NAT) Behavioral Requirements for Unicast UDP", BCP 127, RFC 4787, January 2007.

[RFC4787]Audet,F.,Ed.,和C.Jennings,“单播UDP的网络地址转换(NAT)行为要求”,BCP 127,RFC 4787,2007年1月。

[RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P. Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142, RFC 5382, October 2008.

[RFC5382]Guha,S.,Ed.,Biswas,K.,Ford,B.,Sivakumar,S.,和P.Srisuresh,“TCP的NAT行为要求”,BCP 142,RFC 5382,2008年10月。

[RFC6127] Arkko, J. and M. Townsley, "IPv4 Run-Out and IPv4-IPv6 Co-Existence Scenarios", RFC 6127, May 2011.

[RFC6127]Arkko,J.和M.Townsley,“IPv4耗尽和IPv4-IPv6共存场景”,RFC 6127,2011年5月。

[RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers", RFC 6146, April 2011.

[RFC6146]Bagnulo,M.,Matthews,P.,和I.van Beijnum,“有状态NAT64:从IPv6客户端到IPv4服务器的网络地址和协议转换”,RFC 61462011年4月。

[RFC6333] Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion", RFC 6333, August 2011.

[RFC6333]Durand,A.,Droms,R.,Woodyatt,J.,和Y.Lee,“IPv4耗尽后的双栈Lite宽带部署”,RFC 63332011年8月。

[TRILOGY] "Trilogy Project", <http://www.trilogy-project.org/>.

[三部曲]“三部曲项目”<http://www.trilogy-project.org/>.

Appendix A. Contributors
附录A.贡献者

The ideas in this document were first presented in [RFC6333]. This document is also indebted to [RFC6127] and [L2NAT]. However, all of these documents focused on additional components, such as tunneling protocols or the allocation of special IP address ranges. We wanted to publish a specification that just focuses on the core functionality of per-interface NAT mappings. However, David Miles and Alain Durand should be credited with coming up with the ideas discussed in this memo.

本文件中的想法首次在[RFC6333]中提出。本文件还应归功于[RFC6127]和[L2NAT]。然而,所有这些文档都关注附加组件,例如隧道协议或特殊IP地址范围的分配。我们想发布一个规范,该规范只关注每个接口NAT映射的核心功能。然而,大卫·迈尔斯(David Miles)和阿兰·杜兰德(Alain Durand)提出了这份备忘录中讨论的想法,这应该归功于他们。

Appendix B. Acknowledgments
附录B.确认书

The authors would also like to thank Randy Bush, Fredrik Garneij, Dan Wing, Christian Vogt, Marcelo Braun, Joel Halpern, Wassim Haddad, Alan Kavanaugh, and others for interesting discussions in this problem space.

作者还要感谢兰迪·布什、弗雷德里克·加内伊、丹·温、克里斯蒂安·沃格特、马塞洛·布朗、乔尔·哈尔佩恩、瓦西姆·哈达德、艾伦·卡瓦诺和其他人在这个问题空间进行了有趣的讨论。

Lars Eggert is partly funded by the Trilogy Project [TRILOGY], a research project supported by the European Commission under its Seventh Framework Program.

拉尔斯·艾格特(Lars Eggert)的部分资金来自三部曲项目(Trilogy Project)[Trilogy],这是一个由欧盟委员会根据其第七个框架计划支持的研究项目。

Authors' Addresses

作者地址

Jari Arkko Ericsson Jorvas 02420 Finland

雅丽爱立信芬兰公司02420

   EMail: jari.arkko@piuha.net
        
   EMail: jari.arkko@piuha.net
        

Lars Eggert NetApp Sonnenallee 1 85551 Kirchheim Germany

拉尔斯·埃格特·内塔普·索内内内利185551德国基尔希海姆

   Phone: +49 151 12055791
   EMail: lars@netapp.com
   URI:   http://eggert.org/
        
   Phone: +49 151 12055791
   EMail: lars@netapp.com
   URI:   http://eggert.org/
        

Mark Townsley Cisco Paris 75006 France

马克汤斯利思科巴黎75006法国

   EMail: townsley@cisco.com
        
   EMail: townsley@cisco.com