Internet Engineering Task Force (IETF) E. Kim Request for Comments: 6568 ETRI Category: Informational D. Kaspar ISSN: 2070-1721 Simula Research Laboratory JP. Vasseur Cisco Systems, Inc. April 2012
Internet Engineering Task Force (IETF) E. Kim Request for Comments: 6568 ETRI Category: Informational D. Kaspar ISSN: 2070-1721 Simula Research Laboratory JP. Vasseur Cisco Systems, Inc. April 2012
Design and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)
低功耗无线个人局域网(6LoWPANs)上IPv6的设计和应用空间
Abstract
摘要
This document investigates potential application scenarios and use cases for low-power wireless personal area networks (LoWPANs). This document provides dimensions of design space for LoWPAN applications. A list of use cases and market domains that may benefit and motivate the work currently done in the 6LoWPAN Working Group is provided with the characteristics of each dimension. A complete list of practical use cases is not the goal of this document.
本文档研究低功耗无线个人区域网络(LoWPANs)的潜在应用场景和用例。本文件提供了LoWPAN应用的设计空间尺寸。提供了一个用例和市场领域列表,这些用例和市场领域可能有助于并激励6LoWPAN工作组目前所做的工作,其中包含了每个维度的特征。实际用例的完整列表不是本文档的目标。
Status of This Memo
关于下段备忘
This document is not an Internet Standards Track specification; it is published for informational purposes.
本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6568.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6568.
Copyright Notice
版权公告
Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2012 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.
本文件可能包含2008年11月10日之前发布或公开的IETF文件或IETF贡献中的材料。控制某些材料版权的人员可能未授予IETF信托允许在IETF标准流程之外修改此类材料的权利。在未从控制此类材料版权的人员处获得充分许可的情况下,不得在IETF标准流程之外修改本文件,也不得在IETF标准流程之外创建其衍生作品,除了将其格式化以RFC形式发布或将其翻译成英语以外的其他语言。
Table of Contents
目录
1. Introduction ....................................................3 1.1. Terminology ................................................5 1.2. Premise of Network Configuration ...........................5 2. Design Space ....................................................6 3. Application Scenarios ...........................................8 3.1. Industrial Monitoring ......................................8 3.1.1. A Use Case and Its Requirements .....................9 3.1.2. 6LoWPAN Applicability ..............................10 3.2. Structural Monitoring .....................................12 3.2.1. A Use Case and Its Requirements ....................12 3.2.2. 6LoWPAN Applicability ..............................14 3.3. Connected Home ............................................15 3.3.1. A Use Case and Its Requirements ....................15 3.3.2. 6LoWPAN Applicability ..............................17 3.4. Healthcare ................................................18 3.4.1. A Use Case and Its Requirements ....................18 3.4.2. 6LoWPAN Applicability ..............................19 3.5. Vehicle Telematics ........................................20 3.5.1. A Use Case and Its Requirements ....................21 3.5.2. 6LoWPAN Applicability ..............................21 3.6. Agricultural Monitoring ...................................22 3.6.1. A Use Case and Its Requirements ....................22 3.6.2. 6LoWPAN Applicability ..............................24 4. Security Considerations ........................................25 5. Acknowledgements ...............................................26 6. References .....................................................26 6.1. Normative References ......................................26 6.2. Informative References ....................................27
1. Introduction ....................................................3 1.1. Terminology ................................................5 1.2. Premise of Network Configuration ...........................5 2. Design Space ....................................................6 3. Application Scenarios ...........................................8 3.1. Industrial Monitoring ......................................8 3.1.1. A Use Case and Its Requirements .....................9 3.1.2. 6LoWPAN Applicability ..............................10 3.2. Structural Monitoring .....................................12 3.2.1. A Use Case and Its Requirements ....................12 3.2.2. 6LoWPAN Applicability ..............................14 3.3. Connected Home ............................................15 3.3.1. A Use Case and Its Requirements ....................15 3.3.2. 6LoWPAN Applicability ..............................17 3.4. Healthcare ................................................18 3.4.1. A Use Case and Its Requirements ....................18 3.4.2. 6LoWPAN Applicability ..............................19 3.5. Vehicle Telematics ........................................20 3.5.1. A Use Case and Its Requirements ....................21 3.5.2. 6LoWPAN Applicability ..............................21 3.6. Agricultural Monitoring ...................................22 3.6.1. A Use Case and Its Requirements ....................22 3.6.2. 6LoWPAN Applicability ..............................24 4. Security Considerations ........................................25 5. Acknowledgements ...............................................26 6. References .....................................................26 6.1. Normative References ......................................26 6.2. Informative References ....................................27
Low-power and lossy networks (LLNs) is the term commonly used to refer to networks made of highly constrained nodes (limited CPU, memory, power) interconnected by a variety of "lossy" links (low-power radio links or Power-Line Communication (PLC)). They are characterized by low speed, low performance, low cost, and unstable connectivity. A LoWPAN is a particular instance of an LLN, formed by devices complying with the IEEE 802.15.4 standard [5]. Their typical characteristics can be summarized as follows:
低功率和有损网络(LLN)是一个术语,通常用于指由各种“有损”链路(低功率无线电链路或电力线通信(PLC))互连的高度受限节点(有限的CPU、内存、功率)构成的网络。它们的特点是低速度、低性能、低成本和不稳定的连接。LoWPAN是LLN的一个特定实例,由符合IEEE 802.15.4标准的设备构成[5]。其典型特征可概括如下:
o Limited Processing Capability: The smallest common LoWPAN nodes have 8-bit processors with clock rates around 10 MHz. Other models exist with 16-bit and 32-bit cores (typically ARM7), running at frequencies on the order of tens of MHz.
o 有限的处理能力:最小的普通LoWPAN节点具有8位处理器,时钟频率约为10 MHz。其他型号有16位和32位内核(通常为ARM7),运行频率为数十MHz。
o Small Memory Capacity: The smallest common LoWPAN nodes have a few kilobytes of RAM with a few dozen kilobytes of ROM/flash memory. While memory sizes of nodes continue to grow (e.g., IMote has 64 KB SRAM, 512 KB Flash memory), the nature of small memory capacity for LoWPAN nodes remains a challenge.
o 内存容量小:最小的普通LoWPAN节点有几千字节的RAM和几十千字节的ROM/闪存。虽然节点的内存大小继续增长(例如,iMode具有64 KB SRAM、512 KB闪存),但低泛节点的小内存容量的性质仍然是一个挑战。
o Low Power: Wireless radios for LoWPANs are normally battery-operated. Their radio frequency (RF) transceivers often have a current draw of about 10 to 30 mA, depending on the used transmission power level. In order to reach common indoor ranges of up to 30 meters and outdoor ranges of 100 meters, the used transmission power is set around 0 to 3 dBm. Depending on the processor type, there is an additional battery current consumption of the CPU itself, commonly on the order of tens of milliamperes. However, the CPU power consumption can often be reduced by a thousandfold when switching to sleep mode.
o 低功耗:用于低面板的无线收音机通常由电池供电。他们的射频(RF)收发器通常具有约10至30 mA的电流消耗,这取决于使用的传输功率水平。为了达到高达30米的普通室内范围和100米的室外范围,使用的传输功率设置在0到3 dBm左右。根据处理器类型的不同,CPU本身会有额外的电池电流消耗,通常为数十毫安。然而,当切换到睡眠模式时,CPU功耗通常可以降低千倍。
o Short Range: The Personal Operating Space (POS) defined by IEEE 802.15.4 implies a range of 10 meters. For real implementations, the range of LoWPAN radios is typically measured in tens of meters, but can reach over 100 meters in line-of-sight situations.
o 短距离:IEEE 802.15.4定义的个人操作空间(POS)意味着10米的范围。在实际应用中,低泛无线电的范围通常以几十米为单位,但在视线范围内可以达到100米以上。
o Low Bit Rate: The IEEE 802.15.4 standard defines a maximum over-the-air rate of 250 kbit/s, which is most commonly used in current deployments. Alternatively, three lower data rates of 20, 40, and 100 kbit/s are defined.
o 低比特率:IEEE 802.15.4标准定义了250 kbit/s的最大无线传输速率,这是当前部署中最常用的速率。或者,定义了20、40和100 kbit/s三种较低的数据速率。
As with any other LLN, a LoWPAN is not necessarily comprised of sensor nodes only, but may also consist of actuators. For instance, in an agricultural environment, sensor nodes might be used to detect low soil humidity and then send commands to activate the sprinkler system.
与任何其他LLN一样,LoWPAN不一定仅由传感器节点组成,还可能由执行器组成。例如,在农业环境中,传感器节点可用于检测土壤湿度低,然后发送命令以激活洒水系统。
After defining common terminology in Section 1.1 and describing the characteristics of LoWPANs in Section 2, this document provides a list of use cases and market domains that may benefit and motivate the work currently done in the 6LoWPAN Working Group.
在第1.1节中定义了通用术语并在第2节中描述了LowPan的特征之后,本文件提供了一个用例和市场领域列表,这些用例和市场领域可能有助于并推动6LoWPAN工作组目前所做的工作。
Readers are expected to be familiar with all terms and concepts discussed in "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals" [2], and "Transmission of IPv6 Packets over IEEE 802.15.4 Networks" [3].
读者应熟悉“低功耗无线个人区域网络上的IPv6:概述、假设、问题陈述和目标”[2]和“IEEE 802.15.4网络上IPv6数据包的传输”[3]中讨论的所有术语和概念。
Readers would benefit from reading 6LoWPAN Neighbor Discovery (ND) [6], 6LoWPAN header compression [7], and 6LoWPAN routing requirements [8] for details of 6LoWPAN work.
读者可以阅读6LoWPAN邻居发现(ND)[6]、6LoWPAN头压缩[7]和6LoWPAN路由要求[8],了解6LoWPAN工作的详细信息。
This document defines the following terms:
本文件定义了以下术语:
LC (Local Controller)
LC(本地控制器)
A logical functional entity that performs the special role of coordinating and controlling its child nodes for local data aggregation, status management of local nodes, etc. There may be multiple instances of local controller nodes in a LoWPAN.
一种逻辑功能实体,执行协调和控制其子节点以进行本地数据聚合、本地节点的状态管理等的特殊任务。低范围内可能有多个本地控制器节点实例。
LBR (LoWPAN Border Router)
LBR(低泛边界路由器)
A border router located at the junction of separate LoWPANs or between a LoWPAN and another IP network. There may be one or more LBRs at the LoWPAN boundary. An LBR is the responsible authority for IPv6 Prefix propagation for the LoWPAN it serves. An isolated LoWPAN also contains an LBR in the network; the LBR provides the prefix(es) for the isolated network.
一种边界路由器,位于单独的低端网络连接处或低端网络与另一IP网络之间。低盘边界处可能有一个或多个LBR。LBR是其所服务的低PAN的IPv6前缀传播的负责机构。一个隔离的LoWPAN在网络中还包含一个LBR;LBR为隔离网络提供前缀。
The IEEE 802.15.4 standard distinguishes between two types of nodes -- reduced-function devices (RFDs) and full-function devices (FFDs). As this distinction is based on some Medium Access Control (MAC) features that are not always in use, we are not using this distinction in this document.
IEEE 802.15.4标准区分了两种类型的节点——精简功能设备(RFD)和全功能设备(FFD)。由于这种区别是基于一些并不总是在使用的介质访问控制(MAC)特性,因此我们在本文档中不使用这种区别。
6LoWPANs can be deployed using either route-over or mesh-under architectures. As the choice of route-over or mesh-under does not affect the applicability of 6LoWPAN technologies to the use cases described in the document, we will use the term "6LoWPAN" to mean either a route-over or mesh-under network.
6LoWPANs可以使用“路由覆盖”或“网格覆盖”架构进行部署。由于路由选择或网格选择不影响6LoWPAN技术对文档中描述的用例的适用性,我们将使用术语“6LoWPAN”来表示网络上的路由或网格下的路由。
Communication to corresponding nodes outside of the LoWPAN is becoming increasingly important for convenient data collection and remote-control purposes. The intermediate LoWPAN nodes act as packet forwarders on the link layer or as LoWPAN routers, and connect the entire LoWPAN in a multi-hop fashion. LBRs are used to interconnect
为了方便数据收集和远程控制,与LoWPAN外部相应节点的通信变得越来越重要。中间LoWPAN节点充当链路层上的数据包转发器或LoWPAN路由器,并以多跳方式连接整个LoWPAN。LBR用于互连
a LoWPAN to other networks, or to form an extended LoWPAN by connecting multiple LoWPANs. Before LoWPAN nodes obtain their IPv6 addresses and the network is configured, each LoWPAN executes a link-layer configuration either by the mechanisms specified in [6] or by using a coordinator that is responsible for link-layer short address allocation. However, the link-layer coordinator functionality is out of the scope of this document. Details of address allocation in 6LoWPAN ND are in [6].
低盘连接到其他网络,或通过连接多个低盘形成扩展低盘。在LoWPAN节点获得其IPv6地址并配置网络之前,每个LoWPAN通过[6]中指定的机制或使用负责链路层短地址分配的协调器执行链路层配置。但是,链接层协调器功能超出了本文档的范围。有关6LoWPAN ND中地址分配的详细信息,请参见[6]。
A LoWPAN can be configured as mesh-under or route-over (see Terminology in [6]). In a route-over configuration, multi-hop transmission is carried out by LoWPAN routers using IP routing. In a mesh-under configuration, the link-local scope reaches to the boundaries of the LoWPAN, and multi-hop transmission is achieved by forwarding data at the link layer or in a 6LoWPAN adaptation layer. More information about mesh-under and route-over is in [6] and [8].
LoWPAN可以配置为下方或上方的网格(参见[6]中的术语)。在路由覆盖配置中,多跳传输由使用IP路由的低泛路由器执行。在配置下的网状网中,链路局部范围达到低泛的边界,通过在链路层或6LoWPAN适配层转发数据来实现多跳传输。[6]和[8]中提供了有关下方和上方网格的更多信息。
Inspired by [9], this section lists the dimensions used to describe the design space of wireless sensor networks in the context of the 6LoWPAN Working Group. The design space is already limited by the unique characteristics of a LoWPAN (e.g., low power, short range, low bit rate), as described in [2]. The possible dimensions for scenario categorization used in this document are described as follows:
受[9]的启发,本节列出了在6LoWPAN工作组背景下用于描述无线传感器网络设计空间的维度。如[2]所述,设计空间已经受到低泛的独特特性(例如,低功率、短距离、低比特率)的限制。本文档中使用的场景分类的可能维度描述如下:
o Deployment: LoWPAN nodes can be scattered randomly, or they may be deployed in an organized manner in a LoWPAN. The deployment can occur at once, or as an iterative process. The selected type of deployment has an impact on node density and location. This feature affects how to organize (manually or automatically) the LoWPAN and how to allocate addresses in the network.
o 部署:LoWPAN节点可以随机分散,也可以在LoWPAN中以有组织的方式部署。部署可以立即进行,也可以作为迭代过程进行。所选部署类型对节点密度和位置有影响。此功能影响如何组织(手动或自动)LoWPAN以及如何在网络中分配地址。
o Network Size: The network size takes into account nodes that provide the intended network capability. The number of nodes involved in a LoWPAN could be small (ten), moderate (several hundred), or large (over a thousand).
o 网络大小:网络大小考虑提供预期网络功能的节点。LoWPAN中涉及的节点数可以是小的(十个)、中等的(几百个)或大的(一千多个)。
o Power Source: The power source of nodes, whether the nodes are battery-powered or mains-powered, influences the network design. The power may also be harvested from solar cells or other sources of energy. Hybrid solutions are possible where only part of the network is mains-powered.
o 电源:节点的电源,无论节点是电池供电还是电源供电,都会影响网络设计。这种能量也可以从太阳能电池或其他能源中获取。只有部分网络由主电源供电时,混合解决方案才有可能实现。
o Connectivity: Nodes within a LoWPAN are considered "always connected" when there is a network connection between any two given nodes. However, due to external factors (e.g., extreme environment, mobility) or programmed disconnections (e.g.,
o 连接性:当任意两个给定节点之间存在网络连接时,低范围内的节点被视为“始终连接”。但是,由于外部因素(如极端环境、机动性)或编程断开(如:。,
sleeping mode), network connectivity can be from "intermittent" (i.e., regular disconnections) to "sporadic" (i.e., almost always disconnected). Differences in L2 duty-cycling settings may additionally impact connectivity due to highly varying bit rates.
睡眠模式),网络连接可以从“间歇性”(即定期断开)到“零星”(即几乎总是断开)。L2占空比设置的差异还可能由于高度变化的比特率而影响连接性。
o Multi-Hop Communication: The multi-hop communication factor highlights the number of hops that have to be traversed to reach the edge of the network or a destination node within it. A single hop may be sufficient for simple star topologies, but a multi-hop communication scheme is required for more elaborate topologies, such as meshes or trees. In previous work on LoWPANs by academia and industry, various routing mechanisms were introduced, such as data-centric, event-driven, address-centric, localization-based, geographical routing, etc. This document does not make use of such a fine granularity but rather uses topologies and single/ multi-hop communication.
o 多跳通信:多跳通信因子突出显示了到达网络边缘或其中的目标节点所必须经过的跳数。对于简单的星形拓扑,单跳可能就足够了,但是对于更复杂的拓扑,如网格或树,则需要多跳通信方案。在学术界和工业界先前关于LoWPANs的工作中,引入了各种路由机制,例如以数据为中心、事件驱动、以地址为中心、基于本地化、地理路由等。本文档没有使用如此精细的粒度,而是使用拓扑和单/多跳通信。
o Traffic Pattern: Several traffic patterns may be used in LoWPANs -- Point-to-Multipoint (P2MP), Multipoint-to-Point (MP2P), and Point-to-Point (P2P), to name a few.
o 流量模式:LoWPANs中可以使用几种流量模式——点对多点(P2MP)、多点对点(MP2P)和点对点(P2P),等等。
o Security Level: LoWPANs may carry sensitive information and require high-level security support where the availability, integrity, and confidentiality of the information are crucial.
o 安全级别:LoWPANs可能携带敏感信息,在信息的可用性、完整性和机密性至关重要的情况下,需要高级安全支持。
o Mobility: Inherent to the wireless characteristics of LoWPANs, nodes could move or be moved around. Mobility can be an induced factor (e.g., sensors in an automobile) -- and hence not predictable -- or a controlled characteristic (e.g., pre-planned movement in a supply chain).
o 移动性:LoWPANs的无线特性固有,节点可以移动或四处移动。流动性可能是一种诱导因素(例如,汽车中的传感器)——因此不可预测——或者是一种受控特征(例如,供应链中预先计划的流动)。
o Quality of Service (QoS): QoS issues in LoWPANs may be very different from the traditional end-to-end QoS, as in LoWPAN applications one end is not a single sensor node but often a group of sensor nodes. Parameters for QoS should consider collective data for latency, packet loss, data throughput, etc. In addition, QoS requirements can be different based on the data delivery model, such as event-driven, query-driven, continuous real-time, or continuous non-real-time; these delivery models usually coexist in LoWPAN applications. QoS issues in LoWPANs are more likely related to corresponding application-specific data delivery requirements within resource-constrained LoWPANs.
o 服务质量(QoS):LoWPAN中的QoS问题可能与传统的端到端QoS非常不同,因为在LoWPAN应用中,一端不是单个传感器节点,而是一组传感器节点。QoS参数应考虑时延、丢包、数据吞吐量等集体数据,另外,基于数据传输模型的QoS需求可以不同,如事件驱动、查询驱动、连续实时或连续非实时;这些交付模型通常在低泛应用程序中共存。LoWPANs中的QoS问题更可能与资源受限LoWPANs中相应的特定于应用程序的数据交付需求相关。
This section lists a fundamental set of LoWPAN application scenarios in terms of system design. A complete list of practical use cases is not the objective of this document.
本节从系统设计的角度列出了一组基本的低泛应用场景。实际用例的完整列表不是本文档的目标。
LoWPAN applications for industrial monitoring can be associated with a broad range of methods to increase productivity, energy efficiency, and safety of industrial operations in engineering facilities and manufacturing plants. Many companies currently use time-consuming and expensive manual monitoring to predict failures and to schedule maintenance or replacements in order to avoid costly manufacturing downtime. LoWPANs can be inexpensively installed to provide more frequent and more reliable data. The deployment of LoWPANs can reduce equipment downtime and eliminate manual equipment monitoring that is costly to perform. Additionally, data analysis functionality can be placed into the network, eliminating the need for manual data transfer and analysis.
用于工业监控的LoWPAN应用可与多种方法相关联,以提高工程设施和制造厂的生产率、能源效率和工业操作安全性。许多公司目前使用耗时且昂贵的手动监控来预测故障,并安排维护或更换,以避免昂贵的制造停机时间。LoWPANs可以便宜地安装,以提供更频繁、更可靠的数据。LoWPANs的部署可以减少设备停机时间,并消除执行成本高昂的手动设备监控。此外,可以将数据分析功能置于网络中,从而消除了手动数据传输和分析的需要。
Industrial monitoring can be largely split into the following application fields:
工业监控可大致分为以下应用领域:
o Process Monitoring and Control: This application field combines advanced energy metering and sub-metering technologies with wireless sensor networking in order to optimize factory operations, reduce peak demand, ultimately lower costs for energy, avoid machine downtimes, and increase operation safety.
o 过程监控:该应用领域将先进的能源计量和子计量技术与无线传感器网络相结合,以优化工厂运营,减少峰值需求,最终降低能源成本,避免机器停机,提高运营安全性。
A plant's monitoring boundary often does not cover the entire facility but only those areas considered critical to the process. Wireless connectivity that is easy to install extends this line to include peripheral areas and process measurements that were previously infeasible or impractical to reach with wired connections.
电厂的监测边界通常不覆盖整个设施,而仅覆盖对工艺至关重要的区域。易于安装的无线连接扩展了这条线路,包括以前无法通过有线连接达到的外围区域和过程测量。
o Machine Surveillance: This application field ensures product quality and efficient and safe equipment operation. Critical equipment parameters such as vibration, temperature, and electrical signature are analyzed for abnormalities that are suggestive of impending equipment failure.
o 机器监控:该应用领域确保产品质量和设备的高效安全运行。对振动、温度和电气特征等关键设备参数进行分析,以确定是否存在可能导致设备故障的异常情况。
o Supply Chain Management and Asset Tracking: With the retail industry being legally responsible for the quality of sold goods, early detection of inadequate storage conditions with respect to temperature will reduce the risk and cost of removing products from the sales channel. Examples include container shipping, product identification, cargo monitoring, distribution, and logistics.
o 供应链管理和资产跟踪:由于零售业对所售商品的质量负有法律责任,及早发现温度方面的储存条件不足将降低从销售渠道中移除产品的风险和成本。例如集装箱运输、产品识别、货物监控、配送和物流。
o Storage Monitoring: This application field includes sensor systems designed to prevent releases of regulated substances into ground water, surface water, and soil. This application field may also include theft/tampering prevention systems for storage facilities or other infrastructure, such as pipelines.
o 储存监测:该应用领域包括设计用于防止受管制物质释放到地下水、地表水和土壤中的传感器系统。该应用领域还可能包括存储设施或其他基础设施(如管道)的防盗/防篡改系统。
Example: Hospital Storage Rooms
示例:医院储藏室
In a hospital, maintenance of the right temperature in storage rooms is very critical. Red blood cells need to be stored at 2 to 6 degrees Celsius, blood platelets at 20 to 24 degrees C, and blood plasma below -18 degrees C. For anti-cancer medicine, maintaining a humidity of 45% to 55% is required. Storage rooms have temperature sensors and humidity sensors every 25 to 100 m, based on the floor plan and the location of shelves, as indoor obstacles distort the radio signals. At each blood pack, a sensor tag can be installed to track the temperature during delivery. A LoWPAN node is installed in each container of a set of blood packs. In this case, highly dense networks must be managed.
在医院里,保持储藏室的温度是非常关键的。红细胞需要储存在2到6摄氏度,血小板需要储存在20到24摄氏度,血浆需要储存在-18摄氏度以下。对于抗癌药物,需要保持45%到55%的湿度。根据平面图和货架位置,储藏室每隔25至100米配备一个温度传感器和湿度传感器,因为室内障碍物会扭曲无线电信号。在每个血液包上,都可以安装一个传感器标签来跟踪分娩期间的温度。LoWPAN节点安装在一组血液包装的每个容器中。在这种情况下,必须管理高度密集的网络。
All nodes are statically deployed and manually configured with either a single- or multi-hop connection. Different types of LoWPAN nodes are configured based on the service and network requirements. In particular, LCs play a role in aggregation of the sensed data from blood packs. In the extended networks, more than one LoWPAN LC can be installed in a storage room. In the case that the sensed data from an individual node is urgent event-driven data such as outrange of temperature or humidity, it will not be accumulated (and further delayed) by the LCs but immediately relayed.
所有节点都是静态部署的,并通过单跳或多跳连接手动配置。根据服务和网络需求配置不同类型的低泛节点。特别是,LCs在聚集来自血包的感测数据方面发挥作用。在扩展网络中,一个存储室内可以安装多个LoWPAN LC。在来自单个节点的感测数据是紧急事件驱动的数据(例如温度或湿度超出范围)的情况下,LCs不会累积(并进一步延迟)该数据,而是立即中继。
All LoWPAN nodes do not move unless the blood packs or a container of blood packs is moved. Moving nodes get connected by logical attachment to a new LoWPAN. When containers of blood packs are transferred to another place in the hospital or by ambulance, the LoWPAN nodes on the containers associate to a new LoWPAN.
除非移动血包或血包容器,否则所有LoWPAN节点都不会移动。移动节点通过逻辑连接到新的LoWPAN。当血液包装容器被转移到医院或救护车的另一个地方时,容器上的LoWPAN节点与新的LoWPAN关联。
This type of application works based on both periodic and event-driven notifications. Periodic data is used for monitoring temperature and humidity in the storage rooms. The data over or under a predefined threshold is meaningful to report. Blood cannot be used if it is exposed to the wrong environment for about 30 minutes. Thus, event-driven data sensed on abnormal occurrences is time-critical and requires secure and reliable transmission.
这种类型的应用程序基于定期通知和事件驱动通知工作。定期数据用于监测储藏室的温度和湿度。超过或低于预定义阈值的数据对于报告是有意义的。如果血液暴露在错误的环境中约30分钟,则不能使用。因此,在异常情况下检测到的事件驱动数据是时间关键的,需要安全可靠的传输。
LoWPANs must be provided with low installation and management costs, and for the transportation of blood containers, precise location tracking of containers is important. The hospital network manager or staff can be provided with an early warning of possible chain ruptures, for example, by conveniently accessing comprehensive online reports and data management systems.
LoWPANs必须具有较低的安装和管理成本,对于血液容器的运输,容器的精确位置跟踪非常重要。例如,通过方便地访问全面的在线报告和数据管理系统,可以向医院网络经理或工作人员提供可能的断链预警。
Dominant parameters in industrial monitoring scenarios:
工业监控场景中的主要参数:
o Deployment: Pre-planned, manually attached.
o 部署:预先计划,手动连接。
o Network Size: Medium to large size, high node density.
o 网络规模:中大型,节点密度高。
o Power Source: Battery-operated most of the time.
o 电源:大部分时间由电池供电。
o Connectivity: Always on for crucial processes.
o 连通性:对于关键流程,始终处于启用状态。
o Multi-Hop Communication: Multi-hop networking.
o 多跳通信:多跳网络。
o Traffic Pattern: P2P (actuator control), MP2P (data collection).
o 流量模式:P2P(执行器控制),MP2P(数据采集)。
o Security Level: Business-critical. Secure transmission must be guaranteed.
o 安全级别:业务关键型。必须保证安全传输。
o Mobility: None (except for asset tracking).
o 流动性:无(资产跟踪除外)。
o QoS: Important for time-critical event-driven data.
o QoS:对于时间关键型事件驱动数据非常重要。
o Other Issues: Sensor network management, location tracking, real-time early warning.
o 其他问题:传感器网络管理、位置跟踪、实时预警。
The network configuration of the above use case can differ substantially by system design. As illustrated in Figure 1, the simplest way is to build a star topology inside of each storage room. Based on the layout and size of the storage room, the LoWPAN can be configured in a different way -- mesh topology -- as shown in Figure 2.
上述用例的网络配置可能会因系统设计而显著不同。如图1所示,最简单的方法是在每个存储室内构建星形拓扑。根据储藏室的布局和大小,可以用不同的方式配置LoWPAN——网格拓扑——如图2所示。
Each LoWPAN node may reach the LBR by a predefined routing/forwarding mechanism. Each LoWPAN node configures its link-local address and obtains a prefix from its LBR by a 6LoWPAN ND procedure [6]. LoWPAN nodes need to build a multi-hop connection to reach the LCs and LBR.
每个低泛节点可以通过预定义的路由/转发机制到达LBR。每个LoWPAN节点配置其链路本地地址,并通过6LoWPAN ND过程从其LBR获取前缀[6]。LoWPAN节点需要建立多跳连接才能到达LCs和LBR。
Secure data transmission and authentication are crucial in a hospital scenario, to prevent personal information from being retrieved by an adversary. Confidential data must be encrypted not only in transmission, but also when stored on nodes, because nodes can potentially be stolen.
安全的数据传输和身份验证在医院场景中至关重要,以防止对手检索个人信息。机密数据不仅在传输中必须加密,而且在存储在节点上时也必须加密,因为节点可能被盗。
The data volume is usually not so large in this case, but is sensitive to delay. Data aggregators can be installed for each storage room, or just one data aggregator can collect all data. To make a light transmission, UDP is likely to be chosen, but a secure transmission and security mechanism must be added. To increase security, link-layer mechanisms and/or additional security mechanisms should be used.
在这种情况下,数据量通常不太大,但对延迟很敏感。可以为每个存储室安装数据聚合器,或者只有一个数据聚合器可以收集所有数据。要进行光传输,可能会选择UDP,但必须添加安全传输和安全机制。为了提高安全性,应使用链路层机制和/或其他安全机制。
Because a failure of a LoWPAN node can critically affect the storage of the blood packs, network management is important in this use case. A lightweight management mechanism must be provided for this management.
由于LoWPAN节点的故障会严重影响血液包的存储,因此在本用例中,网络管理非常重要。必须为此管理提供轻量级管理机制。
The service quality of this case is highly related to effective handling of event-driven data that is delay intolerant and mission critical. Wrong humidity and wrong temperature are events that need to be detected as quickly and reliably as possible. It is important to provide efficient resource usage for such data with consideration of minimal usage of energy. Energy-aware QoS support in wireless sensor networks is a challenging issue [12]. It can be considered to provide appropriate data aggregation for minimizing delay and maximizing accuracy of delivery by using power-affluent nodes, or can be aided by middleware or other types of network elements.
本案例的服务质量与有效处理事件驱动的数据高度相关,这些数据具有延迟不容忍性和任务关键性。错误的湿度和错误的温度是需要尽快可靠地检测到的事件。为此类数据提供有效的资源利用率,同时考虑到最小的能源使用,这一点很重要。无线传感器网络中的能量感知QoS支持是一个具有挑战性的问题[12]。可以考虑通过使用功率充足的节点来提供适当的数据聚合,以最小化延迟并最大限度地提高交付的准确性,或者可以通过中间件或其他类型的网络元素来辅助。
When a container is moved out of the storage room and connected to another hospital system (if the hospital buildings are fully or partly covered with LoWPANs), a mechanism to rebind to a new parent node and a new LoWPAN must be supported. In the case that it is moved by an ambulance, it will be connected to an LBR in the vehicle. This type of mobility is supported by the 6LoWPAN ND and routing mechanism.
当容器移出存储室并连接到另一个医院系统时(如果医院建筑全部或部分被LoWPANs覆盖),必须支持重新绑定到新父节点和新LoWPAN的机制。如果它由救护车移动,它将连接到车辆中的LBR。这种移动性由6LoWPAN ND和路由机制支持。
LoWPANs must be provided with low installation and management costs, providing benefits such as reduced inventory, and precise location tracking of containers and mobile equipment (e.g., beds moved in the hospital, ambulances).
LoWPANs必须具有较低的安装和管理成本,提供的好处包括减少库存、精确跟踪容器和移动设备(例如,医院内移动的床、救护车)的位置。
LBR | LBR: LoWPAN Border Router LC----------LC----------LC LC: Local Controller node / | \ / | \ / | \ (Data Aggregator) n n n n n n n n n n: LoWPAN node
LBR | LBR: LoWPAN Border Router LC----------LC----------LC LC: Local Controller node / | \ / | \ / | \ (Data Aggregator) n n n n n n n n n n: LoWPAN node
Figure 1: Storage Rooms with a Simple Star Topology
图1:具有简单星形拓扑的存储室
+------------+-----------+ | | | LBR: LoWPAN Border Router LBR LBR LBR (LC) LC: Local Controller node | | | (Data Aggregator) LC - n LC - n n n: LoWPAN node / | | | | / \ n n - LC n - n - n n - n | | \ | |\ n n n - n n n n
+------------+-----------+ | | | LBR: LoWPAN Border Router LBR LBR LBR (LC) LC: Local Controller node | | | (Data Aggregator) LC - n LC - n n n: LoWPAN node / | | | | / \ n n - LC n - n - n n - n | | \ | |\ n n n - n n n n
Figure 2: Storage Rooms with a Mesh Topology
图2:具有网状拓扑的存储室
Intelligent monitoring in facility management can make safety checks and periodic monitoring of the architecture status highly efficient. Mains-powered nodes can be included in the design phase of construction, or battery-equipped nodes can be added afterwards. All nodes are static and manually deployed. Some data is not critical for security protection (such as periodic or query-driven notification of normal room temperature), but event-driven emergency data (such as a fire alarm) must be handled in a very critical manner.
设施管理中的智能监控可以高效地进行安全检查和定期监控建筑状态。电源供电的节点可包括在施工的设计阶段,或可随后添加配备电池的节点。所有节点都是静态和手动部署的。有些数据对于安全保护来说并不重要(如定期或查询驱动的正常室温通知),但事件驱动的紧急数据(如火灾警报)必须以非常关键的方式处理。
Example: Bridge Safety Monitoring
示例:桥梁安全监测
A 1000-m-long concrete bridge with 10 pillars is described. Each pillar and the bridge body contain 5 sensors to measure the water level, and 5 vibration sensors are used to monitor its structural health. The LoWPAN nodes are deployed to have 100-m line-of-sight distance from each other. All nodes are placed statically and manually configured with a single-hop connection to the local coordinator. All LoWPAN nodes are immobile while the service is provided. Except for the pillars, there are no special obstacles causing attenuation of node signals, but careful configuration is needed to prevent signal interference between LoWPAN nodes.
描述了一座1000米长的混凝土桥,桥上有10根柱子。每根立柱和桥梁主体包含5个传感器,用于测量水位,5个振动传感器用于监测其结构健康状况。LoWPAN节点相互之间的视距为100米。所有节点都以静态方式放置,并通过与本地协调器的单跳连接手动配置。在提供服务时,所有LoWPAN节点都是不可移动的。除支柱外,没有导致节点信号衰减的特殊障碍物,但需要小心配置以防止低泛节点之间的信号干扰。
The physical network topology is changed in case of node failure. On the top part of each pillar, a sink node is placed to collect the sensed data. The sink nodes of each pillar become data-gathering points of the LoWPAN hosts at the pillar and act as local coordinators.
当节点发生故障时,将更改物理网络拓扑。在每个支柱的顶部,放置一个接收器节点以收集感测数据。每个支柱的汇聚节点成为支柱处LoWPAN主机的数据收集点,并充当本地协调员。
This use case can be extended to medium or large sensor networks to monitor a building or, for instance, the safety status of highways and tunnels. Larger networks of the same kind still have similar characteristics, such as static node placement and manual deployment; depending on the blueprint of the structure, mesh topologies will be built with mains-powered relay points. Periodic, query-driven, and event-driven real-time data gathering is performed, and the emergency event-driven data must be delivered without delay.
该用例可以扩展到中型或大型传感器网络,以监控建筑物或(例如)公路和隧道的安全状态。同类大型网络仍具有类似的特点,如静态节点布置和手动部署;根据结构的蓝图,网状拓扑结构将采用主电源供电的中继点构建。执行定期、查询驱动和事件驱动的实时数据收集,并且必须毫不延迟地交付紧急事件驱动的数据。
Dominant parameters in structural monitoring applications:
结构监测应用中的主要参数:
o Deployment: Static, organized, pre-planned.
o 部署:静态、有组织、预先计划。
o Network Size: Small (dozens of nodes) to large.
o 网络规模:从小到大(几十个节点)。
o Power Source: Mains-powered nodes are mixed with battery-powered nodes. (Mains-powered nodes will be used for local coordination or relays.)
o 电源:主电源供电节点与电池供电节点混合使用。(电源供电节点将用于本地协调或继电器。)
o Connectivity: Always connected, or intermittent via sleeping mode scheduling.
o 连接:始终连接,或通过睡眠模式计划间歇性连接。
o Multi-Hop Communication: It is recommended that multi-hop mesh networking be supported.
o 多跳通信:建议支持多跳网状网络。
o Traffic Pattern: MP2P (data collection), P2P (localized querying).
o 流量模式:MP2P(数据收集),P2P(本地化查询)。
o Security Level: Safety-critical. Secure transmission must be guaranteed. Only authenticated users must be able to access and handle the data.
o 安全级别:安全关键。必须保证安全传输。只有经过身份验证的用户才能访问和处理数据。
o Mobility: None.
o 流动性:无。
o QoS: Emergency notification (fire, over-threshold vibrations, water level, etc.) is required to have priority of delivery and must be transmitted in a highly reliable manner.
o QoS:紧急通知(火灾、超阈值振动、水位等)必须具有优先发送权,并且必须以高度可靠的方式发送。
o Other Issues: Accurate sensing and reliable transmission are important. In addition, sensor status reports should be maintained in a reliable monitoring system.
o 其他问题:准确的传感和可靠的传输非常重要。此外,传感器状态报告应保存在可靠的监测系统中。
The network configuration of this use case can be done via simple topologies; however, there are many extended use cases for more complex structures. The example bridge monitoring case may be the simplest case. (An example topology is illustrated in Figure 3.)
这个用例的网络配置可以通过简单的拓扑结构来完成;然而,对于更复杂的结构,有许多扩展用例。示例桥梁监控案例可能是最简单的案例。(图3显示了一个示例拓扑。)
The LoWPAN nodes are installed in place after manual optimization of their location. As the communication of the leaf LoWPAN nodes may be limited to the data-gathering points, both 16-bit and 64-bit addresses can be used for IPv6 link-local addresses [3].
在手动优化其位置后,将LoWPAN节点安装到位。由于叶LoWPAN节点的通信可能限于数据收集点,因此16位和64位地址都可用于IPv6链路本地地址[3]。
Each pillar might have one LC for data collection. Communication schedules should be set up between leaf nodes and their LC to efficiently gather the different types of sensed data. Each data packet may include meta-information about its data, or the type of sensors could be encoded in its address during address allocation.
每个支柱可能有一个LC用于数据收集。应在叶节点及其LC之间建立通信调度,以有效收集不同类型的感测数据。每个数据包可以包括关于其数据的元信息,或者在地址分配期间可以在其地址中编码传感器的类型。
This type of application works based on periodic, query-driven, and event-driven notifications. The data over or under a predefined threshold is meaningful to report. Event-driven data sensed on abnormal occurrences is time-critical and requires secure and reliable transmission. Alternatively, for energy conservation, all nodes may have periodic and long sleep modes but wake up on certain events. To ensure the reliability of such emergency event-driven data, such data is immediately relayed to a power-affluent or mains-powered node that usually takes a LoWPAN router role and does not go into a long sleep status. The data-gathering entity can be programmed to trigger actuators installed in the infrastructure when a certain threshold value has been reached.
这种类型的应用程序基于定期、查询驱动和事件驱动的通知工作。超过或低于预定义阈值的数据对于报告是有意义的。在异常事件中检测到的事件驱动数据是时间关键型的,需要安全可靠的传输。或者,为了节能,所有节点都可能具有周期性和长时间睡眠模式,但在某些事件中会醒来。为确保此类紧急事件驱动数据的可靠性,此类数据将立即中继到电源充足或电源供电的节点,该节点通常担任低泛路由器角色,且不会进入长睡眠状态。数据采集实体可编程为在达到某个阈值时触发安装在基础设施中的执行器。
Due to the safety-critical data of the structure, authentication and security are important issues here. Only authenticated users must be allowed to access the data. Additional security should be provided at the LBR for restricting access from outside of the LoWPAN. The LBR may take charge of authentication of LoWPAN nodes. Reliable and secure data transmission must be guaranteed.
由于结构的安全关键数据,身份验证和安全性是这里的重要问题。只有经过身份验证的用户才能访问数据。LBR应提供额外的安全措施,以限制从LoWPAN外部进入。LBR可负责低泛节点的认证。必须保证可靠和安全的数据传输。
LBR - LC ----- LC ------ LC LBR: LoWPAN Border Router /| | | LC: Local Controller node n n n - n - n n - n n: LoWPAN node /\ | | | | n n n - n n - n - n
LBR - LC ----- LC ------ LC LBR: LoWPAN Border Router /| | | LC: Local Controller node n n n - n - n n - n n: LoWPAN node /\ | | | | n n n - n n - n - n
Figure 3: A Bridge Monitoring Scenario
图3:桥梁监控场景
The "Connected" Home or "Smart" home is without doubt an area where LoWPANs can be used to support an increasing number of services:
“联网”家庭或“智能”家庭无疑是一个可以使用LoWPANs支持越来越多服务的领域:
o Home safety/security
o 家居安全/保安
o Home automation and control
o 家庭自动化与控制
o Healthcare (see Section 3.4)
o 医疗保健(见第3.4节)
o Smart appliances and home entertainment systems
o 智能电器和家庭娱乐系统
In home environments, LoWPANs typically comprise a few dozen and, probably in the near future, a few hundred nodes of various types: sensors, actuators, and connected objects.
在家庭环境中,LoWPANs通常包括几十个节点,可能在不久的将来还包括几百个不同类型的节点:传感器、执行器和连接的对象。
Example: Home Automation
例如:家庭自动化
The home automation and control system LoWPAN offers a wide range of services: local or remote access from the Internet (via a secured edge router) to monitor the home (temperature, humidity, activation of remote video surveillance, status of the doors (locked or open), etc.), as well as home control (activate air conditioning/heating, door locks, sprinkler systems, etc.). Fairly sophisticated systems can also optimize the level of energy consumption, thanks to a wide range of input from various sensors connected to the LoWPAN -- light sensors, presence detection, temperature, etc. -- in order to control electric window shades, chillers, air flow control, air conditioning, and heating.
家庭自动化和控制系统LoWPAN提供了广泛的服务:从互联网(通过安全边缘路由器)进行本地或远程访问,以监控家庭(温度、湿度、远程视频监控的激活、门的状态(锁定或打开)等),以及家庭控制(启动空调/供暖、门锁、喷水灭火系统等)。由于连接到LoWPAN的各种传感器(光传感器、状态检测、温度等)的广泛输入,相当复杂的系统还可以优化能耗水平,以便控制电动窗帘、冷却器、气流控制、空调和加热。
With the emergence of "Smart Grid" applications, the LoWPAN may also have direct interactions with the Grid itself via the Internet to report the amount of kilowatts that could be load-shed (home to Grid) and to receive dynamic load-shedding information if/when required (Grid to home): This application is also referred to as a Demand-Response application. Another service, known as Demand-Side Management (DSM), could be provided by utilities to monitor and report to the user his energy consumption, with a fine granularity (on a per-device basis). A user can also receive other inputs from the utility, such as dynamic pricing; according to local policy, the utility may then turn some appliances on or off in order to reduce its energy bill.
随着“智能电网”应用的出现,LoWPAN还可以通过互联网与电网本身直接交互,以报告可减负荷的千瓦数(家庭到电网),并在需要时接收动态减负荷信息(家庭到电网):此应用程序也称为需求响应应用程序。另一项服务称为需求侧管理(DSM),可由公用事业公司提供,以精细的粒度(基于每个设备)监测并向用户报告其能耗。用户还可以从实用程序接收其他输入,例如动态定价;根据当地政策,公用事业公司可能会打开或关闭一些电器,以减少其能源费用。
In terms of home safety and security, the LoWPAN is made up of motion sensors and audio sensors, sensors at doors and windows, and video cameras; additional sensors can be added for safety (gas, water, CO, Radon, smoke detection). The LoWPAN is typically comprised of a few dozen nodes forming an ad hoc network with multi-hop routing, since the nodes may not be in direct range. It is worth mentioning that the number of devices tends to grow, considering the number of new applications for the home. In its simplest form, all nodes are static and communicate with a central control module, but more sophisticated scenarios may also involve inter-device communication. For example, a motion/presence sensor may send a multicast message to a group of lights to be switched on, or a video camera may be activated to send a video stream to a cell phone via a gateway.
在家庭安全和安保方面,LoWPAN由运动传感器和音频传感器、门窗传感器和摄像机组成;可以添加额外的安全传感器(气体、水、CO、氡、烟雾探测)。LoWPAN通常由几十个节点组成,形成具有多跳路由的自组织网络,因为这些节点可能不在直接范围内。值得一提的是,考虑到家庭新应用的数量,设备的数量趋于增长。在其最简单的形式中,所有节点都是静态的,并与中央控制模块通信,但更复杂的场景也可能涉及设备间通信。例如,运动/存在传感器可以向要打开的一组灯发送多播消息,或者可以激活摄像机以经由网关向手机发送视频流。
Ergonomics in connected homes is key, and the LoWPAN must be self-managed and easy to install. Traffic patterns may vary greatly, depending on applicability; so does the level of reliability and QoS expected from the LoWPAN. Humidity sensing is typically not critical and requires no immediate action, whereas tele-assistance or gas-leak detection is critical and requires a high degree of reliability. Furthermore, although some actions may not involve critical data, the response time and network delays must still be on the order of a few hundred milliseconds for optimal user experience (e.g., use a remote control to switch a light on). A minority of nodes are mobile (with slow motion). With the emergence of energy-related applications, it becomes crucial to preserve data confidentiality. Connected home LoWPANs usually do not require multi-topology or QoS routing. Fairly simple QoS mechanisms are enough for handling emergency data; they can be programmed to alarm via actuators or to operate sprinklers.
连接家庭的人体工程学是关键,LoWPAN必须自我管理且易于安装。根据适用性的不同,交通模式可能会有很大差异;LoWPAN预期的可靠性和QoS水平也是如此。湿度感应通常不重要,不需要立即采取行动,而远程协助或气体泄漏检测则至关重要,需要高度的可靠性。此外,尽管某些操作可能不涉及关键数据,但响应时间和网络延迟仍必须在几百毫秒左右,以获得最佳用户体验(例如,使用遥控器打开灯)。少数节点是移动的(慢动作)。随着能源相关应用的出现,保护数据机密性变得至关重要。连接的家庭低端通常不需要多拓扑或QoS路由。相当简单的QoS机制足以处理紧急数据;它们可以编程为通过执行器报警或操作喷水装置。
Dominant parameters for home automation applications:
家庭自动化应用的主要参数:
o Deployment: Multi-hop topologies.
o 部署:多跳拓扑。
o Network Size: Medium number of nodes, potentially high density.
o 网络规模:中等数量的节点,潜在的高密度。
o Power Source: Mix of battery-powered and mains-powered devices.
o 电源:电池供电和电源供电设备的混合。
o Connectivity: Intermittent (usage-dependent sleep modes).
o 连接:间歇性(依赖于使用情况的睡眠模式)。
o Multi-Hop Communication: No requirement for multi-topology or QoS routing.
o 多跳通信:不需要多拓扑或QoS路由。
o Traffic Pattern: P2P (inter-device), P2MP, and MP2P (polling).
o 流量模式:P2P(设备间)、P2MP和MP2P(轮询)。
o Security Level: Authentication and encryption required.
o 安全级别:需要身份验证和加密。
o Mobility: Some degree of mobility.
o 流动性:某种程度的流动性。
o QoS: Support of limited QoS for emergency data (alarm).
o QoS:支持紧急数据(报警)的有限QoS。
In the home automation use case, the network topology is made of a mix of battery-operated and mains-powered nodes that communicate with each other. An LBR provides connectivity to the outside world for control management (Figure 4).
在家庭自动化用例中,网络拓扑由相互通信的电池供电和电源供电节点组成。LBR为控制管理提供与外部世界的连接(图4)。
In the home network, installation and management must be extremely simple for the user. Link-local IPv6 addresses can be used by nodes with no external communication, and the LBR allocates routable addresses to communicate with other LoWPAN nodes not reachable over a single radio transmission.
在家庭网络中,用户的安装和管理必须非常简单。链路本地IPv6地址可由没有外部通信的节点使用,并且LBR分配可路由地址以与通过单个无线电传输无法到达的其他低潘节点通信。
n --- n | | LBR: LoWPAN Border Router Internet/ ----- LBR/LC -- n --- n ---- LC LC: Local Controller node Utility network | | /|\ n: LoWPAN node n ---- n n n n
n --- n | | LBR: LoWPAN Border Router Internet/ ----- LBR/LC -- n --- n ---- LC LC: Local Controller node Utility network | | /|\ n: LoWPAN node n ---- n n n n
(outside) (home automation system)
(外部)(家庭自动化系统)
Figure 4: Home Automation Scenario
图4:家庭自动化场景
In some scenarios, traffic will be sent to a LC for processing; the LC may in turn decide on local actions (switch a light on, ...). In other scenarios, all devices will send their data to the LCs, which in turn may also act as the LBR for data processing and potential relay of data outside of the LoWPAN. It does not mean that all devices communicate with each other via the LC and LBR. For the sake of illustration, some of the data may be processed to trigger local action (e.g., switch off an appliance), simply store and send data once enough data has been accumulated (e.g., energy consumption for the past 6 hours for a set of appliances), or trigger an alarm that is immediately sent to a datacenter (e.g., gas-leak detection).
在某些情况下,流量将被发送到LC进行处理;LC可依次决定本地行动(打开灯,…)。在其他情况下,所有设备将向LCs发送其数据,LCs也可作为LBR进行数据处理,并可能在LoWPAN之外进行数据中继。这并不意味着所有设备都通过LC和LBR相互通信。为了说明,可以处理一些数据以触发本地操作(例如,关闭设备),在积累足够的数据(例如,一组设备过去6小时的能耗)后简单地存储和发送数据,或者触发立即发送到数据中心的警报(例如,气体泄漏检测)。
Although in the majority of cases nodes within the LoWPAN will be in direct range, some nodes will reach the LBR/LC with a path of 2-3 hops (with the emergence of several low-power media, such as low-power PLC) in which case LoWPAN routers will be deployed in the home to interconnect the various IPv6 links.
尽管在大多数情况下,LoWPAN内的节点将处于直接范围内,但一些节点将以2-3跳的路径到达LBR/LC(随着一些低功耗介质的出现,如低功耗PLC),在这种情况下,LoWPAN路由器将部署在家庭中,以互连各种IPv6链路。
The home LoWPAN must be able to provide extremely reliable communication in support of some specific applications (e.g., fire, gas-leak detection, health monitoring), whereas other applications may not be critical (e.g., humidity monitoring). Such emergency data has the same QoS issues as does event-driven data in other applications and can be delivered by pre-defined paths through mains-powered nodes without being stored in intermediate nodes such as LCs. Similarly, some information may require the use of security mechanisms for authentication and confidentiality.
家用LoWPAN必须能够提供极其可靠的通信,以支持某些特定应用(例如,火灾、气体泄漏检测、健康监测),而其他应用可能并不重要(例如,湿度监测)。此类紧急数据与其他应用程序中的事件驱动数据具有相同的QoS问题,可以通过预先定义的路径通过主电源供电的节点传送,而无需存储在中间节点(如LCs)中。同样,某些信息可能需要使用安全机制进行身份验证和保密。
LoWPANs are envisioned to be heavily used in healthcare environments. They have a high potential for easing the deployment of new services by getting rid of cumbersome wires and simplifying patient care in hospitals and at home (home care). In healthcare environments, delayed or lost information may be a matter of life or death.
LoWPANs预计将在医疗环境中大量使用。通过摆脱笨重的电线,简化医院和家中的患者护理(家庭护理),它们在简化新服务部署方面具有很大的潜力。在医疗保健环境中,信息延迟或丢失可能是生死攸关的问题。
Various systems, ranging from simple wearable remote controls for tele-assistance or intermediate systems with wearable sensor nodes monitoring various metrics to more complex systems for studying life dynamics, can be supported by LoWPANs. In the latter category, a large amount of data from various LoWPAN nodes can be collected: movement pattern observation, checks that medicaments have been taken, object tracking, and more. An example of such a deployment is described in [10] using the concept of "personal networks".
LoWPANs可以支持各种系统,从用于远程协助的简单可穿戴遥控器,或带有可穿戴传感器节点的中间系统,监测各种指标,到用于研究生命动力学的更复杂系统。在后一类中,可以从各种LoWPAN节点收集大量数据:运动模式观察、检查是否服用了药物、目标跟踪等等。[10]中使用“个人网络”的概念描述了此类部署的示例。
Example: Healthcare at Home by Tele-Assistance
示例:通过远程协助实现家庭医疗保健
A senior citizen who lives alone wears one to several wearable LoWPAN nodes to measure heartbeat, pulse rate, etc. Dozens of LoWPAN nodes are densely installed at home for movement detection. An LBR at home will send the sensed information to a connected healthcare center. Portable base stations with LCDs may be used to check the data at home, as well. The different roles of devices have different duty cycles, which affect node management.
一个独居的老年人佩戴一到几个可穿戴的LoWPAN节点来测量心跳、脉搏率等。几十个LoWPAN节点密集安装在家中用于运动检测。家中的LBR将感测到的信息发送到连接的医疗中心。带有液晶显示器的便携式基站也可用于在家检查数据。设备的不同角色具有不同的占空比,这会影响节点管理。
Multipath interference may often occur due to the mobility of patients at home, where there are many walls and obstacles. Even during sleep, the change of body position may affect radio propagation.
由于患者在家中有许多墙壁和障碍物,因此经常会发生多路径干扰。即使在睡眠期间,身体位置的变化也可能影响无线电传播。
Data is gathered in both periodic and event-driven fashion. In this application, event-driven data can be very time-critical. Thus, real-time and reliable transmission must be guaranteed.
数据以周期性和事件驱动的方式收集。在此应用程序中,事件驱动的数据可能对时间非常关键。因此,必须保证实时可靠的传输。
Privacy also becomes a serious issue in this case, as the sensed data is very personal. A small set of secret keys can be shared within the sensor nodes during bootstrapping procedures in order to build a secure link without using much memory and energy. In addition, different data will be provided to the hospital system from that given to a patient's family members. Role-based access control is needed to support such services; thus, support of authorization and authentication is important.
在这种情况下,隐私也成为一个严重的问题,因为感知到的数据是非常私人的。在引导过程中,可以在传感器节点内共享一小组密钥,以便在不使用大量内存和能量的情况下构建安全链路。此外,将向医院系统提供与患者家属不同的数据。需要基于角色的访问控制来支持这些服务;因此,对授权和身份验证的支持非常重要。
Dominant parameters in healthcare applications:
医疗保健应用中的主要参数:
o Deployment: Pre-planned.
o 部署:预先计划。
o Network Size: Small, high node density.
o 网络规模:小,节点密度高。
o Power Source: Hybrid.
o 电源:混合动力。
o Connectivity: Always on.
o 连接:始终打开。
o Multi-Hop Communication: Multi-hop for home-care devices; patient's body network is star topology. Multipath interference due to walls and obstacles at home must be considered.
o 多跳通信:家庭护理设备的多跳通信;患者的身体网络为星形拓扑。必须考虑家中墙壁和障碍物造成的多径干扰。
o Traffic Pattern: MP2P/P2MP (data collection), P2P (local diagnostic).
o 流量模式:MP2P/P2MP(数据收集),P2P(本地诊断)。
o Security Level: Data privacy and security must be provided. Encryption is required. It is required that role-based access control be supported by a lightweight authentication mechanism.
o 安全级别:必须提供数据隐私和安全性。需要加密。要求轻量级身份验证机制支持基于角色的访问控制。
o Mobility: Moderate (patient's mobility).
o 活动度:中等(患者的活动度)。
o QoS: High level of reliability support (life-or-death implication), role-based.
o QoS:高水平的可靠性支持(生死攸关),基于角色。
o Other Issues: Plug-and-play configuration is required for mainly non-technical end-users. Real-time data acquisition and analysis are important. Efficient data management is needed for various devices that have different duty cycles, and for role-based data control. Reliability and robustness of the network are also essential.
o 其他问题:主要非技术最终用户需要即插即用配置。实时数据采集和分析非常重要。对于具有不同占空比的各种设备以及基于角色的数据控制,需要高效的数据管理。网络的可靠性和鲁棒性也至关重要。
In this use case, the local network size is rather small (say, 10 nodes or less). The home care system is statically configured with multi-hop paths, and the patient's body network can be built as a star topology. The LBR at home is the sink node in the routing path
在这个用例中,本地网络的大小相当小(例如,10个节点或更少)。家庭护理系统静态配置为多跳路径,患者的身体网络可以构建为星形拓扑。家中的LBR是路由路径中的汇聚节点
from sources on the patient's body. A plug-and-play configuration is required. As the communication of the system is limited to a home environment, both 16-bit and 64-bit addresses can be used for IPv6 link-local addresses [3]. An example topology is provided in Figure 5.
来自患者身体上的来源。需要即插即用配置。由于系统的通信仅限于家庭环境,16位和64位地址均可用于IPv6链路本地地址[3]。图5提供了一个示例拓扑。
The patient's body network can be simply configured as a star topology with a LC dealing with data aggregation and dynamic network attachment when the patient moves around at home. As multipath interference may often occur due to the patient's mobility at home, the deployment of LoWPAN nodes and transmission paths should be well considered. At home, some nodes can be installed with power-affluence status, and those LoWPAN nodes can be used for relaying points or data aggregation points.
患者的身体网络可以简单地配置为星形拓扑,LC处理患者在家走动时的数据聚合和动态网络连接。由于患者在家中的移动性可能会经常发生多路径干扰,因此应充分考虑低泛节点和传输路径的部署。在家中,一些节点可以安装电源充足状态,而那些低泛节点可以用于中继点或数据聚合点。
The sensed information must be maintained with the identification of the patient, no matter whether the patient visits the connected hospital or stays at home. If the patient's LoWPAN uses a globally unique IPv6 address, the address can be used for patient identification. However, this incurs a cost in terms of privacy and security. The hospital LoWPAN to which the patient's information is transferred needs to operate an additional identification system, together with a strong authority and authentication mechanism. The connection between the LBR at home and the LBR at the hospital must be reliable and secure, as the data is privacy-critical. To achieve this, an additional policy for security between the two LoWPANs is recommended.
无论患者是访问连接的医院还是呆在家中,都必须使用患者的身份来维护感知到的信息。如果患者的LoWPAN使用全局唯一的IPv6地址,则该地址可用于患者身份识别。然而,这会带来隐私和安全方面的成本。将患者信息传输到的医院LoWPAN需要运行额外的身份识别系统,以及强大的授权和认证机制。家庭LBR和医院LBR之间的连接必须可靠且安全,因为数据对隐私至关重要。为了实现这一点,建议在两个LoWPANs之间采用额外的安全策略。
n - n I: Internet | | LBR: Edge Router LBR --- I -- LBR - n - n - LC LC: Local Controller node /|\ | | /|\ n: LoWPAN node .. . .. n -- n n n n
n - n I: Internet | | LBR: Edge Router LBR --- I -- LBR - n - n - LC LC: Local Controller node /|\ | | /|\ n: LoWPAN node .. . .. n -- n n n n
(hospital) (home system) (patient)
(医院)(家庭系统)(病人)
Figure 5: A Mobile Healthcare Scenario
图5:移动医疗场景
LoWPANs play an important role in intelligent transportation systems. Incorporated into roads, vehicles, and traffic signals, they contribute to the improvement of safety in transportation systems. Through traffic or air-quality monitoring, they increase the possibility of traffic flow optimization, and they help reduce road congestion.
LoWPANs在智能交通系统中扮演着重要的角色。将其纳入道路、车辆和交通信号中,有助于改善交通系统的安全性。通过交通或空气质量监测,它们增加了交通流优化的可能性,并有助于减少道路拥堵。
Example: Telematics
示例:远程信息处理
As shown in Figure 6, LoWPAN nodes for motion monitoring are incorporated into roads during road construction. When a car passes over these nodes, it is then possible to track, for safety purposes, the trajectory (path) and velocity of the car.
如图6所示,在道路施工期间,将用于运动监控的LoWPAN节点合并到道路中。当汽车经过这些节点时,出于安全目的,可以跟踪汽车的轨迹(路径)和速度。
The lifetime of LoWPAN nodes incorporated into roads is expected to be as long as the lifetime of the roads (about 10 years). Multi-hop communication is possible between LoWPAN nodes, and the network should be able to cope with the deterioration over time of node density due to power failures. Sink nodes placed at the side of the road are most likely mains-powered; LoWPAN nodes in the roads run on batteries. Power-saving schemes might intermittently disconnect the nodes. A rough estimate of 4 nodes per square meter is needed. Other applications may involve car-to-car communication for increased road safety.
纳入道路的低跨度节点的寿命预计与道路的寿命相同(约10年)。低泛节点之间可以进行多跳通信,网络应能够应对因电源故障导致的节点密度随时间的恶化。位于道路一侧的汇节点最有可能由主电源供电;道路中的LoWPAN节点使用电池运行。节能方案可能会间歇性断开节点连接。粗略估计每平方米需要4个节点。其他应用可能涉及车对车通信,以提高道路安全。
Dominant parameters in vehicle telematics applications:
车辆远程通信应用中的主要参数:
o Deployment: Pre-planned (road, vehicle).
o 部署:预先计划(道路、车辆)。
o Network Size: Large (road infrastructure), small (vehicle).
o 网络规模:大型(道路基础设施),小型(车辆)。
o Power Source: Hybrid.
o 电源:混合动力。
o Connectivity: Intermittent.
o 连通性:间歇性。
o Multi-Hop Communication: Multi-hop, especially ad hoc.
o 多跳通信:多跳通信,特别是自组织通信。
o Traffic Pattern: Mostly MP2P, P2MP.
o 流量模式:主要为MP2P、P2MP。
o Security Level: Handling physical damage and link failure.
o 安全级别:处理物理损坏和链路故障。
o Mobility: None (road infrastructure), high (vehicle).
o 机动性:无(道路基础设施),高(车辆)。
For this use case, the network topology includes fixed LBRs that are mains-powered and have a connection to high-speed networks (e.g., the Internet) in order to reach the transportation control center (Figure 6). These LBRs may be logically combined with a LC as a data sink to gather sensed data from a number of LoWPAN nodes inserted in the road pavement. In the road infrastructure, a LoWPAN with one LBR forms a fixed network, and the LoWPAN nodes are installed by manual optimization of their location.
对于这个用例,网络拓扑包括固定的LBR,这些LBR由电源供电,并连接到高速网络(如互联网),以便到达运输控制中心(图6)。这些lbr可与LC逻辑组合作为数据接收器,以从插入路面中的多个低pan节点收集感测数据。在道路基础设施中,具有一个LBR的LoWPAN形成固定网络,LoWPAN节点通过手动优化其位置来安装。
+-----+ | LBR |--------------------------- LBR ... +-----+ (at the roadside) -------|------------------------------ | n -- n --- n --- n +---|---+ LBR: LoWPAN Border Router / \ | | n-n-n | n: LoWPAN node n n n +---|---+ (cars) --------------------------------------
+-----+ | LBR |--------------------------- LBR ... +-----+ (at the roadside) -------|------------------------------ | n -- n --- n --- n +---|---+ LBR: LoWPAN Border Router / \ | | n-n-n | n: LoWPAN node n n n +---|---+ (cars) --------------------------------------
Figure 6: Telematics Scenario
图6:远程通信场景
Given the fact that nodes are incorporated into the road, tampering with sensors is difficult for an adversary. However, the application must be robust against possible attacks and node failures. Sensed data should thus be used primarily for monitoring purposes, not to instruct (and potentially mislead) traffic participants.
考虑到节点被整合到道路中的事实,对手很难篡改传感器。但是,应用程序必须能够抵御可能的攻击和节点故障。因此,传感数据应主要用于监测目的,而不是指导(并可能误导)交通参与者。
Accurate temporal and spatial monitoring can significantly increase agricultural productivity. Due to natural limitations, such as a farmer's inability to check crops at all times of the day, or inadequate measurement tools, luck often plays too large a role in the success of harvests. Using a network of strategically placed sensors, indicators such as temperature, humidity, and soil condition can be automatically monitored without labor-intensive field measurements. For example, sensor networks could provide precise information about crops in real time, enabling businesses to reduce water, energy, and pesticide usage and enhancing environmental protection. The sensing data can be used to find optimal environments for the plants. In addition, the data on planting conditions can be saved by sensor tags, which can be used in supply-chain management.
准确的时间和空间监测可以显著提高农业生产率。由于自然条件的限制,例如农民无法在一天中的任何时候检查作物,或者测量工具不足,运气往往对收成的成功起着太大的作用。通过战略性布置传感器网络,可以自动监测温度、湿度和土壤状况等指标,而无需进行劳动密集型现场测量。例如,传感器网络可以实时提供有关作物的精确信息,使企业能够减少水、能源和农药的使用,并加强环境保护。传感数据可用于寻找植物的最佳环境。此外,有关种植条件的数据可通过传感器标签保存,可用于供应链管理。
Example: Automated Vineyard
示例:自动化葡萄园
In a vineyard of medium to large geographical size, between 50 and 100 LC nodes are manually deployed in order to provide full signal coverage over the study area. An additional 100 to 1000 leaf nodes with (possibly heterogeneous) specialized sensors (i.e., humidity, temperature, soil condition, sunlight) are attached to the LCs in local wireless star topologies, periodically reporting measurements to the associated LCs. For example, in a 20-acre vineyard with 8 parcels of land, 10 LoWPAN nodes are placed within each parcel to
在一个中等到较大地理规模的葡萄园中,手动部署50到100个LC节点,以便在研究区域提供全信号覆盖。另外100到1000个带有(可能是异构的)专用传感器(即湿度、温度、土壤条件、阳光)的叶节点连接到本地无线星拓扑中的LCs,定期向相关LCs报告测量结果。例如,在一个拥有8块土地的20英亩葡萄园中,每个地块内放置10个LoWPAN节点,以
provide readings on temperature and soil moisture. The LoWPAN nodes are able to support a multi-hop forwarding/routing scheme to enable data transmission to a sink node at the edge of the vineyard. Each of the 8 parcels contains one data aggregator to collect the sensed data.
提供温度和土壤湿度的读数。LoWPAN节点能够支持多跳转发/路由方案,以便能够将数据传输到葡萄园边缘的汇聚节点。8个包裹中的每个包裹都包含一个数据聚合器,用于收集感测数据。
Localization is important for this type of LoWPAN when installed in a geographically large area, in order to pin down where an event occurred, and to combine gathered data with the actual positions of the devices. Using manual deployment, device addresses can be used for identifying their position and localization. For randomly deployed nodes, a localization algorithm needs to be applied.
当安装在地理位置较大的区域时,为了确定事件发生的位置,并将收集到的数据与设备的实际位置相结合,定位对于此类低量程非常重要。使用手动部署,设备地址可用于标识其位置和本地化。对于随机部署的节点,需要应用定位算法。
There might be various types of sensor devices deployed in a single LoWPAN, each providing raw data with different semantics. Thus, an additional method is required to correctly interpret sensor readings. Each data packet may include meta-information about its data, or the type of sensor could be encoded in its address during address allocation.
在一个LoWPAN中可能部署了各种类型的传感器设备,每种设备都提供具有不同语义的原始数据。因此,需要一种额外的方法来正确解释传感器读数。每个数据包可以包括关于其数据的元信息,或者在地址分配期间可以在其地址中编码传感器的类型。
Dominant parameters in agricultural monitoring:
农业监测的主要参数:
o Deployment: Pre-planned.
o 部署:预先计划。
The nodes are installed outdoors or in a greenhouse, with high exposure to water, soil, and dust, in dynamic environments of moving people and machinery, and with growing crops and foliage. LoWPAN nodes can be deployed in a predefined manner, with consideration given to harsh environments.
节点安装在室外或温室中,高度暴露于水、土壤和灰尘中,处于人员和机械移动的动态环境中,并且作物和树叶正在生长。考虑到恶劣的环境,可以以预定义的方式部署LoWPAN节点。
o Network Size: Medium to large, low to medium density.
o 网络规模:中等至大型、低至中等密度。
o Power Source: All nodes are battery-powered except the sink, or energy harvesting.
o 电源:除接收器或能量收集外,所有节点均由电池供电。
o Connectivity: Intermittent (many sleeping nodes).
o 连接:间歇性(多个休眠节点)。
o Multi-Hop Communication: Mesh topology with local star connections.
o 多跳通信:具有本地星形连接的网状拓扑。
o Traffic Pattern: Mainly MP2P/P2MP. P2P actuator triggering.
o 流量模式:主要为MP2P/P2MP。P2P执行器触发。
o Security Level: Depends on purpose of the business. Lightweight security or simple shared-key management can be used, depending on the purpose of the business.
o 安全级别:取决于业务的目的。根据业务目的,可以使用轻量级安全性或简单的共享密钥管理。
o Mobility: All static.
o 机动性:全静态。
o Other Issues: Time synchronization among sensors is required, but the traffic interval may not be frequent (e.g., once every 30 to 60 minutes).
o 其他问题:需要传感器之间的时间同步,但通信间隔可能不频繁(例如,每30到60分钟一次)。
The network configuration in this use case might, in the simplest case, look like the configuration illustrated in Figure 7. This static scenario consists of one or more fixed LBRs that are mains-powered and have a high-bandwidth connection to a backbone link, which might be placed in a control center or connected to the Internet. The LBRs are strategically located at the border of vineyard parcels, acting as data sinks. A number of LCs are placed along a row of plants with individual LoWPAN nodes spread around them.
在最简单的情况下,此用例中的网络配置可能与图7中所示的配置类似。此静态场景由一个或多个固定LBR组成,这些LBR由主电源供电,并具有到主干链路的高带宽连接,主干链路可能位于控制中心或连接到Internet。LBR战略性地位于葡萄园地块的边界,充当数据接收器。许多LCs沿着一排植物放置,其周围分布着单独的LoWPAN节点。
While the LBRs implement the IPv6 Neighbor Discovery protocol (RFC 4861 [1]) to connect to the outside of the LoWPAN, the LoWPAN nodes operate a more energy-conserving ND described in [6], which includes basic bootstrapping and address assignment. Each LBR can have predefined forward management information to a central data aggregation point, if necessary.
当LBR实现IPv6邻居发现协议(RFC 4861[1])以连接到LoWPAN的外部时,LoWPAN节点操作[6]中描述的更节能的ND,其包括基本引导和地址分配。如有必要,每个LBR可以将预定义的管理信息转发到中心数据聚合点。
LoWPAN nodes may send event-driven notifications when readings exceed certain thresholds, such as low soil humidity, which may automatically trigger a water sprinkler in the local environment. For increased energy efficiency, all LoWPAN nodes are in periodic sleep state. However, the LCs need to be aware of sudden events from the leaf nodes. Their sleep periods should therefore be set to shorter intervals. Communication schedules must be set up between master and leaf nodes, and time synchronization is needed to account for clock drift.
当读数超过某些阈值(例如土壤湿度低)时,LoWPAN节点可能会发送事件驱动的通知,这可能会自动触发本地环境中的喷水装置。为了提高能量效率,所有LoWPAN节点都处于周期性睡眠状态。然而,LCs需要知道来自叶节点的突发事件。因此,他们的睡眠时间应该设置为更短的间隔。必须在主节点和叶节点之间设置通信计划,并且需要时间同步来考虑时钟漂移。
Also, the result of data collection may activate actuators. Context awareness, node identification, and data collection at the application level are necessary.
此外,数据采集的结果可能会激活执行器。上下文感知、节点识别和应用程序级别的数据收集是必要的。
I | | n n n n n n n n n I: Internet | \|/ \|/ \|/ LBR: LoWPAN Border Router LBR----LC------LC------LC LC: Local Controller node | /|\ /|\ /|\ n: LoWPAN node | n n n n n n n n n | LBR ...
I | | n n n n n n n n n I: Internet | \|/ \|/ \|/ LBR: LoWPAN Border Router LBR----LC------LC------LC LC: Local Controller node | /|\ /|\ /|\ n: LoWPAN node | n n n n n n n n n | LBR ...
Figure 7: Automated Vineyard Scenario
图7:自动化葡萄园场景
Relevant security considerations are listed by application scenario in Section 3. The security considerations in RFC 4919 [2] and RFC 4944 [3] apply as well.
第3节中按应用场景列出了相关的安全注意事项。RFC 4919[2]和RFC 4944[3]中的安全注意事项也适用。
The physical exposure of LoWPAN nodes (especially in outdoor networks) allows an adversary to capture, clone, tamper with, or even destroy these devices. Given the safety issues involved in some use cases, these threats place high demands for resiliency and survivability upon the LoWPAN. The generally wireless channels of LoWPANs are susceptible to several security threats. Without proper security measures, confidential information might be snooped by a "man in the middle". An attacker might also modify or introduce data packets into the network -- for example, to manipulate sensor readings or to take control of sensors and actuators. This specification expects that the link layer is sufficiently protected, either by means of physical or IP security for the backbone link or with MAC sublayer cryptography. However, link-layer encryption and authentication may not be sufficient to provide confidentiality, authentication, integrity, and freshness to both data and signaling packets.
低泛节点的物理暴露(特别是在室外网络中)允许对手捕获、克隆、篡改甚至摧毁这些设备。考虑到某些用例中涉及的安全问题,这些威胁对低范围的弹性和生存能力提出了很高的要求。LoWPANs的一般无线信道容易受到多种安全威胁。如果没有适当的安全措施,机密信息可能会被“中间人”窥探。攻击者还可能修改或将数据包引入网络——例如,操纵传感器读数或控制传感器和执行器。本规范期望链路层通过骨干链路的物理或IP安全或MAC子层加密得到充分保护。然而,链路层加密和认证可能不足以为数据包和信令包提供机密性、认证、完整性和新鲜性。
Due to their low-power nature, LoWPANs are especially vulnerable to denial-of-service (DoS) attacks. Example DoS attacks include attempts to drain a node's battery by excessive querying or to introduce a high-power jamming signal that makes LoWPAN nodes dysfunctional. Security solutions must therefore be lightweight and support node authentication, so that message integrity can be guaranteed and misbehaving nodes can be denied participation in the network. A node must authenticate itself to trusted nodes before taking part in the LoWPAN.
由于其低功耗特性,LoWPANs特别容易受到拒绝服务(DoS)攻击。例如,DoS攻击包括试图通过过度查询耗尽节点的电池,或引入高功率干扰信号,使LoWPAN节点无法正常工作。因此,安全解决方案必须是轻量级的,并支持节点身份验证,以便可以保证消息完整性,并且可以拒绝行为不端的节点参与网络。节点在参与LoWPAN之前必须向受信任节点进行自身身份验证。
Considering the power constraints and limited processing capabilities of IEEE 802.15.4 devices, IPsec is computationally expensive; Internet key exchange (IKEv2) messaging as described in [4] is not suited for LoWPANs, as the amount of signaling in these networks should be minimized. Thus, LoWPANs may need to define their own key-management method that requires minimum overhead in terms of packet size and message exchange [11]. IPsec provides authentication and confidentiality between end nodes and across multiple LoWPAN links, and may be useful only when two nodes want to apply security to all exchanged messages. However, in many cases, the security may be requested at the application layer as needed, while other messages can flow in the network without security overhead. Recent work [13] shows some promise for minimal IKEv2 implementations.
考虑到IEEE 802.15.4设备的功率限制和有限的处理能力,IPsec的计算成本较高;[4]中所述的互联网密钥交换(IKEv2)消息不适用于低PAN,因为这些网络中的信令量应该最小化。因此,LoWPANs可能需要定义他们自己的密钥管理方法,该方法要求在数据包大小和消息交换方面的开销最小[11]。IPsec在终端节点之间以及跨多个LoWPAN链路提供身份验证和机密性,并且可能仅在两个节点希望对所有交换的消息应用安全性时才有用。然而,在许多情况下,可以根据需要在应用层请求安全性,而其他消息可以在网络中流动,而不会产生安全开销。最近的工作[13]显示了最小IKEv2实现的一些前景。
Security requirements may differ by use case. For example, industrial and structural monitoring applications are safety-critical and secure transmission must be guaranteed, so that only authenticated users are able to access and handle the data. In healthcare systems, data privacy is an important issue. Encryption is required, and role-based access control is needed for proper authentication. In home automation scenarios, critical applications such as door locks require high security and robustness against intrusion. On the other hand, a remote-controlled light switch has no critical security threats.
安全要求可能因用例而异。例如,工业和结构监测应用程序对安全至关重要,必须保证安全传输,以便只有经过身份验证的用户才能访问和处理数据。在医疗系统中,数据隐私是一个重要问题。需要加密,并且需要基于角色的访问控制来进行适当的身份验证。在家庭自动化场景中,诸如门锁之类的关键应用需要高度的安全性和抗入侵性。另一方面,遥控电灯开关没有严重的安全威胁。
Special thanks to Nicolas Chevrollier for participating in the initial design of the document. Also, thanks to David Cypher for giving more insight on the IEEE 802.15.4 standard, and to Irene Fernandez, Shoichi Sakane, and Paul Chilton for their review and valuable comments.
特别感谢Nicolas Chevrellier参与文档的初始设计。同时,感谢David Cypher对IEEE 802.15.4标准的深入了解,以及Irene Fernandez、Shoichi Sakane和Paul Chilton的评论和宝贵意见。
[1] Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, September 2007.
[1] Narten,T.,Nordmark,E.,Simpson,W.,和H.Soliman,“IP版本6(IPv6)的邻居发现”,RFC 48612007年9月。
[2] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals", RFC 4919, August 2007.
[2] Kushalnagar,N.,黑山,G.和C.Schumacher,“低功率无线个人区域网络上的IPv6(6LoWPANs):概述,假设,问题陈述和目标”,RFC 4919,2007年8月。
[3] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks", RFC 4944, September 2007.
[3] 黑山,G.,Kushalnagar,N.,Hui,J.,和D.Culler,“通过IEEE 802.15.4网络传输IPv6数据包”,RFC 4944,2007年9月。
[4] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen, "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC 5996, September 2010.
[4] Kaufman,C.,Hoffman,P.,Nir,Y.,和P.Erenen,“互联网密钥交换协议版本2(IKEv2)”,RFC 59962010年9月。
[5] IEEE Computer Society, "IEEE Standard for Local and Metropolitan Area Networks -- Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)", IEEE Std. 802.15.4-2011, September 2011.
[5] IEEE计算机协会,“IEEE局域网和城域网标准——第15.4部分:低速无线个人区域网(LR WPAN)”,IEEE标准802.15.4-2011,2011年9月。
[6] Shelby, Z., Ed., Chakrabarti, S., and E. Nordmark, "Neighbor Discovery Optimization for Low Power and Lossy Networks (6LoWPAN)", Work in Progress, October 2011.
[6] Shelby,Z.,Ed.,Chakrabarti,S.,和E.Nordmark,“低功耗和有损网络的邻居发现优化(6LoWPAN)”,正在进行的工作,2011年10月。
[7] Hui, J., Ed., and P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282, September 2011.
[7] Hui,J.,Ed.,和P.Thubert,“基于IEEE 802.15.4的网络上IPv6数据报的压缩格式”,RFC 6282,2011年9月。
[8] Kim, E., Kaspar, D., Gomez, C., and C. Bormann, "Problem Statement and Requirements for 6LoWPAN Routing", Work in Progress, November 2011.
[8] Kim,E.,Kaspar,D.,Gomez,C.,和C.Bormann,“6LoWPAN布线的问题陈述和要求”,正在进行的工作,2011年11月。
[9] Roemer, K. and F. Mattern, "The Design Space of Wireless Sensor Networks", IEEE Wireless Communications, Vol. 11, No. 6, pp. 54-61, December 2004.
[9] Roemer,K.和F.Mattern,“无线传感器网络的设计空间”,IEEE无线通信,第11卷,第6期,第54-61页,2004年12月。
[10] den Hartog, F., Schmidt, J., and A. de Vries, "On the potential of personal networks for hospitals", International Journal of Medical Informatics, 75, pp. 658-663, May 2006.
[10] den Hartog,F.,Schmidt,J.和A.de Vries,“关于医院个人网络的潜力”,《国际医学信息学杂志》,75,第658-663页,2006年5月。
[11] Dutertre, B., Cheung, S., and J. Levy, "Lightweight Key Management in Wireless Sensor Networks by Leveraging Initial Trust", SDL Technical Report SRI-SDL-04-02, April 2004.
[11] Dutertre,B.,Cheung,S.,和J.Levy,“利用初始信任实现无线传感器网络中的轻量级密钥管理”,SDL技术报告SRI-SDL-04-022004年4月。
[12] Chen, D. and P.K. Varshney, "QoS Support in Wireless Sensor Networks: A Survey", Proc. 2004 Int. Conf. Wireless Networks (ICWN 2004), June 2004.
[12] Chen,D.和P.K.Varshney,“无线传感器网络中的QoS支持:调查”,Proc。2004年6月,2004年国际形态无线网络(ICWN 2004)。
[13] Kivinen, T., "Minimal IKEv2", Work in Progress, February 2011.
[13] Kivinen,T.,“最小IKEv2”,正在进行的工作,2011年2月。
Authors' Addresses
作者地址
Eunsook Kim ETRI 161 Gajeong-dong Yuseong-gu Daejeon 305-700 Korea
韩国大田金永顺161 Gajeong dong Yuseong gu Daejeon 305-700
Phone: +82-42-860-6124 EMail: eunah.ietf@gmail.com
Phone: +82-42-860-6124 EMail: eunah.ietf@gmail.com
Dominik Kaspar Simula Research Laboratory Martin Linges v 17 Snaroya 1367 Norway
多米尼克·卡斯帕·西莫拉研究实验室马丁·林格斯v 17斯纳罗亚1367挪威
Phone: +47-6782-8200 EMail: dokaspar.ietf@gmail.com
Phone: +47-6782-8200 EMail: dokaspar.ietf@gmail.com
JP. Vasseur Cisco Systems, Inc. 1414 Massachusetts Avenue Boxborough, MA 01719 USA
JP。美国马萨诸塞州伯斯堡马萨诸塞大道1414号瓦瑟尔思科系统公司,邮编01719
EMail: jpv@cisco.com
EMail: jpv@cisco.com