Internet Engineering Task Force (IETF)                          M. Bocci
Request for Comments: 6370                                Alcatel-Lucent
Category: Standards Track                                     G. Swallow
ISSN: 2070-1721                                                    Cisco
                                                                 E. Gray
                                                                Ericsson
                                                          September 2011
        
Internet Engineering Task Force (IETF)                          M. Bocci
Request for Comments: 6370                                Alcatel-Lucent
Category: Standards Track                                     G. Swallow
ISSN: 2070-1721                                                    Cisco
                                                                 E. Gray
                                                                Ericsson
                                                          September 2011
        

MPLS Transport Profile (MPLS-TP) Identifiers

MPLS传输配置文件(MPLS-TP)标识符

Abstract

摘要

This document specifies an initial set of identifiers to be used in the Transport Profile of Multiprotocol Label Switching (MPLS-TP). The MPLS-TP requirements (RFC 5654) require that the elements and objects in an MPLS-TP environment are able to be configured and managed without a control plane. In such an environment, many conventions for defining identifiers are possible. This document defines identifiers for MPLS-TP management and Operations, Administration, and Maintenance (OAM) functions compatible with IP/ MPLS conventions.

本文档指定了多协议标签交换(MPLS-TP)传输配置文件中使用的初始标识符集。MPLS-TP要求(RFC 5654)要求MPLS-TP环境中的元素和对象能够在没有控制平面的情况下进行配置和管理。在这样的环境中,定义标识符的许多约定是可能的。本文档定义了与IP/MPLS约定兼容的MPLS-TP管理和操作、管理和维护(OAM)功能的标识符。

This document is a product of a joint Internet Engineering Task Force (IETF) / International Telecommunication Union Telecommunication Standardization Sector (ITU-T) effort to include an MPLS Transport Profile within the IETF MPLS and Pseudowire Emulation Edge-to-Edge (PWE3) architectures to support the capabilities and functionalities of a packet transport network as defined by the ITU-T.

本文件是联合互联网工程任务组(IETF)/国际电信联盟电信标准化部门(ITU-T)努力的成果,旨在将MPLS传输配置文件纳入IETF MPLS和伪线仿真边到边(PWE3)中支持ITU-T定义的分组传输网络的能力和功能的体系结构。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6370.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6370.

Copyright Notice

版权公告

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2011 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................3
      1.1. Terminology ................................................3
      1.2. Requirements Language ......................................4
      1.3. Notational Conventions .....................................4
   2. Named Entities ..................................................5
   3. Uniquely Identifying an Operator - the Global_ID ................5
   4. Node and Interface Identifiers ..................................6
   5. MPLS-TP Tunnel and LSP Identifiers ..............................7
      5.1. MPLS-TP Point-to-Point Tunnel Identifiers ..................8
      5.2. MPLS-TP LSP Identifiers ....................................9
           5.2.1. MPLS-TP Co-Routed Bidirectional LSP Identifiers .....9
           5.2.2. MPLS-TP Associated Bidirectional LSP Identifiers ....9
      5.3. Mapping to RSVP Signaling .................................10
   6. Pseudowire Path Identifiers ....................................11
   7. Maintenance Identifiers ........................................13
      7.1. Maintenance Entity Group Identifiers ......................13
           7.1.1. MPLS-TP Section MEG_IDs ............................13
           7.1.2. MPLS-TP LSP MEG_IDs ................................13
           7.1.3. Pseudowire MEG_IDs .................................14
      7.2. Maintenance Entity Group End Point Identifiers ............14
           7.2.1. MPLS-TP Section MEP_IDs ............................14
           7.2.2. MPLS-TP LSP_MEP_ID .................................15
           7.2.3. MEP_IDs for Pseudowires ............................15
      7.3. Maintenance Entity Group Intermediate Point Identifiers ...15
   8. Security Considerations ........................................15
   9. References .....................................................16
      9.1. Normative References ......................................16
      9.2. Informative References ....................................17
        
   1. Introduction ....................................................3
      1.1. Terminology ................................................3
      1.2. Requirements Language ......................................4
      1.3. Notational Conventions .....................................4
   2. Named Entities ..................................................5
   3. Uniquely Identifying an Operator - the Global_ID ................5
   4. Node and Interface Identifiers ..................................6
   5. MPLS-TP Tunnel and LSP Identifiers ..............................7
      5.1. MPLS-TP Point-to-Point Tunnel Identifiers ..................8
      5.2. MPLS-TP LSP Identifiers ....................................9
           5.2.1. MPLS-TP Co-Routed Bidirectional LSP Identifiers .....9
           5.2.2. MPLS-TP Associated Bidirectional LSP Identifiers ....9
      5.3. Mapping to RSVP Signaling .................................10
   6. Pseudowire Path Identifiers ....................................11
   7. Maintenance Identifiers ........................................13
      7.1. Maintenance Entity Group Identifiers ......................13
           7.1.1. MPLS-TP Section MEG_IDs ............................13
           7.1.2. MPLS-TP LSP MEG_IDs ................................13
           7.1.3. Pseudowire MEG_IDs .................................14
      7.2. Maintenance Entity Group End Point Identifiers ............14
           7.2.1. MPLS-TP Section MEP_IDs ............................14
           7.2.2. MPLS-TP LSP_MEP_ID .................................15
           7.2.3. MEP_IDs for Pseudowires ............................15
      7.3. Maintenance Entity Group Intermediate Point Identifiers ...15
   8. Security Considerations ........................................15
   9. References .....................................................16
      9.1. Normative References ......................................16
      9.2. Informative References ....................................17
        
1. Introduction
1. 介绍

This document specifies an initial set of identifiers to be used in the Transport Profile of Multiprotocol Label Switching (MPLS-TP). The MPLS-TP requirements (RFC 5654 [7]) require that the elements and objects in an MPLS-TP environment are able to be configured and managed without a control plane. In such an environment, many conventions for defining identifiers are possible. This document defines identifiers for MPLS-TP management and OAM functions compatible with IP/MPLS conventions. That is, the identifiers have been chosen to be compatible with existing IP, MPLS, GMPLS, and Pseudowire definitions.

本文档指定了多协议标签交换(MPLS-TP)传输配置文件中使用的初始标识符集。MPLS-TP要求(RFC 5654[7])要求MPLS-TP环境中的元素和对象能够在没有控制平面的情况下进行配置和管理。在这样的环境中,定义标识符的许多约定是可能的。本文档定义了与IP/MPLS约定兼容的MPLS-TP管理和OAM功能的标识符。也就是说,已选择与现有IP、MPLS、GMPLS和伪线定义兼容的标识符。

This document is a product of a joint Internet Engineering Task Force (IETF) / International Telecommunication Union Telecommunication Standardization Sector (ITU-T) effort to include an MPLS Transport Profile within the IETF MPLS and Pseudowire Emulation Edge-to-Edge (PWE3) architectures to support the capabilities and functionalities of a packet transport network as defined by the ITU-T.

本文件是联合互联网工程任务组(IETF)/国际电信联盟电信标准化部门(ITU-T)努力的成果,旨在将MPLS传输配置文件纳入IETF MPLS和伪线仿真边到边(PWE3)中支持ITU-T定义的分组传输网络的能力和功能的体系结构。

1.1. Terminology
1.1. 术语

AGI: Attachment Group Identifier

AGI:附件组标识符

AII: Attachment Interface Identifier

附件接口标识符

AS: Autonomous System

AS:自治系统

ASN: Autonomous System Number

ASN:自治系统编号

EGP: Exterior Gateway Protocol

外部网关协议

FEC: Forwarding Equivalence Class

转发等价类

GMPLS: Generalized Multiprotocol Label Switching

广义多协议标签交换

IGP: Interior Gateway Protocol

内部网关协议

LSP: Label Switched Path

标签交换路径

LSR: Label Switching Router

标签交换路由器

MEG: Maintenance Entity Group

MEG:维护实体组

MEP: Maintenance Entity Group End Point

MEP:维护实体组终点

MIP: Maintenance Entity Group Intermediate Point

MIP:维护实体组中间点

MPLS: Multiprotocol Label Switching

多协议标签交换

NNI: Network-to-Network Interface

NNI:网络到网络接口

OAM: Operations, Administration, and Maintenance

OAM:运营、管理和维护

PW: Pseudowire

伪线

RSVP: Resource Reservation Protocol

资源预留协议

RSVP-TE: RSVP Traffic Engineering

RSVP-TE:RSVP交通工程

SAII: Source AII

SAII:所有来源

SPME: Sub-Path Maintenance Entity

子路径维护实体

T-PE: Terminating Provider Edge

T-PE:终止提供程序边缘

TAII: Target AII

TAII:目标全部

1.2. Requirements Language
1.2. 需求语言

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[1]中所述进行解释。

1.3. Notational Conventions
1.3. 符号约定

All multiple-word atomic identifiers use underscores (_) between the words to join the words. Many of the identifiers are composed of a set of other identifiers. These are expressed by listing the latter identifiers joined with double-colon "::" notation.

所有多个单词原子标识符都在单词之间使用下划线(\)来连接单词。许多标识符由一组其他标识符组成。通过列出后一个标识符,并用双冒号“:”表示。

Where the same identifier type is used multiple times in a concatenation, they are qualified by a prefix joined to the identifier by a dash (-). For example, A1-Node_ID is the Node_ID of a node referred to as A1.

在串联中多次使用同一标识符类型的情况下,它们由一个前缀限定,该前缀通过破折号(-)连接到标识符。例如,A1-Node_ID是被称为A1的节点的Node_ID。

The notation defines a preferred ordering of the fields. Specifically, the designation A1 is used to indicate the lower sort order of a field or set of fields and Z9 is used to indicate the higher sort order of the same. The sort is either alphanumeric or numeric depending on the field's definition. Where the sort applies to a group of fields, those fields are grouped with {...}.

符号定义了字段的首选顺序。具体而言,名称A1用于指示字段或字段集的较低排序顺序,Z9用于指示相同字段或字段集的较高排序顺序。根据字段的定义,排序可以是字母数字,也可以是数字。当排序应用于一组字段时,这些字段用{…}分组。

Note, however, that the uniqueness of an identifier does not depend on the ordering, but rather, upon the uniqueness and scoping of the fields that compose the identifier. Further, the preferred ordering

但是,请注意,标识符的唯一性并不取决于排序,而是取决于组成标识符的字段的唯一性和作用域。此外,优选的排序

is not intended to constrain protocol designs by dictating a particular field sequence (for example, see Section 5.2.1) or even what fields appear in which objects (for example, see Section 5.3).

不打算通过指定特定的字段序列(例如,参见第5.2.1节)或甚至是哪些字段出现在哪些对象中(例如,参见第5.3节)来约束协议设计。

2. Named Entities
2. 命名实体

In order to configure, operate, and manage a transport network based on the MPLS Transport Profile, a number of entities require identification. Identifiers for the following entities are defined in this document:

为了基于MPLS传输配置文件配置、操作和管理传输网络,许多实体需要标识。本文件中定义了以下实体的标识符:

* Global_ID

* 全球统一标识

* Node

* 节点

* Interface

* 界面

* Tunnel

* 地下通道

* LSP

* LSP

* PW

* 嗯

* MEG

* 梅格

* MEP

* 欧洲议会

* MIP

* MIP

Note that we have borrowed the term "tunnel" from RSVP-TE (RFC 3209 [2]) where it is used to describe an entity that provides a logical association between a source and destination LSR. The tunnel, in turn, is instantiated by one or more LSPs, where the additional LSPs are used for protection or re-grooming of the tunnel.

注意,我们借用了RSVP-TE(RFC 3209[2])中的术语“隧道”,用于描述在源和目标LSR之间提供逻辑关联的实体。隧道依次由一个或多个LSP实例化,其中附加LSP用于保护或重新整理隧道。

3. Uniquely Identifying an Operator - the Global_ID
3. 唯一标识运算符-全局\u ID

The Global_ID is defined to uniquely identify an operator. RFC 5003 [3] defines a globally unique Attachment Interface Identifier (AII). That AII is composed of three parts: a Global_ID that uniquely identifies an operator, a prefix, and, finally, an attachment circuit identifier. We have chosen to use that Global ID for MPLS-TP. Quoting from RFC 5003, Section 3.2:

全局_ID定义为唯一标识运算符。RFC 5003[3]定义了一个全局唯一的附件接口标识符(AII)。该AII由三部分组成:唯一标识运算符的全局_ID、前缀,以及最后一个连接电路标识符。我们已选择将该全局ID用于MPLS-TP。引用RFC 5003第3.2节:

The global ID can contain the 2-octet or 4-octet value of the provider's Autonomous System Number (ASN). It is expected that the global ID will be derived from the globally unique ASN of the

全局ID可以包含提供商的自治系统号(ASN)的2-octet或4-octet值。预计全局ID将从的全局唯一ASN派生

autonomous system hosting the PEs containing the actual AIIs. The presence of a global ID based on the operator's ASN ensures that the AII will be globally unique.

承载包含实际AII的PEs的自治系统。基于运营商ASN的全局ID的存在确保了AII将是全局唯一的。

A Global_ID is an unsigned 32-bit value and MUST be derived from a 4-octet AS number assigned to the operator. Note that 2-octet AS numbers have been incorporated in the 4-octet by placing the 2-octet AS number in the low-order octets and setting the two high-order octets to zero.

全局_ID是一个无符号32位值,必须从分配给运算符的4个八位组作为数字派生。请注意,通过将2-八位位组作为数字放入低阶八位位组并将两个高阶八位位组设置为零,2-八位位组作为数字已并入4-八位位组。

ASN 0 is reserved and cannot be assigned to an operator. An identifier containing a Global_ID of zero means that no Global_ID is specified. Note that a Global_ID of zero is limited to entities contained within a single operator and MUST NOT be used across an NNI.

ASN 0是保留的,无法分配给操作员。包含全局\u ID为零的标识符表示未指定全局\u ID。请注意,全局_ID为零仅限于包含在单个运算符中的实体,不得在NNI中使用。

The Global_ID is used solely to provide a globally unique context for other MPLS-TP identifiers. While the AS number used in the Global_ID MUST be one that the operator is entitled to use, the use of the Global_ID is not related to the use of the ASN in protocols such as BGP.

全局标识仅用于为其他MPLS-TP标识符提供全局唯一上下文。虽然全局_ID中使用的AS编号必须是运营商有权使用的编号,但全局_ID的使用与BGP等协议中ASN的使用无关。

4. Node and Interface Identifiers
4. 节点和接口标识符

An LSR requires identification of the node itself and of its interfaces. An interface is the attachment point to a server (sub-)layer, e.g., MPLS-TP section or MPLS-TP tunnel.

LSR需要标识节点本身及其接口。接口是服务器(子)层的连接点,例如MPLS-TP部分或MPLS-TP隧道。

We call the identifier associated with a node a "Node Identifier" (Node_ID). The Node_ID is a unique 32-bit value assigned by the operator within the scope of a Global_ID. The structure of the Node_ID is operator-specific and is outside the scope of this document. However, the value zero is reserved and MUST NOT be used. Where IPv4 addresses are used, it may be convenient to use the Node's IPv4 loopback address as the Node_ID; however, the Node_ID does not need to have any association with the IPv4 address space used in the operator's IGP or EGP. Where IPv6 addresses are used exclusively, a 32-bit value unique within the scope of a Global_ID is assigned.

我们将与节点关联的标识符称为“节点标识符”(node_ID)。Node_ID是操作员在全局_ID范围内分配的唯一32位值。Node_ID的结构是特定于操作员的,不在本文档的范围内。但是,值0是保留的,不能使用。在使用IPv4地址的情况下,可以方便地使用节点的IPv4环回地址作为节点ID;但是,节点ID不需要与运营商的IGP或EGP中使用的IPv4地址空间有任何关联。如果仅使用IPv6地址,则会分配一个在全局_ID范围内唯一的32位值。

An LSR can support multiple layers (e.g., hierarchical LSPs) and the Node_ID belongs to the multiple-layer context, i.e., it is applicable to all LSPs or PWs that originate on, have an intermediate point on, or terminate on the node.

LSR可以支持多个层(例如,分层LSP),并且节点_ID属于多层上下文,即,它适用于在节点上发起、具有中间点或在节点上终止的所有LSP或PW。

In situations where a Node_ID needs to be globally unique, this is accomplished by prefixing the identifier with the operator's Global_ID.

在节点ID需要全局唯一的情况下,这可以通过在标识符前面加上操作员的全局ID来实现。

The term "interface" is used for the attachment point to an MPLS-TP section. Within the context of a particular node, we call the identifier associated with an interface an "Interface Number" (IF_Num). The IF_Num is a 32-bit unsigned integer assigned by the operator and MUST be unique within the scope of a Node_ID. The IF_Num value 0 has special meaning (see Section 7.3, MIP Identifiers) and MUST NOT be used to identify an MPLS-TP interface.

术语“接口”用于MPLS-TP部分的连接点。在特定节点的上下文中,我们将与接口关联的标识符称为“接口号”(IF_Num)。IF_Num是由运算符分配的32位无符号整数,在节点ID的范围内必须是唯一的。IF_Num值0具有特殊含义(请参见第7.3节,MIP标识符),不得用于标识MPLS-TP接口。

Note that IF_Num has no relation with the ifNum object defined in RFC 2863 [8]. Further, no mapping is mandated between IF_Num and ifIndex in RFC 2863.

注意,IF_Num与RFC 2863[8]中定义的ifNum对象没有关系。此外,RFC 2863中的IF_Num和ifIndex之间没有强制映射。

An "Interface Identifier" (IF_ID) identifies an interface uniquely within the context of a Global_ID. It is formed by concatenating the Node_ID with the IF_Num. That is, an IF_ID is a 64-bit identifier formed as Node_ID::IF_Num.

“接口标识符”(IF_ID)在全局_ID的上下文中唯一地标识接口。它是通过将节点_ID与IF_Num连接而形成的。也就是说,IF_ID是一个64位标识符,形成为Node_ID::IF_Num。

This convention was chosen to allow compatibility with GMPLS. The GMPLS signaling functional description [4] requires interface identification. GMPLS allows three formats for the Interface_ID. The third format consists of an IPv4 address plus a 32-bit unsigned integer for the specific interface. The format defined for MPLS-TP is consistent with this format, but uses the Node_ID instead of an IPv4 address.

选择此约定是为了与GMPLS兼容。GMPLS信令功能描述[4]要求接口标识。GMPLS允许接口ID使用三种格式。第三种格式包括IPv4地址加上特定接口的32位无符号整数。为MPLS-TP定义的格式与此格式一致,但使用节点ID而不是IPv4地址。

If an IF_ID needs to be globally unique, this is accomplished by prefixing the identifier with the operator's Global_ID.

如果If_ID需要全局唯一,则可以通过在标识符前面加上操作员的全局_ID来实现。

Note that MPLS-TP supports hierarchical sections. The attachment point to an MPLS-TP section at any (sub-)layer requires a node-unique IF_Num.

请注意,MPLS-TP支持分层分区。在任何(子)层上连接到MPLS-TP节的连接点需要一个唯一的IF_Num节点。

5. MPLS-TP Tunnel and LSP Identifiers
5. MPLS-TP隧道和LSP标识符

In MPLS, the actual transport of packets is provided by Label Switched Paths (LSPs). A transport service may be composed of multiple LSPs. Further, the LSPs providing a service may change over time due to protection and restoration events. In order to clearly identify the service, we use the term "MPLS-TP Tunnel" or simply "tunnel" for a service provided by (for example) a working LSP and protected by a protection LSP. The "Tunnel Identifier" (Tunnel_ID) identifies the transport service and provides a stable binding to the client in the face of changes in the data-plane LSPs used to provide the service due to protection or restoration events. This section defines an MPLS-TP Tunnel_ID to uniquely identify a tunnel, and an MPLS-TP LSP Identifier (LSP_ID) to uniquely identify an LSP associated with a tunnel.

在MPLS中,数据包的实际传输由标签交换路径(LSP)提供。传输服务可以由多个lsp组成。此外,由于保护和恢复事件,提供服务的lsp可能随时间而改变。为了清楚地识别服务,我们使用术语“MPLS-TP隧道”或简单的“隧道”来表示由(例如)工作LSP提供并由保护LSP保护的服务。“隧道标识符”(Tunnel_ID)标识传输服务,并在由于保护或恢复事件而导致用于提供服务的数据平面lsp发生变化时,向客户端提供稳定的绑定。本节定义MPLS-TP隧道标识以唯一标识隧道,定义MPLS-TP LSP标识符(LSP标识)以唯一标识与隧道关联的LSP。

For the case where multiple LSPs (for example) are used to support a single service with a common set of end points, using the Tunnel_ID allows for a trivial mapping between the server and client layers, providing a common service identifier that may be either defined by or used by the client.

对于使用多个LSP(例如)来支持具有一组公共端点的单个服务的情况,使用隧道ID允许在服务器层和客户端层之间进行简单的映射,从而提供可由客户端定义或使用的公共服务标识符。

Note that this usage is not intended to constrain protection schemes, and may be used to identify any service (protected or unprotected) that may appear to the client as a single service attachment point. Keeping the Tunnel_ID consistent across working and protection LSPs is a useful construct currently employed within GMPLS. However, the Tunnel_ID for a protection LSP MAY differ from that used by its corresponding working LSP.

请注意,此用法并非旨在约束保护方案,而是可用于标识客户端可能认为是单个服务连接点的任何服务(受保护或未受保护)。在工作和保护LSP之间保持隧道ID的一致性是当前GMPLS中采用的一种有用结构。然而,保护LSP的隧道ID可能不同于其相应工作LSP使用的隧道ID。

5.1. MPLS-TP Point-to-Point Tunnel Identifiers
5.1. MPLS-TP点对点隧道标识符

At each end point, a tunnel is uniquely identified by the end point's Node_ID and a locally assigned tunnel number. Specifically, a "Tunnel Number" (Tunnel_Num) is a 16-bit unsigned integer unique within the context of the Node_ID. The motivation for each end point having its own tunnel number is to allow a compact form for the MEP_ID. See Section 7.2.2.

在每个端点,隧道由端点的节点ID和本地分配的隧道编号唯一标识。具体而言,“隧道号”(Tunnel_Num)是节点_ID上下文中唯一的16位无符号整数。每个端点拥有自己的隧道号的动机是允许MEP_ID采用紧凑形式。请参见第7.2.2节。

Having two tunnel numbers also serves to simplify other signaling (e.g., setup of associated bidirectional tunnels as described in Section 5.3).

拥有两个隧道号也有助于简化其他信号(例如,如第5.3节所述的相关双向隧道的设置)。

The concatenation of the two end point identifiers serves as the full identifier. Using the A1/Z9 convention, the format of a Tunnel_ID is:

两个端点标识符的串联用作完整标识符。使用A1/Z9约定,隧道ID的格式为:

      A1-{Node_ID::Tunnel_Num}::Z9-{Node_ID::Tunnel_Num}
        
      A1-{Node_ID::Tunnel_Num}::Z9-{Node_ID::Tunnel_Num}
        

Where the Tunnel_ID needs to be globally unique, this is accomplished by using globally unique Node_IDs as defined above. Thus, a globally unique Tunnel_ID becomes:

当隧道ID需要全局唯一时,这可以通过使用上面定义的全局唯一节点ID来实现。因此,全局唯一的隧道ID变为:

      A1-{Global_ID::Node_ID::Tunnel_Num}::Z9-{Global_ID::Node_ID::
      Tunnel_Num}
        
      A1-{Global_ID::Node_ID::Tunnel_Num}::Z9-{Global_ID::Node_ID::
      Tunnel_Num}
        

When an MPLS-TP Tunnel is configured, it MUST be assigned a unique IF_ID at each end point. As usual, the IF_ID is composed of the local Node_ID concatenated with a 32-bit IF_Num.

配置MPLS-TP隧道时,必须在每个端点为其分配唯一的IF_ID。通常,IF_ID由本地节点ID和32位IF_Num连接而成。

5.2. MPLS-TP LSP Identifiers
5.2. MPLS-TP LSP标识符

This section defines identifiers for MPLS-TP co-routed bidirectional and associated bidirectional LSPs. Note that MPLS-TP Sub-Path Maintenance Entities (SPMEs), as defined in RFC 5921 [9], are also LSPs and use these same forms of identifiers.

本节定义MPLS-TP共路由双向和相关双向LSP的标识符。请注意,RFC 5921[9]中定义的MPLS-TP子路径维护实体(SPME)也是LSP,并使用相同形式的标识符。

5.2.1. MPLS-TP Co-Routed Bidirectional LSP Identifiers
5.2.1. MPLS-TP共路由双向LSP标识符

A co-routed bidirectional LSP can be uniquely identified by a single LSP number within the scope of an MPLS-TP Tunnel_ID. Specifically, an LSP Number (LSP_Num) is a 16-bit unsigned integer unique within the Tunnel_ID. Thus, the format of an MPLS-TP co-routed bidirectional LSP_ID is:

共路由双向LSP可以由MPLS-TP隧道ID范围内的单个LSP编号唯一标识。具体而言,LSP编号(LSP_Num)是隧道ID内唯一的16位无符号整数。因此,MPLS-TP共路由双向LSP_ID的格式为:

      A1-{Node_ID::Tunnel_Num}::Z9-{Node_ID::Tunnel_Num}::LSP_Num
        
      A1-{Node_ID::Tunnel_Num}::Z9-{Node_ID::Tunnel_Num}::LSP_Num
        

Note that the uniqueness of identifiers does not depend on the A1/Z9 sort ordering. Thus, the identifier:

请注意,标识符的唯一性不取决于A1/Z9排序顺序。因此,标识符:

      Z9-{Node_ID::Tunnel_Num}::A1-{Node_ID::Tunnel_Num}::LSP_Num
        
      Z9-{Node_ID::Tunnel_Num}::A1-{Node_ID::Tunnel_Num}::LSP_Num
        

is synonymous with the one above.

是上面的同义词。

At the data-plane level, a co-routed bidirectional LSP is composed of two unidirectional LSPs traversing the same links in opposite directions. Since a co-routed bidirectional LSP is provisioned or signaled as a single entity, a single LSP_Num is used for both unidirectional LSPs. The unidirectional LSPs can be referenced by the identifiers:

在数据平面级别,共路由双向LSP由两个单向LSP组成,它们以相反方向穿过相同链路。由于共同路由的双向LSP作为单个实体提供或发信号,因此两个单向LSP都使用单个LSP_Num。标识符可以引用单向LSP:

      A1-Node_ID::A1-Tunnel_Num::LSP_Num::Z9-Node_ID and
        
      A1-Node_ID::A1-Tunnel_Num::LSP_Num::Z9-Node_ID and
        

Z9-Node_ID::Z9-Tunnel_Num::LSP_Num::A1-Node_ID, respectively.

Z9-Node_ID::Z9-Tunnel_Num::LSP_Num::A1-Node_ID。

Where the LSP_ID needs to be globally unique, this is accomplished by using globally unique Node_IDs as defined above. Thus, a globally unique LSP_ID becomes:

当LSP_ID需要全局唯一时,这可以通过使用上面定义的全局唯一节点_ID来实现。因此,全局唯一的LSP_ID变为:

      A1-{Global_ID::Node_ID::Tunnel_Num}::Z9-{Global_ID::
      Node_ID::Tunnel_Num}::LSP_Num
        
      A1-{Global_ID::Node_ID::Tunnel_Num}::Z9-{Global_ID::
      Node_ID::Tunnel_Num}::LSP_Num
        
5.2.2. MPLS-TP Associated Bidirectional LSP Identifiers
5.2.2. MPLS-TP相关双向LSP标识符

For an associated bidirectional LSP, each of the unidirectional LSPs from A1 to Z9 and Z9 to A1 require LSP_Nums. Each unidirectional LSP is uniquely identified by a single LSP number within the scope of the ingress's Tunnel_Num. Specifically, an "LSP Number" (LSP_Num) is a

对于相关联的双向LSP,从A1到Z9和Z9到A1的每个单向LSP都需要LSP_Nums。每个单向LSP由入口通道编号范围内的单个LSP编号唯一标识。具体而言,“LSP编号”(LSP编号)是

16-bit unsigned integer unique within the scope of the ingress's Tunnel_Num. Thus, the format of an MPLS-TP associated bidirectional LSP_ID is:

16位无符号整数在入口的隧道编号范围内是唯一的。因此,MPLS-TP关联的双向LSP ID的格式为:

      A1-{Node_ID::Tunnel_Num::LSP_Num}::
      Z9-{Node_ID::Tunnel_Num::LSP_Num}
        
      A1-{Node_ID::Tunnel_Num::LSP_Num}::
      Z9-{Node_ID::Tunnel_Num::LSP_Num}
        

At the data-plane level, an associated bidirectional LSP is composed of two unidirectional LSPs between two nodes in opposite directions. The unidirectional LSPs may be referenced by the identifiers:

在数据平面级别,相关联的双向LSP由两个方向相反的节点之间的两个单向LSP组成。单向lsp可由标识符引用:

      A1-Node_ID::A1-Tunnel_Num::A1-LSP_Num::Z9-Node_ID and
        
      A1-Node_ID::A1-Tunnel_Num::A1-LSP_Num::Z9-Node_ID and
        

Z9-Node_ID::Z9-Tunnel_Num::Z9-LSP_Num::A1-Node_ID, respectively.

Z9-Node_ID::Z9-Tunnel_Num::Z9-LSP_Num::A1-Node_ID。

Where the LSP_ID needs to be globally unique, this is accomplished by using globally unique Node_IDs as defined above. Thus, a globally unique LSP_ID becomes:

当LSP_ID需要全局唯一时,这可以通过使用上面定义的全局唯一节点_ID来实现。因此,全局唯一的LSP_ID变为:

      A1-{Global_ID::Node_ID::Tunnel_Num::LSP_Num}::
      Z9-{Global_ID::Node_ID::Tunnel_Num::LSP_Num}
        
      A1-{Global_ID::Node_ID::Tunnel_Num::LSP_Num}::
      Z9-{Global_ID::Node_ID::Tunnel_Num::LSP_Num}
        
5.3. Mapping to RSVP Signaling
5.3. 映射到RSVP信令

This section is informative and exists to help understand the structure of the LSP IDs.

本节内容丰富,旨在帮助理解LSP ID的结构。

GMPLS [5] is based on RSVP-TE [2]. This section defines the mapping from an MPLS-TP LSP_ID to RSVP-TE. At this time, RSVP-TE has yet to be extended to accommodate Global_IDs. Thus, a mapping is only made for the network unique form of the LSP_ID and assumes that the operator has chosen to derive its Node_IDs from valid IPv4 addresses.

GMPLS[5]基于RSVP-TE[2]。本节定义了从MPLS-TP LSP_ID到RSVP-TE的映射。目前,RSVP-TE尚未扩展以适应全球_ID。因此,仅针对LSP_ID的网络唯一形式进行映射,并假设运营商已选择从有效的IPv4地址派生其节点_ID。

GMPLS and RSVP-TE signaling use a 5-tuple to uniquely identify an LSP within an operator's network. This tuple is composed of a Tunnel End-point Address, Tunnel_ID, Extended Tunnel ID, Tunnel Sender Address, and (RSVP) LSP_ID. RFC 3209 allows some flexibility in how the Extended Tunnel ID is chosen, and a direct mapping is not mandated. One convention that is often used, however, is to populate this field with the same value as the Tunnel Sender Address. The examples below follow that convention. Note that these are only examples.

GMPLS和RSVP-TE信令使用5元组来唯一标识运营商网络中的LSP。此元组由隧道端点地址、隧道ID、扩展隧道ID、隧道发送方地址和(RSVP)LSP_ID组成。RFC 3209允许在选择扩展隧道ID时具有一定的灵活性,并且不强制要求直接映射。但是,经常使用的一种约定是使用与隧道发送方地址相同的值填充此字段。下面的例子遵循这一惯例。请注意,这些只是示例。

For a co-routed bidirectional LSP signaled from A1 to Z9, the mapping to the GMPLS 5-tuple is as follows:

对于从A1到Z9发信号的共路由双向LSP,到GMPLS 5元组的映射如下:

* Tunnel End-point Address = Z9-Node_ID

* 隧道端点地址=Z9-节点\u ID

* Tunnel_ID = A1-Tunnel_Num

* 隧道ID=A1-隧道编号

* Extended Tunnel_ID = A1-Node_ID

* 扩展隧道\u ID=A1节点\u ID

* Tunnel Sender Address = A1-Node_ID

* 隧道发送方地址=A1节点\u ID

* (RSVP) LSP_ID = LSP_Num

* (RSVP)LSP_ID=LSP_Num

An associated bidirectional LSP between two nodes A1 and Z9 consists of two unidirectional LSPs, one from A1 to Z9 and one from Z9 to A1.

两个节点A1和Z9之间的相关联的双向LSP包括两个单向LSP,一个从A1到Z9,另一个从Z9到A1。

In situations where a mapping to the RSVP-TE 5-tuples is required, the following mappings are used. For the A1 to Z9 LSP, the mapping would be:

在需要映射到RSVP-TE 5元组的情况下,将使用以下映射。对于A1至Z9 LSP,映射为:

* Tunnel End-point Address = Z9-Node_ID

* 隧道端点地址=Z9-节点\u ID

* Tunnel_ID = A1-Tunnel_Num

* 隧道ID=A1-隧道编号

* Extended Tunnel_ID = A1-Node_ID

* 扩展隧道\u ID=A1节点\u ID

* Tunnel Sender Address = A1-Node_ID

* 隧道发送方地址=A1节点\u ID

* (RSVP) LSP_ID = A1-LSP_Num

* (RSVP)LSP_ID=A1-LSP_Num

Likewise, the Z9 to A1 LSP, the mapping would be:

同样,Z9到A1 LSP的映射为:

* Tunnel End-point Address = A1-Node_ID

* 隧道端点地址=A1节点\u ID

* Tunnel_ID = Z9-Tunnel_Num

* 隧道ID=Z9-隧道编号

* Extended Tunnel_ID = Z9-Node_ID

* 扩展隧道ID=Z9节点ID

* Tunnel Sender Address = Z9-Node_ID

* 隧道发送方地址=Z9-Node_ID

* (RSVP) LSP_ID = Z9-LSP_Num

* (RSVP)LSP_ID=Z9-LSP_Num

6. Pseudowire Path Identifiers
6. 伪线路路径标识符

Pseudowire signaling (RFC 4447 [6]) defines two FECs used to signal pseudowires. Of these, the Generalized PWid FEC (type 129) along with AII Type 2 as defined in RFC 5003 [3] fits the identification requirements of MPLS-TP.

伪线信令(RFC 4447[6])定义了两个用于向伪线发送信号的FEC。其中,RFC 5003[3]中定义的广义PWid FEC(类型129)和AII类型2符合MPLS-TP的识别要求。

In an MPLS-TP environment, a PW is identified by a set of identifiers that can be mapped directly to the elements required by the Generalized PWid FEC (type 129) and AII Type 2. To distinguish this identifier from other Pseudowire Identifiers, we call this a Pseudowire Path Identifier (PW_Path_ID).

在MPLS-TP环境中,PW由一组标识符标识,该标识符可直接映射到通用PWid FEC(类型129)和AII类型2所需的元素。为了将该标识符与其他伪线标识符区分开来,我们将其称为伪线路径标识符(PW_Path_ID)。

The AII Type 2 is composed of three fields. These are the Global_ID, the Prefix, and the AC_ID. The Global_ID used in this document is identical to the Global_ID defined in RFC 5003. The Node_ID is used as the Prefix. The AC_ID is as defined in RFC 5003.

AII类型2由三个字段组成。这些是全局\u ID、前缀和AC\u ID。本文档中使用的全局\u ID与RFC 5003中定义的全局\u ID相同。节点ID用作前缀。AC_ID的定义见RFC 5003。

To complete the Generalized PWid FEC (type 129), all that is required is an Attachment Group Identifier (AGI). That field is exactly as specified in RFC 4447. A (bidirectional) pseudowire consists of a pair of unidirectional LSPs, one in each direction. Thus, for signaling, the Generalized PWid FEC (type 129) has a notion of Source AII (SAII) and Target AII (TAII). These terms are used relative to the direction of the LSP, i.e., the SAII is assigned to the end that allocates the PW label for a given direction, and the TAII to the other end.

要完成通用PWid FEC(类型129),只需要附件组标识符(AGI)。该字段完全符合RFC 4447中的规定。(双向)伪线由一对单向LSP组成,每个方向一个。因此,对于信令,广义PWid-FEC(类型129)具有源AII(SAII)和目标AII(TAII)的概念。这些术语相对于LSP的方向使用,即,SAII分配给为给定方向分配PW标签的一端,TAII分配给另一端。

In a purely configured environment, when referring to the entire PW, this distinction is not critical. That is, a Generalized PWid FEC (type 129) of AGIa::AIIb::AIIc is equivalent to AGIa::AIIc::AIIb.

在纯配置环境中,当涉及整个PW时,这种区别并不重要。也就是说,AGIa::AIIb::AIIc的广义PWid FEC(类型129)等价于AGIa::AIIc::AIIb。

We note that in a signaled environment, the required convention in RFC 4447 is that at a particular end point, the AII associated with that end point comes first. The complete PW_Path_ID is:

我们注意到,在有信号的环境中,RFC 4447中要求的约定是,在特定的端点处,与该端点相关联的AII首先出现。完整的PW_路径_ID为:

AGI::A1-{Global_ID::Node_ID::AC_ID}:: Z9-{Global_ID::Node_ID::AC_ID}.

AGI::A1-{Global_ID::Node_ID::AC_ID}::Z9-{Global_ID::Node_ID::AC_ID}。

In a signaled environment the LSP from A1 to Z9 would be initiated with a label request from A1 to Z9 with the fields of the Generalized PWid FEC (type 129) completed as follows:

在有信号的环境中,从A1到Z9的LSP将通过从A1到Z9的标签请求启动,通用PWid FEC(129型)字段的填写如下:

      AGI = AGI
      SAII = A1-{Global_ID::Node_ID::AC_ID}
      TAII = Z9-{Global_ID::Node_ID::AC_ID}
        
      AGI = AGI
      SAII = A1-{Global_ID::Node_ID::AC_ID}
      TAII = Z9-{Global_ID::Node_ID::AC_ID}
        

The LSP from Z9 to A1 would signaled with:

从Z9到A1的LSP将发出以下信号:

      AGI = AGI
      SAII = Z9-{Global_ID::Node_ID::AC_ID}
      TAII = A1-{Global_ID::Node_ID::AC_ID}
        
      AGI = AGI
      SAII = Z9-{Global_ID::Node_ID::AC_ID}
      TAII = A1-{Global_ID::Node_ID::AC_ID}
        
7. Maintenance Identifiers
7. 维护标识符

In MPLS-TP, a Maintenance Entity Group (MEG) represents an entity that requires management and defines a relationship between a set of maintenance points. A maintenance point is either a Maintenance Entity Group End Point (MEP), a Maintenance Entity Group Intermediate Point (MIP), or a Pseudowire Segment End Point. Within the context of a MEG, MEPs and MIPs must be uniquely identified. This section defines a means of uniquely identifying Maintenance Entity Groups and Maintenance Entities. It also uniquely defines MEPs and MIPs within the context of a Maintenance Entity Group.

在MPLS-TP中,维护实体组(MEG)表示需要管理的实体,并定义一组维护点之间的关系。维护点是维护实体组端点(MEP)、维护实体组中间点(MIP)或伪导线段端点。在MEG的上下文中,MEP和MIP必须唯一标识。本节定义了唯一标识维护实体组和维护实体的方法。它还在维护实体组的上下文中唯一定义MEP和MIP。

7.1. Maintenance Entity Group Identifiers
7.1. 维护实体组标识符

Maintenance Entity Group Identifiers (MEG_IDs) are required for MPLS-TP sections, LSPs, and Pseudowires. The formats were chosen to follow the IP-compatible identifiers defined above.

MPLS-TP段、LSP和伪线需要维护实体组标识符(MEG_ID)。选择的格式遵循上面定义的IP兼容标识符。

7.1.1. MPLS-TP Section MEG_IDs
7.1.1. MPLS-TP段MEG\U ID

MPLS-TP allows a hierarchy of sections. See "MPLS-TP Data Plane Architecture" (RFC 5960 [10]). Sections above layer 0 are MPLS-TP LSPs. These use their MPLS-TP LSP MEG IDs defined in Section 7.1.2.

MPLS-TP允许分区的层次结构。参见“MPLS-TP数据平面架构”(RFC 5960[10])。层0以上的部分是MPLS-TP LSP。它们使用第7.1.2节中定义的MPLS-TP LSP MEG ID。

IP-compatible MEG_IDs for MPLS-TP sections at layer 0 are formed by concatenating the two IF_IDs of the corresponding section using the A1/Z9 ordering. For example:

层0处MPLS-TP段的IP兼容MEG_ID是通过使用A1/Z9顺序连接相应段的两个IF_ID形成的。例如:

A1-IF_ID::Z9-IF_ID

A1-IF_ID::Z9-IF_ID

Where the Section_MEG_ID needs to be globally unique, this is accomplished by using globally unique Node_IDs as defined above. Thus, a globally unique Section_MEG_ID becomes:

当节的节点ID需要全局唯一时,这可以通过使用上面定义的全局唯一节点ID来实现。因此,一个全局唯一的节MEG ID变为:

      A1-{Global_ID::IF_ID}::Z9-{Global_ID::IF_ID}
        
      A1-{Global_ID::IF_ID}::Z9-{Global_ID::IF_ID}
        
7.1.2. MPLS-TP LSP MEG_IDs
7.1.2. MPLS-TP LSP MEG_ID

A MEG pertains to a unique MPLS-TP LSP. IP compatible MEG_IDs for MPLS-TP LSPs are simply the corresponding LSP_IDs; however, the A1/Z9 ordering MUST be used. For bidirectional co-routed LSPs, the format of the LSP_ID is found in Section 5.2.1. For associated bidirectional LSPs, the format is in Section 5.2.2.

MEG属于唯一的MPLS-TP LSP。MPLS-TP LSP的IP兼容MEG_ID只是相应的LSP_ID;但是,必须使用A1/Z9订购。对于双向共路由LSP,LSP_ID的格式见第5.2.1节。对于相关的双向LSP,格式见第5.2.2节。

We note that while the two identifiers are syntactically identical, they have different semantics. This semantic difference needs to be made clear. For instance, if both an MPLS-TP LSP_ID and MPLS-TP LSP MEG_IDs are to be encoded in TLVs, different types need to be assigned for these two identifiers.

我们注意到,虽然这两个标识符在语法上是相同的,但它们具有不同的语义。这种语义差异需要弄清楚。例如,如果要在TLV中编码MPLS-TP LSP_ID和MPLS-TP LSP MEG_ID,则需要为这两个标识符分配不同的类型。

7.1.3. Pseudowire MEG_IDs
7.1.3. 伪线兆欧ID

For Pseudowires, a MEG pertains to a single PW. The IP-compatible MEG_ID for a PW is simply the corresponding PW_Path_ID; however, the A1/Z9 ordering MUST be used. The PW_Path_ID is described in Section 6. We note that while the two identifiers are syntactically identical, they have different semantics. This semantic difference needs to be made clear. For instance, if both a PW_Path_ID and a PW_MEG_ID are to be encoded in TLVs, different types need to be assigned for these two identifiers.

对于假导线,MEG属于单个PW。PW的IP兼容MEG_ID只是对应的PW_路径_ID;但是,必须使用A1/Z9订购。第6节描述了PW_路径_ID。我们注意到,虽然这两个标识符在语法上是相同的,但它们具有不同的语义。这种语义差异需要弄清楚。例如,如果要在TLV中编码PW_路径_ID和PW_MEG_ID,则需要为这两个标识符分配不同的类型。

7.2. Maintenance Entity Group End Point Identifiers
7.2. 维护实体组端点标识符
7.2.1. MPLS-TP Section MEP_IDs
7.2.1. MPLS-TP段MEP\U ID

IP-compatible MEP_IDs for MPLS-TP sections above layer 0 are their MPLS-TP LSP_MEP_IDs. See Section 7.2.2.

层0以上MPLS-TP段的IP兼容MEP_ID是其MPLS-TP LSP_MEP_ID。见第7.2.2节。

IP-compatible MEP_IDs for MPLS-TP sections at layer 0 are simply the IF_IDs of each end of the section. For example, for a section whose MEG_ID is:

层0处MPLS-TP段的IP兼容MEP_ID只是段两端的IF_ID。例如,对于MEG_ID为的区段:

A1-IF_ID::Z9-IF_ID

A1-IF_ID::Z9-IF_ID

the Section MEP_ID at A1 would be:

A1处的路段MEP_ID为:

A1-IF_ID

A1-IF\U ID

and the Section MEP_ID at Z9 would be:

Z9处的MEP_ID段为:

Z9-IF_ID.

Z9-IF_ID。

Where the Section MEP_ID needs to be globally unique, this is accomplished by using globally unique Node_IDs as defined above. Thus, a globally unique Section MEP_ID becomes:

如果区段MEP_ID需要全局唯一,则可通过使用上文定义的全局唯一节点_ID来实现。因此,全局唯一的部分MEP_ID变为:

Global_ID::IF_ID.

全局\u ID::IF\u ID。

7.2.2. MPLS-TP LSP_MEP_ID
7.2.2. MPLS-TP LSP_MEP_ID

In order to automatically generate MEP_IDs for MPLS-TP LSPs, we use the elements of identification that are unique to an end point. This ensures that MEP_IDs are unique for all LSPs within an operator. When Tunnels or LSPs cross operator boundaries, these are made unique by pre-pending them with the operator's Global_ID.

为了自动为MPLS-TP LSP生成MEP_ID,我们使用端点唯一的标识元素。这确保MEP_ID对于运营商内的所有LSP都是唯一的。当隧道或LSP跨越运营商边界时,通过使用运营商的全局ID预挂起它们,使其具有唯一性。

The MPLS-TP LSP_MEP_ID is:

MPLS-TP LSP_MEP_ID为:

      Node_ID::Tunnel_Num::LSP_Num
        
      Node_ID::Tunnel_Num::LSP_Num
        

where the Node_ID is the node in which the MEP is located and Tunnel_Num is the tunnel number unique to that node. In the case of co-routed bidirectional LSPs, the single LSP_Num is used at both ends. In the case of associated bidirectional LSPs, the LSP_Num is the one unique to where the MEP resides.

其中,Node_ID是MEP所在的节点,Tunnel_Num是该节点唯一的隧道号。在共路由双向LSP的情况下,在两端使用单个LSP_Num。在关联双向LSP的情况下,LSP_Num是MEP所在位置的唯一值。

In situations where global uniqueness is required, this becomes:

在需要全局唯一性的情况下,这将成为:

      Global_ID::Node_ID::Tunnel_Num::LSP_Num
        
      Global_ID::Node_ID::Tunnel_Num::LSP_Num
        
7.2.3. MEP_IDs for Pseudowires
7.2.3. 伪导线的MEP_ID

Like MPLS-TP LSPs, Pseudowire end points (T-PEs) require MEP_IDs. In order to automatically generate MEP_IDs for PWs, we simply use the AGI plus the AII associated with that end of the PW. Thus, a MEP_ID for a Pseudowire T-PE takes the form:

与MPLS-TP LSP一样,伪线端点(T-PE)需要MEP_ID。为了为PWs自动生成MEP_ID,我们只需使用AGI加上与PW末端相关的AII。因此,伪线T-PE的MEP_ID采用以下形式:

      AGI::Global_ID::Node_ID::AC_ID
        
      AGI::Global_ID::Node_ID::AC_ID
        

where the Node_ID is the node in which the MEP is located and the AC_ID is the AC_ID of the Pseudowire at that node.

其中,Node_ID是MEP所在的节点,AC_ID是该节点处伪线的AC_ID。

7.3. Maintenance Entity Group Intermediate Point Identifiers
7.3. 维护实体组中间点标识符

For a MIP that is associated with a particular interface, we simply use the IF_ID (see Section 4) of the interfaces that are cross-connected. This allows MIPs to be independently identified in one node where a per-interface MIP model is used. If only a per-node MIP model is used, then one MIP is configured. In this case, the MIP_ID is formed using the Node_ID and an IF_Num of 0.

对于与特定接口关联的MIP,我们只需使用交叉连接接口的IF_ID(参见第4节)。这允许在使用每个接口MIP模型的一个节点中独立标识MIP。如果只使用每节点MIP模型,则配置一个MIP。在这种情况下,MIP_ID是使用Node_ID和IF_Num 0形成的。

8. Security Considerations
8. 安全考虑

This document describes an information model and, as such, does not introduce security concerns. Protocol specifications that describe use of this information model, however, may introduce security risks

本文档描述了一个信息模型,因此不引入安全问题。然而,描述此信息模型使用的协议规范可能会带来安全风险

and concerns about authentication of participants. For this reason, the writers of protocol specifications for the purpose of describing implementation of this information model need to describe security and authentication concerns that may be raised by the particular mechanisms defined and how those concerns may be addressed.

以及对参与者身份验证的关注。因此,为了描述该信息模型的实现,协议规范的编写者需要描述特定机制可能引起的安全和认证问题,以及如何解决这些问题。

Uniqueness of the identifiers from this document is guaranteed by the assigner (e.g., a Global_ID is unique based on the assignment of ASNs from IANA and both a Node_ID and an IF_Num are unique based on the assignment by an operator). Failure by an assigner to use unique values within the specified scoping for any of the identifiers defined herein could result in operational problems. For example, a non-unique MEP value could result in failure to detect a mis-merged LSP.

本文件中标识符的唯一性由转让人保证(例如,根据IANA对ASN的转让,全局ID是唯一的,根据运营商的转让,节点ID和IF编号都是唯一的)。转让人未能在此处定义的任何标识符的指定范围内使用唯一值可能会导致操作问题。例如,非唯一MEP值可能导致无法检测错误合并的LSP。

Protocol specifications that utilize the identifiers defined herein need to consider the implications of guessable identifiers and, where there is a security implication, SHOULD give advice on how to make identifiers less guessable.

利用这里定义的标识符的协议规范需要考虑可猜测标识符的含义,并且在存在安全含义的情况下,应该给出如何使标识符不可猜测的建议。

9. References
9. 工具书类
9.1. Normative References
9.1. 规范性引用文件

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[1] Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[2] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, December 2001.

[2] Awduche,D.,Berger,L.,Gan,D.,Li,T.,Srinivasan,V.,和G.Swallow,“RSVP-TE:LSP隧道RSVP的扩展”,RFC 3209,2001年12月。

[3] Metz, C., Martini, L., Balus, F., and J. Sugimoto, "Attachment Individual Identifier (AII) Types for Aggregation", RFC 5003, September 2007.

[3] Metz,C.,Martini,L.,Balus,F.,和J.Sugimoto,“聚合的附件个人标识符(AII)类型”,RFC 5003,2007年9月。

[4] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.

[4] Berger,L.,“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。

[5] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.

[5] Berger,L.,“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,2003年1月。

[6] Martini, L., Rosen, E., El-Aawar, N., Smith, T., and G. Heron, "Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)", RFC 4447, April 2006.

[6] Martini,L.,Rosen,E.,El Aawar,N.,Smith,T.,和G.Heron,“使用标签分发协议(LDP)的伪线设置和维护”,RFC 4447,2006年4月。

9.2. Informative References
9.2. 资料性引用

[7] Niven-Jenkins, B., Brungard, D., Betts, M., Sprecher, N., and S. Ueno, "Requirements of an MPLS Transport Profile", RFC 5654, September 2009.

[7] Niven Jenkins,B.,Brungard,D.,Betts,M.,Sprecher,N.,和S.Ueno,“MPLS传输配置文件的要求”,RFC 56542009年9月。

[8] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, June 2000.

[8] McCloghrie,K.和F.Kastenholz,“接口组MIB”,RFC 28632000年6月。

[9] Bocci, M., Bryant, S., Frost, D., Levrau, L., and L. Berger, "A Framework for MPLS in Transport Networks", RFC 5921, July 2010.

[9] Bocci,M.,Bryant,S.,Frost,D.,Levrau,L.,和L.Berger,“传输网络中MPLS的框架”,RFC 59212010年7月。

[10] Frost, D., Bryant, S., and M. Bocci, "MPLS Transport Profile Data Plane Architecture", RFC 5960, August 2010.

[10] Frost,D.,Bryant,S.,和M.Bocci,“MPLS传输配置文件数据平面架构”,RFC 59602010年8月。

Authors' Addresses

作者地址

Matthew Bocci Alcatel-Lucent Voyager Place, Shoppenhangers Road Maidenhead, Berks SL6 2PJ UK

Matthew Bocci Alcatel-Lucent Voyager Place,英国伯克斯市梅登黑德Shoppenivers路SL6 2PJ

   EMail: matthew.bocci@alcatel-lucent.com
        
   EMail: matthew.bocci@alcatel-lucent.com
        

George Swallow Cisco

乔治·斯沃洛·思科

   EMail: swallow@cisco.com
        
   EMail: swallow@cisco.com
        

Eric Gray Ericsson 900 Chelmsford Street Lowell, Massachussetts 01851-8100

埃里克·格雷·爱立信,马萨诸塞州洛厄尔切姆斯福德街900号,邮编01851-8100

   EMail: eric.gray@ericsson.com
        
   EMail: eric.gray@ericsson.com