Internet Engineering Task Force (IETF) G. Bernstein, Ed. Request for Comments: 6344 Grotto Networking Updates: 4606 D. Caviglia Category: Standards Track Ericsson ISSN: 2070-1721 R. Rabbat Google H. van Helvoort Huawei August 2011
Internet Engineering Task Force (IETF) G. Bernstein, Ed. Request for Comments: 6344 Grotto Networking Updates: 4606 D. Caviglia Category: Standards Track Ericsson ISSN: 2070-1721 R. Rabbat Google H. van Helvoort Huawei August 2011
Operating Virtual Concatenation (VCAT) and the Link Capacity Adjustment Scheme (LCAS) with Generalized Multi-Protocol Label Switching (GMPLS)
操作虚拟连接(VCAT)和带有通用多协议标签交换(GMPLS)的链路容量调整方案(LCAS)
Abstract
摘要
This document describes requirements for, and the use of, the Generalized Multi-Protocol Label Switching (GMPLS) control plane in support of the Virtual Concatenation (VCAT) layer 1 inverse multiplexing data plane mechanism and its companion Link Capacity Adjustment Scheme (LCAS). LCAS can be used for hitless dynamic resizing of the inverse multiplex group. These techniques apply to Optical Transport Network (OTN), Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), and Plesiochronous Digital Hierarchy (PDH) signals. This document updates RFC 4606 by making modifications to the procedures for supporting virtual concatenation.
本文件描述了通用多协议标签交换(GMPLS)控制平面的要求和使用,以支持虚拟级联(VCAT)第1层反向复用数据平面机制及其伴随链路容量调整方案(LCAS)。LCAS可用于反向多路复用组的无故障动态调整大小。这些技术适用于光传输网(OTN)、同步光网络(SONET)、同步数字体系(SDH)和准同步数字体系(PDH)信号。本文档通过修改支持虚拟连接的过程来更新RFC 4606。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6344.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6344.
Copyright Notice
版权公告
Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2011 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................3 1.1. Conventions Used in This Document ..........................4 2. VCAT/LCAS Scenarios and Specific Requirements ...................4 2.1. VCAT/LCAS Interface Capabilities ...........................4 2.2. Member Signal Configuration Scenarios ......................5 2.3. VCAT Operation with or without LCAS ........................6 2.4. VCGs and VCG Members .......................................7 3. VCAT Data and Control Plane Concepts ............................7 4. VCGs Composed of a Single Member Set (One LSP) ..................8 4.1. One-Shot VCG Setup .........................................8 4.2. Incremental VCG Setup ......................................9 4.3. Procedure for VCG Reduction by Removing a Member ...........9 4.4. Removing Multiple VCG Members in One Shot .................10 4.5. Teardown of Whole VCG .....................................10 5. VCGs Composed of Multiple Member Sets (Multiple LSPs) ..........10 5.1. Signaled VCG Service Layer Information ....................11 5.2. CALL_ATTRIBUTES Object VCAT TLV ...........................12 5.3. Procedures for Multiple Member Sets .......................14 5.3.1. Setting Up a New VCAT Call and VCG Simultaneously ..14 5.3.2. Setting Up a VCAT Call and LSPs without a VCG ......14 5.3.3. Associating an Existing VCAT Call with a New VCG ...15 5.3.4. Removing the Association between a Call and VCG ....15 5.3.5. VCG Bandwidth Modification .........................15 6. Error Conditions and Codes .....................................16 7. IANA Considerations ............................................17 7.1. RSVP Call Attribute TLV ...................................17 7.2. RSVP Error Codes and Error Values .........................17 7.3. VCAT Elementary Signal Registry ...........................18 7.4. VCAT VCG Operation Actions ................................18 8. Security Considerations ........................................18 9. Contributors ...................................................19 10. Acknowledgments ...............................................19 11. References ....................................................19 11.1. Normative References .....................................19 11.2. Informative References ...................................20
1. Introduction ....................................................3 1.1. Conventions Used in This Document ..........................4 2. VCAT/LCAS Scenarios and Specific Requirements ...................4 2.1. VCAT/LCAS Interface Capabilities ...........................4 2.2. Member Signal Configuration Scenarios ......................5 2.3. VCAT Operation with or without LCAS ........................6 2.4. VCGs and VCG Members .......................................7 3. VCAT Data and Control Plane Concepts ............................7 4. VCGs Composed of a Single Member Set (One LSP) ..................8 4.1. One-Shot VCG Setup .........................................8 4.2. Incremental VCG Setup ......................................9 4.3. Procedure for VCG Reduction by Removing a Member ...........9 4.4. Removing Multiple VCG Members in One Shot .................10 4.5. Teardown of Whole VCG .....................................10 5. VCGs Composed of Multiple Member Sets (Multiple LSPs) ..........10 5.1. Signaled VCG Service Layer Information ....................11 5.2. CALL_ATTRIBUTES Object VCAT TLV ...........................12 5.3. Procedures for Multiple Member Sets .......................14 5.3.1. Setting Up a New VCAT Call and VCG Simultaneously ..14 5.3.2. Setting Up a VCAT Call and LSPs without a VCG ......14 5.3.3. Associating an Existing VCAT Call with a New VCG ...15 5.3.4. Removing the Association between a Call and VCG ....15 5.3.5. VCG Bandwidth Modification .........................15 6. Error Conditions and Codes .....................................16 7. IANA Considerations ............................................17 7.1. RSVP Call Attribute TLV ...................................17 7.2. RSVP Error Codes and Error Values .........................17 7.3. VCAT Elementary Signal Registry ...........................18 7.4. VCAT VCG Operation Actions ................................18 8. Security Considerations ........................................18 9. Contributors ...................................................19 10. Acknowledgments ...............................................19 11. References ....................................................19 11.1. Normative References .....................................19 11.2. Informative References ...................................20
The Generalized Multi-Protocol Label Switching (GMPLS) suite of protocols allows for the automated control of different switching technologies, including the Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), Optical Transport Network (OTN), and Plesiochronous Digital Hierarchy (PDH). This document updates the procedures described in [RFC4606] to allow supporting additional
通用多协议标签交换(GMPLS)协议套件允许自动控制不同的交换技术,包括同步光网络(SONET)、同步数字体系(SDH)、光传输网络(OTN)和准同步数字体系(PDH)。本文件更新了[RFC4606]中所述的程序,以支持额外的
applications of the Virtual Concatenation (VCAT) layer 1 inverse multiplexing mechanism that has been standardized for SONET, SDH, OTN, and PDH [ANSI-T1.105] [ITU-T-G.707] [ITU-T-G.709] [ITU-T-G.7043] technologies, along with its companion Link Capacity Adjustment Scheme (LCAS) [ITU-T-G.7042].
已为SONET、SDH、OTN和PDH[ANSI-T1.105][ITU-T-G.707][ITU-T-G.709][ITU-T-G.7043]技术标准化的虚拟级联(VCAT)第1层反向复用机制及其配套链路容量调整方案(LCAS)[ITU-T-G.7042]的应用。
VCAT is a time-division multiplexing (TDM)-oriented byte striping inverse multiplexing method that works with a wide range of existing and emerging TDM framed signals, including very-high-bit-rate OTN and SDH/SONET signals. VCAT enables the selection of an optimal signal server bandwidth (size) utilizing a group of server signals and provides for efficient use of bandwidth in a mesh network. When combined with LCAS, hitless dynamic resizing of bandwidth and fast graceful degradation in the presence of network faults can be supported. To take full advantage of VCAT/LCAS functionality, additional extensions to GMPLS signaling are needed that enable the setup of diversely routed signals that are members of the same VCAT group. Note that the scope of this document is limited to scenarios where all member signals of a VCAT group are controlled using mechanisms defined in this document and related RFCs. Scenarios where a subset of member signals are controlled by a management plane or a proprietary control plane are outside the scope of this document.
VCAT是一种面向时分复用(TDM)的字节条带逆复用方法,适用于各种现有和新兴的TDM帧信号,包括非常高的比特率OTN和SDH/SONET信号。VCAT能够利用一组服务器信号选择最佳信号服务器带宽(大小),并在网状网络中有效利用带宽。当与LCAS结合使用时,可以支持无故障动态调整带宽和在出现网络故障时快速优雅降级。为了充分利用VCAT/LCAS功能,需要对GMPLS信令进行额外扩展,以便能够设置属于同一VCAT组的不同路由信号。请注意,本文件的范围仅限于使用本文件和相关RFC中定义的机制控制VCAT组所有成员信号的场景。成员信号子集由管理平面或专有控制平面控制的场景不在本文件范围内。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。
There are a number of specific requirements for the support of VCAT/LCAS in GMPLS that can be derived from the carriers' applications for the use of VCAT/LCAS. These are set out in the following section.
GMPLS中有许多支持VCAT/LCA的具体要求,这些要求可以从承运人使用VCAT/LCA的应用中得出。这些内容将在下一节中列出。
In general, a label switched router (LSR) can be an ingress/egress of one or more VCAT groups. VCAT and LCAS are data plane interface capabilities. An LSR may have, for example, VCAT-capable interfaces that are not LCAS-capable. It may at the same time have interfaces that are neither VCAT-capable nor LCAS-capable.
通常,标签交换路由器(LSR)可以是一个或多个VCAT组的入口/出口。VCAT和LCA是数据平面接口功能。例如,LSR可能具有不支持LCAS的支持VCAT的接口。它可能同时具有既不支持VCAT也不支持LCAS的接口。
We list in this section the different scenarios. Here we use the [ITU-T-G.707] term "VCG" to refer to the VCAT group and the terminology "set" and "subset" to refer to the subdivision of the group and the individual VCAT group member signals. As noted above, the scope of these scenarios is limited to scenarios where all member signals are controlled using mechanisms defined in this document.
我们在本节中列出了不同的场景。在这里,我们使用[ITU-T-G.707]术语“VCG”指VCAT组,术语“集合”和“子集”指组的细分和单个VCAT组成员信号。如上所述,这些场景的范围仅限于使用本文档中定义的机制控制所有成员信号的场景。
The scenarios listed here are dependent on the terms "co-routed" and "diversely routed". In the context of this document, "co-routed" refers to a set of VCAT signals that all traverse the same sequence of switching nodes. Furthermore, a co-routed set of signals between any pair of adjacent nodes utilizes a set of links that have similar delay characteristics. Thus, "diversely routed" means a set of signals that are not classed as "co-routed".
此处列出的场景取决于术语“共同路由”和“不同路由”。在本文件的上下文中,“共路由”指的是一组VCAT信号,它们都穿过相同的交换节点序列。此外,任何一对相邻节点之间的共同路由信号集利用具有相似延迟特性的链路集。因此,“分流路由”是指未归类为“共路由”的一组信号。
Fixed, co-routed: A fixed-bandwidth VCG, transported over a co-routed set of member signals. This is the case where the intended bandwidth of the VCG does not change and all member signals follow the same route to minimize differential delay. The application here is the capability to allocate an amount of bandwidth close to that required at the client layer.
固定,共路由:通过一组共路由的成员信号传输的固定带宽VCG。在这种情况下,VCG的预期带宽不变,并且所有成员信号遵循相同的路由以最小化差分延迟。这里的应用程序能够分配接近客户端层所需带宽的带宽。
Fixed, diversely routed: A fixed-bandwidth VCG, transported over at least two diversely routed subsets of member signals. In this case, the subsets are link-disjoint over at least one link of the route. The application here is more efficient use of network resources, e.g., no unique route has the required bandwidth.
固定、不同路由:通过至少两个不同路由的成员信号子集传输的固定带宽VCG。在这种情况下,子集在路由的至少一个链路上是链路不相交的。这里的应用是更有效地利用网络资源,例如,没有唯一的路由具有所需的带宽。
Fixed, member sharing: A fixed-bandwidth VCG, transported over a set of member signals that are allocated from a common pool of available member signals without requiring member connection teardown and setup. This document only covers the case where this pool of "potential" member signals has been established via mechanisms defined in this document. Member signals need not be co-routed or be guaranteed to be diversely routed. Note that by the nature of VCAT, a member signal can only belong to one VCG at a time. To be used in a different VCG, a signal must first be removed from any VCG to which it may belong.
固定、成员共享:固定带宽VCG,通过一组成员信号传输,这些信号从可用成员信号的公共池中分配,无需断开和设置成员连接。本文件仅涵盖通过本文件中定义的机制建立“潜在”成员信号库的情况。成员信号无需共同路由或保证不同路由。注意,根据VCAT的性质,成员信号一次只能属于一个VCG。要在不同的VCG中使用,必须首先将信号从其所属的任何VCG中移除。
Dynamic, co-routed: A dynamic VCG (bandwidth can be increased or decreased via the addition or removal of member signals), transported over a co-routed set of members. The application here is dynamic resizing and resilience of bandwidth.
动态共路由:通过一组共路由成员传输的动态VCG(带宽可以通过添加或删除成员信号来增加或减少)。这里的应用是动态调整带宽大小和恢复能力。
Dynamic, diversely routed: A dynamic VCG (bandwidth can be increased or decreased via the addition or removal of member signals), transported over at least two diversely routed subsets of member signals. The application here is efficient use of network resources, dynamic resizing, and resilience of bandwidth.
动态、不同路由:通过至少两个不同路由的成员信号子集传输的动态VCG(带宽可通过添加或删除成员信号来增加或减少)。这里的应用是有效利用网络资源、动态调整大小和带宽恢复能力。
Dynamic, member sharing: A dynamic-bandwidth VCG, transported over a set of member signals that are allocated from a common pool of available member signals without requiring member connection teardown and setup.
动态、成员共享:动态带宽VCG,通过一组成员信号传输,这些信号从可用成员信号的公共池中分配,无需断开和设置成员连接。
VCAT capabilities may be present with or without the presence of LCAS. The use of LCAS is beneficial in the provisioning of flexible bandwidth services, but in the absence of LCAS, VCAT is still a valid technique. Therefore, GMPLS mechanisms for the operation of VCAT are REQUIRED for both the case where LCAS is available and the case where it is not available. The GMPLS procedures for the two cases SHOULD be identical.
VCAT能力可能存在,也可能不存在LCA。使用LCA有利于提供灵活的带宽服务,但在没有LCA的情况下,VCAT仍然是一种有效的技术。因此,在LCA可用和不可用的情况下,都需要VCAT运行的GMPLS机制。两种情况下的GMPLS程序应相同。
o GMPLS signaling for LCAS-capable interfaces MUST support all scenarios described in Section 2.2 with no loss of traffic.
o 支持LCAS的接口的GMPLS信令必须支持第2.2节中描述的所有场景,且不会造成流量损失。
o GMPLS signaling for non-LCAS-capable interfaces MUST support the "fixed" scenarios described in Section 2.2.
o 非LCAS能力接口的GMPLS信号必须支持第2.2节所述的“固定”方案。
To provide for these requirements, GMPLS signaling MUST carry the following information on behalf of the VCAT endpoints:
为了满足这些要求,GMPLS信令必须代表VCAT端点携带以下信息:
o The type of the member signal that the VCG will contain, e.g., VC-3, VC-4, etc.
o VCG将包含的成员信号类型,例如VC-3、VC-4等。
o The total number of members to be in the VCG. This provides the endpoints in both the LCAS and non-LCAS case with information on which to accept or reject the request, and in the non-LCAS case will let the receiving endpoint know when all members of the VCG have been established.
o VCG中的成员总数。这为LCA和非LCA情况下的端点提供了接受或拒绝请求的信息,在非LCA情况下,将让接收端点知道VCG的所有成员何时都已建立。
o Identification of the VCG and its associated members. This provides information that allows the endpoints to differentiate multiple VCGs and to tell what member, label switched paths (LSPs), to associate with a particular VCG.
o VCG及其相关成员的识别。这提供的信息允许端点区分多个VCG,并告诉哪个成员(标签交换路径(LSP))与特定VCG关联。
The signaling solution SHOULD provide a mechanism to support these scenarios:
信令解决方案应提供支持这些场景的机制:
o VCG members (server-layer connections) may be set up prior to their use in a VCG.
o VCG成员(服务器层连接)可以在VCG中使用之前进行设置。
o VCG members (server-layer connections) may exist after their corresponding VCG has been removed.
o VCG成员(服务器层连接)在其相应的VCG被删除后可能存在。
However, it is not required that any arbitrarily created server-layer connection be supported in the above scenarios, i.e., connections established without following the procedures described in this document.
但是,在上述场景中,不要求支持任意创建的服务器层连接,即不遵循本文档中描述的过程建立的连接。
When utilizing GMPLS with VCAT/LCAS, we use a number of control and data plane concepts described below.
当将GMPLS与VCAT/LCAS结合使用时,我们使用了以下描述的许多控制和数据平面概念。
VCG - This is the group of data plane server-layer signals used to provide the bandwidth for the virtual concatenation link connection through a network ([ITU-T-G.7042]).
VCG-这是一组数据平面服务器层信号,用于通过网络([ITU-T-G.7042])为虚拟级联链路连接提供带宽。
VCG member - This is an individual data plane server-layer signal that belongs to a VCG ([ITU-T-G.7042]).
VCG成员-这是属于VCG([ITU-T-G.7042])的单个数据平面服务器层信号。
Member set - One or more VCG members (or potential members) set up via the same control plane signaling exchange. Note that all members in a member set follow the same route.
成员集-通过同一控制平面信令交换建立的一个或多个VCG成员(或潜在成员)。请注意,成员集中的所有成员都遵循相同的路由。
Data plane LSP - This is an individual VCG member.
数据平面LSP-这是一个单独的VCG成员。
Control plane LSP - A control plane entity that can control multiple data plane LSPs. For our purposes here, this is equivalent to the member set.
控制平面LSP-可以控制多个数据平面LSP的控制平面实体。在这里,这相当于成员集。
Call - A control plane mechanism for providing association between endpoints and possibly key transit points.
调用-一种控制平面机制,用于提供端点和可能的关键传输点之间的关联。
In this section and the next section, we will describe the procedures for supporting the applications described in Section 2.
在本节和下一节中,我们将描述支持第2节中描述的应用程序的程序。
This section describes the support of a single VCG composed of a single member set (in support of the fixed, co-routed application and the dynamic, co-routed application) using existing GMPLS procedures [RFC4606]. Note that this section is included for informational purposes only and does not modify [RFC4606]. It is provided to show how the existing GMPLS procedures may be used. [RFC4606] provides the normative definition for GMPLS processing of VCGs composed of a single member set, and in the event of any conflict between this section and that document, [RFC4606] takes precedence.
本节描述了使用现有GMPLS程序支持由单个成员集组成的单个VCG(支持固定、共路由应用程序和动态、共路由应用程序)[RFC4606]。请注意,本节仅供参考,不修改[RFC4606]。本文件旨在说明如何使用现有的GMPLS程序。[RFC4606]提供了由单个成员集组成的VCG GMPLS处理的规范性定义,如果本节与该文件之间存在任何冲突,则以[RFC4606]为准。
The existing GMPLS signaling protocols support a VCG composed of a single member set. Setup using the Number of Virtual Components (NVC) field is explained in Section 2.1 of [RFC4606]. In this case, one (single) control plane LSP is used in support of the VCG.
现有的GMPLS信令协议支持由单个成员集组成的VCG。[RFC4606]第2.1节解释了使用虚拟组件数量(NVC)字段的设置。在这种情况下,使用一个(单个)控制平面LSP来支持VCG。
There are two options for setting up the VCG, depending on policy preferences: one-shot setup and incremental setup.
根据策略首选项,设置VCG有两个选项:一次性设置和增量设置。
The following sections explain the procedure based on an example of setting up a VC-4-7v SDH VCAT group (corresponding to an STS-3c-7v SONET VCAT group), which is composed of 7 virtually concatenated VC-4s (or STS-3c).
以下各节以建立VC-4-7v SDH VCAT组(对应于STS-3c-7v SONET VCAT组)为例说明了该过程,该组由7个虚拟连接的VC-4s(或STS-3c)组成。
This section describes establishment of an LSP that supports all VCG members as part of the initial LSP establishment. To establish such an LSP, an RSVP-TE (Resource Reservation Protocol - Traffic Engineering) Path message is sent containing the SONET/SDH traffic parameters defined in [RFC4606]. In the case of this example:
本节描述了作为初始LSP建立的一部分,支持所有VCG成员的LSP的建立。为了建立这样的LSP,发送RSVP-TE(资源预留协议-流量工程)路径消息,其中包含[RFC4606]中定义的SONET/SDH流量参数。在本例中:
o Elementary signal is set to 6 (for VC-4/STS-3c_SPE).
o 基本信号设置为6(对于VC-4/STS-3c_SPE)。
o NVC is set to 7 (number of members).
o NVC设置为7(成员数)。
o Per [RFC4606], a Multiplier Transform greater than 1 (say N > 1) may be used if the operator wants to set up N identical VCAT groups (for the same LSP).
o 根据[RFC4606],如果操作员想要设置N个相同的VCAT组(用于相同的LSP),则可以使用大于1(例如N>1)的乘法器变换。
o SDH or SONET labels have to be assigned for each member of the VCG and concatenated to form a single Generalized Label constructed as an ordered list of 32-bit timeslot identifiers of the same format as TDM labels. [RFC4606] requires that the order of the labels reflect the order of the payloads to concatenate, and not the physical order of timeslots.
o SDH或SONET标签必须分配给VCG的每个成员,并连接起来形成一个单一的通用标签,该标签由32位时隙标识符组成,其格式与TDM标签相同。[RFC4606]要求标签的顺序反映要连接的有效负载的顺序,而不是时隙的物理顺序。
o Refer to [RFC4606] for other traffic parameter settings.
o 有关其他交通参数设置,请参阅[RFC4606]。
In some cases, it may be necessary or desirable to set up the VCG members individually, or to add group members to an existing group.
在某些情况下,可能需要或希望单独设置VCG成员,或将组成员添加到现有组中。
One example of this need is when the local policy requires that VCAT can only add VCAT members one at a time or cannot automatically match the members at the ingress and egress for the purposes of inverse multiplexing. Serial or incremental setup solves this problem.
这种需求的一个例子是,当本地策略要求VCAT一次只能添加一个VCAT成员,或者不能为了反向多路复用的目的自动匹配入口和出口处的成员时。串行或增量设置可解决此问题。
In order to accomplish incremental setup, an iterative process is used to add group members. For each iteration, NVC is incremented up to the final value required. A successful iteration consists of the successful completion of Path and Resv signaling. At first, NVC = 1, and the label includes just one timeslot identifier.
为了完成增量设置,使用迭代过程添加组成员。对于每个迭代,NVC都会递增到所需的最终值。成功的迭代包括成功完成Path和Resv信令。首先,NVC=1,标签只包含一个时隙标识符。
At each of the next iterations, NVC is set to (NVC + 1), and one more timeslot identifier is added to the ordered list in the Generalized Label (in the Path or Resv message). A node that receives a Path message that contains changed fields will process the full Path message and, based on the new value of NVC, it will add a component signal to the VCAT group, and switch the new timeslot based on the new label information.
在接下来的每次迭代中,NVC都被设置为(NVC+1),并且在通用标签(在Path或Resv消息中)的有序列表中再添加一个时隙标识符。接收包含已更改字段的路径消息的节点将处理完整路径消息,并基于NVC的新值,向VCAT组添加组件信号,并基于新标签信息切换新时隙。
Following the addition of the new label (identifying the new member) to the LSP, in the data plane, LCAS may be used to add the new member at the endpoints into the existing VCAT group. LCAS (data plane) signaling is described in [ITU-T-G.7042].
在将新标签(标识新成员)添加到LSP之后,在数据平面中,可以使用LCAS将端点处的新成员添加到现有VCAT组中。[ITU-T-G.7042]中描述了LCAS(数据平面)信令。
The procedure to remove a component signal is similar to that used to add components as described in Section 4.2. In the data plane, LCAS signaling is used first to take the component out of service from the group. LCAS signaling is described in [ITU-T-G.7042].
移除部件信号的程序与第4.2节所述添加部件的程序类似。在数据平面中,首先使用LCAS信令使组件从组中退出服务。LCAS信令在[ITU-T-G.7042]中进行了描述。
In this case, the NVC value is decremented by 1, and the timeslot identifier for the dropped component is removed from the ordered list in the Generalized Label.
在这种情况下,NVC值递减1,并且从通用标签中的有序列表中删除已删除组件的时隙标识符。
Note that for interfaces that are not LCAS-capable, removing one component of the VCG will result in failure detection of the member at the endpoint and failure of the whole group. So, this is a feature that only LCAS-capable VCAT interfaces can support without management intervention at the endpoints.
注意,对于不支持LCAS的接口,移除VCG的一个组件将导致端点处的成员故障检测和整个组的故障。因此,这是一个只有支持LCAS的VCAT接口才能支持的功能,而无需在端点进行管理干预。
Note that if using LCAS, a VCG member can be temporarily removed from the VCG due to a failure of the component signal. The LCAS data plane signaling will take appropriate actions to adjust the VCG as described in [ITU-T-G.7042].
请注意,如果使用LCA,由于部件信号故障,VCG成员可以临时从VCG中移除。LCAS数据平面信令将采取适当措施调整VCG,如[ITU-T-G.7042]所述。
The procedure is similar to that described in Section 4.3. In this case, the NVC value is changed to the new value, and all relevant timeslot identifiers for the components to be torn down are removed from the ordered list in the Generalized Label. This procedure is also not supported for VCAT-only interfaces without management intervention, as removing one or more components of the VCG will tear down the whole group.
该程序与第4.3节所述程序相似。在这种情况下,NVC值将更改为新值,并且要拆卸的组件的所有相关时隙标识符将从通用标签中的有序列表中删除。在没有管理干预的情况下,仅VCAT接口也不支持此过程,因为移除VCG的一个或多个组件将破坏整个组。
The entire LSP is deleted in a single step (i.e., all components are removed in one go) using the deletion procedures described in [RFC3473].
使用[RFC3473]中所述的删除程序,在一个步骤中删除整个LSP(即,一次性删除所有组件)。
The motivation for VCGs composed of multiple member sets comes from the requirement to support VCGs with diversely routed members. The initial GMPLS specification did not support diversely routed signals using the NVC construct. [RFC4606] says:
由多个成员集组成的VCG的动机来自于支持具有不同路由成员的VCG的需求。最初的GMPLS规范不支持使用NVC结构的不同路由信号。[RFC4606]表示:
[...] The standard definition for virtual concatenation allows each virtual concatenation component to travel over diverse paths. Within GMPLS, virtual concatenation components must travel over the same (component) link if they are part of the same LSP. This is due to the way that labels are bound to a (component) link. Note, however, that the routing of components on different paths is indeed equivalent to establishing different LSPs, each one having its own route. Several LSPs can be initiated and terminated between the same nodes, and their corresponding components can then be associated together (i.e., virtually concatenated).
[…]虚拟连接的标准定义允许每个虚拟连接组件在不同的路径上运行。在GMPLS中,如果虚拟连接组件是同一LSP的一部分,则它们必须在同一(组件)链路上传输。这是由于标签绑定到(组件)链接的方式造成的。然而,请注意,不同路径上组件的路由实际上相当于建立不同的LSP,每个LSP都有自己的路由。可以在相同节点之间启动和终止多个LSP,然后可以将它们相应的组件关联在一起(即,虚拟连接)。
The setup of diversely routed VCG members requires multiple VCG member sets, i.e., multiple control plane LSPs.
不同路由VCG成员的设置需要多个VCG成员集,即多个控制平面LSP。
The support of a VCG with multiple VCG member sets requires being able to identify separate sets of control plane LSPs with a single VCG and exchange information pertaining to the VCG as a whole between the endpoints. This document updates the procedures described in [RFC4606] to provide this capability by using the call procedures and extensions described in [RFC4974]. The VCG makes use of one or more calls (VCAT calls) to associate control plane LSPs in support of VCG server-layer connections (VCG members) in the data plane. Note that the trigger for the VCG (by management plane or client layer) is outside the scope of this document. These procedures provide for autonomy of the client layer and server layer with respect to their management.
支持具有多个VCG成员集的VCG需要能够识别具有单个VCG的单独控制平面LSP集,并在端点之间交换与整个VCG相关的信息。本文件更新了[RFC4606]中所述的程序,通过使用[RFC4974]中所述的调用程序和扩展来提供此功能。VCG使用一个或多个调用(VCAT调用)关联控制平面LSP,以支持数据平面中的VCG服务器层连接(VCG成员)。请注意,VCG的触发器(按管理平面或客户端层)不在本文档的范围内。这些过程提供了客户机层和服务器层在管理方面的自主权。
In addition, by supporting the identification of a VCG (VCG ID) and VCAT call identification (VCAT Call ID), support can be provided for the member-sharing scenarios, i.e., by explicitly separating the VCG ID from the VCAT call ID. Note that per [RFC4974], LSPs (connections) cannot be moved from one call to another; hence, to support member sharing, the procedures in this document provide support by moving call(s) and their associated LSPs from one VCG to another. Figure 1 below illustrates these relationships; however, note that VCAT calls can exist independently of a VCG (for connection pre-establishment), as will be described later in this document.
此外,通过支持VCG标识(VCG ID)和VCAT呼叫标识(VCAT呼叫ID),可以为成员共享场景提供支持,即,通过明确地将VCG ID与VCAT呼叫ID分离。注意,根据[RFC4974],LSP(连接)不能从一个呼叫移动到另一个呼叫;因此,为了支持成员共享,本文档中的过程通过将呼叫及其关联的LSP从一个VCG移动到另一个VCG来提供支持。下面的图1说明了这些关系;但是,请注意,VCAT呼叫可以独立于VCG(用于连接预建立)而存在,本文档稍后将对此进行描述。
+-------+ +-------------+ +-------+ +------------+ | |1 n| |1 n| |1 n| Data Plane | | VCG |<>----| VCAT Call |<>----| LSP |<>----| Connection | | | | | | | |(co-routed) | +-------+ +-------------+ +-------+ +------------+
+-------+ +-------------+ +-------+ +------------+ | |1 n| |1 n| |1 n| Data Plane | | VCG |<>----| VCAT Call |<>----| LSP |<>----| Connection | | | | | | | |(co-routed) | +-------+ +-------------+ +-------+ +------------+
Figure 1. Conceptual Containment Relationship between VCG, VCAT Calls, Control Plane LSPs, and Data Plane Connections
图1。VCG、VCAT调用、控制平面LSP和数据平面连接之间的概念包含关系
In this section, we provide information that will be communicated at the VCG level, i.e., between the VCG signaling endpoints using the call procedures described in [RFC4974]. To accommodate the VCG information, a new TLV is defined in this document for the CALL_ATTRIBUTES object [RFC6001] for use in the Notify message [RFC4974]. The Notify message is a targeted message and does not need to follow the path of LSPs through the network; i.e., there is no dependency on the member signaling for establishing the VCAT call, and the use of external call managers as described in [RFC4974] is not precluded.
在本节中,我们提供了将在VCG级别进行通信的信息,即使用[RFC4974]中描述的调用过程在VCG信令端点之间进行通信的信息。为了适应VCG信息,本文档中为CALL_ATTRIBUTES对象[RFC6001]定义了一个新的TLV,用于通知消息[RFC4974]。Notify消息是目标消息,不需要遵循LSP通过网络的路径;i、 例如,建立VCAT呼叫不依赖于成员信令,并且不排除使用[RFC4974]中所述的外部呼叫管理器。
The following information is needed:
需要以下信息:
1. Signal type
1. 信号类型
2. Number of VCG members
2. VCG成员数量
3. LCAS requirements:
3. 生命周期评价要求:
a. LCAS required
a. 所需的生命周期评价
b. LCAS desired
b. 期望的生命周期评价
c. LCAS not supported
c. 不支持生命周期评价
4. VCG Identifier - Used to identify a particular VCG separately from the call ID so that call members can be reused with different VCGs per the requirements for member sharing and the requirements of Section 2.4.
4. VCG标识符-用于从呼叫ID中分别识别特定VCG,以便根据成员共享要求和第2.4节的要求,呼叫成员可与不同的VCG重复使用。
This document defines a CALL_ATTRIBUTES object VCAT TLV for use in the CALL_ATTRIBUTES object [RFC6001] as follows:
本文档定义了CALL_ATTRIBUTES对象VCAT TLV,用于CALL_ATTRIBUTES对象[RFC6001],如下所示:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 4 | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type | Number of Members | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |LCR| Reserved | Action | VCG ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 4 | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type | Number of Members | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |LCR| Reserved | Action | VCG ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type, as defined in [RFC6001]. This field MUST be set to 2.
类型,如[RFC6001]中所定义。此字段必须设置为2。
Length, as defined in [RFC6001]. This field MUST be set to 12.
长度,如[RFC6001]中所定义。此字段必须设置为12。
Signal Type: 16 bits
信号类型:16位
The signal types can never be mixed in a VCG; hence, a VCAT call contains only one signal type. This field can take the following values and MUST never change over the lifetime of a VCG [ANSI-T1.105] [ITU-T-G.707] [ITU-T-G.709] [ITU-T-G.7043]:
VCG中的信号类型不能混合;因此,VCAT呼叫只包含一种信号类型。此字段可以采用以下值,并且在VCG的使用寿命内不得更改[ANSI-T1.105][ITU-T-G.707][ITU-T-G.709][ITU-T-G.7043]:
Value Type (Elementary Signal) ----- ------------------------- 1 VT1.5 SPE / VC-11 2 VT2 SPE / VC-12 3 STS-1 SPE / VC-3 4 STS-3c SPE / VC-4 11 ODU1 (i.e., 2.5 Gbit/s) 12 ODU2 (i.e., 10 Gbit/s) 13 ODU3 (i.e., 40 Gbit/s) 21 T1 (i.e., 1.544 Mbps) 22 E1 (i.e., 2.048 Mbps) 23 E3 (i.e., 34.368 Mbps) 24 T3 (i.e., 44.736 Mbps)
Value Type (Elementary Signal) ----- ------------------------- 1 VT1.5 SPE / VC-11 2 VT2 SPE / VC-12 3 STS-1 SPE / VC-3 4 STS-3c SPE / VC-4 11 ODU1 (i.e., 2.5 Gbit/s) 12 ODU2 (i.e., 10 Gbit/s) 13 ODU3 (i.e., 40 Gbit/s) 21 T1 (i.e., 1.544 Mbps) 22 E1 (i.e., 2.048 Mbps) 23 E3 (i.e., 34.368 Mbps) 24 T3 (i.e., 44.736 Mbps)
Number of Members: 16 bits
成员数:16位
This field is an unsigned integer that MUST indicate the total number of members in the VCG (not just the call). This field MUST be changed (over the life of the VCG) to indicate the current number of members.
此字段是一个无符号整数,必须指示VCG中的成员总数(不仅仅是调用)。必须更改此字段(在VCG的使用期限内),以指示当前的成员数。
LCR (LCAS Required): 2 bits
LCR(需要LCAS):2位
This field can take the following values and MUST NOT change over the life of a VCG:
该字段可以采用以下值,并且在VCG的使用寿命内不得改变:
Value Meaning ----- ------------------ 0 LCAS required 1 LCAS desired 2 LCAS not supported
Value Meaning ----- ------------------ 0 LCAS required 1 LCAS desired 2 LCAS not supported
Action: 8 bits
动作:8位
This field is used to indicate the relationship between the call and the VCG and has the following values:
此字段用于指示呼叫和VCG之间的关系,具有以下值:
Value Meaning ----- ------------------------------------------------------- 0 No VCG ID (set up call prior to VCG creation) 1 New VCG for Call 2 Modification of Number of Members (no change in VCG ID) 3 Remove VCG from Call
Value Meaning ----- ------------------------------------------------------- 0 No VCG ID (set up call prior to VCG creation) 1 New VCG for Call 2 Modification of Number of Members (no change in VCG ID) 3 Remove VCG from Call
VCG Identifier (ID): 16 bits
VCG标识符(ID):16位
This field carries an unsigned integer that is used to identify a particular VCG within a session. The value of the field MUST NOT change over the lifetime of a VCG but MAY change over the lifetime of a call.
此字段包含一个无符号整数,用于标识会话中的特定VCG。该字段的值在VCG的生存期内不得更改,但在呼叫的生存期内可能会更改。
The creation of a VCG based on multiple member sets requires the establishment of at least one VCAT-layer call. VCAT-layer calls and related LSPs (connections) MUST follow the procedures as defined in [RFC4974], with the addition of the inclusion of a CALL_ATTRIBUTES object containing the VCAT TLV. Multiple VCAT layer calls per VCG are not required to support member sets, but are needed to support certain member-sharing scenarios.
基于多个成员集创建VCG需要建立至少一个VCAT层调用。VCAT层调用和相关LSP(连接)必须遵循[RFC4974]中定义的程序,并添加包含VCAT TLV的CALL_ATTRIBUTES对象。每个VCG不需要多个VCAT层调用来支持成员集,但需要多个VCAT层调用来支持某些成员共享场景。
The remainder of this section provides specific procedures related to VCG signaling. The procedures described in [RFC4974] are only modified as discussed in this section.
本节剩余部分提供了与VCG信号相关的具体程序。[RFC4974]中描述的程序仅按照本节讨论的内容进行修改。
When LCAS is supported, the data plane will add or decrease the members per [ITU-T-G.7042]. When LCAS is not supported across LSPs, the data plane coordination across member sets is outside the scope of this document.
当支持LCAS时,数据平面将根据[ITU-T-G.7042]增加或减少成员。如果LSP之间不支持LCA,则成员集之间的数据平面协调不在本文档范围内。
To simultaneously set up a VCAT call and identify it with an associated VCG, a CALL_ATTRIBUTES object containing the VCAT TLV MUST be included in the Notify message at the time of call setup. The VCAT TLV Action field MUST be set to 1, which indicates that this is a new VCG for this call. LSPs MUST then be added to the call until the number of members reaches the number specified in the VCAT TLV.
要同时设置VCAT呼叫并将其与相关VCG标识,必须在呼叫设置时在通知消息中包含包含VCAT TLV的call_ATTRIBUTES对象。VCAT TLV操作字段必须设置为1,这表示这是此调用的新VCG。然后必须将LSP添加到呼叫中,直到成员数量达到VCAT TLV中指定的数量。
To provide for pre-establishment of the server-layer connections for a VCG, a VCAT call MAY be established without an associated VCG identifier. In fact, to provide for the member-sharing scenarios, a pool of VCAT calls with associated connections (LSPs) can be established, and then one or more of these calls (with accompanying connections) can be associated with a particular VCG (via the VCG ID). Note that multiple calls can be associated with a single VCG but that a call MUST NOT contain members used in more than one VCG.
为了提供用于VCG的服务器层连接的预建立,可以在没有相关联的VCG标识符的情况下建立VCAT呼叫。事实上,为了提供成员共享场景,可以建立具有关联连接(LSP)的VCAT呼叫池,然后这些呼叫中的一个或多个(具有伴随连接)可以(通过VCG ID)与特定VCG关联。请注意,多个呼叫可以与单个VCG关联,但一个呼叫不得包含多个VCG中使用的成员。
To establish a VCAT call with no VCG association, a CALL_ATTRIBUTES object containing the VCAT TLV MUST be included at the time of call setup in the Notify message. The VCAT TLV Action field MUST be set to 0, which indicates that this is a VCAT call without an associated VCG. LSPs can then be added to the call. The Number of Members parameter in the VCAT TLV has no meaning at this point, since it reflects the intended number of members in a VCG and not in a call.
要建立没有VCG关联的VCAT呼叫,必须在呼叫设置时在通知消息中包含包含VCAT TLV的call_ATTRIBUTES对象。VCAT TLV操作字段必须设置为0,这表示这是一个没有关联VCG的VCAT调用。然后可以将LSP添加到呼叫中。VCAT TLV中的Number of Members参数此时没有意义,因为它反映的是VCG中而不是呼叫中的预期成员数。
A VCAT call that is not otherwise associated with a VCG may be associated with a VCG. To establish such an association, a Notify message MUST be sent with a CALL_ATTRIBUTES object containing a VCAT TLV. The TLV's Action field MUST be set to 1, and the VCG Identifier field MUST be set to correspond to the VCG. The Number of Members field MUST equal the sum of all LSPs associated with the VCG. Note that the total number of VCGs supported by a node may be limited; hence, on reception of any message with a change of VCG ID, this limit should be checked. Likewise, the sender of a message with a change of VCG ID MUST be prepared to receive an error response. Again, any error in a VCG may result in the failure of the complete VCG.
否则不与VCG关联的VCAT呼叫可以与VCG关联。要建立这种关联,必须使用包含VCAT TLV的CALL_ATTRIBUTES对象发送通知消息。TLV的操作字段必须设置为1,VCG标识符字段必须设置为与VCG相对应。“成员数”字段必须等于与VCG关联的所有LSP之和。注意,节点支持的VCG总数可能会受到限制;因此,在接收到VCG ID发生变化的任何消息时,应检查该限制。同样,更改VCG ID的消息的发送者必须准备好接收错误响应。同样,VCG中的任何错误都可能导致整个VCG出现故障。
To reuse the server-layer connections in a call in another VCG, the current association between the call and a VCG MUST first be removed. To do this, a Notify message MUST be sent with a CALL_ATTRIBUTES object containing a VCAT TLV. The Action field of the TLV MUST be set to 3 (Remove VCG from Call). The VCG ID field is ignored and MAY be set to any value. The Number of Members field is also ignored and MAY be set to any value. When the association between a VCG and all existing calls has been removed, then the VCG is considered torn down.
要在另一个VCG中的调用中重用服务器层连接,必须首先删除调用和VCG之间的当前关联。为此,必须使用包含VCAT TLV的CALL_ATTRIBUTES对象发送通知消息。TLV的操作字段必须设置为3(从调用中删除VCG)。VCG ID字段被忽略,可以设置为任何值。成员数字段也将被忽略,可以设置为任何值。当VCG和所有现有呼叫之间的关联被删除时,VCG被视为已被拆除。
The following cases may occur when increasing or decreasing the bandwidth of a VCG:
当增加或减少VCG的带宽时,可能会出现以下情况:
1. LSPs are added to or, in the case of a decrease, removed from a VCAT call already associated with a VCG.
1. LSP被添加到已经与VCG关联的VCAT呼叫中,或者在减少的情况下从VCAT呼叫中删除。
2. An existing VCAT call (and corresponding LSPs) is associated with a VCG or, in the case of a decrease, has its association removed. Note that in the case of an increase, the call MUST NOT have any existing association with a VCG.
2. 现有的VCAT呼叫(以及相应的LSP)与VCG关联,或者在减少的情况下,将其关联移除。请注意,在增加的情况下,呼叫不得与VCG存在任何关联。
The following sequence SHOULD be used when modifying the bandwidth of a VCG:
修改VCG带宽时,应使用以下顺序:
1. In both cases, prior to any other change, a Notify message MUST be sent with a CALL_ATTRIBUTES object containing a VCAT TLV for each of the existing VCAT calls associated with the VCG. The Action field of the TLV MUST be set to 2. The VCG ID field MUST be set to match the VCG. The Number of Members field MUST equal the sum of all LSPs that are anticipated to be associated with the VCG after the bandwidth change. The Notify message is otherwise formatted and processed to support call establishment as described in [RFC4974]. If an error is encountered while processing any of the Notify messages, the number of members is reverted to the pre-change value, and the increase is aborted. The reverted number of members MUST be signaled in a Notify message as described above. Failures encountered in processing these Notify messages are handled per [RFC4974].
1. 在这两种情况下,在进行任何其他更改之前,必须使用CALL_ATTRIBUTES对象发送通知消息,该对象包含与VCG关联的每个现有VCAT呼叫的VCAT TLV。TLV的操作字段必须设置为2。必须将VCG ID字段设置为与VCG匹配。“成员数”字段必须等于带宽更改后预期与VCG关联的所有LSP的总和。Notify消息以其他方式格式化和处理,以支持[RFC4974]中所述的呼叫建立。如果在处理任何Notify消息时遇到错误,则成员数将恢复为更改前的值,并中止增加。如上所述,必须在通知消息中通知还原的成员数。根据[RFC4974]处理处理这些通知消息时遇到的故障。
2. Once the existing calls have successfully been notified of the new number of members in the VCG, the bandwidth change can be made. The next step is dependent on the two cases defined above. In the first case defined above, the bandwidth change is made by adding (in the case of an increase) or removing (in the case of a decrease) LSPs to or from the VCAT call per the procedures defined in [RFC4974]. In the second case, the procedure defined in Section 5.3.3 is followed for an increase, and the procedure defined in Section 5.3.4 is followed for a decrease.
2. 一旦已成功通知现有呼叫VCG中的新成员数,就可以进行带宽更改。下一步取决于上面定义的两种情况。在上面定义的第一种情况下,通过按照[RFC4974]中定义的过程向VCAT调用添加(在增加的情况下)或从VCAT调用中移除(在减少的情况下)LSP来进行带宽更改。在第二种情况下,按照第5.3.3节规定的程序增加,按照第5.3.4节规定的程序减少。
VCAT call and member LSP setup can be denied for various reasons. In addition to the call procedures and related error codes described in [RFC4974], below is a list of error conditions that can be encountered while using the procedures defined in this document. These fall under RSVP error code 39.
由于各种原因,VCAT呼叫和成员LSP设置可能被拒绝。除了[RFC4974]中描述的调用过程和相关错误代码外,以下是使用本文档中定义的过程时可能遇到的错误条件列表。这些属于RSVP错误代码39。
These can occur when setting up a VCAT call or associating a VCG with a VCAT call.
设置VCAT呼叫或将VCG与VCAT呼叫关联时,可能会发生这些情况。
Error Value ------------------------------------ -------- VCG signal type not supported 1 LCAS option not supported 2 Max number of VCGs exceeded 3 Max number of VCG members exceeded 4 LSP Type incompatible with VCAT call 5 Unknown LCR (LCAS required) value 6 Unknown or unsupported ACTION 7
Error Value ------------------------------------ -------- VCG signal type not supported 1 LCAS option not supported 2 Max number of VCGs exceeded 3 Max number of VCG members exceeded 4 LSP Type incompatible with VCAT call 5 Unknown LCR (LCAS required) value 6 Unknown or unsupported ACTION 7
Any failure in call or LSP establishment MUST be treated as a failure of the VCG as a whole and MAY trigger the calls and LSPs associated with the VCG being deleted.
呼叫或LSP建立中的任何故障都必须视为VCG整体故障,并可能触发与VCG相关的呼叫和LSP被删除。
IANA has made the following assignments in the "Call Attributes TLV" section of the "RSVP PARAMETERS" registry available from http://www.iana.org.
IANA在“RSVP参数”注册表的“调用属性TLV”部分进行了以下分配,可从http://www.iana.org.
IANA has made assignments from the Call Attributes TLV [RFC6001] portions of this registry.
IANA已从此注册表的调用属性TLV[RFC6001]部分进行了分配。
This document introduces a new Call Attributes TLV:
本文档介绍了一种新的调用属性TLV:
TLV Value Name Reference --------- ---------------------- --------- 4 VCAT TLV [RFC6344]
TLV Value Name Reference --------- ---------------------- --------- 4 VCAT TLV [RFC6344]
A new RSVP Error Code and new Error Values are introduced. IANA assigned the following from the "RSVP Parameters" registry using the sub-registry "Error Codes and Globally-Defined Error Value Sub-Codes".
引入了新的RSVP错误代码和新的错误值。IANA使用子注册表“错误代码和全局定义的错误值子代码”,从“RSVP参数”注册表分配了以下内容。
o Error Codes:
o 错误代码:
- VCAT Call Management (39)
- VCAT呼叫管理(39)
o Error Values:
o 错误值:
Meaning Value ------------------------------------ -------- VCG signal type not supported 1 LCAS option not supported 2 Max number of VCGs exceeded 3 Max number of VCG members exceeded 4 LSP Type incompatible with VCAT call 5 Unknown LCR (LCAS required) value 6 Unknown or unsupported ACTION 7
Meaning Value ------------------------------------ -------- VCG signal type not supported 1 LCAS option not supported 2 Max number of VCGs exceeded 3 Max number of VCG members exceeded 4 LSP Type incompatible with VCAT call 5 Unknown LCR (LCAS required) value 6 Unknown or unsupported ACTION 7
IANA created a registry to track elementary signal types as defined in Section 5.2. New allocations are by "IETF Review" [RFC5226].
IANA创建了一个注册表来跟踪第5.2节中定义的基本信号类型。新分配由“IETF审查”[RFC5226]进行。
IANA maintains the following information:
IANA保存以下信息:
- Value - Type (Elementary Signal) - RFC
- 值-类型(基本信号)-RFC
The available range is 0 - 65535.
可用范围为0-65535。
The registry has been initially populated with the values shown in Section 5.2 of this document. Value 0 is Reserved. Other values are marked Unassigned.
注册表最初使用本文件第5.2节中所示的值填充。保留值0。其他值标记为未赋值。
IANA created a registry to track VCAT VCG operation actions as defined in Section 5.2. New allocations are by "IETF Review" [RFC5226].
IANA创建了一个注册表,以跟踪第5.2节中定义的VCAT VCG操作动作。新分配由“IETF审查”[RFC5226]进行。
IANA maintains the following information:
IANA保存以下信息:
- Value - Meaning - RFC
- 价值-意义-RFC
The available range is 0 - 255.
可用范围为0-255。
The registry has been initially populated with the values shown in Section 5.2 of this document. Other values are marked Unassigned.
注册表最初使用本文件第5.2节中所示的值填充。其他值标记为未赋值。
This document introduces a specific use of the Notify message and ADMIN_STATUS object for GMPLS signaling as originally specified in [RFC3473] and as modified by [RFC4974]. It does not introduce any new signaling messages, nor does it change the relationship between LSRs that are adjacent in the control plane. The call information associated with diversely routed control plane LSPs, in the event of an interception, may indicate that these are members of the same VCAT group that take a different route, and may indicate to an interceptor that the VCG call desires increased reliability.
本文档介绍了[RFC3473]中最初规定并经[RFC4974]修改的GMPLS信令通知消息和管理状态对象的具体用途。它不会引入任何新的信令消息,也不会改变控制平面中相邻的LSR之间的关系。在发生截获的情况下,与不同路由的控制平面lsp相关联的呼叫信息可以指示这些lsp是采用不同路由的相同VCAT组的成员,并且可以向截获器指示VCG呼叫期望提高可靠性。
See [RFC5920] for additional information on GMPLS security.
有关GMPLS安全性的更多信息,请参阅[RFC5920]。
Wataru Imajuku (NTT) 1-1 Hikari-no-oka Yokosuka Kanagawa 239-0847 Japan
Wataru Imajuku(NTT)1-1 Hikari no oka横须贺神奈川239-0847日本
Phone +81-46-859-4315 EMail: imajuku.wataru@lab.ntt.co.jp
电话+81-46-859-4315电子邮件:imajuku。wataru@lab.ntt.co.jp
Julien Meuric France Telecom 2, avenue Pierre Marzin 22307 Lannion Cedex France
Julien Meuri法国电信2号,Pierre Marzin大街22307兰尼昂塞德斯法国
Phone: +33 2 96 05 28 28 EMail: julien.meuric@orange-ft.com
Phone: +33 2 96 05 28 28 EMail: julien.meuric@orange-ft.com
Lyndon Ong Ciena PO Box 308 Cupertino, CA 95015 USA
美国加利福尼亚州库珀蒂诺市林登·翁·西纳邮政信箱308号,邮编95015
Phone: +1 408 705 2978 EMail: lyong@ciena.com
Phone: +1 408 705 2978 EMail: lyong@ciena.com
The authors would like to thank Adrian Farrel, Maarten Vissers, Trevor Wilson, Evelyne Roch, Vijay Pandian, Fred Gruman, Dan Li, Stephen Shew, Jonathan Saddler, and Dieter Beller for extensive reviews and contributions to this document.
作者感谢Adrian Farrel、Maarten Vissers、Trevor Wilson、Evelyne Roch、Vijay Pandian、Fred Gruman、Dan Li、Stephen Shew、Jonathan Saddler和Dieter Beller对本文件的广泛评论和贡献。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.
[RFC3473]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,2003年1月。
[RFC4606] Mannie, E. and D. Papadimitriou, "Generalized Multi-Protocol Label Switching (GMPLS) Extensions for Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH) Control", RFC 4606, August 2006.
[RFC4606]Mannie,E.和D.Papadimitriou,“同步光网络(SONET)和同步数字体系(SDH)控制的通用多协议标签交换(GMPLS)扩展”,RFC 4606,2006年8月。
[RFC4974] Papadimitriou, D. and A. Farrel, "Generalized MPLS (GMPLS) RSVP-TE Signaling Extensions in Support of Calls", RFC 4974, August 2007.
[RFC4974]Papadimitriou,D.和A.Farrel,“支持呼叫的通用MPLS(GMPLS)RSVP-TE信令扩展”,RFC 4974,2007年8月。
[RFC6001] Papadimitriou, D., Vigoureux, M., Shiomoto, K., Brungard, D., and JL. Le Roux, "Generalized MPLS (GMPLS) Protocol Extensions for Multi-Layer and Multi-Region Networks (MLN/MRN)", RFC 6001, October 2010.
[RFC6001]Papadimitriou,D.,Vigoureux,M.,Shiomoto,K.,Brungard,D.,和JL。Le Roux,“多层和多区域网络(MLN/MRN)的通用MPLS(GMPLS)协议扩展”,RFC 60012010年。
[ANSI-T1.105] American National Standards Institute, "Synchronous Optical Network (SONET) - Basic Description including Multiplex Structure, Rates, and Formats", ANSI T1.105-2001, May 2001.
[ANSI-T1.105]美国国家标准协会,“同步光网络(SONET)-基本描述,包括多路复用结构、速率和格式”,ANSI T1.105-2001,2001年5月。
[ITU-T-G.707] International Telecommunication Union, "Network Node Interface for the Synchronous Digital Hierarchy (SDH)", ITU-T Recommendation G.707, December 2003.
[ITU-T-G.707]国际电信联盟,“同步数字体系(SDH)的网络节点接口”,ITU-T建议G.707,2003年12月。
[ITU-T-G.709] International Telecommunication Union, "Interfaces for the Optical Transport Network (OTN)", ITU-T Recommendation G.709, March 2003.
[ITU-T-G.709]国际电信联盟,“光传输网络(OTN)接口”,ITU-T建议G.709,2003年3月。
[ITU-T-G.7042] International Telecommunication Union, "Link Capacity Adjustment Scheme (LCAS) for Virtual Concatenated Signals", ITU-T Recommendation G.7042, March 2006.
[ITU-T-G.7042]国际电信联盟,“虚拟级联信号的链路容量调整方案(LCAS)”,ITU-T建议G.7042,2006年3月。
[ITU-T-G.7043] International Telecommunication Union, "Virtual Concatenation of Plesiochronous Digital Hierarchy (PDH) Signals", ITU-T Recommendation G.7043, July 2004.
[ITU-T-G.7043]国际电信联盟,“准同步数字体系(PDH)信号的虚拟级联”,ITU-T建议G.7043,2004年7月。
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.
[RFC5226]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。
[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, July 2010.
[RFC5920]方,L.,编辑,“MPLS和GMPLS网络的安全框架”,RFC 5920,2010年7月。
Authors' Addresses
作者地址
Greg M. Bernstein (editor) Grotto Networking Fremont, CA USA
Greg M.Bernstein(编辑)美国加利福尼亚州弗里蒙特Grotto Networking
Phone: (510) 573-2237 EMail: gregb@grotto-networking.com
电话:(510)573-2237电子邮件:gregb@grotto-网络
Diego Caviglia Ericsson Via A. Negrone 1/A 16153 Genoa Italy
Diego Caviglia Ericsson途经A.Negrone 1/A 16153意大利热那亚
Phone: +39 010 600 3736 EMail: diego.caviglia@ericsson.com
Phone: +39 010 600 3736 EMail: diego.caviglia@ericsson.com
Richard Rabbat Google, Inc. 1600 Amphitheatre Parkway Mountain View, CA 94043 USA
理查德·拉巴特谷歌公司,1600圆形剧场公园路山景,加利福尼亚州94043
EMail: rabbat@alum.mit.edu
EMail: rabbat@alum.mit.edu
Huub van Helvoort Huawei Technologies, Ltd. Kolkgriend 38, 1356 BC Almere The Netherlands
Huub van Helvoort Huawei Technologies,Ltd.科尔克格林公元前381356年荷兰阿尔梅雷
Phone: +31 36 5315076 EMail: hhelvoort@huawei.com
Phone: +31 36 5315076 EMail: hhelvoort@huawei.com