Internet Engineering Task Force (IETF)                          H. Singh
Request for Comments: 6204                                     W. Beebee
Category: Informational                              Cisco Systems, Inc.
ISSN: 2070-1721                                                C. Donley
                                                               CableLabs
                                                                B. Stark
                                                                    AT&T
                                                           O. Troan, Ed.
                                                     Cisco Systems, Inc.
                                                              April 2011
        
Internet Engineering Task Force (IETF)                          H. Singh
Request for Comments: 6204                                     W. Beebee
Category: Informational                              Cisco Systems, Inc.
ISSN: 2070-1721                                                C. Donley
                                                               CableLabs
                                                                B. Stark
                                                                    AT&T
                                                           O. Troan, Ed.
                                                     Cisco Systems, Inc.
                                                              April 2011
        

Basic Requirements for IPv6 Customer Edge Routers

IPv6客户边缘路由器的基本要求

Abstract

摘要

This document specifies requirements for an IPv6 Customer Edge (CE) router. Specifically, the current version of this document focuses on the basic provisioning of an IPv6 CE router and the provisioning of IPv6 hosts attached to it.

本文档规定了IPv6客户边缘(CE)路由器的要求。具体而言,本文档的当前版本重点介绍IPv6 CE路由器的基本配置以及连接到该路由器的IPv6主机的配置。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6204.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6204.

Copyright Notice

版权公告

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2011 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从该文档中提取的代码组件必须

include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

包括信托法律条款第4.e节中所述的简化BSD许可证文本,且不提供简化BSD许可证中所述的担保。

Table of Contents

目录

   1. Introduction ....................................................2
      1.1. Requirements Language ......................................3
   2. Terminology .....................................................3
   3. Architecture ....................................................4
      3.1. Current IPv4 End-User Network Architecture .................4
      3.2. IPv6 End-User Network Architecture .........................4
           3.2.1. Local Communication .................................6
   4. Requirements ....................................................6
      4.1. General Requirements .......................................6
      4.2. WAN-Side Configuration .....................................7
      4.3. LAN-Side Configuration ....................................11
      4.4. Security Considerations ...................................13
   5. Acknowledgements ...............................................13
   6. Contributors ...................................................14
   7. References .....................................................14
      7.1. Normative References ......................................14
      7.2. Informative References ....................................16
        
   1. Introduction ....................................................2
      1.1. Requirements Language ......................................3
   2. Terminology .....................................................3
   3. Architecture ....................................................4
      3.1. Current IPv4 End-User Network Architecture .................4
      3.2. IPv6 End-User Network Architecture .........................4
           3.2.1. Local Communication .................................6
   4. Requirements ....................................................6
      4.1. General Requirements .......................................6
      4.2. WAN-Side Configuration .....................................7
      4.3. LAN-Side Configuration ....................................11
      4.4. Security Considerations ...................................13
   5. Acknowledgements ...............................................13
   6. Contributors ...................................................14
   7. References .....................................................14
      7.1. Normative References ......................................14
      7.2. Informative References ....................................16
        
1. Introduction
1. 介绍

This document defines basic IPv6 features for a residential or small-office router, referred to as an IPv6 CE router. Typically, these routers also support IPv4.

本文档定义了住宅或小型办公室路由器(称为IPv6 CE路由器)的基本IPv6功能。通常,这些路由器还支持IPv4。

Mixed environments of dual-stack hosts and IPv6-only hosts (behind the CE router) can be more complex if the IPv6-only devices are using a translator to access IPv4 servers [RFC6144]. Support for such mixed environments is not in scope of this document.

如果纯IPv6设备使用转换器访问IPv4服务器,则双栈主机和纯IPv6主机(位于CE路由器后面)的混合环境可能会更复杂[RFC6144]。对这种混合环境的支持不在本文档的范围内。

This document specifies how an IPv6 CE router automatically provisions its WAN interface, acquires address space for provisioning of its LAN interfaces, and fetches other configuration information from the service provider network. Automatic provisioning of more complex topology than a single router with multiple LAN interfaces is out of scope for this document.

本文档指定了IPv6 CE路由器如何自动配置其WAN接口、获取用于配置其LAN接口的地址空间,以及如何从服务提供商网络获取其他配置信息。自动提供比具有多个LAN接口的单个路由器更复杂的拓扑超出了本文档的范围。

See [RFC4779] for a discussion of options available for deploying IPv6 in service provider access networks.

有关在服务提供商接入网络中部署IPv6的可用选项的讨论,请参阅[RFC4779]。

1.1. Requirements Language
1.1. 需求语言

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。

2. Terminology
2. 术语

End-User Network one or more links attached to the IPv6 CE router that connect IPv6 hosts.

最终用户网络连接到连接IPv6主机的IPv6 CE路由器的一个或多个链路。

IPv6 Customer Edge Router a node intended for home or small-office use that forwards IPv6 packets not explicitly addressed to itself. The IPv6 CE router connects the end-user network to a service provider network.

IPv6客户边缘路由器用于家庭或小型办公室的节点,用于转发未明确寻址到自身的IPv6数据包。IPv6 CE路由器将最终用户网络连接到服务提供商网络。

IPv6 Host any device implementing an IPv6 stack receiving IPv6 connectivity through the IPv6 CE router.

IPv6主机任何实现IPv6堆栈的设备,通过IPv6 CE路由器接收IPv6连接。

LAN Interface an IPv6 CE router's attachment to a link in the end-user network. Examples are Ethernets (simple or bridged), 802.11 wireless, or other LAN technologies. An IPv6 CE router may have one or more network-layer LAN interfaces.

LAN接口IPv6 CE路由器与最终用户网络中链路的连接。例如以太网络(简单或桥接)、802.11无线或其他局域网技术。IPv6 CE路由器可能有一个或多个网络层LAN接口。

Service Provider an entity that provides access to the Internet. In this document, a service provider specifically offers Internet access using IPv6, and may also offer IPv4 Internet access. The service provider can provide such access over a variety of different transport methods such as DSL, cable, wireless, and others.

服务提供商提供互联网接入的实体。在本文档中,服务提供商专门提供使用IPv6的Internet访问,也可以提供IPv4 Internet访问。服务提供商可以通过各种不同的传输方法(例如DSL、有线、无线等)提供这种访问。

WAN Interface an IPv6 CE router's attachment to a link used to provide connectivity to the service provider network; example link technologies include Ethernets (simple or bridged), PPP links, Frame Relay, or ATM networks, as well as Internet-layer (or higher-layer) "tunnels", such as tunnels over IPv4 or IPv6 itself.

WAN接口IPv6 CE路由器与链路的连接,用于提供与服务提供商网络的连接;示例链路技术包括以太网(简单或桥接)、PPP链路、帧中继或ATM网络,以及Internet层(或更高层)“隧道”,例如IPv4或IPv6本身上的隧道。

3. Architecture
3. 建筑学
3.1. Current IPv4 End-User Network Architecture
3.1. 当前IPv4最终用户网络体系结构

An end-user network will likely support both IPv4 and IPv6. It is not expected that an end-user will change their existing network topology with the introduction of IPv6. There are some differences in how IPv6 works and is provisioned; these differences have implications for the network architecture. A typical IPv4 end-user network consists of a "plug and play" router with NAT functionality and a single link behind it, connected to the service provider network.

最终用户网络可能同时支持IPv4和IPv6。预计最终用户不会随着IPv6的引入而改变其现有的网络拓扑。IPv6的工作方式和配置方式存在一些差异;这些差异对网络体系结构有影响。典型的IPv4最终用户网络由一个具有NAT功能的“即插即用”路由器和一条连接到服务提供商网络的单链路组成。

A typical IPv4 NAT deployment by default blocks all incoming connections. Opening of ports is typically allowed using a Universal Plug and Play Internet Gateway Device (UPnP IGD) [UPnP-IGD] or some other firewall control protocol.

默认情况下,典型的IPv4 NAT部署会阻止所有传入连接。通常允许使用通用即插即用互联网网关设备(UPnP IGD)[UPnP IGD]或其他防火墙控制协议打开端口。

Another consequence of using private address space in the end-user network is that it provides stable addressing; i.e., it never changes even when you change service providers, and the addresses are always there even when the WAN interface is down or the customer edge router has not yet been provisioned.

在最终用户网络中使用专用地址空间的另一个结果是,它提供了稳定的寻址;i、 例如,即使您更改了服务提供商,它也不会更改,即使WAN接口关闭或客户边缘路由器尚未设置,地址也始终存在。

Rewriting addresses on the edge of the network also allows for some rudimentary multihoming, even though using NATs for multihoming does not preserve connections during a fail-over event [RFC4864].

在网络边缘重写地址也允许一些基本的多宿,即使在故障转移事件期间使用NAT进行多宿不会保留连接[RFC4864]。

Many existing routers support dynamic routing, and advanced end-users can build arbitrary, complex networks using manual configuration of address prefixes combined with a dynamic routing protocol.

许多现有路由器支持动态路由,高级终端用户可以通过手动配置地址前缀并结合动态路由协议来构建任意复杂的网络。

3.2. IPv6 End-User Network Architecture
3.2. IPv6最终用户网络体系结构

The end-user network architecture for IPv6 should provide equivalent or better capabilities and functionality than the current IPv4 architecture.

IPv6的最终用户网络体系结构应提供与当前IPv4体系结构相同或更好的功能。

The end-user network is a stub network. Figure 1 illustrates the model topology for the end-user network.

最终用户网络是存根网络。图1说明了最终用户网络的模型拓扑。

                     +-------+-------+                      \
                     |   Service     |                       \
                     |   Provider    |                        | Service
                     |    Router     |                        | Provider
                     +-------+-------+                        | network
                             |                               /
                             | Customer                     /
                             | Internet connection         /
                             |
                      +------+--------+                    \
                      |     IPv6      |                     \
                      | Customer Edge |                      \
                      |    Router     |                      /
                      +---+-------+-+-+                     /
          Network A       |       |   Network B            | End-User
    ---+-------------+----+-    --+--+-------------+---    | network(s)
       |             |               |             |        \
   +----+-----+ +-----+----+     +----+-----+ +-----+----+   \
   |IPv6 Host | |IPv6 Host |     | IPv6 Host| |IPv6 Host |   /
   |          | |          |     |          | |          |  /
   +----------+ +-----+----+     +----------+ +----------+ /
        
                     +-------+-------+                      \
                     |   Service     |                       \
                     |   Provider    |                        | Service
                     |    Router     |                        | Provider
                     +-------+-------+                        | network
                             |                               /
                             | Customer                     /
                             | Internet connection         /
                             |
                      +------+--------+                    \
                      |     IPv6      |                     \
                      | Customer Edge |                      \
                      |    Router     |                      /
                      +---+-------+-+-+                     /
          Network A       |       |   Network B            | End-User
    ---+-------------+----+-    --+--+-------------+---    | network(s)
       |             |               |             |        \
   +----+-----+ +-----+----+     +----+-----+ +-----+----+   \
   |IPv6 Host | |IPv6 Host |     | IPv6 Host| |IPv6 Host |   /
   |          | |          |     |          | |          |  /
   +----------+ +-----+----+     +----------+ +----------+ /
        

Figure 1: An Example of a Typical End-User Network

图1:典型终端用户网络示例

This architecture describes the:

该体系结构描述了:

o Basic capabilities of an IPv6 CE router

o IPv6 CE路由器的基本功能

o Provisioning of the WAN interface connecting to the service provider

o 提供连接到服务提供商的WAN接口

o Provisioning of the LAN interfaces

o 局域网接口的供应

For IPv6 multicast traffic, the IPv6 CE router may act as a Multicast Listener Discovery (MLD) proxy [RFC4605] and may support a dynamic multicast routing protocol.

对于IPv6多播流量,IPv6 CE路由器可充当多播侦听器发现(MLD)代理[RFC4605],并可支持动态多播路由协议。

The IPv6 CE router may be manually configured in an arbitrary topology with a dynamic routing protocol. Automatic provisioning and configuration are described for a single IPv6 CE router only.

可以使用动态路由协议在任意拓扑中手动配置IPv6 CE路由器。仅针对单个IPv6 CE路由器描述了自动资源调配和配置。

3.2.1. Local Communication
3.2.1. 本地通信

Link-local IPv6 addresses are used by hosts communicating on a single link. Unique Local IPv6 Unicast Addresses (ULAs) [RFC4193] are used by hosts communicating within the end-user network across multiple links, but without requiring the application to use a globally routable address. The IPv6 CE router defaults to acting as the demarcation point between two networks by providing a ULA boundary, a multicast zone boundary, and ingress and egress traffic filters.

链路本地IPv6地址由在单个链路上通信的主机使用。唯一本地IPv6单播地址(ULA)[RFC4193]由最终用户网络内跨多个链路通信的主机使用,但不要求应用程序使用全局可路由地址。IPv6 CE路由器默认充当两个网络之间的分界点,提供ULA边界、多播区域边界以及入口和出口流量过滤器。

A dual-stack host is multihomed to IPv4 and IPv6 networks. The IPv4 and IPv6 topologies may not be congruent, and different addresses may have different reachability, e.g., ULAs. A host stack has to be able to quickly fail over and try a different source address and destination address pair if communication fails, as outlined in [HAPPY-EYEBALLS].

双栈主机是IPv4和IPv6网络的多宿主机。IPv4和IPv6拓扑可能不一致,不同的地址可能具有不同的可达性,例如ULA。如[HAPPY-EYEBALLS]中所述,如果通信失败,主机堆栈必须能够快速故障切换并尝试不同的源地址和目标地址对。

At the time of this writing, several host implementations do not handle the case where they have an IPv6 address configured and no IPv6 connectivity, either because the address itself has a limited topological reachability (e.g., ULA) or because the IPv6 CE router is not connected to the IPv6 network on its WAN interface. To support host implementations that do not handle multihoming in a multi-prefix environment [MULTIHOMING-WITHOUT-NAT], the IPv6 CE router should not, as detailed in the requirements below, advertise itself as a default router on the LAN interface(s) when it does not have IPv6 connectivity on the WAN interface or when it is not provisioned with IPv6 addresses. For local IPv6 communication, the mechanisms specified in [RFC4191] are used.

在撰写本文时,由于地址本身具有有限的拓扑可达性(例如,ULA),或者由于IPv6 CE路由器未在其WAN接口上连接到IPv6网络,一些主机实现没有处理配置了IPv6地址且没有IPv6连接的情况。为了支持在多前缀环境中不处理多主的主机实现[multihoming-WITHOUT-NAT],IPv6 CE路由器不应如以下要求中所述,在LAN接口上作为默认路由器进行宣传当它在WAN接口上没有IPv6连接或未配置IPv6地址时。对于本地IPv6通信,使用[RFC4191]中指定的机制。

ULA addressing is useful where the IPv6 CE router has multiple LAN interfaces with hosts that need to communicate with each other. If the IPv6 CE router has only a single LAN interface (IPv6 link), then link-local addressing can be used instead.

当IPv6 CE路由器与需要相互通信的主机具有多个LAN接口时,ULA寻址非常有用。如果IPv6 CE路由器只有一个LAN接口(IPv6链路),则可以使用链路本地寻址。

In the event that more than one IPv6 CE router is present on the LAN, then coexistence with IPv4 requires all of them to conform to these recommendations, especially requirements ULA-5 and L-4 below.

如果LAN上存在多个IPv6 CE路由器,则与IPv4共存要求所有路由器都符合这些建议,特别是下面的ULA-5和L-4要求。

4. Requirements
4. 要求
4.1. General Requirements
4.1. 一般要求

The IPv6 CE router is responsible for implementing IPv6 routing; that is, the IPv6 CE router must look up the IPv6 destination address in its routing table to decide to which interface it should send the packet.

IPv6 CE路由器负责实现IPv6路由;也就是说,IPv6 CE路由器必须在其路由表中查找IPv6目标地址,以决定将数据包发送到哪个接口。

In this role, the IPv6 CE router is responsible for ensuring that traffic using its ULA addressing does not go out the WAN interface, and does not originate from the WAN interface.

在这个角色中,IPv6 CE路由器负责确保使用其ULA寻址的流量不会从WAN接口流出,也不会来自WAN接口。

G-1: An IPv6 CE router is an IPv6 node according to the IPv6 Node Requirements [RFC4294] specification.

G-1:根据IPv6节点要求[RFC4294]规范,IPv6 CE路由器是IPv6节点。

G-2: The IPv6 CE router MUST implement ICMP according to [RFC4443]. In particular, point-to-point links MUST be handled as described in Section 3.1 of [RFC4443].

G-2:IPv6 CE路由器必须根据[RFC4443]实现ICMP。特别是,必须按照[RFC4443]第3.1节的规定处理点对点链路。

G-3: The IPv6 CE router MUST NOT forward any IPv6 traffic between its LAN interface(s) and its WAN interface until the router has successfully completed the IPv6 address acquisition process.

G-3:在路由器成功完成IPv6地址获取过程之前,IPv6 CE路由器不得在其LAN接口和WAN接口之间转发任何IPv6流量。

G-4: By default, an IPv6 CE router that has no default router(s) on its WAN interface MUST NOT advertise itself as an IPv6 default router on its LAN interfaces. That is, the "Router Lifetime" field is set to zero in all Router Advertisement messages it originates [RFC4861].

G-4:默认情况下,在其WAN接口上没有默认路由器的IPv6 CE路由器不得在其LAN接口上作为IPv6默认路由器进行宣传。也就是说,在它发起的所有路由器广告消息中,“路由器寿命”字段设置为零[RFC4861]。

G-5: By default, if the IPv6 CE router is an advertising router and loses its IPv6 default router(s) on the WAN interface, it MUST explicitly invalidate itself as an IPv6 default router on each of its advertising interfaces by immediately transmitting one or more Router Advertisement messages with the "Router Lifetime" field set to zero [RFC4861].

G-5:默认情况下,如果IPv6 CE路由器是一个播发路由器,并且在WAN接口上丢失了其IPv6默认路由器,则它必须通过立即发送一个或多个路由器播发消息,并将“路由器生存期”字段设置为零,显式地使自己在其每个播发接口上作为IPv6默认路由器失效[RFC4861]。

4.2. WAN-Side Configuration
4.2. 广域网端配置

The IPv6 CE router will need to support connectivity to one or more access network architectures. This document describes an IPv6 CE router that is not specific to any particular architecture or service provider and that supports all commonly used architectures.

IPv6 CE路由器需要支持与一个或多个接入网络体系结构的连接。本文档描述的IPv6 CE路由器不特定于任何特定的体系结构或服务提供商,它支持所有常用的体系结构。

IPv6 Neighbor Discovery and DHCPv6 protocols operate over any type of IPv6-supported link layer, and there is no need for a link-layer-specific configuration protocol for IPv6 network-layer configuration options as in, e.g., PPP IP Control Protocol (IPCP) for IPv4. This section makes the assumption that the same mechanism will work for any link layer, be it Ethernet, the Data Over Cable Service Interface Specification (DOCSIS), PPP, or others.

IPv6邻居发现和DHCPv6协议在任何类型的IPv6支持的链路层上运行,并且不需要针对IPv6网络层配置选项使用特定于链路层的配置协议,如IPv4的PPP IP控制协议(IPCP)。本节假设相同的机制适用于任何链路层,无论是以太网、有线数据服务接口规范(DOCSIS)、PPP还是其他。

WAN-side requirements:

广域网方面的要求:

W-1: When the router is attached to the WAN interface link, it MUST act as an IPv6 host for the purposes of stateless [RFC4862] or stateful [RFC3315] interface address assignment.

W-1:当路由器连接到WAN接口链路时,为了无状态[RFC4862]或有状态[RFC3315]接口地址分配,它必须充当IPv6主机。

W-2: The IPv6 CE router MUST generate a link-local address and finish Duplicate Address Detection according to [RFC4862] prior to sending any Router Solicitations on the interface. The source address used in the subsequent Router Solicitation MUST be the link-local address on the WAN interface.

W-2:IPv6 CE路由器必须在接口上发送任何路由器请求之前,根据[RFC4862]生成链路本地地址并完成重复地址检测。后续路由器请求中使用的源地址必须是WAN接口上的链路本地地址。

W-3: Absent other routing information, the IPv6 CE router MUST use Router Discovery as specified in [RFC4861] to discover a default router(s) and install default route(s) in its routing table with the discovered router's address as the next hop.

W-3:如果没有其他路由信息,IPv6 CE路由器必须使用[RFC4861]中指定的路由器发现来发现默认路由器,并在其路由表中安装默认路由,发现的路由器地址作为下一跳。

W-4: The router MUST act as a requesting router for the purposes of DHCPv6 prefix delegation ([RFC3633]).

W-4:为了DHCPv6前缀委派([RFC3633]),路由器必须充当请求路由器。

W-5: DHCPv6 address assignment (IA_NA) and DHCPv6 prefix delegation (IA_PD) SHOULD be done as a single DHCPv6 session.

W-5:DHCPv6地址分配(IA_-NA)和DHCPv6前缀委派(IA_-PD)应作为单个DHCPv6会话完成。

W-6: The IPv6 CE router MUST use a persistent DHCP Unique Identifier (DUID) for DHCPv6 messages. The DUID MUST NOT change between network interface resets or IPv6 CE router reboots.

W-6:IPv6 CE路由器必须为DHCPv6消息使用持久DHCP唯一标识符(DUID)。DUID不得在网络接口重置或IPv6 CE路由器重新启动之间更改。

Link-layer requirements:

链路层要求:

WLL-1: If the WAN interface supports Ethernet encapsulation, then the IPv6 CE router MUST support IPv6 over Ethernet [RFC2464].

WLL-1:如果WAN接口支持以太网封装,则IPv6 CE路由器必须支持以太网上的IPv6[RFC2464]。

WLL-2: If the WAN interface supports PPP encapsulation, the IPv6 CE router MUST support IPv6 over PPP [RFC5072].

WLL-2:如果WAN接口支持PPP封装,IPv6 CE路由器必须支持IPv6 over PPP[RFC5072]。

WLL-3: If the WAN interface supports PPP encapsulation, in a dual-stack environment with IPCP and IPV6CP running over one PPP logical channel, the Network Control Protocols (NCPs) MUST be treated as independent of each other and start and terminate independently.

WLL-3:如果WAN接口支持PPP封装,则在IPCP和IPV6CP在一个PPP逻辑通道上运行的双堆栈环境中,网络控制协议(NCP)必须视为彼此独立,并独立启动和终止。

Address assignment requirements:

地址分配要求:

WAA-1: The IPv6 CE router MUST support Stateless Address Autoconfiguration (SLAAC) [RFC4862].

WAA-1:IPv6 CE路由器必须支持无状态地址自动配置(SLAAC)[RFC4862]。

WAA-2: The IPv6 CE router MUST follow the recommendations in Section 4 of [RFC5942], and in particular the handling of the L flag in the Router Advertisement Prefix Information option.

WAA-2:IPv6 CE路由器必须遵循[RFC5942]第4节中的建议,尤其是路由器广告前缀信息选项中L标志的处理。

WAA-3: The IPv6 CE router MUST support DHCPv6 [RFC3315] client behavior.

WAA-3:IPv6 CE路由器必须支持DHCPv6[RFC3315]客户端行为。

WAA-4: The IPv6 CE router MUST be able to support the following DHCPv6 options: IA_NA, Reconfigure Accept [RFC3315], and DNS_SERVERS [RFC3646].

WAA-4:IPv6 CE路由器必须能够支持以下DHCPv6选项:IA_NA、重新配置接受[RFC3315]和DNS_服务器[RFC3646]。

WAA-5: The IPv6 CE router SHOULD support the DHCPv6 Simple Network Time Protocol (SNTP) option [RFC4075] and the Information Refresh Time option [RFC4242].

WAA-5:IPv6 CE路由器应支持DHCPv6简单网络时间协议(SNTP)选项[RFC4075]和信息刷新时间选项[RFC4242]。

WAA-6: If the IPv6 CE router receives a Router Advertisement message (described in [RFC4861]) with the M flag set to 1, the IPv6 CE router MUST do DHCPv6 address assignment (request an IA_NA option).

WAA-6:如果IPv6 CE路由器接收到M标志设置为1的路由器公告消息(如[RFC4861]所述),IPv6 CE路由器必须执行DHCPv6地址分配(请求IA_NA选项)。

WAA-7: If the IPv6 CE router is unable to assign address(es) through SLAAC, it MAY do DHCPv6 address assignment (request an IA_NA option) even if the M flag is set to 0.

WAA-7:如果IPv6 CE路由器无法通过SLAAC分配地址,则即使M标志设置为0,它也可以执行DHCPv6地址分配(请求IA_NA选项)。

WAA-8: If the IPv6 CE router does not acquire global IPv6 address(es) from either SLAAC or DHCPv6, then it MUST create global IPv6 address(es) from its delegated prefix(es) and configure those on one of its internal virtual network interfaces.

WAA-8:如果IPv6 CE路由器未从SLAAC或DHCPv6获取全局IPv6地址,则它必须从其委派前缀创建全局IPv6地址,并在其内部虚拟网络接口之一上配置这些地址。

WAA-9: As a router, the IPv6 CE router MUST follow the weak host (Weak ES) model [RFC1122]. When originating packets from an interface, it will use a source address from another one of its interfaces if the outgoing interface does not have an address of suitable scope.

WAA-9:作为路由器,IPv6 CE路由器必须遵循弱主机(弱ES)模型[RFC1122]。当从接口发起数据包时,如果传出接口没有合适范围的地址,它将使用来自另一个接口的源地址。

Prefix delegation requirements:

前缀授权要求:

WPD-1: The IPv6 CE router MUST support DHCPv6 prefix delegation requesting router behavior as specified in [RFC3633] (IA_PD option).

WPD-1:IPv6 CE路由器必须支持[RFC3633](IA_PD选项)中指定的DHCPv6前缀委派请求路由器行为。

WPD-2: The IPv6 CE router MAY indicate as a hint to the delegating router the size of the prefix it requires. If so, it MUST ask for a prefix large enough to assign one /64 for each of its interfaces, rounded up to the nearest nibble, and MUST be configurable to ask for more.

WPD-2:IPv6 CE路由器可能会向委托路由器指示其所需前缀的大小作为提示。如果是这样,它必须请求一个足够大的前缀,以便为其每个接口分配1/64,四舍五入到最近的半字节,并且必须可配置为请求更多。

WPD-3: The IPv6 CE router MUST be prepared to accept a delegated prefix size different from what is given in the hint. If the delegated prefix is too small to address all of its interfaces, the IPv6 CE router SHOULD log a system management error.

WPD-3:IPv6 CE路由器必须准备好接受不同于提示中给出的委派前缀大小。如果委派前缀太小,无法寻址其所有接口,IPv6 CE路由器应记录系统管理错误。

WPD-4: The IPv6 CE router MUST always initiate DHCPv6 prefix delegation, regardless of the M and O flags in a received Router Advertisement message.

WPD-4:IPv6 CE路由器必须始终启动DHCPv6前缀委派,而不考虑接收到的路由器公告消息中的M和O标志。

WPD-5: If the IPv6 CE router initiates DHCPv6 before receiving a Router Advertisement, it MUST also request an IA_NA option in DHCPv6.

WPD-5:如果IPv6 CE路由器在接收到路由器公告之前启动DHCPv6,它还必须请求DHCPv6中的IA_NA选项。

WPD-6: If the delegated prefix(es) are aggregate route(s) of multiple, more-specific routes, the IPv6 CE router MUST discard packets that match the aggregate route(s), but not any of the more-specific routes. In other words, the next hop for the aggregate route(s) should be the null destination. This is necessary to prevent forwarding loops when some addresses covered by the aggregate are not reachable [RFC4632].

WPD-6:如果委派前缀是多个更具体路由的聚合路由,IPv6 CE路由器必须丢弃与聚合路由匹配的数据包,但不能丢弃任何更具体的路由。换句话说,聚合路由的下一跳应该是空目的地。当无法访问聚合所覆盖的某些地址时,这是防止转发循环所必需的[RFC4632]。

(a) The IPv6 CE router SHOULD send an ICMPv6 Destination Unreachable message in accordance with Section 3.1 of [RFC4443] back to the source of the packet, if the packet is to be dropped due to this rule.

(a) IPv6 CE路由器应根据[RFC4443]第3.1节将ICMPv6目的地不可到达消息发送回数据包源,如果数据包因该规则而被丢弃。

WPD-7: If the IPv6 CE router requests both an IA_NA and an IA_PD option in DHCPv6, it MUST accept an IA_PD option in DHCPv6 Advertise/Reply messages, even if the message does not contain any addresses.

WPD-7:如果IPv6 CE路由器同时请求DHCPv6中的IA_-NA和IA_-PD选项,则它必须接受DHCPv6播发/回复消息中的IA_-PD选项,即使该消息不包含任何地址。

WPD-8: By default, an IPv6 CE router MUST NOT initiate any dynamic routing protocol on its WAN interface.

WPD-8:默认情况下,IPv6 CE路由器不得在其WAN接口上启动任何动态路由协议。

4.3. LAN-Side Configuration
4.3. 局域网端配置

The IPv6 CE router distributes configuration information obtained during WAN interface provisioning to IPv6 hosts and assists IPv6 hosts in obtaining IPv6 addresses. It also supports connectivity of these devices in the absence of any working WAN interface.

IPv6 CE路由器将在WAN接口配置期间获得的配置信息分发给IPv6主机,并协助IPv6主机获取IPv6地址。它还支持在没有任何工作WAN接口的情况下连接这些设备。

An IPv6 CE router is expected to support an IPv6 end-user network and IPv6 hosts that exhibit the following characteristics:

IPv6 CE路由器预计将支持具有以下特征的IPv6最终用户网络和IPv6主机:

1. Link-local addresses may be insufficient for allowing IPv6 applications to communicate with each other in the end-user network. The IPv6 CE router will need to enable this communication by providing globally scoped unicast addresses or ULAs [RFC4193], whether or not WAN connectivity exists.

1. 链路本地地址可能不足以允许IPv6应用程序在最终用户网络中相互通信。IPv6 CE路由器需要通过提供全局范围的单播地址或ULA[RFC4193]来启用此通信,无论是否存在WAN连接。

2. IPv6 hosts should be capable of using SLAAC and may be capable of using DHCPv6 for acquiring their addresses.

2. IPv6主机应该能够使用SLAAC,并且可能能够使用DHCPv6获取其地址。

3. IPv6 hosts may use DHCPv6 for other configuration information, such as the DNS_SERVERS option for acquiring DNS information.

3. IPv6主机可以将DHCPv6用于其他配置信息,例如用于获取DNS信息的DNS_服务器选项。

Unless otherwise specified, the following requirements apply to the IPv6 CE router's LAN interfaces only.

除非另有规定,以下要求仅适用于IPv6 CE路由器的LAN接口。

ULA requirements:

要求:

ULA-1: The IPv6 CE router SHOULD be capable of generating a ULA prefix [RFC4193].

ULA-1:IPv6 CE路由器应能够生成ULA前缀[RFC4193]。

ULA-2: An IPv6 CE router with a ULA prefix MUST maintain this prefix consistently across reboots.

ULA-2:具有ULA前缀的IPv6 CE路由器必须在重新启动期间保持此前缀一致。

ULA-3: The value of the ULA prefix SHOULD be user-configurable.

ULA-3:ULA前缀的值应该是用户可配置的。

ULA-4: By default, the IPv6 CE router MUST act as a site border router according to Section 4.3 of [RFC4193] and filter packets with local IPv6 source or destination addresses accordingly.

ULA-4:根据[RFC4193]第4.3节,默认情况下,IPv6 CE路由器必须充当站点边界路由器,并相应地过滤具有本地IPv6源地址或目标地址的数据包。

ULA-5: An IPv6 CE router MUST NOT advertise itself as a default router with a Router Lifetime greater than zero whenever all of its configured and delegated prefixes are ULA prefixes.

ULA-5:IPv6 CE路由器不得在其所有配置和委派的前缀均为ULA前缀时,将自身作为路由器生存期大于零的默认路由器进行公告。

LAN requirements:

局域网要求:

L-1: The IPv6 CE router MUST support router behavior according to Neighbor Discovery for IPv6 [RFC4861].

L-1:根据IPv6的邻居发现[RFC4861],IPv6 CE路由器必须支持路由器行为。

L-2: The IPv6 CE router MUST assign a separate /64 from its delegated prefix(es) (and ULA prefix if configured to provide ULA addressing) for each of its LAN interfaces.

L-2:IPv6 CE路由器必须为其每个LAN接口从其委派前缀(和ULA前缀,如果配置为提供ULA寻址)中分配单独的/64。

L-3: An IPv6 CE router MUST advertise itself as a router for the delegated prefix(es) (and ULA prefix if configured to provide ULA addressing) using the "Route Information Option" specified in Section 2.3 of [RFC4191]. This advertisement is independent of having or not having IPv6 connectivity on the WAN interface.

L-3:IPv6 CE路由器必须使用[RFC4191]第2.3节中规定的“路由信息选项”,将自身作为代理前缀(以及ULA前缀,如果配置为提供ULA寻址)的路由器进行公告。此播发与WAN接口上是否具有IPv6连接无关。

L-4: An IPv6 CE router MUST NOT advertise itself as a default router with a Router Lifetime [RFC4861] greater than zero if it has no prefixes configured or delegated to it.

L-4:如果IPv6 CE路由器未配置或委托前缀,则不得将其自身作为路由器生存期[RFC4861]大于零的默认路由器进行公告。

L-5: The IPv6 CE router MUST make each LAN interface an advertising interface according to [RFC4861].

L-5:IPv6 CE路由器必须根据[RFC4861]使每个LAN接口成为广告接口。

L-6: In Router Advertisement messages, the Prefix Information option's A and L flags MUST be set to 1 by default.

L-6:在路由器广告消息中,前缀信息选项的A和L标志在默认情况下必须设置为1。

L-7: The A and L flags' settings SHOULD be user-configurable.

L-7:A和L标志的设置应该是用户可配置的。

L-8: The IPv6 CE router MUST support a DHCPv6 server capable of IPv6 address assignment according to [RFC3315] OR a stateless DHCPv6 server according to [RFC3736] on its LAN interfaces.

L-8:IPv6 CE路由器必须在其LAN接口上支持能够根据[RFC3315]分配IPv6地址的DHCPv6服务器或根据[RFC3736]分配无状态DHCPv6服务器。

L-9: Unless the IPv6 CE router is configured to support the DHCPv6 IA_NA option, it SHOULD set the M flag to 0 and the O flag to 1 in its Router Advertisement messages [RFC4861].

L-9:除非IPv6 CE路由器配置为支持DHCPv6 IA_NA选项,否则它应该在其路由器公告消息中将M标志设置为0,将O标志设置为1[RFC4861]。

L-10: The IPv6 CE router MUST support providing DNS information in the DHCPv6 DNS_SERVERS and DOMAIN_LIST options [RFC3646].

L-10:IPv6 CE路由器必须支持在DHCPv6 DNS_服务器和域_列表选项中提供DNS信息[RFC3646]。

L-11: The IPv6 CE router SHOULD support providing DNS information in the Router Advertisement Recursive DNS Server (RDNSS) and DNS Search List (DNSSL) options as specified in [RFC6106].

L-11:IPv6 CE路由器应支持在[RFC6106]中指定的路由器通告递归DNS服务器(RDNS)和DNS搜索列表(DNSSL)选项中提供DNS信息。

L-12: The IPv6 CE router SHOULD make available a subset of DHCPv6 options (as listed in Section 5.3 of [RFC3736]) received from the DHCPv6 client on its WAN interface to its LAN-side DHCPv6 server.

L-12:IPv6 CE路由器应提供DHCPv6选项的子集(如[RFC3736]第5.3节所列),这些选项是通过其WAN接口从DHCPv6客户端接收到其LAN端DHCPv6服务器的。

L-13: If the delegated prefix changes, i.e., the current prefix is replaced with a new prefix without any overlapping time period, then the IPv6 CE router MUST immediately advertise the old prefix with a Preferred Lifetime of zero and a Valid Lifetime of the lower of the current Valid Lifetime and 2 hours (which must be decremented in real time) in a Router Advertisement message as described in Section 5.5.3, (e) of [RFC4862].

L-13:如果委派前缀发生变化,即当前前缀被替换为新前缀,且没有任何重叠时间段,则IPv6 CE路由器必须立即公布旧前缀,首选生存期为零,有效生存期为当前有效生存期和2小时(必须实时递减)中的较低者在[RFC4862]第5.5.3(e)节所述的路由器广告消息中。

L-14: The IPv6 CE router MUST send an ICMP Destination Unreachable message, code 5 (Source address failed ingress/egress policy) for packets forwarded to it that use an address from a prefix that has been deprecated.

L-14:IPv6 CE路由器必须发送ICMP目的地不可访问消息,代码为5(源地址失败的入口/出口策略),用于转发到它的数据包,该数据包使用来自已弃用前缀的地址。

4.4. Security Considerations
4.4. 安全考虑

It is considered a best practice to filter obviously malicious traffic (e.g., spoofed packets, "Martian" addresses, etc.). Thus, the IPv6 CE router ought to support basic stateless egress and ingress filters. The CE router is also expected to offer mechanisms to filter traffic entering the customer network; however, the method by which vendors implement configurable packet filtering is beyond the scope of this document.

它被认为是过滤明显恶意流量(例如,伪造数据包、“火星”地址等)的最佳实践。因此,IPv6 CE路由器应该支持基本的无状态出入口过滤器。CE路由器还应提供过滤进入客户网络流量的机制;然而,供应商实现可配置数据包过滤的方法超出了本文档的范围。

Security requirements:

安全要求:

S-1: The IPv6 CE router SHOULD support [RFC6092]. In particular, the IPv6 CE router SHOULD support functionality sufficient for implementing the set of recommendations in [RFC6092], Section 4. This document takes no position on whether such functionality is enabled by default or mechanisms by which users would configure it.

S-1:IPv6 CE路由器应支持[RFC6092]。特别是,IPv6 CE路由器应支持足以实现[RFC6092]第4节中建议集的功能。本文档不确定默认情况下是否启用了此类功能,也不确定用户配置这些功能的机制。

S-2: The IPv6 CE router MUST support ingress filtering in accordance with BCP 38 [RFC2827].

S-2:IPv6 CE路由器必须根据BCP 38[RFC2827]支持入口过滤。

5. Acknowledgements
5. 致谢

Thanks to the following people (in alphabetical order) for their guidance and feedback:

感谢以下人员(按字母顺序)的指导和反馈:

Mikael Abrahamsson, Tore Anderson, Merete Asak, Scott Beuker, Mohamed Boucadair, Rex Bullinger, Brian Carpenter, Lorenzo Colitti, Remi Denis-Courmont, Gert Doering, Alain Durand, Katsunori Fukuoka, Tony Hain, Thomas Herbst, Kevin Johns, Erik Kline, Stephen Kramer, Victor

米凯尔·阿布拉罕松、托尔·安德森、梅雷特·阿萨克、斯科特·比克尔、穆罕默德·布卡达尔、雷克斯·布林格、布赖恩·卡彭特、洛伦佐·科利蒂、雷米·丹尼斯·库尔蒙、格特·多林、阿兰·杜兰德、卡特森诺里·福冈、托尼·海恩、托马斯·赫伯斯特、凯文·约翰斯、埃里克·克莱恩、斯蒂芬·克莱默、维克托

Kuarsingh, Francois-Xavier Le Bail, Arifumi Matsumoto, David Miles, Shin Miyakawa, Jean-Francois Mule, Michael Newbery, Carlos Pignataro, John Pomeroy, Antonio Querubin, Hiroki Sato, Teemu Savolainen, Matt Schmitt, David Thaler, Mark Townsley, Bernie Volz, Dan Wing, James Woodyatt, and Cor Zwart.

夸尔辛格、弗朗索瓦·泽维尔·勒贝尔、松本阿里文、大卫·迈尔斯、新宫川、让·弗朗索瓦·穆勒、迈克尔·纽伯里、卡洛斯·皮格纳塔罗、约翰·波默罗伊、安东尼奥·克鲁宾、广基·佐藤、蒂姆·萨沃莱宁、马特·施密特、大卫·泰勒、马克·汤斯利、伯尼·沃尔兹、丹·荣、詹姆斯·伍迪亚特和科尔茨瓦特。

This document is based in part on CableLabs' eRouter specification. The authors wish to acknowledge the additional contributors from the eRouter team:

本文件部分基于CableLabs的eRouter规范。作者希望感谢来自eRouter团队的其他贡献者:

Ben Bekele, Amol Bhagwat, Ralph Brown, Eduardo Cardona, Margo Dolas, Toerless Eckert, Doc Evans, Roger Fish, Michelle Kuska, Diego Mazzola, John McQueen, Harsh Parandekar, Michael Patrick, Saifur Rahman, Lakshmi Raman, Ryan Ross, Ron da Silva, Madhu Sudan, Dan Torbet, and Greg White.

Ben Bekele、Amol Bhagwat、Ralph Brown、Eduardo Cardona、Margo Dolas、Toerless Eckert、Doc Evans、Roger Fish、Michelle Kuska、Diego Mazzola、John McQueen、Harsh Parandekar、Michael Patrick、Saifer Rahman、Lakshmi Raman、Ryan Ross、Ron da Silva、Madhu Sudan、Dan Torbet和Greg White。

6. Contributors
6. 贡献者

The following people have participated as co-authors or provided substantial contributions to this document: Ralph Droms, Kirk Erichsen, Fred Baker, Jason Weil, Lee Howard, Jean-Francois Tremblay, Yiu Lee, John Jason Brzozowski, and Heather Kirksey.

以下人士作为共同作者参与了本文件的撰写或为本文件做出了重大贡献:拉尔夫·德罗姆斯、柯克·埃里克森、弗雷德·贝克、杰森·威尔、李·霍华德、让·弗朗索瓦·特雷姆布雷、姚·李、约翰·杰森·布尔佐夫斯基和希瑟·柯克西。

7. References
7. 工具书类
7.1. Normative References
7.1. 规范性引用文件

[RFC1122] Braden, R., Ed., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, October 1989.

[RFC1122]Braden,R.,Ed.“互联网主机的要求-通信层”,STD 3,RFC 1122,1989年10月。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC2464] Crawford, M., "Transmission of IPv6 Packets over Ethernet Networks", RFC 2464, December 1998.

[RFC2464]克劳福德,M.,“通过以太网传输IPv6数据包”,RFC2464,1998年12月。

[RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", BCP 38, RFC 2827, May 2000.

[RFC2827]Ferguson,P.和D.Senie,“网络入口过滤:击败利用IP源地址欺骗的拒绝服务攻击”,BCP 38,RFC 2827,2000年5月。

[RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003.

[RFC3315]Droms,R.,Ed.,Bound,J.,Volz,B.,Lemon,T.,Perkins,C.,和M.Carney,“IPv6的动态主机配置协议(DHCPv6)”,RFC3315,2003年7月。

[RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6", RFC 3633, December 2003.

[RFC3633]Troan,O.和R.Droms,“动态主机配置协议(DHCP)版本6的IPv6前缀选项”,RFC 3633,2003年12月。

[RFC3646] Droms, R., Ed., "DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3646, December 2003.

[RFC3646]Droms,R.,Ed.“IPv6动态主机配置协议(DHCPv6)的DNS配置选项”,RFC 3646,2003年12月。

[RFC3736] Droms, R., "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6", RFC 3736, April 2004.

[RFC3736]Droms,R.,“IPv6的无状态动态主机配置协议(DHCP)服务”,RFC 3736,2004年4月。

[RFC4075] Kalusivalingam, V., "Simple Network Time Protocol (SNTP) Configuration Option for DHCPv6", RFC 4075, May 2005.

[RFC4075]Kalusialingam,V.,“DHCPv6的简单网络时间协议(SNTP)配置选项”,RFC 4075,2005年5月。

[RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and More-Specific Routes", RFC 4191, November 2005.

[RFC4191]Draves,R.和D.Thaler,“默认路由器首选项和更具体的路由”,RFC 41912005年11月。

[RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast Addresses", RFC 4193, October 2005.

[RFC4193]Hinden,R.和B.Haberman,“唯一本地IPv6单播地址”,RFC 41932005年10月。

[RFC4242] Venaas, S., Chown, T., and B. Volz, "Information Refresh Time Option for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 4242, November 2005.

[RFC4242]Venaas,S.,Chown,T.,和B.Volz,“IPv6动态主机配置协议(DHCPv6)的信息刷新时间选项”,RFC 4242,2005年11月。

[RFC4294] Loughney, J., Ed., "IPv6 Node Requirements", RFC 4294, April 2006.

[RFC4294]Loughney,J.,编辑,“IPv6节点要求”,RFC 42942006年4月。

[RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", RFC 4443, March 2006.

[RFC4443]Conta,A.,Deering,S.,和M.Gupta,Ed.,“互联网协议版本6(IPv6)规范的互联网控制消息协议(ICMPv6)”,RFC 4443,2006年3月。

[RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick, "Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("IGMP/MLD Proxying")", RFC 4605, August 2006.

[RFC4605]Fenner,B.,He,H.,Haberman,B.,和H.Sandick,“基于Internet组管理协议(IGMP)/多播侦听器发现(MLD)的多播转发(“IGMP/MLD代理”)”,RFC 4605,2006年8月。

[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, August 2006.

[RFC4632]Fuller,V.和T.Li,“无类域间路由(CIDR):互联网地址分配和聚合计划”,BCP 122,RFC 4632,2006年8月。

[RFC4779] Asadullah, S., Ahmed, A., Popoviciu, C., Savola, P., and J. Palet, "ISP IPv6 Deployment Scenarios in Broadband Access Networks", RFC 4779, January 2007.

[RFC4779]Asadullah,S.,Ahmed,A.,Popoviciu,C.,Savola,P.,和J.Palet,“宽带接入网络中的ISP IPv6部署场景”,RFC 4779,2007年1月。

[RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, September 2007.

[RFC4861]Narten,T.,Nordmark,E.,Simpson,W.,和H.Soliman,“IP版本6(IPv6)的邻居发现”,RFC 48612007年9月。

[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address Autoconfiguration", RFC 4862, September 2007.

[RFC4862]Thomson,S.,Narten,T.,和T.Jinmei,“IPv6无状态地址自动配置”,RFC 48622007年9月。

[RFC4864] Van de Velde, G., Hain, T., Droms, R., Carpenter, B., and E. Klein, "Local Network Protection for IPv6", RFC 4864, May 2007.

[RFC4864]Van de Velde,G.,Hain,T.,Droms,R.,Carpenter,B.,和E.Klein,“IPv6的本地网络保护”,RFC 4864,2007年5月。

[RFC5072] Varada, S., Ed., Haskins, D., and E. Allen, "IP Version 6 over PPP", RFC 5072, September 2007.

[RFC5072]Varada,S.,Ed.,Haskins,D.,和E.Allen,“PPP上的IP版本6”,RFC 5072,2007年9月。

[RFC5942] Singh, H., Beebee, W., and E. Nordmark, "IPv6 Subnet Model: The Relationship between Links and Subnet Prefixes", RFC 5942, July 2010.

[RFC5942]Singh,H.,Beebee,W.和E.Nordmark,“IPv6子网模型:链路和子网前缀之间的关系”,RFC 59422010年7月。

[RFC6092] Woodyatt, J., Ed., "Recommended Simple Security Capabilities in Customer Premises Equipment (CPE) for Providing Residential IPv6 Internet Service", RFC 6092, January 2011.

[RFC6092]Woodyatt,J.,Ed.,“提供住宅IPv6互联网服务的客户场所设备(CPE)中推荐的简单安全功能”,RFC 6092,2011年1月。

[RFC6106] Jeong, J., Park, S., Beloeil, L., and S. Madanapalli, "IPv6 Router Advertisement Options for DNS Configuration", RFC 6106, November 2010.

[RFC6106]Jeong,J.,Park,S.,Beloeil,L.,和S.Madanapalli,“DNS配置的IPv6路由器广告选项”,RFC 61062010年11月。

7.2. Informative References
7.2. 资料性引用

[HAPPY-EYEBALLS] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Trending Towards Success with Dual-Stack Hosts", Work in Progress, March 2011.

[HAPPY-EYEBALLS]Wing,D.和A.Yourtchenko,“HAPPY-EYEBALLS:双堆栈主机的成功趋势”,正在进行的工作,2011年3月。

[MULTIHOMING-WITHOUT-NAT] Troan, O., Ed., Miles, D., Matsushima, S., Okimoto, T., and D. Wing, "IPv6 Multihoming without Network Address Translation", Work in Progress, March 2011.

[MULTIHOMING-WITHOUT-NAT]Troan,O.,Ed.,Miles,D.,Matsushima,S.,Okimoto,T.,和D.Wing,“无网络地址转换的IPv6多主”,正在进行的工作,2011年3月。

[RFC6144] Baker, F., Li, X., Bao, C., and K. Yin, "Framework for IPv4/IPv6 Translation", RFC 6144, April 2011.

[RFC6144]Baker,F.,Li,X.,Bao,C.,和K.Yin,“IPv4/IPv6转换框架”,RFC 61442011年4月。

[UPnP-IGD] UPnP Forum, "Universal Plug and Play (UPnP) Internet Gateway Device (IGD)", November 2001, <http://www.upnp.org/>.

[UPnP IGD]UPnP论坛,“通用即插即用(UPnP)互联网网关设备(IGD)”,2001年11月<http://www.upnp.org/>.

Authors' Addresses

作者地址

Hemant Singh Cisco Systems, Inc. 1414 Massachusetts Ave. Boxborough, MA 01719 USA Phone: +1 978 936 1622 EMail: shemant@cisco.com URI: http://www.cisco.com/

Hemant Singh Cisco Systems,Inc.美国马萨诸塞州Boxborough大道1414号邮编01719电话:+1 978 936 1622电子邮件:shemant@cisco.comURI:http://www.cisco.com/

Wes Beebee Cisco Systems, Inc. 1414 Massachusetts Ave. Boxborough, MA 01719 USA Phone: +1 978 936 2030 EMail: wbeebee@cisco.com URI: http://www.cisco.com/

Wes Beebee Cisco Systems,Inc.美国马萨诸塞州Boxborough大道1414号电话:+1 978 936 2030电子邮件:wbeebee@cisco.comURI:http://www.cisco.com/

Chris Donley CableLabs 858 Coal Creek Circle Louisville, CO 80027 USA EMail: c.donley@cablelabs.com

Chris Donley CableLabs 858 Coal Creek Circle Louisville,CO.80027美国电子邮件:c。donley@cablelabs.com

Barbara Stark AT&T 725 W Peachtree St. Atlanta, GA 30308 USA EMail: barbara.stark@att.com

芭芭拉·斯塔克AT&T 725 W Peachtree St.Atlanta,GA 30308美国电子邮件:芭芭拉。stark@att.com

Ole Troan (editor) Cisco Systems, Inc. Telemarksvingen 20 N-0655 OSLO, Norway EMail: ot@cisco.com

Ole Troan(编辑)Cisco Systems,Inc.Telemarksvingen 20 N-0655挪威奥斯陆电子邮件:ot@cisco.com