Internet Engineering Task Force (IETF)                       Y. Lee, Ed.
Request for Comments: 6163                                        Huawei
Category: Informational                                G. Bernstein, Ed.
ISSN: 2070-1721                                        Grotto Networking
                                                              W. Imajuku
                                                                     NTT
                                                              April 2011
        
Internet Engineering Task Force (IETF)                       Y. Lee, Ed.
Request for Comments: 6163                                        Huawei
Category: Informational                                G. Bernstein, Ed.
ISSN: 2070-1721                                        Grotto Networking
                                                              W. Imajuku
                                                                     NTT
                                                              April 2011
        

Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)

波长交换光网络(WSON)的GMPLS和路径计算元件(PCE)控制框架

Abstract

摘要

This document provides a framework for applying Generalized Multi-Protocol Label Switching (GMPLS) and the Path Computation Element (PCE) architecture to the control of Wavelength Switched Optical Networks (WSONs). In particular, it examines Routing and Wavelength Assignment (RWA) of optical paths.

本文档提供了一个将通用多协议标签交换(GMPLS)和路径计算元素(PCE)体系结构应用于波长交换光网络(WSON)控制的框架。特别是,它检查了光路的路由和波长分配(RWA)。

This document focuses on topological elements and path selection constraints that are common across different WSON environments; as such, it does not address optical impairments in any depth.

本文档重点介绍不同WSON环境中常见的拓扑元素和路径选择约束;因此,它不涉及任何深度的光学损伤。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6163.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6163.

Copyright Notice

版权公告

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2011 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................4
   2. Terminology .....................................................5
   3. Wavelength Switched Optical Networks ............................6
      3.1. WDM and CWDM Links .........................................6
      3.2. Optical Transmitters and Receivers .........................8
      3.3. Optical Signals in WSONs ...................................9
           3.3.1. Optical Tributary Signals ..........................10
           3.3.2. WSON Signal Characteristics ........................10
      3.4. ROADMs, OXCs, Splitters, Combiners, and FOADMs ............11
           3.4.1. Reconfigurable Optical Add/Drop
                  Multiplexers and OXCs ..............................11
           3.4.2. Splitters ..........................................14
           3.4.3. Combiners ..........................................15
           3.4.4. Fixed Optical Add/Drop Multiplexers ................15
      3.5. Electro-Optical Systems ...................................16
           3.5.1. Regenerators .......................................16
           3.5.2. OEO Switches .......................................19
      3.6. Wavelength Converters .....................................19
           3.6.1. Wavelength Converter Pool Modeling .................21
      3.7. Characterizing Electro-Optical Network Elements ...........24
           3.7.1. Input Constraints ..................................25
           3.7.2. Output Constraints .................................25
           3.7.3. Processing Capabilities ............................26
   4. Routing and Wavelength Assignment and the Control Plane ........26
      4.1. Architectural Approaches to RWA ...........................27
           4.1.1. Combined RWA (R&WA) ................................27
           4.1.2. Separated R and WA (R+WA) ..........................28
           4.1.3. Routing and Distributed WA (R+DWA) .................28
      4.2. Conveying Information Needed by RWA .......................29
        
   1. Introduction ....................................................4
   2. Terminology .....................................................5
   3. Wavelength Switched Optical Networks ............................6
      3.1. WDM and CWDM Links .........................................6
      3.2. Optical Transmitters and Receivers .........................8
      3.3. Optical Signals in WSONs ...................................9
           3.3.1. Optical Tributary Signals ..........................10
           3.3.2. WSON Signal Characteristics ........................10
      3.4. ROADMs, OXCs, Splitters, Combiners, and FOADMs ............11
           3.4.1. Reconfigurable Optical Add/Drop
                  Multiplexers and OXCs ..............................11
           3.4.2. Splitters ..........................................14
           3.4.3. Combiners ..........................................15
           3.4.4. Fixed Optical Add/Drop Multiplexers ................15
      3.5. Electro-Optical Systems ...................................16
           3.5.1. Regenerators .......................................16
           3.5.2. OEO Switches .......................................19
      3.6. Wavelength Converters .....................................19
           3.6.1. Wavelength Converter Pool Modeling .................21
      3.7. Characterizing Electro-Optical Network Elements ...........24
           3.7.1. Input Constraints ..................................25
           3.7.2. Output Constraints .................................25
           3.7.3. Processing Capabilities ............................26
   4. Routing and Wavelength Assignment and the Control Plane ........26
      4.1. Architectural Approaches to RWA ...........................27
           4.1.1. Combined RWA (R&WA) ................................27
           4.1.2. Separated R and WA (R+WA) ..........................28
           4.1.3. Routing and Distributed WA (R+DWA) .................28
      4.2. Conveying Information Needed by RWA .......................29
        
   5. Modeling Examples and Control Plane Use Cases ..................30
      5.1. Network Modeling for GMPLS/PCE Control ....................30
           5.1.1. Describing the WSON Nodes ..........................31
           5.1.2. Describing the Links ...............................34
      5.2. RWA Path Computation and Establishment ....................34
      5.3. Resource Optimization .....................................36
      5.4. Support for Rerouting .....................................36
      5.5. Electro-Optical Networking Scenarios ......................36
           5.5.1. Fixed Regeneration Points ..........................37
           5.5.2. Shared Regeneration Pools ..........................37
           5.5.3. Reconfigurable Regenerators ........................37
           5.5.4. Relation to Translucent Networks ...................38
   6. GMPLS and PCE Implications .....................................38
      6.1. Implications for GMPLS Signaling ..........................39
           6.1.1. Identifying Wavelengths and Signals ................39
           6.1.2. WSON Signals and Network Element Processing ........39
           6.1.3. Combined RWA/Separate Routing WA support ...........40
           6.1.4. Distributed Wavelength Assignment:
                  Unidirectional, No Converters ......................40
           6.1.5. Distributed Wavelength Assignment:
                  Unidirectional, Limited Converters .................40
           6.1.6. Distributed Wavelength Assignment:
                  Bidirectional, No Converters .......................40
      6.2. Implications for GMPLS Routing ............................41
           6.2.1. Electro-Optical Element Signal Compatibility .......41
           6.2.2. Wavelength-Specific Availability Information .......42
           6.2.3. WSON Routing Information Summary ...................43
      6.3. Optical Path Computation and Implications for PCE .........44
           6.3.1. Optical Path Constraints and Characteristics .......44
           6.3.2. Electro-Optical Element Signal Compatibility .......45
           6.3.3. Discovery of RWA-Capable PCEs ......................45
   7. Security Considerations ........................................46
   8. Acknowledgments ................................................46
   9. References .....................................................46
      9.1. Normative References ......................................46
      9.2. Informative References ....................................47
        
   5. Modeling Examples and Control Plane Use Cases ..................30
      5.1. Network Modeling for GMPLS/PCE Control ....................30
           5.1.1. Describing the WSON Nodes ..........................31
           5.1.2. Describing the Links ...............................34
      5.2. RWA Path Computation and Establishment ....................34
      5.3. Resource Optimization .....................................36
      5.4. Support for Rerouting .....................................36
      5.5. Electro-Optical Networking Scenarios ......................36
           5.5.1. Fixed Regeneration Points ..........................37
           5.5.2. Shared Regeneration Pools ..........................37
           5.5.3. Reconfigurable Regenerators ........................37
           5.5.4. Relation to Translucent Networks ...................38
   6. GMPLS and PCE Implications .....................................38
      6.1. Implications for GMPLS Signaling ..........................39
           6.1.1. Identifying Wavelengths and Signals ................39
           6.1.2. WSON Signals and Network Element Processing ........39
           6.1.3. Combined RWA/Separate Routing WA support ...........40
           6.1.4. Distributed Wavelength Assignment:
                  Unidirectional, No Converters ......................40
           6.1.5. Distributed Wavelength Assignment:
                  Unidirectional, Limited Converters .................40
           6.1.6. Distributed Wavelength Assignment:
                  Bidirectional, No Converters .......................40
      6.2. Implications for GMPLS Routing ............................41
           6.2.1. Electro-Optical Element Signal Compatibility .......41
           6.2.2. Wavelength-Specific Availability Information .......42
           6.2.3. WSON Routing Information Summary ...................43
      6.3. Optical Path Computation and Implications for PCE .........44
           6.3.1. Optical Path Constraints and Characteristics .......44
           6.3.2. Electro-Optical Element Signal Compatibility .......45
           6.3.3. Discovery of RWA-Capable PCEs ......................45
   7. Security Considerations ........................................46
   8. Acknowledgments ................................................46
   9. References .....................................................46
      9.1. Normative References ......................................46
      9.2. Informative References ....................................47
        
1. Introduction
1. 介绍

Wavelength Switched Optical Networks (WSONs) are constructed from subsystems that include Wavelength Division Multiplexing (WDM) links, tunable transmitters and receivers, Reconfigurable Optical Add/Drop Multiplexers (ROADMs), wavelength converters, and electro-optical network elements. A WSON is a WDM-based optical network in which switching is performed selectively based on the center wavelength of an optical signal.

波长交换光网络(WSON)由包括波分复用(WDM)链路、可调谐发射机和接收机、可重构光分插复用器(ROADM)、波长转换器和电光网络元件的子系统构成。WSON是基于WDM的光网络,其中根据光信号的中心波长选择性地执行切换。

WSONs can differ from other types of GMPLS networks in that many types of WSON nodes are highly asymmetric with respect to their switching capabilities, compatibility of signal types and network elements may need to be considered, and label assignment can be non-local. In order to provision an optical connection (an optical path) through a WSON certain wavelength continuity and resource availability constraints must be met to determine viable and optimal paths through the WSON. The determination of paths is known as Routing and Wavelength Assignment (RWA).

无线传感器网络可以不同于其他类型的GMPLS网络,因为许多类型的无线传感器网络节点在其交换能力方面高度不对称,可能需要考虑信号类型和网络元素的兼容性,并且标签分配可以是非本地的。为了通过WSON提供光连接(光路径),必须满足某些波长连续性和资源可用性约束,以确定通过WSON的可行和最佳路径。路径的确定称为路由和波长分配(RWA)。

Generalized Multi-Protocol Label Switching (GMPLS) [RFC3945] includes an architecture and a set of control plane protocols that can be used to operate data networks ranging from packet-switch-capable networks, through those networks that use Time Division Multiplexing, to WDM networks. The Path Computation Element (PCE) architecture [RFC4655] defines functional components that can be used to compute and suggest appropriate paths in connection-oriented traffic-engineered networks.

通用多协议标签交换(GMPLS)[RFC3945]包括一个体系结构和一组控制平面协议,可用于操作数据网络,从支持分组交换的网络,到使用时分复用的网络,再到WDM网络。路径计算元素(PCE)体系结构[RFC4655]定义了可用于在面向连接的流量工程网络中计算和建议适当路径的功能组件。

This document provides a framework for applying the GMPLS architecture and protocols [RFC3945] and the PCE architecture [RFC4655] to the control and operation of WSONs. To aid in this process, this document also provides an overview of the subsystems and processes that comprise WSONs and describes RWA so that the information requirements, both static and dynamic, can be identified to explain how the information can be modeled for use by GMPLS and PCE systems. This work will facilitate the development of protocol solution models and protocol extensions within the GMPLS and PCE protocol families.

本文件提供了将GMPLS体系结构和协议[RFC3945]和PCE体系结构[RFC4655]应用于无线传感器网络控制和操作的框架。为了帮助这一过程,本文件还概述了组成WSON的子系统和过程,并描述了RWA,以便识别静态和动态信息需求,以解释如何对信息进行建模,以供GMPLS和PCE系统使用。这项工作将有助于在GMPLS和PCE协议系列中开发协议解决方案模型和协议扩展。

Different WSONs such as access, metro, and long haul may apply different techniques for dealing with optical impairments; hence, this document does not address optical impairments in any depth. Note that this document focuses on the generic properties of links, switches, and path selection constraints that occur in many types of WSONs. See [WSON-Imp] for more information on optical impairments and GMPLS.

不同的无线传感器网络(如接入、城域和长途)可能采用不同的技术来处理光学损伤;因此,本文件不涉及任何深度的光学损伤。请注意,本文档重点介绍在许多类型的无线传感器网络中出现的链路、交换机和路径选择约束的一般属性。有关光学损伤和GMPLS的更多信息,请参见[WSON Imp]。

2. Terminology
2. 术语

Add/Drop Multiplexer (ADM): An optical device used in WDM networks and composed of one or more line side ports and typically many tributary ports.

分插复用器(ADM):WDM网络中使用的一种光学设备,由一个或多个线路侧端口和多个支路端口组成。

CWDM: Coarse Wavelength Division Multiplexing.

CWDM:粗波分复用。

DWDM: Dense Wavelength Division Multiplexing.

密集波分复用。

Degree: The degree of an optical device (e.g., ROADM) is given by a count of its line side ports.

度:光学设备(如ROADM)的度由其线路侧端口的计数给出。

Drop and continue: A simple multicast feature of some ADMs where a selected wavelength can be switched out of both a tributary (drop) port and a line side port.

丢弃并继续:一些ADM的一个简单多播功能,其中选定的波长可以从支路(丢弃)端口和线路侧端口切换出去。

FOADM: Fixed Optical Add/Drop Multiplexer.

FOADM:固定光分插复用器。

GMPLS: Generalized Multi-Protocol Label Switching.

GMPLS:广义多协议标签交换。

Line side: In a WDM system, line side ports and links can typically carry the full multiplex of wavelength signals, as compared to tributary (add or drop) ports that typically carry a few (usually one) wavelength signals.

线路侧:在WDM系统中,线路侧端口和链路通常可以承载波长信号的完全多路复用,而支路(添加或删除)端口通常承载几个(通常是一个)波长信号。

OXC: Optical Cross-Connect. An optical switching element in which a signal on any input port can reach any output port.

OXC:光交叉连接。一种光交换元件,其中任何输入端口上的信号都可以到达任何输出端口。

PCC: Path Computation Client. Any client application requesting a path computation to be performed by the Path Computation Element.

路径计算客户端。请求由路径计算元素执行的路径计算的任何客户端应用程序。

PCE: Path Computation Element. An entity (component, application, or network node) that is capable of computing a network path or route based on a network graph and application of computational constraints.

PCE:路径计算元素。能够基于网络图和计算约束的应用计算网络路径或路由的实体(组件、应用程序或网络节点)。

PCEP: PCE Communication Protocol. The communication protocol between a Path Computation Client and Path Computation Element.

PCEP:PCE通信协议。路径计算客户端和路径计算元素之间的通信协议。

ROADM: Reconfigurable Optical Add/Drop Multiplexer. A wavelength-selective switching element featuring input and output line side ports as well as add/drop tributary ports.

ROADM:可重构光分插复用器。一种波长选择开关元件,具有输入和输出线路侧端口以及添加/删除支路端口。

RWA: Routing and Wavelength Assignment.

RWA:路由和波长分配。

Transparent Network: A Wavelength Switched Optical Network that does not contain regenerators or wavelength converters.

透明网络:不包含再生器或波长转换器的波长交换光网络。

Translucent Network: A Wavelength Switched Optical Network that is predominantly transparent but may also contain limited numbers of regenerators and/or wavelength converters.

半透明网络:一种波长交换光网络,主要是透明的,但也可能包含有限数量的再生器和/或波长转换器。

Tributary: A link or port on a WDM system that can carry significantly less than the full multiplex of wavelength signals found on the line side links/ports. Typical tributary ports are the add and drop ports on an ADM, and these support only a single wavelength channel.

支路:WDM系统上的链路或端口,其传输的波长信号远小于线路侧链路/端口上的波长信号的完全多路复用。典型的分支端口是ADM上的添加和删除端口,这些端口仅支持单个波长通道。

Wavelength Conversion/Converters: The process of converting an information-bearing optical signal centered at a given wavelength to one with "equivalent" content centered at a different wavelength. Wavelength conversion can be implemented via an optical-electronic-optical (OEO) process or via a strictly optical process.

波长转换/转换器:将以给定波长为中心的信息承载光信号转换为以不同波长为中心的“等效”内容的过程。波长转换可以通过光电光学(OEO)工艺或严格的光学工艺实现。

WDM: Wavelength Division Multiplexing.

波分复用:波分复用。

Wavelength Switched Optical Networks (WSONs): WDM-based optical networks in which switching is performed selectively based on the center wavelength of an optical signal.

波长交换光网络(WSON):基于WDM的光网络,其中根据光信号的中心波长选择性地执行交换。

3. Wavelength Switched Optical Networks
3. 波长交换光网络

WSONs range in size from continent-spanning long-haul networks, to metropolitan networks, to residential access networks. In all these cases, the main concern is those properties that constrain the choice of wavelengths that can be used, i.e., restrict the wavelength Label Set, impact the path selection process, and limit the topological connectivity. In addition, if electro-optical network elements are used in the WSON, additional compatibility constraints may be imposed by the network elements on various optical signal parameters. The subsequent sections review and model some of the major subsystems of a WSON with an emphasis on those aspects that are of relevance to the control plane. In particular, WDM links, optical transmitters, ROADMs, and wavelength converters are examined.

无线传感器网络的规模从横跨大陆的长途网络,到大都市网络,再到住宅接入网络。在所有这些情况下,主要关注的是那些限制可使用波长选择的属性,即限制波长标签集、影响路径选择过程和限制拓扑连接性。此外,如果在WSON中使用电光网络元件,则网络元件可对各种光信号参数施加额外的兼容性约束。随后的章节将对WSON的一些主要子系统进行回顾和建模,重点放在与控制平面相关的方面。特别是,对WDM链路、光发射机、ROADM和波长转换器进行了检查。

3.1. WDM and CWDM Links
3.1. WDM和CWDM链路

WDM and CWDM links run over optical fibers, and optical fibers come in a wide range of types that tend to be optimized for various applications. Examples include access networks, metro, long haul, and submarine links. International Telecommunication Union - Telecommunication Standardization Sector (ITU-T) standards exist for various types of fibers. Although fiber can be categorized into Single-Mode Fibers (SMFs) and Multi-Mode Fibers (MMFs), the latter are typically used for short-reach campus and premise applications. SMFs are used for longer-reach applications and are therefore the

波分复用(WDM)和连续波分复用(CWDM)链路在光纤上运行,光纤有多种类型,往往针对各种应用进行优化。示例包括接入网络、地铁、长途和海底链路。国际电信联盟-电信标准化部门(ITU-T)标准适用于各种类型的光纤。虽然光纤可分为单模光纤(SMF)和多模光纤(MMF),但后者通常用于短距离校园和楼宇应用。SMF用于更长距离的应用,因此是

primary concern of this document. The following SMF types are typically encountered in optical networks:

本文件的主要关注点。光网络中通常会遇到以下SMF类型:

      ITU-T Standard |  Common Name
      ------------------------------------------------------------
      G.652 [G.652]  |  Standard SMF                              |
      G.653 [G.653]  |  Dispersion shifted SMF                    |
      G.654 [G.654]  |  Cut-off shifted SMF                       |
      G.655 [G.655]  |  Non-zero dispersion shifted SMF           |
      G.656 [G.656]  |  Wideband non-zero dispersion shifted SMF  |
      ------------------------------------------------------------
        
      ITU-T Standard |  Common Name
      ------------------------------------------------------------
      G.652 [G.652]  |  Standard SMF                              |
      G.653 [G.653]  |  Dispersion shifted SMF                    |
      G.654 [G.654]  |  Cut-off shifted SMF                       |
      G.655 [G.655]  |  Non-zero dispersion shifted SMF           |
      G.656 [G.656]  |  Wideband non-zero dispersion shifted SMF  |
      ------------------------------------------------------------
        

Typically, WDM links operate in one or more of the approximately defined optical bands [G.Sup39]:

通常,WDM链路在一个或多个近似定义的光带[G.Sup39]中工作:

Band Range (nm) Common Name Raw Bandwidth (THz) O-band 1260-1360 Original 17.5 E-band 1360-1460 Extended 15.1 S-band 1460-1530 Short 9.4 C-band 1530-1565 Conventional 4.4 L-band 1565-1625 Long 7.1 U-band 1625-1675 Ultra-long 5.5

波段范围(nm)通用名称原始带宽(THz)O波段1260-1360原始17.5 E波段1360-1460扩展15.1 S波段1460-1530短9.4 C波段1530-1565常规4.4 L波段1565-1625长7.1 U波段1625-1675超长5.5

Not all of a band may be usable; for example, in many fibers that support E-band, there is significant attenuation due to a water absorption peak at 1383 nm. Hence, a discontinuous acceptable wavelength range for a particular link may be needed and is modeled. Also, some systems will utilize more than one band. This is particularly true for CWDM systems.

并非所有频带都可用;例如,在许多支持E波段的光纤中,由于1383 nm处的吸水峰,存在显著的衰减。因此,可能需要特定链路的不连续可接受波长范围,并对其进行建模。此外,一些系统将使用多个频带。对于CWDM系统尤其如此。

Current technology subdivides the bandwidth capacity of fibers into distinct channels based on either wavelength or frequency. There are two standards covering wavelengths and channel spacing. ITU-T Recommendation G.694.1, "Spectral grids for WDM applications: DWDM frequency grid" [G.694.1], describes a DWDM grid defined in terms of frequency grids of 12.5 GHz, 25 GHz, 50 GHz, 100 GHz, and other multiples of 100 GHz around a 193.1 THz center frequency. At the narrowest channel spacing, this provides less than 4800 channels across the O through U bands. ITU-T Recommendation G.694.2, "Spectral grids for WDM applications: CWDM wavelength grid" [G.694.2], describes a CWDM grid defined in terms of wavelength increments of 20 nm running from 1271 nm to 1611 nm for 18 or so channels. The number of channels is significantly smaller than the 32-bit GMPLS Label space defined for GMPLS (see [RFC3471]). A label representation for these ITU-T grids is given in [RFC6205] and provides a common label format to be used in signaling optical paths.

当前技术根据波长或频率将光纤的带宽容量细分为不同的信道。有两个标准涵盖波长和通道间距。ITU-T建议G.694.1,“WDM应用的频谱网格:DWDM频率网格”[G.694.1],描述了定义为12.5 GHz、25 GHz、50 GHz、100 GHz频率网格以及围绕193.1太赫兹中心频率的其他100 GHz倍数的DWDM网格。在最窄的通道间距下,在O到U波段上提供的通道少于4800个。ITU-T建议G.694.2,“WDM应用的光谱网格:CWDM波长网格”[G.694.2]描述了一种CWDM网格,其定义为18个左右信道的波长增量为20 nm,从1271 nm到1611 nm。通道数量明显小于为GMPLS定义的32位GMPLS标签空间(参见[RFC3471])。[RFC6205]中给出了这些ITU-T网格的标签表示,并提供了用于光路信令的通用标签格式。

Further, these ITU-T grid-based labels can also be used to describe WDM links, ROADM ports, and wavelength converters for the purposes of path selection.

此外,这些基于ITU-T网格的标签还可用于描述WDM链路、ROADM端口和波长转换器,以便进行路径选择。

Many WDM links are designed to take advantage of particular fiber characteristics or to try to avoid undesirable properties. For example, dispersion-shifted SMF [G.653] was originally designed for good long-distance performance in single-channel systems; however, putting WDM over this type of fiber requires significant system engineering and a fairly limited range of wavelengths. Hence, the following information is needed as parameters to perform basic, impairment-unaware modeling of a WDM link:

许多WDM链路的设计都是为了利用特定的光纤特性或尽量避免不必要的特性。例如,色散位移SMF[G.653]最初设计用于单信道系统中的良好远距离性能;然而,将波分复用(WDM)应用于这种光纤需要大量的系统工程和相当有限的波长范围。因此,需要以下信息作为参数来执行WDM链路的基本建模:

o Wavelength range(s): Given a mapping between labels and the ITU-T grids, each range could be expressed in terms of a tuple, (lambda1, lambda2) or (freq1, freq2), where the lambdas or frequencies can be represented by 32-bit integers.

o 波长范围:给定标签和ITU-T网格之间的映射,每个范围可以用元组(lambda1,lambda2)或(freq1,freq2)表示,其中lambda或频率可以用32位整数表示。

o Channel spacing: Currently, there are five channel spacings used in DWDM systems and a single channel spacing defined for CWDM systems.

o 信道间隔:目前,DWDM系统中使用了五个信道间隔,CWDM系统定义了一个信道间隔。

For a particular link, this information is relatively static, as changes to these properties generally require hardware upgrades. Such information may be used locally during wavelength assignment via signaling, similar to label restrictions in MPLS, or used by a PCE in providing combined RWA.

对于特定链接,此信息相对静态,因为对这些属性的更改通常需要硬件升级。类似于MPLS中的标签限制,此类信息可在经由信令的波长分配期间本地使用,或由PCE用于提供组合RWA。

3.2. Optical Transmitters and Receivers
3.2. 光发射机和接收机

WDM optical systems make use of optical transmitters and receivers utilizing different wavelengths (frequencies). Some transmitters are manufactured for a specific wavelength of operation; that is, the manufactured frequency cannot be changed. First introduced to reduce inventory costs, tunable optical transmitters and receivers are deployed in some systems and allow flexibility in the wavelength used for optical transmission/reception. Such tunable optics aid in path selection.

WDM光学系统利用不同波长(频率)的光发射机和接收机。有些发射机是为特定的工作波长而制造的;也就是说,制造的频率不能改变。首先引入可调谐光发射机和接收机是为了降低库存成本,在一些系统中部署了可调谐光发射机和接收机,并允许用于光传输/接收的波长具有灵活性。这种可调谐光学器件有助于路径选择。

Fundamental modeling parameters for optical transmitters and receivers from the control plane perspective are:

从控制平面角度来看,光发射机和接收机的基本建模参数为:

o Tunable: Do the transmitters and receivers operate at variable or fixed wavelength?

o 可调谐:发射机和接收机是在可变波长还是固定波长下工作?

o Tuning range: This is the frequency or wavelength range over which the optics can be tuned. With the fixed mapping of labels to lambdas as proposed in [RFC6205], this can be expressed as a

o 调谐范围:这是光学元件可调谐的频率或波长范围。根据[RFC6205]中提出的标签到lambda的固定映射,这可以表示为

tuple, (lambda1, lambda2) or (freq1, freq2), where lambda1 and lambda2 or freq1 and freq2 are the labels representing the lower and upper bounds in wavelength.

元组,(lambda1,lambda2)或(freq1,freq2),其中lambda1和lambda2或freq1和freq2是表示波长上下限的标签。

o Tuning time: Tuning times highly depend on the technology used. Thermal-drift-based tuning may take seconds to stabilize, whilst electronic tuning might provide sub-ms tuning times. Depending on the application, this might be critical. For example, thermal drift might not be usable for fast protection applications.

o 调整时间:调整时间在很大程度上取决于所使用的技术。基于热漂移的调谐可能需要几秒钟才能稳定,而电子调谐可能提供亚毫秒的调谐时间。根据应用程序的不同,这可能很关键。例如,热漂移可能不适用于快速保护应用。

o Spectral characteristics and stability: The spectral shape of a laser's emissions and its frequency stability put limits on various properties of the overall WDM system. One constraint that is relatively easy to characterize is the closest channel spacing with which the transmitter can be used.

o 光谱特性和稳定性:激光发射的光谱形状及其频率稳定性限制了整个WDM系统的各种特性。一个相对容易描述的约束是发射机可使用的最近信道间隔。

Note that ITU-T recommendations specify many aspects of an optical transmitter. Many of these parameters, such as spectral characteristics and stability, are used in the design of WDM subsystems consisting of transmitters, WDM links, and receivers. However, they do not furnish additional information that will influence the Label Switched Path (LSP) provisioning in a properly designed system.

请注意,ITU-T建议规定了光发射机的许多方面。其中许多参数(如频谱特性和稳定性)用于由发射机、WDM链路和接收机组成的WDM子系统的设计。但是,它们不提供会影响正确设计的系统中标签交换路径(LSP)供应的附加信息。

Also, note that optical components can degrade and fail over time. This presents the possibility of the failure of an LSP (optical path) without either a node or link failure. Hence, additional mechanisms may be necessary to detect and differentiate this failure from the others; for example, one does not want to initiate mesh restoration if the source transmitter has failed since the optical transmitter will still be failed on the alternate optical path.

另外,请注意,光学元件可能会随着时间的推移而退化和故障。这表示在没有节点或链路故障的情况下,LSP(光路径)发生故障的可能性。因此,可能需要额外的机制来检测和区分该故障与其他故障;例如,如果源发射器发生故障,则不希望启动网格恢复,因为光发射器仍将在备用光路径上发生故障。

3.3. Optical Signals in WSONs
3.3. 无线传感器网络中的光信号

The fundamental unit of switching in WSONs is intuitively that of a "wavelength". The transmitters and receivers in these networks will deal with one wavelength at a time, while the switching systems themselves can deal with multiple wavelengths at a time. Hence, multi-channel DWDM networks with single-channel interfaces are the prime focus of this document as opposed to multi-channel interfaces. Interfaces of this type are defined in ITU-T Recommendations [G.698.1] and [G.698.2]. Key non-impairment-related parameters defined in [G.698.1] and [G.698.2] are:

在无线传感器网络中,开关的基本单位直观上是“波长”。这些网络中的发射机和接收机一次处理一个波长,而交换系统本身一次可以处理多个波长。因此,与多通道接口相比,具有单通道接口的多通道DWDM网络是本文档的主要重点。ITU-T建议[G.698.1]和[G.698.2]中定义了此类接口。[G.698.1]和[G.698.2]中定义的关键非减值相关参数为:

(a) Minimum channel spacing (GHz)

(a) 最小信道间隔(GHz)

(b) Minimum and maximum central frequency

(b) 最小和最大中心频率

(c) Bitrate/Line coding (modulation) of optical tributary signals

(c) 光支路信号的比特率/行编码(调制)

For the purposes of modeling the WSON in the control plane, (a) and (b) are considered properties of the link and restrictions on the GMPLS Labels while (c) is a property of the "signal".

为了在控制平面中对WSON进行建模,(a)和(b)被视为链路的属性和GMPLS标签的限制,而(c)是“信号”的属性。

3.3.1. Optical Tributary Signals
3.3.1. 光支路信号

The optical interface specifications [G.698.1], [G.698.2], and [G.959.1] all use the concept of an optical tributary signal, which is defined as "a single channel signal that is placed within an optical channel for transport across the optical network". Note the use of the qualifier "tributary" to indicate that this is a single-channel entity and not a multi-channel optical signal.

光接口规范[G.698.1]、[G.698.2]和[G.959.1]都使用了光支路信号的概念,它被定义为“放置在光信道内用于通过光网络传输的单信道信号”。请注意,使用限定符“支路”表示这是一个单通道实体,而不是多通道光信号。

There are currently a number of different types of optical tributary signals, which are known as "optical tributary signal classes". These are currently characterized by a modulation format and bitrate range [G.959.1]:

目前有许多不同类型的光支路信号,称为“光支路信号类别”。它们目前的特点是调制格式和比特率范围[G.959.1]:

(a) Optical tributary signal class Non-Return-to-Zero (NRZ) 1.25G

(a) 光学支路信号等级不归零(NRZ)1.25G

(b) Optical tributary signal class NRZ 2.5G

(b) 光支路信号等级NRZ 2.5G

(c) Optical tributary signal class NRZ 10G

(c) 光支路信号等级NRZ 10G

(d) Optical tributary signal class NRZ 40G

(d) 光支路信号等级NRZ 40G

(e) Optical tributary signal class Return-to-Zero (RZ) 40G

(e) 光支路信号等级归零(RZ)40G

Note that, with advances in technology, more optical tributary signal classes may be added and that this is currently an active area for development and standardization. In particular, at the 40G rate, there are a number of non-standardized advanced modulation formats that have seen significant deployment, including Differential Phase Shift Keying (DPSK) and Phase Shaped Binary Transmission (PSBT).

请注意,随着技术的进步,可能会增加更多的光支路信号类别,这是目前发展和标准化的一个活跃领域。特别是,在40G速率下,有许多非标准化的高级调制格式已经得到了大量部署,包括差分相移键控(DPSK)和相位成形二进制传输(PSBT)。

According to [G.698.2], it is important to fully specify the bitrate of the optical tributary signal. Hence, modulation format (optical tributary signal class) and bitrate are key parameters in characterizing the optical tributary signal.

根据[G.698.2],完全指定光支路信号的比特率非常重要。因此,调制格式(光支路信号类别)和比特率是表征光支路信号的关键参数。

3.3.2. WSON Signal Characteristics
3.3.2. 无线传感器网络信号特性

The optical tributary signal referenced in ITU-T Recommendations [G.698.1] and [G.698.2] is referred to as the "signal" in this document. This corresponds to the "lambda" LSP in GMPLS. For signal

ITU-T建议[G.698.1]和[G.698.2]中引用的光支路信号在本文件中称为“信号”。这对应于GMPLS中的“λ”LSP。信号机

compatibility purposes with electro-optical network elements, the following signal characteristics are considered:

为了与电光网络元件兼容,应考虑以下信号特性:

1. Optical tributary signal class (modulation format)

1. 光支路信号等级(调制格式)

2. Forward Error Correction (FEC): whether forward error correction is used in the digital stream and what type of error correcting code is used

2. 前向纠错(FEC):数字流中是否使用前向纠错以及使用何种类型的纠错码

3. Center frequency (wavelength)

3. 中心频率(波长)

4. Bitrate

4. 比特率

5. General Protocol Identifier (G-PID) for the information format

5. 信息格式的通用协议标识符(G-PID)

The first three items on this list can change as a WSON signal traverses the optical network with elements that include regenerators, OEO switches, or wavelength converters.

当WSON信号通过包含再生器、OEO开关或波长转换器的元件的光网络时,此列表中的前三项可能会发生变化。

Bitrate and G-PID would not change since they describe the encoded bitstream. A set of G-PID values is already defined for lambda switching in [RFC3471] and [RFC4328].

比特率和G-PID不会改变,因为它们描述编码的比特流。已经为[RFC3471]和[RFC4328]中的lambda切换定义了一组G-PID值。

Note that a number of non-standard or proprietary modulation formats and FEC codes are commonly used in WSONs. For some digital bitstreams, the presence of FEC can be detected; for example, in [G.707], this is indicated in the signal itself via the FEC Status Indication (FSI) byte while in [G.709], this can be inferred from whether or not the FEC field of the Optical Channel Transport Unit-k (OTUk) is all zeros.

请注意,WSON中通常使用许多非标准或专有调制格式和FEC码。对于一些数字比特流,可以检测FEC的存在;例如,在[G.707]中,这是通过FEC状态指示(FSI)字节在信号本身中指示的,而在[G.709]中,这可以从光信道传输单元-k(OTUk)的FEC字段是否为全零推断出来。

3.4. ROADMs, OXCs, Splitters, Combiners, and FOADMs
3.4. ROADMs、OXCs、分路器、合路器和FOADMs

Definitions of various optical devices such as ROADMs, Optical Cross-Connects (OXCs), splitters, combiners, and Fixed Optical Add/Drop Multiplexers (FOADMs) and their parameters can be found in [G.671]. Only a subset of these relevant to the control plane and their non-impairment-related properties are considered in the following sections.

各种光学设备的定义,如ROADM、光学交叉连接(OXC)、分路器、合路器和固定光分插复用器(FOADMs)及其参数可在[G.671]中找到。以下章节仅考虑与控制平面及其非减值相关属性相关的部分。

3.4.1. Reconfigurable Optical Add/Drop Multiplexers and OXCs
3.4.1. 可重构光分插复用器和OXC

ROADMs are available in different forms and technologies. This is a key technology that allows wavelength-based optical switching. A classic degree-2 ROADM is shown in Figure 1.

ROADM有不同的形式和技术。这是允许基于波长的光交换的关键技术。图1显示了一个典型的二级ROADM。

       Line side input    +---------------------+  Line side output
                      --->|                     |--->
                          |                     |
                          |        ROADM        |
                          |                     |
                          |                     |
                          +---------------------+
                              | | | |  o o o o
                              | | | |  | | | |
                              O O O O  | | | |
      Tributary Side:   Drop (output)  Add (input)
        
       Line side input    +---------------------+  Line side output
                      --->|                     |--->
                          |                     |
                          |        ROADM        |
                          |                     |
                          |                     |
                          +---------------------+
                              | | | |  o o o o
                              | | | |  | | | |
                              O O O O  | | | |
      Tributary Side:   Drop (output)  Add (input)
        

Figure 1. Degree-2 Unidirectional ROADM

图1。二级单向道路

The key feature across all ROADM types is their highly asymmetric switching capability. In the ROADM of Figure 1, signals introduced via the add ports can only be sent on the line side output port and not on any of the drop ports. The term "degree" is used to refer to the number of line side ports (input and output) of a ROADM and does not include the number of "add" or "drop" ports. The add and drop ports are sometimes also called tributary ports. As the degree of the ROADM increases beyond two, it can have properties of both a switch (OXC) and a multiplexer; hence, it is necessary to know the switched connectivity offered by such a network element to effectively utilize it. A straightforward way to represent this is via a "switched connectivity" matrix A where Amn = 0 or 1, depending upon whether a wavelength on input port m can be connected to output port n [Imajuku]. For the ROADM shown in Figure 1, the switched connectivity matrix can be expressed as:

所有ROADM类型的关键特征是其高度不对称的切换能力。在图1的ROADM中,通过add端口引入的信号只能在线路侧输出端口上发送,而不能在任何drop端口上发送。术语“度”用于指ROADM的线路侧端口(输入和输出)的数量,不包括“添加”或“删除”端口的数量。添加和删除端口有时也称为分支端口。当ROADM的阶数增加到两个以上时,它可以同时具有开关(OXC)和多路复用器的特性;因此,有必要知道由这样的网络元件提供的交换连接性以有效地利用它。表示这一点的直接方法是通过“交换连接”矩阵A,其中Amn=0或1,这取决于输入端口m上的波长是否可以连接到输出端口n[Imajuku]。对于图1所示的RODM,交换连接矩阵可以表示为:

             Input    Output Port
             Port     #1 #2 #3 #4 #5
                      --------------
             #1:      1  1  1  1  1
             #2       1  0  0  0  0
       A =   #3       1  0  0  0  0
             #4       1  0  0  0  0
             #5       1  0  0  0  0
        
             Input    Output Port
             Port     #1 #2 #3 #4 #5
                      --------------
             #1:      1  1  1  1  1
             #2       1  0  0  0  0
       A =   #3       1  0  0  0  0
             #4       1  0  0  0  0
             #5       1  0  0  0  0
        

where input ports 2-5 are add ports, output ports 2-5 are drop ports, and input port #1 and output port #1 are the line side (WDM) ports.

其中输入端口2-5为添加端口,输出端口2-5为丢弃端口,输入端口1和输出端口1为线路侧(WDM)端口。

For ROADMs, this matrix will be very sparse, and for OXCs, the matrix will be very dense. Compact encodings and examples, including high-degree ROADMs/OXCs, are given in [Gen-Encode]. A degree-4 ROADM is shown in Figure 2.

对于ROADM,该矩阵将非常稀疏,而对于OXCs,该矩阵将非常密集。[Gen Encode]中给出了紧凑的编码和示例,包括高度ROADMs/OXCs。图2显示了4度ROADM。

                      +-----------------------+
   Line side-1    --->|                       |--->    Line side-2
   Input (I1)         |                       |        Output (E2)
   Line side-1    <---|                       |<---    Line side-2
   Output  (E1)       |                       |        Input (I2)
                      |         ROADM         |
   Line side-3    --->|                       |--->    Line side-4
   Input (I3)         |                       |        Output (E4)
   Line side-3    <---|                       |<---    Line side-4
   Output (E3)        |                       |        Input (I4)
                      |                       |
                      +-----------------------+
                      | O    | O    | O    | O
                      | |    | |    | |    | |
                      O |    O |    O |    O |
   Tributary Side:   E5 I5  E6 I6  E7 I7  E8 I8
        
                      +-----------------------+
   Line side-1    --->|                       |--->    Line side-2
   Input (I1)         |                       |        Output (E2)
   Line side-1    <---|                       |<---    Line side-2
   Output  (E1)       |                       |        Input (I2)
                      |         ROADM         |
   Line side-3    --->|                       |--->    Line side-4
   Input (I3)         |                       |        Output (E4)
   Line side-3    <---|                       |<---    Line side-4
   Output (E3)        |                       |        Input (I4)
                      |                       |
                      +-----------------------+
                      | O    | O    | O    | O
                      | |    | |    | |    | |
                      O |    O |    O |    O |
   Tributary Side:   E5 I5  E6 I6  E7 I7  E8 I8
        

Figure 2. Degree-4 Bidirectional ROADM

图2。四度双向道路

Note that this is a 4-degree example with one (potentially multi-channel) add/drop per line side port.

注意,这是一个4度示例,每个线路侧端口有一个(可能是多通道)添加/删除。

Note also that the connectivity constraints for typical ROADM designs are "bidirectional"; that is, if input port X can be connected to output port Y, typically input port Y can be connected to output port X, assuming the numbering is done in such a way that input X and output X correspond to the same line side direction or the same add/drop port. This makes the connectivity matrix symmetrical as shown below.

还应注意,典型ROADM设计的连通性约束为“双向”;也就是说,如果输入端口X可以连接到输出端口Y,通常输入端口Y可以连接到输出端口X,假设以这样的方式进行编号,即输入X和输出X对应于相同的线路侧方向或相同的添加/删除端口。这使得连接矩阵对称,如下所示。

       Input     Output Port
        Port     E1 E2 E3 E4 E5 E6 E7 E8
                 -----------------------
           I1    0  1  1  1  0  1  0  0
           I2    1  0  1  1  0  0  1  0
       A = I3    1  1  0  1  1  0  0  0
           I4    1  1  1  0  0  0  0  1
           I5    0  0  1  0  0  0  0  0
           I6    1  0  0  0  0  0  0  0
           I7    0  1  0  0  0  0  0  0
           I8    0  0  0  1  0  0  0  0
        
       Input     Output Port
        Port     E1 E2 E3 E4 E5 E6 E7 E8
                 -----------------------
           I1    0  1  1  1  0  1  0  0
           I2    1  0  1  1  0  0  1  0
       A = I3    1  1  0  1  1  0  0  0
           I4    1  1  1  0  0  0  0  1
           I5    0  0  1  0  0  0  0  0
           I6    1  0  0  0  0  0  0  0
           I7    0  1  0  0  0  0  0  0
           I8    0  0  0  1  0  0  0  0
        

where I5/E5 are add/drop ports to/from line side-3, I6/E6 are add/drop ports to/from line side-1, I7/E7 are add/drop ports to/from line side-2, and I8/E8 are add/drop ports to/from line side-4. Note that diagonal elements are zero since loopback is not supported in the example. If ports support loopback, diagonal elements would be set to one.

其中,I5/E5为线路侧3的添加/删除端口,I6/E6为线路侧1的添加/删除端口,I7/E7为线路侧2的添加/删除端口,I8/E8为线路侧4的添加/删除端口。请注意,对角线元素为零,因为该示例中不支持环回。如果端口支持环回,对角线元素将设置为1。

Additional constraints may also apply to the various ports in a ROADM/OXC. The following restrictions and terms may be used:

附加约束也可能适用于ROADM/OXC中的各个端口。可使用以下限制和条款:

o Colored port: an input or, more typically, an output (drop) port restricted to a single channel of fixed wavelength

o 彩色端口:一个输入端口,或者更典型地,一个输出(下降)端口,仅限于一个固定波长的通道

o Colorless port: an input or, more typically, an output (drop) port restricted to a single channel of arbitrary wavelength

o 无色端口:一个输入端口,或者更典型地,一个输出(drop)端口,限制为任意波长的单个通道

In general, a port on a ROADM could have any of the following wavelength restrictions:

通常,ROADM上的端口可能具有以下任何波长限制:

o Multiple wavelengths, full range port

o 多波长,全量程端口

o Single wavelength, full range port

o 单波长、全量程端口

o Single wavelength, fixed lambda port

o 单波长,固定lambda端口

o Multiple wavelengths, reduced range port (for example wave band switching)

o 多波长、缩小范围端口(例如波段切换)

To model these restrictions, it is necessary to have two pieces of information for each port: (a) the number of wavelengths and (b) the wavelength range and spacing. Note that this information is relatively static. More complicated wavelength constraints are modeled in [WSON-Info].

为了对这些限制进行建模,需要为每个端口提供两条信息:(a)波长数和(b)波长范围和间距。请注意,此信息是相对静态的。更复杂的波长约束在[WSON Info]中建模。

3.4.2. Splitters
3.4.2. 分离器

An optical splitter consists of a single input port and two or more output ports. The input optical signaled is essentially copied (with power loss) to all output ports.

分光器由一个输入端口和两个或多个输出端口组成。输入光信号基本上被复制到所有输出端口(有功率损耗)。

Using the modeling notions of Section 3.4.1, the input and output ports of a splitter would have the same wavelength restrictions. In addition, a splitter is modeled by a connectivity matrix Amn as follows:

使用第3.4.1节的建模概念,分离器的输入和输出端口将具有相同的波长限制。此外,拆分器由连接矩阵Amn建模,如下所示:

              Input    Output Port
              Port     #1 #2 #3 ...   #N
                       -----------------
        A =   #1       1  1  1  ...   1
        
              Input    Output Port
              Port     #1 #2 #3 ...   #N
                       -----------------
        A =   #1       1  1  1  ...   1
        

The difference from a simple ROADM is that this is not a switched connectivity matrix but the fixed connectivity matrix of the device.

与简单的ROADM不同的是,这不是一个交换连接矩阵,而是设备的固定连接矩阵。

3.4.3. Combiners
3.4.3. 组合器

An optical combiner is a device that combines the optical wavelengths carried by multiple input ports into a single multi-wavelength output port. The various ports may have different wavelength restrictions. It is generally the responsibility of those using the combiner to ensure that wavelength collision does not occur on the output port. The fixed connectivity matrix Amn for a combiner would look like:

光合路器是将多个输入端口携带的光波长组合成单个多波长输出端口的设备。不同端口可能具有不同的波长限制。使用组合器的人通常负责确保输出端口上不会发生波长冲突。组合器的固定连接矩阵Amn如下所示:

              Input    Output Port
              Port     #1
                       ---
              #1:      1
              #2       1
        A =   #3       1
              ...      1
              #N       1
        
              Input    Output Port
              Port     #1
                       ---
              #1:      1
              #2       1
        A =   #3       1
              ...      1
              #N       1
        
3.4.4. Fixed Optical Add/Drop Multiplexers
3.4.4. 固定光分插复用器

A Fixed Optical Add/Drop Multiplexer can alter the course of an input wavelength in a preset way. In particular, a given wavelength (or waveband) from a line side input port would be dropped to a fixed "tributary" output port. Depending on the device's construction, that same wavelength may or may not also be sent out the line side output port. This is commonly referred to as a "drop and continue" operation. Tributary input ports ("add" ports) whose signals are combined with each other and other line side signals may also exist.

固定光分插复用器可以以预设方式改变输入波长的过程。特别是,来自线路侧输入端口的给定波长(或波段)将下降到固定的“支路”输出端口。根据设备的结构,相同的波长也可以或不可以发送到线路侧输出端口。这通常被称为“删除并继续”操作。其信号相互组合的支路输入端口(“添加”端口)和其他线路侧信号也可能存在。

In general, to represent the routing properties of an FOADM, it is necessary to have both a fixed connectivity matrix Amn, as previously discussed, and the precise wavelength restrictions for all input and output ports. From the wavelength restrictions on the tributary output ports, the wavelengths that have been selected can be derived. From the wavelength restrictions on the tributary input ports, it can be seen which wavelengths have been added to the line side output port. Finally, from the added wavelength information and the line side output wavelength restrictions, it can be inferred which wavelengths have been continued.

一般来说,为了表示FOADM的路由属性,必须具有固定的连接矩阵Amn(如前所述),以及所有输入和输出端口的精确波长限制。根据支路输出端口上的波长限制,可以导出已选择的波长。从支路输入端口的波长限制可以看出哪些波长已添加到线路侧输出端口。最后,根据添加的波长信息和线路侧输出波长限制,可以推断哪些波长已连续。

To summarize, the modeling methodology introduced in Section 3.4.1, which consists of a connectivity matrix and port wavelength restrictions, can be used to describe a large set of fixed optical devices such as combiners, splitters, and FOADMs. Hybrid devices consisting of both switched and fixed parts are modeled in [WSON-Info].

总之,第3.4.1节中介绍的建模方法(包括连接矩阵和端口波长限制)可用于描述大量固定光学设备,如组合器、分路器和FOADM。由开关和固定部件组成的混合设备在[WSON Info]中建模。

3.5. Electro-Optical Systems
3.5. 光电系统

This section describes how Electro-Optical Systems (e.g., OEO switches, wavelength converters, and regenerators) interact with the WSON signal characteristics listed in Section 3.3.2. OEO switches, wavelength converters, and regenerators all share a similar property: they can be more or less "transparent" to an "optical signal" depending on their functionality and/or implementation. Regenerators have been fairly well characterized in this regard and hence their properties can be described first.

本节描述了电光系统(如OEO开关、波长转换器和再生器)如何与第3.3.2节中列出的WSON信号特性相互作用。OEO开关、波长转换器和再生器都具有相似的特性:它们对“光信号”或多或少“透明”,这取决于它们的功能和/或实现。再生器在这方面已经得到了相当好的表征,因此可以首先描述它们的特性。

3.5.1. Regenerators
3.5.1. 再生器

The various approaches to regeneration are discussed in ITU-T [G.872], Annex A. They map a number of functions into the so-called 1R, 2R, and 3R categories of regenerators as summarized in Table 1 below:

ITU-T[G.872]附录A中讨论了各种再生方法。它们将许多功能映射到所谓的1R、2R和3R类型的再生器中,如下表1所示:

Table 1. Regenerator Functionality Mapped to General Regenerator Classes from [G.872]

表1。从[G.872]映射到通用再生器类的再生器功能

   --------------------------------------------------------------------
   1R | Equal amplification of all frequencies within the amplification
      | bandwidth.  There is no restriction upon information formats.
      +----------------------------------------------------------------
      | Amplification with different gain for frequencies within the
      | amplification bandwidth.  This could be applied to both single-
      | channel and multi-channel systems.
      +----------------------------------------------------------------
      | Dispersion compensation (phase distortion).  This analogue
      | process can be applied in either single-channel or multi-
      | channel systems.
   --------------------------------------------------------------------
   2R | Any or all 1R functions.  Noise suppression.
      +----------------------------------------------------------------
      | Digital reshaping (Schmitt Trigger function) with no clock
      | recovery.  This is applicable to individual channels and can be
      | used for different bitrates but is not transparent to line
      | coding (modulation).
   --------------------------------------------------------------------
   3R | Any or all 1R and 2R functions.  Complete regeneration of the
      | pulse shape including clock recovery and retiming within
      | required jitter limits.
   --------------------------------------------------------------------
        
   --------------------------------------------------------------------
   1R | Equal amplification of all frequencies within the amplification
      | bandwidth.  There is no restriction upon information formats.
      +----------------------------------------------------------------
      | Amplification with different gain for frequencies within the
      | amplification bandwidth.  This could be applied to both single-
      | channel and multi-channel systems.
      +----------------------------------------------------------------
      | Dispersion compensation (phase distortion).  This analogue
      | process can be applied in either single-channel or multi-
      | channel systems.
   --------------------------------------------------------------------
   2R | Any or all 1R functions.  Noise suppression.
      +----------------------------------------------------------------
      | Digital reshaping (Schmitt Trigger function) with no clock
      | recovery.  This is applicable to individual channels and can be
      | used for different bitrates but is not transparent to line
      | coding (modulation).
   --------------------------------------------------------------------
   3R | Any or all 1R and 2R functions.  Complete regeneration of the
      | pulse shape including clock recovery and retiming within
      | required jitter limits.
   --------------------------------------------------------------------
        

This table shows that 1R regenerators are generally independent of signal modulation format (also known as line coding) but may work over a limited range of wavelengths/frequencies. 2R regenerators are

该表显示1R再生器通常独立于信号调制格式(也称为线路编码),但可能在有限的波长/频率范围内工作。2R再生器是

generally applicable to a single digital stream and are dependent upon modulation format (line coding) and, to a lesser extent, are limited to a range of bitrates (but not a specific bitrate). Finally, 3R regenerators apply to a single channel, are dependent upon the modulation format, and are generally sensitive to the bitrate of digital signal, i.e., either are designed to only handle a specific bitrate or need to be programmed to accept and regenerate a specific bitrate. In all these types of regenerators, the digital bitstream contained within the optical or electrical signal is not modified.

通常适用于单个数字流,并且依赖于调制格式(行编码),并且在较小程度上受限于比特率范围(但不是特定比特率)。最后,3R再生器适用于单个信道,取决于调制格式,并且通常对数字信号的比特率敏感,即,要么设计为仅处理特定比特率,要么需要编程以接受和重新生成特定比特率。在所有这些类型的再生器中,包含在光或电信号中的数字比特流不被修改。

It is common for regenerators to modify the digital bitstream for performance monitoring and fault management purposes. Synchronous Optical Networking (SONET), Synchronous Digital Hierarchy (SDH), and Interfaces for the Optical Transport Network [G.709] all have digital signal "envelopes" designed to be used between "regenerators" (in this case, 3R regenerators). In SONET, this is known as the "section" signal; in SDH, this is known as the "regenerator section" signal; and, in G.709, this is known as an OTUk. These signals reserve a portion of their frame structure (known as overhead) for use by regenerators. The nature of this overhead is summarized in Table 2 below.

再生器为了性能监视和故障管理的目的修改数字比特流是很常见的。同步光网络(SONET)、同步数字体系(SDH)和光传输网络接口[G.709]都有数字信号“信封”,设计用于“再生器”(在本例中为3R再生器)之间。在SONET中,这被称为“区段”信号;在SDH中,这被称为“再生器部分”信号;在G.709中,这被称为OTUk。这些信号保留其帧结构的一部分(称为开销)供再生器使用。下文表2总结了这一间接费用的性质。

Table 2. SONET, SDH, and G.709 Regenerator-Related Overhead

表2。SONET、SDH和G.709再生器相关开销

    +-----------------------------------------------------------------+
    |Function          |       SONET/SDH      |     G.709 OTUk        |
    |                  |       Regenerator    |                       |
    |                  |       Section        |                       |
    |------------------+----------------------+-----------------------|
    |Signal            |       J0 (section    |  Trail Trace          |
    |Identifier        |       trace)         |  Identifier (TTI)     |
    |------------------+----------------------+-----------------------|
    |Performance       |       BIP-8 (B1)     |  BIP-8 (within SM)    |
    |Monitoring        |                      |                       |
    |------------------+----------------------+-----------------------|
    |Management        |       D1-D3 bytes    |  GCC0 (general        |
    |Communications    |                      |  communications       |
    |                  |                      |  channel)             |
    |------------------+----------------------+-----------------------|
    |Fault Management  |       A1, A2 framing | FAS (frame alignment  |
    |                  |       bytes          | signal), BDI (backward|
    |                  |                      | defect indication),   |
    |                  |                      | BEI (backward error   |
    |                  |                      | indication)           |
    +------------------+----------------------+-----------------------|
    |Forward Error     |       P1,Q1 bytes    |  OTUk FEC             |
    |Correction (FEC)  |                      |                       |
    +-----------------------------------------------------------------+
        
    +-----------------------------------------------------------------+
    |Function          |       SONET/SDH      |     G.709 OTUk        |
    |                  |       Regenerator    |                       |
    |                  |       Section        |                       |
    |------------------+----------------------+-----------------------|
    |Signal            |       J0 (section    |  Trail Trace          |
    |Identifier        |       trace)         |  Identifier (TTI)     |
    |------------------+----------------------+-----------------------|
    |Performance       |       BIP-8 (B1)     |  BIP-8 (within SM)    |
    |Monitoring        |                      |                       |
    |------------------+----------------------+-----------------------|
    |Management        |       D1-D3 bytes    |  GCC0 (general        |
    |Communications    |                      |  communications       |
    |                  |                      |  channel)             |
    |------------------+----------------------+-----------------------|
    |Fault Management  |       A1, A2 framing | FAS (frame alignment  |
    |                  |       bytes          | signal), BDI (backward|
    |                  |                      | defect indication),   |
    |                  |                      | BEI (backward error   |
    |                  |                      | indication)           |
    +------------------+----------------------+-----------------------|
    |Forward Error     |       P1,Q1 bytes    |  OTUk FEC             |
    |Correction (FEC)  |                      |                       |
    +-----------------------------------------------------------------+
        

Table 2 shows that frame alignment, signal identification, and FEC are supported. By omission, Table 2 also shows that no switching or multiplexing occurs at this layer. This is a significant simplification for the control plane since control plane standards require a multi-layer approach when there are multiple switching layers but do not require the "layering" to provide the management functions shown in Table 2. That is, many existing technologies covered by GMPLS contain extra management-related layers that are essentially ignored by the control plane (though not by the management plane). Hence, the approach here is to include regenerators and other devices at the WSON layer unless they provide higher layer switching; then, a multi-layer or multi-region approach [RFC5212] is called for. However, this can result in regenerators having a dependence on the client signal type.

表2显示支持帧对齐、信号识别和FEC。通过省略,表2还显示在该层没有发生交换或多路复用。这是对控制平面的一个重大简化,因为当存在多个交换层时,控制平面标准需要多层方法,但不需要“分层”来提供表2中所示的管理功能。也就是说,GMPLS涵盖的许多现有技术包含额外的管理相关层,这些层基本上被控制平面(尽管不是管理平面)忽略。因此,这里的方法是在WSON层包括再生器和其他设备,除非它们提供更高层的交换;然后,需要多层或多区域方法[RFC5212]。然而,这可能导致再生器依赖于客户机信号类型。

Hence, depending upon the regenerator technology, the constraints listed in Table 3 may be imposed by a regenerator device:

因此,根据再生器技术,表3中列出的约束条件可能由再生器装置施加:

Table 3. Regenerator Compatibility Constraints

表3。再生器兼容性约束

     +--------------------------------------------------------+
     |      Constraints            |   1R   |   2R   |   3R   |
     +--------------------------------------------------------+
     | Limited Wavelength Range    |    x   |    x   |    x   |
     +--------------------------------------------------------+
     | Modulation Type Restriction |        |    x   |    x   |
     +--------------------------------------------------------+
     | Bitrate Range Restriction   |        |    x   |    x   |
     +--------------------------------------------------------+
     | Exact Bitrate Restriction   |        |        |    x   |
     +--------------------------------------------------------+
     | Client Signal Dependence    |        |        |    x   |
     +--------------------------------------------------------+
        
     +--------------------------------------------------------+
     |      Constraints            |   1R   |   2R   |   3R   |
     +--------------------------------------------------------+
     | Limited Wavelength Range    |    x   |    x   |    x   |
     +--------------------------------------------------------+
     | Modulation Type Restriction |        |    x   |    x   |
     +--------------------------------------------------------+
     | Bitrate Range Restriction   |        |    x   |    x   |
     +--------------------------------------------------------+
     | Exact Bitrate Restriction   |        |        |    x   |
     +--------------------------------------------------------+
     | Client Signal Dependence    |        |        |    x   |
     +--------------------------------------------------------+
        

Note that the limited wavelength range constraint can be modeled for GMPLS signaling with the Label Set defined in [RFC3471] and that the modulation type restriction constraint includes FEC.

注意,有限波长范围约束可以建模为具有[RFC3471]中定义的标签集的GMPLS信令,并且调制类型约束包括FEC。

3.5.2. OEO Switches
3.5.2. OEO开关

A common place where OEO processing may take place is within WSON switches that utilize (or contain) regenerators. This may be to convert the signal to an electronic form for switching then reconvert to an optical signal prior to output from the switch. Another common technique is to add regenerators to restore signal quality either before or after optical processing (switching). In the former case, the regeneration is applied to adapt the signal to the switch fabric regardless of whether or not it is needed from a signal-quality perspective.

OEO处理的一个常见位置是利用(或包含)再生器的WSON交换机内。这可以是将信号转换为用于开关的电子形式,然后在从开关输出之前再转换为光信号。另一种常见的技术是在光处理(交换)之前或之后添加再生器以恢复信号质量。在前一种情况下,应用再生以使信号适应交换机结构,而不管从信号质量角度看是否需要。

In either case, these optical switches have essentially the same compatibility constraints as those described for regenerators in Table 3.

在这两种情况下,这些光开关基本上具有与表3中再生器相同的兼容性约束。

3.6. Wavelength Converters
3.6. 波长转换器

Wavelength converters take an input optical signal at one wavelength and emit an equivalent content optical signal at another wavelength on output. There are multiple approaches to building wavelength converters. One approach is based on OEO conversion with fixed or tunable optics on output. This approach can be dependent upon the signal rate and format; that is, this is basically an electrical regenerator combined with a laser/receiver. Hence, this type of wavelength converter has signal-processing restrictions that are essentially the same as those described for regenerators in Table 3 of Section 3.5.1.

波长转换器接收一个波长的输入光信号,并在输出时发射另一个波长的等效内容光信号。构建波长转换器有多种方法。一种方法是基于输出端带有固定或可调谐光学元件的OEO转换。这种方法取决于信号速率和格式;也就是说,这基本上是一个电再生器与激光器/接收器相结合。因此,此类波长转换器的信号处理限制与第3.5.1节表3中所述的再生器的信号处理限制基本相同。

Another approach performs the wavelength conversion optically via non-linear optical effects, similar in spirit to the familiar frequency mixing used in radio frequency systems but significantly harder to implement. Such processes/effects may place limits on the range of achievable conversion. These may depend on the wavelength of the input signal and the properties of the converter as opposed to only the properties of the converter in the OEO case. Different WSON system designs may choose to utilize this component to varying degrees or not at all.

另一种方法通过非线性光学效应以光学方式执行波长转换,这在精神上类似于射频系统中使用的常见混频,但更难实现。这些过程/影响可能会限制可实现的转换范围。这些可能取决于输入信号的波长和转换器的特性,而不仅仅是OEO情况下转换器的特性。不同的WSON系统设计可能会选择在不同程度上使用该组件,也可能根本不使用。

Current or envisioned contexts for wavelength converters are:

波长转换器的当前或设想环境包括:

1. Wavelength conversion associated with OEO switches and fixed or tunable optics. In this case, there are typically multiple converters available since each use of an OEO switch can be thought of as a potential wavelength converter.

1. 与OEO开关和固定或可调谐光学元件相关的波长转换。在这种情况下,通常有多个转换器可用,因为OEO开关的每次使用都可以被认为是潜在的波长转换器。

2. Wavelength conversion associated with ROADMs/OXCs. In this case, there may be a limited pool of wavelength converters available. Conversion could be either all optical or via an OEO method.

2. 与ROADMs/OXCs相关的波长转换。在这种情况下,可用的波长转换器可能有限。转换可以是全光的,也可以通过OEO方法。

3. Wavelength conversion associated with fixed devices such as FOADMs. In this case, there may be a limited amount of conversion. Also, the conversion may be used as part of optical path routing.

3. 与固定设备(如FOADMs)相关的波长转换。在这种情况下,可能存在有限的转换量。此外,转换可以用作光路径路由的一部分。

Based on the above considerations, wavelength converters are modeled as follows:

基于上述考虑,波长转换器建模如下:

1. Wavelength converters can always be modeled as associated with network elements. This includes fixed wavelength routing elements.

1. 波长转换器始终可以建模为与网络元素关联。这包括固定波长路由元件。

2. A network element may have full wavelength conversion capability (i.e., any input port and wavelength) or a limited number of wavelengths and ports. On a box with a limited number of converters, there also may exist restrictions on which ports can reach the converters. Hence, regardless of where the converters actually are, they can be associated with input ports.

2. 网络元件可以具有全波长转换能力(即,任何输入端口和波长)或有限数量的波长和端口。在转换器数量有限的机箱上,也可能存在端口到达转换器的限制。因此,无论转换器实际位于何处,它们都可以与输入端口相关联。

3. Wavelength converters have range restrictions that are either independent or dependent upon the input wavelength.

3. 波长转换器具有独立于或依赖于输入波长的范围限制。

In WSONs where wavelength converters are sparse, an optical path may appear to loop or "backtrack" upon itself in order to reach a wavelength converter prior to continuing on to its destination. The lambda used on input to the wavelength converter would be different from the lambda coming back from the wavelength converter.

在波长转换器稀疏的无线传感器网络中,为了在继续到达其目的地之前到达波长转换器,光路可能会在自身上出现环路或“回溯”。波长转换器输入端使用的lambda与波长转换器返回的lambda不同。

A model for an individual OEO wavelength converter would consist of:

单个OEO波长转换器的模型包括:

o Input lambda or frequency range

o 输入λ或频率范围

o Output lambda or frequency range

o 输出λ或频率范围

3.6.1. Wavelength Converter Pool Modeling
3.6.1. 波长转换器池模型

A WSON node may include multiple wavelength converters. These are usually arranged into some type of pool to promote resource sharing. There are a number of different approaches used in the design of switches with converter pools. However, from the point of view of path computation, it is necessary to know the following:

WSON节点可以包括多个波长转换器。它们通常被安排在某种类型的池中,以促进资源共享。在设计带有转换器池的交换机时,有许多不同的方法。然而,从路径计算的角度来看,有必要了解以下内容:

1. The nodes that support wavelength conversion

1. 支持波长转换的节点

2. The accessibility and availability of a wavelength converter to convert from a given input wavelength on a particular input port to a desired output wavelength on a particular output port

2. 波长转换器的可访问性和可用性,用于将特定输入端口上的给定输入波长转换为特定输出端口上的期望输出波长

3. Limitations on the types of signals that can be converted and the conversions that can be performed

3. 对可转换信号类型和可执行转换的限制

To model point 2 above, a technique similar to that used to model ROADMs and optical switches can be used, i.e., matrices to indicate possible connectivity along with wavelength constraints for links/ports. Since wavelength converters are considered a scarce resource, it is desirable to include, at a minimum, the usage state of individual wavelength converters in the pool.

为了对上述第2点进行建模,可以使用与用于对ROADM和光交换机进行建模的技术类似的技术,即矩阵来指示链路/端口的可能连接性以及波长约束。由于波长转换器被视为稀缺资源,因此希望至少包括池中各个波长转换器的使用状态。

   A three stage model is used as shown schematically in Figure 3.  This
   model represents N input ports (fibers), P wavelength converters, and
   M output ports (fibers).  Since not all input ports can necessarily
   reach the converter pool, the model starts with a wavelength pool
   input matrix WI(i,p) = {0,1}, where input port i can potentially
   reach wavelength converter p.
        
   A three stage model is used as shown schematically in Figure 3.  This
   model represents N input ports (fibers), P wavelength converters, and
   M output ports (fibers).  Since not all input ports can necessarily
   reach the converter pool, the model starts with a wavelength pool
   input matrix WI(i,p) = {0,1}, where input port i can potentially
   reach wavelength converter p.
        

Since not all wavelengths can necessarily reach all the converters or the converters may have a limited input wavelength range, there is a set of input port constraints for each wavelength converter. Currently, it is assumed that a wavelength converter can only take a single wavelength on input. Each wavelength converter input port constraint can be modeled via a wavelength set mechanism.

由于并非所有波长都必须到达所有转换器,或者转换器可能具有有限的输入波长范围,因此每个波长转换器都有一组输入端口约束。目前,假定波长转换器只能在输入端接收单个波长。每个波长转换器输入端口约束可以通过波长设置机制建模。

   Next, there is a state vector WC(j) = {0,1} dependent upon whether
   wavelength converter j in the pool is in use.  This is the only state
   kept in the converter pool model.  This state is not necessary for
   modeling "fixed" transponder system, i.e., systems where there is no
        
   Next, there is a state vector WC(j) = {0,1} dependent upon whether
   wavelength converter j in the pool is in use.  This is the only state
   kept in the converter pool model.  This state is not necessary for
   modeling "fixed" transponder system, i.e., systems where there is no
        

sharing. In addition, this state information may be encoded in a much more compact form depending on the overall connectivity structure [Gen-Encode].

分享。此外,根据整体连接结构[Gen Encode],该状态信息可以以更紧凑的形式编码。

After that, a set of wavelength converter output wavelength constraints is used. These constraints indicate what wavelengths a particular wavelength converter can generate or are restricted to generating due to internal switch structure.

之后,使用一组波长转换器输出波长约束。这些约束表示特定波长转换器可以产生或由于内部开关结构而限制产生的波长。

   Finally, a wavelength pool output matrix WE(p,k) = {0,1} indicates
   whether the output from wavelength converter p can reach output port
   k.  Examples of this method being used to model wavelength converter
   pools for several switch architectures are given in [Gen-Encode].
        
   Finally, a wavelength pool output matrix WE(p,k) = {0,1} indicates
   whether the output from wavelength converter p can reach output port
   k.  Examples of this method being used to model wavelength converter
   pools for several switch architectures are given in [Gen-Encode].
        
      I1   +-------------+                       +-------------+ E1
     ----->|             |      +--------+       |             |----->
      I2   |             +------+ WC #1  +-------+             | E2
     ----->|             |      +--------+       |             |----->
           | Wavelength  |                       |  Wavelength |
           | Converter   |      +--------+       |  Converter  |
           | Pool        +------+ WC #2  +-------+  Pool       |
           |             |      +--------+       |             |
           | Input       |                       |  Output     |
           | Connection  |           .           |  Connection |
           | Matrix      |           .           |  Matrix     |
           |             |           .           |             |
           |             |                       |             |
      IN   |             |      +--------+       |             | EM
     ----->|             +------+ WC #P  +-------+             |----->
           |             |      +--------+       |             |
           +-------------+   ^               ^   +-------------+
                             |               |
                             |               |
                             |               |
                             |               |
        
      I1   +-------------+                       +-------------+ E1
     ----->|             |      +--------+       |             |----->
      I2   |             +------+ WC #1  +-------+             | E2
     ----->|             |      +--------+       |             |----->
           | Wavelength  |                       |  Wavelength |
           | Converter   |      +--------+       |  Converter  |
           | Pool        +------+ WC #2  +-------+  Pool       |
           |             |      +--------+       |             |
           | Input       |                       |  Output     |
           | Connection  |           .           |  Connection |
           | Matrix      |           .           |  Matrix     |
           |             |           .           |             |
           |             |                       |             |
      IN   |             |      +--------+       |             | EM
     ----->|             +------+ WC #P  +-------+             |----->
           |             |      +--------+       |             |
           +-------------+   ^               ^   +-------------+
                             |               |
                             |               |
                             |               |
                             |               |
        

Input wavelength Output wavelength constraints for constraints for each converter each converter

每个转换器的输入波长输出波长约束每个转换器的约束

Figure 3. Schematic Diagram of Wavelength Converter Pool Model

图3。波长转换器池模型示意图

Figure 4 shows a simple optical switch in a four-wavelength DWDM system sharing wavelength converters in a general shared "per-node" fashion.

图4显示了四波长DWDM系统中的一个简单光开关,该系统以一般共享的“每节点”方式共享波长转换器。

                 +-----------+ ___________                +------+
                 |           |--------------------------->|      |
                 |           |--------------------------->|  C   |
           /|    |           |--------------------------->|  o   | E1
     I1   /D+--->|           |--------------------------->|  m   |
         + e+--->|           |                            |  b   |====>
    ====>| M|    |  Optical  |    +-----------+  +----+   |  i   |
         + u+--->|   Switch  |    |  WC Pool  |  |O  S|-->|  n   |
          \x+--->|           |    |  +-----+  |  |p  w|-->|  e   |
           \|    |           +----+->|WC #1|--+->|t  i|   |  r   |
                 |           |    |  +-----+  |  |i  t|   +------+
                 |           |    |           |  |c  c|   +------+
           /|    |           |    |  +-----+  |  |a  h|-->|      |
     I2   /D+--->|           +----+->|WC #2|--+->|l   |-->|  C   | E2
         + e+--->|           |    |  +-----+  |  |    |   |  o   |
    ====>| M|    |           |    +-----------+  +----+   |  m   |====>
         + u+--->|           |                            |  b   |
          \x+--->|           |--------------------------->|  i   |
           \|    |           |--------------------------->|  n   |
                 |           |--------------------------->|  e   |
                 |___________|--------------------------->|  r   |
                 +-----------+                            +------+
        
                 +-----------+ ___________                +------+
                 |           |--------------------------->|      |
                 |           |--------------------------->|  C   |
           /|    |           |--------------------------->|  o   | E1
     I1   /D+--->|           |--------------------------->|  m   |
         + e+--->|           |                            |  b   |====>
    ====>| M|    |  Optical  |    +-----------+  +----+   |  i   |
         + u+--->|   Switch  |    |  WC Pool  |  |O  S|-->|  n   |
          \x+--->|           |    |  +-----+  |  |p  w|-->|  e   |
           \|    |           +----+->|WC #1|--+->|t  i|   |  r   |
                 |           |    |  +-----+  |  |i  t|   +------+
                 |           |    |           |  |c  c|   +------+
           /|    |           |    |  +-----+  |  |a  h|-->|      |
     I2   /D+--->|           +----+->|WC #2|--+->|l   |-->|  C   | E2
         + e+--->|           |    |  +-----+  |  |    |   |  o   |
    ====>| M|    |           |    +-----------+  +----+   |  m   |====>
         + u+--->|           |                            |  b   |
          \x+--->|           |--------------------------->|  i   |
           \|    |           |--------------------------->|  n   |
                 |           |--------------------------->|  e   |
                 |___________|--------------------------->|  r   |
                 +-----------+                            +------+
        

Figure 4. An Optical Switch Featuring a Shared Per-Node Wavelength Converter Pool Architecture

图4。具有共享每节点波长转换器池体系结构的光开关

In this case, the input and output pool matrices are simply:

在这种情况下,输入和输出池矩阵仅为:

              +-----+       +-----+
              | 1 1 |       | 1 1 |
          WI =|     |,  WE =|     |
              | 1 1 |       | 1 1 |
              +-----+       +-----+
        
              +-----+       +-----+
              | 1 1 |       | 1 1 |
          WI =|     |,  WE =|     |
              | 1 1 |       | 1 1 |
              +-----+       +-----+
        

Figure 5 shows a different wavelength pool architecture known as "shared per fiber". In this case, the input and output pool matrices are simply:

图5显示了一种称为“每光纤共享”的不同波长池体系结构。在这种情况下,输入和输出池矩阵仅为:

               +-----+       +-----+
               | 1 1 |       | 1 0 |
           WI =|     |,  WE =|     |
               | 1 1 |       | 0 1 |
               +-----+       +-----+
        
               +-----+       +-----+
               | 1 1 |       | 1 0 |
           WI =|     |,  WE =|     |
               | 1 1 |       | 0 1 |
               +-----+       +-----+
        
                 +-----------+                            +------+
                 |           |--------------------------->|      |
                 |           |--------------------------->|  C   |
           /|    |           |--------------------------->|  o   | E1
     I1   /D+--->|           |--------------------------->|  m   |
         + e+--->|           |                            |  b   |====>
    ====>| M|    |  Optical  |    +-----------+           |  i   |
         + u+--->|   Switch  |    |  WC Pool  |           |  n   |
          \x+--->|           |    |  +-----+  |           |  e   |
           \|    |           +----+->|WC #1|--+---------->|  r   |
                 |           |    |  +-----+  |           +------+
                 |           |    |           |           +------+
           /|    |           |    |  +-----+  |           |      |
     I2   /D+--->|           +----+->|WC #2|--+---------->|  C   | E2
         + e+--->|           |    |  +-----+  |           |  o   |
    ====>| M|    |           |    +-----------+           |  m   |====>
         + u+--->|           |                            |  b   |
          \x+--->|           |--------------------------->|  i   |
           \|    |           |--------------------------->|  n   |
                 |           |--------------------------->|  e   |
                 |___________|--------------------------->|  r   |
                 +-----------+                            +------+
        
                 +-----------+                            +------+
                 |           |--------------------------->|      |
                 |           |--------------------------->|  C   |
           /|    |           |--------------------------->|  o   | E1
     I1   /D+--->|           |--------------------------->|  m   |
         + e+--->|           |                            |  b   |====>
    ====>| M|    |  Optical  |    +-----------+           |  i   |
         + u+--->|   Switch  |    |  WC Pool  |           |  n   |
          \x+--->|           |    |  +-----+  |           |  e   |
           \|    |           +----+->|WC #1|--+---------->|  r   |
                 |           |    |  +-----+  |           +------+
                 |           |    |           |           +------+
           /|    |           |    |  +-----+  |           |      |
     I2   /D+--->|           +----+->|WC #2|--+---------->|  C   | E2
         + e+--->|           |    |  +-----+  |           |  o   |
    ====>| M|    |           |    +-----------+           |  m   |====>
         + u+--->|           |                            |  b   |
          \x+--->|           |--------------------------->|  i   |
           \|    |           |--------------------------->|  n   |
                 |           |--------------------------->|  e   |
                 |___________|--------------------------->|  r   |
                 +-----------+                            +------+
        

Figure 5. An Optical Switch Featuring a Shared Per-Fiber Wavelength Converter Pool Architecture

图5。具有共享每光纤波长转换器池结构的光开关

3.7. Characterizing Electro-Optical Network Elements
3.7. 电光网络元件的表征

In this section, electro-optical WSON network elements are characterized by the three key functional components: input constraints, output constraints, and processing capabilities.

在本节中,光电WSON网络元件由三个关键功能组件构成:输入约束、输出约束和处理能力。

                             WSON Network Element
                          +-----------------------+
          WSON Signal     |      |         |      |    WSON Signal
                          |      |         |      |
        --------------->  |      |         |      | ----------------->
                          |      |         |      |
                          +-----------------------+
                          <-----> <-------> <----->
        
                             WSON Network Element
                          +-----------------------+
          WSON Signal     |      |         |      |    WSON Signal
                          |      |         |      |
        --------------->  |      |         |      | ----------------->
                          |      |         |      |
                          +-----------------------+
                          <-----> <-------> <----->
        

Input Processing Output

输入处理输出

Figure 6. WSON Network Element

图6。无线传感器网络元件

3.7.1. Input Constraints
3.7.1. 输入约束

Sections 3.5 and 3.6 discuss the basic properties of regenerators, OEO switches, and wavelength converters. From these, the following possible types of input constraints and properties are derived:

第3.5节和第3.6节讨论了再生器、OEO开关和波长转换器的基本特性。由此,可以导出以下可能类型的输入约束和属性:

1. Acceptable modulation formats

1. 可接受的调制格式

2. Client signal (G-PID) restrictions

2. 客户机信号(G-PID)限制

3. Bitrate restrictions

3. 比特率限制

4. FEC coding restrictions

4. FEC编码限制

5. Configurability: (a) none, (b) self-configuring, (c) required

5. 可配置性:(a)无,(b)自配置,(c)必需

These constraints are represented via simple lists. Note that the device may need to be "provisioned" via signaling or some other means to accept signals with some attributes versus others. In other cases, the devices may be relatively transparent to some attributes, e.g., a 2R regenerator to bitrate. Finally, some devices may be able to auto-detect some attributes and configure themselves, e.g., a 3R regenerator with bitrate detection mechanisms and flexible phase locking circuitry. To account for these different cases, item 5 has been added, which describes the device's configurability.

这些约束通过简单的列表表示。注意,设备可能需要通过信令或一些其他手段来“供应”,以接受具有某些属性的信号。在其他情况下,设备可能对某些属性相对透明,例如,2R再生器对比特率。最后,一些设备可能能够自动检测一些属性并自行配置,例如,具有比特率检测机制和灵活锁相电路的3R再生器。为了说明这些不同的情况,增加了第5项,描述了设备的可配置性。

Note that such input constraints also apply to the termination of the WSON signal.

注意,此类输入约束也适用于WSON信号的终止。

3.7.2. Output Constraints
3.7.2. 输出约束

None of the network elements considered here modifies either the bitrate or the basic type of the client signal. However, they may modify the modulation format or the FEC code. Typically, the following types of output constraints are seen:

这里考虑的网络元素都不会修改比特率或客户机信号的基本类型。然而,它们可以修改调制格式或FEC码。通常,会看到以下类型的输出约束:

1. Output modulation is the same as input modulation (default)

1. 输出调制与输入调制相同(默认值)

2. A limited set of output modulations is available

2. 有一组有限的输出调制可用

3. Output FEC is the same as input FEC code (default)

3. 输出FEC与输入FEC代码相同(默认)

4. A limited set of output FEC codes is available

4. 有限的一组输出FEC代码可用

Note that in cases 2 and 4 above, where there is more than one choice in the output modulation or FEC code, the network element will need to be configured on a per-LSP basis as to which choice to use.

注意,在上面的情况2和4中,在输出调制或FEC码中存在多个选择的情况下,需要基于每个LSP配置网元,以使用哪个选择。

3.7.3. Processing Capabilities
3.7.3. 处理能力

A general WSON network element (NE) can perform a number of signal processing functions including:

通用WSON网元(NE)可以执行许多信号处理功能,包括:

(A) Regeneration (possibly different types)

(A) 再生(可能不同类型)

(B) Fault and performance monitoring

(B) 故障和性能监视

(C) Wavelength conversion

(C) 波长转换

(D) Switching

(D) 转换

An NE may or may not have the ability to perform regeneration (of one of the types previously discussed). In addition, some nodes may have limited regeneration capability, i.e., a shared pool, which may be applied to selected signals traversing the NE. Hence, to describe the regeneration capability of a link or node, it is necessary to have, at a minimum:

网元可能有能力也可能没有能力执行(前面讨论的类型之一)再生。此外,一些节点可能具有有限的再生能力,即,共享池,其可应用于穿过NE的选定信号。因此,为了描述链路或节点的再生能力,必须至少具有:

1. Regeneration capability: (a) fixed, (b) selective, (c) none

1. 再生能力:(a)固定,(b)选择性,(c)无

2. Regeneration type: 1R, 2R, 3R

2. 再生类型:1R、2R、3R

3. Regeneration pool properties for the case of selective regeneration (input and output restrictions, availability)

3. 选择性再生情况下的再生池属性(输入和输出限制、可用性)

Note that the properties of shared regenerator pools would be essentially the same as that of wavelength converter pools modeled in Section 3.6.1.

请注意,共享再生器池的特性基本上与第3.6.1节中建模的波长转换器池的特性相同。

Item B (fault and performance monitoring) is typically outside the scope of the control plane. However, when the operations are to be performed on an LSP basis or on part of an LSP, the control plane can be of assistance in their configuration. Per-LSP, per-node, and fault and performance monitoring examples include setting up a "section trace" (a regenerator overhead identifier) between two nodes or intermediate optical performance monitoring at selected nodes along a path.

项目B(故障和性能监测)通常不在控制平面的范围内。然而,当操作将在LSP基础上或在LSP的一部分上执行时,控制平面可在其配置中提供帮助。每个LSP、每个节点以及故障和性能监控示例包括在两个节点之间设置“区段跟踪”(再生器开销标识符),或在路径上的选定节点处进行中间光学性能监控。

4. Routing and Wavelength Assignment and the Control Plane
4. 路由和波长分配与控制平面

From a control plane perspective, a wavelength-convertible network with full wavelength-conversion capability at each node can be controlled much like a packet MPLS-labeled network or a circuit-switched Time Division Multiplexing (TDM) network with full-time slot interchange capability is controlled. In this case, the path

从控制平面的角度来看,可以控制在每个节点处具有全波长转换能力的波长转换网络,就像控制分组MPLS标记的网络或具有全时隙交换能力的电路交换时分复用(TDM)网络一样。在本例中,路径

selection process needs to identify the Traffic Engineered (TE) links to be used by an optical path, and wavelength assignment can be made on a hop-by-hop basis.

选择过程需要识别光路要使用的流量工程(TE)链路,并且可以逐跳进行波长分配。

However, in the case of an optical network without wavelength converters, an optical path needs to be routed from source to destination and must use a single wavelength that is available along that path without "colliding" with a wavelength used by any other optical path that may share an optical fiber. This is sometimes referred to as a "wavelength continuity constraint".

然而,在没有波长转换器的光网络的情况下,光路径需要从源路由到目的地,并且必须使用沿着该路径可用的单个波长,而不会与可能共享光纤的任何其他光路径使用的波长“冲突”。这有时被称为“波长连续性约束”。

In the general case of limited or no wavelength converters, the computation of both the links and wavelengths is known as RWA.

在有限或无波长转换器的一般情况下,链路和波长的计算称为RWA。

The inputs to basic RWA are the requested optical path's source and destination, the network topology, the locations and capabilities of any wavelength converters, and the wavelengths available on each optical link. The output from an algorithm providing RWA is an explicit route through ROADMs, a wavelength for optical transmitter, and a set of locations (generally associated with ROADMs or switches) where wavelength conversion is to occur and the new wavelength to be used on each component link after that point in the route.

基本RWA的输入是请求的光路径的源和目的地、网络拓扑、任何波长转换器的位置和能力,以及每个光链路上可用的波长。提供RWA的算法的输出是通过ROADM的显式路由、光发射机的波长和一组位置(通常与ROADM或交换机相关),其中将发生波长转换,并在路由中该点之后的每个组件链路上使用新波长。

It is to be noted that the choice of a specific RWA algorithm is out of the scope of this document. However, there are a number of different approaches to dealing with RWA algorithms that can affect the division of effort between path computation/routing and signaling.

需要注意的是,特定RWA算法的选择超出了本文件的范围。然而,有许多不同的方法来处理RWA算法,这些算法可能会影响路径计算/路由和信令之间的工作分配。

4.1. Architectural Approaches to RWA
4.1. RWA的体系结构方法

Two general computational approaches are taken to performing RWA. Some algorithms utilize a two-step procedure of path selection followed by wavelength assignment, and others perform RWA in a combined fashion.

采用两种通用计算方法来执行RWA。一些算法采用两步路径选择过程,然后进行波长分配,而另一些算法则以组合方式执行RWA。

In the following sections, three different ways of performing RWA in conjunction with the control plane are considered. The choice of one of these architectural approaches over another generally impacts the demands placed on the various control plane protocols. The approaches are provided for reference purposes only, and other approaches are possible.

在以下章节中,将考虑结合控制平面执行RWA的三种不同方式。这些体系结构方法中的一种方法的选择通常会影响对各种控制平面协议的要求。这些方法仅供参考,其他方法也是可能的。

4.1.1. Combined RWA (R&WA)
4.1.1. 合并RWA(R&WA)

In this case, a unique entity is in charge of performing routing and wavelength assignment. This approach relies on a sufficient knowledge of network topology, of available network resources, and of

在这种情况下,唯一实体负责执行路由和波长分配。这种方法依赖于对网络拓扑结构、可用网络资源和性能的充分了解

network nodes' capabilities. This solution is compatible with most known RWA algorithms, particularly those concerned with network optimization. On the other hand, this solution requires up-to-date and detailed network information.

网络节点的能力。此解决方案与大多数已知的RWA算法兼容,尤其是与网络优化相关的算法。另一方面,此解决方案需要最新和详细的网络信息。

Such a computational entity could reside in two different places:

这种计算实体可以位于两个不同的位置:

o In a PCE that maintains a complete and updated view of network state and provides path computation services to nodes

o 在PCE中,维护网络状态的完整和更新视图,并向节点提供路径计算服务

o In an ingress node, in which case all nodes have the R&WA functionality and network state is obtained by a periodic flooding of information provided by the other nodes

o 在入口节点中,在这种情况下,所有节点都具有R&WA功能,网络状态通过其他节点提供的定期信息洪泛获得

4.1.2. Separated R and WA (R+WA)
4.1.2. 分离R和WA(R+WA)

In this case, one entity performs routing while a second performs wavelength assignment. The first entity furnishes one or more paths to the second entity, which will perform wavelength assignment and final path selection.

在这种情况下,一个实体执行路由,而另一个实体执行波长分配。第一实体向第二实体提供一条或多条路径,第二实体将执行波长分配和最终路径选择。

The separation of the entities computing the path and the wavelength assignment constrains the class of RWA algorithms that may be implemented. Although it may seem that algorithms optimizing a joint usage of the physical and wavelength paths are excluded from this solution, many practical optimization algorithms only consider a limited set of possible paths, e.g., as computed via a k-shortest path algorithm. Hence, while there is no guarantee that the selected final route and wavelength offer the optimal solution, reasonable optimization can be performed by allowing multiple routes to pass to the wavelength selection process.

计算路径和波长分配的实体的分离限制了可实现的RWA算法的类别。虽然似乎优化的物理和波长路径的联合使用的算法被排除在这个解决方案之外,但是许多实际的优化算法只考虑有限的可能路径集合,例如,通过K最短路径算法计算。因此,虽然不能保证所选择的最终路由和波长提供最佳解决方案,但是可以通过允许多条路由通过波长选择过程来执行合理的优化。

The entity performing the routing assignment needs the topology information of the network, whereas the entity performing the wavelength assignment needs information on the network's available resources and specific network node capabilities.

执行路由分配的实体需要网络的拓扑信息,而执行波长分配的实体需要关于网络可用资源和特定网络节点能力的信息。

4.1.3. Routing and Distributed WA (R+DWA)
4.1.3. 路由和分布式WA(R+DWA)

In this case, one entity performs routing, while wavelength assignment is performed on a hop-by-hop, distributed manner along the previously computed path. This mechanism relies on updating of a list of potential wavelengths used to ensure conformance with the wavelength continuity constraint.

在这种情况下,一个实体执行路由,而波长分配是沿着先前计算的路径逐跳分布式地执行的。该机制依赖于更新用于确保符合波长连续性约束的潜在波长列表。

As currently specified, the GMPLS protocol suite signaling protocol can accommodate such an approach. GMPLS, per [RFC3471], includes support for the communication of the set of labels (wavelengths) that

正如目前所规定的,GMPLS协议套件信令协议可以适应这种方法。根据[RFC3471],GMPLS包括对以下标签集(波长)通信的支持:

may be used between nodes via a Label Set. When conversion is not performed at an intermediate node, a hop generates the Label Set it sends to the next hop based on the intersection of the Label Set received from the previous hop and the wavelengths available on the node's switch and ongoing interface. The generation of the outgoing Label Set is up to the node local policy (even if one expects a consistent policy configuration throughout a given transparency domain). When wavelength conversion is performed at an intermediate node, a new Label Set is generated. The egress node selects one label in the Label Set that it received; additionally, the node can apply local policy during label selection. GMPLS also provides support for the signaling of bidirectional optical paths.

可通过标签集在节点之间使用。当在中间节点上未执行转换时,跳基于从上一跳接收到的标签集与节点交换机和正在进行的接口上可用的波长的交集,生成它发送到下一跳的标签集。传出标签集的生成取决于节点本地策略(即使在给定的透明域中需要一致的策略配置)。当在中间节点执行波长转换时,将生成新的标签集。出口节点在其接收的标签集中选择一个标签;此外,节点可以在标签选择期间应用本地策略。GMPLS还支持双向光路的信令。

Depending on these policies, a wavelength assignment may not be found, or one may be found that consumes too many conversion resources relative to what a dedicated wavelength assignment policy would have achieved. Hence, this approach may generate higher blocking probabilities in a heavily loaded network.

根据这些策略,可能找不到波长分配,或者可能会发现相对于专用波长分配策略所能实现的,消耗了太多转换资源的波长分配。因此,这种方法可以在重负载网络中产生更高的阻塞概率。

This solution may be facilitated via signaling extensions that ease its functioning and possibly enhance its performance with respect to blocking probability. Note that this approach requires less information dissemination than the other techniques described.

该解决方案可以通过信令扩展来简化其功能,并可能提高其阻塞概率方面的性能。注意,与所描述的其他技术相比,这种方法需要更少的信息传播。

The first entity may be a PCE or the ingress node of the LSP.

第一实体可以是PCE或LSP的入口节点。

4.2. Conveying Information Needed by RWA
4.2. 传达RWA所需的信息

The previous sections have characterized WSONs and optical path requests. In particular, high-level models of the information used by RWA process were presented. This information can be viewed as either relatively static, i.e., changing with hardware changes (including possibly failures), or relatively dynamic, i.e., those that can change with optical path provisioning. The time requirement in which an entity involved in RWA process needs to be notified of such changes is fairly situational. For example, for network restoration purposes, learning of a hardware failure or of new hardware coming online to provide restoration capability can be critical.

前面的部分描述了WSON和光路径请求。特别是,提出了RWA流程所用信息的高级模型。此信息可以被视为相对静态的,即随硬件更改(包括可能的故障)而更改的信息,或相对动态的,即随光路径供应而更改的信息。RWA流程中涉及的实体需要收到此类变更通知的时间要求相当符合实际情况。例如,出于网络恢复的目的,了解硬件故障或新硬件上线以提供恢复能力可能至关重要。

Currently, there are various methods for communicating RWA relevant information. These include, but are not limited to, the following:

目前,有各种方法用于传达RWA相关信息。这些包括但不限于以下内容:

o Existing control plane protocols, i.e., GMPLS routing and signaling. Note that routing protocols can be used to convey both static and dynamic information.

o 现有控制平面协议,即GMPLS路由和信令。请注意,路由协议可用于传输静态和动态信息。

o Management protocols such as NetConf, SNMPv3, and CORBA.

o 管理协议,如NetConf、SNMPv3和CORBA。

o Methods to access configuration and status information such as a command line interface (CLI).

o 访问配置和状态信息(如命令行界面(CLI))的方法。

o Directory services and accompanying protocols. These are typically used for the dissemination of relatively static information. Directory services are not suited to manage information in dynamic and fluid environments.

o 目录服务和附带的协议。它们通常用于传播相对静态的信息。目录服务不适合在动态和流动的环境中管理信息。

o Other techniques for dynamic information, e.g., sending information directly from NEs to PCEs to avoid flooding. This would be useful if the number of PCEs is significantly less than the number of WSON NEs. There may be other ways to limit flooding to "interested" NEs.

o 用于动态信息的其他技术,例如,直接从网元向PCE发送信息以避免洪泛。如果PCE的数量明显少于无线传感器网络的数量,这将非常有用。可能还有其他方法将洪水限制在“感兴趣”的网元上。

Possible mechanisms to improve scaling of dynamic information include:

改进动态信息缩放的可能机制包括:

o Tailoring message content to WSON, e.g., the use of wavelength ranges or wavelength occupation bit maps

o 根据WSON定制消息内容,例如,使用波长范围或波长占用位图

o Utilizing incremental updates if feasible

o 如果可行,利用增量更新

5. Modeling Examples and Control Plane Use Cases
5. 建模示例和控制平面用例

This section provides examples of the fixed and switched optical node and wavelength constraint models of Section 3 and use cases for WSON control plane path computation, establishment, rerouting, and optimization.

本节提供了第3节固定和交换光节点和波长约束模型的示例,以及WSON控制平面路径计算、建立、重路由和优化的用例。

5.1. Network Modeling for GMPLS/PCE Control
5.1. GMPLS/PCE控制的网络建模

Consider a network containing three routers (R1 through R3), eight WSON nodes (N1 through N8), 18 links (L1 through L18), and one OEO converter (O1) in a topology shown in Figure 7.

考虑一个包含三个路由器(R1到R3)、八个WSON节点(N1到N8)、18个链路(L1到L18)和一个OEO转换器(O1)的网络,如图7所示的拓扑结构。

                       +--+    +--+             +--+       +--------+
                  +-L3-+N2+-L5-+  +--------L12--+N6+--L15--+   N8   +
                  |    +--+    |N4+-L8---+      +--+       ++--+---++
                  |            |  +-L9--+|                  |  |   |
      +--+      +-+-+          ++-+     ||                  | L17 L18
      |  ++-L1--+   |           |      ++++      +----L16---+  |   |
      |R1|      | N1|           L7     |R2|      |             |   |
      |  ++-L2--+   |           |      ++-+      |            ++---++
      +--+      +-+-+           |       |        |            +  R3 |
                  |    +--+    ++-+     |        |            +-----+
                  +-L4-+N3+-L6-+N5+-L10-+       ++----+
                       +--+    |  +--------L11--+ N7  +
                               +--+             ++---++
                                                 |   |
                                                L13 L14
                                                 |   |
                                                ++-+ |
                                                |O1+-+
                                                +--+
        
                       +--+    +--+             +--+       +--------+
                  +-L3-+N2+-L5-+  +--------L12--+N6+--L15--+   N8   +
                  |    +--+    |N4+-L8---+      +--+       ++--+---++
                  |            |  +-L9--+|                  |  |   |
      +--+      +-+-+          ++-+     ||                  | L17 L18
      |  ++-L1--+   |           |      ++++      +----L16---+  |   |
      |R1|      | N1|           L7     |R2|      |             |   |
      |  ++-L2--+   |           |      ++-+      |            ++---++
      +--+      +-+-+           |       |        |            +  R3 |
                  |    +--+    ++-+     |        |            +-----+
                  +-L4-+N3+-L6-+N5+-L10-+       ++----+
                       +--+    |  +--------L11--+ N7  +
                               +--+             ++---++
                                                 |   |
                                                L13 L14
                                                 |   |
                                                ++-+ |
                                                |O1+-+
                                                +--+
        

Figure 7. Routers and WSON Nodes in a GMPLS and PCE Environment

图7。GMPLS和PCE环境中的路由器和WSON节点

5.1.1. Describing the WSON Nodes
5.1.1. 描述WSON节点

The eight WSON nodes described in Figure 7 have the following properties:

图7中描述的八个WSON节点具有以下属性:

o Nodes N1, N2, and N3 have FOADMs installed and can therefore only access a static and pre-defined set of wavelengths.

o 节点N1、N2和N3安装了FOADMs,因此只能访问静态和预定义的波长集。

o All other nodes contain ROADMs and can therefore access all wavelengths.

o 所有其他节点都包含roadm,因此可以访问所有波长。

o Nodes N4, N5, N7, and N8 are multi-degree nodes, allowing any wavelength to be optically switched between any of the links. Note, however, that this does not automatically apply to wavelengths that are being added or dropped at the particular node.

o 节点N4、N5、N7和N8是多度节点,允许在任何链路之间以光学方式切换任何波长。但是,请注意,这不会自动应用于在特定节点添加或删除的波长。

o Node N4 is an exception to that: this node can switch any wavelength from its add/drop ports to any of its output links (L5, L7, and L12 in this case).

o 节点N4是一个例外:该节点可以将任何波长从其添加/删除端口切换到其任何输出链路(本例中为L5、L7和L12)。

o The links from the routers are only able to carry one wavelength, with the exception of links L8 and L9, which are capable to add/drop any wavelength.

o 来自路由器的链路只能承载一个波长,链路L8和L9除外,它们能够添加/删除任何波长。

o Node N7 contains an OEO transponder (O1) connected to the node via links L13 and L14. That transponder operates in 3R mode and does not change the wavelength of the signal. Assume that it can regenerate any of the client signals but only for a specific wavelength.

o 节点N7包含经由链路L13和L14连接到节点的OEO转发器(O1)。该收发器在3R模式下工作,不会改变信号的波长。假设它可以重新生成任何客户端信号,但只能针对特定波长。

Given the above restrictions, the node information for the eight nodes can be expressed as follows (where ID = identifier, SCM = switched connectivity matrix, and FCM = fixed connectivity matrix):

考虑到上述限制,八个节点的节点信息可以表示如下(其中ID=标识符,SCM=交换连接矩阵,FCM=固定连接矩阵):

      +ID+SCM                    +FCM                    +
      |  |   |L1 |L2 |L3 |L4 |   |   |L1 |L2 |L3 |L4 |   |
      |  |L1 |0  |0  |0  |0  |   |L1 |0  |0  |1  |0  |   |
      |N1|L2 |0  |0  |0  |0  |   |L2 |0  |0  |0  |1  |   |
      |  |L3 |0  |0  |0  |0  |   |L3 |1  |0  |0  |1  |   |
      |  |L4 |0  |0  |0  |0  |   |L4 |0  |1  |1  |0  |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L3 |L5 |   |   |   |   |L3 |L5 |   |   |   |
      |N2|L3 |0  |0  |   |   |   |L3 |0  |1  |   |   |   |
      |  |L5 |0  |0  |   |   |   |L5 |1  |0  |   |   |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L4 |L6 |   |   |   |   |L4 |L6 |   |   |   |
      |N3|L4 |0  |0  |   |   |   |L4 |0  |1  |   |   |   |
      |  |L6 |0  |0  |   |   |   |L6 |1  |0  |   |   |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L5 |L7 |L8 |L9 |L12|   |L5 |L7 |L8 |L9 |L12|
      |  |L5 |0  |1  |1  |1  |1  |L5 |0  |0  |0  |0  |0  |
      |N4|L7 |1  |0  |1  |1  |1  |L7 |0  |0  |0  |0  |0  |
      |  |L8 |1  |1  |0  |1  |1  |L8 |0  |0  |0  |0  |0  |
      |  |L9 |1  |1  |1  |0  |1  |L9 |0  |0  |0  |0  |0  |
      |  |L12|1  |1  |1  |1  |0  |L12|0  |0  |0  |0  |0  |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L6 |L7 |L10|L11|   |   |L6 |L7 |L10|L11|   |
      |  |L6 |0  |1  |0  |1  |   |L6 |0  |0  |1  |0  |   |
      |N5|L7 |1  |0  |0  |1  |   |L7 |0  |0  |0  |0  |   |
      |  |L10|0  |0  |0  |0  |   |L10|1  |0  |0  |0  |   |
      |  |L11|1  |1  |0  |0  |   |L11|0  |0  |0  |0  |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L12|L15|   |   |   |   |L12|L15|   |   |   |
      |N6|L12|0  |1  |   |   |   |L12|0  |0  |   |   |   |
      |  |L15|1  |0  |   |   |   |L15|0  |0  |   |   |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L11|L13|L14|L16|   |   |L11|L13|L14|L16|   |
      |  |L11|0  |1  |0  |1  |   |L11|0  |0  |0  |0  |   |
      |N7|L13|1  |0  |0  |0  |   |L13|0  |0  |1  |0  |   |
      |  |L14|0  |0  |0  |1  |   |L14|0  |1  |0  |0  |   |
      |  |L16|1  |0  |1  |0  |   |L16|0  |0  |1  |0  |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L15|L16|L17|L18|   |   |L15|L16|L17|L18|   |
      |  |L15|0  |1  |0  |0  |   |L15|0  |0  |0  |1  |   |
      |N8|L16|1  |0  |0  |0  |   |L16|0  |0  |1  |0  |   |
      |  |L17|0  |0  |0  |0  |   |L17|0  |1  |0  |0  |   |
      |  |L18|0  |0  |0  |0  |   |L18|1  |0  |1  |0  |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
        
      +ID+SCM                    +FCM                    +
      |  |   |L1 |L2 |L3 |L4 |   |   |L1 |L2 |L3 |L4 |   |
      |  |L1 |0  |0  |0  |0  |   |L1 |0  |0  |1  |0  |   |
      |N1|L2 |0  |0  |0  |0  |   |L2 |0  |0  |0  |1  |   |
      |  |L3 |0  |0  |0  |0  |   |L3 |1  |0  |0  |1  |   |
      |  |L4 |0  |0  |0  |0  |   |L4 |0  |1  |1  |0  |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L3 |L5 |   |   |   |   |L3 |L5 |   |   |   |
      |N2|L3 |0  |0  |   |   |   |L3 |0  |1  |   |   |   |
      |  |L5 |0  |0  |   |   |   |L5 |1  |0  |   |   |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L4 |L6 |   |   |   |   |L4 |L6 |   |   |   |
      |N3|L4 |0  |0  |   |   |   |L4 |0  |1  |   |   |   |
      |  |L6 |0  |0  |   |   |   |L6 |1  |0  |   |   |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L5 |L7 |L8 |L9 |L12|   |L5 |L7 |L8 |L9 |L12|
      |  |L5 |0  |1  |1  |1  |1  |L5 |0  |0  |0  |0  |0  |
      |N4|L7 |1  |0  |1  |1  |1  |L7 |0  |0  |0  |0  |0  |
      |  |L8 |1  |1  |0  |1  |1  |L8 |0  |0  |0  |0  |0  |
      |  |L9 |1  |1  |1  |0  |1  |L9 |0  |0  |0  |0  |0  |
      |  |L12|1  |1  |1  |1  |0  |L12|0  |0  |0  |0  |0  |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L6 |L7 |L10|L11|   |   |L6 |L7 |L10|L11|   |
      |  |L6 |0  |1  |0  |1  |   |L6 |0  |0  |1  |0  |   |
      |N5|L7 |1  |0  |0  |1  |   |L7 |0  |0  |0  |0  |   |
      |  |L10|0  |0  |0  |0  |   |L10|1  |0  |0  |0  |   |
      |  |L11|1  |1  |0  |0  |   |L11|0  |0  |0  |0  |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L12|L15|   |   |   |   |L12|L15|   |   |   |
      |N6|L12|0  |1  |   |   |   |L12|0  |0  |   |   |   |
      |  |L15|1  |0  |   |   |   |L15|0  |0  |   |   |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L11|L13|L14|L16|   |   |L11|L13|L14|L16|   |
      |  |L11|0  |1  |0  |1  |   |L11|0  |0  |0  |0  |   |
      |N7|L13|1  |0  |0  |0  |   |L13|0  |0  |1  |0  |   |
      |  |L14|0  |0  |0  |1  |   |L14|0  |1  |0  |0  |   |
      |  |L16|1  |0  |1  |0  |   |L16|0  |0  |1  |0  |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
      |  |   |L15|L16|L17|L18|   |   |L15|L16|L17|L18|   |
      |  |L15|0  |1  |0  |0  |   |L15|0  |0  |0  |1  |   |
      |N8|L16|1  |0  |0  |0  |   |L16|0  |0  |1  |0  |   |
      |  |L17|0  |0  |0  |0  |   |L17|0  |1  |0  |0  |   |
      |  |L18|0  |0  |0  |0  |   |L18|1  |0  |1  |0  |   |
      +--+---+---+---+---+---+---+---+---+---+---+---+---+
        
5.1.2. Describing the Links
5.1.2. 描述链接

For the following discussion, some simplifying assumptions are made:

对于以下讨论,作出了一些简化假设:

o It is assumed that the WSON node supports a total of four wavelengths, designated WL1 through WL4.

o 假设WSON节点总共支持四个波长,指定为WL1到WL4。

o It is assumed that the impairment feasibility of a path or path segment is independent from the wavelength chosen.

o 假设路径或路径段的损伤可行性与所选波长无关。

For the discussion of RWA operation, to build LSPs between two routers, the wavelength constraints on the links between the routers and the WSON nodes as well as the connectivity matrix of these links need to be specified:

为了讨论RWA操作,为了在两个路由器之间构建LSP,需要指定路由器和WSON节点之间链路的波长约束以及这些链路的连接矩阵:

   +Link+WLs supported    +Possible output links+
   | L1 | WL1             | L3                  |
   +----+-----------------+---------------------+
   | L2 | WL2             | L4                  |
   +----+-----------------+---------------------+
   | L8 | WL1 WL2 WL3 WL4 | L5 L7 L12           |
   +----+-----------------+---------------------+
   | L9 | WL1 WL2 WL3 WL4 | L5 L7 L12           |
   +----+-----------------+---------------------+
   | L10| WL2             | L6                  |
   +----+-----------------+---------------------+
   | L13| WL1 WL2 WL3 WL4 | L11 L14             |
   +----+-----------------+---------------------+
   | L14| WL1 WL2 WL3 WL4 | L13 L16             |
   +----+-----------------+---------------------+
   | L17| WL2             | L16                 |
   +----+-----------------+---------------------+
   | L18| WL1             | L15                 |
   +----+-----------------+---------------------+
        
   +Link+WLs supported    +Possible output links+
   | L1 | WL1             | L3                  |
   +----+-----------------+---------------------+
   | L2 | WL2             | L4                  |
   +----+-----------------+---------------------+
   | L8 | WL1 WL2 WL3 WL4 | L5 L7 L12           |
   +----+-----------------+---------------------+
   | L9 | WL1 WL2 WL3 WL4 | L5 L7 L12           |
   +----+-----------------+---------------------+
   | L10| WL2             | L6                  |
   +----+-----------------+---------------------+
   | L13| WL1 WL2 WL3 WL4 | L11 L14             |
   +----+-----------------+---------------------+
   | L14| WL1 WL2 WL3 WL4 | L13 L16             |
   +----+-----------------+---------------------+
   | L17| WL2             | L16                 |
   +----+-----------------+---------------------+
   | L18| WL1             | L15                 |
   +----+-----------------+---------------------+
        

Note that the possible output links for the links connecting to the routers is inferred from the switched connectivity matrix and the fixed connectivity matrix of the Nodes N1 through N8 and is shown here for convenience; that is, this information does not need to be repeated.

注意,连接到路由器的链路的可能输出链路是从节点N1到N8的交换连接性矩阵和固定连接性矩阵推导出来的,并且为了方便起见在这里示出;也就是说,不需要重复此信息。

5.2. RWA Path Computation and Establishment
5.2. RWA路径计算与建立

The calculation of optical impairment feasible routes is outside the scope of this document. In general, optical impairment feasible routes serve as an input to an RWA algorithm.

光学损伤可行路径的计算不在本文件范围内。一般来说,光损伤可行路径作为RWA算法的输入。

For the example use case shown here, assume the following feasible routes:

对于此处显示的示例用例,假设以下可行路线:

    +Endpoint 1+Endpoint 2+Feasible Route        +
    |  R1      | R2       | L1 L3 L5 L8          |
    |  R1      | R2       | L1 L3 L5 L9          |
    |  R1      | R2       | L2 L4 L6 L7 L8       |
    |  R1      | R2       | L2 L4 L6 L7 L9       |
    |  R1      | R2       | L2 L4 L6 L10         |
    |  R1      | R3       | L1 L3 L5 L12 L15 L18 |
    |  R1      | N7       | L2 L4 L6 L11         |
    |  N7      | R3       | L16 L17              |
    |  N7      | R2       | L16 L15 L12 L9       |
    |  R2      | R3       | L8 L12 L15 L18       |
    |  R2      | R3       | L8 L7 L11 L16 L17    |
    |  R2      | R3       | L9 L12 L15 L18       |
    |  R2      | R3       | L9 L7 L11 L16 L17    |
        
    +Endpoint 1+Endpoint 2+Feasible Route        +
    |  R1      | R2       | L1 L3 L5 L8          |
    |  R1      | R2       | L1 L3 L5 L9          |
    |  R1      | R2       | L2 L4 L6 L7 L8       |
    |  R1      | R2       | L2 L4 L6 L7 L9       |
    |  R1      | R2       | L2 L4 L6 L10         |
    |  R1      | R3       | L1 L3 L5 L12 L15 L18 |
    |  R1      | N7       | L2 L4 L6 L11         |
    |  N7      | R3       | L16 L17              |
    |  N7      | R2       | L16 L15 L12 L9       |
    |  R2      | R3       | L8 L12 L15 L18       |
    |  R2      | R3       | L8 L7 L11 L16 L17    |
    |  R2      | R3       | L9 L12 L15 L18       |
    |  R2      | R3       | L9 L7 L11 L16 L17    |
        

Given a request to establish an LSP between R1 and R2, an RWA algorithm finds the following possible solutions:

如果请求在R1和R2之间建立LSP,RWA算法会找到以下可能的解决方案:

    +WL  + Path          +
    | WL1| L1 L3 L5 L8   |
    | WL1| L1 L3 L5 L9   |
    | WL2| L2 L4 L6 L7 L8|
    | WL2| L2 L4 L6 L7 L9|
    | WL2| L2 L4 L6 L10  |
        
    +WL  + Path          +
    | WL1| L1 L3 L5 L8   |
    | WL1| L1 L3 L5 L9   |
    | WL2| L2 L4 L6 L7 L8|
    | WL2| L2 L4 L6 L7 L9|
    | WL2| L2 L4 L6 L10  |
        

Assume now that an RWA algorithm yields WL1 and the path L1 L3 L5 L8 for the requested LSP.

现在假设RWA算法为请求的LSP生成WL1和路径L1 L3 L5 L8。

Next, another LSP is signaled from R1 to R2. Given the established LSP using WL1, the following table shows the available paths:

接下来,从R1向R2发送另一个LSP信号。给定使用WL1建立的LSP,下表显示了可用路径:

+WL + Path + | WL2| L2 L4 L6 L7 L9| | WL2| L2 L4 L6 L10 |

+WL+路径+| WL2 | L2 L4 L6 L7 L9 | WL2 | L2 L4 L6 L10|

Assume now that an RWA algorithm yields WL2 and the path L2 L4 L6 L7 L9 for the establishment of the new LSP.

现在假设RWA算法产生WL2和路径L2 L4 L6 L7 L9,用于建立新的LSP。

An LSP request -- this time from R2 to R3 -- cannot be fulfilled since the four possible paths (starting at L8 and L9) are already in use.

LSP请求——这次是从R2到R3——无法实现,因为四条可能的路径(从L8和L9开始)已经在使用中。

5.3. Resource Optimization
5.3. 资源优化

The preceding example gives rise to another use case: the optimization of network resources. Optimization can be achieved on a number of layers (e.g., through electrical or optical multiplexing of client signals) or by re-optimizing the solutions found by an RWA algorithm.

前面的例子引出了另一个用例:网络资源的优化。可以在多个层上实现优化(例如,通过客户端信号的电或光多路复用),或者通过重新优化RWA算法找到的解决方案。

Given the above example again, assume that an RWA algorithm should identify a path between R2 and R3. The only possible path to reach R3 from R2 needs to use L9. L9, however, is blocked by one of the LSPs from R1.

再次给出上述示例,假设RWA算法应识别R2和R3之间的路径。从R2到达R3的唯一可能路径需要使用L9。然而,L9被来自R1的一个LSP阻塞。

5.4. Support for Rerouting
5.4. 支持重新路由

It is also envisioned that the extensions to GMPLS and PCE support rerouting of wavelengths in case of failures.

还可以设想,GMPLS和PCE的扩展支持在出现故障时重新路由波长。

For this discussion, assume that the only two LSPs in use in the system are:

在本讨论中,假设系统中仅使用两个LSP:

LSP1: WL1 L1 L3 L5 L8

LSP1:WL1 L1 L3 L5 L8

LSP2: WL2 L2 L4 L6 L7 L9

LSP2:WL2 L2 L4 L6 L7 L9

Furthermore, assume that the L5 fails. An RWA algorithm can now compute and establish the following alternate path:

此外,假设L5出现故障。RWA算法现在可以计算并建立以下备用路径:

   R1 -> N7 -> R2
        
   R1 -> N7 -> R2
        

Level 3 regeneration will take place at N7, so that the complete path looks like this:

3级再生将在N7进行,因此完整路径如下所示:

   R1 -> L2 L4 L6 L11 L13 -> O1 -> L14 L16 L15 L12 L9 -> R2
        
   R1 -> L2 L4 L6 L11 L13 -> O1 -> L14 L16 L15 L12 L9 -> R2
        
5.5. Electro-Optical Networking Scenarios
5.5. 光电网络场景

In the following subsections, various networking scenarios are considered involving regenerators, OEO switches, and wavelength converters. These scenarios can be grouped roughly by type and number of extensions to the GMPLS control plane that would be required.

在以下小节中,将考虑各种网络场景,包括再生器、OEO交换机和波长转换器。这些场景可以大致按照需要的GMPLS控制平面扩展的类型和数量进行分组。

5.5.1. Fixed Regeneration Points
5.5.1. 固定再生点

In the simplest networking scenario involving regenerators, regeneration is associated with a WDM link or an entire node and is not optional; that is, all signals traversing the link or node will be regenerated. This includes OEO switches since they provide regeneration on every port.

在涉及再生器的最简单网络场景中,再生器与WDM链路或整个节点关联,并且不是可选的;也就是说,将重新生成穿过链路或节点的所有信号。这包括OEO交换机,因为它们在每个端口上提供再生。

There may be input constraints and output constraints on the regenerators. Hence, the path selection process will need to know the regenerator constraints from routing or other means so that it can choose a compatible path. For impairment-aware routing and wavelength assignment (IA-RWA), the path selection process will also need to know which links/nodes provide regeneration. Even for "regular" RWA, this regeneration information is useful since wavelength converters typically perform regeneration, and the wavelength continuity constraint can be relaxed at such a point.

再生器上可能存在输入约束和输出约束。因此,路径选择过程需要通过路由或其他方式了解再生器约束,以便选择兼容路径。对于损伤感知路由和波长分配(IA-RWA),路径选择过程还需要知道哪些链路/节点提供再生。即使对于“常规”RWA,该再生信息也是有用的,因为波长转换器通常执行再生,并且可以在该点放松波长连续性约束。

Signaling does not need to be enhanced to include this scenario since there are no reconfigurable regenerator options on input, output, or processing.

由于在输入、输出或处理上没有可重新配置的再生器选项,因此不需要增强信令以包括此场景。

5.5.2. Shared Regeneration Pools
5.5.2. 共享再生池

In this scenario, there are nodes with shared regenerator pools within the network in addition to the fixed regenerators of the previous scenario. These regenerators are shared within a node and their application to a signal is optional. There are no reconfigurable options on either input or output. The only processing option is to "regenerate" a particular signal or not.

在此场景中,除了前一场景中的固定再生器外,网络中还有具有共享再生器池的节点。这些再生器在节点内共享,它们对信号的应用是可选的。在输入或输出上都没有可重新配置的选项。唯一的处理选项是是否“重新生成”特定信号。

In this case, regenerator information is used in path computation to select a path that ensures signal compatibility and IA-RWA criteria.

在这种情况下,再生器信息用于路径计算,以选择确保信号兼容性和IA-RWA标准的路径。

To set up an LSP that utilizes a regenerator from a node with a shared regenerator pool, it is necessary to indicate that regeneration is to take place at that particular node along the signal path. Such a capability does not currently exist in GMPLS signaling.

要设置使用来自具有共享再生器池的节点的再生器的LSP,必须指示沿着信号路径在该特定节点处进行再生器。这种能力目前在GMPLS信令中不存在。

5.5.3. Reconfigurable Regenerators
5.5.3. 可重构再生器

This scenario is concerned with regenerators that require configuration prior to use on an optical signal. As discussed previously, this could be due to a regenerator that must be configured to accept signals with different characteristics, for regenerators with a selection of output attributes, or for regenerators with additional optional processing capabilities.

此场景涉及在使用光信号之前需要配置的再生器。如前所述,这可能是由于必须将再生器配置为接受具有不同特性的信号,对于具有选择输出属性的再生器,或者对于具有额外可选处理能力的再生器。

As in the previous scenarios, it is necessary to have information concerning regenerator properties for selection of compatible paths and for IA-RWA computations. In addition, during LSP setup, it is necessary to be able to configure regenerator options at a particular node along the path. Such a capability does not currently exist in GMPLS signaling.

与前面的场景一样,有必要获得有关再生器特性的信息,以便选择兼容路径和进行IA-RWA计算。此外,在LSP设置期间,必须能够在路径上的特定节点上配置再生器选项。这种能力目前在GMPLS信令中不存在。

5.5.4. Relation to Translucent Networks
5.5.4. 与半透明网络的关系

Networks that contain both transparent network elements such as Reconfigurable Optical Add/Drop Multiplexers (ROADMs) and electro-optical network elements such as regenerators or OEO switches are frequently referred to as translucent optical networks.

包含透明网络元件(例如可重构光分插复用器(roadm))和电光网络元件(例如再生器或OEO交换机)的网络通常被称为半透明光网络。

Three main types of translucent optical networks have been discussed:

讨论了三种主要类型的半透明光网络:

1. Transparent "islands" surrounded by regenerators. This is frequently seen when transitioning from a metro optical subnetwork to a long-haul optical subnetwork.

1. 由再生器包围的透明“岛”。这在从城域光子网过渡到长距离光子网时经常出现。

2. Mostly transparent networks with a limited number of OEO ("opaque") nodes strategically placed. This takes advantage of the inherent regeneration capabilities of OEO switches. In the planning of such networks, one has to determine the optimal placement of the OEO switches.

2. 基本上是透明的网络,战略上部署的OEO(“不透明”)节点数量有限。这充分利用了OEO交换机固有的再生能力。在规划此类网络时,必须确定OEO交换机的最佳位置。

3. Mostly transparent networks with a limited number of optical switching nodes with "shared regenerator pools" that can be optionally applied to signals passing through these switches. These switches are sometimes called translucent nodes.

3. 大部分是透明的网络,具有数量有限的光交换节点,具有“共享再生器池”,可选择性地应用于通过这些交换机的信号。这些开关有时称为半透明节点。

All three types of translucent networks fit within the networking scenarios of Sections 5.5.1 and 5.5.2. Hence, they can be accommodated by the GMPLS extensions envisioned in this document.

所有三种类型的半透明网络都符合第5.5.1节和第5.5.2节的网络场景。因此,可以通过本文档中设想的GMPLS扩展来满足这些要求。

6. GMPLS and PCE Implications
6. GMPLS和PCE的影响

The presence and amount of wavelength conversion available at a wavelength switching interface have an impact on the information that needs to be transferred by the control plane (GMPLS) and the PCE architecture. Current GMPLS and PCE standards address the full wavelength conversion case, so the following subsections will only address the limited and no wavelength conversion cases.

波长切换接口处可用的波长转换的存在和数量对需要由控制平面(GMPLS)和PCE架构传输的信息有影响。当前的GMPLS和PCE标准解决了完整的波长转换情况,因此以下小节将仅解决有限和无波长转换情况。

6.1. Implications for GMPLS Signaling
6.1. GMPLS信号的含义

Basic support for WSON signaling already exists in GMPLS with the lambda (value 9) LSP encoding type [RFC3471] or for G.709-compatible optical channels, the LSP encoding type (value = 13) "G.709 Optical Channel" from [RFC4328]. However, a number of practical issues arise in the identification of wavelengths and signals and in distributed wavelength assignment processes, which are discussed below.

对于WSON信令的基本支持已经存在于具有lambda(值9)LSP编码类型[RFC3471]的GMPLS中,或者对于与G.709兼容的光信道,LSP编码类型(值=13)“G.709光信道”来自[RFC4328]。然而,在波长和信号的识别以及分布式波长分配过程中会出现一些实际问题,下文将对此进行讨论。

6.1.1. Identifying Wavelengths and Signals
6.1.1. 识别波长和信号

As previously stated, a global-fixed mapping between wavelengths and labels simplifies the characterization of WDM links and WSON devices. Furthermore, a mapping like the one described in [RFC6205] provides fixed mapping for communication between PCE and WSON PCCs.

如前所述,波长和标签之间的全局固定映射简化了WDM链路和WSON设备的特性描述。此外,类似于[RFC6205]中描述的映射为PCE和WSON PCC之间的通信提供了固定映射。

6.1.2. WSON Signals and Network Element Processing
6.1.2. WSON信号与网元处理

As discussed in Section 3.3.2, a WSON signal at any point along its path can be characterized by the (a) modulation format, (b) FEC, (c) wavelength, (d) bitrate, and (e) G-PID.

如第3.3.2节所述,沿其路径的任意点处的WSON信号可通过(a)调制格式、(b)FEC、(c)波长、(d)比特率和(e)G-PID来表征。

Currently, G-PID, wavelength (via labels), and bitrate (via bandwidth encoding) are supported in [RFC3471] and [RFC3473]. These RFCs can accommodate the wavelength changing at any node along the LSP and can thus provide explicit control of wavelength converters.

目前,[RFC3471]和[RFC3473]中支持G-PID、波长(通过标签)和比特率(通过带宽编码)。这些rfc可以适应LSP上任何节点的波长变化,因此可以提供波长转换器的显式控制。

In the fixed regeneration point scenario described in Section 5.5.1, no enhancements are required to signaling since there are no additional configuration options for the LSP at a node.

在第5.5.1节所述的固定再生点场景中,不需要对信令进行增强,因为节点上的LSP没有其他配置选项。

In the case of shared regeneration pools described in Section 5.5.2, it is necessary to indicate to a node that it should perform regeneration on a particular signal. Viewed another way, for an LSP, it is desirable to specify that certain nodes along the path perform regeneration. Such a capability does not currently exist in GMPLS signaling.

对于第5.5.2节所述的共享再生池,有必要向节点指示其应在特定信号上执行再生。从另一个角度来看,对于LSP,需要指定路径上的某些节点执行重新生成。这种能力目前在GMPLS信令中不存在。

The case of reconfigurable regenerators described in Section 5.5.3 is very similar to the previous except that now there are potentially many more items that can be configured on a per-node basis for an LSP.

第5.5.3节中描述的可重构再生器的情况与前面的情况非常相似,只是现在可能有更多的项目可以在每个节点的基础上为LSP配置。

Note that the techniques of [RFC5420] that allow for additional LSP attributes and their recording in a Record Route Object (RRO) could be extended to allow for additional LSP attributes in an Explicit Route Object (ERO). This could allow one to indicate where optional

注意,[RFC5420]中允许在记录路由对象(RRO)中记录额外LSP属性的技术可以扩展为允许在显式路由对象(ERO)中记录额外LSP属性。这可以让一个人指出哪里是可选的

3R regeneration should take place along a path, any modification of LSP attributes such as modulation format, or any enhance processing such as performance monitoring.

3R再生应沿路径、LSP属性的任何修改(如调制格式)或任何增强处理(如性能监控)进行。

6.1.3. Combined RWA/Separate Routing WA support
6.1.3. 联合RWA/单独路由WA支持

In either the combined RWA case or the separate routing WA case, the node initiating the signaling will have a route from the source to destination along with the wavelengths (generalized labels) to be used along portions of the path. Current GMPLS signaling supports an Explicit Route Object (ERO), and within an ERO, an ERO Label subobject can be used to indicate the wavelength to be used at a particular node. In case the local label map approach is used, the label subobject entry in the ERO has to be interpreted appropriately.

在组合的RWA情况或单独的路由WA情况中,发起信令的节点将具有从源到目的地的路由以及沿路径部分使用的波长(通用标签)。当前GMPLS信令支持显式路由对象(ERO),并且在ERO内,ERO标签子对象可用于指示在特定节点处使用的波长。如果使用本地标签映射方法,则必须适当解释ERO中的标签子对象条目。

6.1.4. Distributed Wavelength Assignment: Unidirectional, No Converters
6.1.4. 分布式波长分配:单向,无转换器

GMPLS signaling for a unidirectional optical path LSP allows for the use of a Label Set object in the Resource Reservation Protocol - Traffic Engineering (RSVP-TE) path message. Processing of the Label Set object to take the intersection of available lambdas along a path can be performed, resulting in the set of available lambdas being known to the destination, which can then use a wavelength selection algorithm to choose a lambda.

用于单向光路径LSP的GMPLS信令允许在资源预留协议-流量工程(RSVP-TE)路径消息中使用标签集对象。可以执行标签集对象的处理以沿着路径获取可用lambda的交点,从而使目的地知道可用lambda的集合,然后目的地可以使用波长选择算法来选择lambda。

6.1.5. Distributed Wavelength Assignment: Unidirectional, Limited Converters

6.1.5. 分布式波长分配:单向有限转换器

In the case of wavelength converters, nodes with wavelength converters would need to make the decision as to whether to perform conversion. One indicator for this would be that the set of available wavelengths that is obtained via the intersection of the incoming Label Set and the output links available wavelengths is either null or deemed too small to permit successful completion.

在波长转换器的情况下,具有波长转换器的节点需要决定是否执行转换。这方面的一个指标是,通过输入标签集和输出链路可用波长的交点获得的可用波长集要么为空,要么被认为太小,不允许成功完成。

At this point, the node would need to remember that it will apply wavelength conversion and will be responsible for assigning the wavelength on the previous lambda-contiguous segment when the RSVP-TE RESV message is processed. The node will pass on an enlarged label set reflecting only the limitations of the wavelength converter and the output link. The record route option in RSVP-TE signaling can be used to show where wavelength conversion has taken place.

此时,节点需要记住,它将应用波长转换,并将在处理RSVP-TE RESV消息时负责分配前一个lambda连续段上的波长。节点将传递一个放大的标签集,该标签集仅反映波长转换器和输出链路的限制。RSVP-TE信令中的记录路由选项可用于显示波长转换发生的位置。

6.1.6. Distributed Wavelength Assignment: Bidirectional, No Converters
6.1.6. 分布式波长分配:双向,无转换器

There are cases of a bidirectional optical path that require the use of the same lambda in both directions. The above procedure can be used to determine the available bidirectional lambda set if it is

在双向光路的情况下,需要在两个方向上使用相同的λ。上述程序可用于确定可用的双向lambda集(如果可用)

interpreted that the available Label Set is available in both directions. According to [RFC3471], Section 4.1, the setup of bidirectional LSPs is indicated by the presence of an upstream label in the path message.

解释为可用标签集在两个方向上都可用。根据[RFC3471]第4.1节,双向LSP的设置由路径消息中的上游标签表示。

However, until the intersection of the available Label Sets is determined along the path and at the destination node, the upstream label information may not be correct. This case can be supported using current GMPLS mechanisms but may not be as efficient as an optimized bidirectional single-label allocation mechanism.

但是,在沿路径和目标节点确定可用标签集的交点之前,上游标签信息可能不正确。使用当前的GMPLS机制可以支持这种情况,但可能不如优化的双向单标签分配机制有效。

6.2. Implications for GMPLS Routing
6.2. GMPLS路由的含义

GMPLS routing [RFC4202] currently defines an interface capability descriptor for "Lambda Switch Capable" (LSC) that can be used to describe the interfaces on a ROADM or other type of wavelength selective switch. In addition to the topology information typically conveyed via an Interior Gateway Protocol (IGP), it would be necessary to convey the following subsystem properties to minimally characterize a WSON:

GMPLS路由[RFC4202]目前为“Lambda交换机能力”(LSC)定义了一个接口能力描述符,可用于描述RODM或其他类型波长选择交换机上的接口。除了通常通过内部网关协议(IGP)传输的拓扑信息外,还需要传输以下子系统属性,以最低限度地描述WSON:

1. WDM link properties (allowed wavelengths)

1. WDM链路属性(允许的波长)

2. Optical transmitters (wavelength range)

2. 光发射机(波长范围)

3. ROADM/FOADM properties (connectivity matrix, port wavelength restrictions)

3. RODM/FOADM属性(连接矩阵、端口波长限制)

4. Wavelength converter properties (per network element, may change if a common limited shared pool is used)

4. 波长转换器属性(每个网元,如果使用公共有限共享池,则可能会更改)

This information is modeled in detail in [WSON-Info], and a compact encoding is given in [WSON-Encode].

该信息在[WSON Info]中进行了详细建模,在[WSON Encode]中给出了紧凑编码。

6.2.1. Electro-Optical Element Signal Compatibility
6.2.1. 电光元件信号兼容性

In network scenarios where signal compatibility is a concern, it is necessary to add parameters to our existing node and link models to take into account electro-optical input constraints, output constraints, and the signal-processing capabilities of an NE in path computations.

在关注信号兼容性的网络场景中,有必要向现有节点和链路模型添加参数,以在路径计算中考虑电光输入约束、输出约束和网元的信号处理能力。

Input constraints:

输入约束:

1. Permitted optical tributary signal classes: A list of optical tributary signal classes that can be processed by this network element or carried over this link (configuration type)

1. 允许的光支路信号类别:可由该网元处理或通过该链路传输的光支路信号类别列表(配置类型)

2. Acceptable FEC codes (configuration type)

2. 可接受的FEC代码(配置类型)

3. Acceptable bitrate set: a list of specific bitrates or bitrate ranges that the device can accommodate. Coarse bitrate info is included with the optical tributary signal-class restrictions.

3. 可接受比特率集:设备可容纳的特定比特率或比特率范围的列表。粗略比特率信息包含在光支路信号类别限制中。

4. Acceptable G-PID list: a list of G-PIDs corresponding to the "client" digital streams that is compatible with this device

4. 可接受G-PID列表:与该设备兼容的“客户端”数字流对应的G-PID列表

Note that the bitrate of the signal does not change over the LSP. This can be communicated as an LSP parameter; therefore, this information would be available for any NE that needs to use it for configuration. Hence, it is not necessary to have "configuration type" for the NE with respect to bitrate.

注意,信号的比特率在LSP上不会改变。这可以作为LSP参数进行通信;因此,该信息可用于任何需要使用它进行配置的网元。因此,就比特率而言,不必为NE具有“配置类型”。

Output constraints:

输出限制:

1. Output modulation: (a) same as input, (b) list of available types

1. 输出调制:(a)与输入相同,(b)可用类型列表

2. FEC options: (a) same as input, (b) list of available codes

2. FEC选项:(a)与输入相同,(b)可用代码列表

Processing capabilities:

处理能力:

1. Regeneration: (a) 1R, (b) 2R, (c) 3R, (d) list of selectable regeneration types

1. 再生:(a)1R,(b)2R,(c)3R,(d)可选再生类型列表

2. Fault and performance monitoring: (a) G-PID particular capabilities, (b) optical performance monitoring capabilities.

2. 故障和性能监控:(a)G-PID特殊功能,(b)光学性能监控功能。

Note that such parameters could be specified on (a) a network-element-wide basis, (b) a per-port basis, or (c) a per-regenerator basis. Typically, such information has been on a per-port basis; see the GMPLS interface switching capability descriptor [RFC4202].

请注意,这些参数可以在(a)网元范围的基础上指定,(b)每个端口的基础上指定,或者(c)每个再生器的基础上指定。通常,此类信息以每个端口为基础;参见GMPLS接口交换能力描述符[RFC4202]。

6.2.2. Wavelength-Specific Availability Information
6.2.2. 特定波长的可用性信息

For wavelength assignment, it is necessary to know which specific wavelengths are available and which are occupied if a combined RWA process or separate WA process is run as discussed in Sections 4.1.1 and 4.1.2. This is currently not possible with GMPLS routing.

对于波长分配,如果按照第4.1.1节和第4.1.2节中的讨论运行组合RWA过程或单独WA过程,则有必要知道哪些特定波长可用,哪些被占用。这在GMPLS路由中目前是不可能的。

In the routing extensions for GMPLS [RFC4202], requirements for layer-specific TE attributes are discussed. RWA for optical networks without wavelength converters imposes an additional requirement for the lambda (or optical channel) layer: that of knowing which specific wavelengths are in use. Note that current DWDM systems range from 16 channels to 128 channels, with advanced laboratory systems with as many as 300 channels. Given these channel limitations, if the

在GMPLS[RFC4202]的路由扩展中,讨论了层特定TE属性的要求。对于没有波长转换器的光网络,RWA对lambda(或光信道)层提出了额外的要求:知道使用哪些特定波长。请注意,当前的DWDM系统范围从16个通道到128个通道,高级实验室系统最多有300个通道。鉴于这些通道限制,如果

approach of a global wavelength to label mapping or furnishing the local mappings to the PCEs is taken, representing the use of wavelengths via a simple bitmap is feasible [Gen-Encode].

采用全局波长标记映射或向PCE提供局部映射的方法,通过简单位图表示波长的使用是可行的[Gen Encode]。

6.2.3. WSON Routing Information Summary
6.2.3. WSON路由信息摘要

The following table summarizes the WSON information that could be conveyed via GMPLS routing and attempts to classify that information according to its static or dynamic nature and its association with either a link or a node.

下表总结了可通过GMPLS路由传送的WSON信息,并尝试根据其静态或动态性质及其与链路或节点的关联对该信息进行分类。

     Information                         Static/Dynamic       Node/Link
     ------------------------------------------------------------------
     Connectivity matrix                 Static               Node
     Per-port wavelength restrictions    Static               Node(1)
     WDM link (fiber) lambda ranges      Static               Link
     WDM link channel spacing            Static               Link
     Optical transmitter range           Static               Link(2)
     Wavelength conversion capabilities  Static(3)            Node
     Maximum bandwidth per wavelength    Static               Link
     Wavelength availability             Dynamic(4)           Link
     Signal compatibility and processing Static/Dynamic       Node
        
     Information                         Static/Dynamic       Node/Link
     ------------------------------------------------------------------
     Connectivity matrix                 Static               Node
     Per-port wavelength restrictions    Static               Node(1)
     WDM link (fiber) lambda ranges      Static               Link
     WDM link channel spacing            Static               Link
     Optical transmitter range           Static               Link(2)
     Wavelength conversion capabilities  Static(3)            Node
     Maximum bandwidth per wavelength    Static               Link
     Wavelength availability             Dynamic(4)           Link
     Signal compatibility and processing Static/Dynamic       Node
        

Notes:

笔记:

1. These are the per-port wavelength restrictions of an optical device such as a ROADM and are independent of any optical constraints imposed by a fiber link.

1. 这些是光学设备(如ROADM)的每端口波长限制,与光纤链路施加的任何光学限制无关。

2. This could also be viewed as a node capability.

2. 这也可以看作是一种节点功能。

3. This could be dynamic in the case of a limited pool of converters where the number available can change with connection establishment. Note that it may be desirable to include regeneration capabilities here since OEO converters are also regenerators.

3. 在有限的转换器池中,这可能是动态的,其中可用的数量可以随着连接的建立而变化。注意,此处可能需要包括再生能力,因为OEO转换器也是再生器。

4. This is not necessarily needed in the case of distributed wavelength assignment via signaling.

4. 在通过信令进行分布式波长分配的情况下,不一定需要这样做。

While the full complement of the information from the previous table is needed in the Combined RWA and the separate Routing and WA architectures, in the case of Routing + Distributed WA via Signaling, only the following information is needed:

虽然在组合的RWA和单独的路由和WA架构中需要上表中的信息的完整补充,但在路由+通过信令的分布式WA的情况下,只需要以下信息:

     Information                         Static/Dynamic       Node/Link
     ------------------------------------------------------------------
     Connectivity matrix                 Static               Node
     Wavelength conversion capabilities  Static(3)            Node
        
     Information                         Static/Dynamic       Node/Link
     ------------------------------------------------------------------
     Connectivity matrix                 Static               Node
     Wavelength conversion capabilities  Static(3)            Node
        

Information models and compact encodings for this information are provided in [WSON-Info], [Gen-Encode], and [WSON-Encode].

[WSON Info]、[Gen Encode]和[WSON Encode]中提供了该信息的信息模型和压缩编码。

6.3. Optical Path Computation and Implications for PCE
6.3. 光程计算及其对PCE的启示

As previously noted, RWA can be computationally intensive. Such computationally intensive path computations and optimizations were part of the impetus for the PCE architecture [RFC4655].

如前所述,RWA可能是计算密集型的。这种计算密集的路径计算和优化是PCE体系结构的动力之一[RFC4655]。

The Path Computation Element Communication Protocol (PCEP) defines the procedures necessary to support both sequential [RFC5440] and Global Concurrent Optimization (GCO) path computations [RFC5557]. With some protocol enhancement, the PCEP is well positioned to support WSON-enabled RWA computation.

路径计算元素通信协议(PCEP)定义了支持顺序[RFC5440]和全局并发优化(GCO)路径计算[RFC5557]所需的程序。通过一些协议增强,PCEP可以很好地支持启用WSON的RWA计算。

Implications for PCE generally fall into two main categories: (a) optical path constraints and characteristics, (b) computation architectures.

PCE的含义通常分为两大类:(a)光程约束和特性,(b)计算架构。

6.3.1. Optical Path Constraints and Characteristics
6.3.1. 光路约束与特性

For the varying degrees of optimization that may be encountered in a network, the following models of bulk and sequential optical path requests are encountered:

对于网络中可能遇到的不同程度的优化,会遇到以下批量和顺序光路请求模型:

o Batch optimization, multiple optical paths requested at one time (PCE-GCO)

o 批量优化,一次请求多条光路(PCE-GCO)

o Optical path(s) and backup optical path(s) requested at one time (PCEP)

o 一次请求的光路和备份光路(PCEP)

o Single optical path requested at a time (PCEP)

o 一次请求单光路(PCEP)

PCEP and PCE-GCO can be readily enhanced to support all of the potential models of RWA computation.

PCEP和PCE-GCO可随时增强,以支持RWA计算的所有潜在模型。

Optical path constraints include:

光程限制包括:

o Bidirectional assignment of wavelengths

o 波长的双向分配

o Possible simultaneous assignment of wavelength to primary and backup paths

o 可能同时将波长分配到主路径和备份路径

o Tuning range constraint on optical transmitter

o 光发射机的调谐范围约束

6.3.2. Electro-Optical Element Signal Compatibility
6.3.2. 电光元件信号兼容性

When requesting a path computation to PCE, the PCC should be able to indicate the following:

当向PCE请求路径计算时,PCC应能够指示以下内容:

o The G-PID type of an LSP

o LSP的G-PID型

o The signal attributes at the transmitter (at the source): (i) modulation type, (ii) FEC type

o 发射机(源)处的信号属性:(i)调制类型,(ii)FEC类型

o The signal attributes at the receiver (at the sink): (i) modulation type, (ii) FEC type

o 接收器(接收器)处的信号属性:(i)调制类型,(ii)FEC类型

The PCE should be able to respond to the PCC with the following:

PCE应能够通过以下方式响应PCC:

o The conformity of the requested optical characteristics associated with the resulting LSP with the source, sink, and NE along the LSP

o 与产生的LSP相关的请求光学特性与LSP沿线的源、汇和NE的一致性

o Additional LSP attributes modified along the path (e.g., modulation format change)

o 沿路径修改的其他LSP属性(例如,调制格式更改)

6.3.3. Discovery of RWA-Capable PCEs
6.3.3. 发现具有RWA功能的PCE

The algorithms and network information needed for RWA are somewhat specialized and computationally intensive; hence, not all PCEs within a domain would necessarily need or want this capability. Therefore, it would be useful to indicate that a PCE has the ability to deal with RWA via the mechanisms being established for PCE discovery [RFC5088]. [RFC5088] indicates that a sub-TLV could be allocated for this purpose.

RWA所需的算法和网络信息具有一定的专业性和计算密集性;因此,并非一个域内的所有PCE都需要或想要此功能。因此,指出PCE有能力通过为PCE发现建立的机制处理RWA是有用的[RFC5088]。[RFC5088]表示可以为此目的分配子TLV。

Recent progress on objective functions in PCE [RFC5541] would allow operators to flexibly request differing objective functions per their need and applications. For instance, this would allow the operator to choose an objective function that minimizes the total network cost associated with setting up a set of paths concurrently. This would also allow operators to choose an objective function that results in the most evenly distributed link utilization.

PCE[RFC5541]中目标函数的最新进展将允许操作员根据其需求和应用灵活地请求不同的目标函数。例如,这将允许运营商选择一个目标函数,以最小化与同时设置一组路径相关的总网络成本。这也将允许运营商选择一个目标函数,以实现最均匀分布的链路利用率。

This implies that PCEP would easily accommodate a wavelength selection algorithm in its objective function to be able to optimize the path computation from the perspective of wavelength assignment if chosen by the operators.

这意味着,如果操作员选择,PCEP将很容易在其目标函数中容纳波长选择算法,以便能够从波长分配的角度优化路径计算。

7. Security Considerations
7. 安全考虑

This document does not require changes to the security models within GMPLS and associated protocols. That is, the OSPF-TE, RSVP-TE, and PCEP security models could be operated unchanged.

本文件不要求更改GMPLS和相关协议中的安全模型。也就是说,OSPF-TE、RSVP-TE和PCEP安全模型可以保持不变。

However, satisfying the requirements for RWA using the existing protocols may significantly affect the loading of those protocols. This may make the operation of the network more vulnerable to denial-of-service attacks. Therefore, additional care maybe required to ensure that the protocols are secure in the WSON environment.

然而,使用现有协议满足RWA的要求可能会显著影响这些协议的加载。这可能使网络操作更容易受到拒绝服务攻击。因此,可能需要额外注意以确保协议在WSON环境中是安全的。

Furthermore, the additional information distributed in order to address RWA represents a disclosure of network capabilities that an operator may wish to keep private. Consideration should be given to securing this information. For a general discussion on MPLS- and GMPLS-related security issues, see the MPLS/GMPLS security framework [RFC5920].

此外,为了解决RWA而分发的附加信息表示对网络能力的披露,运营商可能希望将其保密。应考虑保护这些信息。有关MPLS和GMPLS相关安全问题的一般性讨论,请参阅MPLS/GMPLS安全框架[RFC5920]。

8. Acknowledgments
8. 致谢

The authors would like to thank Adrian Farrel for many helpful comments that greatly improved the contents of this document.

作者要感谢阿德里安·法雷尔(Adrian Farrel)的许多有益评论,这些评论极大地改进了本文档的内容。

9. References
9. 工具书类
9.1. Normative References
9.1. 规范性引用文件

[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.

[RFC3471]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。

[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.

[RFC3473]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,2003年1月。

[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, October 2004.

[RFC3945]Mannie,E.,Ed.“通用多协议标签交换(GMPLS)体系结构”,RFC 39452004年10月。

[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, October 2005.

[RFC4202]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的路由扩展”,RFC 4202,2005年10月。

[RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G.709 Optical Transport Networks Control", RFC 4328, January 2006.

[RFC4328]Papadimitriou,D.,编辑,“G.709光传输网络控制的通用多协议标签交换(GMPLS)信令扩展”,RFC 4328,2006年1月。

[RFC4655] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path Computation Element (PCE)-Based Architecture", RFC 4655, August 2006.

[RFC4655]Farrel,A.,Vasseur,J.-P.,和J.Ash,“基于路径计算元素(PCE)的体系结构”,RFC 46552006年8月。

[RFC5088] Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R. Zhang, "OSPF Protocol Extensions for Path Computation Element (PCE) Discovery", RFC 5088, January 2008.

[RFC5088]Le Roux,JL.,Ed.,Vasseur,JP.,Ed.,Ikejiri,Y.,和R.Zhang,“路径计算元素(PCE)发现的OSPF协议扩展”,RFC 5088,2008年1月。

[RFC5212] Shiomoto, K., Papadimitriou, D., Le Roux, JL., Vigoureux, M., and D. Brungard, "Requirements for GMPLS-Based Multi-Region and Multi-Layer Networks (MRN/MLN)", RFC 5212, July 2008.

[RFC5212]Shiomoto,K.,Papadimitriou,D.,Le Roux,JL.,Vigoureux,M.,和D.Brungard,“基于GMPLS的多区域和多层网络(MRN/MLN)的要求”,RFC 52122008年7月。

[RFC5557] Lee, Y., Le Roux, JL., King, D., and E. Oki, "Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization", RFC 5557, July 2009.

[RFC5557]Lee,Y.,Le Roux,JL.,King,D.,和E.Oki,“支持全局并行优化的路径计算元素通信协议(PCEP)要求和协议扩展”,RFC 5557,2009年7月。

[RFC5420] Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A. Ayyangarps, "Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering (RSVP-TE)", RFC 5420, February 2009.

[RFC5420]Farrel,A.,Ed.,Papadimitriou,D.,Vasseur,JP.,和A.Ayyangarps,“使用资源预留协议流量工程(RSVP-TE)建立MPLS LSP的属性编码”,RFC 5420,2009年2月。

[RFC5440] Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path Computation Element (PCE) Communication Protocol (PCEP)", RFC 5440, March 2009.

[RFC5440]Vasseur,JP.,Ed.,和JL。Le Roux,Ed.“路径计算元素(PCE)通信协议(PCEP)”,RFC 54402009年3月。

[RFC5541] Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)", RFC 5541, June 2009.

[RFC5541]Le Roux,JL.,Vasseur,JP.,和Y.Lee,“路径计算元素通信协议(PCEP)中目标函数的编码”,RFC 55412009年6月。

9.2. Informative References
9.2. 资料性引用

[Gen-Encode] Bernstein, G., Lee, Y., Li, D., and W. Imajuku, "General Network Element Constraint Encoding for GMPLS Controlled Networks", Work in Progress, December 2010.

[Gen Encode]Bernstein,G.,Lee,Y.,Li,D.,和W.Imajuku,“GMPLS控制网络的通用网元约束编码”,正在进行的工作,2010年12月。

[G.652] ITU-T Recommendation G.652, "Characteristics of a single-mode optical fibre and cable", November 2009.

[G.652]ITU-T建议G.652,“单模光纤和光缆的特性”,2009年11月。

[G.653] ITU-T Recommendation G.653, "Characteristics of a dispersion-shifted single-mode optical fibre and cable", July 2010.

[G.653]ITU-T建议G.653,“色散位移单模光纤和光缆的特性”,2010年7月。

[G.654] ITU-T Recommendation G.654, "Characteristics of a cut-off shifted single-mode optical fibre and cable", July 2010.

[G.654]ITU-T建议G.654,“截止位移单模光纤和光缆的特性”,2010年7月。

[G.655] ITU-T Recommendation G.655, "Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable", November 2009.

[G.655]ITU-T建议G.655,“非零色散位移单模光纤和光缆的特性”,2009年11月。

[G.656] ITU-T Recommendation G.656, "Characteristics of a fibre and cable with non-zero dispersion for wideband optical transport", July 2010.

[G.656]ITU-T建议G.656,“宽带光传输用非零色散光纤和电缆的特性”,2010年7月。

[G.671] ITU-T Recommendation G.671, "Transmission characteristics of optical components and subsystems", January 2009.

[G.671]ITU-T建议G.671,“光学元件和子系统的传输特性”,2009年1月。

[G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM applications: DWDM frequency grid", June 2002.

[G.694.1]ITU-T建议G.694.1,“WDM应用的频谱网格:DWDM频率网格”,2002年6月。

[G.694.2] ITU-T Recommendation G.694.2, "Spectral grids for WDM applications: CWDM wavelength grid", December 2003.

[G.694.2]ITU-T建议G.694.2,“WDM应用的光谱网格:CWDM波长网格”,2003年12月。

[G.698.1] ITU-T Recommendation G.698.1, "Multichannel DWDM applications with single-channel optical interfaces", November 2009.

[G.698.1]ITU-T建议G.698.1,“具有单通道光学接口的多通道DWDM应用”,2009年11月。

[G.698.2] ITU-T Recommendation G.698.2, "Amplified multichannel dense wavelength division multiplexing applications with single channel optical interfaces ", November 2009.

[G.698.2]ITU-T建议G.698.2,“带单通道光学接口的放大多通道密集波分复用应用”,2009年11月。

[G.707] ITU-T Recommendation G.707, "Network node interface for the synchronous digital hierarchy (SDH)", January 2007.

[G.707]ITU-T建议G.707,“同步数字体系(SDH)的网络节点接口”,2007年1月。

[G.709] ITU-T Recommendation G.709, "Interfaces for the Optical Transport Network (OTN)", December 2009.

[G.709]ITU-T建议G.709,“光传输网络(OTN)接口”,2009年12月。

[G.872] ITU-T Recommendation G.872, "Architecture of optical transport networks", November 2001.

[G.872]ITU-T建议G.872,“光传输网络体系结构”,2001年11月。

[G.959.1] ITU-T Recommendation G.959.1, "Optical transport network physical layer interfaces", November 2009.

[G.959.1]ITU-T建议G.959.1,“光传输网络物理层接口”,2009年11月。

[G.Sup39] ITU-T Series G Supplement 39, "Optical system design and engineering considerations", December 2008.

[G.Sup39]ITU-T系列G补编39,“光学系统设计和工程考虑”,2008年12月。

[Imajuku] Imajuku, W., Sone, Y., Nishioka, I., and S. Seno, "Routing Extensions to Support Network Elements with Switching Constraint", Work in Progress, July 2007.

[Imajuku]Imajuku,W.,Sone,Y.,Nishioka,I.,和S.Seno,“支持具有交换约束的网络元件的路由扩展”,正在进行的工作,2007年7月。

[RFC6205] Otani, T., Ed. and D. Li, Ed., "Generalized Labels of Lambda-Switch Capable (LSC) Label Switching Routers", RFC 6205, March 2011.

[RFC6205]Otani,T.,Ed.和D.Li,Ed.,“Lambda交换机功能(LSC)标签交换路由器的通用标签”,RFC 62052011年3月。

[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, July 2010.

[RFC5920]方,L.,编辑,“MPLS和GMPLS网络的安全框架”,RFC 5920,2010年7月。

[WSON-Encode] Bernstein, G., Lee, Y., Li, D., and W. Imajuku, "Routing and Wavelength Assignment Information Encoding for Wavelength Switched Optical Networks", Work in Progress, March 2011.

[WSON编码]Bernstein,G.,Lee,Y.,Li,D.,和W.Imajuku,“波长交换光网络的路由和波长分配信息编码”,正在进行的工作,2011年3月。

[WSON-Imp] Lee, Y., Bernstein, G., Li, D., and G. Martinelli, "A Framework for the Control of Wavelength Switched Optical Networks (WSON) with Impairments", Work in Progress, April 2011.

[WSON Imp]Lee,Y.,Bernstein,G.,Li,D.,和G.Martinelli,“具有损伤的波长交换光网络(WSON)控制框架”,正在进行的工作,2011年4月。

[WSON-Info] Bernstein, G., Lee, Y., Li, D., and W. Imajuku, "Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks", Work in Progress, July 2008.

[WSON信息]Bernstein,G.,Lee,Y.,Li,D.,和W.Imajuku,“波长交换光网络的路由和波长分配信息模型”,正在进行的工作,2008年7月。

Contributors

贡献者

Snigdho Bardalai Fujitsu EMail: Snigdho.Bardalai@us.fujitsu.com

Snigdho Bardalai Fujitsu电子邮件:Snigdho。Bardalai@us.fujitsu.com

Diego Caviglia Ericsson Via A. Negrone 1/A 16153 Genoa Italy Phone: +39 010 600 3736 EMail: diego.caviglia@marconi.com, diego.caviglia@ericsson.com

Diego Caviglia Ericsson通过A.Negrone 1/A 16153意大利热那亚电话:+39 010 600 3736电子邮件:Diego。caviglia@marconi.com,迭戈。caviglia@ericsson.com

Daniel King Old Dog Consulting UK EMail: daniel@olddog.co.uk

Daniel King Old Dog Consulting UK电子邮件:daniel@olddog.co.uk

Itaru Nishioka NEC Corp. 1753 Simonumabe, Nakahara-ku Kawasaki, Kanagawa 211-8666 Japan Phone: +81 44 396 3287 EMail: i-nishioka@cb.jp.nec.com

Itaru Nishioka NEC Corp.1753 Simonumabe,神奈川中川区211-8666日本电话:+81 44 396 3287电子邮件:i-nishioka@cb.jp.nec.com

Lyndon Ong Ciena EMail: Lyong@Ciena.com

林登:电子邮件:Lyong@Ciena.com

Pierre Peloso Alcatel-Lucent Route de Villejust, 91620 Nozay France EMail: pierre.peloso@alcatel-lucent.fr

Pierre Peloso Alcatel-Lucent Villejust路,91620法国诺扎伊电子邮件:Pierre。peloso@alcatel-朗讯

Jonathan Sadler Tellabs EMail: Jonathan.Sadler@tellabs.com

乔纳森·萨德勒告诉我们电子邮件:乔纳森。Sadler@tellabs.com

Dirk Schroetter Cisco EMail: dschroet@cisco.com

Dirk Schroetter Cisco电子邮件:dschroet@cisco.com

Jonas Martensson Acreo Electrum 236 16440 Kista Sweden EMail: Jonas.Martensson@acreo.se

Jonas Martenson Acreo Electrum 236 16440 Kista瑞典电子邮件:Jonas。Martensson@acreo.se

Authors' Addresses

作者地址

Young Lee (editor) Huawei Technologies 1700 Alma Drive, Suite 100 Plano, TX 75075 USA

Young Lee(编辑)华为技术有限公司美国德克萨斯州普莱诺阿尔玛大道1700号100室75075

Phone: (972) 509-5599 (x2240) EMail: ylee@huawei.com

电话:(972)509-5599(x2240)电子邮件:ylee@huawei.com

Greg M. Bernstein (editor) Grotto Networking Fremont, CA USA

Greg M.Bernstein(编辑)美国加利福尼亚州弗里蒙特Grotto Networking

Phone: (510) 573-2237 EMail: gregb@grotto-networking.com

电话:(510)573-2237电子邮件:gregb@grotto-网络

Wataru Imajuku NTT Network Innovation Labs 1-1 Hikari-no-oka, Yokosuka, Kanagawa Japan

Wataru Imajuku NTT网络创新实验室1-1 Hikari no oka,横须贺,神奈川日本

   Phone: +81-(46) 859-4315
   EMail: wataru.imajuku@ieee.org
        
   Phone: +81-(46) 859-4315
   EMail: wataru.imajuku@ieee.org