Independent Submission                                      A. Keromytis
Request for Comments: 6042                           Columbia University
Category: Informational                                     October 2010
ISSN: 2070-1721
        
Independent Submission                                      A. Keromytis
Request for Comments: 6042                           Columbia University
Category: Informational                                     October 2010
ISSN: 2070-1721
        

Transport Layer Security (TLS) Authorization Using KeyNote

使用KeyNote的传输层安全(TLS)授权

Abstract

摘要

This document specifies the use of the KeyNote trust-management system as an authorization extension in the Transport Layer Security (TLS) Handshake Protocol, according to guidelines in RFC 5878. Extensions carried in the client and server hello messages confirm that both parties support the desired authorization data types. Then, if supported by both the client and the server, KeyNote credentials are exchanged in the supplemental data handshake message.

根据RFC 5878中的指南,本文档规定了在传输层安全(TLS)握手协议中使用KeyNote信任管理系统作为授权扩展。客户端和服务器hello消息中携带的扩展确认双方都支持所需的授权数据类型。然后,如果客户端和服务器都支持,则在补充数据握手消息中交换注释记号凭据。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

这是对RFC系列的贡献,独立于任何其他RFC流。RFC编辑器已选择自行发布此文档,并且未声明其对实现或部署的价值。RFC编辑批准发布的文件不适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6042.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6042.

Copyright Notice

版权公告

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2010 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。

1. Introduction
1. 介绍

This document describes the identifiers necessary to exchange KeyNote [KEYNOTE] credential assertions inside a TLS [TLS1.0] [TLS1.1] [TLS1.2] exchange. Such credential assertions can authorize the client and/or the server to perform certain actions. In most usage scenarios, the KeyNote credential assertions will be signed by a cryptographic public key [RFC2792]. By using the X.509 key and signature encoding [X509KEY], it is possible to add KeyNote-based authorization and policy compliance support to the existing, unmodified X.509 authentication exchange in TLS.

本文档描述了在TLS[TLS1.0][TLS1.1][TLS1.2]交换中交换KeyNote[KeyNote]凭证断言所需的标识符。此类凭据断言可以授权客户端和/或服务器执行某些操作。在大多数使用场景中,KeyNote凭证断言将由加密公钥[RFC2792]签名。通过使用X.509密钥和签名编码[X509KEY],可以向TLS中现有的未修改的X.509身份验证交换添加基于注释记号的授权和策略遵从性支持。

A list of KeyNote credentials (e.g., forming a delegation chain) may be sent as part of the same payload. Alternatively, a URL [RFC3986] pointing to the location of such a list of KeyNote credentials may be provided.

注释记号凭证列表(例如,形成委托链)可作为同一有效负载的一部分发送。或者,可以提供指向此类注释记号凭证列表位置的URL[RFC3986]。

In most scenarios, at least one of these credentials will be issued to the public key of the transmitter of the credentials, i.e., said public key will appear in the "Licensees" field of at least one KeyNote credential assertion. The same public key will generally be used by the transmitter of the same credentials to authenticate as part of the TLS exchange. The authentication material (e.g., cryptographic public key) that was used by the transmitter to authenticate in the TLS exchange will be provided to the KeyNote evaluation engine as an "Action Authorizer".

在大多数情况下,这些凭证中的至少一个将被颁发给凭证发送者的公钥,即,所述公钥将出现在至少一个注释记号凭证断言的“被许可人”字段中。作为TLS交换的一部分,具有相同凭据的发送方通常会使用相同的公钥进行身份验证。发送器在TLS交换中用于认证的认证材料(例如加密公钥)将作为“行动授权人”提供给KeyNote评估引擎。

1.1. Conventions
1.1. 习俗

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

2. KeyNote Credential Assertion Lists
2. 注释记号凭据断言列表

The KeyNote Assertion List type definition in the TLS Authorization Data Formats registry is:

TLS授权数据格式注册表中的注释记号断言列表类型定义为:

keynote_assertion_list(64)

注释记号列表(64)

When the keynote_assertion_list value is present, the authorization data is a list of KeyNote credential assertions that conforms to the profile in RFC 2704 [KEYNOTE].

当存在keynote_断言_列表值时,授权数据是符合RFC 2704[keynote]中配置文件的keynote凭证断言列表。

A KeyNote assertion list is transmitted inside an AuthorizationDataEntry structure as an opaque sequence of 1 - 2^16-1 bytes:

注释记号断言列表在AuthorizationDataEntry结构中以1-2^16-1字节的不透明序列传输:

      opaque KeyNoteAssertionList<1..2^16-1>;
        
      opaque KeyNoteAssertionList<1..2^16-1>;
        

When KeyNoteAssertionList is used, the field contains an ASCII-encoded list of signed KeyNote assertions, as described in RFC 2704 [KEYNOTE]. The assertions are separated by two "\n" (newline) characters. A KeyNote assertion is a structure similar to a public key certificate; the main difference is that instead of a binding between a name and a public key, KeyNote assertions bind public keys to authorization rules that are evaluated by the peer when the sender later issues specific requests.

使用注释记号断言列表时,该字段包含一个ASCII编码的已签名注释记号断言列表,如RFC 2704[KeyNote]中所述。断言由两个“\n”(换行符)字符分隔。注释记号断言是一种类似于公钥证书的结构;主要区别在于,与名称和公钥之间的绑定不同,注释记号断言将公钥绑定到授权规则,该授权规则在发送方稍后发出特定请求时由对等方进行评估。

When making an authorization decision based on a list of KeyNote assertions, proper linkage between the KeyNote assertions and the public key certificate that is transferred in the TLS Certificate message is needed. Receivers of a KeyNote assertion list should initialize the ACTION_AUTHORIZER variable to be the sender's public key, which was used to authenticate the TLS exchange. If a different authentication mechanism is used, it is the responsibility of the credential issuer to issue the appropriate credentials.

当根据注释记号断言列表做出授权决策时,需要在注释记号断言和TLS证书消息中传输的公钥证书之间建立适当的链接。注释记号断言列表的接收者应将ACTION_AUTHORIZER变量初始化为发送者的公钥,该公钥用于验证TLS交换。如果使用不同的身份验证机制,则凭证颁发者有责任颁发适当的凭证。

3. KeyNote Credential Assertion List URL
3. 注释记号凭据断言列表URL

The KeyNote Assertion List URL type definition in the TLS Authorization Data Formats registry is:

TLS授权数据格式注册表中的注释记号断言列表URL类型定义为:

keynote_assertion_list_url(65)

注释记号\u断言\u列表\u url(65)

A KeyNote Assertion List URL is transmitted inside an AuthorizationDataEntry structure as a URLandHash structure [AUTHZ].

注释记号断言列表URL作为URLandHash结构[AUTHZ]在AuthorizationDataEntry结构中传输。

When the keynote_assertion_list_url value is present, the authorization data is a list of KeyNote assertions as described in Section 2; however, the KeyNote assertion list is fetched with the supplied URL. A one-way hash value is provided to ensure that the intended KeyNote credential assertion is obtained.

当存在注释记号断言列表url值时,授权数据是注释记号断言列表,如第2节所述;但是,注释记号断言列表是使用提供的URL获取的。提供单向散列值以确保获得预期的注释记号凭证断言。

Implementations that support keynote_assertion_list_url MUST support URLs that employ the HTTP scheme [HTTP]. These implementations MUST confirm that the hash value computed on the fetched authorization matches the one received in the handshake. Mismatch of the hash values SHOULD be treated as though the authorization was not provided, which will result in a bad_certificate alert [AUTHZ].

支持注释记号\断言\列表\ url的实现必须支持采用HTTP方案[HTTP]的url。这些实现必须确认在获取的授权上计算的哈希值与握手中接收的哈希值匹配。哈希值不匹配应视为未提供授权,这将导致错误的\u证书警报[AUTHZ]。

Other schemes may also be supported. When dereferencing these URLs, circular dependencies MUST be avoided. Avoiding TLS when dereferencing these URLs is one way to avoid circular dependencies. Therefore, clients using the HTTP scheme MUST NOT use these TLS extensions if the Upgrade mechanism in HTTP [UPGRADE] is used. For other schemes, similar care must be taken to avoid using these TLS extensions.

其他计划也可能得到支持。当取消引用这些URL时,必须避免循环依赖关系。在取消引用这些URL时避免TLS是避免循环依赖的一种方法。因此,如果使用HTTP[Upgrade]中的升级机制,则使用HTTP方案的客户端不得使用这些TLS扩展。对于其他方案,必须注意避免使用这些TLS扩展。

4. IANA Considerations
4. IANA考虑

With this document, IANA has registered two new entries in the TLS Authorization Data Formats registry: keynote_assertion_list(64) and keynote_assertion_list_url(65). This registry is defined in [AUTHZ].

在本文档中,IANA在TLS授权数据格式注册表中注册了两个新条目:keynote_assertion_list(64)和keynote_assertion_list_url(65)。此注册表在[AUTHZ]中定义。

5. Security Considerations
5. 安全考虑

There are no security considerations beyond those discussed in [KEYNOTE], [RFC2792], and [AUTHZ].

除了[KEYNOTE]、[RFC2792]和[AUTHZ]中讨论的内容外,没有其他安全注意事项。

6. References
6. 工具书类
6.1. Normative References
6.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[TLS1.0] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246, January 1999.

[TLS1.0]Dierks,T.和C.Allen,“TLS协议版本1.0”,RFC 2246,1999年1月。

[TLS1.1] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.1", RFC 4346, April 2006.

[TLS1.1]Dierks,T.和E.Rescorla,“传输层安全(TLS)协议版本1.1”,RFC 4346,2006年4月。

[TLS1.2] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August 2008.

[TLS1.2]Dierks,T.和E.Rescorla,“传输层安全(TLS)协议版本1.2”,RFC 5246,2008年8月。

[HTTP] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[HTTP]菲尔丁,R.,盖蒂斯,J.,莫卧儿,J.,弗莱斯蒂克,H.,马斯特,L.,利奇,P.,和T.伯纳斯李,“超文本传输协议——HTTP/1.1”,RFC2616,1999年6月。

[UPGRADE] Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/1.1", RFC 2817, May 2000.

[升级]Khare,R.和S.Lawrence,“在HTTP/1.1中升级到TLS”,RFC 28172000年5月。

[KEYNOTE] Blaze, M., Feigenbaum, J., Ioannidis, J., and A. Keromytis, "The KeyNote Trust-Management System Version 2", RFC 2704, September 1999.

[KEYNOTE]Blaze,M.,Feigenbaum,J.,Ioannidis,J.,和A.Keromytis,“KEYNOTE信托管理系统版本2”,RFC 27042099年9月。

[AUTHZ] Brown, M. and R. Housley, "Transport Layer Security (TLS) Authorization Extensions", RFC 5878, May 2010.

[AUTHZ]Brown,M.和R.Housley,“传输层安全(TLS)授权扩展”,RFC 5878,2010年5月。

6.2. Informative References
6.2. 资料性引用

[RFC2792] Blaze, M., Ioannidis, J., and A. Keromytis, "DSA and RSA Key and Signature Encoding for the KeyNote Trust Management System", RFC 2792, March 2000.

[RFC2792]Blaze,M.,Ioannidis,J.,和A.Keromytis,“KeyNote信任管理系统的DSA和RSA密钥和签名编码”,RFC 2792,2000年3月。

[X509KEY] Keromytis, A., "X.509 Key and Signature Encoding for the KeyNote Trust Management System", RFC 5708, January 2010.

[X509KEY]Keromytis,A.,“KeyNote信托管理系统的X.509密钥和签名编码”,RFC 5708,2010年1月。

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January 2005.

[RFC3986]Berners Lee,T.,Fielding,R.,和L.Masinter,“统一资源标识符(URI):通用语法”,STD 66,RFC 3986,2005年1月。

Appendix A. Updated TLS Authorization Data Structures
附录A.更新的TLS授权数据结构

For clarity, this Appendix shows an updated version of the relevant data structures from Section 3.3 in [AUTHZ] with the new entries described in this document. The added elements are denoted with two asterisks ("**") at the end of the respective lines.

为清楚起见,本附录显示了[AUTHZ]第3.3节中相关数据结构的更新版本,以及本文件中描述的新条目。添加的元素在各行末尾用两个星号(***)表示。

      struct {
         AuthorizationDataEntry authz_data_list<1..2^16-1>;
      } AuthorizationData;
        
      struct {
         AuthorizationDataEntry authz_data_list<1..2^16-1>;
      } AuthorizationData;
        
      struct {
         AuthzDataFormat authz_format;
         select (AuthzDataFormat) {
            case x509_attr_cert:              X509AttrCert;
            case saml_assertion:              SAMLAssertion;
            case x509_attr_cert_url:          URLandHash;
            case saml_assertion_url:          URLandHash;
            case keynote_assertion_list:      KeyNoteAssertionList;   **
            case keynote_assertion_list_url:  URLandHash;             **
         }
      } AuthorizationDataEntry;
        
      struct {
         AuthzDataFormat authz_format;
         select (AuthzDataFormat) {
            case x509_attr_cert:              X509AttrCert;
            case saml_assertion:              SAMLAssertion;
            case x509_attr_cert_url:          URLandHash;
            case saml_assertion_url:          URLandHash;
            case keynote_assertion_list:      KeyNoteAssertionList;   **
            case keynote_assertion_list_url:  URLandHash;             **
         }
      } AuthorizationDataEntry;
        
      enum {
         x509_attr_cert(0), saml_assertion(1), x509_attr_cert_url(2),
         saml_assertion_url(3),
         keynote_assertion_list(64), keynote_assertion_list_url(65),  **
         (255)
      } AuthzDataFormat;
        
      enum {
         x509_attr_cert(0), saml_assertion(1), x509_attr_cert_url(2),
         saml_assertion_url(3),
         keynote_assertion_list(64), keynote_assertion_list_url(65),  **
         (255)
      } AuthzDataFormat;
        
      opaque X509AttrCert<1..2^16-1>;
        
      opaque X509AttrCert<1..2^16-1>;
        
      opaque SAMLAssertion<1..2^16-1>;
        
      opaque SAMLAssertion<1..2^16-1>;
        
      opaque KeyNoteAssertionList<1..2^16-1>;                         **
        
      opaque KeyNoteAssertionList<1..2^16-1>;                         **
        
      struct {
         opaque url<1..2^16-1>;
         HashAlgorithm hash_alg;
         select (hash_alg) {
            case md5:    MD5Hash;
            case sha1:   SHA1Hash;
            case sha224: SHA224Hash;
            case sha256: SHA256Hash;
            case sha384: SHA384Hash;
            case sha512: SHA512Hash;
         } hash;
      } URLandHash;
        
      struct {
         opaque url<1..2^16-1>;
         HashAlgorithm hash_alg;
         select (hash_alg) {
            case md5:    MD5Hash;
            case sha1:   SHA1Hash;
            case sha224: SHA224Hash;
            case sha256: SHA256Hash;
            case sha384: SHA384Hash;
            case sha512: SHA512Hash;
         } hash;
      } URLandHash;
        
      enum {
         none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
         sha512(6), (255)
      } HashAlgorithm;
        
      enum {
         none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
         sha512(6), (255)
      } HashAlgorithm;
        

opaque MD5Hash[16];

不透明MD5Hash[16];

opaque SHA1Hash[20];

不透明SHA1Hash[20];

opaque SHA224Hash[28];

不透明散列[28];

opaque SHA256Hash[32];

不透明SHA256Hash[32];

opaque SHA384Hash[48];

不透明SHA384Hash[48];

opaque SHA512Hash[64];

不透明SHA512Hash[64];

Author's Address

作者地址

Angelos D. Keromytis Department of Computer Science Columbia University Mail Code 0401 1214 Amsterdam Avenue New York, NY 10027 USA

美国纽约州纽约市阿姆斯特丹大道0401 1214号哥伦比亚大学计算机科学系Angelos D.Keromytis

   EMail: angelos@cs.columbia.edu
        
   EMail: angelos@cs.columbia.edu