Internet Engineering Task Force (IETF)                            G. Ash
Request for Comments: 5976                                     A. Morton
Category: Experimental                                          M. Dolly
ISSN: 2070-1721                                              P. Tarapore
                                                               C. Dvorak
                                                               AT&T Labs
                                                           Y. El Mghazli
                                                          Alcatel-Lucent
                                                            October 2010
        
Internet Engineering Task Force (IETF)                            G. Ash
Request for Comments: 5976                                     A. Morton
Category: Experimental                                          M. Dolly
ISSN: 2070-1721                                              P. Tarapore
                                                               C. Dvorak
                                                               AT&T Labs
                                                           Y. El Mghazli
                                                          Alcatel-Lucent
                                                            October 2010
        

Y.1541-QOSM: Model for Networks Using Y.1541 Quality-of-Service Classes

Y.1541-QOSM:使用Y.1541服务质量等级的网络模型

Abstract

摘要

This document describes a QoS-NSLP Quality-of-Service model (QOSM) based on ITU-T Recommendation Y.1541 Network QoS Classes and related guidance on signaling. Y.1541 specifies 8 classes of Network Performance objectives, and the Y.1541-QOSM extensions include additional QSPEC parameters and QOSM processing guidelines.

本文档描述了基于ITU-T建议Y.1541网络QoS等级和信令相关指南的QoS NSLP服务质量模型(QOSM)。Y.1541规定了8类网络性能目标,Y.1541-QOSM扩展包括额外的QSPEC参数和QOSM处理指南。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for examination, experimental implementation, and evaluation.

本文件不是互联网标准跟踪规范;它是为检查、实验实施和评估而发布的。

This document defines an Experimental Protocol for the Internet community. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文档为互联网社区定义了一个实验协议。本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5976.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc5976.

Copyright Notice

版权公告

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2010 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请审阅这些文件

carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

请仔细阅读,因为他们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

本文件可能包含2008年11月10日之前发布或公开的IETF文件或IETF贡献中的材料。控制某些材料版权的人员可能未授予IETF信托允许在IETF标准流程之外修改此类材料的权利。在未从控制此类材料版权的人员处获得充分许可的情况下,不得在IETF标准流程之外修改本文件,也不得在IETF标准流程之外创建其衍生作品,除了将其格式化以RFC形式发布或将其翻译成英语以外的其他语言。

Table of Contents

目录

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Requirements Language  . . . . . . . . . . . . . . . . . .  3
   2.  Summary of ITU-T Recommendations Y.1541 and Signaling
       Requirements . . . . . . . . . . . . . . . . . . . . . . . . .  3
     2.1.  Description of Y.1541 Classes  . . . . . . . . . . . . . .  4
     2.2.  Y.1541-QOSM Processing Requirements  . . . . . . . . . . .  6
   3.  Additional QSPEC Parameters for Y.1541 QOSM  . . . . . . . . .  7
     3.1.  Traffic Model (TMOD) Extension Parameter . . . . . . . . .  7
     3.2.  Restoration Priority Parameter . . . . . . . . . . . . . .  8
   4.  Y.1541-QOSM Considerations and Processing Example  . . . . . . 10
     4.1.  Deployment Considerations  . . . . . . . . . . . . . . . . 10
     4.2.  Applicable QSPEC Procedures  . . . . . . . . . . . . . . . 10
     4.3.  QNE Processing Rules . . . . . . . . . . . . . . . . . . . 10
     4.4.  Processing Example . . . . . . . . . . . . . . . . . . . . 10
     4.5.  Bit-Level QSPEC Example  . . . . . . . . . . . . . . . . . 12
     4.6.  Preemption Behavior  . . . . . . . . . . . . . . . . . . . 14
   5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 14
     5.1.  Assignment of QSPEC Parameter IDs  . . . . . . . . . . . . 14
     5.2.  Restoration Priority Parameter Registry  . . . . . . . . . 14
       5.2.1.  Restoration Priority Field . . . . . . . . . . . . . . 14
       5.2.2.  Time to Restore Field  . . . . . . . . . . . . . . . . 15
       5.2.3.  Extent of Restoration Field  . . . . . . . . . . . . . 15
   6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 16
   7.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 16
   8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 17
     8.1.  Normative References . . . . . . . . . . . . . . . . . . . 17
     8.2.  Informative References . . . . . . . . . . . . . . . . . . 17
        
   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Requirements Language  . . . . . . . . . . . . . . . . . .  3
   2.  Summary of ITU-T Recommendations Y.1541 and Signaling
       Requirements . . . . . . . . . . . . . . . . . . . . . . . . .  3
     2.1.  Description of Y.1541 Classes  . . . . . . . . . . . . . .  4
     2.2.  Y.1541-QOSM Processing Requirements  . . . . . . . . . . .  6
   3.  Additional QSPEC Parameters for Y.1541 QOSM  . . . . . . . . .  7
     3.1.  Traffic Model (TMOD) Extension Parameter . . . . . . . . .  7
     3.2.  Restoration Priority Parameter . . . . . . . . . . . . . .  8
   4.  Y.1541-QOSM Considerations and Processing Example  . . . . . . 10
     4.1.  Deployment Considerations  . . . . . . . . . . . . . . . . 10
     4.2.  Applicable QSPEC Procedures  . . . . . . . . . . . . . . . 10
     4.3.  QNE Processing Rules . . . . . . . . . . . . . . . . . . . 10
     4.4.  Processing Example . . . . . . . . . . . . . . . . . . . . 10
     4.5.  Bit-Level QSPEC Example  . . . . . . . . . . . . . . . . . 12
     4.6.  Preemption Behavior  . . . . . . . . . . . . . . . . . . . 14
   5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 14
     5.1.  Assignment of QSPEC Parameter IDs  . . . . . . . . . . . . 14
     5.2.  Restoration Priority Parameter Registry  . . . . . . . . . 14
       5.2.1.  Restoration Priority Field . . . . . . . . . . . . . . 14
       5.2.2.  Time to Restore Field  . . . . . . . . . . . . . . . . 15
       5.2.3.  Extent of Restoration Field  . . . . . . . . . . . . . 15
   6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 16
   7.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 16
   8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 17
     8.1.  Normative References . . . . . . . . . . . . . . . . . . . 17
     8.2.  Informative References . . . . . . . . . . . . . . . . . . 17
        
1. Introduction
1. 介绍

This document describes a QoS model (QOSM) for Next Steps in Signaling (NSIS) QoS signaling layer protocol (QoS-NSLP) application based on ITU-T Recommendation Y.1541 Network QoS Classes and related guidance on signaling. [Y.1541] currently specifies 8 classes of Network Performance objectives, and the Y.1541-QOSM extensions include additional QSPEC [RFC5975] parameters and QOSM processing guidelines. The extensions are based on standardization work in the ITU-T on QoS signaling requirements ([Y.1541] and [E.361]), and guidance in [TRQ-QoS-SIG].

本文档描述了基于ITU-T建议Y.1541网络QoS等级和信令相关指南的信令(NSIS)QoS信令层协议(QoS NSLP)应用中后续步骤的QoS模型(QOSM)。[Y.1541]目前规定了8类网络性能目标,Y.1541-QOSM扩展包括额外的QSPEC[RFC5975]参数和QOSM处理指南。这些扩展基于ITU-T中关于QoS信令要求的标准化工作([Y.1541]和[E.361]),以及[TRQ QoS SIG]中的指南。

[RFC5974] defines message types and control information for the QoS-NSLP that are generic to all QOSMs. A QOSM is a defined mechanism for achieving QoS as a whole. The specification of a QOSM includes a description of its QSPEC parameter information, as well as how that information should be treated or interpreted in the network. The QSPEC [RFC5975] contains a set of parameters and values describing the requested resources. It is opaque to the QoS-NSLP and similar in purpose to the TSpec, RSpec, and AdSpec specified in [RFC2205] and [RFC2210]. A QOSM provides a specific set of parameters to be carried in the QSPEC object. At each QoS NSIS Entity (QNE), the QSPEC contents are interpreted by the resource management function (RMF) for purposes of policy control and traffic control, including admission control and configuration of the scheduler.

[RFC5974]定义所有QOSMs通用的QoS NSLP的消息类型和控制信息。QOSM是一种用于实现QoS的定义机制。QOSM规范包括对其QSPEC参数信息的描述,以及该信息在网络中应如何处理或解释。QSPEC[RFC5975]包含一组描述请求资源的参数和值。它对QoS NSLP是不透明的,在用途上与[RFC2205]和[RFC2210]中规定的TSpec、RSpec和AdSpec类似。QOSM提供了要在QSPEC对象中携带的一组特定参数。在每个QoS NSIS实体(QNE)处,资源管理功能(RMF)解释QSPEC内容,以便进行策略控制和流量控制,包括接纳控制和调度器的配置。

1.1. Requirements Language
1.1. 需求语言

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。

2. Summary of ITU-T Recommendations Y.1541 and Signaling Requirements
2. ITU-T建议Y.1541和信令要求摘要

As stated above, [Y.1541] is a specification of standardized QoS classes for IP networks (a summary of these classes is given below). Section 7 of [TRQ-QoS-SIG] describes the signaling features needed to achieve end-to-end QoS in IP networks, with Y.1541 QoS classes as a basis. [Y.1541] recommends a flexible allocation of the end-to-end performance objectives (e.g., delay) across networks, rather than a fixed per-network allocation. NSIS protocols already address most of the requirements; this document identifies additional QSPEC parameters and processing requirements needed to support the Y.1541 QOSM.

如上所述,[Y.1541]是IP网络标准化QoS等级的规范(这些等级的概述如下)。[TRQ QoS SIG]第7节描述了在IP网络中实现端到端QoS所需的信令功能,以Y.1541 QoS等级为基础。[Y.1541]建议跨网络灵活分配端到端性能目标(例如延迟),而不是固定的每个网络分配。NSIS协议已经解决了大部分需求;本文件确定了支持Y.1541 QOSM所需的其他QSPEC参数和处理要求。

2.1. Description of Y.1541 Classes
2.1. Y.1541类的说明

[Y.1541] proposes grouping services into QoS classes defined according to the desired QoS performance objectives. These QoS classes support a wide range of user applications. The classes group objectives for one-way IP packet delay, IP packet delay variation, IP packet loss ratio, etc., where the parameters themselves are defined in [Y.1540].

[Y.1541]建议将服务分组为根据期望的QoS性能目标定义的QoS类。这些QoS类支持广泛的用户应用程序。这些类别将单向IP数据包延迟、IP数据包延迟变化、IP数据包丢失率等的目标分组,其中参数本身在[Y.1540]中定义。

Note that [Y.1541] is maintained by the ITU-T and subject to occasional updates and revisions. The material in this section is provided for information and to make this document easier to read. In the event of any discrepancies, the normative definitions found in [Y.1541] take precedence.

请注意,[Y.1541]由ITU-T维护,偶尔会进行更新和修订。本节中的材料仅供参考,并使本文件更易于阅读。如果存在任何差异,以[Y.1541]中的规范性定义为准。

Classes 0 and 1 might be implemented using the Diffserv Expedited Forwarding (EF) Per-Hop Behavior (PHB), and they support interactive real-time applications [RFC3246]. Classes 2, 3, and 4 might be implemented using the Diffserv Assured Forwarding (AFxy) PHB Group, and they support data transfer applications with various degrees of interactivity [RFC2597]. Class 5 generally corresponds to the Diffserv Default PHB, and it has all the QoS parameters unspecified consistent with a best-effort service[RFC2474]. Classes 6 and 7 provide support for extremely loss-sensitive user applications, such as high-quality digital television, Time Division Multiplexing (TDM) circuit emulation, and high-capacity file transfers using TCP. These classes are intended to serve as a basis for agreements between end-users and service providers, and between service providers. They support a wide range of user applications including point-to-point telephony, data transfer, multimedia conferencing, and others. The limited number of classes supports the requirement for feasible implementation, particularly with respect to scale in global networks.

类0和1可以使用Diffserv加速转发(EF)每跳行为(PHB)实现,并且它们支持交互式实时应用程序[RFC3246]。类2、3和4可以使用Diffserv Assured Forwarding(AFxy)PHB组实现,它们支持具有不同交互程度的数据传输应用程序[RFC2597]。类别5通常对应于Diffserv默认PHB,并且它具有与尽力而为服务一致的所有未指定的QoS参数[RFC2474]。第6类和第7类支持对丢失极为敏感的用户应用,如高质量数字电视、时分多路复用(TDM)电路仿真和使用TCP的大容量文件传输。这些类别旨在作为最终用户和服务提供商之间以及服务提供商之间协议的基础。它们支持广泛的用户应用程序,包括点对点电话、数据传输、多媒体会议等。类的有限数量支持可行实现的要求,特别是在全球网络的规模方面。

The QoS classes apply to a packet flow, where [Y.1541] defines a packet flow as the traffic associated with a given connection or connectionless stream having the same source host, destination host, class of service, and session identification. The characteristics of each Y.1541 QoS class are summarized here:

QoS类别适用于分组流,其中[Y.1541]将分组流定义为与具有相同源主机、目的主机、服务类别和会话标识的给定连接或无连接流相关联的流量。每个Y.1541 QoS等级的特征总结如下:

Class 0: Real-time, highly interactive applications, sensitive to jitter. Mean delay <= 100 ms, delay variation <= 50 ms, and loss ratio <= 10^-3. Application examples include VoIP and video teleconference.

0类:实时、高度交互的应用程序,对抖动敏感。平均延迟<=100ms,延迟变化<=50ms,损失率<=10^-3。应用示例包括VoIP和视频电话会议。

Class 1: Real-time, interactive applications, sensitive to jitter. Mean delay <= 400 ms, delay variation <= 50 ms, and loss ratio <= 10^-3. Application examples include VoIP and video teleconference.

第1类:实时、交互式应用程序,对抖动敏感。平均延迟<=400ms,延迟变化<=50ms,损失率<=10^-3。应用示例包括VoIP和视频电话会议。

Class 2: Highly interactive transaction data. Mean delay <= 100 ms, delay variation is unspecified, loss ratio <= 10^-3. Application examples include signaling.

类别2:高度交互的事务数据。平均延迟<=100ms,未指定延迟变化,损失率<=10^-3。应用示例包括信令。

Class 3: Interactive transaction data. Mean delay <= 400 ms, delay variation is unspecified, loss ratio <= 10^-3. Application examples include signaling.

类别3:交互式交易数据。平均延迟<=400ms,未指定延迟变化,损失率<=10^-3。应用示例包括信令。

Class 4: Low Loss Only applications. Mean delay <= 1 s, delay variation is unspecified, loss ratio <= 10^-3. Application examples include short transactions, bulk data, and video streaming.

第4类:仅低损耗应用。平均延迟<=1s,延迟变化未指定,损失率<=10^-3。应用程序示例包括短事务、批量数据和视频流。

Class 5: Unspecified applications with unspecified mean delay, delay variation, and loss ratio. Application examples include traditional applications of default IP networks.

第5类:未指定平均延迟、延迟变化和损失率的未指定应用。应用程序示例包括默认IP网络的传统应用程序。

Class 6: Applications that are highly sensitive to loss. Mean delay <= 100 ms, delay variation <= 50 ms, and loss ratio <= 10^-5. Application examples include television transport, high-capacity TCP transfers, and Time-Division Multiplexing (TDM) circuit emulation.

第6类:对丢失高度敏感的应用程序。平均延迟<=100ms,延迟变化<=50ms,损失率<=10^-5。应用实例包括电视传输、大容量TCP传输和时分复用(TDM)电路仿真。

Class 7: Applications that are highly sensitive to loss. Mean delay <= 400 ms, delay variation <= 50 ms, and loss ratio <= 10^-5. Application examples include television transport, high-capacity TCP transfers, and TDM circuit emulation.

类别7:对丢失高度敏感的应用程序。平均延迟<=400ms,延迟变化<=50ms,损失率<=10^-5。应用实例包括电视传输、大容量TCP传输和TDM电路仿真。

These classes enable service level agreements (SLAs) to be defined between customers and network service providers with respect to QoS requirements. The service provider then needs to ensure that the requirements are recognized and receive appropriate treatment across network layers.

这些类允许在客户和网络服务提供商之间就QoS要求定义服务级别协议(SLA)。然后,服务提供商需要确保需求得到识别,并跨网络层得到适当的处理。

Work is in progress to specify methods for combining local values of performance metrics to estimate the performance of the complete path. See Section 8 of [Y.1541], [RFC5835], and [COMPOSITION].

正在制定方法,将性能指标的局部值结合起来,以估计完整路径的性能。参见[Y.1541]、[RFC5835]和[COMPOSITION]第8节。

2.2. Y.1541-QOSM Processing Requirements
2.2. Y.1541-QOSM处理要求

[TRQ-QoS-SIG] guides the specification of signaling information for IP-based QoS at the interface between the user and the network (UNI) and across interfaces between different networks (NNI). To meet specific network performance requirements specified for the Y.1541 QoS classes [Y.1541] , a network needs to provide specific user-plane functionality at the UNI and NNI. Dynamic network provisioning at a UNI and/or NNI node allows a traffic contract for an IP flow to be dynamically requested from a specific source node to one or more destination nodes. In response to the request, the network determines if resources are available to satisfy the request and provision the network.

[TRQ QoS SIG]指导用户与网络(UNI)接口处以及不同网络(NNI)之间接口处基于IP的QoS信令信息的规范。为满足Y.1541 QoS等级[Y.1541]规定的特定网络性能要求,网络需要在UNI和NNI处提供特定的用户平面功能。UNI和/或NNI节点处的动态网络供应允许从特定源节点向一个或多个目的地节点动态请求IP流的流量协定。作为对请求的响应,网络确定资源是否可用于满足请求并提供网络。

For implementations to claim compliance with this memo, it MUST be possible to derive the following service-level parameters as part of the process of requesting service:

对于声称符合本备忘录的实施,必须能够在请求服务的过程中导出以下服务级别参数:

a. Y.1541 QoS class, 32-bit integer, range: 0-7

a. Y.1541 QoS类,32位整数,范围:0-7

b. rate (r), octets per second

b. 速率(r),八位字节/秒

c. peak rate (p), octets per second

c. 峰值速率(p),八位字节/秒

d. bucket size (b), octets

d. 桶大小(b),八位字节

e. maximum packet size (MPS), octets, IP header + IP payload

e. 最大数据包大小(MPS)、八位字节、IP报头+IP有效负载

f. Diffserv PHB class [RFC2475]

f. 区分服务PHB类[RFC2475]

g. admission priority, 32-bit integer, range: 0-2

g. 准入优先级,32位整数,范围:0-2

Compliant implementations MAY derive the following service-level parameters as part of the service request process:

作为服务请求流程的一部分,符合要求的实现可能会派生以下服务级别参数:

h. peak bucket size (Bp), octets, 32-bit floating point number in single-precision IEEE floating point format [IEEE754]

h. 峰值存储桶大小(Bp),八位字节,单精度IEEE浮点格式的32位浮点数[IEEE754]

i. restoration priority, multiple integer values defined in Section 3 below

i. 恢复优先级,以下第3节中定义的多个整数值

All parameters except Bp and restoration priority have already been specified in [RFC5975]. These additional parameters are defined as

[RFC5975]中已经指定了除Bp和恢复优先级之外的所有参数。这些附加参数定义为

o Bp, the size of the peak-rate bucket in a dual-token bucket arrangement, essentially setting the maximum length of bursts in the peak-rate stream. For example, see Annex B of [Y.1221]

o Bp,双令牌桶安排中峰值速率桶的大小,基本上设置峰值速率流中突发的最大长度。例如,见[Y.1221]的附录B

o restoration priority, as defined in Section 3 of this memo

o 本备忘录第3节中定义的恢复优先级

Their QSPEC Parameter format is specified in Section 3.

第3节规定了其QSPEC参数格式。

It MUST be possible to perform the following QoS-NSLP signaling functions to meet Y.1541-QOSM requirements:

必须能够执行以下QoS NSLP信令功能,以满足Y.1541-QOSM要求:

a. accumulate delay, delay variation, and loss ratio across the end-to-end connection, which may span multiple domains.

a. 跨端到端连接(可能跨越多个域)累积延迟、延迟变化和丢失率。

b. enable negotiation of Y.1541 QoS class across domains.

b. 允许跨域协商Y.1541 QoS类。

c. enable negotiation of delay, delay variation, and loss ratio across domains.

c. 允许跨域协商延迟、延迟变化和丢失率。

These signaling requirements are supported in [RFC5974], and the functions are illustrated in Section 4 of this memo.

[RFC5974]支持这些信号要求,本备忘录第4节说明了这些功能。

3. Additional QSPEC Parameters for Y.1541 QOSM
3. Y.1541 QOSM的附加QSPEC参数

The specifications in this section extend the QSPEC [RFC5975].

本节中的规范扩展了QSPEC[RFC5975]。

3.1. Traffic Model (TMOD) Extension Parameter
3.1. 交通模型(TMOD)扩展参数

The traffic model (TMOD) extension parameter is represented by one floating point number in single-precision IEEE floating point format and one 32-bit reserved field.

流量模型(TMOD)扩展参数由一个单精度IEEE浮点格式的浮点数和一个32位保留字段表示。

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |M|E|N|r|           15          |r|r|r|r|          1            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Peak Bucket Size [Bp] (32-bit IEEE floating point number)    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |M|E|N|r|           15          |r|r|r|r|          1            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Peak Bucket Size [Bp] (32-bit IEEE floating point number)    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 1: TMOD Extension

图1:TMOD扩展

The Peak Bucket Size term, Bp, is represented as an IEEE floating point value [IEEE754] in units of octets. The sign bit MUST be zero (all values MUST be non-negative). Exponents less than 127 (i.e., 0) are prohibited. Exponents greater than 162 (i.e., positive 35) are discouraged, except for specifying a peak rate of infinity. Infinity is represented with an exponent of all ones (255), and a sign bit and mantissa of all zeros.

峰值桶大小项Bp表示为八位字节单位的IEEE浮点值[IEEE754]。符号位必须为零(所有值必须为非负)。禁止指数小于127(即0)。不鼓励指数大于162(即正35),除非指定无穷大的峰值速率。无穷大由一个全1的指数(255)和一个全零的符号位和尾数表示。

The QSPEC parameter behavior for the TMOD extended parameter follows that defined in Section 3.3.1 of [RFC5975]. The new parameter (and all traffic-related parameters) are specified independently from the Y.1541 class parameter.

TMOD扩展参数的QSPEC参数行为遵循[RFC5975]第3.3.1节中的定义。新参数(以及所有与流量相关的参数)的指定独立于Y.1541类参数。

3.2. Restoration Priority Parameter
3.2. 恢复优先级参数

Restoration priority is the urgency with which a service requires successful restoration under failure conditions. Restoration priority is achieved by provisioning sufficient backup capacity, as necessary, and allowing relative priority for access to available bandwidth when there is contention for restoration bandwidth. Restoration priority is defined as follows:

恢复优先级是指服务在故障条件下需要成功恢复的紧迫性。恢复优先级是通过在必要时提供足够的备份容量来实现的,并且在存在恢复带宽争用时允许访问可用带宽的相对优先级。恢复优先级定义如下:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |M|E|N|r|           16          |r|r|r|r|          1            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Rest. Priority|  TTR  |  EOR  |        (Reserved)             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |M|E|N|r|           16          |r|r|r|r|          1            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Rest. Priority|  TTR  |  EOR  |        (Reserved)             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 2: Restoration Priority Parameter

图2:恢复优先级参数

This parameter has three fields and a reserved area, as defined below.

此参数有三个字段和一个保留区域,定义如下。

Restoration Priority Field (8-bit unsigned integer): 3 priority values are listed here in the order of lowest priority to highest priority:

恢复优先级字段(8位无符号整数):此处按最低优先级到最高优先级的顺序列出3个优先级值:

0 - best effort

0-尽力而为

1 - normal

1-正常

2 - high

2-高

These priority values are described in [Y.2172], where best-effort priority is the same as Priority level 3, normal priority is Priority level 2, and high priority is Priority level 1. There are several ways to elaborate on restoration priority, and the two current parameters are described below.

[Y.2172]中描述了这些优先级值,其中尽力优先级与优先级3相同,正常优先级为优先级2,高优先级为优先级1。有几种方法可以详细说明恢复优先级,下面介绍两个当前参数。

Time-to-Restore (TTR) Field (4-bit unsigned integer): Total amount of time to restore traffic streams belonging to a given restoration class impacted by the failure. This time period depends on the technology deployed for restoration. A fast recovery period of < 200 ms is based on current experience with

还原时间(TTR)字段(4位无符号整数):还原属于受故障影响的给定还原类的流量流的总时间。此时间段取决于为恢复而部署的技术。<200 ms的快速恢复期基于当前的经验

Synchronous Optical Network (SONET) rings and a slower recovery period of 2 seconds is suggested in order to enable a voice call to recover without being dropped. Accordingly, TTR restoration suggested ranges are:

同步光网络(SONET)响起,建议使用2秒的较慢恢复周期,以便在不中断的情况下恢复语音呼叫。因此,TTR恢复建议范围为:

0 - Unspecified Time-to-Restore

0-未指定的还原时间

         1 - Best Time-to-Restore: <= 200 ms
        
         1 - Best Time-to-Restore: <= 200 ms
        
         2 - Normal Time-to-Restore <= 2 s
        
         2 - Normal Time-to-Restore <= 2 s
        

Extent of Restoration (EOR) Field (4-bit unsigned integer): Percentage of traffic belonging to the restoration class that can be restored. This percentage depends on the amount of spare capacity engineered. All high-priority restoration traffic, for example, may be "guaranteed" at 100% by the service provider. Other classes may offer lesser chances for successful restoration. The restoration extent for these lower priority classes depend on SLAs developed between the service provider and the customer.

恢复范围(EOR)字段(4位无符号整数):属于可恢复恢复类别的流量百分比。该百分比取决于设计的备用容量。例如,服务提供商可以100%地“保证”所有高优先级恢复流量。其他职业可能提供较少的成功修复机会。这些低优先级级别的恢复程度取决于服务提供商和客户之间制定的SLA。

EOR values are assigned as follows:

EOR值分配如下:

0 - unspecified EOR

0-未指定的EOR

1 - high priority restored at 100%; medium priority restored at 100%

1-高优先级恢复为100%;中等优先级恢复为100%

2 - high priority restored at 100%; medium priority restored at 80%

2-高优先级恢复为100%;中等优先级恢复为80%

         3 - high priority restored >= 80%;
             medium priority restored >= 80%
        
         3 - high priority restored >= 80%;
             medium priority restored >= 80%
        
         4 - high priority restored >= 80%;
             medium priority restored >= 60%
        
         4 - high priority restored >= 80%;
             medium priority restored >= 60%
        
         5 - high priority restored >= 60%;
             medium priority restored >= 60%
        
         5 - high priority restored >= 60%;
             medium priority restored >= 60%
        

Reserved: These 2 octets are reserved. The Reserved bits MAY be designated for other uses in the future. Senders conforming to this version of the Y.1541 QOSM SHALL set the Reserved bits to zero. Receivers conforming to this version of the Y.1541 QOSM SHALL ignore the Reserved bits.

保留:这两个八位字节是保留的。保留位可被指定用于将来的其他用途。符合本版本Y.1541 QOSM的发送方应将保留位设置为零。符合该版本Y.1541 QOSM的接收器应忽略保留位。

4. Y.1541-QOSM Considerations and Processing Example
4. Y.1541-QOSM注意事项和处理示例

In this section, we illustrate the operation of the Y.1541 QOSM, and show how current QoS-NSLP and QSPEC functionality is used. No new processing capabilities are required to enable the Y.1541 QOSM (excluding the two OPTIONAL new parameters specified in Section 3).

在本节中,我们将说明Y.1541 QOSM的操作,并说明如何使用当前的QoS NSLP和QSPEC功能。启用Y.1541 QOSM不需要新的处理能力(不包括第3节中规定的两个可选新参数)。

4.1. Deployment Considerations
4.1. 部署注意事项

[TRQ-QoS-SIG] emphasizes the deployment of Y.1541 QNEs at the borders of supporting domains. There may be domain configurations where interior QNEs are desirable, and the example below addresses this possibility.

[TRQ QoS SIG]强调在支持域的边界部署Y.1541 QNE。可能存在需要内部QNE的域配置,下面的示例说明了这种可能性。

4.2. Applicable QSPEC Procedures
4.2. 适用的QSPEC程序

All procedures defined in Section 5.3 of [RFC5975] are applicable to this QOSM.

[RFC5975]第5.3节中定义的所有程序均适用于本质量管理体系。

4.3. QNE Processing Rules
4.3. QNE处理规则

Section 7 of [TRQ-QoS-SIG] describes the information processing in Y.1541 QNEs.

[TRQ QoS SIG]第7节描述了Y.1541 QNEs中的信息处理。

Section 8 of [Y.1541] defines the accumulation rules for individual performance parameters (e.g., delay, jitter).

[Y.1541]第8节定义了单个性能参数(例如延迟、抖动)的累积规则。

When a QoS NSIS initiator (QNI) specifies the Y.1541 QoS Class number, <Y.1541 QoS Class>, it is a sufficient specification of objectives for the <Path Latency>, <Path Jitter>, and <Path BER> parameters. As described in Section 2, some Y.1541 Classes do not set objectives for all the performance parameters above. For example, Classes 2, 3, and 4 do not specify an objective for <Path Jitter> (referred to as IP Packet Delay Variation). In the case that the QoS Class leaves a parameter unspecified, then that parameter need not be included in the accumulation processing.

当QoS NSIS启动器(QNI)指定Y.1541 QoS类编号时,<Y.1541 QoS类>,这是对<Path Latency>、<Path Jitter>和<Path BER>参数目标的充分说明。如第2节所述,一些Y.1541等级没有为上述所有性能参数设定目标。例如,类2、3和4没有指定<Path Jitter>(称为IP分组延迟变化)的目标。如果QoS类未指定参数,则该参数不需要包括在累积处理中。

4.4. Processing Example
4.4. 处理示例
   As described in the example given in Section 3.4 of [RFC5975] and as
   illustrated in Figure 3, the QoS NSIS initiator (QNI) initiates an
   end-to-end, interdomain QoS NSLP RESERVE message containing the
   Initiator QSPEC.  In the case of the Y.1541 QOSM, the Initiator QSPEC
   specifies the <Y.1541 QOS Class>, <TMOD>, <TMOD Extension>,
   <Admission Priority>, <Restoration Priority>, and perhaps other QSPEC
   parameters for the flow.  As described in Section 3, the TMOD
        
   As described in the example given in Section 3.4 of [RFC5975] and as
   illustrated in Figure 3, the QoS NSIS initiator (QNI) initiates an
   end-to-end, interdomain QoS NSLP RESERVE message containing the
   Initiator QSPEC.  In the case of the Y.1541 QOSM, the Initiator QSPEC
   specifies the <Y.1541 QOS Class>, <TMOD>, <TMOD Extension>,
   <Admission Priority>, <Restoration Priority>, and perhaps other QSPEC
   parameters for the flow.  As described in Section 3, the TMOD
        

extension parameter contains the OPTIONAL Y.1541-QOSM-specific terms; restoration priority is also an OPTIONAL Y.1541-QOSM-specific parameter.

扩展参数包含可选的Y.1541-QOSM特定术语;恢复优先级也是可选的Y.1541-QOSM特定参数。

As Figure 3 below shows, the RESERVE message may cross multiple domains supporting different QOSMs. In this illustration, the Initiator QSPEC arrives in a QoS NSLP RESERVE message at the ingress node of the local-QOSM domain. As described in [RFC5974] and [RFC5975], at the ingress edge node of the local-QOSM domain, the end-to-end, interdomain QoS-NSLP message may trigger the generation of a Local QSPEC, and the Initiator QSPEC is encapsulated within the messages signaled through the local domain. The Local QSPEC is used for QoS processing in the local-QOSM domain, and the Initiator QSPEC is used for QoS processing outside the local domain. As specified in [RFC5975], if any QNE cannot meet the requirements designated by the Initiator QSPEC to support an optional QSPEC parameter (i.e., with the M bit set to zero for the parameter), the QNE sets the N flag (not supported flag) for the parameter to one. For example, if the QNE cannot support the accumulation of end-to-end delay with the <Path Latency> parameter, where the M flag for the <Path Latency> parameter is set to zero denoting <Path Latency> as an optional parameter, the QNE sets the N flag (not supported flag) for the <Path Latency> parameter to one.

如下图3所示,保留消息可以跨多个支持不同QOSMs的域。在该图示中,发起方QSPEC在本地QOSM域的入口节点处到达QoS NSLP保留消息。如[RFC5974]和[RFC5975]中所述,在本地QOSM域的入口边缘节点,端到端域间QoS NSLP消息可触发本地QSPEC的生成,并且启动器QSPEC封装在通过本地域发信号的消息中。本地QSPEC用于本地QOSM域中的QoS处理,而启动器QSPEC用于本地域外的QoS处理。如[RFC5975]中所述,如果任何QNE不能满足启动器QSPEC指定的支持可选QSPEC参数的要求(即,参数的M位设置为零),则QNE将参数的N标志(不支持标志)设置为1。例如,如果QNE不能使用<Path Latency>参数支持端到端延迟的累积,其中<Path Latency>参数的M标志被设置为零,表示<Path Latency>作为可选参数,则QNE将<Path Latency>参数的N标志(不支持的标志)设置为1。

Also, the Y.1541-QOSM requires negotiation of the <Y.1541 QoS Class> across domains. This negotiation can be done with the use of the existing procedures already defined in [RFC5974]. For example, the QNI sets <Desired QoS>, <Minimum QoS>, and <Available QoS> objects to include <Y.1541 QoS Class>, which specifies objectives for the <Path Latency>, <Path Jitter>, and <Path BER> parameters. In the case that the QoS Class leaves a parameter unspecified, then that parameter need not be included in the accumulation processing. The QNE/domain SHOULD set the Y.1541 class and cumulative parameters, e.g., <Path Latency>, that can be achieved in the <QoS Available> object (but not less than specified in <Minimum QoS>). This could include, for example, setting the <Y.1541 QoS Class> to a lower class than specified in <QoS Desired> (but not lower than specified in <Minimum QoS>). If the <Available QoS> fails to satisfy one or more of the <Minimum QoS> objectives, the QNE/domain notifies the QNI and the reservation is aborted. Otherwise, the QoS NSIS Receiver (QNR) notifies the QNI of the <QoS Available> for the reservation.

此外,Y.1541-QOSM要求跨域协商<Y.1541 QoS类>。可使用[RFC5974]中已定义的现有程序进行协商。例如,QNI将<Desired QoS>、<Minimum QoS>和<Available QoS>对象设置为包括<Y.1541 QoS Class>,这指定了<Path Latency>、<Path Jitter>和<Path BER>参数的目标。如果QoS类未指定参数,则该参数不需要包括在累积处理中。QNE/域应设置可在<QoS Available>对象中实现的Y.1541类和累积参数,例如<Path Latency>(但不小于<Minimum QoS>中指定的)。例如,这可能包括将<Y.1541 QoS Class>设置为低于<QoS Desired>中指定的级别(但不低于<Minimum QoS>中指定的级别)。如果<Available QoS>未能满足一个或多个<Minimum QoS>目标,QNE/域将通知QNI,并中止保留。否则,QoS NSIS接收器(QNR)通知QNI预订的<QoS Available>。

   When the available <Y.1541 QoS Class> must be reduced from the
   desired <Y.1541 QoS Class> (say, because the delay objective has been
   exceeded), then there is an incentive to respond with an available
   value for delay in the <Path Latency> parameter.  If the available
   <Path Latency> is 150 ms (still useful for many applications) and the
   desired QoS is Class 0 (with its 100 ms objective), then the response
        
   When the available <Y.1541 QoS Class> must be reduced from the
   desired <Y.1541 QoS Class> (say, because the delay objective has been
   exceeded), then there is an incentive to respond with an available
   value for delay in the <Path Latency> parameter.  If the available
   <Path Latency> is 150 ms (still useful for many applications) and the
   desired QoS is Class 0 (with its 100 ms objective), then the response
        

would be that Class 0 cannot be achieved, and Class 1 is available (with its 400 ms objective). In addition, this QOSM allows the response to include an available <Path Latency> = 150 ms, making acceptance of the available <Y.1541 QoS Class> more likely. There are many long paths where the propagation delay alone exceeds the Y.1541 Class 0 objective, so this feature adds flexibility to commit to exceed the Class 1 objective when possible.

可能是0级无法实现,1级可用(其目标为400毫秒)。此外,该QOSM允许响应包括可用的<Path Latency>=150 ms,使得更可能接受可用的<Y.1541 QoS类>。在许多长路径中,仅传播延迟就超过了Y.1541的0类目标,因此此功能增加了在可能的情况下提交以超过1类目标的灵活性。

This example illustrates Y.1541-QOSM negotiation of <Y.1541 QoS Class> and cumulative parameter values that can be achieved end-to-end. The example illustrates how the QNI can use the cumulative values collected in <QoS Available> to decide if a lower <Y.1541 QoS Class> than specified in <QoS Desired> is acceptable.

此示例说明了<Y.1541 QoS Class>的Y.1541-QOSM协商以及可以端到端实现的累积参数值。该示例说明了QNI如何使用在<QoS Available>中收集的累积值来确定低于<QoS Desired>中规定的<Y.1541 QoS等级>是否可接受。

     |------|   |------|                           |------|   |------|
     | e2e  |<->| e2e  |<------------------------->| e2e  |<->| e2e  |
     | QOSM |   | QOSM |                           | QOSM |   | QOSM |
     |      |   |------|   |-------|   |-------|   |------|   |      |
     | NSLP |   | NSLP |<->| NSLP  |<->| NSLP  |<->| NSLP |   | NSLP |
     |Y.1541|   |local |   |local  |   |local  |   |local |   |Y.1541|
     | QOSM |   | QOSM |   | QOSM  |   | QOSM  |   | QOSM |   | QOSM |
     |------|   |------|   |-------|   |-------|   |------|   |------|
     -----------------------------------------------------------------
     |------|   |------|   |-------|   |-------|   |------|   |------|
     | NTLP |<->| NTLP |<->| NTLP  |<->| NTLP  |<->| NTLP |<->| NTLP |
     |------|   |------|   |-------|   |-------|   |------|   |------|
       QNI         QNE        QNE         QNE         QNE       QNR
     (End)  (Ingress Edge) (Interior)  (Interior) (Egress Edge)  (End)
        
     |------|   |------|                           |------|   |------|
     | e2e  |<->| e2e  |<------------------------->| e2e  |<->| e2e  |
     | QOSM |   | QOSM |                           | QOSM |   | QOSM |
     |      |   |------|   |-------|   |-------|   |------|   |      |
     | NSLP |   | NSLP |<->| NSLP  |<->| NSLP  |<->| NSLP |   | NSLP |
     |Y.1541|   |local |   |local  |   |local  |   |local |   |Y.1541|
     | QOSM |   | QOSM |   | QOSM  |   | QOSM  |   | QOSM |   | QOSM |
     |------|   |------|   |-------|   |-------|   |------|   |------|
     -----------------------------------------------------------------
     |------|   |------|   |-------|   |-------|   |------|   |------|
     | NTLP |<->| NTLP |<->| NTLP  |<->| NTLP  |<->| NTLP |<->| NTLP |
     |------|   |------|   |-------|   |-------|   |------|   |------|
       QNI         QNE        QNE         QNE         QNE       QNR
     (End)  (Ingress Edge) (Interior)  (Interior) (Egress Edge)  (End)
        

Figure 3: Example of Y.1541-QOSM Operation

图3:Y.1541-QOSM操作示例

4.5. Bit-Level QSPEC Example
4.5. 位级QSPEC示例

This is an example where the QOS Desired specification contains the TMOD-1 parameters and TMOD extended parameters defined in this specification, as well as the Y.1541 Class parameter. The QOS Available specification utilizes the Latency, Jitter, and Loss parameters to enable accumulation of these parameters for easy comparison with the objectives desired for the Y.1541 Class.

这是一个示例,其中QOS所需规范包含本规范中定义的TMOD-1参数和TMOD扩展参数,以及Y.1541类参数。QOS可用规范利用延迟、抖动和丢失参数来累积这些参数,以便与Y.1541类所需的目标进行比较。

This example assumes that all the parameters MUST be supported by the QNEs, so all M-flags have been set to 1.

本例假设QNE必须支持所有参数,因此所有M标志都设置为1。

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Vers.|QType=I|QSPEC Proc.=0/1|0|R|R|R|      Length = 23      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |E|r|r|r|  Type = 0 (QoS Des.)  |r|r|r|r|      Length = 10      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  TMOD Rate-1 [r] (32-bit IEEE floating point number)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  TMOD Size-1 [b] (32-bit IEEE floating point number)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Peak Data Rate-1 [p] (32-bit IEEE floating point number)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Minimum Policed Unit-1 [m] (32-bit unsigned integer)         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Maximum Packet Size [MPS] (32-bit unsigned integer)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           15          |r|r|r|r|          1            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Peak Bucket Size [Bp] (32-bit IEEE floating point number)    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           14          |r|r|r|r|          1            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Y.1541 QoS Cls.|                (Reserved)                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |E|r|r|r|  Type = 1 (QoS Avail) |r|r|r|r|      Length = 11      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           3           |r|r|r|r|          1            |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |                Path Latency (32-bit integer)                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           4           |r|r|r|r|          4            |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |          Path Jitter STAT1(variance) (32-bit integer)         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Path Jitter STAT2(99.9%-ile) (32-bit integer)        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       Path Jitter STAT3(minimum Latency) (32-bit integer)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       Path Jitter STAT4(Reserved)        (32-bit integer)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           5           |r|r|r|r|          1            |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |             Path Packet Loss Ratio (32-bit floating point)    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           14          |r|r|r|r|          1            |
        
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Vers.|QType=I|QSPEC Proc.=0/1|0|R|R|R|      Length = 23      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |E|r|r|r|  Type = 0 (QoS Des.)  |r|r|r|r|      Length = 10      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  TMOD Rate-1 [r] (32-bit IEEE floating point number)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  TMOD Size-1 [b] (32-bit IEEE floating point number)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Peak Data Rate-1 [p] (32-bit IEEE floating point number)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Minimum Policed Unit-1 [m] (32-bit unsigned integer)         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Maximum Packet Size [MPS] (32-bit unsigned integer)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           15          |r|r|r|r|          1            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Peak Bucket Size [Bp] (32-bit IEEE floating point number)    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           14          |r|r|r|r|          1            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Y.1541 QoS Cls.|                (Reserved)                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |E|r|r|r|  Type = 1 (QoS Avail) |r|r|r|r|      Length = 11      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           3           |r|r|r|r|          1            |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |                Path Latency (32-bit integer)                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           4           |r|r|r|r|          4            |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |          Path Jitter STAT1(variance) (32-bit integer)         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Path Jitter STAT2(99.9%-ile) (32-bit integer)        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       Path Jitter STAT3(minimum Latency) (32-bit integer)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       Path Jitter STAT4(Reserved)        (32-bit integer)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           5           |r|r|r|r|          1            |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |             Path Packet Loss Ratio (32-bit floating point)    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|E|N|r|           14          |r|r|r|r|          1            |
        
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Y.1541 QoS Cls.|                (Reserved)                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Y.1541 QoS Cls.|                (Reserved)                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 4: An Example QSPEC (Initiator)

图4:示例QSPEC(启动器)

where 32-bit floating point numbers are as specified in [IEEE754].

其中32位浮点数如[IEEE754]中所规定。

4.6. Preemption Behavior
4.6. 抢占行为

The default QNI behavior of tearing down a preempted reservation is followed in the Y.1541 QOSM. The restoration priority parameter described above does not rely on preemption.

Y.1541 QOSM中遵循了拆除抢占保留的默认QNI行为。上述恢复优先级参数不依赖于抢占。

5. IANA Considerations
5. IANA考虑

This section defines additional codepoint assignments in the QSPEC Parameter ID registry and establishes one new registry for the Restoration Priority Parameter (and assigns initial values), in accordance with BCP 26 [RFC5226]. It also defines the procedural requirements to be followed by IANA in allocating new codepoints for the new registry.

本节定义了QSPEC参数ID注册表中的其他代码点分配,并根据BCP 26[RFC5226]为恢复优先级参数建立了一个新注册表(并分配初始值)。它还定义了IANA在为新注册表分配新代码点时应遵循的程序要求。

5.1. Assignment of QSPEC Parameter IDs
5.1. QSPEC参数id的赋值

This document specifies the following QSPEC parameters, which have been assigned in the QSPEC Parameter ID registry created in [RFC5975]:

本文档指定了以下QSPEC参数,这些参数已在[RFC5975]中创建的QSPEC参数ID注册表中分配:

      <TMOD Extension> parameter (Section 3.1, ID=15)
        
      <TMOD Extension> parameter (Section 3.1, ID=15)
        
      <Restoration Priority> parameter (Section 3.2, ID=16)
        
      <Restoration Priority> parameter (Section 3.2, ID=16)
        
5.2. Restoration Priority Parameter Registry
5.2. 恢复优先级参数注册表

The Registry for Restoration Priority contains assignments for 3 fields in the 4-octet word and a Reserved section of the word.

恢复优先级注册表包含4个八位组字中3个字段的赋值和字的保留部分。

This specification creates the following registry with the structure as defined below.

本规范创建以下注册表,其结构如下所述。

5.2.1. Restoration Priority Field
5.2.1. 恢复优先级字段

The Restoration Priority Field is 8 bits in length.

恢复优先级字段的长度为8位。

The following values are allocated by this specification:

本规范分配了以下值:

0-2: assigned as specified in Section 3.2:

0-2:按照第3.2节的规定分配:

0: best-effort priority

0:尽力而为优先

1: normal priority

1:正常优先级

2: high priority

2:高度优先

Further values are as follows:

其他值如下所示:

3-255: Unassigned

3-255:未分配

The registration procedure is Specification Required.

注册程序是必需的。

5.2.2. Time to Restore Field
5.2.2. 恢复字段的时间

The Time to Restore Field is 4 bits in length.

恢复时间字段的长度为4位。

The following values are allocated by this specification:

本规范分配了以下值:

0-2: assigned as specified in Section 3.2:

0-2:按照第3.2节的规定分配:

0 - Unspecified Time-to-Restore

0-未指定的还原时间

      1 - Best Time-to-Restore: <= 200 ms
        
      1 - Best Time-to-Restore: <= 200 ms
        
      2 - Normal Time-to-Restore <= 2 s
        
      2 - Normal Time-to-Restore <= 2 s
        

Further values are as follows:

其他值如下所示:

3-15: Unassigned

3-15:未分配

The registration procedure is Specification Required.

注册程序是必需的。

5.2.3. Extent of Restoration Field
5.2.3. 恢复范围

The Extent of Restoration (EOR) Field is 4 bits in length.

恢复范围(EOR)字段的长度为4位。

The following values are allocated by this specification:

本规范分配了以下值:

0-5: assigned as specified in Section 3.2:

0-5:按照第3.2节的规定分配:

0 - unspecified EOR

0-未指定的EOR

1 - high priority restored at 100%; medium priority restored at 100%

1-高优先级恢复为100%;中等优先级恢复为100%

2 - high priority restored at 100%; medium priority restored at 80%

2-高优先级恢复为100%;中等优先级恢复为80%

       3 - high priority restored >= 80%;
           medium priority restored >= 80%
        
       3 - high priority restored >= 80%;
           medium priority restored >= 80%
        
       4 - high priority restored >= 80%;
           medium priority restored >= 60%
        
       4 - high priority restored >= 80%;
           medium priority restored >= 60%
        
       5 - high priority restored >= 60%;
           medium priority restored >= 60%
        
       5 - high priority restored >= 60%;
           medium priority restored >= 60%
        

Further values are as follows:

其他值如下所示:

6-15: Unassigned

6-15:未分配

The registration procedure is Specification Required.

注册程序是必需的。

6. Security Considerations
6. 安全考虑

The security considerations of [RFC5974] and [RFC5975] apply to this document.

[RFC5974]和[RFC5975]的安全注意事项适用于本文件。

The restoration priority parameter raises possibilities for theft-of-service attacks because users could claim an emergency priority for their flows without real need, thereby effectively preventing serious emergency calls from getting through. Several options exist for countering such attacks, for example:

恢复优先级参数增加了服务盗窃攻击的可能性,因为用户可以在没有实际需要的情况下为其流申请紧急优先级,从而有效防止严重的紧急呼叫通过。有几种方法可用于对付此类攻击,例如:

- only some user groups (e.g., the police) are authorized to set the emergency priority bit

- 只有一些用户组(例如警察)有权设置紧急优先级位

- any user is authorized to employ the emergency priority bit for particular destination addresses (e.g., police or fire departments)

- 任何用户都有权为特定目的地地址(如警察或消防部门)使用紧急优先级位

There are no other known security considerations based on this document.

基于本文档,没有其他已知的安全注意事项。

7. Acknowledgements
7. 致谢

The authors thank Attila Bader, Cornelia Kappler, Sven Van den Bosch, and Hannes Tschofenig for helpful comments and discussion.

作者感谢Attila Bader、Cornelia Kappler、Sven Van den Bosch和Hannes Tschofenig的有益评论和讨论。

8. References
8. 工具书类
8.1. Normative References
8.1. 规范性引用文件

[IEEE754] ANSI/IEEE, "ANSI/IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic", 1985.

[IEEE754]ANSI/IEEE,“ANSI/IEEE 754-1985,IEEE二进制浮点运算标准”,1985年。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC5974] Manner, J., Karagiannis, G., and A. McDonald, "NSIS Signaling Layer Protocol (NSLP) for Quality-of-Service Signaling", RFC 5974, October 2010.

[RFC5974]Way,J.,Karagiannis,G.,和A.McDonald,“用于服务质量信令的NSIS信令层协议(NSLP)”,RFC 5974,2010年10月。

[RFC5975] Ash, G., Bader, A., Kappler, C., and D. Oran, "QSPEC Template for the Quality-of-Service NSIS Signaling Layer Protocol (NSLP)", RFC 5975, October 2010.

[RFC5975]Ash,G.,Bader,A.,Kappler,C.,和D.Oran,“服务质量NSIS信令层协议(NSLP)的QSPEC模板”,RFC 59752010年10月。

[Y.1221] ITU-T Recommendation Y.1221, "Traffic control and congestion control in IP based networks", March 2002.

[Y.1221]ITU-T建议Y.1221,“基于IP的网络中的流量控制和拥塞控制”,2002年3月。

[Y.1540] ITU-T Recommendation Y.1540, "Internet protocol data communication service - IP packet transfer and availability performance parameters", December 2007.

[Y.1540]ITU-T建议Y.1540,“互联网协议数据通信服务-IP数据包传输和可用性性能参数”,2007年12月。

[Y.1541] ITU-T Recommendation Y.1541, "Network Performance Objectives for IP-Based Services", February 2006.

[Y.1541]ITU-T建议Y.1541,“基于IP的服务的网络性能目标”,2006年2月。

[Y.2172] ITU-T Recommendation Y.2172, "Service restoration priority levels in Next Generation Networks", June 2007.

[Y.2172]ITU-T建议Y.2172,“下一代网络中的服务恢复优先级”,2007年6月。

8.2. Informative References
8.2. 资料性引用

[COMPOSITION] Morton, A. and E. Stephan, "Spatial Composition of Metrics", Work in Progress, July 2010.

[组成]Morton,A.和E.Stephan,“度量的空间组成”,正在进行的工作,2010年7月。

[E.361] ITU-T Recommendation E.361, "QoS Routing Support for Interworking of QoS Service Classes Across Routing Technologies", May 2003.

[E.361]ITU-T建议E.361,“跨路由技术的QoS服务等级互通的QoS路由支持”,2003年5月。

[RFC2205] Braden, B., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, September 1997.

[RFC2205]Braden,B.,Zhang,L.,Berson,S.,Herzog,S.,和S.Jamin,“资源预留协议(RSVP)——第1版功能规范”,RFC 22052997年9月。

[RFC2210] Wroclawski, J., "The Use of RSVP with IETF Integrated Services", RFC 2210, September 1997.

[RFC2210]Wroclawski,J.,“RSVP与IETF集成服务的使用”,RFC 2210,1997年9月。

[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, December 1998.

[RFC2474]Nichols,K.,Blake,S.,Baker,F.,和D.Black,“IPv4和IPv6头中区分服务字段(DS字段)的定义”,RFC 2474,1998年12月。

[RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and W. Weiss, "An Architecture for Differentiated Services", RFC 2475, December 1998.

[RFC2475]Blake,S.,Black,D.,Carlson,M.,Davies,E.,Wang,Z.,和W.Weiss,“差异化服务架构”,RFC 24751998年12月。

[RFC2597] Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski, "Assured Forwarding PHB Group", RFC 2597, June 1999.

[RFC2597]Heinanen,J.,Baker,F.,Weiss,W.,和J.Wroclawski,“保付PHB集团”,RFC 25971999年6月。

[RFC3246] Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec, J., Courtney, W., Davari, S., Firoiu, V., and D. Stiliadis, "An Expedited Forwarding PHB (Per-Hop Behavior)", RFC 3246, March 2002.

[RFC3246]Davie,B.,Charny,A.,Bennet,J.,Benson,K.,Le Boudec,J.,Courtney,W.,Davari,S.,Firoiu,V.,和D.Stiliadis,“快速转发PHB(每跳行为)”,RFC 32462002年3月。

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

[RFC5226]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。

[RFC5835] Morton, A. and S. Van den Berghe, "Framework for Metric Composition", RFC 5835, April 2010.

[RFC5835]Morton,A.和S.Van den Berghe,“公制组合框架”,RFC 58352010年4月。

[TRQ-QoS-SIG] ITU-T Supplement 51 to the Q-Series, "Signaling Requirements for IP-QoS", January 2004.

[TRQ QoS SIG]ITU-T对Q系列的补充51,“IP QoS的信令要求”,2004年1月。

Authors' Addresses

作者地址

Gerald Ash AT&T Labs 200 Laurel Avenue South Middletown, NJ 07748 USA

美国新泽西州劳雷尔大道南米德尔顿200号杰拉尔德·阿什AT&T实验室,邮编:07748

   EMail: gash5107@yahoo.com
        
   EMail: gash5107@yahoo.com
        

Al Morton AT&T Labs 200 Laurel Avenue South Middletown, NJ 07748 USA

美国新泽西州劳雷尔大道南米德尔顿200号阿尔莫顿AT&T实验室,邮编:07748

   Phone: +1 732 420 1571
   Fax:   +1 732 368 1192
   EMail: acmorton@att.com
   URI:   http://home.comcast.net/~acmacm/
        
   Phone: +1 732 420 1571
   Fax:   +1 732 368 1192
   EMail: acmorton@att.com
   URI:   http://home.comcast.net/~acmacm/
        

Martin Dolly AT&T Labs 200 Laurel Avenue South Middletown, NJ 07748 USA

美国新泽西州劳雷尔大道南米德尔顿200号马丁·多利AT&T实验室,邮编:07748

   EMail: mdolly@att.com
        
   EMail: mdolly@att.com
        

Percy Tarapore AT&T Labs 200 Laurel Avenue South Middletown, NJ 07748 USA

美国新泽西州劳雷尔大道南米德尔顿200号珀西塔拉波尔AT&T实验室,邮编:07748

   EMail: tarapore@att.com
        
   EMail: tarapore@att.com
        

Chuck Dvorak AT&T Labs 180 Park Ave Bldg 2 Florham Park, NJ 07932 USA

查克·德沃夏克美国电话电报实验室美国新泽西州弗洛勒姆公园2号公园大道180号大楼07932

   Phone: + 1 973-236-6700
   EMail: cdvorak@att.com
        
   Phone: + 1 973-236-6700
   EMail: cdvorak@att.com
        

Yacine El Mghazli Alcatel-Lucent Route de Nozay Marcoussis cedex 91460 France

雅辛埃尔姆加兹利阿尔卡特朗讯诺扎伊-马库锡路线法国cedex 91460

   Phone: +33 1 69 63 41 87
   EMail: yacine.el_mghazli@alcatel.fr
        
   Phone: +33 1 69 63 41 87
   EMail: yacine.el_mghazli@alcatel.fr