Internet Engineering Task Force (IETF)                  E. Baccelli, Ed.
Request for Comments: 5889                                         INRIA
Category: Informational                                 M. Townsley, Ed.
ISSN: 2070-1721                                            Cisco Systems
                                                          September 2010
        
Internet Engineering Task Force (IETF)                  E. Baccelli, Ed.
Request for Comments: 5889                                         INRIA
Category: Informational                                 M. Townsley, Ed.
ISSN: 2070-1721                                            Cisco Systems
                                                          September 2010
        

IP Addressing Model in Ad Hoc Networks

adhoc网络中的IP寻址模型

Abstract

摘要

This document describes a model for configuring IP addresses and subnet prefixes on the interfaces of routers which connect to links with undetermined connectivity properties.

本文档描述了一种用于在路由器接口上配置IP地址和子网前缀的模型,这些路由器连接到具有不确定连接属性的链路。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5889.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc5889.

Copyright Notice

版权公告

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2010 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 3
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 4
   3.  Applicability Statement . . . . . . . . . . . . . . . . . . . . 4
   4.  IP Subnet Prefix Configuration  . . . . . . . . . . . . . . . . 4
   5.  IP Address Configuration  . . . . . . . . . . . . . . . . . . . 4
   6.  Addressing Model  . . . . . . . . . . . . . . . . . . . . . . . 5
     6.1.  IPv6 Model  . . . . . . . . . . . . . . . . . . . . . . . . 5
     6.2.  IPv4 Model  . . . . . . . . . . . . . . . . . . . . . . . . 6
   7.  Security Considerations . . . . . . . . . . . . . . . . . . . . 6
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . . . 7
     8.1.  Normative References  . . . . . . . . . . . . . . . . . . . 7
     8.2.  Informative References  . . . . . . . . . . . . . . . . . . 7
   Appendix A.  Contributors . . . . . . . . . . . . . . . . . . . . . 7
        
   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 3
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 4
   3.  Applicability Statement . . . . . . . . . . . . . . . . . . . . 4
   4.  IP Subnet Prefix Configuration  . . . . . . . . . . . . . . . . 4
   5.  IP Address Configuration  . . . . . . . . . . . . . . . . . . . 4
   6.  Addressing Model  . . . . . . . . . . . . . . . . . . . . . . . 5
     6.1.  IPv6 Model  . . . . . . . . . . . . . . . . . . . . . . . . 5
     6.2.  IPv4 Model  . . . . . . . . . . . . . . . . . . . . . . . . 6
   7.  Security Considerations . . . . . . . . . . . . . . . . . . . . 6
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . . . 7
     8.1.  Normative References  . . . . . . . . . . . . . . . . . . . 7
     8.2.  Informative References  . . . . . . . . . . . . . . . . . . 7
   Appendix A.  Contributors . . . . . . . . . . . . . . . . . . . . . 7
        
1. Introduction
1. 介绍

The appropriate configuration of IP addresses and subnet masks for router network interfaces is generally a prerequisite to the correct functioning of routing protocols. Consideration of various items, including underlying link capabilities and connectivity, geographical topology, available address blocks, assumed traffic patterns etc., are used when determining the appropriate network topology and the associated IP interface configuration.

路由器网络接口的IP地址和子网掩码的适当配置通常是路由协议正确运行的先决条件。在确定适当的网络拓扑和相关的IP接口配置时,需要考虑各种项目,包括基础链路能力和连接性、地理拓扑、可用地址块、假定的通信模式等。

When the capabilities and connectivity of the links that connect routers are well-known and stable, logical network topology design and corresponding IP interface configuration are straightforward. Absent any assumption about link-level connectivity, however, there is no canonical method for determining a given IP interface configuration.

当连接路由器的链路的能力和连接性众所周知且稳定时,逻辑网络拓扑设计和相应的IP接口配置就简单明了了。然而,如果没有关于链路级连接的任何假设,就没有确定给定IP接口配置的标准方法。

Link-level connectivity is generally qualified as undetermined when it is unplanned and/or time-varying in character. Ad hoc networks are typical examples of networks with undetermined link-level connectivity. Routing protocols for ad hoc networks are purposely designed to detect and maintain paths across the network, even when faced with links with undetermined connectivity, assuming that routers' interfaces are configured with IP addresses. This document thus proposes a model for configuration of IP addresses and subnet prefixes on router interfaces to links with undetermined connectivity properties, to allow routing protocols and data packet forwarding to function.

链路级连接在性质上为非计划和/或时变时,通常被限定为未确定。adhoc网络是具有不确定链路级连接的网络的典型示例。adhoc网络的路由协议专门设计用于检测和维护网络中的路径,即使在面临连接不确定的链路时也是如此,前提是路由器的接口配置有IP地址。因此,本文件提出了一个模型,用于配置路由器接口上的IP地址和子网前缀,以连接属性不确定的链路,从而允许路由协议和数据包转发发挥作用。

Note that routers may ultimately need additional IP prefixes for the diverse applications that could run directly on the routers themselves, or for assignment to attached hosts or networks. For

请注意,路由器可能最终需要额外的IP前缀,用于直接在路由器上运行的各种应用程序,或用于分配到连接的主机或网络。对于

IPv6, these addresses may be global [RFC3587], Unique-Local [RFC4193] or Link-Local [RFC4291]. For IPv4, the addresses may be global (i.e., public) or private [RFC1918]. In general, global scope is desired over local scope, though it is understood that this may not always be achievable via automatic configuration mechanisms. In this document however, automatic configuration of the prefixes used for general applications is considered as a problem that is separable from that of automatic configuration of addresses and prefixes necessary for routing protocols to function. This document thus focuses on the latter: the type of IP address and subnet mask configuration necessary for routing protocols and data packet forwarding to function.

在IPv6中,这些地址可以是全局[RFC3587]、唯一本地[RFC4193]或链路本地[RFC4291]。对于IPv4,地址可以是全局的(即公共的)或私有的[RFC1918]。一般来说,全局作用域比局部作用域更为理想,但可以理解的是,通过自动配置机制可能并不总能实现这一点。然而,在本文中,用于一般应用的前缀的自动配置被认为是一个与路由协议运行所需的地址和前缀的自动配置问题相分离的问题。因此,本文档主要关注后者:路由协议和数据包转发功能所需的IP地址类型和子网掩码配置。

2. Terminology
2. 术语

This document uses the vocabulary and the concepts defined in [RFC1918] and [RFC4632] for IPv4, as well as [RFC4291] for IPv6.

本文档使用[RFC1918]和[RFC4632]中为IPv4定义的词汇和概念,以及[RFC4291]中为IPv6定义的词汇和概念。

3. Applicability Statement
3. 适用性声明

This model gives guidance about the configuration of IP addresses and the IP subnet prefixes on a router's IP interfaces, which connect to links with undetermined connectivity properties.

该模型为路由器IP接口上的IP地址和IP子网前缀的配置提供指导,这些IP接口连接到具有不确定连接属性的链路。

When more specific assumptions can be made regarding the connectivity between interfaces or the (persistent) reachability of some addresses, these should be considered when configuring subnet prefixes.

如果可以对接口之间的连接或某些地址的(持久)可达性做出更具体的假设,则在配置子网前缀时应考虑这些假设。

4. IP Subnet Prefix Configuration
4. IP子网前缀配置

If the link to which an interface connects enables no assumptions of connectivity to other interfaces, the only addresses that can be assumed "on link", are the address(es) of that interface itself. Note that while link-local addresses are assumed to be "on link", the utility of link-local addresses is limited as described in Section 6.

如果一个接口所连接的链路不允许假设与其他接口的连接,则可以假设“在链路上”的唯一地址是该接口本身的地址。注意,虽然链路本地地址被假定为“在链路上”,但链路本地地址的实用性是有限的,如第6节所述。

Thus, subnet prefix configuration on such interfaces must not make any promises in terms of direct (one hop) IP connectivity to IP addresses other than that of the interface itself. This suggests the following principle:

因此,此类接口上的子网前缀配置不得在与IP地址的直接(一跳)IP连接方面做出任何承诺,接口本身除外。这表明了以下原则:

o no on-link subnet prefix should be configured on such an interface.

o 不应在此类接口上配置链路子网前缀。

Note that if layer 2 communication is enabled between a pair of interfaces, IP packet exchange is also enabled, even if IP subnet configuration is absent or different on each of these interfaces.

请注意,如果在一对接口之间启用了第2层通信,则也会启用IP数据包交换,即使这些接口上的IP子网配置不存在或不同。

Also note that if, on the contrary, assumptions can be made regarding the connectivity between interfaces, or regarding the persistent reachability of some addresses, these should be considered when configuring IP subnet prefixes, and the corresponding interface(s) may in such case be configured with an on-link subnet prefix.

另请注意,相反,如果可以对接口之间的连接或某些地址的持久可达性作出假设,则在配置IP子网前缀时应考虑这些假设,并且在这种情况下,相应的接口可以配置有链路子网前缀。

5. IP Address Configuration
5. IP地址配置

Routing protocols running on a router may exhibit different requirements for uniqueness of interface addresses; some have no such requirements, others have requirements ranging from local uniqueness only, to uniqueness within, at least, the routing domain (as defined in [RFC1136]).

路由器上运行的路由协议可能对接口地址的唯一性有不同的要求;一些没有这样的要求,其他的要求范围从仅本地唯一性到路由域内的唯一性(如[RFC1136]中定义的)。

Routing protocols that do not require unique IP addresses within the routing domain utilize a separate unique identifier within the routing protocol itself; such identifiers could be based on factory assignment or configuration.

在路由域中不需要唯一IP地址的路由协议在路由协议本身中使用单独的唯一标识符;此类标识符可以基于工厂分配或配置。

Nevertheless, configuring an IP address that is unique within the routing domain satisfies the less stringent uniqueness requirements, while also enabling protocols that have the most stringent requirements of uniqueness within the routing domain. As a result, the following principle allows for IP autoconfiguration to apply to the widest array of routing protocols:

尽管如此,在路由域中配置唯一的IP地址满足了不太严格的唯一性要求,同时也启用了在路由域中具有最严格的唯一性要求的协议。因此,以下原则允许IP自动配置应用于最广泛的路由协议阵列:

o an IP address assigned to an interface that connects to a link with undetermined connectivity properties should be unique, at least within the routing domain.

o 分配给连接到具有不确定连接属性的链路的接口的IP地址应该是唯一的,至少在路由域中是唯一的。

6. Addressing Model
6. 寻址模型

Sections 4 and 5 describe principles for IP address and subnet prefix configuration on an interface of a router, when that interface connects to a link with undetermined connectivity properties. The following describes guidelines that follow from these principles, respectively for IPv6 and IPv4.

第4节和第5节描述了路由器接口上的IP地址和子网前缀配置原则,当该接口连接到具有不确定连接属性的链路时。以下介绍了分别针对IPv6和IPv4遵循这些原则的指导原则。

Note that the guidelines provided in this document slightly differ for IPv6 and IPv4, as IPv6 offers possibilities that IPv4 does not (i.e., the possibility to simply not configure any on-link subnet prefix on an IPv6 interface), which provide a "cleaner" model.

请注意,本文档中提供的指南对于IPv6和IPv4略有不同,因为IPv6提供了IPv4不提供的可能性(即,不在IPv6接口上配置任何链路子网前缀的可能性),这提供了一个“更干净”的模型。

6.1. IPv6 Model
6.1. IPv6模型

For IPv6, the principles described in Sections 4 and 5 suggest the following rules:

对于IPv6,第4节和第5节中描述的原则建议了以下规则:

o An IP address configured on this interface should be unique, at least within the routing domain, and

o 此接口上配置的IP地址应是唯一的,至少在路由域内是唯一的,并且

o No on-link subnet prefix is configured on this interface.

o 此接口上未配置链路子网前缀。

Note that while an IPv6 link-local address is assigned to each interface as per [RFC4291], in general link-local addresses are of limited utility on links with undetermined connectivity, as connectivity to neighbors may be constantly changing. The known limitations are:

请注意,虽然根据[RFC4291]为每个接口分配了IPv6链路本地地址,但通常链路本地地址在连接不确定的链路上的效用有限,因为与邻居的连接可能会不断变化。已知的限制是:

o In general, there is no mechanism to ensure that IPv6 link-local addresses are unique across multiple links, though link-local addresses using an IID that are of the modified EUI-64 form should be globally unique.

o 一般来说,没有任何机制可以确保IPv6链路本地地址在多个链路中是唯一的,尽管使用修改后的EUI-64格式IID的链路本地地址应该是全局唯一的。

o Routers cannot forward any packets with link-local source or destination addresses to other links (as per [RFC4291]), while most of the time, routers need to be able to forward packets to/ from different links.

o 路由器不能将任何带有链路本地源地址或目的地址的数据包转发到其他链路(根据[RFC4291]),而大多数情况下,路由器需要能够将数据包转发到不同链路或从不同链路转发数据包。

Therefore, autoconfiguration solutions should be encouraged to primarily focus on configuring IP addresses that are not IPv6 link-local.

因此,应鼓励自动配置解决方案主要关注配置非IPv6本地链路的IP地址。

6.2. IPv4 Model
6.2. IPv4模式

For IPv4, the principles described in Sections 4 and 5 suggest rules similar to those mentioned for IPv6 in Section 6.1, that are:

对于IPv4,第4节和第5节中描述的原则建议了与第6.1节中提及的IPv6类似的规则,即:

o An IP address configured on this interface should be unique, at least within the routing domain, and

o 此接口上配置的IP地址应是唯一的,至少在路由域内是唯一的,并且

o Any subnet prefix configured on this interface should be 32 bits long.

o 此接口上配置的任何子网前缀的长度应为32位。

Note that the use of IPv4 link-local addresses [RFC3927] in this context should be discouraged for most applications, as the limitations outlined in Section 6.1 for IPv6 link-local addresses also concern IPv4 link-local addresses. These limitations are further exacerbated by the smaller pool of IPv4 link-local addresses to choose from and thus increased reliance on Duplicate Address Detection (DAD).

请注意,大多数应用程序都不鼓励在此上下文中使用IPv4链路本地地址[RFC3927],因为第6.1节中概述的IPv6链路本地地址限制也涉及IPv4链路本地地址。可供选择的IPv4链路本地地址池较小,从而增加了对重复地址检测(DAD)的依赖,这进一步加剧了这些限制。

7. Security Considerations
7. 安全考虑

This document focuses on the IP address and subnet mask configuration necessary for routing protocols and data packet forwarding to function. [RFC4593] describes generic threats to routing protocols, whose applicability is not altered by the presence of interfaces with undetermined connectivity properties. As such, the addressing model described in this document does not introduce new security threats.

本文档重点介绍路由协议和数据包转发功能所需的IP地址和子网掩码配置。[RFC4593]描述了对路由协议的一般威胁,其适用性不会因存在具有不确定连接属性的接口而改变。因此,本文档中描述的寻址模型不会引入新的安全威胁。

However, the possible lack of pre-established infrastructure or authority, as enabled by the use of interfaces with undetermined connectivity properties, may render some of the attacks described in [RFC4593] easier to undertake. In particular, detection of malevolent misconfiguration may be more difficult to detect and to locate.

但是,由于使用连接属性不确定的接口,可能缺乏预先建立的基础设施或权限,因此[RFC4593]中描述的一些攻击可能更容易实施。特别是,恶意错误配置的检测可能更难检测和定位。

8. References
8. 工具书类
8.1. Normative References
8.1. 规范性引用文件

[RFC1136] Hares, S. and D. Katz, "Administrative Domains and Routing Domains: A model for routing in the Internet", RFC 1136, December 1989.

[RFC1136]Hares,S.和D.Katz,“管理域和路由域:互联网路由模型”,RFC 11361989年12月。

[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, February 2006.

[RFC4291]Hinden,R.和S.Deering,“IP版本6寻址体系结构”,RFC 42912006年2月。

[RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic Configuration of IPv4 Link-Local Addresses", RFC 3927, May 2005.

[RFC3927]Cheshire,S.,Aboba,B.和E.Guttman,“IPv4链路本地地址的动态配置”,RFC 3927,2005年5月。

[RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., and E. Lear, "Address Allocation for Private Internets", BCP 5, RFC 1918, February 1996.

[RFC1918]Rekhter,Y.,Moskowitz,B.,Karrenberg,D.,de Groot,G.,和E.Lear,“私人互联网地址分配”,BCP 5,RFC 1918,1996年2月。

[RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast Addresses", RFC 4193, October 2005.

[RFC4193]Hinden,R.和B.Haberman,“唯一本地IPv6单播地址”,RFC 41932005年10月。

[RFC3587] Hinden, R., Deering, S., and E. Nordmark, "IPv6 Global Unicast Address Format", RFC 3587, August 2003.

[RFC3587]Hinden,R.,Deering,S.,和E.Nordmark,“IPv6全球单播地址格式”,RFC 3587,2003年8月。

[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, August 2006.

[RFC4632]Fuller,V.和T.Li,“无类域间路由(CIDR):互联网地址分配和聚合计划”,BCP 122,RFC 4632,2006年8月。

8.2. Informative References
8.2. 资料性引用

[RFC4593] Barbir, A., Murphy, S., and Y. Yang, "Generic Threats to Routing Protocols", RFC 4593, October 2006.

[RFC4593]Barbir,A.,Murphy,S.,和Y.Yang,“路由协议的一般威胁”,RFC 4593,2006年10月。

Appendix A. Contributors
附录A.贡献者

This document reflects discussions and contributions from several individuals including (in alphabetical order): Teco Boot, Thomas Clausen, Ulrich Herberg, Thomas Narten, Erik Nordmark, Charles Perkins, Zach Shelby, and Dave Thaler.

本文件反映了几个人的讨论和贡献,包括(按字母顺序排列):Teco Boot、Thomas Clausen、Ulrich Herberg、Thomas Narten、Erik Nordmark、Charles Perkins、Zach Shelby和Dave Thaler。

Authors' Addresses

作者地址

Emmanuel Baccelli (editor) INRIA

伊曼纽尔·巴切利(编辑)因里亚

   EMail: Emmanuel.Baccelli@inria.fr
   URI:   http://www.emmanuelbaccelli.org/
        
   EMail: Emmanuel.Baccelli@inria.fr
   URI:   http://www.emmanuelbaccelli.org/
        

Mark Townsley (editor) Cisco Systems

马克·汤斯利(编辑)思科系统公司

   EMail: mark@townsley.net
        
   EMail: mark@townsley.net