Internet Engineering Task Force (IETF)                  J. Martocci, Ed.
Request for Comments: 5867                         Johnson Controls Inc.
Category: Informational                                        P. De Mil
ISSN: 2070-1721                                  Ghent University - IBCN
                                                                 N. Riou
                                                      Schneider Electric
                                                            W. Vermeylen
                                                     Arts Centre Vooruit
                                                               June 2010
        
Internet Engineering Task Force (IETF)                  J. Martocci, Ed.
Request for Comments: 5867                         Johnson Controls Inc.
Category: Informational                                        P. De Mil
ISSN: 2070-1721                                  Ghent University - IBCN
                                                                 N. Riou
                                                      Schneider Electric
                                                            W. Vermeylen
                                                     Arts Centre Vooruit
                                                               June 2010
        

Building Automation Routing Requirements in Low-Power and Lossy Networks

低功耗和有损网络中的楼宇自动化路由要求

Abstract

摘要

The Routing Over Low-Power and Lossy (ROLL) networks Working Group has been chartered to work on routing solutions for Low-Power and Lossy Networks (LLNs) in various markets: industrial, commercial (building), home, and urban networks. Pursuant to this effort, this document defines the IPv6 routing requirements for building automation.

低功耗和有损网络路由(ROLL)工作组已获得特许,致力于在各种市场中为低功耗和有损网络(LLN)提供路由解决方案:工业、商业(建筑)、家庭和城市网络。根据这项工作,本文档定义了楼宇自动化的IPv6路由要求。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5867.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc5867.

Copyright Notice

版权公告

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2010 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

本文件可能包含2008年11月10日之前发布或公开的IETF文件或IETF贡献中的材料。控制某些材料版权的人员可能未授予IETF信托允许在IETF标准流程之外修改此类材料的权利。在未从控制此类材料版权的人员处获得充分许可的情况下,不得在IETF标准流程之外修改本文件,也不得在IETF标准流程之外创建其衍生作品,除了将其格式化以RFC形式发布或将其翻译成英语以外的其他语言。

Table of Contents

目录

   1. Introduction ....................................................4
   2. Terminology .....................................................6
      2.1. Requirements Language ......................................6
   3. Overview of Building Automation Networks ........................6
      3.1. Introduction ...............................................6
      3.2. Building Systems Equipment .................................7
           3.2.1. Sensors/Actuators ...................................7
           3.2.2. Area Controllers ....................................7
           3.2.3. Zone Controllers ....................................8
      3.3. Equipment Installation Methods .............................8
      3.4. Device Density .............................................9
           3.4.1. HVAC Device Density .................................9
           3.4.2. Fire Device Density .................................9
           3.4.3. Lighting Device Density ............................10
           3.4.4. Physical Security Device Density ...................10
   4. Traffic Pattern ................................................10
   5. Building Automation Routing Requirements .......................12
      5.1. Device and Network Commissioning ..........................12
           5.1.1. Zero-Configuration Installation ....................12
           5.1.2. Local Testing ......................................12
           5.1.3. Device Replacement .................................13
      5.2. Scalability ...............................................13
           5.2.1. Network Domain .....................................13
           5.2.2. Peer-to-Peer Communication .........................13
      5.3. Mobility ..................................................13
           5.3.1. Mobile Device Requirements .........................14
      5.4. Resource Constrained Devices ..............................15
           5.4.1. Limited Memory Footprint on Host Devices ...........15
           5.4.2. Limited Processing Power for Routers ...............15
           5.4.3. Sleeping Devices ...................................15
      5.5. Addressing ................................................16
      5.6. Manageability .............................................16
           5.6.1. Diagnostics ........................................17
           5.6.2. Route Tracking .....................................17
      5.7. Route Selection ...........................................17
           5.7.1. Route Cost .........................................17
           5.7.2. Route Adaptation ...................................18
           5.7.3. Route Redundancy ...................................18
           5.7.4. Route Discovery Time ...............................18
           5.7.5. Route Preference ...................................18
           5.7.6. Real-Time Performance Measures .....................18
           5.7.7. Prioritized Routing ................................18
        
   1. Introduction ....................................................4
   2. Terminology .....................................................6
      2.1. Requirements Language ......................................6
   3. Overview of Building Automation Networks ........................6
      3.1. Introduction ...............................................6
      3.2. Building Systems Equipment .................................7
           3.2.1. Sensors/Actuators ...................................7
           3.2.2. Area Controllers ....................................7
           3.2.3. Zone Controllers ....................................8
      3.3. Equipment Installation Methods .............................8
      3.4. Device Density .............................................9
           3.4.1. HVAC Device Density .................................9
           3.4.2. Fire Device Density .................................9
           3.4.3. Lighting Device Density ............................10
           3.4.4. Physical Security Device Density ...................10
   4. Traffic Pattern ................................................10
   5. Building Automation Routing Requirements .......................12
      5.1. Device and Network Commissioning ..........................12
           5.1.1. Zero-Configuration Installation ....................12
           5.1.2. Local Testing ......................................12
           5.1.3. Device Replacement .................................13
      5.2. Scalability ...............................................13
           5.2.1. Network Domain .....................................13
           5.2.2. Peer-to-Peer Communication .........................13
      5.3. Mobility ..................................................13
           5.3.1. Mobile Device Requirements .........................14
      5.4. Resource Constrained Devices ..............................15
           5.4.1. Limited Memory Footprint on Host Devices ...........15
           5.4.2. Limited Processing Power for Routers ...............15
           5.4.3. Sleeping Devices ...................................15
      5.5. Addressing ................................................16
      5.6. Manageability .............................................16
           5.6.1. Diagnostics ........................................17
           5.6.2. Route Tracking .....................................17
      5.7. Route Selection ...........................................17
           5.7.1. Route Cost .........................................17
           5.7.2. Route Adaptation ...................................18
           5.7.3. Route Redundancy ...................................18
           5.7.4. Route Discovery Time ...............................18
           5.7.5. Route Preference ...................................18
           5.7.6. Real-Time Performance Measures .....................18
           5.7.7. Prioritized Routing ................................18
        
      5.8. Security Requirements .....................................19
           5.8.1. Building Security Use Case .........................19
           5.8.2. Authentication .....................................20
           5.8.3. Encryption .........................................20
           5.8.4. Disparate Security Policies ........................21
           5.8.5. Routing Security Policies to Sleeping Devices ......21
   6. Security Considerations ........................................21
   7. Acknowledgments ................................................22
   8. References .....................................................22
      8.1. Normative References ......................................22
      8.2. Informative References ....................................22
   Appendix A. Additional Building Requirements ......................23
      A.1. Additional Commercial Product Requirements ................23
           A.1.1. Wired and Wireless Implementations .................23
           A.1.2. World-Wide Applicability ...........................23
      A.2. Additional Installation and Commissioning Requirements ....23
           A.2.1. Unavailability of an IP Network ....................23
      A.3. Additional Network Requirements ...........................23
           A.3.1. TCP/UDP ............................................23
           A.3.2. Interference Mitigation ............................23
           A.3.3. Packet Reliability .................................24
           A.3.4. Merging Commissioned Islands .......................24
           A.3.5. Adjustable Routing Table Sizes .....................24
           A.3.6. Automatic Gain Control .............................24
           A.3.7. Device and Network Integrity .......................24
      A.4. Additional Performance Requirements .......................24
           A.4.1. Data Rate Performance ..............................24
           A.4.2. Firmware Upgrades ..................................25
           A.4.3. Route Persistence ..................................25
        
      5.8. Security Requirements .....................................19
           5.8.1. Building Security Use Case .........................19
           5.8.2. Authentication .....................................20
           5.8.3. Encryption .........................................20
           5.8.4. Disparate Security Policies ........................21
           5.8.5. Routing Security Policies to Sleeping Devices ......21
   6. Security Considerations ........................................21
   7. Acknowledgments ................................................22
   8. References .....................................................22
      8.1. Normative References ......................................22
      8.2. Informative References ....................................22
   Appendix A. Additional Building Requirements ......................23
      A.1. Additional Commercial Product Requirements ................23
           A.1.1. Wired and Wireless Implementations .................23
           A.1.2. World-Wide Applicability ...........................23
      A.2. Additional Installation and Commissioning Requirements ....23
           A.2.1. Unavailability of an IP Network ....................23
      A.3. Additional Network Requirements ...........................23
           A.3.1. TCP/UDP ............................................23
           A.3.2. Interference Mitigation ............................23
           A.3.3. Packet Reliability .................................24
           A.3.4. Merging Commissioned Islands .......................24
           A.3.5. Adjustable Routing Table Sizes .....................24
           A.3.6. Automatic Gain Control .............................24
           A.3.7. Device and Network Integrity .......................24
      A.4. Additional Performance Requirements .......................24
           A.4.1. Data Rate Performance ..............................24
           A.4.2. Firmware Upgrades ..................................25
           A.4.3. Route Persistence ..................................25
        
1. Introduction
1. 介绍

The Routing Over Low-Power and Lossy (ROLL) networks Working Group has been chartered to work on routing solutions for Low-Power and Lossy Networks (LLNs) in various markets: industrial, commercial (building), home, and urban networks. Pursuant to this effort, this document defines the IPv6 routing requirements for building automation.

低功耗和有损网络路由(ROLL)工作组已获得特许,致力于在各种市场中为低功耗和有损网络(LLN)提供路由解决方案:工业、商业(建筑)、家庭和城市网络。根据这项工作,本文档定义了楼宇自动化的IPv6路由要求。

Commercial buildings have been fitted with pneumatic, and subsequently electronic, communication routes connecting sensors to their controllers for over one hundred years. Recent economic and technical advances in wireless communication allow facilities to increasingly utilize a wireless solution in lieu of a wired solution, thereby reducing installation costs while maintaining highly reliant communication.

一百多年来,商业建筑已经安装了连接传感器和控制器的气动和随后的电子通信线路。无线通信的最新经济和技术进步使设施越来越多地使用无线解决方案代替有线解决方案,从而降低安装成本,同时保持高度可靠的通信。

The cost benefits and ease of installation of wireless sensors allow customers to further instrument their facilities with additional sensors, providing tighter control while yielding increased energy savings.

无线传感器的成本优势和易于安装,使客户能够使用额外的传感器进一步检测其设备,从而提供更严格的控制,同时实现更高的节能。

Wireless solutions will be adapted from their existing wired counterparts in many of the building applications including, but not limited to, heating, ventilation, and air conditioning (HVAC); lighting; physical security; fire; and elevator/lift systems. These devices will be developed to reduce installation costs while increasing installation and retrofit flexibility, as well as increasing the sensing fidelity to improve efficiency and building service quality.

无线解决方案将从许多建筑应用中的现有有线解决方案中进行调整,包括但不限于供暖、通风和空调(HVAC);照明;人身安全;火以及升降机/升降机系统。这些设备的开发将降低安装成本,同时提高安装和改装的灵活性,并提高传感保真度,以提高效率和建筑服务质量。

Sensing devices may be battery-less, battery-powered, or mains-powered. Actuators and area controllers will be mains-powered. Due to building code and/or device density (e.g., equipment room), it is envisioned that a mix of wired and wireless sensors and actuators will be deployed within a building.

传感装置可以是无电池、电池供电或电源供电。致动器和区域控制器将由电源供电。由于建筑规范和/或设备密度(如设备室),预计将在建筑内部署有线和无线传感器和致动器的混合。

Building management systems (BMSs) are deployed in a large set of vertical markets including universities, hospitals, government facilities, kindergarten through high school (K-12), pharmaceutical manufacturing facilities, and single-tenant or multi-tenant office buildings. These buildings range in size from 100K-sq.-ft. structures (5-story office buildings), to 1M-sq.-ft. skyscrapers (100-story skyscrapers), to complex government facilities such as the Pentagon. The described topology is meant to be the model to be used in all of these types of environments but clearly must be tailored to the building class, building tenant, and vertical market being served.

建筑管理系统(BMS)部署在一系列大型垂直市场,包括大学、医院、政府设施、幼儿园到高中(K-12)、制药制造设施以及单租户或多租户办公楼。这些建筑的规模从10万平方英尺的结构(5层办公楼)到100万平方英尺的摩天大楼(100层摩天大楼),再到五角大楼等复杂的政府设施。所描述的拓扑旨在成为所有这些类型环境中使用的模型,但显然必须根据所服务的建筑类别、建筑租户和垂直市场进行定制。

Section 3 describes the necessary background to understand the context of building automation including the sensor, actuator, area controller, and zone controller layers of the topology; typical device density; and installation practices.

第3节描述了理解楼宇自动化背景的必要背景,包括传感器、执行器、区域控制器和拓扑的区域控制器层;典型器件密度;和安装实践。

Section 4 defines the traffic flow of the aforementioned sensors, actuators, and controllers in commercial buildings.

第4节定义了商业建筑中上述传感器、执行器和控制器的交通流。

Section 5 defines the full set of IPv6 routing requirements for commercial buildings.

第5节定义了商业建筑的整套IPv6路由要求。

Appendix A documents important commercial building requirements that are out of scope for routing yet will be essential to the final acceptance of the protocols used within the building.

附录A记录了重要的商业建筑要求,这些要求不在布线范围内,但对建筑物内使用的协议的最终验收至关重要。

Section 3 and Appendix A are mainly included for educational purposes.

第3节和附录A主要用于教育目的。

The expressed aim of this document is to provide the set of IPv6 routing requirements for LLNs in buildings, as described in Section 5.

如第5节所述,本文件的明确目的是为建筑物中的LLN提供一套IPv6路由要求。

2. Terminology
2. 术语

For a description of the terminology used in this specification, please see [ROLL-TERM].

有关本规范中所用术语的说明,请参见[滚动术语]。

2.1. Requirements Language
2.1. 需求语言

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

3. Overview of Building Automation Networks
3. 楼宇自动化网络综述
3.1. Introduction
3.1. 介绍

To understand the network systems requirements of a building management system in a commercial building, this document uses a framework to describe the basic functions and composition of the system. A BMS is a hierarchical system of sensors, actuators, controllers, and user interface devices that interoperate to provide a safe and comfortable environment while constraining energy costs.

为了了解商业建筑中建筑管理系统的网络系统要求,本文件使用一个框架来描述系统的基本功能和组成。BMS是一个由传感器、执行器、控制器和用户界面设备组成的分层系统,可互操作以提供安全舒适的环境,同时限制能源成本。

A BMS is divided functionally across different but interrelated building subsystems such as heating, ventilation, and air conditioning (HVAC); fire; security; lighting; shutters; and elevator/lift control systems, as denoted in Figure 1.

BMS在功能上划分为不同但相互关联的建筑子系统,如供暖、通风和空调(HVAC);火安全照明;百叶窗;和电梯/电梯控制系统,如图1所示。

Much of the makeup of a BMS is optional and installed at the behest of the customer. Sensors and actuators have no standalone functionality. All other devices support partial or complete standalone functionality. These devices can optionally be tethered to form a more cohesive system. The customer requirements dictate the level of integration within the facility. This architecture provides excellent fault tolerance since each node is designed to operate in an independent mode if the higher layers are unavailable.

BMS的大部分组成是可选的,并根据客户的要求安装。传感器和执行器没有独立的功能。所有其他设备都支持部分或完整的独立功能。这些装置可以选择性地栓系以形成更具凝聚力的系统。客户要求决定了设施内的集成级别。这种体系结构提供了极好的容错能力,因为每个节点都设计为在高层不可用时以独立模式运行。

                 +------+ +-----+ +------+ +------+ +------+ +------+
        
                 +------+ +-----+ +------+ +------+ +------+ +------+
        
   Bldg App'ns   |      | |     | |      | |      | |      | |      |
        
   Bldg App'ns   |      | |     | |      | |      | |      | |      |
        
                 |      | |     | |      | |      | |      | |      |
        
                 |      | |     | |      | |      | |      | |      |
        
   Building Cntl |      | |     | |   S  | |   L  | |   S  | |  E   |
        
   Building Cntl |      | |     | |   S  | |   L  | |   S  | |  E   |
        
                 |      | |     | |   E  | |   I  | |   H  | |  L   |
        
                 |      | |     | |   E  | |   I  | |   H  | |  L   |
        
   Area Control  |  H   | |  F  | |   C  | |   G  | |   U  | |  E   |
        
   Area Control  |  H   | |  F  | |   C  | |   G  | |   U  | |  E   |
        
                 |  V   | |  I  | |   U  | |   H  | |   T  | |  V   |
        
                 |  V   | |  I  | |   U  | |   H  | |   T  | |  V   |
        
   Zone Control  |  A   | |  R  | |   R  | |   T  | |   T  | |  A   |
        
   Zone Control  |  A   | |  R  | |   R  | |   T  | |   T  | |  A   |
        
                 |  C   | |  E  | |   I  | |   I  | |   E  | |  T   |
        
                 |  C   | |  E  | |   I  | |   I  | |   E  | |  T   |
        
   Actuators     |      | |     | |   T  | |   N  | |   R  | |  O   |
        
   Actuators     |      | |     | |   T  | |   N  | |   R  | |  O   |
        
                 |      | |     | |   Y  | |   G  | |   S  | |  R   |
        
                 |      | |     | |   Y  | |   G  | |   S  | |  R   |
        
   Sensors       |      | |     | |      | |      | |      | |      |
        
   Sensors       |      | |     | |      | |      | |      | |      |
        
                 +------+ +-----+ +------+ +------+ +------+ +------+
        
                 +------+ +-----+ +------+ +------+ +------+ +------+
        

Figure 1: Building Systems and Devices

图1:建筑系统和设备

3.2. Building Systems Equipment
3.2. 建筑系统设备
3.2.1. Sensors/Actuators
3.2.1. 传感器/执行器

As Figure 1 indicates, a BMS may be composed of many functional stacks or silos that are interoperably woven together via building applications. Each silo has an array of sensors that monitor the environment and actuators that modify the environment, as determined by the upper layers of the BMS topology. The sensors typically are at the edge of the network structure, providing environmental data for the system. The actuators are the sensors' counterparts, modifying the characteristics of the system, based on the sensor data and the applications deployed.

如图1所示,BMS可能由许多功能堆栈或筒仓组成,这些功能堆栈或筒仓通过构建应用程序可互操作地编织在一起。每个思洛存储器都有一组传感器,用于监控环境,以及根据BMS拓扑的上层确定的修改环境的执行器。传感器通常位于网络结构的边缘,为系统提供环境数据。执行器是传感器的对应物,根据传感器数据和部署的应用修改系统的特性。

3.2.2. Area Controllers
3.2.2. 区域控制器

An area describes a small physical locale within a building, typically a room. HVAC (temperature and humidity) and lighting (room lighting, shades, solar loads) vendors oftentimes deploy area controllers. Area controllers are fed by sensor inputs that monitor

区域描述建筑物内的一个小的物理区域,通常是一个房间。HVAC(温度和湿度)和照明(房间照明、遮阳、太阳能负荷)供应商通常部署区域控制器。区域控制器由监控的传感器输入供电

the environmental conditions within the room. Common sensors found in many rooms that feed the area controllers include temperature, occupancy, lighting load, solar load, and relative humidity. Sensors found in specialized rooms (such as chemistry labs) might include air flow, pressure, and CO2 and CO particle sensors. Room actuation includes temperature setpoint, lights, and blinds/curtains.

房间内的环境条件。为区域控制器供电的许多房间中常见的传感器包括温度、占用率、照明负荷、太阳能负荷和相对湿度。专门房间(如化学实验室)中的传感器可能包括空气流量、压力、CO2和CO颗粒传感器。房间驱动包括温度设定点、灯和百叶窗/窗帘。

3.2.3. Zone Controllers
3.2.3. 区域控制器

Zone controllers support a similar set of characteristics to area controllers, albeit for an extended space. A zone is normally a logical grouping or functional division of a commercial building. A zone may also coincidentally map to a physical locale such as a floor.

分区控制器支持与区域控制器类似的一组特性,尽管是针对扩展空间。分区通常是商业建筑的逻辑分组或功能分区。分区也可以同时映射到物理区域,例如地板。

Zone controllers may have direct sensor inputs (smoke detectors for fire), controller inputs (room controllers for air handlers in HVAC), or both (door controllers and tamper sensors for security). Like area/room controllers, zone controllers are standalone devices that operate independently or may be attached to the larger network for more synergistic control.

区域控制器可能具有直接传感器输入(火灾烟雾探测器)、控制器输入(HVAC中空气处理器的房间控制器)或两者(安全门控制器和防篡改传感器)。与区域/房间控制器一样,区域控制器是独立的设备,可以独立运行,也可以连接到更大的网络以实现更好的协同控制。

3.3. Equipment Installation Methods
3.3. 设备安装方法

A BMS is installed very differently from most other IT networks. IT networks are typically installed as an overlay onto the existing environment and are installed from the inside out. That is, the network wiring infrastructure is installed; the switches, routers, and servers are connected and made operational; and finally, the endpoints (e.g., PCs, VoIP phones) are added.

BMS的安装与大多数其他IT网络非常不同。IT网络通常作为覆盖安装在现有环境上,并从内到外安装。即安装了网络布线基础设施;交换机、路由器和服务器已连接并可运行;最后,添加端点(例如,PC、VoIP电话)。

BMSs, on the other hand, are installed from the outside in. That is, the endpoints (thermostats, lights, smoke detectors) are installed in the spaces first; local control is established in each room and tested for proper operation. The individual rooms are later lashed together into a subsystem (e.g., lighting). The individual subsystems (e.g., lighting, HVAC) then coalesce. Later, the entire system may be merged onto the enterprise network.

另一方面,BMS是从外向内安装的。也就是说,首先在空间中安装端点(恒温器、灯、烟雾探测器);在每个房间建立本地控制,并测试其是否正常运行。各个房间随后被捆绑在一起形成一个子系统(如照明)。然后,各个子系统(如照明、HVAC)合并在一起。稍后,整个系统可能会合并到企业网络上。

The rationale for this is partly due to the different construction trades having access to a building under construction at different times. The sheer size of a building often dictates that even a single trade may have multiple independent teams working simultaneously. Furthermore, the HVAC, lighting, and fire systems must be fully operational before the building can obtain its occupancy permit. Hence, the BMS must be in place and configured well before any of the IT servers (DHCP; Authentication, Authorization, and Accounting (AAA); DNS; etc.) are operational.

之所以这样做,部分原因是不同的建筑行业在不同的时间进入在建建筑。建筑的巨大规模往往决定了即使是一个行业也可能有多个独立的团队同时工作。此外,暖通空调、照明和消防系统必须全面运行,建筑物才能获得入住许可。因此,BMS必须在任何IT服务器(DHCP、身份验证、授权和计费(AAA)、DNS等)运行之前到位并配置好。

This implies that the BMS cannot rely on the availability of the IT network infrastructure or application servers. Rather, the BMS installation should be planned to dovetail into the IT system once the IT system is available for easy migration onto the IT network. Front-end planning of available switch ports, cable runs, access point (AP) placement, firewalls, and security policies will facilitate this adoption.

这意味着BMS不能依赖IT网络基础设施或应用服务器的可用性。相反,BMS安装应计划在IT系统可用后与IT系统相衔接,以便轻松迁移到IT网络上。可用交换机端口、电缆敷设、接入点(AP)布置、防火墙和安全策略的前端规划将促进这种采用。

3.4. Device Density
3.4. 器件密度

Device density differs, depending on the application and as dictated by the local building code requirements. The following subsections detail typical installation densities for different applications.

设备密度不同,取决于应用和当地建筑规范要求。以下小节详细说明了不同应用的典型安装密度。

3.4.1. HVAC Device Density
3.4.1. 暖通空调设备密度

HVAC room applications typically have sensors/actuators and controllers spaced about 50 ft. apart. In most cases, there is a 3:1 ratio of sensors/actuators to controllers. That is, for each room there is an installed temperature sensor, flow sensor, and damper actuator for the associated room controller.

HVAC房间应用通常具有间隔约50英尺的传感器/执行器和控制器。在大多数情况下,传感器/执行器与控制器的比例为3:1。也就是说,每个房间都安装了一个温度传感器、流量传感器和相关房间控制器的风门执行器。

HVAC equipment room applications are quite different. An air handler system may have a single controller with up to 25 sensors and actuators within 50 ft. of the air handler. A chiller or boiler is also controlled with a single equipment controller instrumented with 25 sensors and actuators. Each of these devices would be individually addressed since the devices are mandated or optional as defined by the specified HVAC application. Air handlers typically serve one or two floors of the building. Chillers and boilers may be installed per floor, but many times they service a wing, building, or the entire complex via a central plant.

暖通空调设备室的应用有很大不同。空气处理器系统可能有一个控制器,在距离空气处理器50英尺的范围内最多有25个传感器和执行器。制冷机或锅炉也由一个配备25个传感器和执行器的设备控制器控制。这些设备中的每一个都将单独寻址,因为这些设备是指定HVAC应用程序规定的强制或可选设备。空气处理器通常服务于建筑物的一层或两层。制冷机和锅炉可以安装在每层楼,但很多时候,它们通过中央设备为机翼、建筑物或整个综合体提供服务。

These numbers are typical. In special cases, such as clean rooms, operating rooms, pharmaceutical facilities, and labs, the ratio of sensors to controllers can increase by a factor of three. Tenant installations such as malls would opt for packaged units where much of the sensing and actuation is integrated into the unit; here, a single device address would serve the entire unit.

这些数字是典型的。在特殊情况下,如洁净室、手术室、制药设施和实验室,传感器与控制器的比例可以增加三倍。租户安装,如商场,将选择封装单元,其中大部分传感和驱动集成到单元中;在这里,单个设备地址将服务于整个单元。

3.4.2. Fire Device Density
3.4.2. 消防设备密度

Fire systems are much more uniformly installed, with smoke detectors installed about every 50 ft. This is dictated by local building codes. Fire pull boxes are installed uniformly about every 150 ft. A fire controller will service a floor or wing. The fireman's fire panel will service the entire building and typically is installed in the atrium.

消防系统的安装更加统一,烟雾探测器大约每50英尺安装一次。这是由当地建筑规范规定的。消防分线盒每150英尺均匀安装一次。消防控制器将为楼层或翼楼提供服务。消防员的消防面板将服务于整个建筑,通常安装在中庭。

3.4.3. Lighting Device Density
3.4.3. 照明设备密度

Lighting is also very uniformly installed, with ballasts installed approximately every 10 ft. A lighting panel typically serves 48 to 64 zones. Wired systems tether many lights together into a single zone. Wireless systems configure each fixture independently to increase flexibility and reduce installation costs.

照明设备的安装也非常均匀,镇流器大约每10英尺安装一次。照明面板通常用于48至64个区域。有线系统将许多灯光连接在一个区域内。无线系统独立配置每个设备,以增加灵活性并降低安装成本。

3.4.4. Physical Security Device Density
3.4.4. 物理安全设备密度

Security systems are non-uniformly oriented, with heavy density near doors and windows and lighter density in the building's interior space.

安全系统的方向不统一,门窗附近密度较高,建筑内部空间密度较低。

The recent influx of interior and perimeter camera systems is increasing the security footprint. These cameras are atypical endpoints requiring up to 1 megabit/second (Mbit/s) data rates per camera, as contrasted by the few kbit/s needed by most other BMS sensing equipment. Previously, camera systems had been deployed on proprietary wired high-speed networks. More recent implementations utilize wired or wireless IP cameras integrated into the enterprise LAN.

最近涌入的内部和周边摄像头系统正在增加安全足迹。这些摄像机是非典型端点,每个摄像机需要高达1兆比特/秒(Mbit/s)的数据速率,而大多数其他BMS传感设备需要的数据速率只有几kbit/s。此前,摄像机系统已经部署在专有的有线高速网络上。最近的实施利用集成到企业局域网中的有线或无线IP摄像机。

4. Traffic Pattern
4. 交通模式

The independent nature of the automation subsystems within a building can significantly affect network traffic patterns. Much of the real-time sensor environmental data and actuator control stays within the local LLN environment, while alarms and other event data will percolate to higher layers.

建筑物内自动化子系统的独立性会显著影响网络流量模式。大部分实时传感器环境数据和执行器控制都留在本地LLN环境中,而警报和其他事件数据将渗透到更高层。

Each sensor in the LLN unicasts point to point (P2P) about 200 bytes of sensor data to its associated controller each minute and expects an application acknowledgment unicast returned from the destination. Each controller unicasts messages at a nominal rate of 6 kbit/minute to peer or supervisory controllers. Thirty percent of each node's packets are destined for other nodes within the LLN. Seventy percent of each node's packets are destined for an aggregation device (multipoint to point (MP2P)) and routed off the LLN. These messages also require a unicast acknowledgment from the destination. The above values assume direct node-to-node communication; meshing and error retransmissions are not considered.

LLN中的每个传感器每分钟向其相关控制器点对点(P2P)发送大约200字节的传感器数据,并期望从目的地返回应用程序确认单播。每个控制器以6 kbit/分钟的标称速率向对等或监控控制器单播消息。每个节点的数据包中有30%发送给LLN内的其他节点。每个节点70%的数据包发送到聚合设备(多点对点(MP2P))并路由到LLN之外。这些消息还需要来自目的地的单播确认。上述值假设直接的节点间通信;不考虑啮合和错误重传。

Multicasts (point to multipoint (P2MP)) to all nodes in the LLN occur for node and object discovery when the network is first commissioned. This data is typically a one-time bind that is henceforth persisted. Lighting systems will also readily use multicasting during normal operations to turn banks of lights "on" and "off" simultaneously.

当网络首次调试时,LLN中所有节点的多播(点对多点(P2MP))都会发生,以便发现节点和对象。该数据通常是一个一次性绑定,以后将被持久化。照明系统也将在正常运行期间随时使用多播,以同时“打开”和“关闭”灯组。

BMSs may be either polled or event-based. Polled data systems will generate a uniform and constant packet load on the network. Polled architectures, however, have proven not to be scalable. Today, most vendors have developed event-based systems that pass data on event. These systems are highly scalable and generate low data on the network at quiescence. Unfortunately, the systems will generate a heavy load on startup since all initial sensor data must migrate to the controller level. They also will generate a temporary but heavy load during firmware upgrades. This latter load can normally be mitigated by performing these downloads during off-peak hours.

BMS可以是轮询的,也可以是基于事件的。轮询数据系统将在网络上产生统一且恒定的数据包负载。然而,轮询体系结构被证明是不可伸缩的。今天,大多数供应商都开发了基于事件的系统,可以在事件上传递数据。这些系统具有高度的可扩展性,在静止状态下在网络上生成的数据量很低。不幸的是,由于所有初始传感器数据必须迁移到控制器级别,因此系统在启动时将产生沉重的负载。它们还将在固件升级期间产生临时但沉重的负载。后一种负载通常可以通过在非高峰时间执行这些下载来减轻。

Devices will also need to reference peers periodically for sensor data or to coordinate operation across systems. Normally, though, data will migrate from the sensor level upwards through the local and area levels, and then to the supervisory level. Traffic bottlenecks will typically form at the funnel point from the area controllers to the supervisory controllers.

设备还需要定期参考对等点以获取传感器数据或协调系统间的操作。但是,通常情况下,数据将从传感器级别向上迁移,经过本地和区域级别,然后迁移到监控级别。交通瓶颈通常会在从区域控制器到监控控制器的漏斗点形成。

Initial system startup after a controlled outage or unexpected power failure puts tremendous stress on the network and on the routing algorithms. A BMS is comprised of a myriad of control algorithms at the room, area, zone, and enterprise layers. When these control algorithms are at quiescence, the real-time data rate is small, and the network will not saturate. An overall network traffic load of 6 kbit/s is typical at quiescence. However, upon any power loss, the control loops and real-time data quickly atrophy. A short power disruption of only 10 minutes may have a long-term deleterious impact on the building control systems, taking many hours to regain proper control. Control applications that cannot handle this level of disruption (e.g., hospital operating rooms) must be fitted with a secondary power source.

在受控中断或意外断电后的初始系统启动会给网络和路由算法带来巨大压力。BMS由房间、区域、区域和企业层的无数控制算法组成。当这些控制算法处于静止状态时,实时数据速率很小,网络不会饱和。静止时,总网络流量负载通常为6 kbit/s。然而,一旦出现任何功率损失,控制回路和实时数据就会迅速萎缩。仅10分钟的短时间断电可能会对建筑物控制系统产生长期有害影响,需要数小时才能恢复正常控制。无法处理此类中断的控制应用程序(例如,医院手术室)必须配备辅助电源。

Power disruptions are unexpected and in most cases will immediately impact lines-powered devices. Power disruptions, however, are transparent to battery-powered devices. These devices will continue to attempt to access the LLN during the outage. Battery-powered devices designed to buffer data that has not been delivered will further stress network operations when power returns.

电源中断是意外的,在大多数情况下会立即影响供电设备的线路。然而,电源中断对电池供电的设备来说是透明的。在大修期间,这些设备将继续尝试访问LLN。设计用于缓冲尚未传输数据的电池供电设备在电源恢复时将进一步加重网络运行压力。

Upon restart, lines-powered devices will naturally dither due to primary equipment delays or variance in the device self-tests. However, most lines-powered devices will be ready to access the LLN network within 10 seconds of power-up. Empirical testing indicates that routes acquired during startup will tend to be very oblique since the available neighbor lists are incomplete. This demands an adaptive routing protocol to allow for route optimization as the network stabilizes.

重新启动后,由于主要设备延迟或设备自检中的差异,线路供电设备将自然抖动。但是,大多数线路供电设备将在通电10秒内准备好访问LLN网络。经验测试表明,由于可用邻居列表不完整,在启动期间获取的路由将倾向于非常倾斜。这需要一个自适应路由协议,以便在网络稳定时进行路由优化。

5. Building Automation Routing Requirements
5. 楼宇自动化布线要求

Following are the building automation routing requirements for networks used to integrate building sensor, actuator, and control products. These requirements are written not presuming any preordained network topology, physical media (wired), or radio technology (wireless).

以下是用于集成楼宇传感器、执行器和控制产品的网络的楼宇自动化布线要求。这些要求的编写不假定任何预定的网络拓扑、物理媒体(有线)或无线电技术(无线)。

5.1. Device and Network Commissioning
5.1. 设备和网络调试

Building control systems typically are installed and tested by electricians having little computer knowledge and no network communication knowledge whatsoever. These systems are often installed during the building construction phase, before the drywall and ceilings are in place. For new construction projects, the building enterprise IP network is not in place during installation of the building control system. For retrofit applications, the installer will still operate independently from the IP network so as not to affect network operations during the installation phase.

建筑控制系统通常由电工安装和测试,他们几乎没有计算机知识,也没有任何网络通信知识。这些系统通常在建筑施工阶段,即干墙和天花板就位之前安装。对于新的建筑项目,在安装建筑控制系统期间,建筑企业IP网络不到位。对于改装应用,安装程序仍将独立于IP网络运行,以免在安装阶段影响网络运行。

In traditional wired systems, correct operation of a light switch/ballast pair was as simple as flipping on the light switch. In wireless applications, the tradesperson has to assure the same operation, yet be sure the operation of the light switch is associated with the proper ballast.

在传统的有线系统中,电灯开关/镇流器对的正确操作就像打开电灯开关一样简单。在无线应用中,商人必须确保相同的操作,但要确保电灯开关的操作与适当的镇流器相关。

System-level commissioning will later be deployed using a more computer savvy person with access to a commissioning device (e.g., a laptop computer). The completely installed and commissioned enterprise IP network may or may not be in place at this time. Following are the installation routing requirements.

系统级调试将在稍后使用更精通计算机的人员进行部署,该人员可以访问调试设备(例如笔记本电脑)。完全安装和调试的企业IP网络此时可能已就位,也可能尚未就位。以下是安装路线要求。

5.1.1. Zero-Configuration Installation
5.1.1. 零配置安装

It MUST be possible to fully commission network devices without requiring any additional commissioning device (e.g., a laptop). From the ROLL perspective, "zero configuration" means that a node can obtain an address and join the network on its own, without human intervention.

必须能够在不需要任何额外调试设备(如笔记本电脑)的情况下完全调试网络设备。从ROLL的角度来看,“零配置”意味着节点可以自己获得地址并加入网络,而无需人工干预。

5.1.2. Local Testing
5.1.2. 局部测试

During installation, the room sensors, actuators, and controllers SHOULD be able to route packets amongst themselves and to any other device within the LLN, without requiring any additional routing infrastructure or routing configuration.

在安装过程中,房间传感器、执行器和控制器应能够在它们之间以及到LLN内的任何其他设备路由数据包,而无需任何额外的路由基础设施或路由配置。

5.1.3. Device Replacement
5.1.3. 设备更换

To eliminate the need to reconfigure the application upon replacing a failed device in the LLN, the replaced device must be able to advertise the old IP address of the failed device in addition to its new IP address. The routing protocols MUST support hosts and routers that advertise multiple IPv6 addresses.

为了消除在更换LLN中的故障设备时重新配置应用程序的需要,更换的设备必须能够在其新IP地址之外播发故障设备的旧IP地址。路由协议必须支持播发多个IPv6地址的主机和路由器。

5.2. Scalability
5.2. 可伸缩性

Building control systems are designed for facilities from 50,000 sq. ft. to 1M+ sq. ft. The networks that support these systems must cost-effectively scale accordingly. In larger facilities, installation may occur simultaneously on various wings or floors, yet the end system must seamlessly merge. Following are the scalability requirements.

楼宇控制系统设计用于50000平方英尺至100多万平方英尺的设施。支持这些系统的网络必须具有相应的成本效益。在大型设施中,安装可能同时发生在不同的机翼或地板上,但终端系统必须无缝合并。以下是可伸缩性要求。

5.2.1. Network Domain
5.2.1. 网络域

The routing protocol MUST be able to support networks with at least 2,000 nodes, where 1,000 nodes would act as routers and the other 1,000 nodes would be hosts. Subnetworks (e.g., rooms, primary equipment) within the network must support up to 255 sensors and/or actuators.

路由协议必须能够支持至少有2000个节点的网络,其中1000个节点将充当路由器,其他1000个节点将充当主机。网络内的子网络(如房间、主要设备)必须支持多达255个传感器和/或执行器。

5.2.2. Peer-to-Peer Communication
5.2.2. 点对点通信

The data domain for commercial BMSs may sprawl across a vast portion of the physical domain. For example, a chiller may reside in the facility's basement due to its size, yet the associated cooling towers will reside on the roof. The cold-water supply and return pipes snake through all of the intervening floors. The feedback control loops for these systems require data from across the facility.

商用BMS的数据域可能扩展到物理域的很大一部分。例如,制冷机可能因其尺寸而位于设施的地下室,但相关的冷却塔将位于屋顶上。冷水供应管和回水管蜿蜒穿过所有中间楼层。这些系统的反馈控制回路需要来自整个设施的数据。

A network device MUST be able to communicate in an end-to-end manner with any other device on the network. Thus, the routing protocol MUST provide routes between arbitrary hosts within the appropriate administrative domain.

网络设备必须能够以端到端的方式与网络上的任何其他设备通信。因此,路由协议必须在适当的管理域内的任意主机之间提供路由。

5.3. Mobility
5.3. 流动性

Most devices are affixed to walls or installed on ceilings within buildings. Hence, the mobility requirements for commercial buildings are few. However, in wireless environments, location tracking of occupants and assets is gaining favor. Asset-tracking applications, such as tracking capital equipment (e.g., wheelchairs) in medical

大多数设备安装在建筑物内的墙壁或天花板上。因此,商业建筑的流动性要求很少。然而,在无线环境中,对占用者和资产的位置跟踪越来越受欢迎。资产跟踪应用程序,如医疗设备中的资本设备(如轮椅)跟踪

facilities, require monitoring movement with granularity of a minute; however, tracking babies in a pediatric ward would require latencies less than a few seconds.

设施,需要以一分钟的粒度监控移动;然而,在儿科病房追踪婴儿需要的潜伏期不到几秒钟。

The following subsections document the mobility requirements in the routing layer for mobile devices. Note, however, that mobility can be implemented at various layers of the system, and the specific requirements depend on the chosen layer. For instance, some devices may not depend on a static IP address and are capable of re-establishing application-level communications when given a new IP address. Alternatively, mobile IP may be used, or the set of routers in a building may give an impression of a building-wide network and allow devices to retain their addresses regardless of where they are, handling routing between the devices in the background.

以下小节记录了移动设备路由层中的移动性要求。然而,请注意,移动性可以在系统的各个层上实现,具体需求取决于所选的层。例如,一些设备可能不依赖于静态IP地址,并且在给定新IP地址时能够重新建立应用程序级通信。或者,可以使用移动IP,或者建筑物中的路由器组可以给人以建筑物范围的网络的印象,并且允许设备保留其地址,而不管它们在哪里,在后台处理设备之间的路由。

5.3.1. Mobile Device Requirements
5.3.1. 移动设备要求

To minimize network dynamics, mobile devices while in motion should not be allowed to act as forwarding devices (routers) for other devices in the LLN. Network configuration should allow devices to be configured as routers or hosts.

为了最小化网络动态,移动设备在移动时不应被允许充当LLN中其他设备的转发设备(路由器)。网络配置应允许将设备配置为路由器或主机。

5.3.1.1. Device Mobility within the LLN
5.3.1.1. LLN内的设备移动性

An LLN typically spans a single floor in a commercial building. Mobile devices may move within this LLN. For example, a wheelchair may be moved from one room on the floor to another room on the same floor.

LLN通常跨越商业建筑中的一层。移动设备可在此LLN内移动。例如,轮椅可以从地板上的一个房间移动到同一楼层上的另一个房间。

A mobile LLN device that moves within the confines of the same LLN SHOULD re-establish end-to-end communication with a fixed device also in the LLN within 5 seconds after it ceases movement. The LLN network convergence time should be less than 10 seconds once the mobile device stops moving.

在同一LLN范围内移动的移动LLN设备应在停止移动后5秒内与LLN内的固定设备重新建立端到端通信。一旦移动设备停止移动,LLN网络聚合时间应小于10秒。

5.3.1.2. Device Mobility across LLNs
5.3.1.2. 跨LLN的设备移动性

A mobile device may move across LLNs, such as a wheelchair being moved to a different floor.

移动设备可以跨LLN移动,例如将轮椅移动到不同的楼层。

A mobile device that moves outside of its original LLN SHOULD re-establish end-to-end communication with a fixed device also in the new LLN within 10 seconds after the mobile device ceases movement. The network convergence time should be less than 20 seconds once the mobile device stops moving.

在其原始LLN之外移动的移动设备应在移动设备停止移动后的10秒内与新LLN中的固定设备重新建立端到端通信。一旦移动设备停止移动,网络聚合时间应小于20秒。

5.4. Resource Constrained Devices
5.4. 资源受限设备

Sensing and actuator device processing power and memory may be 4 orders of magnitude less (i.e., 10,000x) than many more traditional client devices on an IP network. The routing mechanisms must therefore be tailored to fit these resource constrained devices.

传感和执行器设备的处理能力和内存可能比IP网络上的许多传统客户端设备少4个数量级(即10000x)。因此,必须调整路由机制以适应这些资源受限的设备。

5.4.1. Limited Memory Footprint on Host Devices
5.4.1. 主机设备上的内存占用有限

The software size requirement for non-routing devices (e.g., sleeping sensors and actuators) SHOULD be implementable in 8-bit devices with no more than 128 KB of memory.

非路由设备(如休眠传感器和执行器)的软件大小要求应可在内存不超过128 KB的8位设备中实现。

5.4.2. Limited Processing Power for Routers
5.4.2. 路由器的有限处理能力

The software size requirements for routing devices (e.g., room controllers) SHOULD be implementable in 8-bit devices with no more than 256 KB of flash memory.

路由设备(如房间控制器)的软件大小要求应可在闪存容量不超过256 KB的8位设备中实现。

5.4.3. Sleeping Devices
5.4.3. 睡眠设备

Sensing devices will, in some cases, utilize battery power or energy harvesting techniques for power and will operate mostly in a sleep mode to maintain power consumption within a modest budget. The routing protocol MUST take into account device characteristics such as power budget.

在某些情况下,传感设备将利用电池电源或能量收集技术供电,并将主要在睡眠模式下运行,以将功耗维持在适度预算内。路由协议必须考虑设备特性,如功率预算。

Typically, sensor battery life (2,000 mAh) needs to extend for at least 5 years when the device is transmitting its data (200 octets) once per minute over a low-power transceiver (25 mA) and expecting an application acknowledgment. In this case, the transmitting device must leave its receiver in a high-powered state, awaiting the return of the application ACK. To minimize this latency, a highly efficient routing protocol that minimizes hops, and hence end-to-end communication, is required. The routing protocol MUST take into account node properties, such as "low-powered node", that produce efficient low-latency routes that minimize radio "on" time for these devices.

通常,当设备通过低功率收发器(25 mA)每分钟传输一次数据(200个八位字节)并期望应用程序确认时,传感器电池寿命(2000 mAh)需要至少延长5年。在这种情况下,发射设备必须使其接收器处于高功率状态,等待应用程序ACK的返回。为了最小化这种延迟,需要一种高效的路由协议来最小化跳数,从而减少端到端通信。路由协议必须考虑节点属性,例如“低功耗节点”,这些属性可以生成有效的低延迟路由,从而最小化这些设备的无线电“开启”时间。

Sleeping devices MUST be able to receive inbound data. Messages sent to battery-powered nodes MUST be buffered by the last-hop router for a period of at least 20 seconds when the destination node is currently in its sleep cycle.

睡眠设备必须能够接收入站数据。当目标节点当前处于睡眠周期时,发送到电池供电节点的消息必须由最后一跳路由器缓冲至少20秒。

5.5. Addressing
5.5. 寻址

Building management systems require different communication schemes to solicit or post network information. Multicasts or anycasts need to be used to decipher unresolved references within a device when the device first joins the network.

建筑物管理系统需要不同的通信方案来获取或发布网络信息。当设备首次加入网络时,需要使用多播或选播来解密设备内未解析的引用。

As with any network communication, multicasting should be minimized. This is especially a problem for small embedded devices with limited network bandwidth. Multicasts are typically used for network joins and application binding in embedded systems. Routing MUST support anycast, unicast, and multicast.

与任何网络通信一样,应尽量减少多播。这对于网络带宽有限的小型嵌入式设备来说尤其是一个问题。多播通常用于嵌入式系统中的网络连接和应用程序绑定。路由必须支持选播、单播和多播。

5.6. Manageability
5.6. 可管理性

As previously noted in Section 3.3, installation of LLN devices within a BMS follows an "outside-in" work flow. Edge devices are installed first and tested for communication and application integrity. These devices are then aggregated into islands, then LLNs, and later affixed onto the enterprise network.

如前3.3节所述,BMS内LLN设备的安装遵循“由外而内”的工作流程。首先安装边缘设备,并测试其通信和应用程序完整性。然后将这些设备聚合为孤岛,然后是LLN,然后附加到企业网络上。

The need for diagnostics most often occurs during the installation and commissioning phase, although at times diagnostic information may be requested during normal operation. Battery-powered wireless devices typically will have a self-diagnostic mode that can be initiated via a button press on the device. The device will display its link status and/or end-to-end connectivity when the button is pressed. Lines-powered devices will continuously display communication status via a bank of LEDs, possibly denoting signal strength and end-to-end application connectivity.

诊断需求通常发生在安装和调试阶段,尽管在正常运行期间有时可能需要诊断信息。电池供电的无线设备通常具有自诊断模式,可通过按下设备上的按钮启动。按下按钮时,设备将显示其链路状态和/或端到端连接。线路供电设备将通过一组LED连续显示通信状态,可能表示信号强度和端到端应用程序连接。

The local diagnostics noted above oftentimes are suitable for defining room-level networks. However, as these devices aggregate, system-level diagnostics may need to be executed to ameliorate route vacillation, excessive hops, communication retries, and/or network bottlenecks.

上述本地诊断通常适用于定义房间级网络。然而,随着这些设备的聚合,可能需要执行系统级诊断以改善路由抖动、过度跳数、通信重试和/或网络瓶颈。

In operational networks, due to the mission-critical nature of the application, the LLN devices will be temporally monitored by the higher layers to assure that communication integrity is maintained. Failure to maintain this communication will result in an alarm being forwarded to the enterprise network from the monitoring node for analysis and remediation.

在操作网络中,由于应用程序的关键任务性质,LLN设备将由更高层临时监控,以确保保持通信完整性。如果无法保持此通信,将导致报警从监控节点转发到企业网络进行分析和补救。

In addition to the initial installation and commissioning of the system, it is equally important for the ongoing maintenance of the system to be simple and inexpensive. This implies a straightforward device swap when a failed device is replaced, as noted in Section 5.1.3.

除了系统的初始安装和调试外,系统的持续维护应简单且成本低廉,这一点同样重要。如第5.1.3节所述,这意味着更换发生故障的设备时可以进行简单的设备交换。

5.6.1. Diagnostics
5.6.1. 诊断学

To improve diagnostics, the routing protocol SHOULD be able to be placed in and out of "verbose" mode. Verbose mode is a temporary debugging mode that provides additional communication information including, at least, the total number of routed packets sent and received, the number of routing failures (no route available), neighbor table members, and routing table entries. The data provided in verbose mode should be sufficient that a network connection graph could be constructed and maintained by the monitoring node.

为了改进诊断,路由协议应该能够置于“详细”模式中,也可以置于“详细”模式之外。详细模式是一种临时调试模式,它提供额外的通信信息,至少包括发送和接收的路由数据包总数、路由失败数(无可用路由)、邻居表成员和路由表条目。以详细模式提供的数据应足以使监控节点构建和维护网络连接图。

Diagnostic data should be kept by the routers continuously and be available for solicitation at any time by any other node on the internetwork. Verbose mode will be activated/deactivated via unicast, multicast, or other means. Devices having available resources may elect to support verbose mode continuously.

诊断数据应由路由器持续保存,并可由互联网上的任何其他节点随时索取。详细模式将通过单播、多播或其他方式激活/停用。具有可用资源的设备可以选择连续支持详细模式。

5.6.2. Route Tracking
5.6.2. 路线跟踪

Route diagnostics SHOULD be supported, providing information such as route quality, number of hops, and available alternate active routes with associated costs. Route quality is the relative measure of "goodness" of the selected source to destination route as compared to alternate routes. This composite value may be measured as a function of hop count, signal strength, available power, existing active routes, or any other criteria deemed by ROLL as the route cost differentiator.

应支持路由诊断,提供诸如路由质量、跳数和可用备用活动路由以及相关成本等信息。路线质量是所选源到目的地路线相对于备用路线的“优度”的相对度量。该复合值可作为跳数、信号强度、可用功率、现有活动路由或ROLL视为路由成本差异因素的任何其他标准的函数来测量。

5.7. Route Selection
5.7. 路线选择

Route selection determines reliability and quality of the communication among the devices by optimizing routes over time and resolving any nuances developed at system startup when nodes are asynchronously adding themselves to the network.

路由选择通过随时间优化路由并解决节点异步添加到网络时在系统启动时产生的任何细微差别,从而确定设备之间通信的可靠性和质量。

5.7.1. Route Cost
5.7.1. 路线成本

The routing protocol MUST support a metric of route quality and optimize selection according to such metrics within constraints established for links along the routes. These metrics SHOULD reflect metrics such as signal strength, available bandwidth, hop count, energy availability, and communication error rates.

路由协议必须支持路由质量的度量,并根据这些度量在为路由沿线的链路建立的约束内优化选择。这些指标应反映信号强度、可用带宽、跳数、能量可用性和通信错误率等指标。

5.7.2. Route Adaptation
5.7.2. 路线适应

Communication routes MUST be adaptive and converge toward optimality of the chosen metric (e.g., signal quality, hop count) in time.

通信路由必须是自适应的,并在时间上收敛到所选度量(例如,信号质量、跳数)的最优值。

5.7.3. Route Redundancy
5.7.3. 路由冗余

The routing layer SHOULD be configurable to allow secondary and tertiary routes to be established and used upon failure of the primary route.

路由层应可配置为允许在主路由失败时建立和使用第二和第三路由。

5.7.4. Route Discovery Time
5.7.4. 路由发现时间

Mission-critical commercial applications (e.g., fire, security) require reliable communication and guaranteed end-to-end delivery of all messages in a timely fashion. Application-layer time-outs must be selected judiciously to cover anomalous conditions such as lost packets and/or route discoveries, yet not be set too large to over-damp the network response. If route discovery occurs during packet transmission time (reactive routing), it SHOULD NOT add more than 120 ms of latency to the packet delivery time.

任务关键型商业应用(如消防、安保)需要可靠的通信,并保证及时提供所有消息的端到端传递。必须明智地选择应用层超时,以覆盖异常情况,如丢失的数据包和/或路由发现,但不要设置太大,以免过度抑制网络响应。如果路由发现发生在数据包传输时间(反应式路由)期间,则不应给数据包交付时间增加超过120毫秒的延迟。

5.7.5. Route Preference
5.7.5. 路线偏好

The routing protocol SHOULD allow for the support of manually configured static preferred routes.

路由协议应允许支持手动配置的静态首选路由。

5.7.6. Real-Time Performance Measures
5.7.6. 实时性能度量

A node transmitting a "request with expected reply" to another node must send the message to the destination and receive the response in not more than 120 ms. This response time should be achievable with 5 or less hops in each direction. This requirement assumes network quiescence and a negligible turnaround time at the destination node.

向另一个节点发送“带有预期回复的请求”的节点必须将消息发送到目的地,并在不超过120 ms的时间内接收到响应。该响应时间应在每个方向上5跳或更少的情况下实现。此要求假设网络静止,目标节点的周转时间可以忽略不计。

5.7.7. Prioritized Routing
5.7.7. 优先路由

Network and application packet routing prioritization must be supported to assure that mission-critical applications (e.g., fire detection) cannot be deferred while less critical applications access the network. The routing protocol MUST be able to provide routes with different characteristics, also referred to as Quality of Service (QoS) routing.

必须支持网络和应用程序包路由优先级,以确保任务关键型应用程序(如火灾探测)在不太关键的应用程序访问网络时不会延迟。路由协议必须能够提供具有不同特征的路由,也称为服务质量(QoS)路由。

5.8. Security Requirements
5.8. 安全要求

This section sets forth specific requirements that are placed on any protocols developed or used in the ROLL building environment, in order to ensure adequate security and retain suitable flexibility of use and function of the protocol.

本节规定了在滚动构建环境中开发或使用的任何协议的具体要求,以确保充分的安全性,并保持协议使用和功能的适当灵活性。

Due to the variety of buildings and tenants, the BMSs must be completely configurable on-site.

由于建筑物和租户的多样性,BMS必须在现场完全可配置。

Due to the quantity of the BMS devices (thousands) and their inaccessibility (oftentimes above ceilings), security configuration over the network is preferred over local configuration.

由于BMS设备的数量(数千)及其不可访问性(通常高于上限),网络安全配置优先于本地配置。

Wireless encryption and device authentication security policies need to be considered in commercial buildings, while keeping in mind the impact on the limited processing capabilities and additional latency incurred on the sensors, actuators, and controllers.

在商业建筑中,需要考虑无线加密和设备认证安全策略,同时牢记对有限处理能力的影响以及传感器、执行器和控制器产生的额外延迟。

BMSs are typically highly configurable in the field, and hence the security policy is most often dictated by the type of building to which the BMS is being installed. Single-tenant owner-occupied office buildings installing lighting or HVAC control are candidates for implementing a low level of security on the LLN, especially when the LLN is not connected to an external network. Antithetically, military or pharmaceutical facilities require strong security policies. As noted in the installation procedures described in Sections 3.3 and 5.2, security policies MUST support dynamic configuration to allow for a low level of security during the installation phase (prior to building occupancy, when it may be appropriate to use only diagnostic levels of security), yet to make it possible to easily raise the security level network-wide during the commissioning phase of the system.

BMS通常在现场高度可配置,因此安全策略通常由安装BMS的建筑类型决定。安装照明或HVAC控制的单租户业主占用的办公楼是LLN低安全级别的候选方案,尤其是当LLN未连接到外部网络时。相反,军事或制药设施需要强有力的安全政策。如第3.3节和第5.2节所述的安装程序中所述,安全策略必须支持动态配置,以允许在安装阶段(在建筑物占用之前,当仅适用于诊断安全级别时)实现低安全级别,然而,在系统调试阶段,可以轻松提高整个网络的安全级别。

5.8.1. Building Security Use Case
5.8.1. 建筑安全用例

LLNs for commercial building applications should always implement and use encrypted packets. However, depending on the state of the LLN, the security keys may either be:

商业建筑应用的LLN应始终实现并使用加密数据包。然而,根据LLN的状态,安全密钥可以是:

1) a key obtained from a trust center already operable on the LLN;

1) 从已在LLN上可操作的信任中心获得的密钥;

2) a pre-shared static key as defined by the general contractor or its designee; or

2) 总承包商或其指定人员定义的预共享静态密钥;或

3) a well-known default static key.

3) 众所周知的默认静态密钥。

Unless a node entering the network had previously received its credentials from the trust center, the entering node will try to solicit the trust center for the network key. If the trust center is accessible, the trust center will MAC-authenticate the entering node and return the security keys. If the trust center is not available, the entering node will check to determine if it has been given a network key by an off-band means and use it to access the network. If no network key has been configured in the device, it will revert to the default network key and enter the network. If neither of these keys were valid, the device would signal via a fault LED.

除非进入网络的节点之前已从信任中心收到其凭据,否则进入的节点将尝试向信任中心请求网络密钥。如果可以访问信任中心,信任中心将对进入的节点进行MAC身份验证并返回安全密钥。如果信任中心不可用,则进入节点将检查以确定其是否已通过带外方式获得网络密钥,并使用该密钥访问网络。如果设备中未配置网络密钥,它将恢复为默认网络密钥并进入网络。如果这两个键都无效,设备将通过故障指示灯发出信号。

This approach would allow for independent simplified commissioning, yet centralized authentication. The building owner or building type would then dictate when the trust center would be deployed. In many cases, the trust center need not be deployed until all of the local room commissioning is complete. Yet, at the province of the owner, the trust center may be deployed from the onset, thereby trading installation and commissioning flexibility for tighter security.

这种方法将允许独立、简化的调试,但需要集中的身份验证。然后,建筑所有者或建筑类型将决定何时部署信任中心。在许多情况下,在所有本地房间调试完成之前,不需要部署信任中心。然而,在所有者所在的省份,信任中心可能从一开始就被部署,从而以更高的安全性换取安装和调试灵活性。

5.8.2. Authentication
5.8.2. 认证

Authentication SHOULD be optional on the LLN. Authentication SHOULD be fully configurable on-site. Authentication policy and updates MUST be routable over-the-air. Authentication SHOULD occur upon joining or rejoining a network. However, once authenticated, devices SHOULD NOT need to reauthenticate with any other devices in the LLN. Packets may need authentication at the source and destination nodes; however, packets routed through intermediate hops should not need reauthentication at each hop.

在LLN上,身份验证应该是可选的。身份验证应在现场完全可配置。身份验证策略和更新必须可通过无线路由。身份验证应在加入或重新加入网络时发生。但是,一旦经过身份验证,设备就不需要与LLN中的任何其他设备进行重新身份验证。数据包可能需要在源节点和目的节点进行身份验证;但是,通过中间跳路由的数据包不需要在每个跳重新验证。

These requirements mean that at least one LLN routing protocol solution specification MUST include support for authentication.

这些要求意味着至少一个LLN路由协议解决方案规范必须包括对身份验证的支持。

5.8.3. Encryption
5.8.3. 加密
5.8.3.1. Encryption Types
5.8.3.1. 加密类型

Data encryption of packets MUST be supported by all protocol solution specifications. Support can be provided by use of a network-wide key and/or an application key. The network key would apply to all devices in the LLN. The application key would apply to a subset of devices in the LLN.

所有协议解决方案规范都必须支持数据包的数据加密。支持可以通过使用网络范围的密钥和/或应用程序密钥来提供。网络密钥将应用于LLN中的所有设备。应用程序密钥将应用于LLN中的设备子集。

The network key and application key would be mutually exclusive. The routing protocol MUST allow routing a packet encrypted with an application key through forwarding devices without requiring each node in the route to have the application key.

网络密钥和应用程序密钥是互斥的。路由协议必须允许通过转发设备路由使用应用程序密钥加密的数据包,而不要求路由中的每个节点都具有应用程序密钥。

5.8.3.2. Packet Encryption
5.8.3.2. 包加密

The encryption policy MUST support either encryption of the payload only or of the entire packet. Payload-only encryption would eliminate the decryption/re-encryption overhead at every hop, providing more real-time performance.

加密策略必须仅支持有效负载的加密或支持整个数据包的加密。仅有效负载加密将消除每个跃点的解密/重新加密开销,从而提供更高的实时性能。

5.8.4. Disparate Security Policies
5.8.4. 不同的安全策略

Due to the limited resources of an LLN, the security policy defined within the LLN MUST be able to differ from that of the rest of the IP network within the facility, yet packets MUST still be able to route to or through the LLN from/to these networks.

由于LLN的资源有限,LLN中定义的安全策略必须能够不同于设施中IP网络其余部分的安全策略,但数据包仍必须能够路由到或通过LLN从/到这些网络。

5.8.5. Routing Security Policies to Sleeping Devices
5.8.5. 将安全策略路由到休眠设备

The routing protocol MUST gracefully handle routing temporal security updates (e.g., dynamic keys) to sleeping devices on their "awake" cycle to assure that sleeping devices can readily and efficiently access the network.

路由协议必须在睡眠设备的“唤醒”周期中优雅地处理路由临时安全更新(例如,动态密钥),以确保睡眠设备可以方便有效地访问网络。

6. Security Considerations
6. 安全考虑

The requirements placed on the LLN routing protocol in order to provide the correct level of security support are presented in Section 5.8.

第5.8节介绍了为提供正确级别的安全支持而对LLN路由协议提出的要求。

LLNs deployed in a building environment may be entirely isolated from other networks, attached to normal IP networks within the building yet physically disjoint from the wider Internet, or connected either directly or through other IP networks to the Internet. Additionally, even where no wired connectivity exists outside of the building, the use of wireless infrastructure within the building means that physical connectivity to the LLN is possible for an attacker.

部署在建筑环境中的LLN可能与其他网络完全隔离,连接到建筑内的正常IP网络,但在物理上与更广泛的互联网分离,或者直接或通过其他IP网络连接到互联网。此外,即使建筑物外不存在有线连接,在建筑物内使用无线基础设施也意味着攻击者可以与LLN进行物理连接。

Therefore, it is important that any routing protocol solution designed to meet the requirements included in this document addresses the security features requirements described in Section 5.8. Implementations of these protocols will be required in the protocol specifications to provide the level of support indicated in Section 5.8, and will be encouraged to make the support flexibly configurable to enable an operator to make a judgment of the level of security that they want to deploy at any time.

因此,为满足本文件要求而设计的任何路由协议解决方案必须满足第5.8节所述的安全功能要求。协议规范中要求实施这些协议,以提供第5.8节所述的支持级别,并鼓励灵活配置支持,以使运营商能够随时判断他们想要部署的安全级别。

As noted in Section 5.8, use/deployment of the different security features is intended to be optional. This means that, although the protocols developed must conform to the requirements specified, the operator is free to determine the level of risk and the trade-offs

如第5.8节所述,不同安全功能的使用/部署是可选的。这意味着,尽管制定的协议必须符合规定的要求,但运营商可以自由确定风险水平和权衡

against performance. An implementation must not make those choices on behalf of the operator by avoiding implementing any mandatory-to-implement security features.

与性能相反。实施不得通过避免实施任何强制实施安全功能来代表运营商做出这些选择。

This informational requirements specification introduces no new security concerns.

此信息性需求规范没有引入新的安全问题。

7. Acknowledgments
7. 致谢

In addition to the authors, JP. Vasseur, David Culler, Ted Humpal, and Zach Shelby are gratefully acknowledged for their contributions to this document.

除了作者,JP。瓦瑟尔、大卫·库勒、特德·汉帕尔和扎克·谢尔比感谢他们对本文件的贡献。

8. References
8. 工具书类
8.1. Normative References
8.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

8.2. Informative References
8.2. 资料性引用

[ROLL-TERM] Vasseur, JP., "Terminology in Low power And Lossy Networks", Work in Progress, March 2010.

[ROLL-TERM]Vasseur,JP.,“低功耗和有损网络的术语”,正在进行的工作,2010年3月。

Appendix A. Additional Building Requirements
附录A.附加建筑要求

Appendix A contains additional building requirements that were deemed out of scope for ROLL, yet provided ancillary substance for the reader.

附录A包含被视为超出滚动范围的其他建筑要求,但为读者提供了辅助内容。

A.1. Additional Commercial Product Requirements
A.1. 附加商业产品要求
A.1.1. Wired and Wireless Implementations
A.1.1. 有线和无线实现

Vendors will likely not develop a separate product line for both wired and wireless networks. Hence, the solutions set forth must support both wired and wireless implementations.

供应商可能不会为有线和无线网络开发单独的产品线。因此,提出的解决方案必须同时支持有线和无线实现。

A.1.2. World-Wide Applicability
A.1.2. 全球适用性

Wireless devices must be supportable unlicensed bands.

无线设备必须是可支持的未经许可的频段。

A.2. Additional Installation and Commissioning Requirements
A.2. 附加安装和调试要求
A.2.1. Unavailability of an IP Network
A.2.1. IP网络不可用

Product commissioning must be performed by an application engineer prior to the installation of the IP network (e.g., switches, routers, DHCP, DNS).

在安装IP网络(如交换机、路由器、DHCP、DNS)之前,必须由应用工程师进行产品调试。

A.3. Additional Network Requirements
A.3. 附加网络要求
A.3.1. TCP/UDP
A.3.1. TCP/UDP

Connection-based and connectionless services must be supported.

必须支持基于连接和无连接的服务。

A.3.2. Interference Mitigation
A.3.2. 干扰抑制

The network must automatically detect interference and seamlessly switch the channel to improve communication. Channel changes, and the nodes' responses to a given channel change, must occur within 60 seconds.

网络必须自动检测干扰并无缝切换信道以改善通信。信道变化以及节点对给定信道变化的响应必须在60秒内发生。

A.3.3. Packet Reliability
A.3.3. 数据包可靠性

In building automation, it is required that the network meet the following minimum criteria:

在楼宇自动化中,要求网络满足以下最低标准:

<1% MAC-layer errors on all messages, after no more than three retries;

在不超过三次重试后,所有消息上的MAC层错误小于1%;

<0.1% network-layer errors on all messages, after no more than three additional retries;

在不超过三次额外重试后,所有消息上的网络层错误小于0.1%;

<0.01% application-layer errors on all messages.

所有消息上的应用程序层错误小于0.01%。

Therefore, application-layer messages will fail no more than once every 100,000 messages.

因此,每100000条消息中应用层消息将失败不超过一次。

A.3.4. Merging Commissioned Islands
A.3.4. 岛屿合并

Subsystems are commissioned by various vendors at various times during building construction. These subnetworks must seamlessly merge into networks and networks must seamlessly merge into internetworks since the end user wants a holistic view of the system.

在建筑施工期间,各供应商在不同时间对子系统进行调试。这些子网必须无缝地并入网络,网络必须无缝地并入互联网络,因为最终用户需要系统的整体视图。

A.3.5. Adjustable Routing Table Sizes
A.3.5. 可调路由表大小

The routing protocol must allow constrained nodes to hold an abbreviated set of routes. That is, the protocol should not mandate that the node routing tables be exhaustive.

路由协议必须允许受约束的节点持有一组简短的路由。也就是说,协议不应强制要求节点路由表是详尽的。

A.3.6. Automatic Gain Control
A.3.6. 自动增益控制

For wireless implementations, the device radios should incorporate automatic transmit power regulation to maximize packet transfer and minimize network interference, regardless of network size or density.

对于无线实现,设备无线电应包括自动发射功率调节,以最大化分组传输并最小化网络干扰,而不考虑网络大小或密度。

A.3.7. Device and Network Integrity
A.3.7. 设备和网络完整性

Commercial-building devices must all be periodically scanned to assure that each device is viable and can communicate data and alarm information as needed. Routers should maintain previous packet flow information temporally to minimize overall network overhead.

商业建筑设备必须定期扫描,以确保每个设备都是可行的,并且可以根据需要传输数据和报警信息。路由器应暂时维护先前的数据包流信息,以最小化总体网络开销。

A.4. Additional Performance Requirements
A.4. 附加性能要求
A.4.1. Data Rate Performance
A.4.1. 数据速率性能

An effective data rate of 20 kbit/s is the lowest acceptable operational data rate on the network.

20 kbit/s的有效数据速率是网络上可接受的最低操作数据速率。

A.4.2. Firmware Upgrades
A.4.2. 固件升级

To support high-speed code downloads, routing should support transports that provide parallel downloads to targeted devices, yet guarantee packet delivery. In cases where the spatial position of the devices requires multiple hops, the algorithm should recurse through the network until all targeted devices have been serviced. Devices receiving a download may cease normal operation, but upon completion of the download must automatically resume normal operation.

为了支持高速代码下载,路由应该支持向目标设备提供并行下载的传输,同时保证数据包交付。在设备的空间位置需要多跳的情况下,算法应在网络中递归,直到所有目标设备都得到服务。接收下载的设备可能会停止正常操作,但下载完成后必须自动恢复正常操作。

A.4.3. Route Persistence
A.4.3. 路由持久性

To eliminate high network traffic in power-fail or brown-out conditions, previously established routes should be remembered and invoked prior to establishing new routes for those devices re-entering the network.

为了消除掉电或断电情况下的高网络流量,在为重新进入网络的设备建立新路由之前,应记住并调用以前建立的路由。

Authors' Addresses

作者地址

Jerry Martocci Johnson Controls Inc. 507 E. Michigan Street Milwaukee, WI 53202 USA Phone: +1 414 524 4010 EMail: jerald.p.martocci@jci.com

Jerry Martocci Johnson Controls Inc.美国威斯康星州密尔沃基市密歇根街东507号53202电话:+1 414 524 4010电子邮件:jerald.p。martocci@jci.com

Pieter De Mil Ghent University - IBCN G. Crommenlaan 8 bus 201 Ghent 9050 Belgium Phone: +32 9331 4981 Fax: +32 9331 4899 EMail: pieter.demil@intec.ugent.be

Pieter De Mil Ghent大学-IBCN G.Crommenlaan 8路公交车201根特9050比利时电话:+32 9331 4981传真:+32 9331 4899电子邮件:Pieter。demil@intec.ugent.be

Nicolas Riou Schneider Electric Technopole 38TEC T3 37 quai Paul Louis Merlin 38050 Grenoble Cedex 9 France Phone: +33 4 76 57 66 15 EMail: nicolas.riou@fr.schneider-electric.com

Nicolas Riou Schneider Electric Technopole 38TEC T3 37 quai Paul Louis Merlin 38050格勒诺布尔Cedex 9法国电话:+33 4 76 57 66 15电子邮件:Nicolas。riou@fr.schneider-电气网

Wouter Vermeylen Arts Centre Vooruit Ghent 9000 Belgium EMail: wouter@vooruit.be

Wouter Vermeylen艺术中心Vooruit Ghent 9000比利时电子邮件:wouter@vooruit.be