Internet Engineering Task Force (IETF) E. Ertekin Request for Comments: 5857 C. Christou Category: Standards Track R. Jasani ISSN: 2070-1721 Booz Allen Hamilton T. Kivinen AuthenTec, Inc. C. Bormann Universitaet Bremen TZI May 2010
Internet Engineering Task Force (IETF) E. Ertekin Request for Comments: 5857 C. Christou Category: Standards Track R. Jasani ISSN: 2070-1721 Booz Allen Hamilton T. Kivinen AuthenTec, Inc. C. Bormann Universitaet Bremen TZI May 2010
IKEv2 Extensions to Support Robust Header Compression over IPsec
IKEv2扩展支持IPsec上的健壮头压缩
Abstract
摘要
In order to integrate Robust Header Compression (ROHC) with IPsec, a mechanism is needed to signal ROHC channel parameters between endpoints. Internet Key Exchange (IKE) is a mechanism that can be leveraged to exchange these parameters. This document specifies extensions to IKEv2 that will allow ROHC and its associated channel parameters to be signaled for IPsec Security Associations (SAs).
为了将robustheader Compression(ROHC)与IPsec集成,需要一种机制来向端点之间的ROHC信道参数发送信号。Internet密钥交换(IKE)是一种可以用来交换这些参数的机制。本文档指定了IKEv2的扩展,该扩展将允许向IPsec安全关联(SAs)发送ROHC及其相关通道参数的信号。
Status of This Memo
关于下段备忘
This is an Internet Standards Track document.
这是一份互联网标准跟踪文件。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5857.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc5857.
Copyright Notice
版权公告
Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2010 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.
本文件可能包含2008年11月10日之前发布或公开的IETF文件或IETF贡献中的材料。控制某些材料版权的人员可能未授予IETF信托允许在IETF标准流程之外修改此类材料的权利。在未从控制此类材料版权的人员处获得充分许可的情况下,不得在IETF标准流程之外修改本文件,也不得在IETF标准流程之外创建其衍生作品,除了将其格式化以RFC形式发布或将其翻译成英语以外的其他语言。
Table of Contents
目录
1. Introduction ....................................................3 2. Terminology .....................................................3 3. ROHC Channel Initialization for ROHCoIPsec ......................3 3.1. ROHC_SUPPORTED Notify Message ..............................3 3.1.1. ROHC Attributes .....................................5 3.1.2. ROHC Attribute Types ................................6 3.2. ROHC Channel Parameters That Are Implicitly Set ............9 4. Security Considerations .........................................9 5. IANA Considerations .............................................9 6. Acknowledgments ................................................10 7. References .....................................................11 7.1. Normative References ......................................11 7.2. Informative References ....................................12
1. Introduction ....................................................3 2. Terminology .....................................................3 3. ROHC Channel Initialization for ROHCoIPsec ......................3 3.1. ROHC_SUPPORTED Notify Message ..............................3 3.1.1. ROHC Attributes .....................................5 3.1.2. ROHC Attribute Types ................................6 3.2. ROHC Channel Parameters That Are Implicitly Set ............9 4. Security Considerations .........................................9 5. IANA Considerations .............................................9 6. Acknowledgments ................................................10 7. References .....................................................11 7.1. Normative References ......................................11 7.2. Informative References ....................................12
Increased packet header overhead due to IPsec [IPSEC] can result in the inefficient utilization of bandwidth. Coupling ROHC [ROHC] with IPsec offers an efficient way to transfer protected IP traffic.
由于IPsec[IPsec]而增加的数据包头开销可能导致带宽利用率低下。将ROHC[ROHC]与IPsec耦合提供了一种传输受保护的IP流量的有效方法。
ROHCoIPsec [ROHCOIPSEC] requires configuration parameters to be initialized at the compressor and decompressor. Current specifications for hop-by-hop ROHC negotiate these parameters through a link-layer protocol such as the Point-to-Point Protocol (PPP) (i.e., ROHC over PPP [ROHC-PPP]). Since key exchange protocols (e.g., IKEv2 [IKEV2]) can be used to dynamically establish parameters between IPsec peers, this document defines extensions to IKEv2 to signal ROHC parameters for ROHCoIPsec.
ROHCoIPsec[ROHCoIPsec]要求在压缩机和减压器处初始化配置参数。当前的逐跳ROHC规范通过链路层协议协商这些参数,如点对点协议(PPP)(即ROHC over PPP[ROHC-PPP])。由于密钥交换协议(例如IKEv2[IKEv2])可用于在IPsec对等方之间动态建立参数,因此本文档定义了对IKEv2的扩展,以向ROHCoIPsec发送ROHC参数信号。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [BRA97].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[BRA97]中所述进行解释。
The following subsections define extensions to IKEv2 that enable an initiator and a responder to signal parameters required to establish a ROHC channel for a ROHCoIPsec session.
以下小节定义了对IKEv2的扩展,该扩展使发起方和响应方能够发送为ROHCoIPsec会话建立ROHC通道所需的参数。
ROHC channel parameters MUST be signaled separately for each ROHC-enabled IPsec SA. Specifically, a new Notify message type MUST be included in the IKE_AUTH and CREATE_CHILD_SA exchanges whenever a new ROHC-enabled IPsec SA is created, or an existing one is rekeyed.
必须为每个启用ROHC的IPsec SA分别发送ROHC通道参数信号。具体地说,每当创建新的启用ROHC的IPsec SA或重新设置现有的IPsec SA密钥时,IKE_AUTH和CREATE_CHILD_SA交换中必须包含新的Notify消息类型。
The Notify payload sent by the initiator MUST contain the channel parameters for the ROHC session. These parameters indicate the capabilities of the ROHC decompressor at the initiator. Upon receipt of the initiator's request, the responder will either ignore the payload (if it doesn't support ROHC or the proposed parameters) or respond with a Notify payload that contains its own ROHC channel parameters.
启动器发送的Notify有效负载必须包含ROHC会话的通道参数。这些参数表示ROHC解压器在启动器处的功能。收到发起者的请求后,响应者将忽略有效负载(如果不支持ROHC或建议的参数),或使用包含其自身ROHC信道参数的Notify有效负载进行响应。
Note that only one Notify payload is used to convey ROHC parameters. If multiple Notify payloads containing ROHC parameters are received, all but the first such Notify payload MUST be dropped. If the initiator does not receive a Notify payload with the responder's ROHC channel parameters, ROHC MUST NOT be enabled on the Child SA.
请注意,只有一个Notify有效负载用于传递ROHC参数。如果接收到包含ROHC参数的多个Notify有效负载,则必须丢弃除第一个Notify有效负载以外的所有此类有效负载。如果启动器未收到带有响应程序ROHC通道参数的Notify有效负载,则不得在子SA上启用ROHC。
A new Notify Message Type value, denoted ROHC_SUPPORTED, indicates that the Notify payload is conveying ROHC channel parameters (Section 4).
新的Notify消息类型值(表示为ROHC_SUPPORTED)表示Notify有效负载正在传送ROHC信道参数(第4节)。
The Notify payload (defined in RFC 4306 [IKEV2]) is illustrated in Figure 1.
Notify有效负载(在RFC 4306[IKEV2]中定义)如图1所示。
1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Next Payload !C! RESERVED ! Payload Length ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Protocol ID ! SPI Size ! Notify Message Type ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! ! ~ Security Parameter Index (SPI) ~ ! ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! ! ~ Notification Data ~ ! ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Next Payload !C! RESERVED ! Payload Length ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Protocol ID ! SPI Size ! Notify Message Type ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! ! ~ Security Parameter Index (SPI) ~ ! ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! ! ~ Notification Data ~ ! ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1. Notify Payload Format
图1。通知有效负载格式
The fields of the Notify payload are set as follows:
通知有效负载的字段设置如下:
Next Payload (1 octet)
下一有效载荷(1个八位组)
Identifier for the payload type of the next payload in the message. Further details can be found in RFC 4306 [IKEV2].
消息中下一个有效负载的有效负载类型的标识符。有关更多详细信息,请参见RFC 4306[IKEV2]。
Critical (1 bit)
关键(1位)
Since all IKEv2 implementations support the Notify payload, this value MUST be set to zero.
由于所有IKEv2实现都支持Notify有效负载,因此该值必须设置为零。
Payload Length (2 octets)
有效负载长度(2个八位字节)
As defined in RFC 4306 [IKEV2], this field indicates the length of the current payload, including the generic payload header.
如RFC 4306[IKEV2]中所定义,此字段表示当前有效负载的长度,包括通用有效负载标头。
Protocol ID (1 octet)
协议ID(1个八位字节)
Since this notification message is used during the creation of a Child SA, this field MUST be set to zero.
由于此通知消息在创建子SA期间使用,因此此字段必须设置为零。
SPI Size (1 octet)
SPI大小(1个八位组)
This value MUST be set to zero, since no SPI is applicable (ROHC parameters are set at SA creation; thus, the SPI has not been defined).
该值必须设置为零,因为没有适用的SPI(ROHC参数在SA创建时设置;因此,SPI尚未定义)。
Notify Message Type (2 octets)
通知消息类型(2个八位字节)
This field MUST be set to ROHC_SUPPORTED.
此字段必须设置为ROHC_SUPPORTED。
Security Parameter Index (SPI)
安全参数索引(SPI)
Since the SPI Size field is 0, this field MUST NOT be transmitted.
由于SPI大小字段为0,因此不得传输此字段。
Notification Data (variable)
通知数据(变量)
This field MUST contain at least three ROHC Attributes (Section 3.1.1).
该字段必须至少包含三个ROHC属性(第3.1.1节)。
The ROHC_SUPPORTED Notify message is used to signal channel parameters between ROHCoIPsec compressor and decompressor. The message contains a list of "ROHC Attributes", which contain the parameters required for the ROHCoIPsec session.
ROHC_支持的通知消息用于在ROHCoIPsec压缩机和解压缩器之间发送通道参数信号。该消息包含“ROHC属性”列表,其中包含RoHCIOPSEC会话所需的参数。
The format for signaling ROHC Attributes takes a similar format to the Transform Attributes described in Section 3.3.5 of RFC 4306 [IKEV2]. The format of the ROHC Attribute is shown in Figure 2.
发送ROHC属性信号的格式与RFC 4306[IKEV2]第3.3.5节中描述的转换属性的格式类似。ROHC属性的格式如图2所示。
1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ !A! ROHC Attribute Type ! AF=0 ROHC Attribute Length ! !F! ! AF=1 ROHC Attribute Value ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! AF=0 ROHC Attribute Value ! ! AF=1 Not Transmitted ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ !A! ROHC Attribute Type ! AF=0 ROHC Attribute Length ! !F! ! AF=1 ROHC Attribute Value ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! AF=0 ROHC Attribute Value ! ! AF=1 Not Transmitted ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2. Format of the ROHC Attribute
图2。ROHC属性的格式
o Attribute Format (AF) (1 bit) - If the AF bit is a zero (0), then the ROHC Attribute is expressed in a Type/Length/Value format. If the AF bit is a one (1), then the ROHC attribute is expressed in a Type/Value (TV) format.
o 属性格式(AF)(1位)-如果AF位为零(0),则ROHC属性以类型/长度/值格式表示。如果AF位为一(1),则ROHC属性以类型/值(TV)格式表示。
o ROHC Attribute Type (15 bits) - Unique identifier for each type of ROHC attribute (Section 3.1.2).
o ROHC属性类型(15位)-每种类型ROHC属性的唯一标识符(第3.1.2节)。
o ROHC Attribute Length (2 octets) - Length (in octets) of the Attribute Value. When the AF bit is a one (1), the ROHC Attribute Value is 2 octets and the ROHC Attribute Length field is not present.
o ROHC属性长度(2个八位字节)-属性值的长度(以八位字节为单位)。当AF位为1时,ROHC属性值为2个八位字节,且不存在ROHC属性长度字段。
o ROHC Attribute Value (variable length) - Value of the ROHC Attribute associated with the ROHC Attribute Type. If the AF bit is a zero (0), this field's length is defined by the ROHC Attribute Length field. If the AF bit is a one (1), the length of the ROHC Attribute Value is 2 octets.
o ROHC属性值(可变长度)-与ROHC属性类型关联的ROHC属性值。如果AF位为零(0),则该字段的长度由ROHC属性长度字段定义。如果AF位为1,则ROHC属性值的长度为2个八位字节。
This section describes five ROHC Attribute Types: MAX_CID, ROHC_PROFILE, ROHC_INTEG, ROHC_ICV_LEN, and MRRU. The value allocated for each ROHC Attribute Type is specified in Section 4.
本节介绍五种ROHC属性类型:MAX_CID、ROHC_PROFILE、ROHC_INTEG、ROHC_ICV_LEN和MRRU。第4节规定了为每种ROHC属性类型分配的值。
MAX_CID (Maximum Context Identifier, AF = 1)
最大CID(最大上下文标识符,AF=1)
The MAX_CID attribute is a mandatory attribute. Exactly one MAX_CID attribute MUST be sent. The MAX_CID field indicates the maximum value of a context identifier supported by the ROHCoIPsec decompressor. This attribute value is 2 octets in length. The value for MAX_CID MUST be at least 0 and at most 16383. Since CIDs can take values between 0 and MAX_CID, the actual number of contexts that can be used are MAX_CID+1. If MAX_CID is 0, this implies having one context. The recipient of the MAX_CID Attribute MUST only use context identifiers up to MAX_CID for compression.
MAX_CID属性是一个强制属性。必须只发送一个MAX_CID属性。MAX_CID字段表示ROHCoIPsec解压缩程序支持的上下文标识符的最大值。此属性值的长度为2个八位字节。MAX_CID的值必须至少为0,最多为16383。由于CID可以取0到MAX_CID之间的值,因此可以使用的实际上下文数为MAX_CID+1。如果MAX_CID为0,则表示有一个上下文。MAX_CID属性的收件人必须仅使用最大MAX_CID的上下文标识符进行压缩。
Note that the MAX_CID parameter is a one-way notification (i.e., the sender of the attribute indicates what it can handle to the other end); therefore, different values for MAX_CID may be announced in each direction.
请注意,MAX_CID参数是一个单向通知(即,属性的发送方指示它可以向另一端处理什么);因此,可以在每个方向上公布不同的MAX_CID值。
ROHC_PROFILE (ROHC Profile, AF = 1)
ROHC_配置文件(ROHC配置文件,AF=1)
The ROHC_PROFILE attribute is a mandatory attribute. Each ROHC_PROFILE attribute has a fixed length of 4 octets, and its attribute value is a 2-octet long ROHC Profile Identifier [ROHCPROF]. There MUST be at least one ROHC_PROFILE attribute included in the ROHC_SUPPORTED Notify message. If multiple ROHC_PROFILE attributes are sent, the order is arbitrary. The recipient of a ROHC_PROFILE attribute(s) MUST only use the profile(s) proposed for compression.
ROHC_PROFILE属性是一个强制属性。每个ROHC_配置文件属性的固定长度为4个八位字节,其属性值为2个八位字节长的ROHC配置文件标识符[ROHCPROF]。ROHC_支持的通知消息中必须至少包含一个ROHC_配置文件属性。如果发送多个ROHC_配置文件属性,则顺序是任意的。ROHC_配置文件属性的接收者必须仅使用建议用于压缩的配置文件。
Several common profiles are defined in RFCs 3095 [ROHCV1] and 5225 [ROHCV2]. Note, however, that two versions of the same profile MUST NOT be signaled. For example, if a ROHCoIPsec decompressor supports both ROHCv1 UDP (0x0002) and ROHCv2 UDP (0x0102), both profiles MUST NOT be signaled. This restriction is needed, as packets compressed by ROHC express only the 8 least-significant bits of the profile identifier; since the 8 least-significant bits for corresponding profiles in ROHCv1 and ROHCv2 are identical, the decompressor is not capable of determining the ROHC version that was used to compress the packet.
RFCs 3095[ROHCV1]和5225[ROHCV2]中定义了几种常见的配置文件。但是,请注意,同一配置文件的两个版本不得发出信号。例如,如果ROHCoIPsec解压器同时支持ROHCv1 UDP(0x0002)和ROHCv2 UDP(0x0102),则不得向这两个配置文件发送信号。由于ROHC压缩的数据包仅表示配置文件标识符的8个最低有效位,因此需要此限制;由于ROHCv1和ROHCv2中对应配置文件的8个最低有效位相同,因此解压器无法确定用于压缩数据包的ROHC版本。
Note that the ROHC_PROFILE attribute is a one-way notification; therefore, different values for ROHC_PROFILE may be announced in each direction.
注意ROHC_PROFILE属性是单向通知;因此,可能会在每个方向上公布ROHC_配置文件的不同值。
ROHC_INTEG (Integrity Algorithm for Verification of Decompressed Headers, AF = 1)
ROHC_INTEG(验证解压缩头的完整性算法,AF=1)
The ROHC_INTEG attribute is a mandatory attribute. There MUST be at least one ROHC_INTEG attribute contained within the ROHC_SUPPORTED Notify message. The attribute value contains the identifier of an integrity algorithm that is used to ensure the integrity of the decompressed packets (i.e., ensure that the decompressed packet headers are identical to the original packet headers prior to compression).
ROHC_INTEG属性是一个强制属性。ROHC_支持的通知消息中必须至少包含一个ROHC_INTEG属性。属性值包含完整性算法的标识符,该完整性算法用于确保解压缩数据包的完整性(即,确保解压缩数据包头与压缩前的原始数据包头相同)。
Authentication algorithms that MUST be supported are specified in the "Authentication Algorithms" table in Section 3.1.1 ("ESP Encryption and Authentication Algorithms") of RFC 4835 [CRYPTO-ALG] (or its successor).
RFC 4835[CRYPTO-ALG](或其后续版本)第3.1.1节(“ESP加密和认证算法”)中的“认证算法”表中规定了必须支持的认证算法。
The integrity algorithm is represented by a 2-octet value that corresponds to the value listed in the IKEv2 Parameters registry [IKEV2-PARA], "Transform Type 3 - Integrity Algorithm Transform IDs" section. Upon receipt of the ROHC_INTEG attribute(s), the responder MUST select exactly one of the proposed algorithms; the chosen value is sent back in the ROHC_SUPPORTED Notify message returned by the responder to the initiator. The selected integrity algorithm MUST be used in both directions. If the responder does not accept any of the algorithms proposed by the initiator, ROHC MUST NOT be enabled on the SA.
完整性算法由2个八位组值表示,该值对应于IKEv2参数注册表[IKEv2-PARA]“转换类型3-完整性算法转换ID”部分中列出的值。收到ROHC_INTEG属性后,响应者必须选择其中一种算法;选择的值将在响应程序返回给启动器的ROHC_支持的Notify消息中发送回。所选完整性算法必须在两个方向上使用。如果响应者不接受发起人提出的任何算法,则不得在SA上启用ROHC。
It is noted that:
值得注意的是:
1. The keys (one for each direction) for this integrity algorithm are derived from the IKEv2 KEYMAT (see [IKEV2], Section 2.17). For the purposes of this key derivation, ROHC is considered to
1. 该完整性算法的键(每个方向一个)源自IKEv2键盘(见[IKEv2],第2.17节)。就本密钥推导而言,ROHC被视为
be an IPsec protocol. When a ROHC-enabled CHILD_SA is rekeyed, the key associated with this integrity algorithm is rekeyed as well.
必须是IPsec协议。当启用ROHC的子_SA重新设置密钥时,与此完整性算法相关的密钥也会重新设置密钥。
2. A ROHCoIPsec initiator MAY signal a value of zero (0x0000) in a ROHC_INTEG attribute. This corresponds to "NONE" in the "IKEv2 Integrity Algorithm Transform IDs" registry. The ROHCoIPsec responder MAY select this value by responding to the initiator with a ROHC_INTEG attribute of zero (0x0000). In this scenario, no integrity algorithm is applied in either direction.
2. ROHCoIPsec启动器可以在ROHC_INTEG属性中发出零(0x0000)的信号。这对应于“IKEv2完整性算法转换ID”注册表中的“无”。ROHCoIPsec响应程序可以通过使用ROHC_INTEG属性为零(0x0000)响应启动器来选择该值。在这种情况下,两个方向都没有应用完整性算法。
3. The ROHC_INTEG attribute is a parameter that is negotiated between two ends. In other words, the initiator indicates what it supports, the responder selects one of the ROHC_INTEG values proposed and sends the selected value to the initiator.
3. ROHC_INTEG属性是一个在两端协商的参数。换句话说,发起者指出它支持什么,响应者选择一个提议的ROHC_整数值,并将所选值发送给发起者。
ROHC_ICV_LEN (Integrity Algorithm Length, AF = 1)
ROHC_ICV_LEN(完整性算法长度,AF=1)
The ROHC_ICV_LEN attribute is an optional attribute. There MAY be zero or one ROHC_ICV_LEN attribute contained within the ROHC_SUPPORTED Notify message. The attribute specifies the number of Integrity Check Value (ICV) octets the sender expects to receive on incoming ROHC packets. The ICV of the negotiated ROHC_INTEG algorithms MUST be truncated to ROHC_ICV_LEN bytes by taking the first ROHC_ICV_LEN bytes of the output. Both the initiator and responder announce a single value for their own ICV length. The recipient of the ROHC_ICV_LEN attribute MUST truncate the ICV to the length contained in the message. If the value of the ROHC_ICV_LEN attribute is zero, then an ICV MUST NOT be sent. If no ROHC_ICV_LEN attribute is sent at all or if the ROHC_ICV_LEN is larger than the length of the ICV of selected algorithm, then the full ICV length as specified by the ROHC_INTEG algorithm MUST be sent.
ROHC_ICV_LEN属性是可选属性。ROHC_支持的通知消息中可能包含零个或一个ROHC_ICV_LEN属性。该属性指定发送方希望在传入ROHC数据包上接收的完整性检查值(ICV)八位字节数。协商的ROHC_整数算法的ICV必须通过获取输出的第一个ROHC_ICV_LEN字节被截断为ROHC_ICV_LEN字节。发起者和响应者都为自己的ICV长度宣布一个值。ROHC_ICV_LEN属性的收件人必须将ICV截断为消息中包含的长度。如果ROHC_ICV_LEN属性的值为零,则不得发送ICV。如果根本没有发送ROHC_ICV_LEN属性,或者ROHC_ICV_LEN大于所选算法的ICV长度,则必须发送ROHC_INTEG算法指定的完整ICV长度。
Note that the ROHC_ICV_LEN attribute is a one-way notification; therefore, different values for ROHC_ICV_LEN may be announced in each direction.
请注意,ROHC_ICV_LEN属性是单向通知;因此,ROHC_ICV_LEN的不同值可能会在每个方向上公布。
MRRU (Maximum Reconstructed Reception Unit, AF = 1)
MRRU(最大重构接收单元,AF=1)
The MRRU attribute is an optional attribute. There MAY be zero or one MRRU attribute contained within the ROHC_SUPPORTED Notify message. The attribute value is 2 octets in length. The attribute specifies the size of the largest reconstructed unit in octets that the ROHCoIPsec decompressor is expected to reassemble from ROHC segments (see Section 5.2.5 of [ROHCV1]). This size includes the Cyclic Redundancy Check (CRC) and the ROHC ICV. If
MRRU属性是可选属性。ROHC_支持的通知消息中可能包含零个或一个MRRU属性。属性值的长度为2个八位字节。该属性指定ROHCoIPsec解压器预期从ROHC段重新组装的最大重建单元(以八位字节为单位)的大小(见[ROHCV1]第5.2.5节)。该尺寸包括循环冗余校验(CRC)和ROHC ICV。如果
MRRU is 0 or if no MRRU attribute is sent, segment headers MUST NOT be transmitted on the ROHCoIPsec channel.
MRRU为0,或者如果未发送MRRU属性,则不得在ROHCoIPsec信道上传输段头。
Note that the MRRU attribute is a one-way notification; therefore, different values for MRRU may be announced in each direction.
请注意,MRRU属性是单向通知;因此,可以在每个方向上公布MRRU的不同值。
If an unknown ROHC Attribute Type Value is received, it MUST be silently ignored.
如果接收到未知的ROHC属性类型值,则必须以静默方式忽略该值。
The following ROHC channel parameters MUST NOT be signaled:
不得向以下ROHC通道参数发送信号:
o LARGE_CIDS: This value is implicitly determined by the value of MAX_CID (i.e., if MAX_CID is <= 15, LARGE_CIDS is assumed to be 0).
o 大CIDS:该值由MAX_CID的值隐式确定(即,如果MAX_CID<=15,则大CIDS假定为0)。
o FEEDBACK_FOR: When a pair of SAs is created (one in each direction), the ROHC channel parameter FEEDBACK_FOR MUST be set implicitly to the other SA of the pair (i.e., the SA pointing in the reverse direction).
o 反馈_FOR:当创建一对SA(每个方向一个)时,ROHC通道参数FEEDBACK_FOR必须隐式设置到该对SA的另一个SA(即指向相反方向的SA)。
The ability to negotiate the length of the ROHC ICV may introduce vulnerabilities to the ROHCoIPsec protocol. Specifically, the capability to signal a short ICV length may result in scenarios where erroneous packets are forwarded into the protected domain. This security consideration is documented in further detail in Section 6.1.4 of [ROHCOIPSEC] and Section 5 of [IPSEC-ROHC].
协商ROHC ICV长度的能力可能会给ROHCoIPsec协议带来漏洞。具体地说,发送短ICV长度信号的能力可能导致错误分组被转发到受保护域的情况。[ROHCOIPSEC]第6.1.4节和[IPSEC-ROHC]第5节进一步详细记录了该安全考虑。
This security consideration can be mitigated by using longer ICVs, but this comes at the cost of additional overhead, which reduces the overall benefits offered by ROHCoIPsec.
这种安全考虑可以通过使用更长的ICV来缓解,但这是以额外的开销为代价的,这降低了ROHCoIPsec提供的总体好处。
This document defines a new Notify message (Status Type). Therefore, IANA has allocated one value from the "IKEv2 Notify Message Types" registry to indicate ROHC_SUPPORTED.
此文档定义了一个新的通知消息(状态类型)。因此,IANA从“IKEv2 Notify Message Types”注册表中分配了一个值,表示支持ROHC_。
In addition, IANA has created a new "ROHC Attribute Types" registry in the "Internet Key Exchange Version 2 (IKEv2) Parameters" registry [IKEV2-PARA]. Within the "ROHC Attribute Types" registry, this document allocates the following values:
此外,IANA还在“互联网密钥交换版本2(IKEv2)参数”注册表[IKEv2-PARA]中创建了一个新的“ROHC属性类型”注册表。在“ROHC属性类型”注册表中,本文档分配以下值:
Registry: Value ROHC Attribute Type Format Reference ----------- -------------------------------------- ------ --------- 0 RESERVED [RFC5857] 1 Maximum Context Identifier (MAX_CID) TV [RFC5857] 2 ROHC Profile (ROHC_PROFILE) TV [RFC5857] 3 ROHC Integrity Algorithm (ROHC_INTEG) TV [RFC5857] 4 ROHC ICV Length in bytes (ROHC_ICV_LEN) TV [RFC5857] 5 Maximum Reconstructed Reception Unit (MRRU) TV [RFC5857] 6-16383 Unassigned 16384-32767 Private use [RFC5857]
Registry: Value ROHC Attribute Type Format Reference ----------- -------------------------------------- ------ --------- 0 RESERVED [RFC5857] 1 Maximum Context Identifier (MAX_CID) TV [RFC5857] 2 ROHC Profile (ROHC_PROFILE) TV [RFC5857] 3 ROHC Integrity Algorithm (ROHC_INTEG) TV [RFC5857] 4 ROHC ICV Length in bytes (ROHC_ICV_LEN) TV [RFC5857] 5 Maximum Reconstructed Reception Unit (MRRU) TV [RFC5857] 6-16383 Unassigned 16384-32767 Private use [RFC5857]
Following the policies outlined in [IANA-CONSIDERATIONS], the IANA policy for assigning new values for the ROHC Attribute Types registry shall be Expert Review.
根据[IANA-注意事项]中概述的政策,为ROHC属性类型注册表分配新值的IANA政策应经过专家审查。
For registration requests, the responsible IESG Area Director will appoint the Designated Expert. The Designated Expert will post a request to both the ROHC and IPsec mailing lists (or a successor designated by the Area Director) for comment and review. The Designated Expert will either approve or deny the registration request and publish a notice of the decision to both mailing lists (or their successors), as well as informing IANA. A denial notice must be justified by an explanation.
对于注册请求,IESG区域负责人将任命指定专家。指定专家将向ROHC和IPsec邮件列表(或区域主管指定的继任者)发出请求,以征求意见和审查。指定专家将批准或拒绝注册请求,并向两个邮件列表(或其继任者)发布决定通知,同时通知IANA。拒绝通知必须有合理的解释。
The authors would like to thank Sean O'Keeffe, James Kohler, and Linda Noone of the Department of Defense, as well as Rich Espy of OPnet for their contributions and support in the development of this document.
作者要感谢国防部的Sean O'Keeffe、James Kohler和Linda Noone,以及OPnet的Rich Espy,感谢他们在本文档开发过程中所做的贡献和支持。
The authors would also like to thank Yoav Nir and Robert A Stangarone Jr.: both served as committed document reviewers for this specification.
作者还要感谢Yoav Nir和Robert A Stangarone Jr.:他们都是本规范的忠实文档审阅者。
In addition, the authors would like to thank the following for their numerous reviews and comments to this document:
此外,作者还要感谢以下各方对本文件的众多评论和意见:
o Magnus Westerlund
o 马格纳斯·韦斯特隆德
o Stephen Kent
o 斯蒂芬肯特
o Lars-Erik Jonsson
o 拉尔斯·埃里克·琼森
o Pasi Eronen
o 帕西奥宁
o Jonah Pezeshki
o 约拿·佩泽什基
o Carl Knutsson
o 卡尔克努特森
o Joseph Touch
o 约瑟夫·图奇
o David Black
o 大卫·布莱克
o Glen Zorn
o 格伦·佐恩
Finally, the authors would also like to thank Tom Conkle, Michele Casey, and Etzel Brower.
最后,作者还要感谢Tom Conkle、Michele Casey和Etzel Brower。
[IPSEC] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 2005.
[IPSEC]Kent,S.和K.Seo,“互联网协议的安全架构”,RFC 43012005年12月。
[ROHC] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust Header Compression (ROHC) Framework", RFC 5795, March 2010.
[ROHC]Sandlund,K.,Pelletier,G.,和L-E.Jonsson,“鲁棒头压缩(ROHC)框架”,RFC 57952010年3月。
[IKEV2] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005.
[IKEV2]Kaufman,C.,“互联网密钥交换(IKEV2)协议”,RFC4306,2005年12月。
[BRA97] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[BRA97]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[ROHCV1] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H., Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed", RFC 3095, July 2001.
[ROHCV1]Bormann,C.,Burmeister,C.,Degermark,M.,Fukushima,H.,Hannu,H.,Jonsson,L-E.,Hakenberg,R.,Koren,T.,Le,K.,Liu,Z.,Martenson,A.,Miyazaki,A.,Svanbro,K.,Wiebke,T.,Yoshimura,T.,和H.Zheng,“鲁棒头压缩(ROHC):框架和四个配置文件:RTP,UDP,ESP,和未压缩”,RFC 3095,2001年7月。
[ROHCV2] Pelletier, G. and K. Sandlund, "RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite", RFC 5225, April 2008.
[ROHCV2]Pelletier,G.和K.Sandlund,“鲁棒头压缩版本2(ROHCV2):RTP、UDP、IP、ESP和UDP Lite的配置文件”,RFC 52252008年4月。
[IPSEC-ROHC] Ertekin, E., Christou, C., and C. Bormann, "IPsec Extensions to Support Robust Header Compression over IPsec", RFC 5858, May 2010.
[IPSEC-ROHC]Ertekin,E.,Christou,C.,和C.Bormann,“支持IPSEC上的健壮头压缩的IPSEC扩展”,RFC 5858,2010年5月。
[IANA-CONSIDERATIONS] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.
[IANA注意事项]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。
[ROHCOIPSEC] Ertekin, E., Jasani, R., Christou, C., and C. Bormann, "Integration of Header Compression over IPsec Security Associations", RFC 5856, May 2010.
[ROHCOIPSEC]Ertekin,E.,Jasani,R.,Christou,C.,和C.Bormann,“IPsec安全关联上的头压缩集成”,RFC 5856,2010年5月。
[ROHC-PPP] Bormann, C., "Robust Header Compression (ROHC) over PPP", RFC 3241, April 2002.
[ROHC-PPP]Bormann,C.,“PPP上的鲁棒头压缩(ROHC)”,RFC 32412002年4月。
[ROHCPROF] IANA, "RObust Header Compression (ROHC) Profile Identifiers", <http://www.iana.org>.
[ROHCPROF]IANA,“鲁棒头压缩(ROHC)配置文件标识符”<http://www.iana.org>.
[CRYPTO-ALG] Manral, V., "Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)", RFC 4835, April 2007.
[CRYPTO-ALG]Manral,V.,“封装安全有效载荷(ESP)和认证头(AH)的密码算法实现要求”,RFC 4835,2007年4月。
[IKEV2-PARA] IANA, "Internet Key Exchange Version 2 (KEv2) Parameters", <http://www.iana.org>.
[IKEV2-PARA]IANA,“互联网密钥交换版本2(KEv2)参数”<http://www.iana.org>.
Authors' Addresses
作者地址
Emre Ertekin Booz Allen Hamilton 5220 Pacific Concourse Drive, Suite 200 Los Angeles, CA 90045 US
Emre Ertekin Booz Allen Hamilton 5220美国加利福尼亚州洛杉矶太平洋广场大道200号套房,邮编90045
EMail: ertekin_emre@bah.com
EMail: ertekin_emre@bah.com
Chris Christou Booz Allen Hamilton 13200 Woodland Park Dr. Herndon, VA 20171 US
Chris Christou Booz Allen Hamilton 13200林地公园Herndon博士,弗吉尼亚州,美国20171
EMail: christou_chris@bah.com
EMail: christou_chris@bah.com
Rohan Jasani Booz Allen Hamilton 13200 Woodland Park Dr. Herndon, VA 20171 US
Rohan Jasani Booz Allen Hamilton 13200林地公园Herndon博士,弗吉尼亚州,美国20171
EMail: ro@breakcheck.com
EMail: ro@breakcheck.com
Tero Kivinen AuthenTec, Inc. Fredrikinkatu 47 HELSINKI FI
Tero Kivinen AuthenTec,Inc.Fredrikinkatu 47赫尔辛基金融机构
EMail: kivinen@iki.fi
EMail: kivinen@iki.fi
Carsten Bormann Universitaet Bremen TZI Postfach 330440 Bremen D-28334 Germany
卡斯滕·鲍曼大学不来梅邮政学院330440不来梅D-28334德国
EMail: cabo@tzi.org
EMail: cabo@tzi.org