Internet Engineering Task Force (IETF) D. Fedyk Request for Comments: 5828 Alcatel-Lucent Category: Informational L. Berger ISSN: 2070-1721 LabN L. Andersson Ericsson March 2010
Internet Engineering Task Force (IETF) D. Fedyk Request for Comments: 5828 Alcatel-Lucent Category: Informational L. Berger ISSN: 2070-1721 LabN L. Andersson Ericsson March 2010
Generalized Multiprotocol Label Switching (GMPLS) Ethernet Label Switching Architecture and Framework
通用多协议标签交换(GMPLS)以太网标签交换体系结构和框架
Abstract
摘要
There has been significant recent work in increasing the capabilities of Ethernet switches and Ethernet forwarding models. As a consequence, the role of Ethernet is rapidly expanding into "transport networks" that previously were the domain of other technologies such as Synchronous Optical Network (SONET) / Synchronous Digital Hierarchy (SDH), Time-Division Multiplexing (TDM), and Asynchronous Transfer Mode (ATM). This document defines an architecture and framework for a Generalized-MPLS-based control plane for Ethernet in this "transport network" capacity. GMPLS has already been specified for similar technologies. Some additional extensions to the GMPLS control plane are needed, and this document provides a framework for these extensions.
最近在提高以太网交换机和以太网转发模型的能力方面进行了大量的工作。因此,以太网的作用正在迅速扩展到“传输网络”,以前是其他技术的领域,如同步光网络(SONET)/同步数字体系(SDH)、时分复用(TDM)和异步传输模式(ATM)。本文档定义了一种通用的基于MPLS的以太网控制平面的体系结构和框架,用于这种“传输网络”容量。GMPLS已经被指定用于类似的技术。需要对GMPLS控制平面进行一些额外的扩展,本文档为这些扩展提供了一个框架。
Status of This Memo
关于下段备忘
This document is not an Internet Standards Track specification; it is published for informational purposes.
本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5828.
有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc5828.
Copyright Notice
版权公告
Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.
版权所有(c)2010 IETF信托基金和确定为文件作者的人员。版权所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。
Table of Contents
目录
1. Introduction ....................................................3 1.1. Terminology ................................................5 1.1.1. Concepts ............................................5 1.1.2. Abbreviations and Acronyms ..........................6 2. Background ......................................................7 2.1. Ethernet Switching .........................................7 2.2. Operations, Administration, and Maintenance (OAM) .........10 2.3. Ethernet Switching Characteristics ........................10 3. Framework ......................................................11 4. GMPLS Routing and Addressing Model .............................13 4.1. GMPLS Routing .............................................13 4.2. Control Plane Network .....................................14 5. GMPLS Signaling ................................................14 6. Link Management ................................................15 7. Path Computation and Selection .................................16 8. Multiple VLANs .................................................17 9. Security Considerations ........................................17 10. References ....................................................18 10.1. Normative References .....................................18 10.2. Informative References ...................................18 11. Acknowledgments ...............................................20
1. Introduction ....................................................3 1.1. Terminology ................................................5 1.1.1. Concepts ............................................5 1.1.2. Abbreviations and Acronyms ..........................6 2. Background ......................................................7 2.1. Ethernet Switching .........................................7 2.2. Operations, Administration, and Maintenance (OAM) .........10 2.3. Ethernet Switching Characteristics ........................10 3. Framework ......................................................11 4. GMPLS Routing and Addressing Model .............................13 4.1. GMPLS Routing .............................................13 4.2. Control Plane Network .....................................14 5. GMPLS Signaling ................................................14 6. Link Management ................................................15 7. Path Computation and Selection .................................16 8. Multiple VLANs .................................................17 9. Security Considerations ........................................17 10. References ....................................................18 10.1. Normative References .....................................18 10.2. Informative References ...................................18 11. Acknowledgments ...............................................20
There has been significant recent work in increasing the capabilities of Ethernet switches. As a consequence, the role of Ethernet is rapidly expanding into "transport networks" that previously were the domain of other technologies such as SONET/SDH, TDM, and ATM. The evolution and development of Ethernet capabilities in these areas is a very active and ongoing process.
最近在提高以太网交换机的性能方面进行了大量的工作。因此,以太网的作用正在迅速扩展到“传输网络”,以前是SONET/SDH、TDM和ATM等其他技术的领域。以太网能力在这些领域的演变和发展是一个非常活跃和持续的过程。
Multiple organizations have been active in extending Ethernet technology to support transport networks. This activity has taken place in the Institute of Electrical and Electronics Engineers (IEEE) 802.1 Working Group, the International Telecommunication Union - Telecommunication Standardization Sector (ITU-T) and the Metro Ethernet Forum (MEF). These groups have been focusing on Ethernet forwarding, Ethernet management plane extensions, and the Ethernet Spanning Tree Control Plane, but not on an explicitly routed, constraint-based control plane.
多个组织一直在积极扩展以太网技术以支持传输网络。这项活动在电气和电子工程师协会(IEEE)802.1工作组、国际电信联盟-电信标准化部门(ITU-T)和城域以太网论坛(MEF)中进行。这些小组一直专注于以太网转发、以太网管理平面扩展和以太网生成树控制平面,但不关注显式路由、基于约束的控制平面。
In the forwarding-plane context, extensions have been, or are being, defined to support different transport Ethernet forwarding models, protection modes, and service interfaces. Examples of such extensions include [802.1ah], [802.1Qay], [G.8011], and [MEF.6]. These extensions allow for greater flexibility in the Ethernet forwarding plane and, in some cases, the extensions allow for a departure from forwarding based on a spanning tree. For example, in the [802.1ah] case, greater flexibility in forwarding is achieved through the addition of a "provider" address space. [802.1Qay] supports the use of provisioning systems and network control protocols that explicitly select traffic-engineered paths.
在转发平面上下文中,已经或正在定义扩展以支持不同的传输以太网转发模型、保护模式和服务接口。此类扩展的示例包括[802.1ah]、[802.1Qay]、[G.8011]和[MEF.6]。这些扩展允许以太网转发平面具有更大的灵活性,并且在某些情况下,扩展允许偏离基于生成树的转发。例如,在[802.1ah]情况下,通过添加“提供商”地址空间实现更大的转发灵活性。[802.1Qay]支持使用明确选择流量工程路径的供应系统和网络控制协议。
This document provides a framework for GMPLS Ethernet Label Switching (GELS). GELS will likely require more than one switching type to support the different models, and as the GMPLS procedures that will need to be extended are dependent on switching type, these will be covered in the technology-specific documents.
本文档提供了GMPLS以太网标签交换(GELS)的框架。GELS可能需要一种以上的切换类型来支持不同的型号,并且由于需要扩展的GMPLS程序取决于切换类型,这些将包含在技术特定文件中。
In the provider bridge model developed in the IEEE 802.1ad project and amended to the IEEE 802.1Q standard [802.1Q], an extra Virtual Local Area Network (VLAN) identifier (VID) is added. This VID is referred to as the Service VID (S-VID) and is carried in a Service TAG (S-TAG). In Provider Backbone Bridges (PBBs) [802.1ah], a Backbone VID (B-VID) and B-MAC header with a service instance (I-TAG) encapsulate a customer Ethernet frame or a service Ethernet frame.
在IEEE 802.1ad项目中开发并修订为IEEE 802.1Q标准[802.1Q]的提供商网桥模型中,添加了一个额外的虚拟局域网(VLAN)标识符(VID)。该视频被称为服务视频(S-VID),并在服务标签(S-TAG)中携带。在提供商主干网桥(PBB)[802.1ah]中,主干VID(B-VID)和带有服务实例(I-TAG)的B-MAC报头封装了客户以太网帧或服务以太网帧。
In the IEEE 802.1Q standard, the terms Provider Backbone Bridges (PBBs) and Provider Backbone Bridged Network (PBBN) are used in the context of these extensions.
在IEEE 802.1Q标准中,术语提供商主干网桥(PBB)和提供商主干桥接网络(PBBN)用于这些扩展。
An example of Ethernet protection extensions can be found in [G.8031]. Ethernet operations, administration, and maintenance (OAM) is another important area that is being extended to enable provider Ethernet services. Related extensions can be found in [802.1ag] and [Y.1731].
在[G.8031]中可以找到以太网保护扩展的示例。以太网操作、管理和维护(OAM)是另一个重要领域,该领域正在扩展以支持提供商以太网服务。相关扩展可在[802.1ag]和[Y.1731]中找到。
An Ethernet-based service model is being defined within the context of the MEF and ITU-T. [MEF.6] and [G.8011] provide parallel frameworks for defining network-oriented characteristics of Ethernet services in transport networks. These framework documents discuss general Ethernet connection characteristics, Ethernet User-Network Interfaces (UNIs), and Ethernet Network-Network Interfaces (NNIs). [G.8011.1] defines the Ethernet Private Line (EPL) service, and [G.8011.2] defines the Ethernet Virtual Private Line (EVPL) service. [MEF.6] covers both service types. These activities are consistent with the types of Ethernet switching defined in [802.1ah].
An Ethernet-based service model is being defined within the context of the MEF and ITU-T. [MEF.6] and [G.8011] provide parallel frameworks for defining network-oriented characteristics of Ethernet services in transport networks. These framework documents discuss general Ethernet connection characteristics, Ethernet User-Network Interfaces (UNIs), and Ethernet Network-Network Interfaces (NNIs). [G.8011.1] defines the Ethernet Private Line (EPL) service, and [G.8011.2] defines the Ethernet Virtual Private Line (EVPL) service. [MEF.6] covers both service types. These activities are consistent with the types of Ethernet switching defined in [802.1ah].
The Ethernet forwarding-plane and management-plane extensions allow for the disabling of standard Spanning Tree Protocols but do not define an explicitly routed, constraint-based control plane. For example, [802.1Qay] is an amendment to IEEE 802.1Q that explicitly allows for traffic engineering of Ethernet forwarding paths.
以太网转发平面和管理平面扩展允许禁用标准生成树协议,但不定义显式路由、基于约束的控制平面。例如,[802.1Qay]是对IEEE 802.1Q的修订,明确允许以太网转发路径的流量工程。
The IETF's GMPLS work provides a common control plane for different data-plane technologies for Internet and telecommunication service providers. The GMPLS architecture is specified in RFC 3945 [RFC3945]. The protocols specified for GMPLS can be used to control "Transport Network" technologies, e.g., optical and TDM networks. GMPLS can also be used for packet and Layer 2 Switching (frame/cell-based networks).
IETF的GMPLS工作为互联网和电信服务提供商提供了不同数据平面技术的通用控制平面。RFC 3945[RFC3945]中规定了GMPLS体系结构。为GMPLS指定的协议可用于控制“传输网络”技术,例如光学和TDM网络。GMPLS还可用于分组和第2层交换(基于帧/小区的网络)。
This document provides a framework for the use of GMPLS to control "transport" Ethernet Label Switched Paths (Eth-LSPs). Transport Ethernet adds new constraints that require it to be distinguished from the previously specified technologies for GMPLS. Some additional extensions to the GMPLS control plane are needed, and this document provides a framework for these extensions. All extensions to support Eth-LSPs will build on the GMPLS architecture and related specifications.
本文档提供了使用GMPLS控制“传输”以太网标签交换路径(Eth LSP)的框架。传输以太网增加了新的限制,要求它与先前指定的GMPLS技术有所区别。需要对GMPLS控制平面进行一些额外的扩展,本文档为这些扩展提供了一个框架。支持Eth LSP的所有扩展将基于GMPLS体系结构和相关规范。
This document introduces and explains GMPLS control plane use for transport Ethernet and the concept of the Eth-LSP. The data-plane aspects of Eth-LSPs are outside the scope of this document and IETF activities.
本文档介绍并解释用于传输以太网的GMPLS控制平面和Eth LSP的概念。Eth LSP的数据平面方面不在本文件和IETF活动的范围内。
The intent of this document is to reuse and be aligned with as much of the GMPLS protocols as possible. For example, reusing the IP control-plane addressing allows existing signaling, routing, Link
本文件的目的是重复使用并尽可能与GMPLS协议保持一致。例如,重用IP控制平面寻址允许现有的信令、路由和链路
Management Protocol (LMP), and path computation to be used as specified. The GMPLS protocols support hierarchical LSPs as well as contiguous LSPs. Also, GMPLS protocol mechanisms support a variety of network reference points from UNIs to NNIs. Additions to existing GMPLS capabilities will only be made to accommodate features unique to transport Ethernet.
管理协议(LMP),以及指定使用的路径计算。GMPLS协议支持分层LSP以及连续LSP。此外,GMPLS协议机制支持从UNIs到NNIs的各种网络参考点。对现有GMPLS功能的添加将仅适用于传输以太网特有的功能。
The following are basic Ethernet and GMPLS terms:
以下是以太网和GMPLS的基本术语:
o Asymmetric Bandwidth
o 非对称带宽
This term refers to a property of a bidirectional service instance that has differing bandwidth allocation in each direction.
该术语指双向服务实例的属性,该双向服务实例在每个方向上具有不同的带宽分配。
o Bidirectional congruent LSP
o 双向全等LSP
This term refers to the property of a bidirectional LSP that uses only the same nodes, ports, and links in both directions. Ethernet data planes are normally bidirectional congruent (sometimes known as reverse path congruent).
此术语指双向LSP的属性,双向LSP在两个方向上仅使用相同的节点、端口和链路。以太网数据平面通常是双向一致的(有时称为反向路径一致)。
o Contiguous Eth-LSP
o 连续Eth LSP
A contiguous Eth-LSP is an end-to-end Eth-LSP that is formed from multiple Eth-LSPs, each of which is operating within a VLAN and is mapped one-to-one at the VLAN boundaries. Stitched LSPs form contiguous LSPs.
连续Eth-LSP是由多个Eth-LSP组成的端到端Eth-LSP,每个Eth-LSP在VLAN内运行,并在VLAN边界处一一映射。缝合的LSP形成连续的LSP。
o Eth-LSP
o Eth LSP
This term refers to Ethernet Label Switched Paths that may be controlled via GMPLS.
该术语指可通过GMPLS控制的以太网标签交换路径。
o Hierarchical Eth-LSP
o 分层Eth-LSP
Hierarchical Eth-LSPs create a hierarchy of Eth-LSPs.
分层Eth LSP创建Eth LSP的层次结构。
o In-band GMPLS signaling
o 带内GMPLS信令
In-band GMPLS signaling is composed of IP-based control messages that are sent on the native Ethernet links encapsulated by a single-hop Ethernet header. Logical links that use a dedicated VID on the same physical links would be considered in-band signaling.
带内GMPLS信令由基于IP的控制消息组成,这些消息在由单跳以太网报头封装的本机以太网链路上发送。在同一物理链路上使用专用VID的逻辑链路将被视为带内信令。
o Out-of-band GMPLS signaling
o 带外GMPLS信令
Out-of-band GMPLS signaling is composed of IP-based control messages that are sent between Ethernet switches over links other than the links used by the Ethernet data plane. Out-of-band signaling typically shares a different fate from the data links.
带外GMPLS信令由基于IP的控制消息组成,这些消息通过以太网数据平面使用的链路以外的链路在以太网交换机之间发送。带外信令通常与数据链路具有不同的命运。
o Point-to-point (P2P) Traffic Engineering (TE) service instance
o 点对点(P2P)流量工程(TE)服务实例
A TE service instance made up of a single bidirectional P2P or two P2P unidirectional Eth-LSPs.
由单个双向P2P或两个P2P单向Eth LSP组成的TE服务实例。
o Point-to-multipoint (P2MP) Traffic Engineering (TE) service instance
o 点对多点(P2MP)流量工程(TE)服务实例
A TE service instance supported by a set of LSPs that comprises one P2MP LSP from a root to n leaves, plus a bidirectional congruent point-to-point (P2P) LSP from each of the leaves to the root.
由一组LSP支持的TE服务实例,该LSP包括从根到n个叶的一个P2MP LSP,以及从每个叶到根的双向全等点对点(P2P)LSP。
o Shared forwarding
o 共享转发
Shared forwarding is a property of a data path where a single forwarding entry (VID + Destination MAC address) may be used for frames from multiple sources (Source MAC addresses). Shared forwarding does not change any data-plane behavior. Shared forwarding saves forwarding database (FDB) entries only. Shared forwarding offers similar benefits to merging in the data plane. However, in shared forwarding, the Ethernet data packets are unchanged. With shared forwarding, dedicated control-plane states for all Eth-LSPs are maintained regardless of shared forwarding entries.
共享转发是数据路径的属性,其中单个转发条目(VID+目标MAC地址)可用于来自多个源(源MAC地址)的帧。共享转发不会更改任何数据平面行为。共享转发仅保存转发数据库(FDB)条目。共享转发提供了与数据平面中的合并类似的好处。然而,在共享转发中,以太网数据包是不变的。通过共享转发,无论共享转发条目如何,所有Eth LSP的专用控制平面状态都将保持不变。
The following abbreviations and acronyms are used in this document:
本文件中使用了以下缩写和首字母缩略词:
CCM Continuity Check Message CFM Connectivity Fault Management DMAC Destination MAC Address Eth-LSP Ethernet Label Switched Path I-SID Backbone Service Identifier carried in the I-TAG I-TAG A Backbone Service Instance TAG defined in the IEEE 802.1ah Standard [802.1ah] LMP Link Management Protocol MAC Media Access Control MP2MP Multipoint to multipoint NMS Network Management System OAM Operations, Administration, and Maintenance
CCM连续性检查消息CFM连接故障管理DMAC目标MAC地址Eth LSP以太网标签交换路径I-SID主干服务标识符,载于I-TAG I-TAG A主干服务实例标记中,该标记在IEEE 802.1ah标准[802.1ah]中定义LMP链路管理协议MAC媒体访问控制MP2MP多点对多点NMS网络管理系统OAM操作、管理和维护
PBB Provider Backbone Bridges [802.1ah] PBB-TE Provider Backbone Bridges Traffic Engineering [802.1Qay] P2P Point to Point P2MP Point to Multipoint QoS Quality of Service SMAC Source MAC Address S-TAG A Service TAG defined in the IEEE 802.1 Standard [802.1Q] TE Traffic Engineering TAG An Ethernet short form for a TAG Header TAG Header An extension to an Ethernet frame carrying priority and other information TSpec Traffic specification VID VLAN Identifier VLAN Virtual LAN
PBB Provider Backbone Bridges [802.1ah] PBB-TE Provider Backbone Bridges Traffic Engineering [802.1Qay] P2P Point to Point P2MP Point to Multipoint QoS Quality of Service SMAC Source MAC Address S-TAG A Service TAG defined in the IEEE 802.1 Standard [802.1Q] TE Traffic Engineering TAG An Ethernet short form for a TAG Header TAG Header An extension to an Ethernet frame carrying priority and other information TSpec Traffic specification VID VLAN Identifier VLAN Virtual LAN
This section provides background to the types of switching and services that are supported within the defined framework. The former is particularly important as it identifies the switching functions that GMPLS will need to represent and control. The intent is for this document to allow for all standard forms of Ethernet switching and services.
本节介绍定义框架内支持的交换和服务类型的背景知识。前者尤其重要,因为它确定了GMPLS需要表示和控制的开关函数。本文档的目的是允许所有标准形式的以太网交换和服务。
The material presented in this section is based on both finished and ongoing work taking place in the IEEE 802.1 Working Group, the ITU-T, and the MEF. This section references and, to some degree, summarizes that work. This section is not a replacement for or an authoritative description of that work.
本节介绍的材料基于IEEE 802.1工作组、ITU-T和MEF中已完成和正在进行的工作。本节引用并在一定程度上总结了这项工作。本节不是对该作品的替代或权威性描述。
In Ethernet switching terminology, the bridge relay is responsible for forwarding and replicating the frames. Bridge relays forward frames based on the Ethernet header fields: Virtual Local Area Network (VLAN) Identifiers (VIDs) and Destination Media Access Control (DMAC) address. PBB [802.1ah] has also introduced a Service Instance tag (I-TAG). Across all the Ethernet extensions (already referenced in the Introduction), multiple forwarding functions, or service interfaces, have been defined using the combination of VIDs, DMACs, and I-TAGs. PBB [802.1ah] provides a breakdown of the different types of Ethernet switching services. Figure 1 reproduces this breakdown.
在以太网交换术语中,网桥中继负责转发和复制帧。网桥根据以太网报头字段转发帧:虚拟局域网(VLAN)标识符(VID)和目标媒体访问控制(DMAC)地址。PBB[802.1ah]还引入了服务实例标签(I-tag)。在所有以太网扩展(已在简介中提及)中,使用VID、DMAC和I标签组合定义了多个转发功能或服务接口。PBB[802.1ah]提供了不同类型以太网交换服务的分类。图1再现了这一细分。
PBB Network Service Types _,,-' | '--.._ _,.-'' | `'--.._ _,.--' | `'--.. Port based S-tagged I-tagged _,- -. _.' `. _,' `. one-to-one bundled _.- =. _.-' ``-.._ _.-' `-.. many-to-one all-to-one | | | Transparent
PBB Network Service Types _,,-' | '--.._ _,.-'' | `'--.._ _,.--' | `'--.. Port based S-tagged I-tagged _,- -. _.' `. _,' `. one-to-one bundled _.- =. _.-' ``-.._ _.-' `-.. many-to-one all-to-one | | | Transparent
Figure 1: Ethernet Switching Service Types
图1:以太网交换服务类型
The switching types are defined in Clause 25 of [802.1ah]. While not specifically described in [802.1ah], the Ethernet services being defined in the context of [MEF.6] and [G.8011] also fall into the types defined in Figure 1 (with the exception of the newly defined I-tagged service type).
[802.1ah]第25条规定了切换类型。虽然在[802.1ah]中没有具体描述,但在[MEF.6]和[G.8011]上下文中定义的以太网服务也属于图1中定义的类型(新定义的带I标签的服务类型除外)。
[802.1ah] defines a new I-tagged service type but does not specifically define the Ethernet services being defined in the context of [MEF.6] and [G.8011], which are also illustrated in Figure 1.
[802.1ah]定义了一种新的带I标签的服务类型,但没有具体定义在[MEF.6]和[G.8011]上下文中定义的以太网服务,这也在图1中进行了说明。
To summarize the definitions:
总结一下定义:
o Port based
o 基于端口的
This is a frame-based service that supports specific frame types; no Service VLAN tagging or MAC-address-based switching.
这是一个基于帧的服务,支持特定的帧类型;无服务VLAN标记或基于MAC地址的交换。
o S-tagged
o S-标记
There are multiple S-TAG-aware services, including:
有多个S-TAG感知服务,包括:
+ one-to-one
+ 一对一
In this service, each VLAN identifier (VID) is mapped into a different service.
在此服务中,每个VLAN标识符(VID)映射到不同的服务中。
+ bundled
+ 捆绑
Bundled S-tagged service supports the mapping of multiple VIDs into a single service and includes:
捆绑S标签服务支持将多个VID映射到单个服务中,包括:
* many-to-one
* 多对一
In this frame-based service, multiple VIDs are mapped into the same service.
在这种基于帧的服务中,多个vid被映射到同一个服务中。
* all-to-one
* 全部归一
In this frame-based service, all VIDs are mapped into the same service.
在这种基于帧的服务中,所有视频都映射到同一个服务中。
- transparent
- 透明的
This is a special case, all frames are mapped from a single incoming port to a single destination Ethernet port.
这是一种特殊情况,所有帧都从单个传入端口映射到单个目标以太网端口。
o I-tagged
o I-taged
The edge of a PBBN consists of a combined backbone relay (B-component relay) and service instance relay (I-component relay). An I-TAG contains a service identifier (24-bit I-SID) and priority markings as well as some other fields. An I-tagged service is typically between the edges of the PBBN and terminated at each edge on an I-component that faces a customer port so the service is often not visible except at the edges. However, since the I-component relay involves a distinct relay, it is possible to have a visible I-tagged Service by separating the I-component relay from the B-component relay. Two examples where it makes sense to do this are an I-tagged service between two PBBNs and as an attachment to a customer's Provider Instance Port.
PBBN的边缘由组合主干中继(B组件中继)和服务实例中继(I组件中继)组成。I-TAG包含服务标识符(24位I-SID)和优先级标记以及一些其他字段。I标记的服务通常位于PBBN的边缘之间,并在面向客户端口的I组件上的每个边缘处终止,因此除了边缘处,服务通常不可见。然而,由于I组件继电器涉及不同的继电器,因此通过将I组件继电器与B组件继电器分离,可以获得可见的I标记服务。这样做有意义的两个示例是两个PBBN之间的I标记服务,并作为客户提供商实例端口的附件。
In general, the different switching types determine which of the Ethernet header fields are used in the forwarding/switching function, e.g., VID only or VID and DMACs. The switching type may also require the use of additional Ethernet headers or fields. Services defined for UNIs tend to use the headers for requesting service (service delimiter) and are relevant between the customer site and network edge.
通常,不同的交换类型确定在转发/交换功能中使用哪些以太网报头字段,例如,仅VID或VID和DMACs。交换类型也可能需要使用额外的以太网报头或字段。为UNIs定义的服务倾向于使用头来请求服务(服务分隔符),并且与客户站点和网络边缘相关。
In most bridging cases, the header fields cannot be changed, but some translations of VID field values are permitted, typically at the network edges.
在大多数桥接情况下,不能更改标头字段,但允许对VID字段值进行一些转换,通常在网络边缘。
Across all service types, the Ethernet data plane is bidirectional congruent. This means that the forward and reverse paths share the exact same set of nodes, ports, and bidirectional links. This property is fundamental. The 802.1 group has maintained this bidirectional congruent property in the definition of Connectivity Fault Management (CFM), which is part of the overall OAM capability.
在所有服务类型中,以太网数据平面都是双向一致的。这意味着正向和反向路径共享完全相同的一组节点、端口和双向链路。这个属性是基本的。802.1组在连接故障管理(CFM)的定义中维护了这种双向一致性属性,CFM是整个OAM功能的一部分。
Robustness is enhanced with the addition of data-plane OAM to provide both fault and performance management.
通过添加数据平面OAM增强了健壮性,以提供故障和性能管理。
Ethernet OAM messages ([802.1ag] and [Y.1731]) rely on data-plane forwarding for both directions. Determining a broken path or misdirected packet in this case relies on OAM following the Eth-LSP. These OAM message identifiers are dependent on the data plane, so they work equally well for provisioned or GMPLS-controlled paths.
以太网OAM消息([802.1ag]和[Y.1731])依赖于双向的数据平面转发。在这种情况下,确定断开的路径或错误定向的分组依赖于Eth LSP之后的OAM。这些OAM消息标识符依赖于数据平面,因此它们同样适用于供应或GMPLS控制的路径。
Ethernet OAM currently consists of:
以太网OAM目前包括:
Defined in both [802.1ag] and [Y.1731]: - CCM/RDI: Continuity Check Message / Remote Defect Indication - LBM/LBR: Loopback Message/Reply - LTM/LTR: Link Trace Message/Reply - VSM/VSR: Vendor-Specific Message/Reply
Defined in both [802.1ag] and [Y.1731]: - CCM/RDI: Continuity Check Message / Remote Defect Indication - LBM/LBR: Loopback Message/Reply - LTM/LTR: Link Trace Message/Reply - VSM/VSR: Vendor-Specific Message/Reply
Additionally defined in [Y.1731]: - AIS: Alarm Indication Signal - LCK: Locked Signal - TST: Test - LMM/LMR: Loss Measurement Message/Reply - DM: Delay Measurement - DMM/DMR: Delay Measurement Message/Reply - EXM/EXR: Experimental Message/Reply - APS, MCC: Automatic Protection Switching, Maintenance Communication Channel
Additionally defined in [Y.1731]: - AIS: Alarm Indication Signal - LCK: Locked Signal - TST: Test - LMM/LMR: Loss Measurement Message/Reply - DM: Delay Measurement - DMM/DMR: Delay Measurement Message/Reply - EXM/EXR: Experimental Message/Reply - APS, MCC: Automatic Protection Switching, Maintenance Communication Channel
These functions are supported across all the standardized Eth-LSP formats.
所有标准化Eth LSP格式都支持这些功能。
Ethernet is similar to MPLS as it encapsulates different packet and frame types for data transmission. In Ethernet, the encapsulated data is referred to as MAC client data. The encapsulation is an Ethernet MAC frame with a header, a source address, a destination
以太网类似于MPLS,因为它封装了不同的数据包和帧类型以进行数据传输。在以太网中,封装的数据称为MAC客户端数据。封装是一个以太网MAC帧,带有一个报头、一个源地址和一个目的地
address, and an optional VLAN identifier, type, and length on the front of the MAC client data with optional padding and a Frame Check Sequence at the end of the frame.
MAC客户端数据前面的地址、可选VLAN标识符、类型和长度,以及可选填充和帧末尾的帧检查序列。
The type of MAC client data is typically identified by an "Ethertype" value. This is an explicit type indication, but Ethernet also supports an implicit type indication.
MAC客户端数据的类型通常由“Ethertype”值标识。这是一个显式类型指示,但以太网也支持隐式类型指示。
Ethernet bridging switches based on a frame's destination MAC address and VLAN. The VLAN identifies a virtual active set of bridges and LANs. The address is assumed to be unique and invariant within the VLAN. MAC addresses are often globally unique, but this is not necessary for bridging.
基于帧的目标MAC地址和VLAN的以太网桥接交换机。VLAN标识网桥和LAN的虚拟活动集。该地址在VLAN内被假定为唯一且不变的。MAC地址通常是全局唯一的,但这不是桥接所必需的。
As defined in the GMPLS architecture [RFC3945], the GMPLS control plane can be applied to a technology by controlling the data-plane and switching characteristics of that technology. The GMPLS architecture, per [RFC3945], allowed for control of Ethernet bridges and other Layer 2 technologies using the Layer-2 Switch Capable (L2SC) switching type. But, the control of Ethernet switching was not explicitly defined in [RFC3471], [RFC4202], or any other subsequent GMPLS reference document.
如GMPLS体系结构[RFC3945]中所定义,GMPLS控制平面可通过控制该技术的数据平面和切换特性应用于该技术。根据[RFC3945],GMPLS体系结构允许使用第二层交换机(L2SC)交换类型控制以太网网桥和其他第二层技术。但是,[RFC3471]、[RFC4202]或任何其他后续GMPLS参考文件中未明确定义以太网交换的控制。
The GMPLS architecture includes a clear separation between a control plane and a data plane. Control plane and data plane separation allows the GMPLS control plane to remain architecturally and functionally unchanged while controlling different technologies. The architecture also requires IP connectivity for the control plane to exchange information, but does not otherwise require an IP data plane.
GMPLS体系结构包括控制平面和数据平面之间的清晰分离。控制平面和数据平面的分离允许GMPLS控制平面在控制不同技术的同时在架构和功能上保持不变。该体系结构还需要控制平面的IP连接来交换信息,但不需要IP数据平面。
All aspects of GMPLS, i.e., addressing, signaling, routing and link management, may be applied to Ethernet switching. GMPLS can provide control for traffic-engineered and protected Ethernet service paths. This document defines the term "Eth-LSP" to refer to Ethernet service paths that are controlled via GMPLS. As is the case with all GMPLS controlled services, Eth-LSPs can leverage common traffic engineering attributes such as:
GMPLS的所有方面,即寻址、信令、路由和链路管理,都可以应用于以太网交换。GMPLS可以为流量工程和受保护的以太网服务路径提供控制。本文件定义术语“Eth LSP”是指通过GMPLS控制的以太网服务路径。与所有GMPLS控制的服务一样,Eth LSP可以利用常见的流量工程属性,例如:
- bandwidth profile; - forwarding priority level; - connection preemption characteristics; - protection/resiliency capability; - routing policy, such as an explicit route; - bidirectional service;
- 带宽配置文件;-转发优先级;-连接抢占特性;-保护/恢复能力;-路由策略,例如显式路由;-双向服务;
- end-to-end and segment protection; - hierarchy
- 端到端和段保护;-等级制度
The bandwidth profile may be used to set the committed information rate, peak information rate, and policies based on either under-subscription or over-subscription. Services covered by this framework will use a TSpec that follows the Ethernet Traffic parameters defined in [ETH-TSPEC].
带宽配置文件可用于基于欠订阅或过度订阅设置提交的信息速率、峰值信息速率和策略。本框架涵盖的服务将使用遵循[ETH-TSpec]中定义的以太网流量参数的TSpec。
In applying GMPLS to "transport" Ethernet, GMPLS will need to be extended to work with the Ethernet data plane and switching functions. The definition of GMPLS support for Ethernet is multifaceted due to the different forwarding/switching functions inherent in the different service types discussed in Section 2.1. In general, the header fields used in the forwarding/switching function, e.g., VID and DMAC, can be characterized as a data-plane label. In some circumstances, these fields will be constant along the path of the Eth-LSP, and in others they may vary hop-by-hop or at certain interfaces only along the path. In the case where the "labels" must be forwarded unchanged, there are a few constraints on the label allocation that are similar to some other technologies such as lambda labels.
在将GMPLS应用于“传输”以太网时,需要将GMPLS扩展到以太网数据平面和交换功能。由于第2.1节讨论的不同服务类型中固有的不同转发/交换功能,GMPLS对以太网支持的定义是多方面的。通常,转发/交换功能中使用的报头字段(例如,VID和DMAC)可以被描述为数据平面标签。在某些情况下,这些字段将沿Eth LSP的路径保持不变,而在其他情况下,它们可能逐跳变化,或者仅在路径上的某些接口处变化。在“标签”必须原封不动地转发的情况下,标签分配上有一些限制,类似于其他一些技术,如lambda标签。
The characteristics of the "transport" Ethernet data plane are not modified in order to apply GMPLS control. For example, consider the IEEE 802.1Q [802.1Q] data plane: The VID is used as a "filter" pointing to a particular forwarding table, and if the DMAC is found in that forwarding table, the forwarding decision is made based on the DMAC. When forwarding using a spanning tree, if the DMAC is not found, the frame is broadcast over all outgoing interfaces for which that VID is defined. This valid MAC checking and broadcast supports Ethernet learning. A special case is when a VID is defined for only two ports on one bridge, effectively resulting in a P2P forwarding constraint. In this case, all frames that are tagged with that VID and received over one of these ports are forwarded over the other port without address learning.
为了应用GMPLS控制,“传输”以太网数据平面的特性没有修改。例如,考虑IEEE 802.1q[802.1q]数据平面:VID用作指向特定转发表的“过滤器”,并且如果在该转发表中发现DMAC,则基于DMAC进行转发决定。当使用生成树进行转发时,如果未找到DMAC,则在定义了该VID的所有传出接口上广播该帧。这种有效的MAC检查和广播支持以太网学习。一种特殊情况是,在一个网桥上仅为两个端口定义了VID,从而有效地导致了P2P转发约束。在这种情况下,使用该VID标记并通过其中一个端口接收的所有帧都通过另一个端口转发,而无需地址学习。
[802.1Qay] allows for turning off learning and hence the broadcast mechanism that provides means to create explicitly routed Ethernet connections.
[802.1Qay]允许关闭学习,从而关闭广播机制,该机制提供了创建显式路由以太网连接的方法。
This document does not define any specific format for an Eth-LSP label. Rather, it is expected that service-specific documents will define any signaling and routing extensions needed to support a specific Ethernet service. Depending on the requirements of a service, it may be necessary to define multiple GMPLS protocol extensions and procedures. It is expected that all such extensions will be consistent with this document.
本文件未定义Eth LSP标签的任何特定格式。相反,预期特定于服务的文档将定义支持特定以太网服务所需的任何信令和路由扩展。根据服务的要求,可能需要定义多个GMPLS协议扩展和过程。预计所有此类扩展将与本文件一致。
It is expected that a key requirement for service-specific documents will be to describe label formats and encodings. It may also be necessary to provide a mechanism to identify the required Ethernet service type in signaling and a way to advertise the capabilities of Ethernet switches in the routing protocols. These mechanisms must make it possible to distinguish between requests for different paradigms including new, future, and existing paradigms.
预计服务特定文档的关键要求是描述标签格式和编码。还可能需要提供一种机制来识别信令中所需的以太网服务类型,以及一种在路由协议中宣传以太网交换机能力的方法。这些机制必须能够区分对不同范式的请求,包括新范式、未来范式和现有范式。
The Switching Type and Interface Switching Capability Descriptor share a common set of values and are defined in [RFC3945], [RFC3471], and [RFC4202] as indicators of the type of switching that should ([RFC3471]) and can ([RFC4202]) be performed on a particular link for an LSP. The L2SC switching type may already be used by implementations performing Layer 2 Switching including Ethernet. As such, and to allow the continued use of that switching type and those implementations, and to distinguish the different Ethernet switching paradigms, a new switching type needs to be defined for each new Ethernet switching paradigm that is supported.
交换类型和接口交换能力描述符共享一组公共值,并在[RFC3945]、[RFC3471]和[RFC4202]中定义为应([RFC3471])和可([RFC4202])在LSP的特定链路上执行的交换类型的指示符。L2SC交换类型可能已经被执行第2层交换(包括以太网)的实现所使用。因此,为了允许继续使用该交换类型和这些实现,并区分不同的以太网交换范式,需要为支持的每个新以太网交换范式定义新的交换类型。
For discussion purposes, we decompose the problem of applying GMPLS into the functions of routing, signaling, link management, and path selection. It is possible to use some functions of GMPLS alone or in partial combinations. In most cases, using all functions of GMPLS leads to less operational overhead than partial combinations.
为了便于讨论,我们将应用GMPLS的问题分解为路由、信令、链路管理和路径选择等功能。可以单独或部分组合使用GMPLS的某些功能。在大多数情况下,使用GMPLS的所有功能会比部分组合带来更少的操作开销。
The GMPLS routing and addressing model is not modified by this document. GMPLS control for Eth-LSPs uses the routing and addressing model described in [RFC3945]. Most notably, this includes the use of IP addresses to identify interfaces and LSP end-points. It also includes support for both numbered and unnumbered interfaces.
本文件未修改GMPLS路由和寻址模型。Eth LSP的GMPLS控制使用[RFC3945]中描述的路由和寻址模型。最值得注意的是,这包括使用IP地址来标识接口和LSP端点。它还包括对已编号和未编号接口的支持。
In the case where another address family or type of identifier is required to support an Ethernet service, extensions may be defined to provide mapping to an IP address. Support of Eth-LSPs is expected to strictly comply to the GMPLS protocol suite addressing as specified in [RFC3471], [RFC3473], and related documents.
在需要另一个地址族或标识符类型来支持以太网服务的情况下,可以定义扩展以提供到IP地址的映射。Eth LSP的支持应严格遵守[RFC3471]、[RFC3473]和相关文件中规定的GMPLS协议套件寻址。
GMPLS routing as defined in [RFC4202] uses IP routing protocols with opaque TLV extensions for the purpose of distributing GMPLS-related TE (router and link) information. As is always the case with GMPLS, TE information is populated based on resource information obtained from LMP or from configured information. The bandwidth resources of the links are tracked as Eth-LSPs are set up. Interfaces supporting the switching of Eth-LSPs are identified using the appropriate
[RFC4202]中定义的GMPLS路由使用具有不透明TLV扩展的IP路由协议来分发GMPLS相关TE(路由器和链路)信息。与GMPLS的情况一样,TE信息是基于从LMP或配置信息获得的资源信息填充的。在设置Eth LSP时跟踪链路的带宽资源。支持Eth LSP切换的接口使用适当的
Interface Switching Capabilities (ISC) Descriptor. As mentioned in Section 3, the definition of one or more new ISCs to support Eth-LSPs is expected. Again, the L2SC ISCs will not be used to represent interfaces capable of supporting Eth-LSPs defined by this document and subsequent documents in support of the transport Ethernet switching paradigms. In addition, ISC-specific TE information may be defined as needed to support the requirements of a specific Ethernet Switching Service Type.
接口交换能力(ISC)描述符。如第3节所述,预计将定义一个或多个支持Eth LSP的新ISC。同样,L2SC ISC将不用于表示能够支持本文件和后续支持传输以太网交换范式的文件定义的Eth LSP的接口。此外,可以根据需要定义ISC特定TE信息,以支持特定以太网交换服务类型的要求。
GMPLS routing is an optional functionality but it is highly valuable in maintaining topology and distributing the TE database for path management and dynamic path computation.
GMPLS路由是一项可选功能,但它在维护拓扑和分发TE数据库以进行路径管理和动态路径计算方面非常有价值。
In order for a GMPLS control plane to operate, an IP connectivity network of sufficient capacity to handle the information exchange of the GMPLS routing and signaling protocols is necessary.
为了使GMPLS控制平面运行,需要一个具有足够容量的IP连接网络来处理GMPLS路由和信令协议的信息交换。
One way to implement this is with an IP-routed network supported by an IGP that views each switch as a terminated IP adjacency. In other words, IP traffic and a simple routing table are available for the control plane, but there is no requirement for a high-performance IP data plane, or for forwarding user traffic over this IP network.
实现这一点的一种方法是使用IGP支持的IP路由网络,IGP将每个交换机视为终止的IP邻接。换句话说,IP流量和简单路由表可用于控制平面,但不需要高性能IP数据平面,也不需要通过该IP网络转发用户流量。
This IP connectivity can be provided as a separate independent network (out-of-band) or integrated with the Ethernet switches (in-band).
这种IP连接可以作为单独的独立网络(带外)提供,也可以与以太网交换机(带内)集成。
GMPLS signaling ([RFC3471] and [RFC3473]) is well suited to the control of Eth-LSPs and Ethernet switches. Signaling provides the ability to dynamically establish a path from an ingress node to an egress node. The signaled path may be completely static and not change for the duration of its lifetime. However, signaling also has the capability to dynamically adjust the path in a coordinated fashion after the path has been established. The range of signaling options from static to dynamic are under operator control. Standardized signaling also improves multi-vendor interoperability.
GMPLS信令([RFC3471]和[RFC3473])非常适合于Eth LSP和以太网交换机的控制。信令提供动态建立从入口节点到出口节点的路径的能力。信号路径可以是完全静态的,并且在其生命周期内不会改变。然而,信令还具有在路径建立后以协调方式动态调整路径的能力。从静态到动态的信号选项范围由操作员控制。标准化信令还提高了多供应商的互操作性。
GMPLS signaling supports the establishment and control of bidirectional and unidirectional data paths. Ethernet is bidirectional by nature and CFM has been built to leverage this. Prior to CFM, the emulation of a physical wire and the learning requirements also mandated bidirectional connections. Given this,
GMPLS信令支持双向和单向数据路径的建立和控制。以太网本质上是双向的,构建CFM就是为了利用这一点。在CFM之前,物理导线的仿真和学习要求也要求双向连接。有鉴于此,,
Eth-LSPs need to be bidirectional congruent. Eth-LSPs may be either P2P or P2MP (see [RFC4875]). GMPLS signaling also allows for full and partial LSP protection; see [RFC4872] and [RFC4873].
Eth LSP需要是双向全等的。Eth LSP可以是P2P或P2MP(参见[RFC4875])。GMPLS信令还允许完全和部分LSP保护;参见[RFC4872]和[RFC4873]。
Note that standard GMPLS does not support different bandwidth in each direction of a bidirectional LSP. [RFC5467], an Experimental document, provides procedures if asymmetric bandwidth bidirectional LSPs are required.
注意,标准GMPLS不支持双向LSP的每个方向上的不同带宽。[RFC5467]是一份实验性文件,提供了需要不对称带宽双向LSP时的程序。
Link discovery has been specified for links interconnecting IEEE 802.1 bridges in [802.1AB]. The benefits of running link discovery in large systems are significant. Link discovery may reduce configuration and reduce the possibility of undetected errors in configuration as well as exposing misconnections. However, the 802.1AB capability is an optional feature, so it is not necessarily operating before a link is operational, and it primarily supports the management plane.
已在[802.1AB]中为互连IEEE 802.1网桥的链路指定了链路发现。在大型系统中运行链接发现的好处非常显著。链路发现可以减少配置,减少配置中未检测到的错误以及暴露错误连接的可能性。但是,802.1AB功能是可选功能,因此在链路运行之前,它不一定运行,它主要支持管理平面。
In the GMPLS context, LMP [RFC4204] has been defined to support GMPLS control-plane link management and discovery features. LMP also supports the automated creation of unnumbered interfaces for the control plane. If LMP is not used, there is an additional configuration requirement for GMPLS link identifiers. For large-scale implementations, LMP is beneficial. LMP also has optional fault management capabilities, primarily for opaque and transparent network technology. With IEEE's newer CFM [802.1ag] and ITU-T's capabilities [Y.1731], this optional capability may not be needed. It is the goal of the GMPLS Ethernet architecture to allow the selection of the best tool set for the user needs. The full functionality of Ethernet CFM should be supported when using a GMPLS control plane.
在GMPLS上下文中,LMP[RFC4204]已定义为支持GMPLS控制平面链路管理和发现功能。LMP还支持为控制平面自动创建无编号的接口。如果未使用LMP,则对GMPLS链路标识符有额外的配置要求。对于大规模实现,LMP是有益的。LMP还具有可选的故障管理功能,主要用于不透明和透明的网络技术。使用IEEE较新的CFM[802.1ag]和ITU-T的功能[Y.1731],可能不需要此可选功能。GMPLS以太网体系结构的目标是允许选择满足用户需求的最佳工具集。使用GMPLS控制平面时,应支持以太网CFM的全部功能。
LMP and 802.1AB are relatively independent. The LMP capability should be sufficient to remove the need for 802.1AB, but 802.1 AB can be run in parallel or independently if desired. Figure 2 provides possible ways of using LMP, 802.1AB, and 802.1ag in combination.
LMP和802.1AB是相对独立的。LMP功能应足以消除对802.1AB的需求,但如果需要,802.1AB可以并行或独立运行。图2提供了组合使用LMP、802.1AB和802.1ag的可能方法。
Figure 2 illustrates the functional relationship of link management and OAM schemes. It is expected that LMP would be used for control-plane functions of link property correlation, but that Ethernet mechanisms for OAM such as CFM, link trace, etc., would be used for data-plane fault management and fault trace.
图2说明了链路管理和OAM方案的功能关系。预计LMP将用于链路属性关联的控制平面功能,但用于OAM的以太网机制(如CFM、链路跟踪等)将用于数据平面故障管理和故障跟踪。
+-------------+ +-------------+ | +---------+ | | +---------+ | | | | | | | | |GMPLS | | LMP |-|<------>|-| LMP | |Link Property | | | | | | | |Correlation | | (opt) | |GMPLS | | (opt) | | | | | | | | | | Bundling | +---------+ | | +---------+ | | +---------+ | | +---------+ | | | | | | | | | | | 802.1AB |-|<------>|-| 802.1AB | |P2P | | (opt) | |Ethernet| | (opt) | |link identifiers | | | | | | | | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | | | | | | | |End-to-End -----|-| 802.1ag |-|<------>|-| 802.1ag |-|------- | | Y.1731 | |Ethernet| | Y.1731 | |Fault Management | | (opt) | | | | (opt) | |Performance | | | | | | | |Management | +---------+ | | +---------+ | +-------------+ +-------------+ Switch 1 link Switch 2
+-------------+ +-------------+ | +---------+ | | +---------+ | | | | | | | | |GMPLS | | LMP |-|<------>|-| LMP | |Link Property | | | | | | | |Correlation | | (opt) | |GMPLS | | (opt) | | | | | | | | | | Bundling | +---------+ | | +---------+ | | +---------+ | | +---------+ | | | | | | | | | | | 802.1AB |-|<------>|-| 802.1AB | |P2P | | (opt) | |Ethernet| | (opt) | |link identifiers | | | | | | | | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | | | | | | | |End-to-End -----|-| 802.1ag |-|<------>|-| 802.1ag |-|------- | | Y.1731 | |Ethernet| | Y.1731 | |Fault Management | | (opt) | | | | (opt) | |Performance | | | | | | | |Management | +---------+ | | +---------+ | +-------------+ +-------------+ Switch 1 link Switch 2
Figure 2: Logical Link Management Options
图2:逻辑链路管理选项
GMPLS does not identify a specific method for selecting paths or supporting path computation. GMPLS allows for a wide range of possibilities to be supported, from very simple path computation to very elaborate path coordination where a large number of coordinated paths are required. Path computation can take the form of paths being computed in a fully distributed fashion, on a management station with local computation for rerouting, or on more sophisticated path computation servers.
GMPLS没有确定选择路径或支持路径计算的特定方法。GMPLS允许支持广泛的可能性,从非常简单的路径计算到需要大量协调路径的非常复杂的路径协调。路径计算可以采取以完全分布式方式计算路径的形式,在具有用于重新路由的本地计算的管理站上,或者在更复杂的路径计算服务器上。
Eth-LSPs may be supported using any path selection or computation mechanism. As is the case with any GMPLS path selection function, and common to all path selection mechanisms, the path selection process should take into consideration Switching Capabilities and Encoding advertised for a particular interface. Eth-LSPs may also make use of the emerging path computation element and selection work; see [RFC4655].
可以使用任何路径选择或计算机制来支持Eth lsp。与任何GMPLS路径选择功能一样,所有路径选择机制都通用,路径选择过程应考虑特定接口的交换能力和编码。Eth lsp还可以利用新兴路径计算元素和选择工作;见[RFC4655]。
This document allows for the support of the signaling of Ethernet parameters across multiple VLANs supporting both contiguous Eth-LSP and Hierarchical Ethernet LSPs. The intention is to reuse GMPLS hierarchy for the support of peer-to-peer models, UNIs, and NNIs.
本文档允许跨多个VLAN发送以太网参数信号,支持连续以太网LSP和分层以太网LSP。其目的是重用GMPLS层次结构,以支持对等模型、UNIs和NNI。
A GMPLS-controlled "transport" Ethernet system should assume that users and devices attached to UNIs may behave maliciously, negligently, or incorrectly. Intra-provider control traffic is trusted to not be malicious. In general, these requirements are no different from the security requirements for operating any GMPLS network. Access to the trusted network will only occur through the protocols defined for the UNI or NNI or through protected management interfaces.
GMPLS控制的“传输”以太网系统应假设连接到UNIs的用户和设备可能有恶意、疏忽或错误行为。提供程序内控制流量被信任为非恶意。一般来说,这些要求与运行任何GMPLS网络的安全要求没有区别。只有通过为UNI或NNI定义的协议或通过受保护的管理接口才能访问受信任的网络。
When in-band GMPLS signaling is used for the control plane, the security of the control plane and the data plane may affect each other. When out-of-band GMPLS signaling is used for the control plane, the data-plane security is decoupled from the control plane, and therefore the security of the data plane has less impact on overall security.
当控制平面使用带内GMPLS信令时,控制平面和数据平面的安全性可能会相互影响。当控制平面使用带外GMPLS信令时,数据平面的安全性与控制平面解耦,因此数据平面的安全性对整体安全性的影响较小。
Where GMPLS is applied to the control of VLAN only, the commonly known techniques for mitigation of Ethernet denial-of-service attacks may be required on UNI ports.
如果GMPLS仅应用于VLAN的控制,则可能需要在UNI端口上使用常见的缓解以太网拒绝服务攻击的技术。
For a more comprehensive discussion on GMPLS security please see the MPLS and GMPLS Security Framework [SECURITY]. Cryptography can be used to protect against many attacks described in [SECURITY]. One option for protecting "transport" Ethernet is the use of 802.1AE Media Access Control Security [802.1AE], which provides encryption and authentication. It is expected that solution documents will include a full analysis of the security issues that any protocol extensions introduce.
有关GMPLS安全性的更全面讨论,请参阅MPLS和GMPLS安全框架[安全性]。密码学可用于防止[SECURITY]中描述的许多攻击。保护“传输”以太网的一个选项是使用802.1AE媒体访问控制安全[802.1AE],它提供加密和身份验证。预计解决方案文档将包括对任何协议扩展引入的安全问题的全面分析。
[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.
[RFC3471]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。
[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.
[RFC3473]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,2003年1月。
[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, October 2004.
[RFC3945]Mannie,E.,Ed.“通用多协议标签交换(GMPLS)体系结构”,RFC 39452004年10月。
[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, October 2005.
[RFC4202]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的路由扩展”,RFC 4202,2005年10月。
[802.1AB] "IEEE Standard for Local and Metropolitan Area Networks, Station and Media Access Control Connectivity Discovery", IEEE 802.1AB, 2009.
[802.1AB]“局域网和城域网、站点和媒体访问控制连接发现的IEEE标准”,IEEE 802.1AB,2009年。
[802.1AE] "IEEE Standard for Local and metropolitan area networks Media Access Control (MAC) Security", IEEE 802.1AE-2006, August 2006.
[802.1AE]“局域网和城域网媒体访问控制(MAC)安全的IEEE标准”,IEEE 802.1AE-2006,2006年8月。
[802.1ag] "IEEE Standard for Local and Metropolitan Area Networks - Virtual Bridged Local Area Networks - Amendment 5: Connectivity Fault Management", IEEE 802.1ag, 2007.
[802.1ag]“局域网和城域网IEEE标准-虚拟桥接局域网-修改件5:连接故障管理”,IEEE 802.1ag,2007年。
[802.1ah] "IEEE Standard for Local and Metropolitan Area Networks - Virtual Bridged Local Area Networks - Amendment 6: Provider Backbone Bridges", IEEE Std 802.1ah-2008, August 2008.
[802.1ah]“局域网和城域网IEEE标准-虚拟桥接局域网-修改件6:提供商主干网桥”,IEEE标准802.1ah-2008,2008年8月。
[802.1Q] "IEEE standard for Virtual Bridged Local Area Networks", IEEE 802.1Q-2005, May 2006.
[802.1Q]“虚拟桥接局域网的IEEE标准”,IEEE 802.1Q-2005,2006年5月。
[802.1Qay] "IEEE Standard for Local and Metropolitan Area Networks - Virtual Bridged Local Area Networks - Amendment 10: Provider Backbone Bridge Traffic Engineering", IEEE Std 802.1Qay-2009, August 2009.
[802.1Qay]“局域网和城域网IEEE标准-虚拟桥接局域网-修改件10:提供商主干网桥流量工程”,IEEE标准802.1Qay-2009,2009年8月。
[ETH-TSPEC] Papadimitriou, D., "Ethernet Traffic Parameters", Work in Progress, January 2010.
[ETH-TSPEC]Papadimitriou,D.,“以太网流量参数”,正在进行的工作,2010年1月。
[G.8011] ITU-T Recommendation G.8011, "Ethernet over Transport - Ethernet services framework", January 2009.
[G.8011]ITU-T建议G.8011,“以太网传输-以太网服务框架”,2009年1月。
[G.8011.1] ITU-T Recommendation G.8011.1/Y.1307.1, "Ethernet private line service", January 2009.
[G.8011.1]ITU-T建议G.8011.1/Y.1307.1,“以太网专线服务”,2009年1月。
[G.8011.2] ITU-T Recommendation G.8011.2/Y.1307.2, "Ethernet virtual private line service", January 2009.
[G.8011.2]ITU-T建议G.8011.2/Y.1307.2,“以太网虚拟专线服务”,2009年1月。
[G.8031] ITU-T Recommendation G.8031, "Ethernet linear protection switching", November 2009.
[G.8031]ITU-T建议G.8031,“以太网线性保护交换”,2009年11月。
[MEF.6] The Metro Ethernet Forum MEF 6, "Ethernet Services Definitions - Phase I", 2004.
[MEF.6]城域以太网论坛MEF 6,“以太网服务定义-第一阶段”,2004年。
[RFC4204] Lang, J., Ed., "Link Management Protocol (LMP)", RFC 4204, October 2005.
[RFC4204]Lang,J.,Ed.,“链路管理协议(LMP)”,RFC4204,2005年10月。
[RFC4875] Aggarwal, R., Ed., Papadimitriou, D., Ed., and S. Yasukawa, Ed., "Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)", RFC 4875, May 2007.
[RFC4875]Aggarwal,R.,Ed.,Papadimitriou,D.,Ed.,和S.Yasukawa,Ed.,“资源预留协议的扩展-点对多点TE标签交换路径(LSP)的流量工程(RSVP-TE)”,RFC 48752007年5月。
[RFC4655] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path Computation Element (PCE)-Based Architecture", RFC 4655, August 2006.
[RFC4655]Farrel,A.,Vasseur,J.-P.,和J.Ash,“基于路径计算元素(PCE)的体系结构”,RFC 46552006年8月。
[RFC4872] Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou, Ed., "RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery", RFC 4872, May 2007.
[RFC4872]Lang,J.,Ed.,Rekhter,Y.,Ed.,和D.Papadimitriou,Ed.,“支持端到端通用多协议标签交换(GMPLS)恢复的RSVP-TE扩展”,RFC 4872,2007年5月。
[RFC4873] Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel, "GMPLS Segment Recovery", RFC 4873, May 2007.
[RFC4873]Berger,L.,Bryskin,I.,Papadimitriou,D.,和A.Farrel,“GMPLS段恢复”,RFC 4873,2007年5月。
[RFC5467] Berger, L., Takacs, A., Caviglia, D., Fedyk, D., and J. Meuric, "GMPLS Asymmetric Bandwidth Bidirectional Label Switched Paths (LSPs)", RFC 5467, March 2009.
[RFC5467]Berger,L.,Takacs,A.,Caviglia,D.,Fedyk,D.,和J.Meuria,“GMPLS非对称带宽双向标签交换路径(LSP)”,RFC 54672009年3月。
[SECURITY] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", Work in Progress, October 2009.
[SECURITY]Fang,L.,Ed.,“MPLS和GMPLS网络的安全框架”,正在进行的工作,2009年10月。
[Y.1731] ITU-T Recommendation Y.1731, "OAM Functions and Mechanisms for Ethernet based Networks", February 2008.
[Y.1731]ITU-T建议Y.1731,“基于以太网的网络的OAM功能和机制”,2008年2月。
There were many people involved in the initiation of this work prior to this document. The GELS framework document and the PBB-TE extensions document were two documents that helped shape and justify this work. We acknowledge the work of the authors of these initial documents: Dimitri Papadimitriou, Nurit Sprecher, Jaihyung Cho, Dave Allan, Peter Busschbach, Attila Takacs, Thomas Eriksson, Diego Caviglia, Himanshu Shah, Greg Sunderwood, Alan McGuire, and Nabil Bitar.
在本文件之前,有许多人参与了这项工作的启动。GELS框架文件和PBB-TE扩展文件是帮助形成和证明这项工作的两份文件。我们感谢这些原始文件的作者的工作:迪米特里·帕帕迪米特里欧、努里特·斯普雷彻、赵杰雄、戴夫·艾伦、彼得·布施巴赫、阿提拉·塔卡茨、托马斯·埃里克森、迭戈·卡维利亚、希曼苏·沙阿、格雷格·桑德伍德、艾伦·麦奎尔和纳比尔·比塔尔。
George Swallow contributed significantly to this document.
乔治·斯沃恩对这份文件做出了重大贡献。
Authors' Addresses
作者地址
Don Fedyk Alcatel-Lucent Groton, MA, 01450 Phone: +1-978-467-5645 EMail: donald.fedyk@alcatel-lucent.com
唐·费迪克·阿尔卡特·朗讯·格罗顿,马萨诸塞州,01450电话:+1-978-467-5645电子邮件:唐纳德。fedyk@alcatel-朗讯网
Lou Berger LabN Consulting, L.L.C. Phone: +1-301-468-9228 EMail: lberger@labn.net
Lou Berger LabN Consulting,L.L.C.电话:+1-301-468-9228电子邮件:lberger@labn.net
Loa Andersson Ericsson Phone: +46 10 717 52 13 EMail: loa.andersson@ericsson.com
Loa安德森爱立信电话:+46 10 717 52 13电子邮件:Loa。andersson@ericsson.com