Internet Engineering Task Force (IETF)                       W. Sun, Ed.
Request for Comments: 5814                                          SJTU
Category: Standards Track                                  G. Zhang, Ed.
ISSN: 2070-1721                                                     CATR
                                                              March 2010
        
Internet Engineering Task Force (IETF)                       W. Sun, Ed.
Request for Comments: 5814                                          SJTU
Category: Standards Track                                  G. Zhang, Ed.
ISSN: 2070-1721                                                     CATR
                                                              March 2010
        

Label Switched Path (LSP) Dynamic Provisioning Performance Metrics in Generalized MPLS Networks

广义MPLS网络中标签交换路径(LSP)动态资源调配性能指标

Abstract

摘要

Generalized Multi-Protocol Label Switching (GMPLS) is one of the most promising candidate technologies for a future data transmission network. GMPLS has been developed to control and operate different kinds of network elements, such as conventional routers, switches, Dense Wavelength Division Multiplexing (DWDM) systems, Add-Drop Multiplexers (ADMs), photonic cross-connects (PXCs), optical cross-connects (OXCs), etc. These physically diverse devices differ drastically from one another in dynamic provisioning ability. At the same time, the need for dynamically provisioned connections is increasing because optical networks are being deployed in metro areas. As different applications have varied requirements in the provisioning performance of optical networks, it is imperative to define standardized metrics and procedures such that the performance of networks and application needs can be mapped to each other.

广义多协议标签交换(GMPLS)是未来数据传输网络中最有前途的候选技术之一。GMPLS已开发用于控制和操作不同类型的网络元件,如传统路由器、交换机、密集波分复用(DWDM)系统、分插复用器(ADM)、光子交叉连接(PXC)、光交叉连接(OXC),等等。这些物理上不同的设备在动态资源调配能力上有很大的不同。同时,由于在城域部署了光纤网络,因此对动态配置连接的需求正在增加。由于不同的应用程序对光网络的供应性能有不同的要求,因此必须定义标准化的度量和程序,以便网络性能和应用程序需求能够相互映射。

This document provides a series of performance metrics to evaluate the dynamic Label Switched Path (LSP) provisioning performance in GMPLS networks, specifically the dynamic LSP setup/release performance. These metrics can be used to characterize the features of GMPLS networks in LSP dynamic provisioning.

本文档提供了一系列性能指标,用于评估GMPLS网络中的动态标签交换路径(LSP)供应性能,特别是动态LSP设置/发布性能。这些指标可用于描述LSP动态资源调配中GMPLS网络的特征。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5814.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc5814.

Copyright Notice

版权公告

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2010 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

本文件可能包含2008年11月10日之前发布或公开的IETF文件或IETF贡献中的材料。控制某些材料版权的人员可能未授予IETF信托允许在IETF标准流程之外修改此类材料的权利。在未从控制此类材料版权的人员处获得充分许可的情况下,不得在IETF标准流程之外修改本文件,也不得在IETF标准流程之外创建其衍生作品,除了将其格式化以RFC形式发布或将其翻译成英语以外的其他语言。

Table of Contents

目录

   1. Introduction ....................................................6
   2. Conventions Used in This Document ...............................6
   3. Overview of Performance Metrics .................................6
   4. A Singleton Definition for Single Unidirectional LSP
      Setup Delay .....................................................7
      4.1. Motivation .................................................7
      4.2. Metric Name ................................................7
      4.3. Metric Parameters ..........................................8
      4.4. Metric Units ...............................................8
      4.5. Definition .................................................8
      4.6. Discussion .................................................8
      4.7. Methodologies ..............................................9
      4.8. Metric Reporting ...........................................9
   5. A Singleton Definition for Multiple Unidirectional LSPs
      Setup Delay ....................................................10
      5.1. Motivation ................................................10
      5.2. Metric Name ...............................................10
      5.3. Metric Parameters .........................................10
      5.4. Metric Units ..............................................10
      5.5. Definition ................................................11
      5.6. Discussion ................................................11
      5.7. Methodologies .............................................12
      5.8. Metric Reporting ..........................................13
   6. A Singleton Definition for Single Bidirectional LSP
      Setup Delay ....................................................13
      6.1. Motivation ................................................13
      6.2. Metric Name ...............................................14
      6.3. Metric Parameters .........................................14
      6.4. Metric Units ..............................................14
      6.5. Definition ................................................14
      6.6. Discussion ................................................15
      6.7. Methodologies .............................................15
      6.8. Metric Reporting ..........................................16
   7. A Singleton Definition for Multiple Bidirectional LSPs
      Setup Delay ....................................................16
      7.1. Motivation ................................................16
      7.2. Metric Name ...............................................16
      7.3. Metric Parameters .........................................17
      7.4. Metric Units ..............................................17
      7.5. Definition ................................................17
      7.6. Discussion ................................................18
      7.7. Methodologies .............................................19
      7.8. Metric Reporting ..........................................19
   8. A Singleton Definition for LSP Graceful Release Delay ..........20
      8.1. Motivation ................................................20
      8.2. Metric Name ...............................................20
        
   1. Introduction ....................................................6
   2. Conventions Used in This Document ...............................6
   3. Overview of Performance Metrics .................................6
   4. A Singleton Definition for Single Unidirectional LSP
      Setup Delay .....................................................7
      4.1. Motivation .................................................7
      4.2. Metric Name ................................................7
      4.3. Metric Parameters ..........................................8
      4.4. Metric Units ...............................................8
      4.5. Definition .................................................8
      4.6. Discussion .................................................8
      4.7. Methodologies ..............................................9
      4.8. Metric Reporting ...........................................9
   5. A Singleton Definition for Multiple Unidirectional LSPs
      Setup Delay ....................................................10
      5.1. Motivation ................................................10
      5.2. Metric Name ...............................................10
      5.3. Metric Parameters .........................................10
      5.4. Metric Units ..............................................10
      5.5. Definition ................................................11
      5.6. Discussion ................................................11
      5.7. Methodologies .............................................12
      5.8. Metric Reporting ..........................................13
   6. A Singleton Definition for Single Bidirectional LSP
      Setup Delay ....................................................13
      6.1. Motivation ................................................13
      6.2. Metric Name ...............................................14
      6.3. Metric Parameters .........................................14
      6.4. Metric Units ..............................................14
      6.5. Definition ................................................14
      6.6. Discussion ................................................15
      6.7. Methodologies .............................................15
      6.8. Metric Reporting ..........................................16
   7. A Singleton Definition for Multiple Bidirectional LSPs
      Setup Delay ....................................................16
      7.1. Motivation ................................................16
      7.2. Metric Name ...............................................16
      7.3. Metric Parameters .........................................17
      7.4. Metric Units ..............................................17
      7.5. Definition ................................................17
      7.6. Discussion ................................................18
      7.7. Methodologies .............................................19
      7.8. Metric Reporting ..........................................19
   8. A Singleton Definition for LSP Graceful Release Delay ..........20
      8.1. Motivation ................................................20
      8.2. Metric Name ...............................................20
        
      8.3. Metric Parameters .........................................20
      8.4. Metric Units ..............................................20
      8.5. Definition ................................................20
      8.6. Discussion ................................................22
      8.7. Methodologies .............................................22
      8.8. Metric Reporting ..........................................23
   9. A Definition for Samples of Single Unidirectional LSP
      Setup Delay ....................................................24
      9.1. Metric Name ...............................................24
      9.2. Metric Parameters .........................................24
      9.3. Metric Units ..............................................24
      9.4. Definition ................................................24
      9.5. Discussion ................................................25
      9.6. Methodologies .............................................25
      9.7. Typical Testing Cases .....................................26
           9.7.1. With No LSP in the Network .........................26
           9.7.2. With a Number of LSPs in the Network ...............26
      9.8. Metric Reporting ..........................................26
   10. A Definition for Samples of Multiple Unidirectional
       LSPs Setup Delay ..............................................26
      10.1. Metric Name ..............................................27
      10.2. Metric Parameters ........................................27
      10.3. Metric Units .............................................27
      10.4. Definition ...............................................27
      10.5. Discussion ...............................................28
      10.6. Methodologies ............................................28
      10.7. Typical Testing Cases ....................................29
           10.7.1. With No LSP in the Network ........................29
           10.7.2. With a Number of LSPs in the Network ..............29
      10.8. Metric Reporting .........................................29
   11. A Definition for Samples of Single Bidirectional LSP
       Setup Delay ...................................................30
      11.1. Metric Name ..............................................30
      11.2. Metric Parameters ........................................30
      11.3. Metric Units .............................................30
      11.4. Definition ...............................................30
      11.5. Discussion ...............................................31
      11.6. Methodologies ............................................31
      11.7. Typical Testing Cases ....................................32
           11.7.1. With No LSP in the Network ........................32
           11.7.2. With a Number of LSPs in the Network ..............32
      11.8. Metric Reporting .........................................32
   12. A Definition for Samples of Multiple Bidirectional
       LSPs Setup Delay ..............................................32
      12.1. Metric Name ..............................................33
      12.2. Metric Parameters ........................................33
      12.3. Metric Units .............................................33
      12.4. Definition ...............................................33
        
      8.3. Metric Parameters .........................................20
      8.4. Metric Units ..............................................20
      8.5. Definition ................................................20
      8.6. Discussion ................................................22
      8.7. Methodologies .............................................22
      8.8. Metric Reporting ..........................................23
   9. A Definition for Samples of Single Unidirectional LSP
      Setup Delay ....................................................24
      9.1. Metric Name ...............................................24
      9.2. Metric Parameters .........................................24
      9.3. Metric Units ..............................................24
      9.4. Definition ................................................24
      9.5. Discussion ................................................25
      9.6. Methodologies .............................................25
      9.7. Typical Testing Cases .....................................26
           9.7.1. With No LSP in the Network .........................26
           9.7.2. With a Number of LSPs in the Network ...............26
      9.8. Metric Reporting ..........................................26
   10. A Definition for Samples of Multiple Unidirectional
       LSPs Setup Delay ..............................................26
      10.1. Metric Name ..............................................27
      10.2. Metric Parameters ........................................27
      10.3. Metric Units .............................................27
      10.4. Definition ...............................................27
      10.5. Discussion ...............................................28
      10.6. Methodologies ............................................28
      10.7. Typical Testing Cases ....................................29
           10.7.1. With No LSP in the Network ........................29
           10.7.2. With a Number of LSPs in the Network ..............29
      10.8. Metric Reporting .........................................29
   11. A Definition for Samples of Single Bidirectional LSP
       Setup Delay ...................................................30
      11.1. Metric Name ..............................................30
      11.2. Metric Parameters ........................................30
      11.3. Metric Units .............................................30
      11.4. Definition ...............................................30
      11.5. Discussion ...............................................31
      11.6. Methodologies ............................................31
      11.7. Typical Testing Cases ....................................32
           11.7.1. With No LSP in the Network ........................32
           11.7.2. With a Number of LSPs in the Network ..............32
      11.8. Metric Reporting .........................................32
   12. A Definition for Samples of Multiple Bidirectional
       LSPs Setup Delay ..............................................32
      12.1. Metric Name ..............................................33
      12.2. Metric Parameters ........................................33
      12.3. Metric Units .............................................33
      12.4. Definition ...............................................33
        
      12.5. Discussion ...............................................34
      12.6. Methodologies ............................................34
      12.7. Typical Testing Cases ....................................35
           12.7.1. With No LSP in the Network ........................35
           12.7.2. With a Number of LSPs in the Network ..............35
      12.8. Metric Reporting .........................................35
   13. A Definition for Samples of LSP Graceful Release Delay ........35
      13.1. Metric Name ..............................................36
      13.2. Metric Parameters ........................................36
      13.3. Metric Units .............................................36
      13.4. Definition ...............................................36
      13.5. Discussion ...............................................36
      13.6. Methodologies ............................................37
      13.7. Metric Reporting .........................................37
   14. Some Statistics Definitions for Metrics to Report .............37
      14.1. The Minimum of Metric ....................................37
      14.2. The Median of Metric .....................................37
      14.3. The Maximum of Metric ....................................38
      14.4. The Percentile of Metric .................................38
      14.5. Failure Statistics of Metric .............................38
           14.5.1. Failure Count .....................................39
           14.5.2. Failure Ratio .....................................39
   15. Discussion ....................................................39
   16. Security Considerations .......................................40
   17. Acknowledgments ...............................................41
   18. References ....................................................41
      18.1. Normative References .....................................41
      18.2. Informative References ...................................42
   Appendix A.  Authors' Addresses ...................................43
        
      12.5. Discussion ...............................................34
      12.6. Methodologies ............................................34
      12.7. Typical Testing Cases ....................................35
           12.7.1. With No LSP in the Network ........................35
           12.7.2. With a Number of LSPs in the Network ..............35
      12.8. Metric Reporting .........................................35
   13. A Definition for Samples of LSP Graceful Release Delay ........35
      13.1. Metric Name ..............................................36
      13.2. Metric Parameters ........................................36
      13.3. Metric Units .............................................36
      13.4. Definition ...............................................36
      13.5. Discussion ...............................................36
      13.6. Methodologies ............................................37
      13.7. Metric Reporting .........................................37
   14. Some Statistics Definitions for Metrics to Report .............37
      14.1. The Minimum of Metric ....................................37
      14.2. The Median of Metric .....................................37
      14.3. The Maximum of Metric ....................................38
      14.4. The Percentile of Metric .................................38
      14.5. Failure Statistics of Metric .............................38
           14.5.1. Failure Count .....................................39
           14.5.2. Failure Ratio .....................................39
   15. Discussion ....................................................39
   16. Security Considerations .......................................40
   17. Acknowledgments ...............................................41
   18. References ....................................................41
      18.1. Normative References .....................................41
      18.2. Informative References ...................................42
   Appendix A.  Authors' Addresses ...................................43
        
1. Introduction
1. 介绍

Generalized Multi-Protocol Label Switching (GMPLS) is one of the most promising control plane solutions for future transport and service network. GMPLS has been developed to control and operate different kinds of network elements, such as conventional routers, switches, Dense Wavelength Division Multiplexing (DWDM) systems, Add-Drop Multiplexors (ADMs), photonic cross-connects (PXCs), optical cross-connects (OXCs), etc. These physically diverse devices differ drastically from one another in dynamic provisioning ability.

广义多协议标签交换(GMPLS)是未来传输和服务网络最有前途的控制平面解决方案之一。GMPLS已开发用于控制和操作不同类型的网络元件,如传统路由器、交换机、密集波分复用(DWDM)系统、分插复用器(ADM)、光子交叉连接(PXC)、光交叉连接(OXC),等等。这些物理上不同的设备在动态资源调配能力上有很大的不同。

The introduction of a control plane into optical circuit switching networks provides the basis for automating the provisioning of connections and drastically reduces connection provision delay. As more and more services and applications are seeking to use GMPLS-controlled networks as their underlying transport network, and increasingly in a dynamic way, the need is growing for measuring and characterizing the performance of LSP provisioning in GMPLS networks, such that requirement from applications and the provisioning capability of the network can be mapped to each other.

在光电路交换网络中引入控制平面为自动提供连接提供了基础,并大大减少了连接提供延迟。随着越来越多的服务和应用程序寻求使用GMPLS控制的网络作为其底层传输网络,并且越来越多地以动态方式使用,越来越需要测量和描述GMPLS网络中LSP供应的性能,这样,应用程序的需求和网络的供应能力可以相互映射。

This document defines performance metrics and methodologies that can be used to characterize the dynamic LSP provisioning performance of GMPLS networks, more specifically, performance of the signaling protocol. The metrics defined in this document can be used to characterize the average performance of GMPLS implementations.

本文档定义了可用于描述GMPLS网络动态LSP供应性能的性能指标和方法,更具体地说,是信令协议的性能。本文档中定义的指标可用于描述GMPLS实现的平均性能。

2. Conventions Used in This Document
2. 本文件中使用的公约

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

3. Overview of Performance Metrics
3. 绩效指标概述

In this memo, to characterize the dynamic LSP provisioning performance of a GMPLS network, we define three performance metrics: unidirectional LSP setup delay, bidirectional LSP setup delay, and LSP graceful release delay. The latency of the LSP setup/release signal is conceptually similar to the Round-trip Delay in IP networks. This enables us to refer to the structures and notions introduced and discussed in the IP Performance Metrics (IPPM) Framework documents, [RFC2330] [RFC2679] [RFC2681]. The reader is assumed to be familiar with the notions in those documents.

在本备忘录中,为了描述GMPLS网络的动态LSP供应性能,我们定义了三个性能指标:单向LSP设置延迟、双向LSP设置延迟和LSP释放延迟。LSP设置/释放信号的延迟在概念上类似于IP网络中的往返延迟。这使我们能够参考IP性能度量(IPPM)框架文件[RFC2330][RFC2679][RFC2681]中介绍和讨论的结构和概念。假定读者熟悉这些文件中的概念。

Note that data-path-related metrics, for example, the time between the reception of a Resv message by the ingress node and when the forward data path becomes operational, are defined in another document [CCAMP-DPM]. It is desirable that both measurements are performed to complement each other.

注意,与数据路径相关的度量,例如,入口节点接收Resv消息到转发数据路径开始工作之间的时间,在另一个文档[CCAMP-DPM]中定义。希望两种测量都能相互补充。

4. A Singleton Definition for Single Unidirectional LSP Setup Delay
4. 单单向LSP设置延迟的单例定义

This section defines a metric for single unidirectional Label Switched Path setup delay across a GMPLS network.

本节定义了GMPLS网络中单个单向标签交换路径设置延迟的度量。

4.1. Motivation
4.1. 动机

Single unidirectional Label Switched Path setup delay is useful for several reasons:

由于以下几个原因,单单向标签交换路径设置延迟非常有用:

o Single LSP setup delay is an important metric that characterizes the provisioning performance of a GMPLS network. Longer LSP setup delay will most likely incur higher overhead for the requesting application, especially when the LSP duration itself is comparable to the LSP setup delay.

o 单一LSP设置延迟是表征GMPLS网络供应性能的一个重要指标。LSP设置延迟越长,请求应用程序的开销就越大,特别是当LSP持续时间本身与LSP设置延迟相当时。

o The minimum value of this metric provides an indication of the delay that will likely be experienced when the LSP traverses the shortest route at the lightest load in the control plane. As the delay itself consists of several components, such as link propagation delay and nodal processing delay, this metric also reflects the status of the control plane. For example, for LSPs traversing the same route, longer setup delays may suggest congestion in the control channel or high control element load. For this reason, this metric is useful for testing and diagnostic purposes.

o 该度量的最小值指示当LSP以控制平面中最轻的负载通过最短路径时可能会经历的延迟。由于延迟本身由多个组件组成,例如链路传播延迟和节点处理延迟,因此该度量也反映了控制平面的状态。例如,对于穿越相同路由的lsp,较长的设置延迟可能表明控制信道中存在拥塞或控制元件负载较高。因此,此度量对于测试和诊断目的非常有用。

o The observed variance in a sample of LSP setup delay metric values variance may serve as an early indicator on the feasibility of support of applications that have stringent setup delay requirements.

o LSP设置延迟度量值方差样本中观察到的方差可作为支持具有严格设置延迟要求的应用程序可行性的早期指标。

The measurement of single unidirectional LSP setup delay instead of bidirectional LSP setup delay is motivated by the following factors:

单单向LSP设置延迟而非双向LSP设置延迟的测量由以下因素驱动:

o Some applications may use only unidirectional LSPs rather than bidirectional ones. For example, content delivery services with multicasting may use only unidirectional LSPs.

o 某些应用程序可能只使用单向LSP,而不是双向LSP。例如,具有多播的内容交付服务可能仅使用单向LSP。

4.2. Metric Name
4.2. 度量名称

Single unidirectional LSP setup delay

单单向LSP设置延迟

4.3. Metric Parameters
4.3. 度量参数

o ID0, the ingress Label Switching Router (LSR) ID

o ID0,入口标签交换路由器(LSR)ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o T, a time when the setup is attempted

o T、 尝试安装的时间

4.4. Metric Units
4.4. 公制单位

The value of single unidirectional LSP setup delay is either a real number of milliseconds or undefined.

单个单向LSP设置延迟的值为毫秒实数或未定义。

4.5. Definition
4.5. 释义

The single unidirectional LSP setup delay from ingress node ID0 to egress node ID1 [RFC3945] at T is dT means that ingress node ID0 sends the first bit of a Path message packet to egress node ID1 at wire-time T, and that ingress node ID0 received the last bit of responding Resv message packet from egress node ID1 at wire-time T+dT.

在T是dT处从入口节点ID0到出口节点ID1[RFC3945]的单个单向LSP设置延迟意味着入口节点ID0在连线时间T处向出口节点ID1发送路径消息分组的第一位,并且入口节点ID0在连线时间T+dT处从出口节点ID1接收响应Resv消息分组的最后一位。

The single unidirectional LSP setup delay from ingress node ID0 to egress node ID1 at T is undefined means that ingress node ID0 sends the first bit of Path message packet to egress node ID1 at wire-time T and that ingress node ID0 does not receive the corresponding Resv message within a reasonable period of time.

未定义从入口节点ID0到T处出口节点ID1的单个单向LSP设置延迟意味着入口节点ID0在连线时间T向出口节点ID1发送路径消息分组的第一位,并且入口节点ID0在合理的时间段内没有接收到相应的Resv消息。

The undefined value of this metric indicates an event of Single Unidirectional LSP Setup Failure and would be used to report a count or a percentage of Single Unidirectional LSP Setup failures. See Section 14.5 for definitions of LSP setup/release failures.

此度量的未定义值表示单个单向LSP设置失败的事件,并将用于报告单个单向LSP设置失败的计数或百分比。有关LSP设置/发布失败的定义,请参见第14.5节。

4.6. Discussion
4.6. 讨论

The following issues are likely to come up in practice:

在实践中可能会出现以下问题:

o The accuracy of unidirectional LSP setup delay at time T depends on the clock resolution in the ingress node; but synchronization between the ingress node and egress node is not required since unidirectional LSP setup uses two-way signaling.

o 时间T处单向LSP设置延迟的准确性取决于入口节点中的时钟分辨率;但是入口节点和出口节点之间不需要同步,因为单向LSP设置使用双向信令。

o A given methodology will have to include a way to determine whether a latency value is infinite or whether it is merely very large. Simple upper bounds MAY be used, but GMPLS networks may accommodate many kinds of devices. For example, some photonic cross-connects (PXCs) have to move micro mirrors. This physical motion may take several milliseconds, but the common electronic

o 给定的方法必须包括一种确定延迟值是无限大还是非常大的方法。可以使用简单的上界,但GMPLS网络可以容纳多种设备。例如,一些光子交叉连接(PXC)必须移动微镜。这种物理运动可能需要几毫秒,但常见的电子运动

switches can finish the nodal processing within several microseconds. So the unidirectional LSP setup delay varies drastically from one network to another. In practice, the upper bound SHOULD be chosen carefully.

开关可以在几微秒内完成节点处理。因此,单向LSP设置延迟因网络而异。在实践中,应仔细选择上限。

o If the ingress node sends out the Path message to set up an LSP, but never receives the corresponding Resv message, the unidirectional LSP setup delay MUST be set to undefined.

o 如果入口节点发送路径消息以设置LSP,但从未收到相应的Resv消息,则单向LSP设置延迟必须设置为未定义。

o If the ingress node sends out the Path message to set up an LSP but receives a PathErr message, the unidirectional LSP setup delay MUST be set to undefined. There are many possible reasons for this case; for example, the Path message has invalid parameters or the network does not have enough resources to set up the requested LSP, etc.

o 如果入口节点发送Path消息以设置LSP,但收到PathErr消息,则单向LSP设置延迟必须设置为undefined。这种情况有很多可能的原因;例如,Path消息的参数无效,或者网络没有足够的资源来设置请求的LSP等。

4.7. Methodologies
4.7. 方法论

Generally, the methodology would proceed as follows:

一般而言,该方法将按以下步骤进行:

o Make sure that the network has enough resources to set up the requested LSP.

o 确保网络有足够的资源来设置请求的LSP。

o At the ingress node, form the Path message according to the LSP requirements. A timestamp (T1) may be stored locally on the ingress node when the Path message packet is sent towards the egress node.

o 在入口节点,根据LSP要求形成路径消息。当路径消息分组被发送到出口节点时,时间戳(T1)可以本地存储在入口节点上。

o If the corresponding Resv message arrives within a reasonable period of time, take the timestamp (T2) as soon as possible upon receipt of the message. By subtracting the two timestamps, an estimate of unidirectional LSP setup delay (T2-T1) can be computed.

o 如果相应的Resv消息在合理的时间段内到达,则在收到消息后尽快获取时间戳(T2)。通过减去这两个时间戳,可以计算单向LSP设置延迟(T2-T1)的估计。

o If the corresponding Resv message fails to arrive within a reasonable period of time, the unidirectional LSP setup delay is deemed to be undefined. Note that the "reasonable" threshold is a parameter of the methodology.

o 如果相应的Resv消息未能在合理的时间内到达,则单向LSP设置延迟被视为未定义。请注意,“合理”阈值是该方法的一个参数。

o If the corresponding response is a PathErr message, the unidirectional LSP setup delay is deemed to be undefined.

o 如果相应的响应是PathErr消息,则单向LSP设置延迟被视为未定义。

4.8. Metric Reporting
4.8. 度量报告

The metric result (either a real number or undefined) MUST be reported together with the selected upper bound. The route that the LSP traverses MUST also be reported. The route MAY be collected via

度量结果(实数或未定义)必须与所选上限一起报告。还必须报告LSP经过的路由。路线可通过以下方式收集:

use of the record route object, see [RFC3209], or via the management plane. The collection of routes via the management plane is out of scope of this document.

使用记录路由对象,请参见[RFC3209],或通过管理平面。通过管理平面收集路线不在本文件范围内。

5. A Singleton Definition for Multiple Unidirectional LSPs Setup Delay
5. 多个单向LSP设置延迟的单例定义

This section defines a metric for multiple unidirectional Label Switched Paths setup delay across a GMPLS network.

本节定义了跨GMPLS网络的多个单向标签交换路径设置延迟的度量。

5.1. Motivation
5.1. 动机

Multiple unidirectional Label Switched Paths setup delay is useful for several reasons:

多个单向标签交换路径设置延迟有以下几个原因:

o Carriers may require that a large number of LSPs be set up during a short time period. This request may arise, e.g., as a consequence to interruptions on established LSPs or other network failures.

o 运营商可能要求在短时间内设置大量LSP。例如,由于已建立的LSP中断或其他网络故障,可能会产生此请求。

o The time needed to set up a large number of LSPs during a short time period cannot be deduced from single LSP setup delay.

o 在短时间内设置大量LSP所需的时间不能从单个LSP设置延迟中推断出来。

5.2. Metric Name
5.2. 度量名称

Multiple unidirectional LSPs setup delay

多个单向LSP设置延迟

5.3. Metric Parameters
5.3. 度量参数

o ID0, the ingress LSR ID

o ID0,入口LSR ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o Lambda_m, a rate in reciprocal milliseconds

o Lambda_m,以毫秒为单位的速率

o X, the number of LSPs to set up

o 十、 要设置的LSP数

o T, a time when the first setup is attempted

o T、 尝试第一次安装的时间

5.4. Metric Units
5.4. 公制单位

The value of multiple unidirectional LSPs setup delay is either a real number of milliseconds or undefined

多个单向LSP设置延迟的值为毫秒实数或未定义

5.5. Definition
5.5. 释义

Given Lambda_m and X, the multiple unidirectional LSPs setup delay from the ingress node to the egress node [RFC3945] at T is dT means:

给定Lambda_m和X,T处从入口节点到出口节点[RFC3945]的多个单向lsp设置延迟是dT意味着:

o ingress node ID0 sends the first bit of the first Path message packet to egress node ID1 at wire-time T;

o 入口节点ID0在连线时间T向出口节点ID1发送第一路径消息分组的第一比特;

o all subsequent (X-1) Path messages are sent according to the specified Poisson process with arrival rate Lambda_m;

o 所有后续(X-1)路径消息根据指定的泊松过程发送,到达率为λm;

o ingress node ID0 receives all corresponding Resv message packets from egress node ID1; and

o 入口节点ID0从出口节点ID1接收所有对应的Resv消息分组;和

o ingress node ID0 receives the last Resv message packet at wire-time T+dT.

o 入口节点ID0在连线时间T+dT接收最后一个Resv消息包。

If the multiple unidirectional LSPs setup delay at T is "undefined", this means that:

如果T处的多个单向LSP设置延迟为“未定义”,这意味着:

o ingress node ID0 sends all the Path messages toward egress node ID1,

o 入口节点ID0向出口节点ID1发送所有路径消息,

o the first bit of the first Path message packet is sent at wire-time T, and

o 在连线时间T发送第一路径消息分组的第一位,并且

o ingress node ID0 does not receive one or more of the corresponding Resv messages within a reasonable period of time.

o 入口节点ID0在合理的时间段内未接收到一个或多个相应的Resv消息。

The undefined value of this metric indicates an event of Multiple Unidirectional LSP Setup Failure and would be used to report a count or a percentage of Multiple Unidirectional LSP Setup failures. See Section 14.5 for definitions of LSP setup/release failures.

此度量的未定义值表示多个单向LSP设置失败的事件,并将用于报告多个单向LSP设置失败的计数或百分比。有关LSP设置/发布失败的定义,请参见第14.5节。

5.6. Discussion
5.6. 讨论

The following issues are likely to come up in practice:

在实践中可能会出现以下问题:

o The accuracy of multiple unidirectional LSPs setup delay at time T depends on the clock resolution in the ingress node; but synchronization between the ingress node and egress node is not required since unidirectional LSP setup uses two-way signaling.

o 在时间T处的多个单向lsp设置延迟的准确性取决于入口节点中的时钟分辨率;但是入口节点和出口节点之间不需要同步,因为单向LSP设置使用双向信令。

o A given methodology will have to include a way to determine whether a latency value is infinite or whether it is merely very large. Simple upper bounds MAY be used, but GMPLS networks may accommodate many kinds of devices. For example, some photonic cross-connects (PXCs) have to move micro mirrors. This physical

o 给定的方法必须包括一种确定延迟值是无限大还是非常大的方法。可以使用简单的上界,但GMPLS网络可以容纳多种设备。例如,一些光子交叉连接(PXC)必须移动微镜。这个物理

motion may take several milliseconds, but electronic switches can finish the nodal processing within several microseconds. So the multiple unidirectional LSP setup delay varies drastically from one network to another. In practice, the upper bound SHOULD be chosen carefully.

运动可能需要几毫秒,但电子开关可以在几微秒内完成节点处理。因此,多个单向LSP设置延迟因网络而异。在实践中,应仔细选择上限。

o If the ingress node sends out the multiple Path messages to set up the LSPs, but never receives one or more of the corresponding Resv messages, multiple unidirectional LSP setup delay MUST be set to undefined.

o 如果入口节点发送多路径消息以设置LSP,但从未收到一个或多个相应的Resv消息,则必须将多个单向LSP设置延迟设置为未定义。

o If the ingress node sends out the Path messages to set up the LSPs but receives one or more PathErr messages, multiple unidirectional LSPs setup delay MUST be set to undefined. There are many possible reasons for this case. For example, one of the Path messages has invalid parameters or the network does not have enough resources to set up the requested LSPs, etc.

o 如果入口节点发送路径消息以设置LSP,但收到一个或多个PathErr消息,则必须将多个单向LSP设置延迟设置为未定义。这种情况有很多可能的原因。例如,其中一条路径消息的参数无效,或者网络没有足够的资源来设置请求的LSP等。

o The arrival rate of the Poisson process Lambda_m SHOULD be chosen carefully such that on the one hand, the control plane is not overburdened. On the other hand, the arrival rate is large enough to meet the requirements of applications or services.

o 应仔细选择泊松过程Lambda_m的到达率,以便一方面,控制平面不会过载。另一方面,到达率大到足以满足应用程序或服务的要求。

o It is important that all the LSPs MUST traverse the same route. If there are multiple routes between the ingress node ID0 and egress node ID1, Explicit Route Objects (EROs), or an alternate method, e.g., static configuration, MUST be used to ensure that all LSPs traverse the same route.

o 重要的是,所有LSP必须穿过同一条路线。如果入口节点ID0和出口节点ID1之间存在多条路由,则必须使用显式路由对象(ERO)或替代方法(例如,静态配置)来确保所有LSP穿过相同的路由。

5.7. Methodologies
5.7. 方法论

Generally, the methodology would proceed as follows:

一般而言,该方法将按以下步骤进行:

o Make sure that the network has enough resources to set up the requested LSPs.

o 确保网络有足够的资源来设置请求的LSP。

o At the ingress node, form the Path messages according to the LSPs' requirements.

o 在入口节点,根据LSP的要求形成路径消息。

o At the ingress node, select the time for each of the Path messages according to the specified Poisson process.

o 在入口节点,根据指定的泊松过程为每个路径消息选择时间。

o At the ingress node, send out the Path messages according to the selected time.

o 在入口节点,根据选择的时间发送路径消息。

o Store a timestamp (T1) locally on the ingress node when the first Path message packet is sent towards the egress node.

o 当第一路径消息分组被发送到出口节点时,在入口节点上本地存储时间戳(T1)。

o If all of the corresponding Resv messages arrive within a reasonable period of time, take the final timestamp (T2) as soon as possible upon the receipt of all the messages. By subtracting the two timestamps, an estimate of multiple unidirectional LSPs setup delay (T2-T1) can be computed.

o 如果所有相应的Resv消息在合理的时间段内到达,则在收到所有消息后尽快获取最终时间戳(T2)。通过减去这两个时间戳,可以计算多个单向lsp设置延迟(T2-T1)的估计。

o If one or more of the corresponding Resv messages fail to arrive within a reasonable period of time, the multiple unidirectional LSPs setup delay is deemed to be undefined. Note that the "reasonable" threshold is a parameter of the methodology.

o 如果一个或多个相应的Resv消息未能在合理的时间段内到达,则多个单向LSP设置延迟被视为未定义。请注意,“合理”阈值是该方法的一个参数。

o If one or more of the corresponding responses are PathErr messages, the multiple unidirectional LSPs setup delay is deemed to be undefined.

o 如果一个或多个对应响应是PathErr消息,则多个单向LSP设置延迟被视为未定义。

5.8. Metric Reporting
5.8. 度量报告

The metric result (either a real number or undefined) MUST be reported together with the selected upper bound. The route that the LSPs traverse MUST also be reported. The route MAY be collected via use of the record route object, see [RFC3209], or via the management plane. The collection of routes via the management plane is out of scope of this document.

度量结果(实数或未定义)必须与所选上限一起报告。还必须报告LSP穿过的路线。可通过使用记录路由对象(参见[RFC3209])或通过管理平面收集路由。通过管理平面收集路线不在本文件范围内。

6. A Singleton Definition for Single Bidirectional LSP Setup Delay
6. 单双向LSP设置延迟的单例定义

GMPLS allows establishment of bidirectional symmetric LSPs (not of asymmetric LSPs). This section defines a metric for single bidirectional LSP setup delay across a GMPLS network.

GMPLS允许建立双向对称LSP(而不是不对称LSP)。本节定义了GMPLS网络中单个双向LSP设置延迟的度量。

6.1. Motivation
6.1. 动机

Single bidirectional Label Switched Path setup delay is useful for several reasons:

由于以下几个原因,单双向标签交换路径设置延迟非常有用:

o LSP setup delay is an important metric that characterizes the provisioning performance of a GMPLS network. Longer LSP setup delay will incur higher overhead for the requesting application, especially when the LSP duration is comparable to the LSP setup delay. Thus, measuring the setup delay is important for application scheduling.

o LSP设置延迟是表征GMPLS网络供应性能的一个重要指标。LSP设置延迟越长,请求应用程序的开销就越大,特别是当LSP持续时间与LSP设置延迟相当时。因此,测量设置延迟对于应用程序调度非常重要。

o The minimum value of this metric provides an indication of the delay that will likely be experienced when the LSP traverses the shortest route at the lightest load in the control plane. As the delay itself consists of several components, such as link propagation delay and nodal processing delay, this metric also reflects the status of the control plane. For example, for LSPs

o 该度量的最小值指示当LSP以控制平面中最轻的负载通过最短路径时可能会经历的延迟。由于延迟本身由多个组件组成,例如链路传播延迟和节点处理延迟,因此该度量也反映了控制平面的状态。例如,对于LSP

traversing the same route, longer setup delays may suggest congestion in the control channel or high control element load. For this reason, this metric is useful for testing and diagnostic purposes.

通过相同的路由,较长的设置延迟可能意味着控制信道拥塞或控制元件负载过高。因此,此度量对于测试和诊断目的非常有用。

o LSP setup delay variance has a different impact on applications. Erratic variation in LSP setup delay makes it difficult to support applications that have stringent setup delay requirement.

o LSP设置延迟差异对应用程序有不同的影响。LSP设置延迟的不稳定变化使得难以支持具有严格设置延迟要求的应用程序。

The measurement of single bidirectional LSP setup delay instead of unidirectional LSP setup delay is motivated by the following factors:

单双向LSP设置延迟而非单向LSP设置延迟的测量由以下因素驱动:

o Bidirectional LSPs are seen as a requirement for many GMPLS networks. Its provisioning performance is important to applications that generate bidirectional traffic.

o 双向LSP被视为许多GMPLS网络的要求。它的资源调配性能对于生成双向流量的应用程序非常重要。

6.2. Metric Name
6.2. 度量名称

Single bidirectional LSP setup delay

单双向LSP设置延迟

6.3. Metric Parameters
6.3. 度量参数

o ID0, the ingress LSR ID

o ID0,入口LSR ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o T, a time when the setup is attempted

o T、 尝试安装的时间

6.4. Metric Units
6.4. 公制单位

The value of single bidirectional LSP setup delay is either a real number of milliseconds or undefined

单个双向LSP设置延迟的值为毫秒实数或未定义

6.5. Definition
6.5. 释义

For a real number dT, the single bidirectional LSP setup delay from ingress node ID0 to egress node ID1 at T is dT means that ingress node ID0 sends out the first bit of a Path message including an Upstream Label [RFC3473] heading for egress node ID1 at wire-time T, egress node ID1 receives that packet, then immediately sends a Resv message packet back to ingress node ID0, and that ingress node ID0 receives the last bit of the Resv message packet at wire-time T+dT.

对于实数dT,在T处从入口节点ID0到出口节点ID1的单个双向LSP设置延迟为dT意味着入口节点ID0在连线时间T向出口节点ID1发送包括上游标签[RFC3473]的路径消息的第一位,出口节点ID1接收该分组,然后立即将Resv消息包发送回入口节点ID0,并且入口节点ID0在连线时间T+dT接收Resv消息包的最后一位。

If the single bidirectional LSP setup delay from ingress node ID0 to egress node ID1 at T is "undefined", this means that ingress node ID0 sends the first bit of a Path message to egress node ID1 at wire-time T and that ingress node ID0 does not receive that response packet within a reasonable period of time.

如果在T处从入口节点ID0到出口节点ID1的单个双向LSP设置延迟为“未定义”,则这意味着入口节点ID0在连线时间T将路径消息的第一位发送到出口节点ID1,并且入口节点ID0在合理的时间段内未接收到该响应分组。

The undefined value of this metric indicates an event of Single Bidirectional LSP Setup Failure and would be used to report a count or a percentage of Single Bidirectional LSP Setup failures. See Section 14.5 for definitions of LSP setup/release failures.

此度量的未定义值表示单个双向LSP设置失败的事件,并将用于报告单个双向LSP设置失败的计数或百分比。有关LSP设置/发布失败的定义,请参见第14.5节。

6.6. Discussion
6.6. 讨论

The following issues are likely to come up in practice:

在实践中可能会出现以下问题:

o The accuracy of single bidirectional LSP setup delay depends on the clock resolution in the ingress node; but synchronization between the ingress node and egress node is not required since single bidirectional LSP setup uses two-way signaling.

o 单个双向LSP设置延迟的准确性取决于入口节点中的时钟分辨率;但是入口节点和出口节点之间不需要同步,因为单个双向LSP设置使用双向信令。

o A given methodology will have to include a way to determine whether a latency value is infinite or whether it is merely very large. Simple upper bounds MAY be used, but GMPLS networks may accommodate many kinds of devices. For example, some photonic cross-connects (PXCs) have to move micro mirrors. This physical motion may take several milliseconds, but electronic switches can finish the nodal processing within several microseconds. So the bidirectional LSP setup delay varies drastically from one network to another. In the process of bidirectional LSP setup, if the downstream node overrides the label suggested by the upstream node, the setup delay may also increase. Thus, in practice, the upper bound SHOULD be chosen carefully.

o 给定的方法必须包括一种确定延迟值是无限大还是非常大的方法。可以使用简单的上界,但GMPLS网络可以容纳多种设备。例如,一些光子交叉连接(PXC)必须移动微镜。这种物理运动可能需要几毫秒,但电子开关可以在几微秒内完成节点处理。因此,双向LSP设置延迟因网络而异。在双向LSP设置过程中,如果下游节点覆盖上游节点建议的标签,则设置延迟也可能增加。因此,在实践中,应仔细选择上限。

o If the ingress node sends out the Path message to set up the LSP, but never receives the corresponding Resv message, single bidirectional LSP setup delay MUST be set to undefined.

o 如果入口节点发送路径消息以设置LSP,但从未收到相应的Resv消息,则必须将单双向LSP设置延迟设置为未定义。

o If the ingress node sends out the Path message to set up the LSP, but receives a PathErr message, single bidirectional LSP setup delay MUST be set to undefined. There are many possible reasons for this case. For example, the Path message has invalid parameters or the network does not have enough resources to set up the requested LSP.

o 如果入口节点发送Path消息以设置LSP,但收到PathErr消息,则必须将单双向LSP设置延迟设置为undefined。这种情况有很多可能的原因。例如,Path消息的参数无效,或者网络没有足够的资源来设置请求的LSP。

6.7. Methodologies
6.7. 方法论

Generally, the methodology would proceed as follows:

一般而言,该方法将按以下步骤进行:

o Make sure that the network has enough resources to set up the requested LSP.

o 确保网络有足够的资源来设置请求的LSP。

o At the ingress node, form the Path message (including the Upstream Label or suggested label) according to the LSP requirements. A timestamp (T1) may be stored locally on the ingress node when the Path message packet is sent towards the egress node.

o 在入口节点,根据LSP要求形成路径消息(包括上游标签或建议标签)。当路径消息分组被发送到出口节点时,时间戳(T1)可以本地存储在入口节点上。

o If the corresponding Resv message arrives within a reasonable period of time, take the final timestamp (T2) as soon as possible upon the receipt of the message. By subtracting the two timestamps, an estimate of bidirectional LSP setup delay (T2-T1) can be computed.

o 如果相应的Resv消息在合理的时间段内到达,则在收到消息后尽快获取最终时间戳(T2)。通过减去这两个时间戳,可以计算双向LSP设置延迟(T2-T1)的估计。

o If the corresponding Resv message fails to arrive within a reasonable period of time, the single bidirectional LSP setup delay is deemed to be undefined. Note that the "reasonable" threshold is a parameter of the methodology.

o 如果相应的Resv消息未能在合理的时间段内到达,则认为单个双向LSP设置延迟未定义。请注意,“合理”阈值是该方法的一个参数。

o If the corresponding response is a PathErr message, the single bidirectional LSP setup delay is deemed to be undefined.

o 如果相应的响应是PathErr消息,则认为单个双向LSP设置延迟未定义。

6.8. Metric Reporting
6.8. 度量报告

The metric result (either a real number or undefined) MUST be reported together with the selected upper bound. The route that the LSP traverses MUST also be reported. The route MAY be collected via use of the record route object, see [RFC3209], or via the management plane. The collection of routes via the management plane is out of scope of this document.

度量结果(实数或未定义)必须与所选上限一起报告。还必须报告LSP经过的路由。可通过使用记录路由对象(参见[RFC3209])或通过管理平面收集路由。通过管理平面收集路线不在本文件范围内。

7. A Singleton Definition for Multiple Bidirectional LSPs Setup Delay
7. 多个双向LSP设置延迟的单例定义

This section defines a metric for multiple bidirectional LSPs setup delay across a GMPLS network.

本节定义了跨GMPLS网络的多个双向LSP设置延迟的度量。

7.1. Motivation
7.1. 动机

Multiple bidirectional LSPs setup delay is useful for several reasons:

由于以下几个原因,多个双向LSP设置延迟非常有用:

o Upon traffic interruption caused by network failure or network upgrade, carriers may require a large number of LSPs be set up during a short time period.

o 当网络故障或网络升级导致流量中断时,运营商可能需要在短时间内设置大量LSP。

o The time needed to set up a large number of LSPs during a short time period cannot be deduced by single LSP setup delay.

o 在短时间内设置大量LSP所需的时间不能通过单个LSP设置延迟来推断。

7.2. Metric Name
7.2. 度量名称

Multiple bidirectional LSPs setup delay

多个双向LSP设置延迟

7.3. Metric Parameters
7.3. 度量参数

o ID0, the ingress LSR ID

o ID0,入口LSR ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o Lambda_m, a rate in reciprocal milliseconds

o Lambda_m,以毫秒为单位的速率

o X, the number of LSPs to set up

o 十、 要设置的LSP数

o T, a time when the first setup is attempted

o T、 尝试第一次安装的时间

7.4. Metric Units
7.4. 公制单位

The value of multiple bidirectional LSPs setup delay is either a real number of milliseconds or undefined

多个双向LSP设置延迟的值为毫秒实数或未定义

7.5. Definition
7.5. 释义

Given Lambda_m and X, for a real number dT, the multiple bidirectional LSPs setup delay from ingress node to egress node at T is dT, means that:

给定Lambda_m和X,对于实数dT,T处从入口节点到出口节点的多个双向lsp设置延迟为dT,意味着:

o Ingress node ID0 sends the first bit of the first Path message heading for egress node ID1 at wire-time T;

o 入口节点ID0在连线时间T向出口节点ID1发送第一路径消息标题的第一位;

o All subsequent (X-1) Path messages are sent according to the specified Poisson process with arrival rate Lambda_m;

o 所有后续(X-1)路径消息根据指定的泊松过程发送,到达率为λm;

o Ingress node ID1 receives all corresponding Resv message packets from egress node ID1; and

o 入口节点ID1从出口节点ID1接收所有对应的Resv消息分组;和

o Ingress node ID0 receives the last Resv message packet at wire-time T+dT.

o 入口节点ID0在连线时间T+dT接收最后一个Resv消息包。

If the multiple bidirectional LSPs setup delay from ingress node to egress node at T is "undefined", this means that the ingress node sends all the Path messages to the egress node and that the ingress node fails to receive one or more of the response Resv messages within a reasonable period of time.

如果在T处从入口节点到出口节点的多个双向lsp设置延迟为“未定义”,这意味着入口节点向出口节点发送所有路径消息,并且入口节点在合理的时间段内未能接收一个或多个响应Resv消息。

The undefined value of this metric indicates an event of Multiple Bidirectional LSP Setup Failure and would be used to report a count or a percentage of Multiple Bidirectional LSP Setup failures. See Section 14.5 for definitions of LSP setup/release failures.

此度量的未定义值表示多个双向LSP设置失败的事件,并将用于报告多个双向LSP设置失败的计数或百分比。有关LSP设置/发布失败的定义,请参见第14.5节。

7.6. Discussion
7.6. 讨论

The following issues are likely to come up in practice:

在实践中可能会出现以下问题:

o The accuracy of multiple bidirectional LSPs setup delay depends on the clock resolution in the ingress node; but synchronization between the ingress node and egress node is not required since bidirectional LSP setup uses two-way signaling.

o 多个双向LSP设置延迟的准确性取决于入口节点中的时钟分辨率;但是入口节点和出口节点之间不需要同步,因为双向LSP设置使用双向信令。

o A given methodology will have to include a way to determine whether a latency value is infinite or whether it is merely very large. Simple upper bounds MAY be used, but GMPLS networks may accommodate many kinds of devices. For example, some photonic cross-connects (PXCs) have to move micro mirrors. This physical motion may take several milliseconds, but electronic switches can finish the nodal process within several microseconds. So the multiple bidirectional LSPs setup delay varies drastically from a network to another. In the process of multiple bidirectional LSPs setup, if the downstream node overrides the label suggested by the upstream node, the setup delay may also increase. Thus, in practice, the upper bound SHOULD be chosen carefully.

o 给定的方法必须包括一种确定延迟值是无限大还是非常大的方法。可以使用简单的上界,但GMPLS网络可以容纳多种设备。例如,一些光子交叉连接(PXC)必须移动微镜。这种物理运动可能需要几毫秒,但电子开关可以在几微秒内完成节点过程。因此,多个双向LSP设置延迟因网络而异。在多个双向lsp设置过程中,如果下游节点覆盖上游节点建议的标签,则设置延迟也可能增加。因此,在实践中,应仔细选择上限。

o If the ingress node sends out the Path messages to set up the LSPs, but never receives all the corresponding Resv messages, the multiple bidirectional LSPs setup delay MUST be set to undefined.

o 如果入口节点发送路径消息以设置LSP,但从未收到所有相应的Resv消息,则多个双向LSP设置延迟必须设置为未定义。

o If the ingress node sends out the Path messages to set up the LSPs, but receives one or more responding PathErr messages, the multiple bidirectional LSPs setup delay MUST be set to undefined. There are many possible reasons for this case. For example, one or more of the Path messages have invalid parameters or the network does not have enough resources to set up the requested LSPs.

o 如果入口节点发送路径消息以设置LSP,但收到一个或多个响应PathErr消息,则必须将多个双向LSP设置延迟设置为未定义。这种情况有很多可能的原因。例如,一个或多个Path消息的参数无效,或者网络没有足够的资源来设置请求的LSP。

o The arrival rate of the Poisson process Lambda_m SHOULD be carefully chosen such that on the one hand, the control plane is not overburdened. On the other hand, the arrival rate is large enough to meet the requirements of applications or services.

o 应仔细选择泊松过程Lambda_m的到达率,以便一方面,控制平面不会过载。另一方面,到达率大到足以满足应用程序或服务的要求。

o It is important that all the LSPs MUST traverse the same route. If there are multiple routes between the ingress node ID0 and egress node ID1, EROs, or an alternate method, e.g., static configuration, MUST be used to ensure that all LSPs traverse the same route.

o 重要的是,所有LSP必须穿过同一条路线。如果入口节点ID0和出口节点ID1之间存在多条路由,则必须使用EROs或备用方法(例如,静态配置)来确保所有LSP穿过相同的路由。

7.7. Methodologies
7.7. 方法论

Generally, the methodology would proceed as follows:

一般而言,该方法将按以下步骤进行:

o Make sure that the network has enough resources to set up the requested LSPs.

o 确保网络有足够的资源来设置请求的LSP。

o At the ingress node, form the Path messages (including the Upstream Label or suggested label) according to the LSPs' requirements.

o 在入口节点,根据LSP的要求形成路径消息(包括上游标签或建议标签)。

o At the ingress node, select the time for each of the Path messages according to the specified Poisson process.

o 在入口节点,根据指定的泊松过程为每个路径消息选择时间。

o At the ingress node, send out the Path messages according to the selected time.

o 在入口节点,根据选择的时间发送路径消息。

o Store a timestamp (T1) locally in the ingress node when the first Path message packet is sent towards the egress node.

o 当第一路径消息分组被发送到出口节点时,在入口节点中本地存储时间戳(T1)。

o If all of the corresponding Resv messages arrive within a reasonable period of time, take the final timestamp (T2) as soon as possible upon the receipt of all the messages. By subtracting the two timestamps, an estimate of multiple bidirectional LSPs setup delay (T2-T1) can be computed.

o 如果所有相应的Resv消息在合理的时间段内到达,则在收到所有消息后尽快获取最终时间戳(T2)。通过减去这两个时间戳,可以计算多个双向lsp设置延迟(T2-T1)的估计。

o If one or more of the corresponding Resv messages fail to arrive within a reasonable period of time, the multiple bidirectional LSPs setup delay is deemed to be undefined. Note that the "reasonable" threshold is a parameter of the methodology.

o 如果一个或多个相应的Resv消息未能在合理的时间段内到达,则多个双向lsp设置延迟被视为未定义。请注意,“合理”阈值是该方法的一个参数。

o If one or more of the corresponding responses are PathErr messages, the multiple bidirectional LSPs setup delay is deemed to be undefined.

o 如果一个或多个相应的响应是PathErr消息,则认为多个双向LSP设置延迟未定义。

7.8. Metric Reporting
7.8. 度量报告

The metric result (either a real number or undefined) MUST be reported together with the selected upper bound. The route that the LSPs traverse MUST also be reported. The route MAY be collected via use of the record route object, see [RFC3209], or via the management plane. The collection of routes via the management plane is out of scope of this document.

度量结果(实数或未定义)必须与所选上限一起报告。还必须报告LSP穿过的路线。可通过使用记录路由对象(参见[RFC3209])或通过管理平面收集路由。通过管理平面收集路线不在本文件范围内。

8. A Singleton Definition for LSP Graceful Release Delay
8. LSP优美释放延迟的单例定义

There are two different kinds of LSP release mechanisms in GMPLS networks: graceful release and forceful release. This document does not take forceful LSP release procedure into account.

GMPLS网络中存在两种不同的LSP释放机制:优雅释放和强制释放。本文件未考虑强制LSP发布程序。

8.1. Motivation
8.1. 动机

LSP graceful release delay is useful for several reasons:

LSP优雅释放延迟有以下几个原因:

o The LSP graceful release delay is part of the total cost of dynamic LSP provisioning. For some short duration applications, the LSP release time cannot be ignored.

o LSP释放延迟是动态LSP资源调配总成本的一部分。对于某些短期应用程序,LSP释放时间不能忽略。

o The LSP graceful release procedure is more preferred in a GMPLS controlled network, particularly the optical networks. Since it doesn't trigger restoration/protection, it is "alarm-free connection deletion" in [RFC4208].

o 在GMPLS控制的网络中,尤其是在光网络中,LSP优美释放过程更为优选。因为它不会触发恢复/保护,所以在[RFC4208]中是“无报警连接删除”。

8.2. Metric Name
8.2. 度量名称

LSP graceful release delay

优美释放延迟

8.3. Metric Parameters
8.3. 度量参数

o ID0, the ingress LSR ID

o ID0,入口LSR ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o T, a time when the release is attempted

o T、 尝试释放的时间

8.4. Metric Units
8.4. 公制单位

The value of LSP graceful release delay is either a real number of milliseconds or undefined

LSP优雅释放延迟的值为毫秒实数或未定义

8.5. Definition
8.5. 释义

There are two different LSP graceful release procedures: one is initiated by the ingress node, and another is initiated by the egress node. The two procedures are depicted in [RFC3473]. We define the graceful LSP release delay for these two procedures separately.

有两个不同的LSP释放过程:一个由入口节点启动,另一个由出口节点启动。[RFC3473]中描述了这两个过程。我们分别为这两个过程定义了优美的LSP释放延迟。

For a real number dT, if the LSP graceful release delay from ingress node ID0 to egress node ID1 at T is dT, this means that ingress node ID0 sends the first bit of a Path message including an Admin Status Object with the Reflect (R) and Delete (D) bits set to the egress node at wire-time T, that egress node ID1 receives that packet, then

对于实数dT,如果在T处从入口节点ID0到出口节点ID1的LSP优美释放延迟为dT,这意味着入口节点ID0发送路径消息的第一位,该路径消息包括在连线时间T处设置了反射(R)和删除(D)位的管理状态对象,该出口节点ID1接收该分组,然后

immediately sends a Resv message including an Admin Status Object with the Delete (D) bit set back to the ingress node. Ingress node ID0 sends the PathTear message downstream to remove the LSP, and egress node ID1 receives the last bit of PathTear packet at wire-time T+dT.

立即向入口节点发送一条Resv消息,其中包含一个管理状态对象,并将删除(D)位设置回入口节点。入口节点ID0向下游发送Path撕裂消息以移除LSP,出口节点ID1在连线时间T+dT接收Path撕裂数据包的最后一位。

Also, as an option, upon receipt of the Path message including an Admin Status Object with the Reflect (R) and Delete (D) bits set, egress node ID1 may respond with a PathErr message with the Path_State_Removed flag set.

此外,作为选项,在接收到包括设置了反射(R)和删除(D)位的管理状态对象的路径消息时,出口节点ID1可以使用设置了路径状态移除标志的路径错误消息进行响应。

The LSP graceful release delay from ingress node ID0 to egress node ID1 at T is undefined means that ingress node ID0 sends the first bit of Path message to egress node ID1 at wire-time T and that (either the egress node does not receive the Path packet, the egress node does not send a corresponding Resv message packet in response, or the ingress node does not receive that Resv packet, and) egress node ID1 does not receive the PathTear message within a reasonable period of time.

在T处从入口节点ID0到出口节点ID1的LSP优美释放延迟未定义意味着入口节点ID0在连线时间T处向出口节点ID1发送路径消息的第一位,并且(出口节点不接收路径分组,出口节点不发送相应的Resv消息分组作为响应,或者入口节点不接收该Resv分组,并且)出口节点ID1在合理的时间段内不接收路径撕裂消息。

If the LSP graceful release delay from egress node ID1 to ingress node ID0 at T is dT, this means that egress node ID1 sends the first bit of a Resv message including an Admin Status Object with the Reflect (R) and Delete (D) bits set to the ingress node at wire-time T. Ingress node ID0 sends a PathTear message downstream to remove the LSP, and egress node ID1 receives the last bit of PathTear packet at wire-time T+dT.

如果在T处从出口节点ID1到入口节点ID0的LSP优雅释放延迟为dT,这意味着出口节点ID1发送Resv消息的第一位,该Resv消息包括在连线时间T处向入口节点设置了Reflect(R)和Delete(D)位的Admin Status对象。入口节点ID0向下游发送pathtreal消息以移除LSP,以及出口节点ID1在连线时间T+dT处接收路径撕裂分组的最后位。

If the LSP graceful release delay from egress node ID1 to ingress node ID0 at T is "undefined", this means that egress node ID1 sends the first bit of Resv message including an Admin Status Object with the Reflect (R) and Delete (D) bits set to the ingress node ID0 at wire-time T and that (either the ingress node does not receive the Resv packet or the ingress node does not send PathTear message packet in response, and) egress node ID1 does not receive the PathTear message within a reasonable period of time.

如果在T处从出口节点ID1到入口节点ID0的LSP优雅释放延迟为“未定义”,这意味着出口节点ID1发送Resv消息的第一位,该Resv消息包括在连线时间T处将Reflect(R)和Delete(D)位设置为入口节点ID0的Admin Status对象,并且(入口节点没有接收到Resv分组或者入口节点没有发送PathTear消息分组作为响应,并且)出口节点ID1没有在合理的时间段内接收到PathTear消息。

The undefined value of this metric indicates an event of LSP Graceful Release Failure and would be used to report a count or a percentage of LSP Graceful Release failures. See Section 14.5 for definitions of LSP setup/release failures.

此度量的未定义值表示LSP优雅发布失败事件,并将用于报告LSP优雅发布失败的计数或百分比。有关LSP设置/发布失败的定义,请参见第14.5节。

8.6. Discussion
8.6. 讨论

The following issues are likely to come up in practice:

在实践中可能会出现以下问题:

o In the first (second) circumstance, the accuracy of LSP graceful release delay at time T depends on the clock resolution in the ingress (egress) node. In the first circumstance, synchronization between the ingress node and egress node is required, but it is not in the second circumstance.

o 在第一(第二)种情况下,时刻T的LSP优美释放延迟的精度取决于入口(出口)节点中的时钟分辨率。在第一种情况下,入口节点和出口节点之间需要同步,但在第二种情况下不需要同步。

o A given methodology has to include a way to determine whether a latency value is infinite or whether it is merely very large. Simple upper bounds MAY be used, but the upper bound SHOULD be chosen carefully in practice.

o 给定的方法必须包括一种确定延迟值是无限大还是非常大的方法。可以使用简单的上界,但在实践中应仔细选择上界。

o In the first circumstance, if the ingress node sends out Path message including an Admin Status Object with the Reflect (R) and Delete (D) bits set to initiate LSP graceful release, but the egress node never receives the corresponding PathTear message, LSP graceful release delay MUST be set to undefined.

o 在第一种情况下,如果入口节点发送包含管理状态对象的路径消息,并且反射(R)和删除(D)位设置为启动LSP优雅释放,但是出口节点从未接收到相应的Path催泪消息,则LSP优雅释放延迟必须设置为未定义。

o In the second circumstance, if the egress node sends out the Resv message including an Admin Status Object with the Reflect (R) and Delete (D) bits set to initiate LSP graceful release, but never receives the corresponding PathTear message, LSP graceful release delay MUST be set to undefined.

o 在第二种情况下,如果出口节点发送包含管理状态对象的Resv消息,并且反射(R)和删除(D)位设置为启动LSP优雅释放,但从未接收到相应的pathtreal消息,则LSP优雅释放延迟必须设置为未定义。

8.7. Methodologies
8.7. 方法论

In the first circumstance, the methodology may proceed as follows:

在第一种情况下,方法可以如下进行:

o Make sure the LSP to be deleted is set up;

o 确保要删除的LSP已设置;

o At the ingress node, form the Path message including an Admin Status Object with the Reflect (R) and Delete (D) bits set. A timestamp (T1) may be stored locally on the ingress node when the Path message packet is sent towards the egress node.

o 在入口节点,形成包含管理状态对象的路径消息,并设置反射(R)和删除(D)位。当路径消息分组被发送到出口节点时,时间戳(T1)可以本地存储在入口节点上。

o Upon receiving the Path message including an Admin Status Object with the Reflect (R) and Delete (D) bits set, the egress node sends a Resv message including an Admin Status Object with the Delete (D) and Reflect (R) bits set. Alternatively, the egress node sends a PathErr message with the Path_State_Removed flag set upstream.

o 在接收到包括设置了反射(R)和删除(D)位的管理状态对象的路径消息时,出口节点发送包括设置了删除(D)和反射(R)位的管理状态对象的Resv消息。或者,出口节点向上游发送设置了Path_State_Removed标志的PathErr消息。

o When the ingress node receives the Resv message or the PathErr message, it sends a PathTear message to remove the LSP.

o 当入口节点接收到Resv消息或PathErr消息时,它会发送PathTear消息以删除LSP。

o The egress node takes a timestamp (T2) once it receives the last bit of the PathTear message. The LSP graceful release delay is then (T2-T1).

o 一旦出口节点接收到PathTear消息的最后一位,它就会使用时间戳(T2)。然后,LSP优美释放延迟为(T2-T1)。

o If the ingress node sends the Path message downstream, but the egress node fails to receive the PathTear message within a reasonable period of time, the LSP graceful release delay is deemed to be undefined. Note that the "reasonable" threshold is a parameter of the methodology.

o 如果入口节点向下游发送Path消息,但出口节点未能在合理的时间段内接收到PATHTRARE消息,则认为LSP优雅释放延迟未定义。请注意,“合理”阈值是该方法的一个参数。

In the second circumstance, the methodology would proceed as follows:

在第二种情况下,方法如下:

o Make sure the LSP to be deleted is set up;

o 确保要删除的LSP已设置;

o On the egress node, form the Resv message including an Admin Status Object with the Reflect (R) and Delete (D) bits set. A timestamp may be stored locally on the egress node when the Resv message packet is sent towards the ingress node.

o 在出口节点上,形成Resv消息,该消息包括设置了Reflect(R)和Delete(D)位的Admin Status对象。当向入口节点发送Resv消息分组时,时间戳可以本地存储在出口节点上。

o Upon receiving the Admin Status Object with the Reflect (R) and Delete (D) bits set in the Resv message, the ingress node sends a PathTear message downstream to remove the LSP.

o 当接收到在Resv消息中设置了Reflect(R)和Delete(D)位的Admin Status对象时,入口节点向下游发送pathtreal消息以移除LSP。

o The egress node takes a timestamp (T2) once it receives the last bit of the PathTear message. The LSP graceful release delay is then (T2-T1).

o 一旦出口节点接收到PathTear消息的最后一位,它就会使用时间戳(T2)。然后,LSP优美释放延迟为(T2-T1)。

o If the egress node sends the Resv message upstream, but it fails to receive the PathTear message within a reasonable period of time, the LSP graceful release delay is deemed to be undefined. Note that the "reasonable" threshold is a parameter of the methodology.

o 如果出口节点向上游发送Resv消息,但在合理的时间段内未能接收到pathtreal消息,则认为LSP优雅释放延迟未定义。请注意,“合理”阈值是该方法的一个参数。

8.8. Metric Reporting
8.8. 度量报告

The metric result (either a real number or undefined) MUST be reported together with the selected upper bound and the procedure used (e.g., either from the ingress node to the egress node or from the egress node to the ingress node; see Section 8.5 for more details). The route that the LSP traverses MUST also be reported. The route MAY be collected via use of the record route object, see [RFC3209], or via the management plane. The collection of routes via the management plane is out of scope of this document.

度量结果(实数或未定义)必须与所选上限和所用程序一起报告(例如,从入口节点到出口节点或从出口节点到入口节点;有关更多详细信息,请参阅第8.5节)。还必须报告LSP经过的路由。可通过使用记录路由对象(参见[RFC3209])或通过管理平面收集路由。通过管理平面收集路线不在本文件范围内。

9. A Definition for Samples of Single Unidirectional LSP Setup Delay
9. 单单向LSP设置延迟样本的定义

In Section 4, we defined the singleton metric of single unidirectional LSP setup delay. Now we define how to get one particular sample of single unidirectional LSP setup delay. Sampling means to take a number of distinct instances of a skeleton metric under a given set of parameters. As in [RFC2330], we use Poisson sampling as an example.

在第4节中,我们定义了单单向LSP设置延迟的单例度量。现在我们定义如何获得单个单向LSP设置延迟的一个特定样本。采样是指在给定的一组参数下获取骨架度量的多个不同实例。与[RFC2330]一样,我们使用泊松抽样作为示例。

9.1. Metric Name
9.1. 度量名称

Single unidirectional LSP setup delay sample

单个单向LSP设置延迟样本

9.2. Metric Parameters
9.2. 度量参数

o ID0, the ingress LSR ID

o ID0,入口LSR ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o T0, a time

o T0,一次

o Tf, a time

o Tf,一次

o Lambda, a rate in the reciprocal milliseconds

o Lambda,以倒数毫秒为单位的速率

o Th, LSP holding time

o Th,LSP保持时间

o Td, the maximum waiting time for successful setup

o Td,成功安装的最长等待时间

9.3. Metric Units
9.3. 公制单位

A sequence of pairs; the elements of each pair are:

成对的序列;每对的元素包括:

o T, a time when setup is attempted

o T、 尝试安装的时间

o dT, either a real number of milliseconds or undefined

o dT,毫秒的实数或未定义

9.4. Definition
9.4. 释义

Given T0, Tf, and Lambda, compute a pseudo-random Poisson process beginning at or before T0, with average arrival rate Lambda, and ending at or after Tf. Those time values greater than or equal to T0 and less than or equal to Tf are then selected. At each of the times in this process, we obtain the value of unidirectional LSP setup delay sample. The value of the sample is the sequence made up of the resulting <time, LSP setup delay> pairs. If there are no such pairs, the sequence is of length zero and the sample is said to be empty.

给定T0、Tf和Lambda,计算一个伪随机泊松过程,从T0或T0之前开始,以平均到达率Lambda结束,在Tf或之后结束。然后选择大于或等于T0且小于或等于Tf的时间值。在这个过程中的每一次,我们都会获得单向LSP设置延迟样本的值。样本值是由产生的<时间,LSP设置延迟>对组成的序列。如果没有这样的对,序列的长度为零,样本称为空。

9.5. Discussion
9.5. 讨论

The parameter Lambda should be carefully chosen. If the rate is too high, too frequent LSP setup/release procedure will result in high overhead in the control plane. In turn, the high overhead will increase unidirectional LSP setup delay. On the other hand, if the rate is too low, the sample might not completely reflect the dynamic provisioning performance of the GMPLS network. The appropriate Lambda value depends on the given network.

应仔细选择参数Lambda。如果速率过高,过于频繁的LSP设置/释放过程将导致控制平面中的高开销。反过来,高开销将增加单向LSP设置延迟。另一方面,如果速率太低,则样本可能无法完全反映GMPLS网络的动态资源调配性能。适当的Lambda值取决于给定的网络。

The parameters Td should be carefully chosen. Different switching technologies may vary significantly in performing a cross-connect operation. At the same time, the time needed in setting up an LSP under different traffic may also vary significantly.

应仔细选择参数Td。不同的交换技术在执行交叉连接操作时可能会有很大的不同。同时,在不同业务量下建立LSP所需的时间也可能会有很大差异。

In the case of active measurement, the parameters Th should be carefully chosen. The combination of Lambda and Th reflects the load of the network. The selection of Th should take into account that the network has sufficient resources to perform subsequent tests. The value of Th MAY be constant during one sampling process for simplicity considerations.

在主动测量的情况下,应仔细选择参数Th。Lambda和Th的组合反映了网络的负载。Th的选择应考虑到网络有足够的资源来执行后续测试。为了简单起见,Th的值在一个采样过程中可能是恒定的。

Note that for online or passive measurements, the arrival rate and LSP holding time are determined by actual traffic; hence, in this case, Lambda and Th are not input parameters.

注意,对于在线或被动测量,到达率和LSP保持时间由实际流量确定;因此,在这种情况下,Lambda和Th不是输入参数。

It is important that, in obtaining a sample, all the LSPs MUST traverse the same route. If there are multiple routes between the ingress node ID0 and egress node ID1, EROs, or an alternate method, e.g., static configuration, MUST be used to ensure that all LSPs traverse the same route.

重要的是,在获取样本时,所有LSP必须穿过相同的路径。如果入口节点ID0和出口节点ID1之间存在多条路由,则必须使用EROs或备用方法(例如,静态配置)来确保所有LSP穿过相同的路由。

9.6. Methodologies
9.6. 方法论

o Select the times using the specified Poisson arrival process,

o 使用指定的泊松到达过程选择时间,

o Set up the LSP as the methodology for the singleton unidirectional LSP setup delay, and obtain the value of unidirectional LSP setup delay, and

o 将LSP设置为单件单向LSP设置延迟的方法,并获得单向LSP设置延迟的值,以及

o Release the LSP after Th, and wait for the next Poisson arrival event.

o 在Th之后释放LSP,并等待下一个泊松到达事件。

Note: it is possible that before the previous LSP release procedure completes, the next Poisson arrival event arrives and the LSP setup procedure is initiated. If there is resource contention between the two LSPs, the LSP setup may fail. Ways to avoid such contention are outside the scope of this document.

注:可能在上一个LSP释放程序完成之前,下一个泊松到达事件到达,LSP设置程序启动。如果两个LSP之间存在资源争用,LSP设置可能会失败。避免此类争论的方法不在本文档的范围内。

9.7. Typical Testing Cases
9.7. 典型测试用例
9.7.1. With No LSP in the Network
9.7.1. 网络中没有LSP
9.7.1.1. Motivation
9.7.1.1. 动机

Single unidirectional LSP setup delay with no LSP in the network is important because this reflects the inherent delay of a Resource Reservation Protocol - Traffic Engineering (RSVP-TE) implementation. The minimum value provides an indication of the delay that will likely be experienced when an LSP traverses the shortest route with the lightest load in the control plane.

网络中没有LSP的单向LSP设置延迟非常重要,因为这反映了资源预留协议-流量工程(RSVP-TE)实现的固有延迟。最小值指示当LSP以控制平面中最轻的负载通过最短路径时可能经历的延迟。

9.7.1.2. Methodologies
9.7.1.2. 方法论

Make sure that there is no LSP in the network and proceed with the methodologies described in Section 9.6

确保网络中没有LSP,并按照第9.6节所述方法进行操作

9.7.2. With a Number of LSPs in the Network
9.7.2. 网络中有多个LSP
9.7.2.1. Motivation
9.7.2.1. 动机

Single unidirectional LSP setup delay with a number of LSPs in the network is important because it reflects the performance of an operational network with considerable load. This delay may vary significantly as the number of existing LSPs vary. It can be used as a scalability metric of an RSVP-TE implementation.

网络中具有多个LSP的单向LSP设置延迟非常重要,因为它反映了具有相当大负载的运行网络的性能。随着现有LSP数量的变化,该延迟可能会显著变化。它可以用作RSVP-TE实现的可伸缩性度量。

9.7.2.2. Methodologies
9.7.2.2. 方法论

Set up the required number of LSPs, and wait until the network reaches a stable state; then, proceed with the methodologies described in Section 9.6.

设置所需数量的LSP,等待网络达到稳定状态;然后,继续使用第9.6节中描述的方法。

9.8. Metric Reporting
9.8. 度量报告

The metric results including both real and undefined values MUST be reported together with the total number of values. The context under which the sample is obtained, including the selected parameters, the route traversed by the LSPs, and the testing case used, MUST also be reported.

包括真实值和未定义值的度量结果必须与值总数一起报告。还必须报告获取样本的上下文,包括所选参数、LSP穿过的路由以及使用的测试用例。

10. A Definition for Samples of Multiple Unidirectional LSPs Setup Delay

10. 多个单向LSP设置延迟样本的定义

In Section 5, we defined the singleton metric of multiple unidirectional LSPs setup delay. Now we define how to get one particular sample of multiple unidirectional LSPs setup delay.

在第5节中,我们定义了多个单向LSP设置延迟的单例度量。现在我们定义如何获得多个单向LSP设置延迟的一个特定示例。

Sampling means to take a number of distinct instances of a skeleton metric under a given set of parameters. As in [RFC2330], we use Poisson sampling as an example.

采样是指在给定的一组参数下获取骨架度量的多个不同实例。与[RFC2330]一样,我们使用泊松抽样作为示例。

10.1. Metric Name
10.1. 度量名称

Multiple unidirectional LSPs setup delay sample

多个单向LSP设置延迟样本

10.2. Metric Parameters
10.2. 度量参数

o ID0, the ingress LSR ID

o ID0,入口LSR ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o T0, a time

o T0,一次

o Tf, a time

o Tf,一次

o Lambda_m, a rate in the reciprocal milliseconds

o Lambda_m,以倒数毫秒为单位的速率

o Lambda, a rate in the reciprocal milliseconds

o Lambda,以倒数毫秒为单位的速率

o X, the number of LSPs to set up

o 十、 要设置的LSP数

o Th, LSP holding time

o Th,LSP保持时间

o Td, the maximum waiting time for successful multiple unidirectional LSPs setup

o Td,成功设置多个单向LSP的最大等待时间

10.3. Metric Units
10.3. 公制单位

A sequence of pairs; the elements of each pair are:

成对的序列;每对的元素包括:

o T, a time when the first setup is attempted

o T、 尝试第一次安装的时间

o dT, either a real number of milliseconds or undefined

o dT,毫秒的实数或未定义

10.4. Definition
10.4. 释义

Given T0, Tf, and Lambda, compute a pseudo-random Poisson process beginning at or before T0, with an average arrival rate Lambda and ending at or after Tf. Those time values greater than or equal to T0 and less than or equal to Tf are then selected. At each of the times in this process, we obtain the value of multiple unidirectional LSP setup delay sample. The value of the sample is the sequence made up of the resulting <time, setup delay> pairs. If there are no such pairs, the sequence is of length zero and the sample is said to be empty.

给定T0、Tf和Lambda,计算从T0或T0之前开始的伪随机泊松过程,平均到达率Lambda,在Tf或之后结束。然后选择大于或等于T0且小于或等于Tf的时间值。在这个过程中的每一次,我们都会获得多个单向LSP设置延迟样本的值。样本值是由结果<时间,设置延迟>对组成的序列。如果没有这样的对,序列的长度为零,样本称为空。

10.5. Discussion
10.5. 讨论

The parameter Lambda is used as an arrival rate of "batch unidirectional LSPs setup" operation. It regulates the interval in between each batch operation. The parameter Lambda_m is used within each batch operation, as described in Section 5

参数Lambda用作“批量单向LSP设置”操作的到达率。它调节每个批处理操作之间的间隔。参数Lambda_m用于每个批处理操作,如第5节所述

The parameters Lambda and Lambda_m should be carefully chosen. If the rate is too high, overly frequent LSP setup/release procedure will result in high overhead in the control plane. In turn, the high overhead will increase unidirectional LSP setup delay. On the other hand, if the rate is too low, the sample might not completely reflect the dynamic provisioning performance of the GMPLS network. The appropriate Lambda and Lambda_m value depends on the given network.

应仔细选择参数Lambda和Lambda_m。如果速率过高,过于频繁的LSP设置/释放过程将导致控制平面中的高开销。反过来,高开销将增加单向LSP设置延迟。另一方面,如果速率太低,则样本可能无法完全反映GMPLS网络的动态资源调配性能。适当的Lambda和Lambda_m值取决于给定的网络。

The parameters Td should be carefully chosen. Different switching technologies may vary significantly in performing a cross-connect operation. At the same time, the time needed in setting up an LSP under different traffic may also vary significantly.

应仔细选择参数Td。不同的交换技术在执行交叉连接操作时可能会有很大的不同。同时,在不同业务量下建立LSP所需的时间也可能会有很大差异。

It is important that, in obtaining a sample, all the LSPs MUST traverse the same route. If there are multiple routes between the ingress node ID0 and egress node ID1, EROs, or an alternate method, e.g., static configuration, MUST be used to ensure that all LSPs traverse the same route.

重要的是,在获取样本时,所有LSP必须穿过相同的路径。如果入口节点ID0和出口节点ID1之间存在多条路由,则必须使用EROs或备用方法(例如,静态配置)来确保所有LSP穿过相同的路由。

10.6. Methodologies
10.6. 方法论

o Select the times using the specified Poisson arrival process,

o 使用指定的泊松到达过程选择时间,

o Set up the LSP as the methodology for the singleton multiple unidirectional LSPs setup delay, and obtain the value of multiple unidirectional LSPs setup delay, and

o 将LSP设置为单件多个单向LSP设置延迟的方法,并获得多个单向LSP设置延迟的值,以及

o Release the LSP after Th, and wait for the next Poisson arrival event.

o 在Th之后释放LSP,并等待下一个泊松到达事件。

Note: it is possible that before the previous LSP release procedure completes, the next Poisson arrival event arrives and the LSP setup procedure is initiated. If there is resource contention between the two LSPs, the LSP setup may fail. Ways to avoid such contention are outside the scope of this document.

注:可能在上一个LSP释放程序完成之前,下一个泊松到达事件到达,LSP设置程序启动。如果两个LSP之间存在资源争用,LSP设置可能会失败。避免此类争论的方法不在本文档的范围内。

10.7. Typical Testing Cases
10.7. 典型测试用例
10.7.1. With No LSP in the Network
10.7.1. 网络中没有LSP
10.7.1.1. Motivation
10.7.1.1. 动机

Multiple unidirectional LSPs setup delay with no LSP in the network is important because this reflects the inherent delay of an RSVP-TE implementation. The minimum value provides an indication of the delay that will likely be experienced when LSPs traverse the shortest route with the lightest load in the control plane.

网络中没有LSP的多个单向LSP设置延迟非常重要,因为这反映了RSVP-TE实现的固有延迟。最小值指示LSP在控制平面中以最轻负载通过最短路径时可能遇到的延迟。

10.7.1.2. Methodologies
10.7.1.2. 方法论

Make sure that there is no LSP in the network and proceed with the methodologies described in Section 10.6.

确保网络中没有LSP,并按照第10.6节所述方法进行操作。

10.7.2. With a Number of LSPs in the Network
10.7.2. 网络中有多个LSP
10.7.2.1. Motivation
10.7.2.1. 动机

Multiple unidirectional LSPs setup delay with a number of LSPs in the network is important because it reflects the performance of an operational network with considerable load. This delay can vary significantly as the number of existing LSPs vary. It can be used as a scalability metric of an RSVP-TE implementation.

网络中具有多个LSP的多个单向LSP设置延迟非常重要,因为它反映了具有相当大负载的运行网络的性能。随着现有LSP数量的变化,该延迟可能会发生显著变化。它可以用作RSVP-TE实现的可伸缩性度量。

10.7.2.2. Methodologies
10.7.2.2. 方法论

Set up the required number of LSPs, and wait until the network reaches a stable state; then, proceed with the methodologies described in Section 10.6.

设置所需数量的LSP,等待网络达到稳定状态;然后,继续采用第10.6节中所述的方法。

10.8. Metric Reporting
10.8. 度量报告

The metric results including both real and undefined values MUST be reported together with the total number of values. The context under which the sample is obtained, including the selected parameters, the route traversed by the LSPs, and the testing case used, MUST also be reported.

包括真实值和未定义值的度量结果必须与值总数一起报告。还必须报告获取样本的上下文,包括所选参数、LSP穿过的路由以及使用的测试用例。

11. A Definition for Samples of Single Bidirectional LSP Setup Delay
11. 单双向LSP设置延迟样本的定义

In Section 6, we defined the singleton metric of single bidirectional LSP setup delay. Now we define how to get one particular sample of single bidirectional LSP setup delay. Sampling means to take a number of distinct instances of a skeleton metric under a given set of parameters. As in [RFC2330], we use Poisson sampling as an example.

在第6节中,我们定义了单双向LSP设置延迟的单例度量。现在我们定义如何获得单个双向LSP设置延迟的一个特定样本。采样是指在给定的一组参数下获取骨架度量的多个不同实例。与[RFC2330]一样,我们使用泊松抽样作为示例。

11.1. Metric Name
11.1. 度量名称

Single bidirectional LSP setup delay sample with no LSP in the network

网络中没有LSP的单个双向LSP设置延迟样本

11.2. Metric Parameters
11.2. 度量参数

o ID0, the ingress LSR ID

o ID0,入口LSR ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o T0, a time

o T0,一次

o Tf, a time

o Tf,一次

o Lambda, a rate in the reciprocal milliseconds

o Lambda,以倒数毫秒为单位的速率

o Th, LSP holding time

o Th,LSP保持时间

o Td, the maximum waiting time for successful setup

o Td,成功安装的最长等待时间

11.3. Metric Units
11.3. 公制单位

A sequence of pairs; the elements of each pair are:

成对的序列;每对的元素包括:

o T, a time when setup is attempted

o T、 尝试安装的时间

o dT, either a real number of milliseconds or undefined

o dT,毫秒的实数或未定义

11.4. Definition
11.4. 释义

Given T0, Tf, and Lambda, compute a pseudo-random Poisson process beginning at or before T0, with an average arrival rate Lambda, and ending at or after Tf. Those time values greater than or equal to T0 and less than or equal to Tf are then selected. At each of the times in this process, we obtain the value of bidirectional LSP setup delay sample. The value of the sample is the sequence made up of the resulting <time, LSP setup delay> pairs. If there are no such pairs, the sequence is of length zero and the sample is said to be empty.

给定T0、Tf和Lambda,计算一个伪随机泊松过程,从T0或T0之前开始,以平均到达率Lambda结束,在Tf或之后结束。然后选择大于或等于T0且小于或等于Tf的时间值。在这个过程中的每一次,我们都会获得双向LSP设置延迟样本的值。样本值是由产生的<时间,LSP设置延迟>对组成的序列。如果没有这样的对,序列的长度为零,样本称为空。

11.5. Discussion
11.5. 讨论

The parameters Lambda should be carefully chosen. If the rate is too high, overly frequent LSP setup/release procedure will result in high overhead in the control plane. In turn, the high overhead will increase bidirectional LSP setup delay. On the other hand, if the rate is too low, the sample might not completely reflect the dynamic provisioning performance of the GMPLS network. The appropriate Lambda value depends on the given network.

应仔细选择参数λ。如果速率过高,过于频繁的LSP设置/释放过程将导致控制平面中的高开销。反过来,高开销将增加双向LSP设置延迟。另一方面,如果速率太低,则样本可能无法完全反映GMPLS网络的动态资源调配性能。适当的Lambda值取决于给定的网络。

The parameters Td should be carefully chosen. Different switching technologies may vary significantly in performing a cross-connect operation. At the same time, the time needed to set up an LSP under different traffic may also vary significantly.

应仔细选择参数Td。不同的交换技术在执行交叉连接操作时可能会有很大的不同。同时,在不同的业务量下建立LSP所需的时间也可能有很大的差异。

In the case of active measurement, the parameters Th should be carefully chosen. The combination of Lambda and Th reflects the load of the network. The selection of Th SHOULD take into account that the network has sufficient resources to perform subsequent tests. The value of Th MAY be constant during one sampling process for simplicity considerations.

在主动测量的情况下,应仔细选择参数Th。Lambda和Th的组合反映了网络的负载。Th的选择应考虑到网络有足够的资源来执行后续测试。为了简单起见,Th的值在一个采样过程中可能是恒定的。

Note that for online or passive measurements, the arrival rate and the LSP holding time are determined by actual traffic; hence, in this case, Lambda and Th are not input parameters.

注意,对于在线或被动测量,到达率和LSP保持时间由实际流量确定;因此,在这种情况下,Lambda和Th不是输入参数。

It is important that, in obtaining a sample, all the LSPs MUST traverse the same route. If there are multiple routes between the ingress node ID0 and egress node ID1, EROs, or an alternate method, e.g., static configuration, MUST be used to ensure that all LSPs traverse the same route.

重要的是,在获取样本时,所有LSP必须穿过相同的路径。如果入口节点ID0和出口节点ID1之间存在多条路由,则必须使用EROs或备用方法(例如,静态配置)来确保所有LSP穿过相同的路由。

11.6. Methodologies
11.6. 方法论

o Select the times using the specified Poisson arrival process,

o 使用指定的泊松到达过程选择时间,

o Set up the LSP as the methodology for the singleton bidirectional LSP setup delay, and obtain the value of bidirectional LSP setup delay, and

o 将LSP设置为单件双向LSP设置延迟的方法,并获得双向LSP设置延迟的值,以及

o Release the LSP after Th, and wait for the next Poisson arrival event.

o 在Th之后释放LSP,并等待下一个泊松到达事件。

Note: it is possible that before the previous LSP release procedure completes, the next Poisson arrival event arrives and the LSP setup procedure is initiated. If there is resource contention between the two LSPs, the LSP setup may fail. Ways to avoid such contention are outside the scope of this document.

注:可能在上一个LSP释放程序完成之前,下一个泊松到达事件到达,LSP设置程序启动。如果两个LSP之间存在资源争用,LSP设置可能会失败。避免此类争论的方法不在本文档的范围内。

11.7. Typical Testing Cases
11.7. 典型测试用例
11.7.1. With No LSP in the Network
11.7.1. 网络中没有LSP
11.7.1.1. Motivation
11.7.1.1. 动机

Single bidirectional LSP setup delay with no LSP in the network is important because this reflects the inherent delay of an RSVP-TE implementation. The minimum value provides an indication of the delay that will likely be experienced when an LSP traverses the shortest route with the lightest load in the control plane.

网络中没有LSP的单双向LSP设置延迟非常重要,因为这反映了RSVP-TE实现的固有延迟。最小值指示当LSP以控制平面中最轻的负载通过最短路径时可能经历的延迟。

11.7.1.2. Methodologies
11.7.1.2. 方法论

Make sure that there is no LSP in the network and proceed with the methodologies described in Section 11.6.

确保网络中没有LSP,并按照第11.6节所述方法进行操作。

11.7.2. With a Number of LSPs in the Network
11.7.2. 网络中有多个LSP
11.7.2.1. Motivation
11.7.2.1. 动机

Single bidirectional LSP setup delay with a number of LSPs in the network is important because it reflects the performance of an operational network with considerable load. This delay can vary significantly as the number of existing LSPs varies. It can be used as a scalability metric of an RSVP-TE implementation.

在网络中具有多个LSP的单个双向LSP设置延迟非常重要,因为它反映了具有相当大负载的运行网络的性能。随着现有LSP数量的变化,该延迟可能会发生显著变化。它可以用作RSVP-TE实现的可伸缩性度量。

11.7.2.2. Methodologies
11.7.2.2. 方法论

Set up the required number of LSPs and wait until the network reaches a stable state; then, proceed with the methodologies described in Section 11.6.

Set up the required number of LSPs and wait until the network reaches a stable state; then, proceed with the methodologies described in Section 11.6.translate error, please retry

11.8. Metric Reporting
11.8. 度量报告

The metric results including both real and undefined values MUST be reported together with the total number of values. The context under which the sample is obtained, including the selected parameters, the route traversed by the LSPs, and the testing case used, MUST also be reported.

包括真实值和未定义值的度量结果必须与值总数一起报告。还必须报告获取样本的上下文,包括所选参数、LSP穿过的路由以及使用的测试用例。

12. A Definition for Samples of Multiple Bidirectional LSPs Setup Delay
12. 多个双向LSP设置延迟样本的定义

In Section 7, we defined the singleton metric of multiple bidirectional LSPs setup delay. Now we define how to get one particular sample of multiple bidirectional LSP setup delay.

在第7节中,我们定义了多个双向LSP设置延迟的单例度量。现在我们定义如何获得多个双向LSP设置延迟的一个特定示例。

Sampling means to take a number of distinct instances of a skeleton metric under a given set of parameters. As in [RFC2330], we use Poisson sampling as an example.

采样是指在给定的一组参数下获取骨架度量的多个不同实例。与[RFC2330]一样,我们使用泊松抽样作为示例。

12.1. Metric Name
12.1. 度量名称

Multiple bidirectional LSPs setup delay sample

多个双向LSP设置延迟样本

12.2. Metric Parameters
12.2. 度量参数

o ID0, the ingress LSR ID

o ID0,入口LSR ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o T0, a time

o T0,一次

o Tf, a time

o Tf,一次

o Lambda_m, a rate in the reciprocal milliseconds

o Lambda_m,以倒数毫秒为单位的速率

o Lambda, a rate in the reciprocal milliseconds

o Lambda,以倒数毫秒为单位的速率

o X, the number of LSPs to set up

o 十、 要设置的LSP数

o Th, LSP holding time

o Th,LSP保持时间

o Td, the maximum waiting time for successful multiple unidirectional LSPs setup

o Td,成功设置多个单向LSP的最大等待时间

12.3. Metric Units
12.3. 公制单位

A sequence of pairs; the elements of each pair are:

成对的序列;每对的元素包括:

o T, a time when the first setup is attempted

o T、 尝试第一次安装的时间

o dT, either a real number of milliseconds or undefined

o dT,毫秒的实数或未定义

12.4. Definition
12.4. 释义

Given T0, Tf, and Lambda, compute a pseudo-random Poisson process beginning at or before T0, with an average arrival rate Lambda and ending at or after Tf. Those time values greater than or equal to T0 and less than or equal to Tf are then selected. At each of the times in this process, we obtain the value of multiple unidirectional LSP setup delay sample. The value of the sample is the sequence made up of the resulting <time, setup delay> pairs. If there are no such pairs, the sequence is of length zero and the sample is said to be empty.

给定T0、Tf和Lambda,计算从T0或T0之前开始的伪随机泊松过程,平均到达率Lambda,在Tf或之后结束。然后选择大于或等于T0且小于或等于Tf的时间值。在这个过程中的每一次,我们都会获得多个单向LSP设置延迟样本的值。样本值是由结果<时间,设置延迟>对组成的序列。如果没有这样的对,序列的长度为零,样本称为空。

12.5. Discussion
12.5. 讨论

The parameter Lambda is used as an arrival rate of "batch bidirectional LSPs setup" operation. It regulates the interval in between each batch operation. The parameter Lambda_m is used within each batch operation, as described in Section 7.

参数Lambda用作“批量双向LSPs设置”操作的到达率。它调节每个批处理操作之间的间隔。参数Lambda_m在每个批处理操作中使用,如第7节所述。

The parameters Lambda and Lambda_m should be carefully chosen. If the rate is too high, overly frequent LSP setup/release procedure will result in high overhead in the control plane. In turn, the high overhead will increase unidirectional LSP setup delay. On the other hand, if the rate is too low, the sample might not completely reflect the dynamic provisioning performance of the GMPLS network. The appropriate Lambda and Lambda_m values depend on the given network.

应仔细选择参数Lambda和Lambda_m。如果速率过高,过于频繁的LSP设置/释放过程将导致控制平面中的高开销。反过来,高开销将增加单向LSP设置延迟。另一方面,如果速率太低,则样本可能无法完全反映GMPLS网络的动态资源调配性能。适当的Lambda和Lambda_m值取决于给定的网络。

The parameters Td should be carefully chosen. Different switching technologies may vary significantly in performing a cross-connect operation. At the same time, the time needed to set up an LSP under different traffic may also vary significantly.

应仔细选择参数Td。不同的交换技术在执行交叉连接操作时可能会有很大的不同。同时,在不同的业务量下建立LSP所需的时间也可能有很大的差异。

It is important that, in obtaining a sample, all the LSPs MUST traverse the same route. If there are multiple routes between the ingress node ID0 and egress node ID1, EROs, or an alternate method, e.g., static configuration, MUST be used to ensure that all LSPs traverse the same route.

重要的是,在获取样本时,所有LSP必须穿过相同的路径。如果入口节点ID0和出口节点ID1之间存在多条路由,则必须使用EROs或备用方法(例如,静态配置)来确保所有LSP穿过相同的路由。

12.6. Methodologies
12.6. 方法论

o Select the times using the specified Poisson arrival process,

o 使用指定的泊松到达过程选择时间,

o Set up the LSP as the methodology for the singleton multiple bidirectional LSPs setup delay, and obtain the value of multiple unidirectional LSPs setup delay, and

o 将LSP设置为单件多个双向LSP设置延迟的方法,并获得多个单向LSP设置延迟的值,以及

o Release the LSP after Th, and wait for the next Poisson arrival event.

o 在Th之后释放LSP,并等待下一个泊松到达事件。

Note: it is possible that before the previous LSP release procedure completes, the next Poisson arrival event arrives and the LSP setup procedure is initiated. If there is resource contention between the two LSPs, the LSP setup may fail. Ways to avoid such contention are outside the scope of this document.

注:可能在上一个LSP释放程序完成之前,下一个泊松到达事件到达,LSP设置程序启动。如果两个LSP之间存在资源争用,LSP设置可能会失败。避免此类争论的方法不在本文档的范围内。

12.7. Typical Testing Cases
12.7. 典型测试用例
12.7.1. With No LSP in the Network
12.7.1. 网络中没有LSP
12.7.1.1. Motivation
12.7.1.1. 动机

Multiple bidirectional LSPs setup delay with no LSP in the network is important because this reflects the inherent delay of an RSVP-TE implementation. The minimum value provides an indication of the delay that will likely be experienced when an LSPs traverse the shortest route with the lightest load in the control plane.

网络中没有LSP的多个双向LSP设置延迟非常重要,因为这反映了RSVP-TE实现的固有延迟。最小值指示当LSP以控制平面中最轻的负载通过最短路线时可能经历的延迟。

12.7.1.2. Methodologies
12.7.1.2. 方法论

Make sure that there is no LSP in the network and proceed with the methodologies described in Section 10.6.

确保网络中没有LSP,并按照第10.6节所述方法进行操作。

12.7.2. With a Number of LSPs in the Network
12.7.2. 网络中有多个LSP
12.7.2.1. Motivation
12.7.2.1. 动机

Multiple bidirectional LSPs setup delay with a number of LSPs in the network is important because it reflects the performance of an operational network with considerable load. This delay may vary significantly as the number of existing LSPs vary. It may be used as a scalability metric of an RSVP-TE implementation.

网络中具有多个LSP的多个双向LSP设置延迟非常重要,因为它反映了具有相当大负载的运行网络的性能。随着现有LSP数量的变化,该延迟可能会显著变化。它可以用作RSVP-TE实现的可伸缩性度量。

12.7.2.2. Methodologies
12.7.2.2. 方法论

Set up the required number of LSPs, and wait until the network reaches a stable state; then, proceed with the methodologies described in Section 12.6.

设置所需数量的LSP,等待网络达到稳定状态;然后,继续使用第12.6节中描述的方法。

12.8. Metric Reporting
12.8. 度量报告

The metric results including both real and undefined values MUST be reported together with the total number of values. The context under which the sample is obtained, including the selected parameters, the route traversed by the LSPs, and the testing case used, MUST also be reported.

包括真实值和未定义值的度量结果必须与值总数一起报告。还必须报告获取样本的上下文,包括所选参数、LSP穿过的路由以及使用的测试用例。

13. A Definition for Samples of LSP Graceful Release Delay
13. LSP优美释放延迟样本的定义

In Section 8, we defined the singleton metric of LSP graceful release delay. Now we define how to get one particular sample of LSP graceful release delay. We also use Poisson sampling as an example.

在第8节中,我们定义了LSP优美释放延迟的单例度量。现在我们定义如何获得LSP优雅释放延迟的一个特定样本。我们还以泊松抽样为例。

13.1. Metric Name
13.1. 度量名称

LSP graceful release delay sample

优美释放延迟样本

13.2. Metric Parameters
13.2. 度量参数

o ID0, the ingress LSR ID

o ID0,入口LSR ID

o ID1, the egress LSR ID

o ID1,出口LSR ID

o T0, a time

o T0,一次

o Tf, a time

o Tf,一次

o Lambda, a rate in reciprocal milliseconds

o Lambda,以毫秒为单位的速率

o Td, the maximum waiting time for successful LSP release

o Td,成功释放LSP的最长等待时间

13.3. Metric Units
13.3. 公制单位

A sequence of pairs; the elements of each pair are:

成对的序列;每对的元素包括:

o T, a time, and

o T、 一次,和

o dT, either a real number of milliseconds or undefined

o dT,毫秒的实数或未定义

13.4. Definition
13.4. 释义

Given T0, Tf, and Lambda, we compute a pseudo-random Poisson process beginning at or before T0, with an average arrival rate Lambda and ending at or after Tf. Those time values greater than or equal to T0 and less than or equal to Tf are then selected. At each of the times in this process, we obtain the value of LSP graceful release delay sample. The value of the sample is the sequence made up of the resulting <time, LSP graceful delay> pairs. If there are no such pairs, the sequence is of length zero and the sample is said to be empty.

给定T0、Tf和Lambda,我们计算一个伪随机泊松过程,该过程开始于T0或之前,平均到达率Lambda,结束于Tf或之后。然后选择大于或等于T0且小于或等于Tf的时间值。在这个过程中的每一次,我们都会得到LSP优美释放延迟样本的值。样本值是由产生的<时间,LSP优美延迟>对组成的序列。如果没有这样的对,序列的长度为零,样本称为空。

13.5. Discussion
13.5. 讨论

The parameter Lambda should be carefully chosen. If the rate is too large, overly frequent LSP setup/release procedure will result in high overhead in the control plane. In turn, the high overhead will increase unidirectional LSP setup delay. On the other hand, if the rate is too small, the sample might not completely reflect the dynamic provisioning performance of the GMPLS network. The appropriate Lambda value depends on the given network.

应仔细选择参数Lambda。如果速率太大,过于频繁的LSP设置/释放过程将导致控制平面中的高开销。反过来,高开销将增加单向LSP设置延迟。另一方面,如果速率太小,则样本可能无法完全反映GMPLS网络的动态资源调配性能。适当的Lambda值取决于给定的网络。

It is important that, in obtaining a sample, all the LSPs MUST traverse the same route. If there are multiple routes between the ingress node ID0 and egress node ID1, EROs, or an alternate method, e.g., static configuration, MUST be used to ensure that all LSPs traverse the same route.

重要的是,在获取样本时,所有LSP必须穿过相同的路径。如果入口节点ID0和出口节点ID1之间存在多条路由,则必须使用EROs或备用方法(例如,静态配置)来确保所有LSP穿过相同的路由。

13.6. Methodologies
13.6. 方法论

Generally, the methodology would proceed as follows:

一般而言,该方法将按以下步骤进行:

o Set up the LSP to be deleted

o 设置要删除的LSP

o Select the times using the specified Poisson arrival process,

o 使用指定的泊松到达过程选择时间,

o Release the LSP as the methodology for the singleton LSP graceful release delay, and obtain the value of LSP graceful release delay, and

o 释放LSP作为单例LSP优美释放延迟的方法,并获得LSP优美释放延迟的值,以及

o Set up the LSP, and restart the Poisson arrival process, wait for the next Poisson arrival event.

o 设置LSP,并重新启动泊松到达过程,等待下一个泊松到达事件。

13.7. Metric Reporting
13.7. 度量报告

The metric results including both real and undefined values MUST be reported together with the total number of values. The context under which the sample is obtained, including the selected parameters, and the route traversed by the LSPs MUST also be reported.

包括真实值和未定义值的度量结果必须与值总数一起报告。还必须报告获取样本的上下文(包括所选参数)以及LSP穿过的路由。

14. Some Statistics Definitions for Metrics to Report
14. 要报告的度量的一些统计定义

Given the samples of the performance metric, we now offer several statistics of these samples to report. From these statistics, we can draw some useful conclusions of a GMPLS network. The value of these metrics is either a real number of milliseconds or undefined. In the following discussion, we only consider the finite values.

考虑到性能指标的样本,我们现在提供了这些样本的几个统计数据以供报告。从这些统计数据中,我们可以得出一些关于GMPLS网络的有用结论。这些度量的值要么是毫秒的实数,要么是未定义的。在下面的讨论中,我们只考虑有限值。

14.1. The Minimum of Metric
14.1. 度量的最小值

The minimum of the metric is the minimum of all the dT values in the sample. In computing this, undefined values SHOULD be treated as infinitely large. Note that this means that the minimum could thus be undefined if all the dT values are undefined. In addition, the metric minimum SHOULD be set to undefined if the sample is empty.

度量的最小值是样本中所有dT值的最小值。在计算时,未定义的值应视为无穷大。注意,这意味着如果所有dT值都未定义,则最小值可能未定义。此外,如果样本为空,则度量最小值应设置为未定义。

14.2. The Median of Metric
14.2. 度量中值

Metric median is the median of the dT values in the given sample. In computing the median, the undefined values MUST NOT be included.

公制中值是给定样本中dT值的中值。在计算中值时,不得包括未定义的值。

14.3. The Maximum of Metric
14.3. 度量的最大值

The maximum of the metric is the maximum of all the dT values in the sample. In computing this, undefined values MUST NOT be included. Note that this means that measurements that exceed the upper bound are not reported in this statistic. This is an important consideration when evaluating the maximum when the number of undefined measurements is non-zero.

度量值的最大值是样本中所有dT值的最大值。在计算过程中,不得包含未定义的值。请注意,这意味着超出上限的测量值不会在此统计数据中报告。当未定义的测量数为非零时,这是评估最大值时的一个重要考虑因素。

14.4. The Percentile of Metric
14.4. 度量的百分位数

The "empirical distribution function" (EDF) of a set of scalar measurements is a function F(x), which, for any x, gives the fractional proportion of the total measurements that were <= x.

一组标量测量值的“经验分布函数”(EDF)是一个函数F(x),对于任何x,它给出了小于等于x的总测量值的分数比例。

Given a percentage X, the X-th percentile of the metric means the smallest value of x for which F(x) >= X. In computing the percentile, undefined values MUST NOT be included.

给定百分比X,度量的第X个百分位表示X的最小值,其中F(X)>=X。在计算百分位时,不得包括未定义的值。

See [RFC2330] for further details.

有关更多详细信息,请参见[RFC2330]。

14.5. Failure Statistics of Metric
14.5. 度量的失效统计

In the process of LSP setup/release, it may fail due to various reasons. For example, setup/release may fail when the control plane is overburdened or when there is resource shortage in one of the intermediate nodes. Since the setup/release failure may have significant impact on network operation, it is worthwhile to report each failure cases, so that appropriate operations can be performed to check the possible implementation, configuration or other deficiencies.

在LSP设置/发布过程中,可能会由于各种原因而失败。例如,当控制平面过载或其中一个中间节点资源不足时,设置/释放可能失败。由于设置/发布故障可能会对网络运行产生重大影响,因此有必要报告每个故障案例,以便执行适当的操作,检查可能的实施、配置或其他缺陷。

Five types of failure events are defined in previous sections:

前几节定义了五种类型的故障事件:

o Single Unidirectional LSP Setup Failure

o 单一单向LSP设置失败

o Multiple Unidirectional LSP Setup Failure

o 多个单向LSP设置失败

o Single Bidirectional LSP Setup Failure

o 单双向LSP设置失败

o Multiple Bidirectional LSP Setup Failure

o 多重双向LSP设置失败

o LSP Graceful Release Failure

o LSP优美释放失败

Given the samples of the performance metric, we now offer two statistics of failure events of these samples to report.

给定性能指标的示例,我们现在提供两个要报告的这些示例的故障事件统计信息。

14.5.1. Failure Count
14.5.1. 故障计数

Failure Count is defined as the number of the undefined value of the corresponding performance metric (failure events) in a sample. The value of Failure Count is an integer.

故障计数定义为样本中相应性能指标(故障事件)的未定义值的数量。失败计数的值是一个整数。

14.5.2. Failure Ratio
14.5.2. 失效率

Failure Ratio is the percentage of the number of failure events to the total number of requests in a sample. The calculation for Failure Ratio is defined as follows:

Failure Ratio是样本中失败事件数占请求总数的百分比。失效率的计算定义如下:

X type failure ratio = Number of X type failure events/(Number of valid X type metric values + Number of X type failure events) * 100%.

X型故障率=X型故障事件数/(有效X型指标值数+X型故障事件数)*100%。

15. Discussion
15. 讨论

It is worthwhile to point out that:

值得指出的是:

o The unidirectional/bidirectional LSP setup delay is one ingress-egress round-trip time plus processing time. But in this document, unidirectional/bidirectional LSP setup delay has not taken the processing time in the end nodes (ingress and/or egress) into account. The timestamp T2 is taken after the endpoint node receives it. Actually, the last node has to take some time to process local procedures. Similarly, in the LSP graceful release delay, the memo has not considered the processing time in the end node.

o 单向/双向LSP设置延迟是一个进出往返时间加上处理时间。但是在本文中,单向/双向LSP设置延迟没有考虑终端节点(入口和/或出口)中的处理时间。在端点节点接收到时间戳T2之后获取时间戳T2。实际上,最后一个节点必须花费一些时间来处理本地过程。类似地,在LSP优雅释放延迟中,memo没有考虑结束节点中的处理时间。

o This document assumes that the correct procedures for installing the data plane are followed as described in [RFC3209], [RFC3471], and [RFC3473]. That is, by the time the egress receives and processes a Path message, it is safe for the egress to transmit data on the reverse path, and by the time the ingress receives and processes a Resv message it is safe for the ingress to transmit data on the forward path. See [CCAMP-SWITCH] for detailed explanations. This document does not include any verification that the implementations of the control plane software are conformant, although such tests MAY be constructed with the use of suitable signal generation test equipment. In [CCAMP-DPM], we defined a series of metrics to do such verifications. However, it is RECOMMENDED that both the measurements defined in this document and the measurements defined in [CCAMP-DPM] are performed to complement each other.

o 本文件假设按照[RFC3209]、[RFC3471]和[RFC3473]中所述的正确步骤安装数据平面。也就是说,当出口接收和处理路径消息时,出口在反向路径上传输数据是安全的,并且当入口接收和处理Resv消息时,入口在正向路径上传输数据是安全的。有关详细说明,请参见[CCAMP-SWITCH]。本文件不包括验证控制平面软件的实施是否符合要求的任何内容,尽管此类测试可使用合适的信号生成测试设备进行。在[CCAMP-DPM]中,我们定义了一系列标准来进行此类验证。但是,建议执行本文件中定义的测量和[CCAMP-DPM]中定义的测量,以相互补充。

o Note that, in implementing the tests described in this document, a tester should be sure to measure the time taken for the control plane messages including the processing of those messages by the nodes under test.

o 注意,在执行本文档中描述的测试时,测试人员应确保测量控制平面消息所花费的时间,包括被测试节点对这些消息的处理。

o Bidirectional LSPs may be set up using three-way signaling, where the initiating node will send a ResvConf message downstream upon receiving the Resv message. The ResvConf message is used to notify the terminate node that it can transfer data upstream. Actually, both directions should be ready to transfer data when the Resv message is received by the initiating node. Therefore, the bidirectional LSP setup delay defined in this document does not take the confirmation procedure into account.

o 双向lsp可以使用三路信令来建立,其中发起节点将在接收到Resv消息时向下游发送ResvConf消息。ResvConf消息用于通知终止节点它可以向上游传输数据。实际上,当发起节点接收到Resv消息时,两个方向都应该准备好传输数据。因此,本文件中定义的双向LSP设置延迟未考虑确认程序。

16. Security Considerations
16. 安全考虑

Samples of the metrics can be obtained in either active or passive manners.

度量的样本可以以主动或被动的方式获得。

In active measurement, ingress nodes inject probing messages into the control plane. Since the measurement endpoints must be conformant to signaling specifications and behave as normal signaling endpoints, it will not incur other security issues than normal LSP provisioning. However, the measurement parameters must be carefully selected so that the measurements inject trivial amounts of additional traffic into the networks they measure. If they inject "too much" traffic, they can skew the results of the measurement, and, in extreme cases, cause congestion and denial of service.

在主动测量中,入口节点将探测消息注入控制平面。由于测量端点必须符合信令规范,并且表现为正常的信令端点,因此除了正常的LSP供应之外,它不会引发其他安全问题。但是,必须仔细选择测量参数,以便测量将少量的额外流量注入到它们测量的网络中。如果它们注入“过多”流量,可能会扭曲测量结果,并在极端情况下导致拥塞和拒绝服务。

When samples of the metrics are collected in a passive manner, e.g., by monitoring the operations on real-life LSPs, the implementation of the monitoring and reporting mechanism must be careful so that they will not be used to attack the control plane. A typical implementation may use the Management Information Base (MIB) to collect/store the metrics and access to the MIB is limited to the Network Management Systems (NMSs). In this case, passive monitoring will not incur other security issues than implementing the MIBs and NMSs. If an implementation chooses to expose the performance data to other applications, then it must take into account the possible security issues it may face. For example, when exposing the performance data through Simple Network Management Protocol (SNMP), certain authentication methods should be used to ensure that the entity maintaining the performance data are not subject to unauthorized readings and modifications. Rate limiting on the performance query may also be desirable to reduce the risk that the entity maintaining the performance data are overwhelmed by too many query requests. It is RECOMMENDED that implementers consider the

当以被动方式(例如,通过监测现实生活中LSP上的操作)收集度量样本时,必须小心监测和报告机制的实施,以使其不会被用于攻击控制平面。典型的实现可以使用管理信息库(MIB)来收集/存储度量,并且对MIB的访问仅限于网络管理系统(NMS)。在这种情况下,被动监控不会引发除实施MIB和NMS之外的其他安全问题。如果实现选择将性能数据公开给其他应用程序,那么它必须考虑可能面临的安全问题。例如,当通过简单网络管理协议(SNMP)公开性能数据时,应使用某些身份验证方法,以确保维护性能数据的实体不会受到未经授权的读取和修改。对性能查询进行速率限制也可能有助于降低维护性能数据的实体被太多查询请求压垮的风险。建议实施者考虑

security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

SNMPv3框架提供的安全功能(参见[RFC3410],第8节),包括对SNMPv3加密机制的完全支持(用于身份验证和隐私)。

Additionally, the security considerations pertaining to the original RSVP protocol [RFC2205] and its TE extensions [RFC3209] also remain relevant.

此外,与原始RSVP协议[RFC2205]及其TE扩展[RFC3209]相关的安全注意事项也仍然相关。

17. Acknowledgments
17. 致谢

We wish to thank Dan Li, Fang Liu (Christine), Zafar Ali, Monique Morrow, Adrian Farrel, Deborah Brungard, Lou Berger, Thomas D. Nadeau for their comments and help. Lou Berger and Adrian Farrel have made text contributions to this document.

我们要感谢李丹、刘芳(克里斯汀)、扎法尔·阿里、莫妮克·莫罗、阿德里安·法雷尔、黛博拉·布伦加德、卢·伯杰、托马斯·纳多的评论和帮助。Lou Berger和Adrian Farrel对本文件做出了文字贡献。

We wish to thank experts from IPPM and BMWG -- Reinhard Schrage, Al Morton, and Henk Uijterwaal -- for reviewing this document. Reinhard Schrage has made text contributions to this document.

我们要感谢IPPM和BMWG的专家Reinhard Schrage、Al Morton和Henk Uijterwaal对本文件的审阅。Reinhard Schrage对本文件做出了文字贡献。

This document contains ideas as well as text that have appeared in existing IETF documents. The authors wish to thank G. Almes, S. Kalidindi, and M. Zekauskas.

本文件包含已出现在现有IETF文件中的想法和文本。作者希望感谢G.Almes、S.Kalidini和M.Zekauskas。

We also wish to thank Weisheng Hu, Yaohui Jin, and Wei Guo in the state key laboratory of advanced optical communication systems and networks for the valuable comments. We also wish to thank the support from National Natural Science Foundation of China (NSFC) and 863 program of China.

我们还要感谢先进光通信系统与网络国家重点实验室胡伟生、金耀辉和郭伟的宝贵意见。我们还感谢中国国家自然科学基金(NSFC)和中国863计划的支持。

18. References
18. 工具书类
18.1. Normative References
18.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC2205] Braden, B., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, September 1997.

[RFC2205]Braden,B.,Zhang,L.,Berson,S.,Herzog,S.,和S.Jamin,“资源预留协议(RSVP)——第1版功能规范”,RFC 22052997年9月。

[RFC2679] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way Delay Metric for IPPM", RFC 2679, September 1999.

[RFC2679]Almes,G.,Kalidini,S.,和M.Zekauskas,“IPPM的单向延迟度量”,RFC 2679,1999年9月。

[RFC2681] Almes, G., Kalidindi, S., and M. Zekauskas, "A Round-trip Delay Metric for IPPM", RFC 2681, September 1999.

[RFC2681]Almes,G.,Kalidini,S.,和M.Zekauskas,“IPPM的往返延迟度量”,RFC 2681,1999年9月。

[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, December 2001.

[RFC3209]Awduche,D.,Berger,L.,Gan,D.,Li,T.,Srinivasan,V.,和G.Swallow,“RSVP-TE:LSP隧道RSVP的扩展”,RFC 3209,2001年12月。

[RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.

[RFC3471]Berger,L.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。

[RFC3473] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.

[RFC3473]Berger,L.“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,2003年1月。

[RFC3945] Mannie, E., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, October 2004.

[RFC3945]Mannie,E.“通用多协议标签交换(GMPLS)体系结构”,RFC 39452004年10月。

[RFC4208] Swallow, G., Drake, J., Ishimatsu, H., and Y. Rekhter, "Generalized Multiprotocol Label Switching (GMPLS) User-Network Interface (UNI): Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Support for the Overlay Model", RFC 4208, October 2005.

[RFC4208]Swallow,G.,Drake,J.,Ishimatsu,H.,和Y.Rekhter,“通用多协议标签交换(GMPLS)用户网络接口(UNI):覆盖模型的资源预留协议流量工程(RSVP-TE)支持”,RFC 4208,2005年10月。

18.2. Informative References
18.2. 资料性引用

[CCAMP-DPM] Sun, W., Zhang, G., Gao, J., Xie, G., Papneja, R., Gu, B., Wei, X., Otani, T., and R. Jing, "Label Switched Path (LSP) Data Path Delay Metric in Generalized MPLS/ MPLS-TE Networks", Work in Progress, December 2009.

[CCAMP-DPM]孙,W.,张,G.,高,J.,谢,G.,Papneja,R.,顾,B.,魏,X.,Otani,T.,和R.京,“广义MPLS/MPLS-TE网络中的标签交换路径(LSP)数据路径延迟度量”,正在进行的工作,2009年12月。

[CCAMP-SWITCH] Shiomoto, K. and A. Farrel, "Advice on When It is Safe to Start Sending Data on Label Switched Paths Established Using RSVP-TE", Work in Progress, October 2009.

[CCAMP-SWITCH]Shiomoto,K.和A.Farrel,“关于何时开始在使用RSVP-TE建立的标签交换路径上安全发送数据的建议”,正在进行的工作,2009年10月。

[RFC2330] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis, "Framework for IP Performance Metrics", RFC 2330, May 1998.

[RFC2330]Paxson,V.,Almes,G.,Mahdavi,J.,和M.Mathis,“IP性能度量框架”,RFC 2330,1998年5月。

[RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet-Standard Management Framework", RFC 3410, December 2002.

[RFC3410]Case,J.,Mundy,R.,Partain,D.,和B.Stewart,“互联网标准管理框架的介绍和适用性声明”,RFC 34102002年12月。

Appendix A. Authors' Addresses
附录A.作者地址

Jianhua Gao Huawei Technologies Co., LTD. China

中国高建华华为技术有限公司

   Phone: +86 755 28973237
   EMail: gjhhit@huawei.com
        
   Phone: +86 755 28973237
   EMail: gjhhit@huawei.com
        

Guowu Xie University of California, Riverside 900 University Ave. Riverside, CA 92521 USA

郭国燮加利福尼亚大学,河滨900大学,河滨,CA,美国92521

   Phone: +1 951 237 8825
   EMail: xieg@cs.ucr.edu
        
   Phone: +1 951 237 8825
   EMail: xieg@cs.ucr.edu
        

Rajiv Papneja Isocore 12359 Sunrise Valley Drive, STE 100 Reston, VA 20190 USA

拉吉夫·帕普尼亚等矿12359日出谷大道,美国弗吉尼亚州雷斯顿街100号,邮编:20190

   Phone: +1 703 860 9273
   EMail: rpapneja@isocore.com
        
   Phone: +1 703 860 9273
   EMail: rpapneja@isocore.com
        

Bin Gu IXIA Oriental Kenzo Plaza 8M, 48 Dongzhimen Wai Street, Dongcheng District Beijing 200240 China

中国北京市东城区东直门外大街48号滨谷东方健三广场8M

   Phone: +86 13611590766
   EMail: BGu@ixiacom.com
        
   Phone: +86 13611590766
   EMail: BGu@ixiacom.com
        

Xueqin Wei Fiberhome Telecommunication Technology Co., Ltd. Wuhan China

中国武汉雪芹威光纤家庭通信技术有限公司

   Phone: +86 13871127882
   EMail: xqwei@fiberhome.com.cn
        
   Phone: +86 13871127882
   EMail: xqwei@fiberhome.com.cn
        

Tomohiro Otani KDDI R&D Laboratories, Inc. 2-1-15 Ohara Kamifukuoka Saitama 356-8502 Japan

大谷智博KDDI研发实验室有限公司2-1-15日本大原县斋玉町市356-8502

   Phone: +81-49-278-7357
   EMail: otani@kddilabs.jp
        
   Phone: +81-49-278-7357
   EMail: otani@kddilabs.jp
        

Ruiquan Jing China Telecom Beijing Research Institute 118 Xizhimenwai Avenue Beijing 100035 China

中国电信北京研究院北京西直门外大街118号瑞泉京100035

   Phone: +86-10-58552000
   EMail: jingrq@ctbri.com.cn
        
   Phone: +86-10-58552000
   EMail: jingrq@ctbri.com.cn
        

Editors' Addresses

编辑地址

Weiqiang Sun (editor) Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China

孙伟强(编辑)上海交通大学东川路800号中国上海200240

   Phone: +86 21 3420 5359
   EMail: sunwq@mit.edu
        
   Phone: +86 21 3420 5359
   EMail: sunwq@mit.edu
        

Guoying Zhang (editor) China Academy of Telecommunication Research, MIIT, China. No.52 Hua Yuan Bei Lu,Haidian District Beijing 100083 China

张国英(编辑)中国电信研究院,工信部,中国。中国北京市海淀区花园北路52号,邮编100083

   Phone: +86 1062300103
   EMail: zhangguoying@mail.ritt.com.cn
        
   Phone: +86 1062300103
   EMail: zhangguoying@mail.ritt.com.cn