Internet Engineering Task Force (IETF)                  D. Papadimitriou
Request for Comments: 5787                                Alcatel-Lucent
Category: Experimental                                        March 2010
ISSN: 2070-1721
        
Internet Engineering Task Force (IETF)                  D. Papadimitriou
Request for Comments: 5787                                Alcatel-Lucent
Category: Experimental                                        March 2010
ISSN: 2070-1721
        

OSPFv2 Routing Protocols Extensions for Automatically Switched Optical Network (ASON) Routing

自动交换光网络(ASON)路由的OSPFv2路由协议扩展

Abstract

摘要

The ITU-T has defined an architecture and requirements for operating an Automatically Switched Optical Network (ASON).

ITU-T定义了运行自动交换光网络(ASON)的体系结构和要求。

The Generalized Multiprotocol Label Switching (GMPLS) protocol suite is designed to provide a control plane for a range of network technologies including optical networks such as time division multiplexing (TDM) networks including SONET/SDH and Optical Transport Networks (OTNs), and lambda switching optical networks.

通用多协议标签交换(GMPLS)协议套件旨在为一系列网络技术提供控制平面,包括光网络,如时分复用(TDM)网络,包括SONET/SDH和光传输网络(OTN),以及lambda交换光网络。

The requirements for GMPLS routing to satisfy the requirements of ASON routing, and an evaluation of existing GMPLS routing protocols are provided in other documents. This document defines extensions to the OSPFv2 Link State Routing Protocol to meet the requirements for routing in an ASON.

其他文件中提供了GMPLS路由的要求,以满足ASON路由的要求,以及对现有GMPLS路由协议的评估。本文档定义了OSPFv2链路状态路由协议的扩展,以满足ASON中的路由要求。

Note that this work is scoped to the requirements and evaluation expressed in RFC 4258 and RFC 4652 and the ITU-T Recommendations current when those documents were written. Future extensions of revisions of this work may be necessary if the ITU-T Recommendations are revised or if new requirements are introduced into a revision of RFC 4258.

请注意,这项工作的范围是RFC 4258和RFC 4652中表达的要求和评估,以及编写这些文件时现行的ITU-T建议。如果修订了ITU-T建议,或者在RFC 4258的修订版中引入了新的要求,则可能需要对本工作的修订版进行未来的扩展。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for examination, experimental implementation, and evaluation.

本文件不是互联网标准跟踪规范;它是为检查、实验实施和评估而发布的。

This document defines an Experimental Protocol for the Internet community. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文档为互联网社区定义了一个实验协议。本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。并非IESG批准的所有文件都适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5787.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc5787.

Copyright Notice

版权公告

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2010 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................4
      1.1. Conventions Used in This Document ..........................5
   2. Routing Areas, OSPF Areas, and Protocol Instances ...............5
   3. Reachability ....................................................6
      3.1. Node IPv4 Local Prefix Sub-TLV .............................6
      3.2. Node IPv6 Local Prefix Sub-TLV .............................7
   4. Link Attribute ..................................................8
      4.1. Local Adaptation ...........................................8
      4.2. Bandwidth Accounting .......................................9
   5. Routing Information Scope .......................................9
      5.1. Terminology and Identification .............................9
      5.2. Link Advertisement (Local and Remote TE Router ID
           Sub-TLV) ..................................................10
      5.3. Reachability Advertisement (Local TE Router ID sub-TLV) ...11
   6. Routing Information Dissemination ..............................12
      6.1. Import/Export Rules .......................................13
      6.2. Discovery and Selection ...................................13
           6.2.1. Upward Discovery and Selection .....................13
           6.2.2. Downward Discovery and Selection ...................14
           6.2.3. Router Information Experimental Capabilities TLV ...16
      6.3. Loop Prevention ...........................................16
           6.3.1. Associated RA ID ...................................17
           6.3.2. Processing .........................................18
      6.4. Resiliency ................................................19
      6.5. Neighbor Relationship and Routing Adjacency ...............20
      6.6. Reconfiguration ...........................................20
   7. OSPFv2 Scalability .............................................21
   8. Security Considerations ........................................21
   9. Experimental Code Points .......................................21
      9.1. Sub-TLVs of the Link TLV ..................................22
      9.2. Sub-TLVs of the Node Attribute TLV ........................22
      9.3. Sub-TLVs of the Router Address TLV ........................23
      9.4. TLVs of the Router Information LSA ........................23
   10. References ....................................................24
      10.1. Normative References .....................................24
      10.2. Informative References ...................................25
   11. Acknowledgements ..............................................26
   Appendix A. ASON Terminology ......................................27
   Appendix B. ASON Routing Terminology ..............................28
        
   1. Introduction ....................................................4
      1.1. Conventions Used in This Document ..........................5
   2. Routing Areas, OSPF Areas, and Protocol Instances ...............5
   3. Reachability ....................................................6
      3.1. Node IPv4 Local Prefix Sub-TLV .............................6
      3.2. Node IPv6 Local Prefix Sub-TLV .............................7
   4. Link Attribute ..................................................8
      4.1. Local Adaptation ...........................................8
      4.2. Bandwidth Accounting .......................................9
   5. Routing Information Scope .......................................9
      5.1. Terminology and Identification .............................9
      5.2. Link Advertisement (Local and Remote TE Router ID
           Sub-TLV) ..................................................10
      5.3. Reachability Advertisement (Local TE Router ID sub-TLV) ...11
   6. Routing Information Dissemination ..............................12
      6.1. Import/Export Rules .......................................13
      6.2. Discovery and Selection ...................................13
           6.2.1. Upward Discovery and Selection .....................13
           6.2.2. Downward Discovery and Selection ...................14
           6.2.3. Router Information Experimental Capabilities TLV ...16
      6.3. Loop Prevention ...........................................16
           6.3.1. Associated RA ID ...................................17
           6.3.2. Processing .........................................18
      6.4. Resiliency ................................................19
      6.5. Neighbor Relationship and Routing Adjacency ...............20
      6.6. Reconfiguration ...........................................20
   7. OSPFv2 Scalability .............................................21
   8. Security Considerations ........................................21
   9. Experimental Code Points .......................................21
      9.1. Sub-TLVs of the Link TLV ..................................22
      9.2. Sub-TLVs of the Node Attribute TLV ........................22
      9.3. Sub-TLVs of the Router Address TLV ........................23
      9.4. TLVs of the Router Information LSA ........................23
   10. References ....................................................24
      10.1. Normative References .....................................24
      10.2. Informative References ...................................25
   11. Acknowledgements ..............................................26
   Appendix A. ASON Terminology ......................................27
   Appendix B. ASON Routing Terminology ..............................28
        
1. Introduction
1. 介绍

The Generalized Multiprotocol Label Switching (GMPLS) [RFC3945] protocol suite is designed to provide a control plane for a range of network technologies including optical networks such as time division multiplexing (TDM) networks including SONET/SDH and Optical Transport Networks (OTNs), and lambda switching optical networks.

通用多协议标签交换(GMPLS)[RFC3945]协议套件旨在为一系列网络技术提供控制平面,包括光网络,如时分复用(TDM)网络,包括SONET/SDH和光传输网络(OTN),以及lambda交换光网络。

The ITU-T defines the architecture of the Automatically Switched Optical Network (ASON) in [G.8080].

ITU-T在[G.8080]中定义了自动交换光网络(ASON)的体系结构。

[RFC4258] details the routing requirements for the GMPLS suite of routing protocols to support the capabilities and functionality of ASON control planes identified in [G.7715] and in [G.7715.1].

[RFC4258]详细说明了GMPLS路由协议套件的路由要求,以支持[G.7715]和[G.7715.1]中确定的ASON控制平面的能力和功能。

[RFC4652] evaluates the IETF Link State routing protocols against the requirements identified in [RFC4258]. Section 7.1 of [RFC4652] summarizes the capabilities to be provided by OSPFv2 [RFC2328] in support of ASON routing. This document details the OSPFv2 specifics for ASON routing.

[RFC4652]根据[RFC4258]中确定的要求评估IETF链路状态路由协议。[RFC4652]第7.1节总结了OSPFv2[RFC2328]为支持ASON路由而提供的功能。本文档详细介绍了ASON路由的OSPFv2细节。

Multi-layer transport networks are constructed from multiple networks of different technologies operating in a client-server relationship. The ASON routing model includes the definition of routing levels that provide scaling and confidentiality benefits. In multi-level routing, domains called routing areas (RAs) are arranged in a hierarchical relationship. Note that as described in [RFC4652] there is no implied relationship between multi-layer transport networks and multi-level routing. The multi-level routing mechanisms described in this document work for both single-layer and multi-layer networks.

多层传输网络由在客户机-服务器关系中运行的不同技术的多个网络构成。ASON路由模型包括提供扩展和保密优势的路由级别定义。在多级路由中,称为路由区域(RAs)的域以层次关系排列。注意,如[RFC4652]所述,多层传输网络和多级路由之间没有隐含的关系。本文档中描述的多级路由机制适用于单层和多层网络。

Implementations may support a hierarchical routing topology (multi-level) for multiple transport network layers and/or a hierarchical routing topology for a single transport network layer.

实现可支持用于多个传输网络层的分层路由拓扑(多级)和/或用于单个传输网络层的分层路由拓扑。

This document details the processing of the generic (technology-independent) link attributes that are defined in [RFC3630], [RFC4202], and [RFC4203] and that are extended in this document. As detailed in Section 4.2, technology-specific traffic engineering attributes (and their processing) may be defined in other documents that complement this document.

本文档详细说明了[RFC3630]、[RFC4202]和[RFC4203]中定义并在本文档中扩展的通用(独立于技术的)链路属性的处理。如第4.2节所述,特定于技术的交通工程属性(及其处理)可在补充本文件的其他文件中定义。

Note that this work is scoped to the requirements and evaluation expressed in [RFC4258] and [RFC4652] and the ITU-T Recommendations current when those documents were written. Future extensions of revisions of this work may be necessary if the ITU-T Recommendations are revised or if new requirements are introduced into a revision of [RFC4258].

请注意,这项工作的范围是[RFC4258]和[RFC4652]中表达的要求和评估,以及编写这些文件时最新的ITU-T建议。如果对ITU-T建议进行了修订,或者在[RFC4258]的修订版中引入了新的要求,则可能需要对本工作的修订版进行未来的扩展。

This document is classified as Experimental. Significant changes to routing protocols are of concern to the stability of the Internet. The extensions described in this document are intended for cautious use in self-contained environments. The objective is to determine whether these extensions are stable and functional, whether there is a demand for implementation and deployment, and whether the extensions have any impact on existing routing protocol deployments.

本文件被归类为实验性文件。路由协议的重大变化关系到互联网的稳定性。本文档中描述的扩展旨在在自包含环境中谨慎使用。目的是确定这些扩展是否稳定且功能正常,是否需要实现和部署,以及这些扩展是否对现有路由协议部署有任何影响。

1.1. Conventions Used in This Document
1.1. 本文件中使用的公约

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。

The reader is assumed to be familiar with the terminology and requirements developed in [RFC4258] and the evaluation outcomes detailed in [RFC4652].

假定读者熟悉[RFC4258]中制定的术语和要求以及[RFC4652]中详述的评估结果。

General ASON terminology is provided in Appendix A. ASON routing terminology is described in Appendix B.

一般ASON术语见附录A。ASON路由术语见附录B。

2. Routing Areas, OSPF Areas, and Protocol Instances
2. 路由区域、OSPF区域和协议实例

An ASON routing area (RA) represents a partition of the data plane, and its identifier is used within the control plane as the representation of this partition.

ASON路由区域(RA)表示数据平面的分区,其标识符在控制平面内用作该分区的表示。

RAs are arranged in hierarchical levels such that any one RA may contain multiple other RAs, and is wholly contained by a single RA. Thus, an RA may contain smaller RAs inter-connected by links. The limit of the subdivision results in an RA that contains just two sub-networks interconnected by a single link.

RA被安排在分层级别中,使得任何一个RA可以包含多个其他RA,并且完全由单个RA包含。因此,RA可以包含通过链路相互连接的较小的RAs。细分的限制导致RA仅包含由单个链路互连的两个子网络。

An ASON RA can be mapped to an OSPF area, but the hierarchy of ASON RA levels does not map to the hierarchy of OSPF routing areas. Instead, successive hierarchical levels of RAs MUST be represented by separate instances of the protocol. Thus, inter-level routing information exchange (as described in Section 6) involves the export and import of routing information between protocol instances.

ASON RA可以映射到OSPF区域,但ASON RA级别的层次结构不映射到OSPF路由区域的层次结构。相反,RAs的连续分层级别必须由协议的单独实例表示。因此,层间路由信息交换(如第6节所述)涉及协议实例之间路由信息的导出和导入。

An ASON RA may therefore be identified by the combination of its OSPF instance identifier and its OSPF area identifier. With proper and careful network-wide configuration, this can be achieved using just the OSPF area identifier, and this process is RECOMMENDED in this document. These concepts and the subsequent handling of network reconfiguration is discussed in Section 6.

因此,可以通过其OSPF实例标识符和OSPF区域标识符的组合来识别ASON RA。通过适当和仔细的网络范围配置,仅使用OSPF区域标识符就可以实现这一点,本文档建议使用此过程。第6节讨论了这些概念以及网络重构的后续处理。

3. Reachability
3. 可达性

In order to advertise blocks of reachable address prefixes, a summarization mechanism is introduced that complements the techniques described in [RFC5786].

为了公布可到达地址前缀块,引入了一种摘要机制,以补充[RFC5786]中描述的技术。

This extension takes the form of a network mask (a 32-bit number indicating the range of IP addresses residing on a single IP network/subnet). The set of local addresses is carried in an OSPFv2 TE LSA Node Attribute TLV (a specific sub-TLV is defined per address family, i.e., IPv4 and IPv6, used as network-unique identifiers).

此扩展采用网络掩码的形式(32位数字,表示驻留在单个IP网络/子网上的IP地址范围)。本地地址集包含在OSPFv2 TE LSA节点属性TLV中(每个地址族定义一个特定的子TLV,即IPv4和IPv6,用作网络唯一标识符)。

The proposed solution is to advertise the local address prefixes of a router as new sub-TLVs of the (OSPFv2 TE LSA) Node Attribute top-level TLV. This document defines the following sub-TLVs:

建议的解决方案是将路由器的本地地址前缀作为(OSPFv2 TE LSA)节点属性顶级TLV的新子TLV进行公布。本文件定义了以下子TLV:

- Node IPv4 Local Prefix sub-TLV: Length: variable - Node IPv6 Local Prefix sub-TLV: Length: variable

- 节点IPv4本地前缀子TLV:长度:变量-节点IPv6本地前缀子TLV:长度:变量

3.1. Node IPv4 Local Prefix Sub-TLV
3.1. 节点IPv4本地前缀子TLV

The Type field of the Node IPv4 Local Prefix sub-TLV is assigned a value in the range 32768-32777 agreed to by all participants in the experiment. The Value field of this sub-TLV contains one or more local IPv4 prefixes. The Length is measured in bytes and, as defined in [RFC3630], reports the length in bytes of the Value part of the sub-TLV. It is set to 8 x n, where n is the number of local IPv4 prefixes included in the sub-TLV.

节点IPv4本地前缀子TLV的类型字段被分配一个值,该值的范围为32768-32777,实验中的所有参与者都同意该值。此子TLV的值字段包含一个或多个本地IPv4前缀。长度以字节为单位测量,如[RFC3630]中所定义,报告子TLV值部分的长度(以字节为单位)。它设置为8 x n,其中n是子TLV中包含的本地IPv4前缀数。

The Node IPv4 Local Prefix sub-TLV has the following format:

节点IPv4本地前缀子TLV具有以下格式:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |         Length (8 x n)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         Network Mask 1                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         IPv4 Address 1                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    //                             ...                              //
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         Network Mask n                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         IPv4 Address n                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |         Length (8 x n)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         Network Mask 1                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         IPv4 Address 1                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    //                             ...                              //
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         Network Mask n                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         IPv4 Address n                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Network mask i: A 32-bit number indicating the IPv4 address mask for the ith advertised destination prefix.

网络掩码i:指示第i个播发目标前缀的IPv4地址掩码的32位数字。

Each <Network mask, IPv4 Address> pair listed as part of this sub-TLV represents a reachable destination prefix hosted by the advertising Router ID.

作为此子TLV的一部分列出的每个<网络掩码,IPv4地址>对表示由播发路由器ID承载的可到达目的地前缀。

The local addresses that can be learned from Opaque TE LSAs (that is, the router address and TE interface addresses) SHOULD NOT be advertised in the node IPv4 Local Prefix sub-TLV.

不应在节点IPv4本地前缀子TLV中公布可从不透明TE LSA学习的本地地址(即路由器地址和TE接口地址)。

3.2. Node IPv6 Local Prefix Sub-TLV
3.2. 节点IPv6本地前缀子TLV

The Type field of the Node IPv6 Local Prefix sub-TLV is assigned a value in the range 32768-32777 agreed to by all participants in the experiment. The Value field of this sub-TLV contains one or more local IPv6 prefixes. IPv6 Prefix representation uses [RFC5340], Section A.4.1.

节点IPv6本地前缀子TLV的Type字段被分配一个值,该值的范围为32768-32777,实验中的所有参与者都同意该值。此子TLV的值字段包含一个或多个本地IPv6前缀。IPv6前缀表示使用[RFC5340],第A.4.1节。

The Node IPv6 Local Prefix sub-TLV has the following format:

节点IPv6本地前缀子TLV具有以下格式:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | PrefixLength  | PrefixOptions |             (0)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                     IPv6 Address Prefix 1                     |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   //                             ...                              //
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | PrefixLength  | PrefixOptions |             (0)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                     IPv6 Address Prefix n                     |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | PrefixLength  | PrefixOptions |             (0)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                     IPv6 Address Prefix 1                     |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   //                             ...                              //
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | PrefixLength  | PrefixOptions |             (0)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                     IPv6 Address Prefix n                     |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Length reports the length of the Value part of the sub-TLV in bytes. It is set to the sum over all of the local prefixes included in the sub-TLV of (4 + (number of 32-bit words in the prefix) * 4).

Length报告子TLV值部分的长度(字节)。它被设置为子TLV中包括的所有本地前缀的总和(4+(前缀中32位字的数量)*4)。

The encoding of each prefix potentially using fewer than four 32-bit words is described below.

下面描述可能使用少于四个32位字的每个前缀的编码。

PrefixLength: Length in bits of the prefix.

前缀长度:前缀的位长度。

PrefixOptions: 8-bit field describing various capabilities associated with the prefix (see [RFC5340], Section A.4.2).

前缀选项:描述与前缀相关的各种功能的8位字段(参见[RFC5340],第A.4.2节)。

IPv6 Address Prefix i: The ith IPv6 address prefix in the list. Each prefix is encoded in an even multiple of 32-bit words using the fewest pairs of 32-bit words necessary to include the entire prefix. Thus, each prefix is encoded in either 64 or 128 bits with trailing zero bit padding as necessary.

IPv6地址前缀i:列表中的第i个IPv6地址前缀。使用包含整个前缀所需的最少32位字对,将每个前缀编码为32位字的偶数倍。因此,每个前缀以64位或128位编码,并根据需要使用尾随零位填充。

The local addresses that can be learned from TE LSAs, i.e., router address and TE interface addresses, SHOULD NOT be advertised in the node IPv6 Local Prefix sub-TLV.

可以从TE LSA学习的本地地址,即路由器地址和TE接口地址,不应在节点IPv6本地前缀子TLV中公布。

4. Link Attribute
4. 链接属性

[RFC4652] provides a map between link attributes and characteristics and their representation in sub-TLVs of the top-level Link TLV of the Opaque TE LSA [RFC3630] and [RFC4203], with the exception of the local adaptation (see below). Advertisement of this information SHOULD be supported on a per-layer basis, i.e., one Opaque TE LSA per switching capability (and per bandwidth granularity, e.g., low-order virtual container and high-order virtual container).

[RFC4652]提供不透明TE LSA[RFC3630]和[RFC4203]的顶级链路TLV的子TLV中链路属性和特征及其表示之间的映射,本地适配除外(见下文)。应在每层的基础上支持此信息的公布,即,每个交换能力(以及每个带宽粒度,例如,低阶虚拟容器和高阶虚拟容器)一个不透明TE LSA。

4.1. Local Adaptation
4.1. 局部适应

Local adaptation is defined as a TE link attribute (i.e., sub-TLV) that describes the cross/inter-layer relationships.

局部适配定义为描述跨层/层间关系的TE链路属性(即子TLV)。

The Interface Switching Capability Descriptor (ISCD) TE Attribute [RFC4202] identifies the ability of the TE link to support cross-connection to another link within the same layer, and the ability to use a locally terminated connection that belongs to one layer as a data link for another layer (adaptation capability). However, the information associated with the ability to terminate connections within that layer (referred to as the termination capability) is embedded with the adaptation capability.

接口交换能力描述符(ISCD)TE属性[RFC4202]标识TE链路支持交叉连接到同一层内另一链路的能力,以及使用属于一层的本地终止连接作为另一层的数据链路的能力(自适应能力)。然而,与该层内终止连接的能力(称为终止能力)相关联的信息嵌入了自适应能力。

For instance, a link between two optical cross-connects will contain at least one ISCD attribute describing the lambda switching capable (LSC) switching capability; whereas a link between an optical cross-connect and an IP/MPLS LSR will contain at least two ISCD attributes: one for the description of the LSC termination capability and one for the packet switching capable (PSC) adaptation capability.

例如,两个光交叉连接之间的链路将包含描述lambda交换能力(LSC)交换能力的至少一个ISCD属性;然而,光交叉连接和IP/MPLS LSR之间的链路将包含至少两个ISCD属性:一个用于描述LSC终止能力,另一个用于分组交换能力(PSC)自适应能力。

In OSPFv2, the Interface Switching Capability Descriptor (ISCD) is a sub-TLV (of type 15) of the top-level Link TLV (of type 2) [RFC4203].

在OSPFv2中,接口交换能力描述符(ISCD)是顶级链路TLV(类型2)[RFC4203]的子TLV(类型15)。

The adaptation and termination capabilities are advertised using two separate ISCD sub-TLVs within the same top-level Link TLV.

在同一顶级链路TLV内,使用两个单独的ISCD子TLV公布适配和终止能力。

Per [RFC4202] and [RFC4203], an interface MAY have more than one ISCD sub-TLV. Hence, the corresponding advertisements should not result in any compatibility issues.

根据[RFC4202]和[RFC4203],一个接口可能有多个ISCD子TLV。因此,相应的广告不应导致任何兼容性问题。

Further refinement of the ISCD sub-TLV for multi-layer networks is outside the scope of this document.

多层网络ISCD子TLV的进一步完善不在本文件范围内。

4.2. Bandwidth Accounting
4.2. 带宽计费

GMPLS routing defines an Interface Switching Capability Descriptor (ISCD) that delivers, among other things, information about the (maximum/minimum) bandwidth per priority that a Label Switched Path (LSP) can make use of. Per [RFC4202] and [RFC4203], one or more ISCD sub-TLVs can be associated with an interface. This information, combined with the Unreserved Bandwidth (sub-TLV defined in [RFC3630], Section 2.5.8), provides the basis for bandwidth accounting.

GMPLS路由定义了一个接口交换能力描述符(ISCD),该描述符提供标签交换路径(LSP)可以使用的每个优先级的(最大/最小)带宽信息。根据[RFC4202]和[RFC4203],一个或多个ISCD子TLV可与接口相关联。该信息与未保留带宽(第2.5.8节[RFC3630]中定义的子TLV)相结合,为带宽核算提供了基础。

In the ASON context, additional information may be included when the representation and information in the other advertised fields are not sufficient for a specific technology (e.g., SDH). The definition of technology-specific information elements is beyond the scope of this document. Some technologies will not require additional information beyond what is already defined in [RFC3630], [RFC4202], and [RFC4203].

在ASON上下文中,当其他广告字段中的表示和信息不足以用于特定技术(例如SDH)时,可以包括附加信息。技术特定信息元素的定义超出了本文件的范围。除[RFC3630]、[RFC4202]和[RFC4203]中已经定义的信息外,某些技术不需要其他信息。

5. Routing Information Scope
5. 路由信息范围
5.1. Terminology and Identification
5.1. 术语和识别

The definition of short-hand terminology introduced in [RFC4652] is repeated here for clarity.

为清晰起见,此处重复[RFC4652]中介绍的速记术语定义。

- Pi is a physical (bearer/data/transport plane) node.

- Pi是一个物理(承载/数据/传输平面)节点。

- Li is a logical control plane entity that is associated to a single data plane (abstract) node. Each Li is identified by a unique TE Router ID. The latter is a control plane identifier, defined as the Router Address top-level TLV of the Type 1 TE LSA [RFC3630].

- Li是与单个数据平面(抽象)节点关联的逻辑控制平面实体。每个Li由唯一的TE路由器ID标识。后者是控制平面标识符,定义为类型1 TE LSA[RFC3630]的路由器地址顶级TLV。

Note: The Router Address top-level TLV definition, processing, and usage remain per [RFC3630]. This TLV specifies a stable IP address of the advertising router (Ri) that is always reachable if there is any IP connectivity to it (e.g., via the Data Communication Network). Moreover, each advertising router advertises a unique, reachable IP address for each Pi on behalf of which it makes advertisements.

注:路由器地址顶级TLV定义、处理和使用仍然符合[RFC3630]。该TLV指定了广告路由器(Ri)的稳定IP地址,如果存在任何IP连接(例如,通过数据通信网络),则该地址始终可访问。此外,每个广告路由器为其进行广告的每个Pi广告一个唯一的、可访问的IP地址。

- Ri is a logical control plane entity that is associated to a control plane "router". The latter is the source for topology information that it generates and shares with other control plane "routers". The Ri is identified by the (advertising) Router ID (32-bit) [RFC2328].

- Ri是与控制平面“路由器”关联的逻辑控制平面实体。后者是拓扑信息的来源,它生成拓扑信息并与其他控制平面“路由器”共享。Ri由(广告)路由器ID(32位)[RFC2328]标识。

The Router ID, which is represented by Ri and which corresponds to the RC-ID [RFC4258], does not enter into the identification of the logical entities representing the data plane resources such as links. The Routing Database (RDB) is associated to the Ri.

由Ri表示且对应于RC-ID[RFC4258]的路由器ID不进入表示数据平面资源(例如链路)的逻辑实体的标识。路由数据库(RDB)与Ri关联。

Note: Aside from the Li/Pi mappings, these identifiers are not assumed to be in a particular entity relationship except that the Ri may have multiple Lis in its scope. The relationship between Ri and Li is simple at any moment in time: an Li may be advertised by only one Ri at any time. However, an Ri may advertise a set of one or more Lis. Hence, the OSPFv2 routing protocol must support a single Ri advertising on behalf of more than one Li.

注:除了Li/Pi映射之外,这些标识符不被假定在特定的实体关系中,除非Ri在其范围内可能有多个Lis。Ri和Li之间的关系在任何时候都很简单:一个Li在任何时候都只能由一个Ri发布广告。然而,Ri可以公布一组一个或多个li。因此,OSPFv2路由协议必须支持代表多个Li的单个Ri广告。

5.2. Link Advertisement (Local and Remote TE Router ID Sub-TLV)
5.2. 链路通告(本地和远程TE路由器ID子TLV)

A Router ID (Ri) advertising on behalf multiple TE Router IDs (Lis) creates a 1:N relationship between the Router ID and the TE Router ID. As the link local and link remote (unnumbered) ID association is not unique per node (per Li unicity), the advertisement needs to indicate the remote Lj value and rely on the initial discovery process to retrieve the [Li;Lj] relationship. In brief, as unnumbered links have their ID defined on a per-Li basis, the remote Lj needs to be identified to scope the link remote ID to the local Li. Therefore, the routing protocol MUST be able to disambiguate the advertised TE links so that they can be associated with the correct TE Router ID.

代表多个TE路由器ID(Lis)发布的路由器ID(Ri)在路由器ID和TE路由器ID之间创建1:N关系。由于链路本地和链路远程(未编号)ID关联在每个节点(每个Li单元)上不唯一,播发需要指示远程Lj值,并依赖初始发现过程来检索[Li;Lj]关系。简言之,由于未编号的链路在每个Li的基础上定义了它们的ID,因此需要识别远程Lj以将链路远程ID限定到本地Li。因此,路由协议必须能够消除播发的TE链路的歧义,以便它们能够与正确的TE路由器ID相关联。

For this purpose, a new sub-TLV of the (OSPFv2 TE LSA) top-level Link TLV is introduced that defines the Local and Remote TE Router ID.

为此,引入了(OSPFv2 TE LSA)顶级链路TLV的新子TLV,该TLV定义了本地和远程TE路由器ID。

The Type field of the Local and Remote TE Router ID sub-TLV is assigned a value in the range 32768-32777 agreed to by all participants in the experiment. The Length field takes the value 8. The Value field of this sub-TLV contains 4 octets of the Local TE Router Identifier followed by 4 octets of the Remote TE Router Identifier. The value of the Local and Remote TE Router Identifier SHOULD NOT be set to 0.

本地和远程TE路由器ID子TLV的类型字段被分配了一个值,该值的范围为32768-32777,实验中的所有参与者都同意该值。长度字段的值为8。此子TLV的值字段包含本地TE路由器标识符的4个八位字节,后跟远程TE路由器标识符的4个八位字节。本地和远程TE路由器标识符的值不应设置为0。

The format of the Local and Remote TE Router ID sub-TLV is:

本地和远程TE路由器ID子TLV的格式为:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |          Length (8)           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Local TE Router Identifier                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Remote TE Router Identifier                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |          Length (8)           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Local TE Router Identifier                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Remote TE Router Identifier                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

This sub-TLV is only required to be included as part of the top-level Link TLV if the Router ID is advertising on behalf of more than one TE Router ID. In any other case, this sub-TLV SHOULD be omitted except if the operator plans to start off with 1 Li and progressively add more Lis (under the same Ri) such as to maintain consistency.

仅当路由器ID代表多个TE路由器ID进行广告时,才需要将此子TLV作为顶级链路TLV的一部分。在任何其他情况下,应省略此子TLV,除非运营商计划从1个Li开始,并逐步添加更多Li(在同一Ri下),以保持一致性。

Note: The Link ID sub-TLV that identifies the other end of the link (i.e., Router ID of the neighbor for point-to-point links) MUST appear exactly once per Link TLV. This sub-TLV MUST be processed as defined in [RFC3630].

注意:标识链路另一端的链路ID子TLV(即点到点链路的邻居的路由器ID)必须在每个链路TLV上精确显示一次。必须按照[RFC3630]中的定义处理该子TLV。

5.3. Reachability Advertisement (Local TE Router ID sub-TLV)
5.3. 可达性广告(本地TE路由器ID子TLV)

When the Router ID is advertised on behalf of multiple TE Router IDs (Lis), the routing protocol MUST be able to associate the advertised reachability information with the correct TE Router ID.

当代表多个TE路由器ID(Lis)通告路由器ID时,路由协议必须能够将通告的可达性信息与正确的TE路由器ID相关联。

For this purpose, a new sub-TLV of the (OSPFv2 TE LSA) top-level Node Attribute TLV is introduced. This TLV associates the local prefixes (see above) to a given TE Router ID.

为此,引入了(OSPFv2 TE LSA)顶级节点属性TLV的一个子TLV。该TLV将本地前缀(见上文)与给定的TE路由器ID相关联。

The Type field of the Local TE Router ID sub-TLV is assigned a value in the range 32768-32777 agreed to by all participants in the experiment. The Length field takes the value 4. The Value field of this sub-TLV contains the Local TE Router Identifier [RFC3630] encoded over 4 octets.

本地TE路由器ID子TLV的类型字段被分配一个值,该值的范围为32768-32777,该值由实验中的所有参与者同意。“长度”字段的值为4。此子TLV的值字段包含通过4个八位字节编码的本地TE路由器标识符[RFC3630]。

The format of the Local TE Router ID sub-TLV is:

本地TE路由器ID子TLV的格式为:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |          Length (4)           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Local TE Router Identifier                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |          Length (4)           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Local TE Router Identifier                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

This sub-TLV is only required to be included as part of the Node Attribute TLV if the Router ID is advertising on behalf of more than one TE Router ID. In any other case, this sub-TLV SHOULD be omitted.

如果路由器ID代表多个TE路由器ID发布广告,则仅需要将此子TLV作为节点属性TLV的一部分包含。在任何其他情况下,应忽略此子TLV。

6. Routing Information Dissemination
6. 路由信息传播

An ASON routing area (RA) represents a partition of the data plane, and its identifier is used within the control plane as the representation of this partition. An RA may contain smaller RAs inter-connected by links. The limit of the subdivision results is an RA that contains two sub-networks interconnected by a single link. ASON RA levels do not reflect routing protocol levels (such as OSPF areas).

ASON路由区域(RA)表示数据平面的分区,其标识符在控制平面内用作该分区的表示。RA可以包含通过链路相互连接的较小RA。细分结果的限制是一个RA,它包含由单个链路互连的两个子网络。ASON RA级别不反映路由协议级别(如OSPF区域)。

Successive hierarchical levels of RAs can be represented by separate instances of the protocol.

RAs的连续分层级别可以由协议的单独实例表示。

Routing controllers (RCs) supporting RAs disseminate information downward and upward in this hierarchy. The vertical routing information dissemination mechanisms described in this section do not introduce or imply a new OSPF routing area hierarchy. RCs supporting RAs at multiple levels are structured as separate OSPF instances with routing information exchanges between levels described by import and export rules operating between OSPF instances.

支持RAs的路由控制器(RCs)在此层次结构中向下和向上传播信息。本节中描述的垂直路由信息传播机制不引入或暗示新的OSPF路由区域层次结构。在多个级别上支持RAs的RCs被构造为单独的OSPF实例,各级别之间的路由信息交换由OSPF实例之间操作的导入和导出规则描述。

The implication is that an RC that performs import/export of routing information as described in this document does not implement an Area Border Router (ABR) functionality.

这意味着,如本文所述,执行路由信息导入/导出的RC不实现区域边界路由器(ABR)功能。

6.1. Import/Export Rules
6.1. 进出口规则

RCs supporting RAs disseminate information upward and downward in the hierarchy by importing/exporting routing information as Opaque TE LSAs (Opaque Type 1) of LS Type 10. The information that MAY be exchanged between adjacent levels includes the Router Address, Link, and Node Attribute top-level TLVs.

支持RAs的RCs通过将路由信息作为LS类型10的不透明TE LSA(不透明类型1)导入/导出,在层次结构中向上和向下传播信息。可在相邻级别之间交换的信息包括路由器地址、链路和节点属性顶级TLV。

The Opaque TE LSA import/export rules are governed as follows:

不透明TE LSA导入/导出规则的管理如下:

- If the export target interface is associated with the same RA as is associated with the import interface, the Opaque LSA MUST NOT be imported.

- 如果导出目标接口与导入接口关联的RA相同,则不得导入不透明LSA。

- If a match is found between the advertising Router ID in the header of the received Opaque TE LSA and one of the Router IDs belonging to the RA of the export target interface, the Opaque LSA MUST NOT be imported.

- 如果在接收到的不透明TE LSA的报头中的播发路由器ID与属于导出目标接口RA的其中一个路由器ID之间发现匹配,则不得导入不透明LSA。

- If these two conditions are not met, the Opaque TE LSA MAY be imported according to local policy. If imported, the LSA MAY be disseminated according to local policy. If disseminated, the normal OSPF flooding rules MUST be followed and the advertising Router ID MUST be set to the importing router's Router ID.

- 如果不满足这两个条件,可根据当地政策进口不透明TE LSA。如果输入,LSA可根据当地政策进行分发。如果传播,必须遵循正常的OSPF泛洪规则,并且必须将播发路由器ID设置为导入路由器的路由器ID。

The imported/exported routing information content MAY be transformed, e.g., filtered or aggregated, as long as the resulting routing information is consistent. In particular, when more than one RC is bound to adjacent levels and both are allowed to import/export routing information, it is expected that these transformations are performed in a consistent manner. Definition of these policy-based mechanisms is outside the scope of this document.

导入/导出的路由信息内容可以被转换,例如,过滤或聚合,只要得到的路由信息是一致的。特别是,当一个以上的RC绑定到相邻级别,并且两个RC都被允许导入/导出路由信息时,这些转换应以一致的方式执行。这些基于策略的机制的定义超出了本文件的范围。

In practice, and in order to avoid scalability and processing overhead, routing information imported/exported downward/upward in the hierarchy is expected to include reachability information (see Section 3) and, upon strict policy control, link topology information.

实际上,为了避免可伸缩性和处理开销,在层次结构中向下/向上导入/导出的路由信息应包括可达性信息(参见第3节),并且在严格的策略控制下,还应包括链路拓扑信息。

6.2 Discovery and Selection
6.2 发现和选择
6.2.1. Upward Discovery and Selection
6.2.1. 向上发现和选择

In order to discover RCs that are capable of disseminating routing information up the routing hierarchy, the following capability descriptor bit is set in the OSPF Router Information Experimental Capabilities TLV (see Section 6.2.3) carried in the Router Information LSA ([RFC4970]).

为了发现能够向路由层次结构上传播路由信息的RCs,在路由器信息LSA([RFC4970])中携带的OSPF路由器信息实验能力TLV(见第6.2.3节)中设置了以下能力描述符位。

- U bit: When set, this flag indicates that the RC is capable of disseminating routing information upward to the adjacent level.

- U位:设置时,此标志表示RC能够向上传播路由信息到相邻级别。

In the case that multiple RCs are advertised from the same RA with their U bit set, the RC with the highest Router ID, among those RCs with the U bit set, SHOULD be selected as the RC for upward dissemination of routing information. The other RCs MUST NOT participate in the upward dissemination of routing information as long as the Opaque LSA information corresponding to the highest Router ID RC does not reach MaxAge. This mechanism prevents more than one RC advertising routing information upward in the routing hierarchy from the same RA.

如果从同一个RA播发多个具有U位集的RCs,则应选择具有U位集的RCs中具有最高路由器ID的RC作为向上传播路由信息的RC。只要对应于最高路由器ID RC的不透明LSA信息未达到最大值,其他RCs就不得参与路由信息的向上传播。该机制防止路由层次结构中来自同一RA的多个RC广告路由信息向上。

Note that if the information to allow the selection of the RC that will be used to disseminate routing information up the hierarchy from a specific RA cannot be discovered automatically, it MUST be manually configured.

请注意,如果无法自动发现允许选择将用于从特定RA向上传播层次结构路由信息的RC的信息,则必须手动配置该信息。

Once an RC has been selected, it remains unmodified even if an RC with a higher Router ID is introduced and advertises its capability to disseminate routing information upward the adjacent level (i.e., U bit set). This hysteresis mechanism prevents from disturbing the upward routing information dissemination process in case, e.g., of flapping.

一旦选择了RC,即使引入了具有更高路由器ID的RC并宣传其向上传播路由信息到相邻级别(即U位集)的能力,该RC仍保持不变。该滞后机制防止在例如拍打的情况下干扰向上路由信息传播过程。

6.2.2. Downward Discovery and Selection
6.2.2. 向下发现与选择

The same discovery mechanism is used for selecting the RC responsible for dissemination of routing information downward in the hierarchy. However, an additional restriction MUST be applied such that the RC selection process takes into account that an upper level may be adjacent to one or more lower (RA) levels. For this purpose, a specific TLV indexing the (lower) RA ID to which the RCs are capable of disseminating routing information is needed.

相同的发现机制用于选择负责在层次结构中向下传播路由信息的RC。但是,必须应用附加限制,以便RC选择过程考虑到上层可能与一个或多个下层(RA)相邻。为此,需要一个特定的TLV索引RCs能够向其传播路由信息的(较低的)RA ID。

The Downstream Associated RA ID TLV is carried in the OSPF Router Information LSA [RFC4970]. The Type field of the Downstream Associated RA ID TLV is assigned a value in the range 32768-32777 agreed to by all participants in the experiment. The Length of this TLV is n x 4 octets. The Value field of this sub-TLV contains the list of Associated RA IDs. Each Associated RA ID value is encoded following the OSPF area ID (32 bits) encoding rules defined in [RFC2328].

下游关联的RA ID TLV携带在OSPF路由器信息LSA[RFC4970]中。下游相关RA ID TLV的类型字段被分配一个范围32768-32777的值,该值由实验中所有参与者同意。这个TLV的长度是nx4个八位组。此子TLV的值字段包含关联RA ID的列表。每个关联的RA ID值按照[RFC2328]中定义的OSPF区域ID(32位)编码规则进行编码。

The format of the Downstream Associated RA ID TLV is:

下游关联RA ID TLV的格式为:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |         Length (4 x n)        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Associated RA ID 1                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   //                             ...                              //
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Associated RA ID n                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |         Length (4 x n)        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Associated RA ID 1                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   //                             ...                              //
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Associated RA ID n                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

To discover RCs that are capable of disseminating routing information downward through the routing hierarchy, the following capability descriptor bit is set in the OSPF Router Information Experimental Capabilities TLV (see Section 6.2.3) carried in the Router Information LSA ([RFC4970]).

为了发现能够通过路由层次向下传播路由信息的RCs,在路由器信息LSA([RFC4970])中携带的OSPF路由器信息实验能力TLV(见第6.2.3节)中设置以下能力描述符位。

Note that the Downstream Associated RA ID TLV MUST be present when the D bit is set.

注意,当设置D位时,下游关联的RA ID TLV必须存在。

- D bit: when set, this flag indicates that the RC is capable of disseminating routing information downward to the adjacent levels.

- D位:设置时,该标志表示RC能够将路由信息向下传播到相邻级别。

If multiple RCs are advertised for the same Associated RA ID, the RC with the highest Router ID, among the RCs with the D bit set, MUST be selected as the RC for downward dissemination of routing information. The other RCs for the same Associated RA ID MUST NOT participate in the downward dissemination of routing information as long as the Opaque LSA information corresponding to the highest Router ID RC does not reach MaxAge. This mechanism prevents more than one RC from advertising routing information downward through the routing hierarchy.

如果为相同的关联RA ID播发多个RCs,则必须选择具有D位集的RCs中具有最高路由器ID的RC作为向下传播路由信息的RC。只要对应于最高路由器ID RC的不透明LSA信息未达到最大值,则相同关联RA ID的其他RCs不得参与路由信息的向下传播。该机制防止多个RC通过路由层次向下发布路由信息。

Note that if the information to allow the selection of the RC that will be used to disseminate routing information down the hierarchy to a specific RA cannot be discovered automatically, it MUST be manually configured.

请注意,如果无法自动发现允许选择将用于沿层次结构向下传播路由信息到特定RA的RC的信息,则必须手动配置该信息。

The OSPF Router information Opaque LSA (Opaque type of 4, Opaque ID of 0) and its content, in particular the Router Informational Capabilities TLV [RFC4970] and TE Node Capability Descriptor TLV [RFC5073], MUST NOT be re-originated.

OSPF路由器信息不透明LSA(不透明类型为4,不透明ID为0)及其内容,尤其是路由器信息能力TLV[RFC4970]和TE节点能力描述符TLV[RFC5073],不得重新生成。

6.2.3. Router Information Experimental Capabilities TLV
6.2.3. 路由器信息实验能力

A new TLV is defined for inclusion in the Router Information LSA to carry experimental capabilities because the assignment policy for bits in the Router Informational Capabilities TLV is "Standards Action" [RFC5226] prohibiting its use from Experimental documents.

定义了一个新的TLV,用于包含在路由器信息LSA中,以承载实验能力,因为路由器信息能力TLV中位的分配策略是“标准行动”[RFC5226],禁止在实验文件中使用它。

The format of the Router Information Experimental Capabilities TLV is as follows:

路由器信息试验能力TLV的格式如下:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Type             |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Experimental Capabilities                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Type             |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Experimental Capabilities                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Type A value in the range 32768-32777 agreed to by all participants in the experiment.

键入一个实验所有参与者都同意的32768-32777范围内的值。

Length A 16-bit field that indicates the length of the value portion in octets and will be a multiple of 4 octets dependent on the number of capabilities advertised. Initially, the length will be 4, denoting 4 octets of informational capability bits.

长度一个16位字段,以八位字节表示值部分的长度,是4个八位字节的倍数,具体取决于播发的功能数量。最初,长度为4,表示信息能力位的4个八位字节。

Value A variable-length sequence of capability bits rounded to a multiple of 4 octets padded with undefined bits.

值功能位的可变长度序列,舍入为4个八位字节的倍数,并填充未定义的位。

The following experimental capability bits are assigned:

分配了以下实验能力位:

Bit Capabilities

比特能力

0 The U bit (see Section 6.2.1) 1 The D bit (see Section 6.2.2)

0 U位(见第6.2.1节)1 D位(见第6.2.2节)

6.3. Loop Prevention
6.3. 环路预防

When more than one RC is bound to an adjacent level of the hierarchy, and is configured or selected to redistribute routing information upward and downward, a specific mechanism is required to avoid looping of routing information. Looping is the re-introduction of routing information that has been advertised from the upper level back to the upper level. This specific case occurs, for example, when the RC advertising routing information downward in the hierarchy is not the same one that advertises routing upward in the hierarchy.

当多个RC绑定到层次结构的相邻级别,并且被配置或选择为向上和向下重新分配路由信息时,需要一种特定的机制来避免路由信息的循环。循环是将已从上层播发的路由信息重新引入上层。例如,当层次结构中向下的RC广告路由信息与层次结构中向上广告路由信息不同时,就会发生这种特定情况。

When these conditions are met, it is necessary to have a means by which an RC receiving an Opaque TE LSA imported/exported downward by an RC associated to the same RA does not import/export the content of this LSA back upward into the (same) upper level.

当满足这些条件时,有必要采用一种方法,使接收不透明TE LSA的RC(由与同一RA相关联的RC向下导入/导出)不会将该LSA的内容向上导入/导出到(相同)上层。

Note that configuration and operational simplification can be obtained when both functionalities are configured on a single RC (per pair of adjacent levels) fulfilling both roles. Figure 1 provides an example where such simplification applies.

请注意,当两个功能都配置在一个RC(每对相邻级别)上以实现两个角色时,可以实现配置和操作简化。图1提供了这样一个简化应用的示例。

              ....................................................
              .                                                  .
              .            RC_5 ------------ RC_6                .
              .             |                 |                  .
              .             |                 |            RA_Y  .
     Upper    .           *********         *********            .
     Layer    ............* RC_1a *.........* RC_2a *.............
        __________________* |     *_________* |     *__________________
              ............* RC_1b *...   ...* RC 2b *.............
     Lower    .           *********  .   .  *********            .
     Layer    .             |        .   .    |                  .
              .  RA_Z       |        .   .    |            RA_X  .
              .            RC_3      .   .   RC_4                .
              .                      .   .                       .
              ........................   .........................
        
              ....................................................
              .                                                  .
              .            RC_5 ------------ RC_6                .
              .             |                 |                  .
              .             |                 |            RA_Y  .
     Upper    .           *********         *********            .
     Layer    ............* RC_1a *.........* RC_2a *.............
        __________________* |     *_________* |     *__________________
              ............* RC_1b *...   ...* RC 2b *.............
     Lower    .           *********  .   .  *********            .
     Layer    .             |        .   .    |                  .
              .  RA_Z       |        .   .    |            RA_X  .
              .            RC_3      .   .   RC_4                .
              .                      .   .                       .
              ........................   .........................
        

Figure 1. Hierarchical Environment (Example)

图1。分层环境(示例)

In this case, the procedure described in this section MAY be omitted, as long as these conditions are permanently guaranteed. In all other cases, without exception, the procedure described in this section MUST be applied.

在这种情况下,只要这些条件得到永久保证,本节中描述的程序可以省略。在所有其他情况下,毫无例外,必须采用本节所述的程序。

6.3.1. Associated RA ID
6.3.1. 关联RA ID

We need some way of filtering the downward/upward re-originated Opaque TE LSA. Per [RFC5250], the information contained in Opaque LSAs may be used directly by OSPF. By adding the RA ID associated with the incoming routing information, the loop prevention problem can be solved.

我们需要一些方法来过滤向下/向上重新生成的不透明TE LSA。根据[RFC5250],OSPF可直接使用不透明LSA中包含的信息。通过添加与传入路由信息相关联的RA ID,可以解决环路预防问题。

This additional information, referred to as the Associated RA ID, MAY be carried in Opaque LSAs that include any of the following top-level TLVs:

该附加信息(称为相关RA ID)可在不透明LSA中携带,该LSA包括以下任何顶级TLV:

- Router Address top-level TLV - Link top-level TLV - Node Attribute top-level TLV

- 路由器地址顶级TLV-链路顶级TLV-节点属性顶级TLV

The Associated RA ID reflects the identifier of the area from which the routing information is received. For example, for a multi-level hierarchy, this identifier does not reflect the originating RA ID; it will reflect the RA from which the routing information is imported.

关联的RA ID反映从中接收路由信息的区域的标识符。例如,对于多级层次结构,该标识符不反映原始RA ID;它将反映从中导入路由信息的RA。

The Type field of the Associated RA ID sub-TLV is assigned a value in the range 32768-32777 agreed to by all participants in the experiment. The same value MUST be used for the Type regardless of which TLV the sub-TLV appears in.

相关RA ID子TLV的类型字段被分配一个值,该值的范围为32768-32777,该值由实验中的所有参与者同意。无论子TLV出现在哪个TLV中,类型都必须使用相同的值。

The Length of the Associated RA ID TLV is 4 octets. The Value field of this sub-TLV contains the Associated RA ID. The Associated RA ID value is encoded following the OSPF area ID (32 bits) encoding rules defined in [RFC2328].

相关RA ID TLV的长度为4个八位字节。此子TLV的值字段包含关联的RA ID。关联的RA ID值按照[RFC2328]中定义的OSPF区域ID(32位)编码规则进行编码。

The format of the Associated RA ID TLV is defined as follows:

相关RA ID TLV的格式定义如下:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |           Length (4)          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Associated RA ID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |           Length (4)          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Associated RA ID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
6.3.2. Processing
6.3.2. 处理

When fulfilling the rules detailed in Section 6.1, a given Opaque LSA is imported/exported downward or upward the routing hierarchy, and the Associated RA ID TLV is added to the received Opaque LSA list of TLVs such as to identify the area from which this routing information has been received.

当满足第6.1节中详述的规则时,将向下或向上导入/导出给定的不透明LSA路由层次结构,并将关联的RA ID TLV添加到接收到的TLV不透明LSA列表中,以识别接收到该路由信息的区域。

When the RC adjacent to the lower or upper routing level receives this Opaque LSA, the following rule is applied (in addition to the rule governing the import/export of Opaque LSAs as detailed in Section 6.1).

当与较低或较高路由级别相邻的RC接收到该不透明LSA时,将应用以下规则(除第6.1节详述的管理不透明LSA导入/导出的规则外)。

- If a match is found between the Associated RA ID of the received Opaque TE LSA and the RA ID belonging to the area of the export target interface, the Opaque TE LSA MUST NOT be imported.

- 如果在接收到的不透明TE LSA的关联RA ID和属于导出目标接口区域的RA ID之间找到匹配项,则不得导入不透明TE LSA。

- Otherwise, this Opaque LSA MAY be imported and disseminated downward or upward the routing hierarchy following the OSPF flooding rules.

- 否则,该不透明LSA可能会按照OSPF泛洪规则导入并向下或向上传播路由层次结构。

This mechanism ensures that no race condition occurs when the conditions depicted in Figure 2 are met.

该机制确保在满足图2所示的条件时不会出现竞争条件。

                           RC_5 ------------- RC_6
                            |                 |
                            |                 |            RA_Y
     Upper                *********         *********
     Layer    ............* RC_1a *.........* RC_2a *.............
        __________________* |     *_________* |     *__________________
              ............* RC_1b *.........* RC_2b *.............
     Lower                *********         *********
     Layer                  |                 |
                            |                 |            RA_X
                           RC_3 --- . . . --- RC_4
        
                           RC_5 ------------- RC_6
                            |                 |
                            |                 |            RA_Y
     Upper                *********         *********
     Layer    ............* RC_1a *.........* RC_2a *.............
        __________________* |     *_________* |     *__________________
              ............* RC_1b *.........* RC_2b *.............
     Lower                *********         *********
     Layer                  |                 |
                            |                 |            RA_X
                           RC_3 --- . . . --- RC_4
        

Figure 2. Race Condition Prevention (Example)

图2。种族状况预防(示例)

Assume that RC_1b is configured for exporting routing information upward toward RA_Y (upward the routing hierarchy) and that RC_2a is configured for exporting routing information toward RA_X (downward the routing hierarchy).

假设RC_1b配置为向上导出路由信息(向上导出路由层次结构),RC_2a配置为向上导出路由信息(向下导出路由层次结构)。

Assume that routing information advertised by RC_3 would reach RC_4 faster across RA_Y through hierarchy.

假设由RC_3发布的路由信息通过层次结构跨越RA_Y更快地到达RC_4。

If RC_2b is not able to prevent from importing that information, RC_4 may receive that information before the same advertisement would propagate in RA_X (from RC_3) to RC_4. For this purpose, RC_1a inserts the Associated RA X to the imported routing information from RA_X. Because RC_2b finds a match between the Associated RA ID (X) of the received Opaque TE LSA and the ID (X) of the RA of the export target interface, this LSA MUST NOT be imported.

如果RC_2b无法阻止导入该信息,则RC_4可能会在同一广告在RA_X(从RC_3)中传播到RC_4之前收到该信息。为此,RC_1a将关联的RA X插入到从RA_X导入的路由信息中。由于RC_2b发现接收到的不透明TE LSA的关联RA ID(X)与导出目标接口的RA ID(X)之间存在匹配,因此不得导入此LSA。

6.4. Resiliency
6.4. 弹性

OSPF creates adjacencies between neighboring routers for the purpose of exchanging routing information. After a neighbor has been discovered, bidirectional communication is ensured, and a routing adjacency is formed between RCs, loss of communication may result in partitioned OSPF areas and so in partitioned RAs.

OSPF在相邻路由器之间创建邻接,以交换路由信息。发现邻居后,确保双向通信,并在RCs之间形成路由邻接,通信丢失可能导致分区OSPF区域,从而导致分区RAs。

Consider for instance (see Figure 2) the case where RC_1a and RC_1b are configured for exchanging routing information downward and upward RA_Y, respectively, and that RC_2a and RC_2b are not configured for exchanging any routing information toward RA_X. If the communication between RC_1a and RC_2a is broken (due, e.g., to RC_5 - RC_6 communication failure), RA_Y could be partitioned.

例如,考虑(参见图2)RCY1A和RCY1B分别被配置用于向下和向上交换路由信息的情况,并且RCX2A和RCY2B不被配置为向RAIX交换任何路由信息。如果RCY1A和RCY2A之间的通信被破坏。(例如,由于RC_5-RC_6通信故障),可以对RA_Y进行分区。

In these conditions, it is RECOMMENDED that RC_2a be re-configurable such as to allow for exchanging routing information downward to RA_X. This reconfiguration MAY be performed manually or automatically. In

在这些情况下,建议重新配置RC_2a,以便允许向下交换路由信息至RA_X。此重新配置可手动或自动执行。在里面

the latter cases, automatic reconfiguration uses the mechanism described in Section 6.2 (forcing MaxAge of the corresponding opaque LSA information in case the originating RC becomes unreachable). Manual reconfiguration MUST be supported.

在后一种情况下,自动重新配置使用第6.2节中描述的机制(在原始RC变得不可访问的情况下强制最大化相应的不透明LSA信息)。必须支持手动重新配置。

6.5. Neighbor Relationship and Routing Adjacency
6.5. 邻居关系与路由邻接

It is assumed that (point-to-point) IP control channels are provisioned/configured between RCs belonging to the same routing level. Provisioning/configuration techniques are outside the scope of this document.

假设(点对点)IP控制信道在属于相同路由级别的RCs之间提供/配置。供应/配置技术不在本文档的范围内。

Once established, the OSPF Hello protocol is responsible for establishing and maintaining neighbor relationships. This protocol also ensures that communication between neighbors is bidirectional. Routing adjacency can subsequently be formed between RCs following mechanisms defined in [RFC2328].

一旦建立,OSPF Hello协议负责建立和维护邻居关系。该协议还确保邻居之间的通信是双向的。随后可按照[RFC2328]中定义的机制在RCs之间形成路由邻接。

6.6 Reconfiguration
6.6 重新配置

This section details the RA ID reconfiguration steps.

本节详细介绍了RA ID重新配置步骤。

Reconfiguration of the RA ID occurs when the RA ID is modified, e.g., from value Z to value X or Y (see Figure 2).

当RA ID被修改时,例如,从值Z到值X或Y,RA ID的重新配置发生(见图2)。

The process of reconfiguring the RA ID involves:

重新配置RA ID的过程包括:

- Disable the import/export of routing information from the upper and lower levels (to prevent any LS information update).

- 禁用从上层和下层导入/导出路由信息(以防止任何LS信息更新)。

- Change the RA ID of the local level RA from, e.g., Z to X or Y. Perform a Link State Database (LSDB) checksum on all routers to verify that LSDBs are consistent.

- 将本地级别RA的RA ID从Z更改为X或Y。在所有路由器上执行链路状态数据库(LSDB)校验和,以验证LSDB是否一致。

- Enable import of upstream and downstream routing information such as to re-synchronize local-level LSDBs from any LS information that may have occurred in an upper or a lower routing level.

- 启用上游和下游路由信息的导入,例如从可能发生在较高或较低路由级别中的任何LS信息重新同步本地级别LSDB。

- Enable export of routing information downstream such as to re-sync the downstream level with the newly reconfigured RA ID (as part of the re-advertised Opaque TE LSA).

- 启用下游路由信息的导出,例如将下游级别与新重新配置的RA ID重新同步(作为重新发布的不透明TE LSA的一部分)。

- Enable export of routing information upstream such as to re-sync the upstream level with the newly reconfigured RA ID (as part of the re-advertised Opaque TE LSA).

- 启用向上游导出路由信息,例如将上游级别与新重新配置的RA ID重新同步(作为重新发布的不透明TE LSA的一部分)。

Note that the re-sync operation needs to be carried out only between the directly adjacent upper and lower routing levels.

请注意,重新同步操作只需在直接相邻的上下路由级别之间执行。

7. OSPFv2 Scalability
7. OSPFv2可扩展性

- Routing information exchange upward/downward in the hierarchy between adjacent RAs SHOULD by default be limited to reachability information. In addition, several transformations such as prefix aggregation are RECOMMENDED when allowing the amount of information imported/exported by a given RC to be decreased without impacting consistency.

- 默认情况下,相邻RAs之间层次结构中向上/向下的路由信息交换应限于可达性信息。此外,当允许在不影响一致性的情况下减少给定RC导入/导出的信息量时,建议进行一些转换,例如前缀聚合。

- Routing information exchange upward/downward in the hierarchy involving TE attributes MUST be under strict policy control. Pacing and min/max thresholds for triggered updates are strongly RECOMMENDED.

- 涉及TE属性的层次结构中向上/向下的路由信息交换必须受到严格的策略控制。强烈建议为触发的更新设置速度和最小/最大阈值。

- The number of routing levels MUST be maintained under strict policy control.

- 路由级别的数量必须在严格的策略控制下保持。

8. Security Considerations
8. 安全考虑

This document specifies the contents and processing of Opaque LSAs in OSPFv2 [RFC2328]. Opaque TE and RI LSAs defined in this document are not used for SPF computation, and so have no direct effect on IP routing. Additionally, ASON routing domains are delimited by the usual administrative domain boundaries.

本文件规定了OSPFv2[RFC2328]中不透明LSA的内容和处理。本文中定义的不透明TE和RI LSAs不用于SPF计算,因此对IP路由没有直接影响。此外,ASON路由域由通常的管理域边界分隔。

Any mechanisms used for securing the exchange of normal OSPF LSAs can be applied equally to all Opaque TE and RI LSAs used in the ASON context. Authentication of OSPFv2 LSA exchanges (such as OSPF cryptographic authentication [RFC2328] and [RFC5709]) can be used to secure against passive attacks and provide significant protection against active attacks. [RFC5709] defines a mechanism for authenticating OSPF packets by making use of the HMAC algorithm in conjunction with the SHA family of cryptographic hash functions.

用于确保正常OSPF LSA交换安全的任何机制都可以平等地应用于ASON上下文中使用的所有不透明TE和RI LSA。OSPFv2 LSA交换的身份验证(如OSPF加密身份验证[RFC2328]和[RFC5709])可用于防止被动攻击,并为主动攻击提供重要保护。[RFC5709]定义了一种通过结合使用HMAC算法和SHA系列加密哈希函数对OSPF数据包进行身份验证的机制。

[RFC2154] adds 1) digital signatures to authenticate OSPF LSA data, 2) a certification mechanism for distribution of routing information, and 3) a neighbor-to-neighbor authentication algorithm to protect local OSPFv2 protocol exchanges.

[RFC2154]添加了1)数字签名来认证OSPF LSA数据,2)用于分发路由信息的认证机制,以及3)用于保护本地OSPFv2协议交换的邻居到邻居认证算法。

9. Experimental Code Points
9. 实验代码点

This document is classified as Experimental. It defines new TLVs and sub-TLVs for inclusion in OSPF LSAs. According to the assignment policies for the registries of code points for these TLVs and sub-TLVs, values must be assigned from the experimental ranges and must not be recorded by IANA or mentioned in this document.

本文件被归类为实验性文件。它定义了新的TLV和子TLV,以包含在OSPF LSA中。根据这些TLV和子TLV代码点注册的分配政策,必须从实验范围分配值,且不得由IANA记录或在本文件中提及。

The following sections summarize the TLVs and sub-TLVs concerned.

以下各节总结了相关的TLV和子TLV。

9.1. Sub-TLVs of the Link TLV
9.1. 链路TLV的子TLV

This document defines the following sub-TLVs of the Link TLV carried in the OSPF TE LSA:

本文件定义了OSPF TE LSA中所载链路TLV的以下子TLV:

- Local and Remote TE Router ID sub-TLV - Associated RA ID sub-TLV

- 本地和远程TE路由器ID子TLV-关联的RA ID子TLV

The defining text for code point assignment for sub-TLVs of the OSPF TE Link TLV says ([RFC3630]):

OSPF TE链路TLV子TLV代码点分配的定义文本说明([RFC3630]):

o Types in the range 10-32767 are to be assigned via Standards Action.

o 范围为10-32767的类型将通过标准行动进行分配。

o Types in the range 32768-32777 are for experimental use; these will not be registered with IANA, and MUST NOT be mentioned by RFCs.

o 32768-32777范围内的类型用于实验用途;这些将不会在IANA注册,RFC不得提及。

o Types in the range 32778-65535 are not to be assigned at this time.

o 此时不分配32778-65535范围内的类型。

That means that the new sub-TLVs must be assigned type values from the range 32768-32777. It is a matter for experimental implementations to assign their own code points, and to agree with cooperating implementations participating in the same experiments what values to use.

这意味着必须为新的子TLV分配范围为32768-32777的类型值。实验实现需要分配自己的代码点,并与参与相同实验的协作实现达成一致,使用什么值。

Note that the same value for the Associated RA ID sub-TLV MUST be used when it appears in the Link TLV, the Node Attribute TLV, and the Router Address TLV.

请注意,当关联的RA ID子TLV出现在链路TLV、节点属性TLV和路由器地址TLV中时,必须使用相同的值。

9.2. Sub-TLVs of the Node Attribute TLV
9.2. 节点属性TLV的子TLV

This document defines the following sub-TLVs of the Node Attribute TLV carried in the OSPF TE LSA.

本文档定义了OSPF TE LSA中携带的节点属性TLV的以下子TLV。

- Node IPv4 Local Prefix sub-TLV - Node IPv6 Local Prefix sub-TLV - Local TE Router ID sub-TLV - Associated RA ID sub-TLV

- 节点IPv4本地前缀子TLV-节点IPv6本地前缀子TLV-本地TE路由器ID子TLV-关联的RA ID子TLV

The defining text for code point assignment for sub-TLVs of the OSPF Node Attribute TLV says ([RFC5786]):

OSPF节点属性TLV的子TLV的代码点分配的定义文本表示([RFC5786]):

o Types in the range 3-32767 are to be assigned via Standards Action.

o 3-32767范围内的类型将通过标准行动进行分配。

o Types in the range 32768-32777 are for experimental use; these will not be registered with IANA, and MUST NOT be mentioned by RFCs.

o 32768-32777范围内的类型用于实验用途;这些将不会在IANA注册,RFC不得提及。

o Types in the range 32778-65535 are not to be assigned at this time. Before any assignments can be made in this range, there MUST be a Standards Track RFC that specifies IANA Considerations that covers the range being assigned.

o 此时不分配32778-65535范围内的类型。在此范围内进行任何分配之前,必须有一个标准跟踪RFC,指定涵盖所分配范围的IANA注意事项。

That means that the new sub-TLVs must be assigned type values from the range 32768-32777. It is a matter for experimental implementations to assign their own code points, and to agree with cooperating implementations participating in the same experiments what values to use.

这意味着必须为新的子TLV分配范围为32768-32777的类型值。实验实现需要分配自己的代码点,并与参与相同实验的协作实现达成一致,使用什么值。

Note that the same value for the Associated RA ID sub-TLV MUST be used when it appears in the Link TLV, the Node Attribute TLV, and the Router Address TLV.

请注意,当关联的RA ID子TLV出现在链路TLV、节点属性TLV和路由器地址TLV中时,必须使用相同的值。

9.3. Sub-TLVs of the Router Address TLV
9.3. 路由器地址TLV的子TLV

The OSPF Router Address TLV is defined in [RFC3630]. No sub-TLVs are defined in that document and there is no registry or allocation policy for sub-TLVs of the Router Address TLV.

OSPF路由器地址TLV在[RFC3630]中定义。该文档中未定义子TLV,路由器地址TLV的子TLV也没有注册表或分配策略。

This document defines the following new sub-TLV for inclusion in the OSPF Router Address TLV:

本文件定义了OSPF路由器地址TLV中包含的以下新子TLV:

- Associated RA ID sub-TLV

- 关联RA ID子TLV

Note that the same value for the Associated RA ID sub-TLV MUST be used when it appears in the Link TLV, the Node Attribute TLV, and the Router Address TLV. This is consistent with potential for a future definition of a registry with policies that match the other existing registries.

请注意,当关联的RA ID子TLV出现在链路TLV、节点属性TLV和路由器地址TLV中时,必须使用相同的值。这与将来使用与其他现有注册中心相匹配的策略定义注册中心的可能性是一致的。

9.4. TLVs of the Router Information LSA
9.4. 路由器信息LSA的TLV

This document defines two new TLVs to be carried in the Router Information LSA.

本文件定义了路由器信息LSA中要携带的两个新TLV。

- Downstream Associated RA ID TLV - Router Information Experimental Capabilities TLV

- 下游关联RA ID TLV-路由器信息实验能力TLV

The defining text for code point assignment for TLVs of the OSPF Router Information LSA says ([RFC4970]):

OSPF路由器信息LSA的TLV的代码点分配定义文本([RFC4970]):

o 1-32767 Standards Action.

o 1-32767标准行动。

o Types in the range 32768-32777 are for experimental use; these will not be registered with IANA and MUST NOT be mentioned by RFCs.

o 32768-32777范围内的类型用于实验用途;这些将不会在IANA注册,RFC不得提及。

o Types in the range 32778-65535 are reserved and are not to be assigned at this time. Before any assignments can be made in this range, there MUST be a Standards Track RFC that specifies IANA Considerations that covers the range being assigned.

o 32778-65535范围内的类型为保留类型,此时不进行分配。在此范围内进行任何分配之前,必须有一个标准跟踪RFC,指定涵盖所分配范围的IANA注意事项。

That means that the new TLVs must be assigned type values from the range 32768-32777. It is a matter for experimental implementations to assign their own code points, and to agree with cooperating implementations participating in the same experiments what values to use.

这意味着必须为新TLV分配范围为32768-32777的类型值。实验实现需要分配自己的代码点,并与参与相同实验的协作实现达成一致,使用什么值。

10. References
10. 工具书类
10.1. Normative References
10.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC2154] Murphy, S., Badger, M., and B. Wellington, "OSPF with Digital Signatures", RFC 2154, June 1997.

[RFC2154]Murphy,S.,Badger,M.,和B.Wellington,“具有数字签名的OSPF”,RFC 2154,1997年6月。

[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

[RFC2328]Moy,J.,“OSPF版本2”,STD 54,RFC 2328,1998年4月。

[RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2", RFC 3630, September 2003.

[RFC3630]Katz,D.,Kompella,K.,和D.Yeung,“OSPF版本2的交通工程(TE)扩展”,RFC 3630,2003年9月。

[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, October 2004.

[RFC3945]Mannie,E.,Ed.“通用多协议标签交换(GMPLS)体系结构”,RFC 39452004年10月。

[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, October 2005.

[RFC4202]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的路由扩展”,RFC 4202,2005年10月。

[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005.

[RFC4203]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的OSPF扩展”,RFC 4203,2005年10月。

[RFC4970] Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R., and S. Shaffer, "Extensions to OSPF for Advertising Optional Router Capabilities", RFC 4970, July 2007.

[RFC4970]Lindem,A.,Ed.,Shen,N.,Vasseur,JP.,Aggarwal,R.,和S.Shaffer,“用于宣传可选路由器功能的OSPF扩展”,RFC 49702007年7月。

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

[RFC5226]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。

[RFC5250] Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The OSPF Opaque LSA Option", RFC 5250, July 2008.

[RFC5250]Berger,L.,Bryskin,I.,Zinin,A.,和R.Coltun,“OSPF不透明LSA选项”,RFC 5250,2008年7月。

[RFC5340] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for IPv6", RFC 5340, July 2008.

[RFC5340]Coltun,R.,Ferguson,D.,Moy,J.,和A.Lindem,“IPv6的OSPF”,RFC 53402008年7月。

[RFC5786] Aggarwal, R. and K. Kompella, "Advertising a Router's Local Addresses in OSPF TE Extensions", RFC 5786, March 2010.

[RFC5786]Aggarwal,R.和K.Kompella,“在OSPF TE扩展中宣传路由器的本地地址”,RFC 5786,2010年3月。

10.2. Informative References
10.2. 资料性引用

[RFC4258] Brungard, D., Ed., "Requirements for Generalized Multi-Protocol Label Switching (GMPLS) Routing for the Automatically Switched Optical Network (ASON)", RFC 4258, November 2005.

[RFC4258]Brungard,D.,Ed.“自动交换光网络(ASON)的通用多协议标签交换(GMPLS)路由要求”,RFC 4258,2005年11月。

[RFC4652] Papadimitriou, D., Ed., Ong, L., Sadler, J., Shew, S., and D. Ward, "Evaluation of Existing Routing Protocols against Automatic Switched Optical Network (ASON) Routing Requirements", RFC 4652, October 2006.

[RFC4652]Papadimitriou,D.,Ed.,Ong,L.,Sadler,J.,Shew,S.,和D.Ward,“根据自动交换光网络(ASON)路由要求评估现有路由协议”,RFC 4652,2006年10月。

[RFC5073] Vasseur, J., Ed., and J. Le Roux, Ed., "IGP Routing Protocol Extensions for Discovery of Traffic Engineering Node Capabilities", RFC 5073, December 2007.

[RFC5073]Vasseur,J.,Ed.,和J.Le Roux,Ed.,“发现流量工程节点能力的IGP路由协议扩展”,RFC 5073,2007年12月。

[RFC5709] Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M., Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic Authentication", RFC 5709, October 2009.

[RFC5709]Bhatia,M.,Manral,V.,Fanto,M.,White,R.,Barnes,M.,Li,T.,和R.Atkinson,“OSPFv2 HMAC-SHA加密认证”,RFC 5709,2009年10月。

For information on the availability of ITU Documents, please see http://www.itu.int.

有关国际电联文件可用性的信息,请参见http://www.itu.int.

[G.7715] ITU-T Rec. G.7715/Y.1306, "Architecture and Requirements for the Automatically Switched Optical Network (ASON)", June 2002.

[G.7715]ITU-T Rec.G.7715/Y.1306,“自动交换光网络(ASON)的体系结构和要求”,2002年6月。

[G.7715.1] ITU-T Draft Rec. G.7715.1/Y.1706.1, "ASON Routing Architecture and Requirements for Link State Protocols", November 2003.

[G.7715.1]ITU-T建议草案G.7715.1/Y.1706.1,“ASON路由体系结构和链路状态协议要求”,2003年11月。

[G.805] ITU-T Rec. G.805, "Generic functional architecture of transport networks)", March 2000.

[G.805]ITU-T Rec.G.805,“传输网络的通用功能架构”,2000年3月。

[G.8080] ITU-T Rec. G.8080/Y.1304, "Architecture for the Automatically Switched Optical Network (ASON)," November 2001 (and Revision, January 2003).

[G.8080]ITU-T Rec.G.8080/Y.1304,“自动交换光网络(ASON)的体系结构”,2001年11月(修订版,2003年1月)。

11. Acknowledgements
11. 致谢

The author would like to thank Dean Cheng, Acee Lindem, Pandian Vijay, Alan Davey, Adrian Farrel, Deborah Brungard, and Ben Campbell for their useful comments and suggestions.

作者要感谢Cheng院长、Acee Lindem、Pandian Vijay、Alan Davey、Adrian Farrel、Deborah Brungard和Ben Campbell提出的有用意见和建议。

Lisa Dusseault and Jari Arkko provided useful comments during IESG review.

Lisa Dusseault和Jari Arkko在IESG审查期间提供了有用的意见。

Question 14 of Study Group 15 of the ITU-T provided useful and constructive input.

ITU-T第15研究组的问题14提供了有益和建设性的投入。

Appendix A. ASON Terminology
附录A.ASON术语

This document makes use of the following terms:

本文件使用了以下术语:

Administrative domain: (See Recommendation [G.805].) For the purposes of [G7715.1], an administrative domain represents the extent of resources that belong to a single player such as a network operator, a service provider, or an end-user. Administrative domains of different players do not overlap amongst themselves.

管理域:(见建议[G.805])在[G7715.1]中,管理域表示属于单个参与者(如网络运营商、服务提供商或最终用户)的资源范围。不同参与者的管理域之间不会重叠。

Control plane: performs the call control and connection control functions. Through signaling, the control plane sets up and releases connections, and may restore a connection in case of a failure.

控制平面:执行呼叫控制和连接控制功能。通过信令,控制平面建立和释放连接,并在发生故障时恢复连接。

(Control) Domain: represents a collection of (control) entities that are grouped for a particular purpose. The control plane is subdivided into domains matching administrative domains. Within an administrative domain, further subdivisions of the control plane are recursively applied. A routing control domain is an abstract entity that hides the details of the RC distribution.

(控制)域:表示为特定目的分组的(控制)实体的集合。控制平面细分为与管理域匹配的域。在管理域内,递归地应用控制平面的进一步细分。路由控制域是隐藏RC分发详细信息的抽象实体。

External NNI (E-NNI): interfaces are located between protocol controllers between control domains.

外部NNI(E-NNI):接口位于控制域之间的协议控制器之间。

Internal NNI (I-NNI): interfaces are located between protocol controllers within control domains.

内部NNI(I-NNI):接口位于控制域内的协议控制器之间。

Link: (See Recommendation G.805.) A "topological component" that describes a fixed relationship between a "subnetwork" or "access group" and another "subnetwork" or "access group". Links are not limited to being provided by a single server trail.

链接:(见建议G.805。)描述“子网”或“接入组”与另一“子网”或“接入组”之间固定关系的“拓扑组件”。链接不限于由单个服务器提供。

Management plane: performs management functions for the transport plane, the control plane, and the system as a whole. It also provides coordination between all the planes. The following management functional areas are performed in the management plane: performance, fault, configuration, accounting, and security management.

管理平面:对运输平面、控制平面和整个系统执行管理功能。它还提供所有平面之间的协调。在管理平面中执行以下管理功能区域:性能、故障、配置、记帐和安全管理。

Management domain: (See Recommendation G.805.) A management domain defines a collection of managed objects that are grouped to meet organizational requirements according to geography, technology, policy, or other structure, and for a number of functional areas such as configuration, security, (FCAPS), for the purpose of providing control in a consistent manner. Management domains can be disjoint, contained, or overlapping. As such, the resources

管理域:(见建议G.805。)管理域定义了管理对象的集合,这些对象根据地理位置、技术、策略或其他结构进行分组,以满足组织需求,并用于许多功能领域,如配置、安全(FCAP),为了以一致的方式提供控制。管理域可以是不相交的、包含的或重叠的。因此,资源

within an administrative domain can be distributed into several possible overlapping management domains. The same resource can therefore belong to several management domains simultaneously, but a management domain shall not cross the border of an administrative domain.

在一个管理域中,可以将其分布到多个可能重叠的管理域中。因此,同一资源可以同时属于多个管理域,但管理域不得跨越管理域的边界。

Subnetwork Point (SNP): The SNP is a control plane abstraction that represents an actual or potential transport plane resource. SNPs (in different subnetwork partitions) may represent the same transport resource. A one-to-one correspondence should not be assumed.

子网点(SNP):SNP是表示实际或潜在传输平面资源的控制平面抽象。SNP(在不同的子网分区中)可以表示相同的传输资源。不应假设一对一的对应关系。

Subnetwork Point Pool (SNPP): A set of SNPs that are grouped together for the purposes of routing.

子网点池(SNPP):为路由目的而分组在一起的一组SNP。

Termination Connection Point (TCP): A TCP represents the output of a Trail Termination function or the input to a Trail Termination Sink function.

终端连接点(TCP):TCP表示跟踪终端功能的输出或跟踪终端接收器功能的输入。

Transport plane: provides bidirectional or unidirectional transfer of user information, from one location to another. It can also provide transfer of some control and network management information. The transport plane is layered; it is equivalent to the Transport Network defined in Recommendation G.805.

传输平面:提供用户信息从一个位置到另一个位置的双向或单向传输。它还可以提供一些控制和网络管理信息的传输。运输机是分层的,;它相当于建议G.805中定义的传输网络。

User Network Interface (UNI): interfaces are located between protocol controllers between a user and a control domain. Note: There is no routing function associated with a UNI reference point.

用户网络接口(UNI):接口位于用户和控制域之间的协议控制器之间。注:没有与UNI参考点关联的路由功能。

Appendix B. ASON Routing Terminology
附录B.ASON路由术语

This document makes use of the following terms:

本文件使用了以下术语:

Routing Area (RA): an RA represents a partition of the data plane, and its identifier is used within the control plane as the representation of this partition. Per [G.8080], an RA is defined by a set of sub-networks, the links that interconnect them, and the interfaces representing the ends of the links exiting that RA. An RA may contain smaller RAs inter-connected by links. The limit of subdivision results in an RA that contains two sub-networks interconnected by a single link.

路由区域(RA):RA表示数据平面的分区,其标识符在控制平面内用作此分区的表示。根据[G.8080],RA由一组子网络、互连它们的链路以及代表退出RA的链路端部的接口定义。RA可以包含通过链路相互连接的较小RA。细分的限制导致RA包含由单个链路互连的两个子网络。

Routing Database (RDB): a repository for the local topology, network topology, reachability, and other routing information that is updated as part of the routing information exchange and may additionally contain information that is configured. The RDB may contain routing information for more than one routing area (RA).

路由数据库(RDB):本地拓扑、网络拓扑、可达性和其他路由信息的存储库,作为路由信息交换的一部分进行更新,还可能包含已配置的信息。RDB可能包含多个路由区域(RA)的路由信息。

Routing Components: ASON routing architecture functions. These functions can be classified as protocol independent (Link Resource Manager or LRM, Routing Controller or RC) or protocol specific (Protocol Controller or PC).

路由组件:ASON路由架构功能。这些功能可分为协议独立(链路资源管理器或LRM、路由控制器或RC)或协议特定(协议控制器或PC)。

Routing Controller (RC): handles (abstract) information needed for routing and the routing information exchange with peering RCs by operating on the RDB. The RC has access to a view of the RDB. The RC is protocol independent.

路由控制器(RC):通过在RDB上操作,处理路由所需的(抽象)信息以及与对等RCs的路由信息交换。RC可以访问RDB的视图。RC是独立于协议的。

Note: Since the RDB may contain routing information pertaining to multiple RAs (and possibly to multiple layer networks), the RCs accessing the RDB may share the routing information.

注意:由于RDB可能包含与多个RAs(以及可能与多层网络)相关的路由信息,因此访问RDB的RCs可能共享路由信息。

Link Resource Manager (LRM): supplies all the relevant component and TE link information to the RC. It informs the RC about any state changes of the link resources it controls.

链路资源管理器(LRM):向RC提供所有相关组件和TE链路信息。它将通知RC其控制的链路资源的任何状态更改。

Protocol Controller (PC): handles protocol-specific message exchanges according to the reference point over which the information is exchanged (e.g., E-NNI, I-NNI), and internal exchanges with the RC. The PC function is protocol dependent.

协议控制器(PC):根据交换信息的参考点(如e-NNI、I-NNI)处理特定于协议的消息交换,以及与RC的内部交换。PC功能取决于协议。

Author's Address

作者地址

Dimitri Papadimitriou Alcatel-Lucent Bell Copernicuslaan 50 B-2018 Antwerpen Belgium Phone: +32 3 2408491 EMail: dimitri.papadimitriou@alcatel-lucent.be

Dimitri Papadimitriou Alcatel-Lucent Bell Copernicuslaan 50 B-2018比利时安特卫普电话:+32 3 2408491电子邮件:Dimitri。papadimitriou@alcatel-朗讯