Network Working Group                                   JL. Le Roux, Ed.
Request for Comments: 5339                                France Telecom
Category: Informational                            D. Papadimitriou, Ed.
                                                          Alcatel-Lucent
                                                          September 2008
        
Network Working Group                                   JL. Le Roux, Ed.
Request for Comments: 5339                                France Telecom
Category: Informational                            D. Papadimitriou, Ed.
                                                          Alcatel-Lucent
                                                          September 2008
        

Evaluation of Existing GMPLS Protocols against Multi-Layer and Multi-Region Networks (MLN/MRN)

针对多层多区域网络(MLN/MRN)评估现有GMPLS协议

Status of This Memo

关于下段备忘

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。

Abstract

摘要

This document provides an evaluation of Generalized Multiprotocol Label Switching (GMPLS) protocols and mechanisms against the requirements for Multi-Layer Networks (MLNs) and Multi-Region Networks (MRNs). In addition, this document identifies areas where additional protocol extensions or procedures are needed to satisfy these requirements, and provides guidelines for potential extensions.

本文件针对多层网络(MLN)和多区域网络(MRN)的要求,对通用多协议标签交换(GMPLS)协议和机制进行了评估。此外,本文件确定了需要额外协议扩展或程序来满足这些要求的领域,并为潜在扩展提供了指南。

Table of Contents

目录

   1. Introduction ....................................................3
      1.1. Conventions Used in This Document ..........................4
   2. MLN/MRN Requirements Overview ...................................4
   3. Analysis ........................................................5
      3.1. Aspects of Multi-Layer Networks ............................5
           3.1.1. Support for Virtual Network Topology
                  Reconfiguration .....................................5
                  3.1.1.1. Control of FA-LSPs Setup/Release ...........5
                  3.1.1.2. Virtual TE Links ...........................6
                  3.1.1.3. Traffic Disruption Minimization
                           during FA Release ..........................8
                  3.1.1.4. Stability ..................................8
           3.1.2. Support for FA-LSP Attribute Inheritance ............9
           3.1.3. FA-LSP Connectivity Verification ....................9
           3.1.4. Scalability .........................................9
           3.1.5. Operations and Management of the MLN/MRN ...........10
                  3.1.5.1. MIB Modules ...............................10
                  3.1.5.2. OAM .......................................11
      3.2. Specific Aspects of Multi-Region Networks .................12
           3.2.1. Support for Multi-Region Signaling .................12
           3.2.2. Advertisement of Adjustment Capacities .............13
   4. Evaluation Conclusion ..........................................16
      4.1. Traceability of Requirements ..............................16
   5. Security Considerations ........................................20
   6. Acknowledgments ................................................20
   7. References .....................................................21
      7.1. Normative References ......................................21
      7.2. Informative References ....................................21
   8. Contributors' Addresses ........................................23
        
   1. Introduction ....................................................3
      1.1. Conventions Used in This Document ..........................4
   2. MLN/MRN Requirements Overview ...................................4
   3. Analysis ........................................................5
      3.1. Aspects of Multi-Layer Networks ............................5
           3.1.1. Support for Virtual Network Topology
                  Reconfiguration .....................................5
                  3.1.1.1. Control of FA-LSPs Setup/Release ...........5
                  3.1.1.2. Virtual TE Links ...........................6
                  3.1.1.3. Traffic Disruption Minimization
                           during FA Release ..........................8
                  3.1.1.4. Stability ..................................8
           3.1.2. Support for FA-LSP Attribute Inheritance ............9
           3.1.3. FA-LSP Connectivity Verification ....................9
           3.1.4. Scalability .........................................9
           3.1.5. Operations and Management of the MLN/MRN ...........10
                  3.1.5.1. MIB Modules ...............................10
                  3.1.5.2. OAM .......................................11
      3.2. Specific Aspects of Multi-Region Networks .................12
           3.2.1. Support for Multi-Region Signaling .................12
           3.2.2. Advertisement of Adjustment Capacities .............13
   4. Evaluation Conclusion ..........................................16
      4.1. Traceability of Requirements ..............................16
   5. Security Considerations ........................................20
   6. Acknowledgments ................................................20
   7. References .....................................................21
      7.1. Normative References ......................................21
      7.2. Informative References ....................................21
   8. Contributors' Addresses ........................................23
        
1. Introduction
1. 介绍

Generalized MPLS (GMPLS) extends MPLS to handle multiple switching technologies: packet switching, layer-2 switching, TDM (Time Division Multiplexing) switching, wavelength switching, and fiber switching (see [RFC3945]). The Interface Switching Capability (ISC) concept is introduced for these switching technologies and is designated as follows: PSC (Packet Switch Capable), L2SC (Layer-2 Switch Capable), TDM capable, LSC (Lambda Switch Capable), and FSC (Fiber Switch Capable). The representation, in a GMPLS control plane, of a switching technology domain is referred to as a region [RFC4206]. A switching type describes the ability of a node to forward data of a particular data plane technology, and uniquely identifies a network region.

广义MPLS(GMPLS)扩展了MPLS以处理多种交换技术:分组交换、第二层交换、TDM(时分复用)交换、波长交换和光纤交换(参见[RFC3945])。为这些交换技术引入了接口交换能力(ISC)概念,并将其指定为:PSC(支持分组交换)、L2SC(支持第二层交换机)、TDM、LSC(支持Lambda交换机)和FSC(支持光纤交换机)。在GMPLS控制平面中,交换技术域的表示被称为区域[RFC4206]。交换类型描述节点转发特定数据平面技术数据的能力,并唯一标识网络区域。

A data plane switching layer describes a data plane switching granularity level. For example, LSC, TDM VC-11 and TDM VC-4-64c are three different layers. [RFC5212] defines a Multi-Layer Network (MLN) to be a Traffic Engineering (TE) domain comprising multiple data plane switching layers either of the same ISC (e.g., TDM) or different ISC (e.g., TDM and PSC) and controlled by a single GMPLS control plane instance. [RFC5212] further defines a particular case of MLNs. A Multi-Region Network (MRN) is defined as a TE domain supporting at least two different switching types (e.g., PSC and TDM), either hosted on the same device or on different ones, and under the control of a single GMPLS control plane instance.

数据平面交换层描述数据平面交换粒度级别。例如,LSC、TDM VC-11和TDM VC-4-64c是三个不同的层。[RFC5212]将多层网络(MLN)定义为流量工程(TE)域,包括相同ISC(例如TDM)或不同ISC(例如TDM和PSC)的多个数据平面交换层,并由单个GMPLS控制平面实例控制。[RFC5212]进一步定义了MLN的特定情况。多区域网络(MRN)被定义为支持至少两种不同交换类型(例如,PSC和TDM)的TE域,托管在同一设备上或不同设备上,并且在单个GMPLS控制平面实例的控制下。

The objectives of this document are to evaluate existing GMPLS mechanisms and protocols ([RFC3945], [RFC4202], [RFC3471], [RFC3473]) against the requirements for MLNs and MRNs, defined in [RFC5212]. From this evaluation, we identify several areas where additional protocol extensions and modifications are required in order to meet these requirements, and we provide guidelines for potential extensions.

本文件的目的是根据[RFC5212]中定义的MLN和MRN要求,评估现有的GMPLS机制和协议([RFC3945]、[RFC4202]、[RFC3471]、[RFC3473])。从这一评估中,我们确定了几个需要额外协议扩展和修改以满足这些要求的领域,并为潜在的扩展提供了指南。

A summary of MLN/MRN requirements is provided in Section 2. Then Section 3 evaluates whether current GMPLS protocols and mechanisms meet each of these requirements. When the requirements are not met by existing protocols, the document identifies whether the required mechanisms could rely on GMPLS protocols and procedure extensions, or whether it is entirely out of the scope of GMPLS protocols.

第2节提供了MLN/MRN要求的摘要。然后第3节评估当前的GMPLS协议和机制是否满足这些要求。当现有协议无法满足要求时,本文件确定所需机制是否可以依赖GMPLS协议和程序扩展,或者是否完全超出GMPLS协议的范围。

Note that this document specifically addresses GMPLS control plane functionality for MLN/MRN in the context of a single administrative control plane partition. Partitions of the control plane where separate layers are under distinct administrative control are for future study.

请注意,本文档在单个管理控制平面分区的上下文中专门讨论了MLN/MRN的GMPLS控制平面功能。控制平面的分区,其中独立的层处于不同的管理控制之下,供将来研究。

This document uses terminologies defined in [RFC3945], [RFC4206], and [RFC5212].

本文件使用[RFC3945]、[RFC4206]和[RFC5212]中定义的术语。

1.1. Conventions Used in This Document
1.1. 本文件中使用的公约

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

2. MLN/MRN Requirements Overview
2. MLN/MRN需求概述

Section 5 of [RFC5212] lists a set of functional requirements for Multi-Layer/Region Networks (MLN/MRN). These requirements are summarized below, and a mapping with sub-sections of [RFC5212] is provided.

[RFC5212]第5节列出了多层/区域网络(MLN/MRN)的一组功能要求。这些要求总结如下,并提供了[RFC5212]小节的映射。

Here is the list of requirements that apply to MLN (and thus to MRN):

以下是适用于MLN(因此也适用于MRN)的要求列表:

- Support for robust Virtual Network Topology (VNT) reconfiguration. This implies the following requirements:

- 支持强健的虚拟网络拓扑(VNT)重新配置。这意味着以下要求:

- Optimal control of Forwarding Adjacency Label Switched Path (FA-LSP) setup and release (Section 5.8.1 of [RFC5212]);

- 转发邻接标签交换路径(FA-LSP)设置和释放的优化控制(RFC5212第5.8.1节);

- Support for virtual TE links (Section 5.8.2 of [RFC5212]);

- 支持虚拟TE链路(RFC5212第5.8.2节);

- Minimization of traffic disruption during FA-LSP release (Section 5.5 of [RFC5212]);

- FA-LSP发布期间的交通中断最小化(RFC5212第5.5节);

- Stability (Section 5.4 of [RFC5212]);

- 稳定性(RFC5212第5.4节);

- Support for FA-LSP attribute inheritance (Section 5.6 of [RFC5212]);

- 支持FA-LSP属性继承(RFC5212第5.6节);

- Support for FA-LSP data plane connectivity verification (Section 5.9 of [RFC5212]);

- 支持FA-LSP数据平面连接验证(RFC5212第5.9节);

- MLN Scalability (Section 5.3 of [RFC5212]);

- MLN可扩展性(RFC5212第5.3节);

- MLN Operations and Management (OAM) (Section 5.10 of [RFC5212]);

- MLN运营和管理(OAM)(RFC5212第5.10节);

Here is the list of requirements that apply to MRN only:

以下是仅适用于MRN的要求列表:

- Support for Multi-Region signaling (Section 5.7 of [RFC5212]);

- 支持多区域信令(RFC5212第5.7节);

- Advertisement of the adjustment capacity (Section 5.2 of [RFC5212]);

- 调整能力广告(RFC5212第5.2节);

3. Analysis
3. 分析
3.1. Aspects of Multi-Layer Networks
3.1. 多层网络的几个方面
3.1.1. Support for Virtual Network Topology Reconfiguration
3.1.1. 支持虚拟网络拓扑重构

A set of lower-layer FA-LSPs provides a Virtual Network Topology (VNT) to the upper-layer [RFC5212]. By reconfiguring the VNT (FA-LSP setup/release) according to traffic demands between source and destination node pairs within a layer, network performance factors (such as maximum link utilization and residual capacity of the network) can be optimized. Such optimal VNT reconfiguration implies several mechanisms that are analyzed in the following sections.

一组下层FA LSP向上层[RFC5212]提供虚拟网络拓扑(VNT)。通过根据层内源节点对和目的节点对之间的业务需求重新配置VNT(FA-LSP设置/释放),可以优化网络性能因素(例如最大链路利用率和网络剩余容量)。这种优化的VNT重新配置意味着以下部分将分析几种机制。

Note that the VNT approach is just one possible approach to performing inter-layer Traffic Engineering.

请注意,VNT方法只是执行层间流量工程的一种可能方法。

3.1.1.1. Control of FA-LSPs Setup/Release
3.1.1.1. FA LSP设置/发布的控制

In a Multi-Layer Network, FA-LSPs are created, modified, and released periodically according to the change of incoming traffic demands from the upper layer.

在多层网络中,FA LSP根据上层传入流量需求的变化定期创建、修改和发布。

This implies a TE mechanism that takes into account the demands matrix, the TE topology, and potentially the current VNT, in order to compute and setup a new VNT.

这意味着TE机制考虑了需求矩阵、TE拓扑以及可能的当前VNT,以便计算和设置新的VNT。

Several functional building blocks are required to support such a TE mechanism:

需要几个功能构建块来支持这种TE机制:

- Discovery of TE topology and available resources.

- TE拓扑和可用资源的发现。

- Collection of upper-layer traffic demands.

- 收集上层流量需求。

- Policing and scheduling of VNT resources with regard to traffic demands and usage (that is, decision to setup/release FA-LSPs). The functional component in charge of this function is called a VNT Manager (VNTM) [PCE-INTER].

- 根据流量需求和使用情况(即决定设置/发布FA LSP)对VNT资源进行监控和调度。负责此功能的功能组件称为VNT管理器(VNTM)[PCE-INTER]。

- VNT Path Computation according to TE topology, potentially taking into account the old (existing) VNT in order to minimize changes. The functional component in charge of VNT computation may be distributed on network elements or may be performed on an external element (such as a Path Computation Element (PCE), [RFC4655]).

- 根据TE拓扑计算VNT路径,可能会考虑旧(现有)VNT,以尽量减少更改。负责VNT计算的功能组件可以分布在网络元件上,或者可以在外部元件(例如路径计算元件(PCE),[RFC4655])上执行。

- FA-LSP setup/release.

- FA-LSP设置/发布。

GMPLS routing protocols provide TE topology discovery. GMPLS signaling protocols allow setting up/releasing FA-LSPs.

GMPLS路由协议提供TE拓扑发现。GMPLS信令协议允许设置/释放FA LSP。

VNTM functions (resources policing/scheduling, decision to setup/release FA-LSPs, FA-LSP configuration) are out of the scope of GMPLS protocols. Such functionalities can be achieved directly on layer-border Label Switching Routers (LSRs), or through one or more external tools. When an external tool is used, an interface is required between the VNTM and the network elements so as to setup/release FA-LSPs. This could use standard management interfaces such as [RFC4802].

VNTM功能(资源管理/调度、设置/发布FA LSP的决策、FA-LSP配置)不在GMPLS协议的范围内。此类功能可直接在层边界标签交换路由器(LSR)上实现,或通过一个或多个外部工具实现。当使用外部工具时,VNTM和网元之间需要一个接口,以便设置/释放FA LSP。这可以使用标准管理接口,如[RFC4802]。

The set of traffic demands of the upper layer is required for the VNT Manager to take decisions to setup/release FA-LSPs. Such traffic demands include satisfied demands, for which one or more upper-layer LSP have been successfully setup, as well as unsatisfied demands and future demands, for which no upper layer LSP has been setup yet. The collection of such information is beyond the scope of GMPLS protocols. Note that it may be partially inferred from parameters carried in GMPLS signaling or advertised in GMPLS routing.

VNT管理器需要上层的流量需求集来决定设置/释放FA LSP。此类业务需求包括已满足的需求,其中一个或多个上层LSP已成功设置,以及尚未满足的需求和未来需求,其中上层LSP尚未设置。此类信息的收集超出了GMPLS协议的范围。注意,它可以部分地从GMPLS信令中携带的参数或GMPLS路由中公布的参数推断出来。

Finally, the computation of FA-LSPs that form the VNT can be performed directly on layer-border LSRs or on an external element (such as a Path Computation Element (PCE), [RFC4655]), and this is independent of the location of the VNTM.

最后,形成VNT的FA lsp的计算可以直接在层边界lsr或外部元素(例如路径计算元素(PCE),[RFC4655])上执行,并且这与VNTM的位置无关。

Hence, to summarize, no GMPLS protocol extensions are required to control FA-LSP setup/release.

因此,总而言之,控制FA-LSP设置/发布不需要GMPLS协议扩展。

3.1.1.2. Virtual TE Links
3.1.1.2. 虚拟TE链接

A virtual TE link is a TE link between two upper layer nodes that is not actually associated with a fully provisioned FA-LSP in a lower layer. A virtual TE link represents the potentiality to setup an FA-LSP in the lower layer to support the TE link that has been advertised. A virtual TE link is advertised as any TE link, following the rules in [RFC4206] defined for fully provisioned TE links. In particular, the flooding scope of a virtual TE link is within an IGP area, as is the case for any TE link.

虚拟TE链路是两个上层节点之间的TE链路,实际上与下层中完全配置的FA-LSP不关联。虚拟TE链路表示在较低层设置FA-LSP以支持已公布的TE链路的潜力。根据[RFC4206]中为完全配置的TE链路定义的规则,虚拟TE链路作为任何TE链路进行广告。特别地,虚拟TE链路的泛洪范围在IGP区域内,如同任何TE链路的情况一样。

If an upper-layer LSP attempts (through a signaling message) to make use of a virtual TE link, the underlying FA-LSP is immediately signaled and provisioned (provided there are available resources in the lower layer) in the process known as triggered signaling.

如果上层LSP尝试(通过信令消息)使用虚拟TE链路,则在称为触发信令的过程中,立即向底层FA-LSP发送信令并提供(前提是下层中存在可用资源)。

The use of virtual TE links has two main advantages:

使用虚拟TE链路有两个主要优点:

- Flexibility: allows the computation of an LSP path using TE links without needing to take into account the actual provisioning status of the corresponding FA-LSP in the lower layer;

- 灵活性:允许使用TE链路计算LSP路径,而无需考虑下层对应FA-LSP的实际供应状态;

- Stability: allows stability of TE links in the upper layer, while avoiding wastage of bandwidth in the lower layer, as data plane connections are not established until they are actually needed.

- 稳定性:允许上层TE链路的稳定性,同时避免下层带宽的浪费,因为只有在实际需要时才建立数据平面连接。

Virtual TE links are setup/deleted/modified dynamically, according to the change of the (forecast) traffic demand, operator's policies for capacity utilization, and the available resources in the lower layer.

虚拟TE链路根据(预测)流量需求的变化、运营商的容量利用策略以及下层可用资源动态设置/删除/修改。

The support of virtual TE links requires two main building blocks:

支持虚拟TE链路需要两个主要构建块:

- A TE mechanism for dynamic modification of virtual TE link topology;

- 用于动态修改虚拟TE链路拓扑的TE机制;

- A signaling mechanism for the dynamic setup and deletion of virtual TE links. Setting up a virtual TE link requires a signaling mechanism that allows an end-to-end association between virtual TE link end points with the purpose of exchanging link identifiers as well as some TE parameters.

- 用于动态设置和删除虚拟TE链路的信令机制。建立虚拟TE链路需要一种信令机制,该机制允许虚拟TE链路端点之间的端到端关联,以交换链路标识符以及一些TE参数。

The TE mechanism responsible for triggering/policing dynamic modification of virtual TE links is out of the scope of GMPLS protocols.

负责触发/监管虚拟TE链路动态修改的TE机制不在GMPLS协议的范围内。

Current GMPLS signaling does not allow setting up and releasing virtual TE links. Hence, GMPLS signaling must be extended to support virtual TE links.

当前的GMPLS信令不允许设置和释放虚拟TE链路。因此,必须扩展GMPLS信令以支持虚拟TE链路。

We can distinguish two options for setting up virtual TE links:

我们可以区分两种设置虚拟TE链接的选项:

- The Soft FA approach consists of setting up the FA-LSP in the control plane without actually activating cross connections in the data plane. On the one hand, this requires state maintenance on all transit LSRs (N square issue), but on the other hand, this may allow for some admission control. Indeed, when a Soft FA is activated, the resources may no longer be available for use by other Soft FAs that have common links. These Soft FA will be dynamically released, and corresponding virtual TE links will be deleted. The Soft FA LSPs may be setup using procedures similar to those described in [RFC4872] for setting up secondary LSPs.

- 软FA方法包括在控制平面中设置FA-LSP,而不实际激活数据平面中的交叉连接。一方面,这需要对所有公交LSR(N平方问题)进行状态维护,但另一方面,这可能允许一些准入控制。事实上,当激活软FA时,资源可能不再可供具有公共链接的其他软FA使用。这些软FA将被动态释放,相应的虚拟TE链接将被删除。软FA LSP可以使用与[RFC4872]中描述的用于设置辅助LSP的程序类似的程序进行设置。

- The remote association approach simply consists of exchanging virtual TE link IDs and parameters directly between TE link end points. This does not require state maintenance on transit LSRs, but reduces admission control capabilities. Such an association between virtual TE link end points may rely on extensions to the Resource Reservation Protocol - Traffic Engineering (RSVP-TE) Automatically Switched Optical Network (ASON) call procedure [RFC4974].

- 远程关联方法只是在TE链路端点之间直接交换虚拟TE链路ID和参数。这不需要对公交LSR进行状态维护,但会降低准入控制能力。虚拟TE链路端点之间的这种关联可能依赖于资源预留协议-流量工程(RSVP-TE)自动交换光网络(ASON)呼叫过程的扩展[RFC4974]。

Note that the support of virtual TE links does not require any GMPLS routing extension.

请注意,支持虚拟TE链路不需要任何GMPLS路由扩展。

3.1.1.3. Traffic Disruption Minimization during FA Release
3.1.1.3. FA释放期间的交通中断最小化

Before deleting a given FA-LSP, all nested LSPs have to be rerouted and removed from the FA-LSP to avoid traffic disruption. The mechanisms required here are similar to those required for graceful deletion of a TE link. A Graceful TE link deletion mechanism allows for the deletion of a TE link without disrupting traffic of TE-LSPs that were using the TE link.

在删除给定的FA-LSP之前,必须重新路由所有嵌套的LSP,并将其从FA-LSP中删除,以避免通信中断。此处所需的机制类似于优雅删除TE链接所需的机制。优雅的TE链路删除机制允许删除TE链路,而不会中断使用TE链路的TE LSP的流量。

Hence, GMPLS routing and/or signaling extensions are required to support graceful deletion of TE links. This may utilize the procedures described in [GR-SHUT]: a transit LSR notifies a head-end LSR that a TE link along the path of an LSP is going to be torn down, and also withdraws the bandwidth on the TE link so that it is not used for new LSPs.

因此,需要GMPLS路由和/或信令扩展来支持TE链路的优雅删除。这可以利用[GR-SHUT]中描述的程序:传输LSR通知前端LSR沿着LSP路径的TE链路将被拆除,并且还提取TE链路上的带宽,以便它不用于新LSP。

3.1.1.4. Stability
3.1.1.4. 稳定性

The stability of upper-layer LSP may be impaired if the VNT undergoes frequent changes. In this context, robustness of the VNT is defined as the capability to smooth the impact of these changes and avoid their subsequent propagation.

如果VNT频繁变化,上层LSP的稳定性可能会受损。在此上下文中,VNT的健壮性定义为平滑这些更改的影响并避免其后续传播的能力。

Guaranteeing VNT stability is out of the scope of GMPLS protocols and relies entirely on the capability of the TE and VNT management algorithms to minimize routing perturbations. This requires that the algorithms take into account the old VNT when computing a new VNT, and try to minimize the perturbation.

保证VNT的稳定性超出了GMPLS协议的范围,完全依赖于TE和VNT管理算法将路由干扰最小化的能力。这就要求算法在计算新的VNT时考虑旧的VNT,并尽量减小扰动。

Note that a full mesh of lower-layer LSPs may be created between every pair of border nodes between the upper and lower layers. The merit of a full mesh of lower-layer LSPs is that it provides stability to the upper-layer routing. That is, the forwarding table used in the upper layer is not impacted if the VNT undergoes changes. Further, there is always full reachability and immediate access to bandwidth to support LSPs in the upper layer. But it also has

请注意,可以在上层和下层之间的每对边界节点之间创建下层LSP的完整网格。下层LSP的完整网格的优点是它为上层路由提供了稳定性。也就是说,如果VNT发生变化,则上层中使用的转发表不会受到影响。此外,始终存在完全可达性和对带宽的即时访问,以支持上层的LSP。但它也有

significant drawbacks, since it requires the maintenance of n^2 RSVP-TE sessions (where n is the number of border nodes), which may be quite CPU- and memory-consuming (scalability impact). Also, this may lead to significant bandwidth wastage. Note that the use of virtual TE links solves the bandwidth wastage issue, and may reduce the control plane overload.

明显的缺点,因为它需要维护n^2个RSVP-TE会话(其中n是边界节点的数量),这可能会消耗大量的CPU和内存(可伸缩性影响)。此外,这可能会导致严重的带宽浪费。注意,虚拟TE链路的使用解决了带宽浪费问题,并可能减少控制平面过载。

3.1.2. Support for FA-LSP Attribute Inheritance
3.1.2. 支持FA-LSP属性继承

When an FA TE Link is advertised, its parameters are inherited from the parameters of the FA-LSP, and specific inheritance rules are applied.

当播发FA TE链接时,其参数将从FA-LSP的参数继承,并应用特定的继承规则。

This relies on local procedures and policies and is out of the scope of GMPLS protocols. Note that this requires that both head-end and tail-end of the FA-LSP are driven by same policies.

这依赖于当地程序和政策,不在GMPLS协议的范围之内。请注意,这要求FA-LSP的前端和后端都由相同的策略驱动。

3.1.3. FA-LSP Connectivity Verification
3.1.3. FA-LSP连接验证

Once fully provisioned, FA-LSP liveliness may be achieved by verifying its data plane connectivity.

一旦完全配置,可以通过验证其数据平面连接来实现FA-LSP的活跃性。

FA-LSP connectivity verification relies on technology-specific mechanisms (e.g., for SDH using G.707 and G.783; for MPLS using Bidrectional Forwarding Detection (BFD); etc.) as for any other LSP. Hence, this requirement is out of the scope of GMPLS protocols.

FA-LSP连接性验证依赖于特定于技术的机制(例如,对于使用g.707和g.783的SDH;对于使用双向转发检测(BFD)的MPLS;等等)以及任何其他LSP。因此,这一要求超出了GMPLS协议的范围。

The GMPLS protocols should provide mechanisms for the coordination of data link verification in the upper-layer network where data links are lower-layer LSPs.

GMPLS协议应提供在上层网络中协调数据链路验证的机制,其中数据链路为下层LSP。

o GMPLS signaling allows an LSP to be put into 'test' mode [RFC3473]. o The Link Management Protocol [RFC4204] is a targeted protocol and can be run end-to-end across lower-layer LSPs. o Coordination of testing procedures in different layers is an operational matter.

o GMPLS信令允许LSP进入“测试”模式[RFC3473]。o链路管理协议[RFC4204]是一个目标协议,可以跨低层LSP端到端运行。o不同层次测试程序的协调是一个操作问题。

3.1.4. Scalability
3.1.4. 可伸缩性

As discussed in [RFC5212]), MRN/MLN routing mechanisms must be designed to scale well with an increase of any of the following: - Number of nodes - Number of TE links (including FA-LSPs) - Number of LSPs - Number of regions and layers - Number of Interface Switching Capability Descriptors (ISCDs) per TE link.

如[RFC5212]所述,MRN/MLN路由机制的设计必须能够随着以下任何一项的增加而良好扩展:-节点数-TE链路数(包括FA LSP)-LSP数-区域和层数-每个TE链路的接口交换能力描述符(ISCD)数。

GMPLS routing provides the necessary advertisement functions and is based on IETF-designed IGPs. These are known to scale relatively well with the number of nodes and links. Where there are multiple regions or layers, there are two possibilities.

GMPLS路由提供了必要的广告功能,并基于IETF设计的IGP。众所周知,它们可以根据节点和链接的数量进行相对良好的扩展。如果存在多个区域或层,则有两种可能性。

1. If a single routing instance distributes information about multiple network layers, the effect is no more than to increase the number of nodes and links in the network.

1. 如果单个路由实例分发有关多个网络层的信息,其效果只会增加网络中的节点和链接数量。

2. If the MLN is fully integrated (i.e., constructed from hybrid nodes), there is an increase in the number of nodes and links (as just mentioned), and also a potential increase in the amount of ISCD information advertised per link. This is a relatively small amount of information (e.g., 36 bytes in OSPF [RFC4203]) per switching type, and each interface is unlikely to have more than two or three switching types.

2. 如果MLN是完全集成的(即,由混合节点构造),则节点和链路的数量(如刚刚提到的)会增加,并且每个链路所宣传的ISCD信息量也可能会增加。每个交换类型的信息量相对较小(例如,OSPF[RFC4203]中的36字节),每个接口不太可能有两个或三个以上的交换类型。

The number of LSPs in a lower layer that are advertised as TE links may impact the scaling of the routing protocol. A full mesh of FA-LSPs in the lower layer would lead to n^2 TE links, where n is the number of layer-border LSRs. This must be taken into consideration in the VNT management process. This is an operational matter beyond the scope of GMPLS protocols.

较低层中作为TE链路通告的LSP的数量可能会影响路由协议的扩展。下层FA LSP的完整网格将导致n^2个TE链接,其中n是层边界LSR的数量。在VNT管理过程中必须考虑到这一点。这是一个超出GMPLS协议范围的操作问题。

Since it requires the maintenance of n^2 RSVP-TE sessions (which may be quite CPU- and memory-consuming), a full mesh of LSPs in the lower layer may impact the scalability of GMPLS signaling. The use of virtual TE links may reduce the control plane overload (see Section 3.1.1.2).

由于它需要维护n^2个RSVP-TE会话(这可能会消耗大量CPU和内存),因此底层LSP的完整网格可能会影响GMPLS信令的可伸缩性。使用虚拟TE链路可减少控制平面过载(见第3.1.1.2节)。

3.1.5. Operations and Management of the MLN/MRN
3.1.5. MLN/MRN的运营和管理

[RFC5212] identifies various requirements for effective management and operation of the MLN. Some features already exist within the GMPLS protocol set, some more are under development, and some requirements are not currently addressed and will need new development work in order to support them.

[RFC5212]确定了MLN有效管理和运行的各种要求。GMPLS协议集中已经存在一些功能,还有一些功能正在开发中,一些需求目前尚未解决,需要新的开发工作来支持它们。

3.1.5.1. MIB Modules
3.1.5.1. MIB模块

MIB modules have been developed to model and control GMPLS switches [RFC4803] and to control and report on the operation of the signaling protocol [RFC4802]. These may be successfully used to manage the operation of a single instance of the control plane protocols that operate across multiple layers.

MIB模块已开发用于建模和控制GMPLS交换机[RFC4803],并控制和报告信令协议[RFC4802]的运行情况。这些可以成功地用于管理跨多个层操作的控制平面协议的单个实例的操作。

[RFC4220] provides a MIB module for managing TE links, and this may be particularly useful in the context of the MLN because LSPs in the lower layers are made available as TE links in the higher layer.

[RFC4220]提供用于管理TE链路的MIB模块,这在MLN环境中可能特别有用,因为较低层中的LSP可作为较高层中的TE链路使用。

The traffic engineering database provides a repository for all information about the existence and current status of TE links within a network. This information is typically flooded by the routing protocol operating within the network, and is used when LSP routes are computed. [TED-MIB] provides a way to inspect the TED to view the TE links at the different layers of the MLN.

流量工程数据库为网络中TE链路的存在和当前状态的所有信息提供了存储库。此信息通常由网络内运行的路由协议淹没,并在计算LSP路由时使用。[TED-MIB]提供了一种检查TED的方法,以查看MLN不同层的TE链路。

As observed in [RFC5212], although it would be possible to manage the MLN using only the existing MIB modules, a further MIB module could be produced to coordinate the management of separate network layers in order to construct a single MLN entity. Such a MIB module would effectively link together entries in the MIB modules already referenced.

如[RFC5212]所述,尽管可以仅使用现有MIB模块来管理MLN,但还可以生成另一个MIB模块来协调单独网络层的管理,以便构建单个MLN实体。这样的MIB模块将有效地将已经引用的MIB模块中的条目链接在一起。

3.1.5.2. OAM
3.1.5.2. 橡树油

At the time of writing, the development of OAM tools for GMPLS networks is at an early stage. GMPLS OAM requirements are addressed in [GMPLS-OAM].

在撰写本文时,GMPLS网络OAM工具的开发尚处于早期阶段。[GMPLS-OAM]中阐述了GMPLS-OAM要求。

In general, the lower layer network technologies contain their own technology-specific OAM processes (for example, SDH/SONET, Ethernet, and MPLS). In these cases, it is not necessary to develop additional OAM processes, but GMPLS procedures may be desirable to coordinate the operation and configuration of these OAM processes.

通常,较低层网络技术包含它们自己的特定于技术的OAM过程(例如,SDH/SONET、以太网和MPLS)。在这些情况下,无需开发额外的OAM流程,但可能需要GMPLS程序来协调这些OAM流程的操作和配置。

[ETH-OAM] describes some early ideas for this function, but more work is required to generalize the technique to be applicable to all technologies and to MLN. In particular, an OAM function operating within a server layer must be controllable from the client layer, and client layer control plane mechanisms must map and enable OAM in the server layer.

[ETH-OAM]描述了该功能的一些早期想法,但需要做更多的工作来推广该技术,使其适用于所有技术和MLN。特别是,在服务器层中运行的OAM功能必须可以从客户端层控制,并且客户端层控制平面机制必须映射并启用服务器层中的OAM。

Where a GMPLS-controlled technology does not contain its own OAM procedures, this is usually because the technology cannot support in-band OAM (for example, Wavelength Division Multiplexing (WDM) networks). In these cases, there is very little that a control plane can add to the OAM function since the presence of a control plane cannot make any difference to the physical characteristics of the data plane. However, the existing GMPLS protocol suite does provide a set of tools that can help to verify the data plane through the control plane. These tools are equally applicable to network technologies that do contain their own OAM.

如果GMPLS控制的技术不包含其自身的OAM过程,这通常是因为该技术无法支持带内OAM(例如,波分复用(WDM)网络)。在这些情况下,控制平面几乎不能添加到OAM功能中,因为控制平面的存在不能对数据平面的物理特性产生任何差异。然而,现有的GMPLS协议套件确实提供了一组工具,可以帮助通过控制平面验证数据平面。这些工具同样适用于包含自己的OAM的网络技术。

- Route recording is available through the GMPLS signaling protocol [RFC3473], making it possible to check the route reported by the control plane against the expected route. This mechanism also includes the ability to record and report the interfaces and labels used for the LSP at each hop of its path.

- 通过GMPLS信令协议[RFC3473]可以进行路由记录,从而可以根据预期路由检查控制平面报告的路由。该机制还包括记录和报告LSP在其路径的每个跃点处使用的接口和标签的能力。

- The status of TE links is flooded by the GMPLS routing protocols [RFC4203] and [RFC4205] making it possible to detect changes in the available resources in the network as an LSP is set up.

- TE链路的状态被GMPLS路由协议[RFC4203]和[RFC4205]淹没,使得在设置LSP时能够检测网络中可用资源的变化。

- The GMPLS signaling protocol [RFC3473] provides a technique to place an LSP into a "test" mode so that end-to-end characteristics (such as power levels) may be sampled and modified.

- GMPLS信令协议[RFC3473]提供了一种将LSP置于“测试”模式的技术,以便可以对端到端特性(例如功率电平)进行采样和修改。

- The Link Management Protocol [RFC4204] provides a mechanism for fault isolation on an LSP.

- 链路管理协议[RFC4204]为LSP上的故障隔离提供了一种机制。

- GMPLS signaling [RFC3473] provides a Notify message that can be used to report faults and issues across the network. The message includes scaling features to allow one message to report the failure of multiple LSPs.

- GMPLS信令[RFC3473]提供一条通知消息,可用于报告网络中的故障和问题。该消息包括缩放功能,允许一条消息报告多个LSP的故障。

- Extensions to GMPLS signaling [RFC4783] enable alarm information to be collected and distributed along the path of an LSP for more easy coordination and correlation.

- 对GMPLS信令[RFC4783]的扩展使报警信息能够沿LSP路径收集和分发,以便于协调和关联。

3.2. Specific Aspects of Multi-Region Networks
3.2. 多区域网络的具体方面
3.2.1. Support for Multi-Region Signaling
3.2.1. 支持多区域信令

There are actually several cases where a transit node could choose between multiple Switching Capabilities (SCs) to be used for a lower-region FA-LSP:

实际上,有几种情况下,中转节点可以在用于较低区域FA-LSP的多个交换能力(SCs)之间进行选择:

- Explicit Route Object (ERO) expansion with loose hops: The transit node has to expand the path, and may have to select among a set of lower-region SCs.

- 具有松散跳数的显式路由对象(ERO)扩展:中转节点必须扩展路径,并且可能必须在一组较低区域SCs中进行选择。

- Multi-SC TE link: When the ERO of an FA LSP, included in the ERO of an upper-region LSP, comprises a multi-SC TE link, the region border node has to select among these SCs.

- 多SC TE链路:当包含在上部区域LSP的ERO中的FA LSP的ERO包含多SC TE链路时,区域边界节点必须在这些SCs中进行选择。

Existing GMPLS signaling procedures do not allow solving this ambiguous choice of the SC that may be used along a given path.

现有的GMPLS信令程序不允许解决可能沿给定路径使用的SC的这种模糊选择。

Hence, an extension to GMPLS signaling has to be defined to indicate the SC(s) that can be used and the SC(s) that cannot be used along the path.

因此,必须定义GMPLS信令的扩展,以指示可沿路径使用的SC和不能沿路径使用的SC。

3.2.2. Advertisement of Adjustment Capacities
3.2.2. 调整能力广告

In the MRN context, nodes supporting more than one switching capability on at least one interface are called hybrid nodes [RFC5212]. Conceptually, hybrid nodes can be viewed as containing at least two distinct switching elements interconnected by internal links that provide adjustment between the supported switching capabilities. These internal links have finite capacities and must be taken into account when computing the path of a multi-region TE-LSP. The advertisement of the adjustment capacities is required, as it provides critical information when performing multi-region path computation.

在MRN上下文中,在至少一个接口上支持多个交换能力的节点称为混合节点[RFC5212]。从概念上讲,混合节点可以被视为包含至少两个由内部链路互连的不同交换元件,这些内部链路提供支持的交换能力之间的调整。这些内部链路具有有限的容量,在计算多区域TE-LSP的路径时必须加以考虑。需要公布调整能力,因为它在执行多区域路径计算时提供关键信息。

The term "adjustment capacity" refers to the property of a hybrid node to interconnect different switching capabilities it provides through its external interfaces [RFC5212]. This information allows path computation to select an end-to-end multi-region path that includes links of different switching capabilities that are joined by LSRs that can adapt the signal between the links.

术语“调整能力”是指混合节点通过其外部接口互连其提供的不同交换能力的特性[RFC5212]。该信息允许路径计算选择端到端多区域路径,该路径包括由lsr连接的具有不同交换能力的链路,lsr可以调整链路之间的信号。

Figure 1a below shows an example of a hybrid node. The hybrid node has two switching elements (matrices), which support TDM and PSC switching, respectively. The node has two PSC and TDM ports (Port1 and Port2, respectively). It also has an internal link connecting the two switching elements.

下面的图1a显示了混合节点的示例。混合节点有两个交换元素(矩阵),分别支持TDM和PSC交换。该节点有两个PSC和TDM端口(分别为端口1和端口2)。它还有一个连接两个开关元件的内部链路。

The two switching elements are internally interconnected in such a way that it is possible to terminate some of the resources of the TDM Port2; also, they can provide adjustment of PSC traffic that is received/sent over the internal PSC interface (#b). Two ways are possible to set up PSC LSPs (Port1 or Port2). Available resources advertisement (e.g., Unreserved and Min/Max LSP Bandwidth) should cover both ways.

两个交换元件以这样一种方式内部互连,即可以终止TDM端口2的一些资源;此外,它们还可以调整通过内部PSC接口(#b)接收/发送的PSC通信量。有两种方法可以设置PSC LSP(端口1或端口2)。可用资源广告(例如,无保留和最小/最大LSP带宽)应涵盖这两种方式。

                             Network element
                        .............................
                        :            --------       :
              PSC       :           |  PSC   |      :
            Port1-------------<->---|#a      |      :
                        :  +--<->---|#b      |      :
                        :  |         --------       :
                        :  |        ----------      :
              TDM       :  +--<->--|#c  TDM   |     :
            Port2 ------------<->--|#d        |     :
                        :           ----------      :
                        :............................
        
                             Network element
                        .............................
                        :            --------       :
              PSC       :           |  PSC   |      :
            Port1-------------<->---|#a      |      :
                        :  +--<->---|#b      |      :
                        :  |         --------       :
                        :  |        ----------      :
              TDM       :  +--<->--|#c  TDM   |     :
            Port2 ------------<->--|#d        |     :
                        :           ----------      :
                        :............................
        

Figure 1a. Hybrid node.

图1a。混合节点。

Port1 and Port2 can be grouped together thanks to internal Dense Wavelength Division Multiplexing (DWDM), to result in a single interface: Link1. This is illustrated in Figure 1b below.

由于内部密集波分复用(DWDM),端口1和端口2可以组合在一起,从而形成一个接口:Link1。下图1b对此进行了说明。

                             Network element
                        .............................
                        :            --------       :
                        :           |  PSC   |      :
                        :           |        |      :
                        :         --|#a      |      :
                        :        |  |   #b   |      :
                        :        |   --------       :
                        :        |       |          :
                        :        |  ----------      :
                        :    /|  | |    #c    |     :
                        :   | |--  |          |     :
              Link1 ========| |    |    TDM   |     :
                        :   | |----|#d        |     :
                        :    \|     ----------      :
                        :............................
        
                             Network element
                        .............................
                        :            --------       :
                        :           |  PSC   |      :
                        :           |        |      :
                        :         --|#a      |      :
                        :        |  |   #b   |      :
                        :        |   --------       :
                        :        |       |          :
                        :        |  ----------      :
                        :    /|  | |    #c    |     :
                        :   | |--  |          |     :
              Link1 ========| |    |    TDM   |     :
                        :   | |----|#d        |     :
                        :    \|     ----------      :
                        :............................
        

Figure 1b. Hybrid node.

图1b。混合节点。

Let's assume that all interfaces are STM16 (with VC4-16c capable as Max LSP bandwidth). After setting up several PSC LSPs via port #a and setting up and terminating several TDM LSPs via port #d and port #b, a capacity of only 155 Mb is still available on port #b. However, a 622 Mb capacity remains on port #a, and VC4-5c capacity remains on port #d.

让我们假设所有接口都是STM16(VC4-16c支持最大LSP带宽)。在通过端口a设置多个PSC LSP并通过端口d和端口b设置和终止多个TDM LSP后,端口b上的容量仍然只有155MB。但是,端口a上仍有622MB的容量,端口d上仍有VC4-5c的容量。

When computing the path for a new VC4-4c TDM LSP, one must know that this node cannot terminate this LSP, as there is only a 155 Mb capacity still available for TDM-PSC adjustment. Hence, the TDM-PSC adjustment capacity must be advertised.

当计算新VC4-4c TDM LSP的路径时,必须知道该节点无法终止该LSP,因为只有155 Mb的容量可用于TDM-PSC调整。因此,必须公布TDM-PSC调整能力。

With current GMPLS routing [RFC4202], this advertisement is possible if link bundling is not used and if two TE links are advertised for Link1.

对于当前的GMPLS路由[RFC4202],如果未使用链路捆绑,并且如果为链路1播发两个TE链路,则可以进行此播发。

We would have the following TE link advertisements:

我们将有以下TE link广告:

TE link 1 (Port1): - ISCD sub-TLV: PSC with Max LSP bandwidth = 622 Mb - Unreserved bandwidth = 622 Mb.

TE链路1(端口1):-ISCD子TLV:最大LSP带宽为622 Mb的PSC-未保留带宽为622 Mb。

TE link 2 (Port2): - ISCD #1 sub-TLV: TDM with Max LSP bandwidth = VC4-4c, - ISCD #2 sub-TLV: PSC with Max LSP bandwidth = 155 Mb, - Unreserved bandwidth (equivalent): 777 Mb.

TE链路2(端口2):-ISCD#1子TLV:最大LSP带宽为VC4-4c的TDM,-ISCD#2子TLV:最大LSP带宽为155MB的PSC,-无保留带宽(等效):777MB。

The ISCD #2 in TE link 2 actually represents the TDM-PSC adjustment capacity.

TE链路2中的ISCD#2实际上代表TDM-PSC调整容量。

However, if for obvious scalability reasons, link bundling is done, then the adjustment capacity information is lost with current GMPLS routing, as we have the following TE link advertisement:

但是,如果出于明显的可伸缩性原因,进行了链路捆绑,则当前GMPLS路由中的调整容量信息将丢失,因为我们有以下TE链路广告:

TE link 1 (Port1 + Port2): - ISCD #1 sub-TLV: TDM with Max LSP bandwidth = VC4-4c, - ISCD #2 sub-TLV: PSC with Max LSP bandwidth = 622 Mb, - Unreserved bandwidth (equivalent): 1399 Mb.

TE链路1(端口1+端口2):-ISCD#1子TLV:TDM,最大LSP带宽=VC4-4c,-ISCD#2子TLV:PSC,最大LSP带宽=622MB,-未保留带宽(等效):1399MB。

With such a TE link advertisement, an element computing the path of a VC4-4c LSP cannot know that this LSP cannot be terminated on the node.

使用这种TE链路通告,计算VC4-4c LSP的路径的元素不能知道该LSP不能在节点上终止。

Thus, current GMPLS routing can support the advertisement of the adjustment capacities, but this precludes performing link bundling and thus faces significant scalability limitations.

因此,当前的GMPLS路由可以支持调整容量的广告,但这排除了执行链路捆绑,因此面临着显著的可伸缩性限制。

Hence, GMPLS routing must be extended to meet this requirement. This could rely on the advertisement of the adjustment capacities as a new TE link attribute (that would complement the Interface Switching Capability Descriptor TE link attribute).

因此,必须扩展GMPLS路由以满足这一要求。这可能依赖于将调整容量作为新的TE链路属性公布(这将补充接口交换能力描述符TE链路属性)。

Note: Multiple ISCDs MAY be associated with a single switching capability. This can be performed to provide (e.g., for TDM interfaces) the Min/Max LSP Bandwidth associated to each layer (or set of layers) for that switching capability. For example, an interface associated to TDM switching capability and supporting VC-12 and VC-4 switching can be associated to one ISCD sub-TLV or two ISCD sub-TLVs. In the first case, the Min LSP Bandwidth is set to VC-12 and the Max LSP Bandwidth to VC-4. In the second case, the Min LSP Bandwidth is set to VC-12 and the Max LSP Bandwidth to VC-12, in the first ISCD sub-TLV; and the Min LSP Bandwidth is set to VC-4 and the Max LSP Bandwidth to VC-4, in the second ISCD sub-TLV. Hence, in the first case, as long as the Min LSP Bandwidth is set to VC-12 (and not VC-4), and in the second case, as long as the first ISCD sub-TLV is advertised, there is sufficient capacity across that interface to setup a VC-12 LSP.

注:多个ISCD可能与单个交换功能相关联。这可以被执行以提供(例如,对于TDM接口)与该交换能力的每个层(或层组)相关联的最小/最大LSP带宽。例如,与TDM交换能力相关并支持VC-12和VC-4交换的接口可与一个ISCD子TLV或两个ISCD子TLV相关。在第一种情况下,最小LSP带宽设置为VC-12,最大LSP带宽设置为VC-4。在第二种情况下,在第一ISCD子TLV中,最小LSP带宽设置为VC-12,最大LSP带宽设置为VC-12;在第二个ISCD子TLV中,最小LSP带宽设置为VC-4,最大LSP带宽设置为VC-4。因此,在第一种情况下,只要最小LSP带宽被设置为VC-12(而不是VC-4),并且在第二种情况下,只要第一ISCD子TLV被广告,该接口上就有足够的容量来设置VC-12 LSP。

4. Evaluation Conclusion
4. 评价结论

Most of the required MLN/MRN functions will rely on mechanisms and procedures that are out of the scope of the GMPLS protocols, and thus do not require any GMPLS protocol extensions. They will rely on local procedures and policies, and on specific TE mechanisms and algorithms.

大多数必需的MLN/MRN功能将依赖于超出GMPLS协议范围的机制和程序,因此不需要任何GMPLS协议扩展。他们将依靠当地的程序和政策,以及具体的TE机制和算法。

As regards Virtual Network Topology (VNT) computation and reconfiguration, specific TE mechanisms need to be defined, but these mechanisms are out of the scope of GMPLS protocols.

关于虚拟网络拓扑(VNT)计算和重构,需要定义特定的TE机制,但这些机制不在GMPLS协议的范围内。

Six areas for extensions of GMPLS protocols and procedures have been identified:

已确定了GMPLS协议和程序的六个扩展领域:

- GMPLS signaling extension for the setup/deletion of the virtual TE links;

- 用于建立/删除虚拟TE链路的GMPLS信令扩展;

- GMPLS signaling extension for graceful TE link deletion;

- 用于优雅TE链路删除的GMPLS信令扩展;

- GMPLS signaling extension for constrained multi-region signaling (SC inclusion/exclusion);

- 用于受限多区域信令(SC包含/排除)的GMPLS信令扩展;

- GMPLS routing extension for the advertisement of the adjustment capacities of hybrid nodes.

- GMPLS路由扩展,用于公布混合节点的调整能力。

- A MIB module for coordination of other MIB modules being operated in separate layers.

- 用于协调在不同层中操作的其他MIB模块的MIB模块。

- GMPLS signaling extensions for the control and configuration of technology-specific OAM processes.

- GMPLS信令扩展,用于控制和配置特定于技术的OAM进程。

4.1. Traceability of Requirements
4.1. 需求的可追溯性

This section provides a brief cross-reference to the requirements set out in [RFC5212] so that it is possible to verify that all of the requirements listed in that document have been examined in this document.

本节对[RFC5212]中规定的要求进行了简要的交叉引用,以便验证该文件中列出的所有要求是否已在本文件中进行了审查。

- Path computation mechanism should be able to compute paths and handle topologies consisting of any combination of (simplex) nodes ([RFC5212], Section 5.1). o Path computation mechanisms are beyond the scope of protocol specifications, and out of scope for this document.

- 路径计算机制应能够计算路径并处理由(单工)节点的任意组合构成的拓扑结构([RFC5212],第5.1节)。o路径计算机制超出了协议规范的范围,超出了本文档的范围。

- A hybrid node should maintain resources on its internal links ([RFC5212], Section 5.2). o This is an implementation requirement and is beyond the scope of protocol specifications, and it is out of scope for this document.

- 混合节点应在其内部链路上维护资源([RFC5212],第5.2节)。o这是一项实施要求,超出了协议规范的范围,也超出了本文件的范围。

- Path computation mechanisms should be prepared to use the availability of termination/adjustment resources as a constraint in path computation ([RFC5212], Section 5.2). o Path computation mechanisms are beyond the scope of protocol specifications, and out of scope for this document.

- 路径计算机制应准备好将终止/调整资源的可用性用作路径计算中的约束条件([RFC5212],第5.2节)。o路径计算机制超出了协议规范的范围,超出了本文档的范围。

- The advertisement of a node's ability to terminate lower-region LSPs and to forward traffic in the upper-region (adjustment capability) is required ([RFC5212], Section 5.2). o See Section 3.2.2 of this document.

- 需要公布节点终止较低区域LSP和转发较高区域流量的能力(调整能力)([RFC5212],第5.2节)。o见本文件第3.2.2节。

- The path computation mechanism should support the coexistence of upper-layer links directly connected to upper-layer switching elements, and upper-layer links connected through internal links between upper-layer and lower-layer switching elements ([RFC5212], Section 5.2). o Path computation mechanisms are beyond the scope of protocol specifications, and out of scope for this document.

- 路径计算机制应支持直接连接到上层交换元件的上层链路与通过上层和下层交换元件之间的内部链路连接的上层链路共存([RFC5212],第5.2节)。o路径计算机制超出了协议规范的范围,超出了本文档的范围。

- MRN/MLN routing mechanisms must be designed to scale well with an increase of any of the following: - Number of nodes - Number of TE links (including FA-LSPs) - Number of LSPs - Number of regions and layers - Number of ISCDs per TE link. ([RFC5212], Section 5.3). o See Section 3.1.4 of this document.

- MRN/MLN路由机制的设计必须能够随着以下任何一项的增加而良好扩展:-节点数-TE链路数(包括FA LSP)-LSP数-区域和层数-每个TE链路的ISCD数。([RFC5212],第5.3节)。o见本文件第3.1.4节。

- Design of the routing protocols must not prevent TE information filtering based on ISCDs ([RFC5212], Section 5.3). o All advertised information carries the ISCD, and so a receiving node may filter as required.

- Design of the routing protocols must not prevent TE information filtering based on ISCDs ([RFC5212], Section 5.3). o All advertised information carries the ISCD, and so a receiving node may filter as required.translate error, please retry

- The path computation mechanism and the signaling protocol should be able to operate on partial TE information, ([RFC5212], Section 5.3). o Path computation mechanisms are beyond the scope of protocol specifications, and out of scope for this document.

- 路径计算机制和信令协议应能够对部分TE信息进行操作([RFC5212],第5.3节)。o路径计算机制超出了协议规范的范围,超出了本文档的范围。

- Protocol mechanisms must be provided to enable creation, deletion, and modification of LSPs triggered through operational actions ([RFC5212], Section 5.4). o Such mechanisms are standard in GMPLS signaling [RFC3473].

- 必须提供协议机制,以便能够创建、删除和修改通过操作操作触发的LSP([RFC5212],第5.4节)。o此类机制是GMPLS信令[RFC3473]中的标准机制。

- Protocol mechanisms should be provided to enable similar functions triggered by adjacent layers ([RFC5212], Section 5.4). o Such mechanisms are standard in GMPLS signaling [RFC3473].

- 应提供协议机制,以启用相邻层触发的类似功能([RFC5212],第5.4节)。o此类机制是GMPLS信令[RFC3473]中的标准机制。

- Protocol mechanisms may be provided to enable adaptation to changes such as traffic demand, topology, and network failures. Routing robustness should be traded with adaptability of those changes ([RFC5212], Section 5.4). o See Section 3.1.1 of this document.

- 可以提供协议机制以使能够适应诸如业务需求、拓扑和网络故障之类的变化。路由稳健性应与这些变化的适应性进行权衡([RFC5212],第5.4节)。o见本文件第3.1.1节。

- Reconfiguration of the VNT must be as non-disruptive as possible and must be under the control of policy configured by the operator ([RFC5212], Section 5.5). o See Section 3.1.1.3 of this document

- VNT的重新配置必须尽可能无中断,并且必须受运营商配置的策略控制([RFC5212],第5.5节)。o见本文件第3.1.1.3节

- Parameters of a TE link in an upper layer should be inherited from the parameters of the lower-layer LSP that provides the TE link, based on polices configured by the operator ([RFC5212], Section 5.6). o See Section 3.1.2 of this document.

- 上层TE链路的参数应根据操作员配置的策略从提供TE链路的下层LSP的参数继承([RFC5212],第5.6节)。o见本文件第3.1.2节。

- The upper-layer signaling request may contain an ERO that includes only hops in the upper layer ([RFC5212], Section 5.7). o Standard for GMPLS signaling [RFC3473]. See also Section 3.2.1.

- 上层信令请求可包含仅包括上层跳数的ERO([RFC5212],第5.7节)。o GMPLS信令标准[RFC3473]。另见第3.2.1节。

- The upper-layer signaling request may contain an ERO specifying the lower layer FA-LSP route ([RFC5212], Section 5.7). o Standard for GMPLS signaling [RFC3473]. See also Section 3.2.1.

- 上层信令请求可能包含指定下层FA-LSP路由的ERO([RFC5212],第5.7节)。o GMPLS信令标准[RFC3473]。另见第3.2.1节。

- As part of the re-optimization of the MLN, it must be possible to reroute a lower-layer FA-LSP while keeping interface identifiers of the corresponding TE links unchanged and causing only minimal disruption to higher-layer traffic ([RFC5212], Section 5.8.1). o See Section 3.1.1.3.

- 作为MLN重新优化的一部分,必须能够重新路由较低层FA-LSP,同时保持相应TE链路的接口标识符不变,并且只对较高层流量造成最小干扰([RFC5212],第5.8.1节)。o见第3.1.1.3节。

- The solution must include measures to protect against network destabilization caused by the rapid setup and tear-down of lower-layer LSPs, as traffic demand varies near a threshold ([RFC5212], Sections 5.8.1 and 5.8.2). o See Section 3.1.1.4.

- 解决方案必须包括防止下层LSP快速设置和拆除导致网络不稳定的措施,因为流量需求在阈值附近变化([RFC5212],第5.8.1和5.8.2节)。o见第3.1.1.4节。

- Signaling of lower-layer LSPs should include a mechanism to rapidly advertise the LSP as a TE link in the upper layer, and to coordinate into which routing instances the TE link should be advertised ([RFC5212], Section 5.8.1). o This is provided by [RFC4206] and enhanced by [HIER-BIS]. See also Section 3.1.1.2.

- 下层LSP的信令应包括一种机制,用于在上层将LSP作为TE链路快速播发,并协调TE链路应播发到哪些路由实例中([RFC5212],第5.8.1节)。o这由[RFC4206]提供,并由[HIER-BIS]增强。另见第3.1.1.2节。

- If an upper-layer LSP is set up making use of a virtual TE link, the underlying LSP must immediately be signaled in the lower layer ([RFC5212], Section 5.8.2). o See Section 3.1.1.2.

- 如果使用虚拟TE链路设置上层LSP,则必须立即在下层发出底层LSP信号([RFC5212],第5.8.2节)。o见第3.1.1.2节。

- The solution should provide operations to facilitate the build-up of virtual TE links, taking into account the forecast upper-layer traffic demand, and available resource in the lower layer ([RFC5212], Section 5.8.2). o See Section 3.1.1.2 of this document.

- 解决方案应提供操作,以促进虚拟TE链路的建立,同时考虑预测的上层流量需求和下层的可用资源([RFC5212],第5.8.2节)。o见本文件第3.1.1.2节。

- The GMPLS protocols should provide mechanisms for the coordination of data link verification in the upper-layer network where data links are lower layer LSPs ([RFC5212], Section 5.9). o See Section 3.1.3 of this document.

- GMPLS协议应提供在上层网络中协调数据链路验证的机制,其中数据链路为下层LSP([RFC5212],第5.9节)。o见本文件第3.1.3节。

- Multi-layer protocol solutions should be manageable through MIB modules ([RFC5212], Section 5.10). o See Section 3.1.5.1.

- 多层协议解决方案应通过MIB模块进行管理([RFC5212],第5.10节)。o见第3.1.5.1节。

- Choices about how to coordinate errors and alarms, and how to operate OAM across administrative and layer boundaries must be left open for the operator ([RFC5212], Section 5.10). o This is an implementation matter, subject to operational policies.

- 关于如何协调错误和警报,以及如何跨管理和层边界操作OAM的选择必须留给操作员([RFC5212],第5.10节)。o这是一个实施事项,取决于运营政策。

- It must be possible to enable end-to-end OAM on an upper-layer LSP. This function appears to the ingress LSP as normal LSP-based OAM [GMPLS-OAM], but at layer boundaries, depending on the technique used to span the lower layers, client-layer OAM operations may need to be mapped to server-layer OAM operations ([RFC5212], Section 5.10). o See Section 3.1.5.2.

- 必须能够在上层LSP上启用端到端OAM。入口LSP将此功能视为基于LSP的普通OAM[GMPLS-OAM],但在层边界处,根据用于跨越较低层的技术,客户端层OAM操作可能需要映射到服务器层OAM操作([RFC5212],第5.10节)。o见第3.1.5.2节。

- Client-layer control plane mechanisms must map and enable OAM in the server layer ([RFC5212], Section 5.10). o See Section 3.1.5.2.

- 客户端层控制平面机制必须映射并启用服务器层中的OAM([RFC5212],第5.10节)。o见第3.1.5.2节。

- OAM operation enabled for an LSP in a client layer must operate for that LSP along its entire length ([RFC5212], Section 5.10). o See Section 3.1.5.2.

- 为客户端层中的LSP启用的OAM操作必须为该LSP沿其整个长度运行([RFC5212],第5.10节)。o见第3.1.5.2节。

- OAM function operating within a server layer must be controllable from the client layer. Such control should be subject to policy at the layer boundary ([RFC5212], Section 5.10). o This is an implementation matter.

- 在服务器层中运行的OAM功能必须可以从客户端层进行控制。此类控制应遵守层边界的政策([RFC5212],第5.10节)。o这是一个执行问题。

- The status of a server layer LSP must be available to the client layer. This information should be configurable to be automatically notified to the client layer at the layer boundary, and should be subject to policy ([RFC5212], Section 5.10). o This is an implementation matter.

- 服务器层LSP的状态必须对客户端层可用。该信息应可配置为在层边界处自动通知客户层,并应遵守政策([RFC5212],第5.10节)。o这是一个执行问题。

- Implementations may use standardized techniques (such as MIB modules) to convey status information between layers. o This is an implementation matter.

- 实现可以使用标准化技术(例如MIB模块)在层之间传递状态信息。o这是一个执行问题。

5. Security Considerations
5. 安全考虑

[RFC5212] sets out the security requirements for operating a MLN or MRN. These requirements are, in general, no different from the security requirements for operating any GMPLS network. As such, the GMPLS protocols already provide adequate security features. An evaluation of the security features for GMPLS networks may be found in [MPLS-SEC], and where issues or further work is identified by that document, new security features or procedures for the GMPLS protocols will need to be developed.

[RFC5212]规定了操作MLN或MRN的安全要求。一般来说,这些要求与运行任何GMPLS网络的安全要求没有区别。因此,GMPLS协议已经提供了足够的安全特性。对GMPLS网络安全特性的评估可在[MPLS-SEC]中找到,如果该文件确定了问题或进一步工作,则需要为GMPLS协议制定新的安全特性或程序。

[RFC5212] also identifies that where the separate layers of a MLN/MRN are operated as different administrative domains, additional security considerations may be given to the mechanisms for allowing inter-layer LSP setup. However, this document is explicitly limited to the case where all layers under GMPLS control are part of the same administrative domain.

[RFC5212]还指出,如果MLN/MRN的各个层作为不同的管理域进行操作,则可以对允许层间LSP设置的机制给予额外的安全考虑。但是,本文件明确限于GMPLS控制下的所有层都属于同一管理域的情况。

Lastly, as noted in [RFC5212], it is expected that solution documents will include a full analysis of the security issues that any protocol extensions introduce.

最后,如[RFC5212]所述,预计解决方案文档将包括对任何协议扩展引入的安全问题的全面分析。

6. Acknowledgments
6. 致谢

We would like to thank Julien Meuric, Igor Bryskin, and Adrian Farrel for their useful comments.

我们要感谢Julien Meuria、Igor Bryskin和Adrian Farrel的有用评论。

Thanks also to Question 14 of Study Group 15 of the ITU-T for their thoughtful review.

还感谢ITU-T第15研究组的问题14,感谢他们深思熟虑的审查。

7. References
7. 工具书类
7.1. Normative References
7.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.

[RFC3471]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。

[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, October 2004.

[RFC3945]Mannie,E.,Ed.“通用多协议标签交换(GMPLS)体系结构”,RFC 39452004年10月。

[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, October 2005.

[RFC4202]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的路由扩展”,RFC 4202,2005年10月。

[RFC5212] Shiomoto, K., Papadimitriou, D., Le Roux, JL., Vigoureux, M., and D. Brungard, "Requirements for GMPLS-Based Multi-Region and Multi-Layer Networks (MRN/MLN)", RFC 5212, July 2008.

[RFC5212]Shiomoto,K.,Papadimitriou,D.,Le Roux,JL.,Vigoureux,M.,和D.Brungard,“基于GMPLS的多区域和多层网络(MRN/MLN)的要求”,RFC 52122008年7月。

7.2. Informative References
7.2. 资料性引用

[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.

[RFC3473]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,2003年1月。

[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005.

[RFC4203]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的OSPF扩展”,RFC 4203,2005年10月。

[RFC4204] Lang, J., Ed., "Link Management Protocol (LMP)", RFC 4204, October 2005.

[RFC4204]Lang,J.,Ed.,“链路管理协议(LMP)”,RFC4204,2005年10月。

[RFC4205] Kompella, K., Ed., and Y. Rekhter, Ed., "Intermediate System to Intermediate System (IS-IS) Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4205, October 2005.

[RFC4205]Kompella,K.,Ed.,和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的中间系统到中间系统(IS-IS)扩展”,RFC 4205,2005年10月。

[RFC4206] Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)", RFC 4206, October 2005.

[RFC4206]Kompella,K.和Y.Rekhter,“具有通用多协议标签交换(GMPLS)流量工程(TE)的标签交换路径(LSP)层次结构”,RFC 4206,2005年10月。

[RFC4220] Dubuc, M., Nadeau, T., and J. Lang, "Traffic Engineering Link Management Information Base", RFC 4220, November 2005.

[RFC4220]Dubuc,M.,Nadeau,T.,和J.Lang,“交通工程链路管理信息库”,RFC 4220,2005年11月。

[RFC4655] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path Computation Element (PCE)-Based Architecture", RFC 4655, August 2006.

[RFC4655]Farrel,A.,Vasseur,J.-P.,和J.Ash,“基于路径计算元素(PCE)的体系结构”,RFC 46552006年8月。

[RFC4783] Berger, L., Ed., "GMPLS - Communication of Alarm Information", RFC 4783, December 2006.

[RFC4783]Berger,L.,Ed.“GMPLS-报警信息的通信”,RFC 4783,2006年12月。

[RFC4802] Nadeau, T., Ed., and A. Farrel, Ed., "Generalized Multiprotocol Label Switching (GMPLS) Traffic Engineering Management Information Base", RFC 4802, February 2007.

[RFC4802]Nadeau,T.,Ed.,和A.Farrel,Ed.,“通用多协议标签交换(GMPLS)流量工程管理信息库”,RFC 4802,2007年2月。

[RFC4803] Nadeau, T., Ed., and A. Farrel, Ed., "Generalized Multiprotocol Label Switching (GMPLS) Label Switching Router (LSR) Management Information Base", RFC 4803, February 2007.

[RFC4803]Nadeau,T.,Ed.,和A.Farrel,Ed.,“通用多协议标签交换(GMPLS)标签交换路由器(LSR)管理信息库”,RFC 4803,2007年2月。

[RFC4872] Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou, Ed., "RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery", RFC 4872, May 2007.

[RFC4872]Lang,J.,Ed.,Rekhter,Y.,Ed.,和D.Papadimitriou,Ed.,“支持端到端通用多协议标签交换(GMPLS)恢复的RSVP-TE扩展”,RFC 4872,2007年5月。

[RFC4974] Papadimitriou, D. and A. Farrel, "Generalized MPLS (GMPLS) RSVP-TE Signaling Extensions in Support of Calls", RFC 4974, August 2007.

[RFC4974]Papadimitriou,D.和A.Farrel,“支持呼叫的通用MPLS(GMPLS)RSVP-TE信令扩展”,RFC 4974,2007年8月。

[ETH-OAM] Takacs, A., Gero, B., and D. Mohan, "GMPLS RSVP-TE Extensions to Control Ethernet OAM", Work in Progress, July 2008.

[ETH-OAM]Takacs,A.,Gero,B.,和D.Mohan,“控制以太网OAM的GMPLS RSVP-TE扩展”,正在进行的工作,2008年7月。

[GMPLS-OAM] Nadeau, T., Otani, T. Brungard, D., and A. Farrel, "OAM Requirements for Generalized Multi-Protocol Label Switching (GMPLS) Networks", Work in Progress, October 2007.

[GMPLS-OAM]Nadeau,T.,Otani,T.Brungard,D.,和A.Farrel,“通用多协议标签交换(GMPLS)网络的OAM要求”,正在进行的工作,2007年10月。

[GR-SHUT] Ali, Z., Zamfir, A., and J. Newton, "Graceful Shutdown in MPLS and Generalized MPLS Traffic Engineering Networks", Work in Progress, July 2008.

[GR-SHUT]Ali,Z.,Zamfir,A.,和J.Newton,“MPLS和广义MPLS流量工程网络中的优雅关机”,正在进行的工作,2008年7月。

[HIER-BIS] Shiomoto, K., Rabbat, R., Ayyangar, A., Farrel, A., and Z. Ali, "Procedures for Dynamically Signaled Hierarchical Label Switched Paths", Work in Progress, February 2008.

[HIER-BIS]Shiomoto,K.,Rabbat,R.,Ayyangar,A.,Farrel,A.,和Z.Ali,“动态信号分层标签交换路径的程序”,正在进行的工作,2008年2月。

[MPLS-SEC] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", Work in Progress, July 2008.

[MPLS-SEC]Fang,L.,编辑,“MPLS和GMPLS网络的安全框架”,正在进行的工作,2008年7月。

[PCE-INTER] Oki, E., Le Roux , J-L., and A. Farrel, "Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering", Work in Progress, June 2008.

[PCE-INTER]Oki,E.,Le Roux,J-L.,和A.Farrel,“基于PCE的层间MPLS和GMPLS流量工程框架”,正在进行的工作,2008年6月。

[TED-MIB] Miyazawa, M., Otani, T., Nadeau, T., and K. Kunaki, "Traffic Engineering Database Management Information Base in support of MPLS-TE/GMPLS", Work in Progress, July 2008.

[TED-MIB]Miyazawa,M.,Otani,T.,Nadeau,T.,和K.Kunaki,“支持MPLS-TE/GMPLS的交通工程数据库管理信息库”,正在进行的工作,2008年7月。

8. Contributors' Addresses
8. 投稿人地址

Deborah Brungard AT&T Rm. D1-3C22 - 200 S. Laurel Ave. Middletown, NJ, 07748 USA EMail: dbrungard@att.com

德博拉·布伦加德AT&T室。D1-3C22-美国新泽西州米德尔顿市劳雷尔大道200号,邮编:07748电子邮件:dbrungard@att.com

Eiji Oki NTT 3-9-11 Midori-Cho Musashino, Tokyo 180-8585, Japan EMail: oki.eiji@lab.ntt.co.jp

Oki Eiji NTT 3-9-11 Midori Cho Musashino,东京180-8585,日本电子邮件:Oki。eiji@lab.ntt.co.jp

Kohei Shiomoto NTT 3-9-11 Midori-Cho Musashino, Tokyo 180-8585, Japan EMail: shiomoto.kohei@lab.ntt.co.jp

Kohei Shiomoto NTT 3-9-11 Midori Cho Musashino,东京180-8585,日本电子邮件:Shiomoto。kohei@lab.ntt.co.jp

M. Vigoureux Alcatel-Lucent France Route de Villejust 91620 Nozay FRANCE EMail: martin.vigoureux@alcatel-lucent.fr

M.Vigoureux Alcatel-Lucent法国维勒赫斯特路线91620诺扎伊法国电子邮件:martin。vigoureux@alcatel-朗讯

Editors' Addresses

编辑地址

Jean-Louis Le Roux France Telecom 2, avenue Pierre-Marzin 22307 Lannion Cedex, France EMail: jeanlouis.leroux@orange-ftgroup.com

Jean-Louis Le Roux法国电信2号,Pierre Marzin大街22307兰尼昂塞德斯,法国电子邮件:jeanlouis。leroux@orange-ftgroup.com

Dimitri Papadimitriou Alcatel-Lucent Francis Wellensplein 1, B-2018 Antwerpen, Belgium EMail: dimitri.papadimitriou@alcatel-lucent.be

Dimitri Papadimitriou Alcatel-Lucent Francis Wellensplein 1,B-2018比利时安特卫普电子邮件:Dimitri。papadimitriou@alcatel-朗讯

Full Copyright Statement

完整版权声明

Copyright (C) The IETF Trust (2008).

版权所有(C)IETF信托基金(2008年)。

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息以“原样”为基础提供,贡献者、他/她所代表或赞助的组织(如有)、互联网协会、IETF信托基金和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.