Network Working Group D. Cooper Request for Comments: 5280 NIST Obsoletes: 3280, 4325, 4630 S. Santesson Category: Standards Track Microsoft S. Farrell Trinity College Dublin S. Boeyen Entrust R. Housley Vigil Security W. Polk NIST May 2008
Network Working Group D. Cooper Request for Comments: 5280 NIST Obsoletes: 3280, 4325, 4630 S. Santesson Category: Standards Track Microsoft S. Farrell Trinity College Dublin S. Boeyen Entrust R. Housley Vigil Security W. Polk NIST May 2008
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
Internet X.509公钥基础结构证书和证书吊销列表(CRL)配置文件
Status of This Memo
关于下段备忘
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。
Abstract
摘要
This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet. An overview of this approach and model is provided as an introduction. The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms. Standard certificate extensions are described and two Internet-specific extensions are defined. A set of required certificate extensions is specified. The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions. An algorithm for X.509 certification path validation is described. An ASN.1 module and examples are provided in the appendices.
此备忘录概述了用于Internet的X.509 v3证书和X.509 v2证书吊销列表(CRL)。介绍了该方法和模型的概况。详细描述了X.509 v3证书格式,并提供了有关Internet名称表单格式和语义的其他信息。描述了标准证书扩展,并定义了两个特定于Internet的扩展。指定了一组必需的证书扩展。详细描述了X.509 v2 CRL格式以及标准和特定于Internet的扩展。描述了一种X.509认证路径验证算法。附录中提供了ASN.1模块和示例。
Table of Contents
目录
1. Introduction ....................................................4 2. Requirements and Assumptions ....................................6 2.1. Communication and Topology .................................7 2.2. Acceptability Criteria .....................................7 2.3. User Expectations ..........................................7 2.4. Administrator Expectations .................................8 3. Overview of Approach ............................................8 3.1. X.509 Version 3 Certificate ................................9 3.2. Certification Paths and Trust .............................10 3.3. Revocation ................................................13 3.4. Operational Protocols .....................................14 3.5. Management Protocols ......................................14 4. Certificate and Certificate Extensions Profile .................16 4.1. Basic Certificate Fields ..................................16 4.1.1. Certificate Fields .................................17 4.1.1.1. tbsCertificate ............................18 4.1.1.2. signatureAlgorithm ........................18 4.1.1.3. signatureValue ............................18 4.1.2. TBSCertificate .....................................18 4.1.2.1. Version ...................................19 4.1.2.2. Serial Number .............................19 4.1.2.3. Signature .................................19 4.1.2.4. Issuer ....................................20 4.1.2.5. Validity ..................................22 4.1.2.5.1. UTCTime ........................23 4.1.2.5.2. GeneralizedTime ................23 4.1.2.6. Subject ...................................23 4.1.2.7. Subject Public Key Info ...................25 4.1.2.8. Unique Identifiers ........................25 4.1.2.9. Extensions ................................26 4.2. Certificate Extensions ....................................26 4.2.1. Standard Extensions ................................27 4.2.1.1. Authority Key Identifier ..................27 4.2.1.2. Subject Key Identifier ....................28 4.2.1.3. Key Usage .................................29 4.2.1.4. Certificate Policies ......................32 4.2.1.5. Policy Mappings ...........................35 4.2.1.6. Subject Alternative Name ..................35 4.2.1.7. Issuer Alternative Name ...................38 4.2.1.8. Subject Directory Attributes ..............39 4.2.1.9. Basic Constraints .........................39 4.2.1.10. Name Constraints .........................40 4.2.1.11. Policy Constraints .......................43 4.2.1.12. Extended Key Usage .......................44 4.2.1.13. CRL Distribution Points ..................45 4.2.1.14. Inhibit anyPolicy ........................48
1. Introduction ....................................................4 2. Requirements and Assumptions ....................................6 2.1. Communication and Topology .................................7 2.2. Acceptability Criteria .....................................7 2.3. User Expectations ..........................................7 2.4. Administrator Expectations .................................8 3. Overview of Approach ............................................8 3.1. X.509 Version 3 Certificate ................................9 3.2. Certification Paths and Trust .............................10 3.3. Revocation ................................................13 3.4. Operational Protocols .....................................14 3.5. Management Protocols ......................................14 4. Certificate and Certificate Extensions Profile .................16 4.1. Basic Certificate Fields ..................................16 4.1.1. Certificate Fields .................................17 4.1.1.1. tbsCertificate ............................18 4.1.1.2. signatureAlgorithm ........................18 4.1.1.3. signatureValue ............................18 4.1.2. TBSCertificate .....................................18 4.1.2.1. Version ...................................19 4.1.2.2. Serial Number .............................19 4.1.2.3. Signature .................................19 4.1.2.4. Issuer ....................................20 4.1.2.5. Validity ..................................22 4.1.2.5.1. UTCTime ........................23 4.1.2.5.2. GeneralizedTime ................23 4.1.2.6. Subject ...................................23 4.1.2.7. Subject Public Key Info ...................25 4.1.2.8. Unique Identifiers ........................25 4.1.2.9. Extensions ................................26 4.2. Certificate Extensions ....................................26 4.2.1. Standard Extensions ................................27 4.2.1.1. Authority Key Identifier ..................27 4.2.1.2. Subject Key Identifier ....................28 4.2.1.3. Key Usage .................................29 4.2.1.4. Certificate Policies ......................32 4.2.1.5. Policy Mappings ...........................35 4.2.1.6. Subject Alternative Name ..................35 4.2.1.7. Issuer Alternative Name ...................38 4.2.1.8. Subject Directory Attributes ..............39 4.2.1.9. Basic Constraints .........................39 4.2.1.10. Name Constraints .........................40 4.2.1.11. Policy Constraints .......................43 4.2.1.12. Extended Key Usage .......................44 4.2.1.13. CRL Distribution Points ..................45 4.2.1.14. Inhibit anyPolicy ........................48
4.2.1.15. Freshest CRL (a.k.a. Delta CRL Distribution Point) ......................48 4.2.2. Private Internet Extensions ........................49 4.2.2.1. Authority Information Access ..............49 4.2.2.2. Subject Information Access ................51 5. CRL and CRL Extensions Profile .................................54 5.1. CRL Fields ................................................55 5.1.1. CertificateList Fields .............................56 5.1.1.1. tbsCertList ...............................56 5.1.1.2. signatureAlgorithm ........................57 5.1.1.3. signatureValue ............................57 5.1.2. Certificate List "To Be Signed" ....................58 5.1.2.1. Version ...................................58 5.1.2.2. Signature .................................58 5.1.2.3. Issuer Name ...............................58 5.1.2.4. This Update ...............................58 5.1.2.5. Next Update ...............................59 5.1.2.6. Revoked Certificates ......................59 5.1.2.7. Extensions ................................60 5.2. CRL Extensions ............................................60 5.2.1. Authority Key Identifier ...........................60 5.2.2. Issuer Alternative Name ............................60 5.2.3. CRL Number .........................................61 5.2.4. Delta CRL Indicator ................................62 5.2.5. Issuing Distribution Point .........................65 5.2.6. Freshest CRL (a.k.a. Delta CRL Distribution Point) .............................................67 5.2.7. Authority Information Access .......................67 5.3. CRL Entry Extensions ......................................69 5.3.1. Reason Code ........................................69 5.3.2. Invalidity Date ....................................70 5.3.3. Certificate Issuer .................................70 6. Certification Path Validation ..................................71 6.1. Basic Path Validation .....................................72 6.1.1. Inputs .............................................75 6.1.2. Initialization .....................................77 6.1.3. Basic Certificate Processing .......................80 6.1.4. Preparation for Certificate i+1 ....................84 6.1.5. Wrap-Up Procedure ..................................87 6.1.6. Outputs ............................................89 6.2. Using the Path Validation Algorithm .......................89 6.3. CRL Validation ............................................90 6.3.1. Revocation Inputs ..................................91 6.3.2. Initialization and Revocation State Variables ......91 6.3.3. CRL Processing .....................................92 7. Processing Rules for Internationalized Names ...................95 7.1. Internationalized Names in Distinguished Names ............96 7.2. Internationalized Domain Names in GeneralName .............97
4.2.1.15. Freshest CRL (a.k.a. Delta CRL Distribution Point) ......................48 4.2.2. Private Internet Extensions ........................49 4.2.2.1. Authority Information Access ..............49 4.2.2.2. Subject Information Access ................51 5. CRL and CRL Extensions Profile .................................54 5.1. CRL Fields ................................................55 5.1.1. CertificateList Fields .............................56 5.1.1.1. tbsCertList ...............................56 5.1.1.2. signatureAlgorithm ........................57 5.1.1.3. signatureValue ............................57 5.1.2. Certificate List "To Be Signed" ....................58 5.1.2.1. Version ...................................58 5.1.2.2. Signature .................................58 5.1.2.3. Issuer Name ...............................58 5.1.2.4. This Update ...............................58 5.1.2.5. Next Update ...............................59 5.1.2.6. Revoked Certificates ......................59 5.1.2.7. Extensions ................................60 5.2. CRL Extensions ............................................60 5.2.1. Authority Key Identifier ...........................60 5.2.2. Issuer Alternative Name ............................60 5.2.3. CRL Number .........................................61 5.2.4. Delta CRL Indicator ................................62 5.2.5. Issuing Distribution Point .........................65 5.2.6. Freshest CRL (a.k.a. Delta CRL Distribution Point) .............................................67 5.2.7. Authority Information Access .......................67 5.3. CRL Entry Extensions ......................................69 5.3.1. Reason Code ........................................69 5.3.2. Invalidity Date ....................................70 5.3.3. Certificate Issuer .................................70 6. Certification Path Validation ..................................71 6.1. Basic Path Validation .....................................72 6.1.1. Inputs .............................................75 6.1.2. Initialization .....................................77 6.1.3. Basic Certificate Processing .......................80 6.1.4. Preparation for Certificate i+1 ....................84 6.1.5. Wrap-Up Procedure ..................................87 6.1.6. Outputs ............................................89 6.2. Using the Path Validation Algorithm .......................89 6.3. CRL Validation ............................................90 6.3.1. Revocation Inputs ..................................91 6.3.2. Initialization and Revocation State Variables ......91 6.3.3. CRL Processing .....................................92 7. Processing Rules for Internationalized Names ...................95 7.1. Internationalized Names in Distinguished Names ............96 7.2. Internationalized Domain Names in GeneralName .............97
7.3. Internationalized Domain Names in Distinguished Names .....98 7.4. Internationalized Resource Identifiers ....................98 7.5. Internationalized Electronic Mail Addresses ..............100 8. Security Considerations .......................................100 9. IANA Considerations ...........................................105 10. Acknowledgments ..............................................105 11. References ...................................................105 11.1. Normative References ....................................105 11.2. Informative References ..................................107 Appendix A. Pseudo-ASN.1 Structures and OIDs ....................110 A.1. Explicitly Tagged Module, 1988 Syntax ....................110 A.2. Implicitly Tagged Module, 1988 Syntax ....................125 Appendix B. ASN.1 Notes ..........................................133 Appendix C. Examples .............................................136 C.1. RSA Self-Signed Certificate ..............................137 C.2. End Entity Certificate Using RSA .........................140 C.3. End Entity Certificate Using DSA .........................143 C.4. Certificate Revocation List ..............................147
7.3. Internationalized Domain Names in Distinguished Names .....98 7.4. Internationalized Resource Identifiers ....................98 7.5. Internationalized Electronic Mail Addresses ..............100 8. Security Considerations .......................................100 9. IANA Considerations ...........................................105 10. Acknowledgments ..............................................105 11. References ...................................................105 11.1. Normative References ....................................105 11.2. Informative References ..................................107 Appendix A. Pseudo-ASN.1 Structures and OIDs ....................110 A.1. Explicitly Tagged Module, 1988 Syntax ....................110 A.2. Implicitly Tagged Module, 1988 Syntax ....................125 Appendix B. ASN.1 Notes ..........................................133 Appendix C. Examples .............................................136 C.1. RSA Self-Signed Certificate ..............................137 C.2. End Entity Certificate Using RSA .........................140 C.3. End Entity Certificate Using DSA .........................143 C.4. Certificate Revocation List ..............................147
This specification is one part of a family of standards for the X.509 Public Key Infrastructure (PKI) for the Internet.
本规范是互联网X.509公钥基础设施(PKI)标准系列的一部分。
This specification profiles the format and semantics of certificates and certificate revocation lists (CRLs) for the Internet PKI. Procedures are described for processing of certification paths in the Internet environment. Finally, ASN.1 modules are provided in the appendices for all data structures defined or referenced.
本规范概述了Internet PKI证书和证书撤销列表(CRL)的格式和语义。描述了在Internet环境中处理认证路径的过程。最后,附录中为所有定义或引用的数据结构提供了ASN.1模块。
Section 2 describes Internet PKI requirements and the assumptions that affect the scope of this document. Section 3 presents an architectural model and describes its relationship to previous IETF and ISO/IEC/ITU-T standards. In particular, this document's relationship with the IETF PEM specifications and the ISO/IEC/ITU-T X.509 documents is described.
第2节描述了影响本文件范围的互联网PKI要求和假设。第3节介绍了体系结构模型,并描述了其与先前IETF和ISO/IEC/ITU-T标准的关系。特别是,本文件与IETF PEM规范和ISO/IEC/ITU-T X.509文件的关系进行了说明。
Section 4 profiles the X.509 version 3 certificate, and Section 5 profiles the X.509 version 2 CRL. The profiles include the identification of ISO/IEC/ITU-T and ANSI extensions that may be useful in the Internet PKI. The profiles are presented in the 1988 Abstract Syntax Notation One (ASN.1) rather than the 1997 ASN.1 syntax used in the most recent ISO/IEC/ITU-T standards.
第4节概述了X.509版本3证书,第5节概述了X.509版本2 CRL。这些概要文件包括识别在互联网PKI中可能有用的ISO/IEC/ITU-T和ANSI扩展。这些概要文件在1988年抽象语法符号1(ASN.1)中给出,而不是在最新的ISO/IEC/ITU-T标准中使用的1997年ASN.1语法。
Section 6 includes certification path validation procedures. These procedures are based upon the ISO/IEC/ITU-T definition. Implementations are REQUIRED to derive the same results but are not required to use the specified procedures.
第6节包括认证路径验证程序。这些程序基于ISO/IEC/ITU-T定义。实现需要派生相同的结果,但不需要使用指定的过程。
Procedures for identification and encoding of public key materials and digital signatures are defined in [RFC3279], [RFC4055], and [RFC4491]. Implementations of this specification are not required to use any particular cryptographic algorithms. However, conforming implementations that use the algorithms identified in [RFC3279], [RFC4055], and [RFC4491] MUST identify and encode the public key materials and digital signatures as described in those specifications.
[RFC3279]、[RFC4055]和[RFC4491]中定义了公钥材料和数字签名的识别和编码程序。本规范的实现不需要使用任何特定的加密算法。但是,使用[RFC3279]、[RFC4055]和[RFC4491]中确定的算法的一致性实现必须按照这些规范中的描述识别和编码公钥材料和数字签名。
Finally, three appendices are provided to aid implementers. Appendix A contains all ASN.1 structures defined or referenced within this specification. As above, the material is presented in the 1988 ASN.1. Appendix B contains notes on less familiar features of the ASN.1 notation used within this specification. Appendix C contains examples of conforming certificates and a conforming CRL.
最后,提供了三个附录以帮助实施者。附录A包含本规范中定义或引用的所有ASN.1结构。如上所述,1988年ASN.1中介绍了该材料。附录B包含关于本规范中使用的ASN.1符号的不太熟悉的特征的注释。附录C包含合格证书和合格CRL的示例。
This specification obsoletes [RFC3280]. Differences from RFC 3280 are summarized below:
本规范废除了[RFC3280]。与RFC 3280的差异总结如下:
* Enhanced support for internationalized names is specified in Section 7, with rules for encoding and comparing Internationalized Domain Names, Internationalized Resource Identifiers (IRIs), and distinguished names. These rules are aligned with comparison rules established in current RFCs, including [RFC3490], [RFC3987], and [RFC4518].
* 第7节规定了对国际化名称的增强支持,以及编码和比较国际化域名、国际化资源标识符(IRI)和可分辨名称的规则。这些规则与当前RFC中建立的比较规则一致,包括[RFC3490]、[RFC3987]和[RFC4518]。
* Sections 4.1.2.4 and 4.1.2.6 incorporate the conditions for continued use of legacy text encoding schemes that were specified in [RFC4630]. Where in use by an established PKI, transition to UTF8String could cause denial of service based on name chaining failures or incorrect processing of name constraints.
* 第4.1.2.4节和第4.1.2.6节包含了继续使用[RFC4630]中规定的传统文本编码方案的条件。在已建立的PKI使用时,转换为UTF8String可能会导致基于名称链接失败或名称约束处理不正确的拒绝服务。
* Section 4.2.1.4 in RFC 3280, which specified the privateKeyUsagePeriod certificate extension but deprecated its use, was removed. Use of this ISO standard extension is neither deprecated nor recommended for use in the Internet PKI.
* 已删除RFC 3280中的第4.2.1.4节,该节指定了privateKeyUsagePeriod证书扩展,但不推荐使用该扩展。Internet PKI中既不反对也不建议使用此ISO标准扩展。
* Section 4.2.1.5 recommends marking the policy mappings extension as critical. RFC 3280 required that the policy mappings extension be marked as non-critical.
* 第4.2.1.5节建议将策略映射扩展标记为关键。RFC 3280要求将策略映射扩展标记为非关键。
* Section 4.2.1.11 requires marking the policy constraints extension as critical. RFC 3280 permitted the policy constraints extension to be marked as critical or non-critical.
* 第4.2.1.11节要求将政策约束扩展标记为关键。RFC 3280允许将策略约束扩展标记为关键或非关键。
* The Authority Information Access (AIA) CRL extension, as specified in [RFC4325], was added as Section 5.2.7.
* [RFC4325]中规定的机构信息访问(AIA)CRL扩展被添加为第5.2.7节。
* Sections 5.2 and 5.3 clarify the rules for handling unrecognized CRL extensions and CRL entry extensions, respectively.
* 第5.2节和第5.3节分别阐明了处理未识别CRL扩展和CRL条目扩展的规则。
* Section 5.3.2 in RFC 3280, which specified the holdInstructionCode CRL entry extension, was removed.
* 删除了RFC 3280中的第5.3.2节,该节规定了holdInstructionCode CRL条目扩展。
* The path validation algorithm specified in Section 6 no longer tracks the criticality of the certificate policies extensions in a chain of certificates. In RFC 3280, this information was returned to a relying party.
* 第6节中指定的路径验证算法不再跟踪证书链中证书策略扩展的关键性。在RFC 3280中,该信息被返回给依赖方。
* The Security Considerations section addresses the risk of circular dependencies arising from the use of https or similar schemes in the CRL distribution points, authority information access, or subject information access extensions.
* “安全注意事项”部分讨论了由于在CRL分发点、权限信息访问或主题信息访问扩展中使用https或类似方案而产生的循环依赖性风险。
* The Security Considerations section addresses risks associated with name ambiguity.
* “安全注意事项”部分讨论了与名称歧义相关的风险。
* The Security Considerations section references RFC 4210 for procedures to signal changes in CA operations.
* 安全注意事项部分参考RFC 4210,以了解CA操作中信号更改的过程。
The ASN.1 modules in Appendix A are unchanged from RFC 3280, except that ub-emailaddress-length was changed from 128 to 255 in order to align with PKCS #9 [RFC2985].
附录A中的ASN.1模块与RFC 3280相同,只是ub emailaddress长度从128更改为255,以便与PKCS#9[RFC2985]保持一致。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。
The goal of this specification is to develop a profile to facilitate the use of X.509 certificates within Internet applications for those communities wishing to make use of X.509 technology. Such applications may include WWW, electronic mail, user authentication, and IPsec. In order to relieve some of the obstacles to using X.509 certificates, this document defines a profile to promote the development of certificate management systems, development of application tools, and interoperability determined by policy.
本规范的目标是为希望使用X.509技术的社区开发一个配置文件,以促进在互联网应用程序中使用X.509证书。此类应用程序可以包括WWW、电子邮件、用户身份验证和IPsec。为了消除使用X.509证书的一些障碍,本文档定义了一个概要文件,以促进证书管理系统的开发、应用程序工具的开发以及由策略确定的互操作性。
Some communities will need to supplement, or possibly replace, this profile in order to meet the requirements of specialized application domains or environments with additional authorization, assurance, or operational requirements. However, for basic applications, common representations of frequently used attributes are defined so that
一些社区将需要补充或可能替换此配置文件,以满足具有额外授权、保证或操作要求的专用应用程序域或环境的要求。但是,对于基本应用程序,定义了常用属性的通用表示形式,以便
application developers can obtain necessary information without regard to the issuer of a particular certificate or certificate revocation list (CRL).
应用程序开发人员可以获得必要的信息,而不必考虑特定证书或证书吊销列表(CRL)的颁发者。
A certificate user should review the certificate policy generated by the certification authority (CA) before relying on the authentication or non-repudiation services associated with the public key in a particular certificate. To this end, this standard does not prescribe legally binding rules or duties.
在依赖与特定证书中的公钥相关联的身份验证或不可否认服务之前,证书用户应查看由证书颁发机构(CA)生成的证书策略。为此,本标准未规定具有法律约束力的规则或职责。
As supplemental authorization and attribute management tools emerge, such as attribute certificates, it may be appropriate to limit the authenticated attributes that are included in a certificate. These other management tools may provide more appropriate methods of conveying many authenticated attributes.
随着补充授权和属性管理工具(如属性证书)的出现,限制证书中包含的经过身份验证的属性可能是合适的。这些其他管理工具可以提供更合适的方法来传递许多经过身份验证的属性。
The users of certificates will operate in a wide range of environments with respect to their communication topology, especially users of secure electronic mail. This profile supports users without high bandwidth, real-time IP connectivity, or high connection availability. In addition, the profile allows for the presence of firewall or other filtered communication.
证书用户将在其通信拓扑结构方面的各种环境中操作,特别是安全电子邮件用户。此配置文件支持没有高带宽、实时IP连接或高连接可用性的用户。此外,配置文件允许存在防火墙或其他过滤通信。
This profile does not assume the deployment of an X.500 directory system [X.500] or a Lightweight Directory Access Protocol (LDAP) directory system [RFC4510]. The profile does not prohibit the use of an X.500 directory or an LDAP directory; however, any means of distributing certificates and certificate revocation lists (CRLs) may be used.
此配置文件不假定部署X.500目录系统[X.500]或轻型目录访问协议(LDAP)目录系统[RFC4510]。配置文件不禁止使用X.500目录或LDAP目录;但是,可以使用任何分发证书和证书撤销列表(CRL)的方法。
The goal of the Internet Public Key Infrastructure (PKI) is to meet the needs of deterministic, automated identification, authentication, access control, and authorization functions. Support for these services determines the attributes contained in the certificate as well as the ancillary control information in the certificate such as policy data and certification path constraints.
Internet公钥基础设施(PKI)的目标是满足确定性、自动识别、身份验证、访问控制和授权功能的需求。对这些服务的支持决定了证书中包含的属性以及证书中的辅助控制信息,如策略数据和证书路径约束。
Users of the Internet PKI are people and processes who use client software and are the subjects named in certificates. These uses include readers and writers of electronic mail, the clients for WWW browsers, WWW servers, and the key manager for IPsec within a router. This profile recognizes the limitations of the platforms these users
Internet PKI的用户是使用客户端软件的人员和进程,是证书中指定的主体。这些用途包括电子邮件的读写器、WWW浏览器的客户端、WWW服务器以及路由器中IPsec的密钥管理器。此配置文件认识到这些用户使用的平台的局限性
employ and the limitations in sophistication and attentiveness of the users themselves. This manifests itself in minimal user configuration responsibility (e.g., trusted CA keys, rules), explicit platform usage constraints within the certificate, certification path constraints that shield the user from many malicious actions, and applications that sensibly automate validation functions.
以及用户自身在复杂度和专注度方面的局限性。这体现在最小的用户配置责任(例如,受信任的CA密钥、规则)、证书中明确的平台使用约束、保护用户免受许多恶意操作的认证路径约束,以及明智地自动化验证功能的应用程序。
As with user expectations, the Internet PKI profile is structured to support the individuals who generally operate CAs. Providing administrators with unbounded choices increases the chances that a subtle CA administrator mistake will result in broad compromise. Also, unbounded choices greatly complicate the software that process and validate the certificates created by the CA.
与用户期望一样,Internet PKI配置文件的结构是为了支持通常操作CAs的个人。为管理员提供无限的选择会增加CA管理员犯下的细微错误导致广泛妥协的可能性。此外,无界选择极大地使处理和验证CA创建的证书的软件复杂化。
Following is a simplified view of the architectural model assumed by the Public-Key Infrastructure using X.509 (PKIX) specifications.
以下是公钥基础设施使用X.509(PKIX)规范所假定的体系结构模型的简化视图。
The components in this model are:
该模型中的组件包括:
end entity: user of PKI certificates and/or end user system that is the subject of a certificate;
最终实体:PKI证书的用户和/或作为证书主体的最终用户系统;
CA: certification authority;
CA:证书颁发机构;
RA: registration authority, i.e., an optional system to which a CA delegates certain management functions;
RA:注册机构,即CA授权某些管理功能的可选系统;
CRL issuer: a system that generates and signs CRLs; and
CRL发卡机构:生成和签署CRL的系统;和
repository: a system or collection of distributed systems that stores certificates and CRLs and serves as a means of distributing these certificates and CRLs to end entities.
存储库:存储证书和CRL的分布式系统或集合,用作将这些证书和CRL分发给终端实体的手段。
CAs are responsible for indicating the revocation status of the certificates that they issue. Revocation status information may be provided using the Online Certificate Status Protocol (OCSP) [RFC2560], certificate revocation lists (CRLs), or some other mechanism. In general, when revocation status information is provided using CRLs, the CA is also the CRL issuer. However, a CA may delegate the responsibility for issuing CRLs to a different entity.
CA负责指示其颁发的证书的吊销状态。可以使用在线证书状态协议(OCSP)[RFC2560]、证书撤销列表(CRL)或一些其他机制来提供撤销状态信息。通常,当使用CRL提供撤销状态信息时,CA也是CRL颁发者。但是,CA可以将签发CRL的责任委托给其他实体。
Note that an Attribute Authority (AA) might also choose to delegate the publication of CRLs to a CRL issuer.
请注意,属性颁发机构(AA)也可以选择将CRL的发布委托给CRL颁发者。
+---+ | C | +------------+ | e | <-------------------->| End entity | | r | Operational +------------+ | t | transactions ^ | i | and management | Management | f | transactions | transactions PKI | i | | users | c | v | a | ======================= +--+------------+ ============== | t | ^ ^ | e | | | PKI | | v | management | & | +------+ | entities | | <---------------------| RA |<----+ | | C | Publish certificate +------+ | | | R | | | | L | | | | | v v | R | +------------+ | e | <------------------------------| CA | | p | Publish certificate +------------+ | o | Publish CRL ^ ^ | s | | | Management | i | +------------+ | | transactions | t | <--------------| CRL Issuer |<----+ | | o | Publish CRL +------------+ v | r | +------+ | y | | CA | +---+ +------+
+---+ | C | +------------+ | e | <-------------------->| End entity | | r | Operational +------------+ | t | transactions ^ | i | and management | Management | f | transactions | transactions PKI | i | | users | c | v | a | ======================= +--+------------+ ============== | t | ^ ^ | e | | | PKI | | v | management | & | +------+ | entities | | <---------------------| RA |<----+ | | C | Publish certificate +------+ | | | R | | | | L | | | | | v v | R | +------------+ | e | <------------------------------| CA | | p | Publish certificate +------------+ | o | Publish CRL ^ ^ | s | | | Management | i | +------------+ | | transactions | t | <--------------| CRL Issuer |<----+ | | o | Publish CRL +------------+ v | r | +------+ | y | | CA | +---+ +------+
Figure 1. PKI Entities
图1。PKI实体
Users of a public key require confidence that the associated private key is owned by the correct remote subject (person or system) with which an encryption or digital signature mechanism will be used. This confidence is obtained through the use of public key certificates, which are data structures that bind public key values to subjects. The binding is asserted by having a trusted CA digitally sign each certificate. The CA may base this assertion upon technical means (a.k.a., proof of possession through a challenge-response protocol), presentation of the private key, or on an assertion by the subject. A certificate has a limited valid lifetime, which is indicated in its signed contents. Because a certificate's signature and timeliness can be independently checked by a certificate-using client, certificates can be distributed via
公钥的用户需要确信相关的私钥属于将使用加密或数字签名机制的正确远程主体(个人或系统)。这种信心是通过使用公钥证书获得的,公钥证书是将公钥值绑定到主题的数据结构。通过让受信任的CA对每个证书进行数字签名来断言绑定。CA可以基于技术手段(即通过质询-响应协议证明拥有)、私钥的呈现或主体的断言来进行此断言。证书具有有限的有效生存期,这在其签名内容中指明。由于证书的签名和及时性可以由使用客户端的证书独立检查,因此可以通过
untrusted communications and server systems, and can be cached in unsecured storage in certificate-using systems.
不受信任的通信和服务器系统,并且可以缓存在使用证书的系统中的不安全存储中。
ITU-T X.509 (formerly CCITT X.509) or ISO/IEC 9594-8, which was first published in 1988 as part of the X.500 directory recommendations, defines a standard certificate format [X.509]. The certificate format in the 1988 standard is called the version 1 (v1) format. When X.500 was revised in 1993, two more fields were added, resulting in the version 2 (v2) format.
ITU-T X.509(前身为CCITT X.509)或ISO/IEC 9594-8(于1988年作为X.500目录建议的一部分首次发布)定义了标准证书格式[X.509]。1988年标准中的证书格式称为版本1(v1)格式。当X.500在1993年修订时,又增加了两个字段,从而形成了版本2(v2)格式。
The Internet Privacy Enhanced Mail (PEM) RFCs, published in 1993, include specifications for a public key infrastructure based on X.509 v1 certificates [RFC1422]. The experience gained in attempts to deploy RFC 1422 made it clear that the v1 and v2 certificate formats were deficient in several respects. Most importantly, more fields were needed to carry information that PEM design and implementation experience had proven necessary. In response to these new requirements, the ISO/IEC, ITU-T, and ANSI X9 developed the X.509 version 3 (v3) certificate format. The v3 format extends the v2 format by adding provision for additional extension fields. Particular extension field types may be specified in standards or may be defined and registered by any organization or community. In June 1996, standardization of the basic v3 format was completed [X.509].
1993年发布的Internet隐私增强邮件(PEM)RFC包括基于X.509 v1证书的公钥基础设施规范[RFC1422]。在尝试部署RFC 1422时获得的经验表明,v1和v2证书格式在几个方面存在缺陷。最重要的是,需要更多的领域来承载PEM设计和实施经验证明必要的信息。为了响应这些新要求,ISO/IEC、ITU-T和ANSI X9开发了X.509版本3(v3)证书格式。v3格式通过添加额外扩展字段的规定来扩展v2格式。特定的扩展字段类型可以在标准中指定,也可以由任何组织或社区定义和注册。1996年6月,基本v3格式的标准化工作完成[X.509]。
ISO/IEC, ITU-T, and ANSI X9 have also developed standard extensions for use in the v3 extensions field [X.509][X9.55]. These extensions can convey such data as additional subject identification information, key attribute information, policy information, and certification path constraints.
ISO/IEC、ITU-T和ANSI X9还开发了用于v3扩展字段[X.509][X9.55]的标准扩展。这些扩展可以传递诸如附加主题标识信息、关键属性信息、策略信息和认证路径约束之类的数据。
However, the ISO/IEC, ITU-T, and ANSI X9 standard extensions are very broad in their applicability. In order to develop interoperable implementations of X.509 v3 systems for Internet use, it is necessary to specify a profile for use of the X.509 v3 extensions tailored for the Internet. It is one goal of this document to specify a profile for Internet WWW, electronic mail, and IPsec applications. Environments with additional requirements may build on this profile or may replace it.
然而,ISO/IEC、ITU-T和ANSI X9标准扩展的适用性非常广泛。为了开发用于Internet的X.509 v3系统的可互操作实现,有必要指定一个配置文件,以使用为Internet定制的X.509 v3扩展。本文档的目标之一是指定Internet WWW、电子邮件和IPsec应用程序的配置文件。具有附加要求的环境可以基于此配置文件构建,也可以替换此配置文件。
A user of a security service requiring knowledge of a public key generally needs to obtain and validate a certificate containing the required public key. If the public key user does not already hold an assured copy of the public key of the CA that signed the certificate, the CA's name, and related information (such as the validity period or name constraints), then it might need an additional certificate to obtain that public key. In general, a chain of multiple certificates
需要了解公钥的安全服务的用户通常需要获取并验证包含所需公钥的证书。如果公钥用户尚未持有签署证书的CA的公钥、CA的名称和相关信息(如有效期或名称限制)的保证副本,则可能需要额外的证书来获取该公钥。通常,多个证书链
may be needed, comprising a certificate of the public key owner (the end entity) signed by one CA, and zero or more additional certificates of CAs signed by other CAs. Such chains, called certification paths, are required because a public key user is only initialized with a limited number of assured CA public keys.
可能需要,包括由一个CA签署的公钥所有者(最终实体)的证书,以及由其他CA签署的CA的零个或多个附加证书。这种称为认证路径的链是必需的,因为公钥用户仅使用有限数量的保证CA公钥进行初始化。
There are different ways in which CAs might be configured in order for public key users to be able to find certification paths. For PEM, RFC 1422 defined a rigid hierarchical structure of CAs. There are three types of PEM certification authority:
为了让公钥用户能够找到证书路径,可以通过不同的方式配置CA。对于PEM,RFC1422定义了CAs的刚性层次结构。PEM认证机构有三种类型:
(a) Internet Policy Registration Authority (IPRA): This authority, operated under the auspices of the Internet Society, acts as the root of the PEM certification hierarchy at level 1. It issues certificates only for the next level of authorities, PCAs. All certification paths start with the IPRA.
(a) 互联网政策注册管理局(IPRA):该管理局在互联网协会的支持下运作,作为PEM认证体系的一级基础。它只为下一级机构PCAs颁发证书。所有认证路径都以IPRA开始。
(b) Policy Certification Authorities (PCAs): PCAs are at level 2 of the hierarchy, each PCA being certified by the IPRA. A PCA shall establish and publish a statement of its policy with respect to certifying users or subordinate certification authorities. Distinct PCAs aim to satisfy different user needs. For example, one PCA (an organizational PCA) might support the general electronic mail needs of commercial organizations, and another PCA (a high-assurance PCA) might have a more stringent policy designed for satisfying legally binding digital signature requirements.
(b) 政策认证机构(PCA):PCA处于层次结构的第2级,每个PCA都由IPRA认证。认证机构应制定并公布其关于认证用户或下级认证机构的政策声明。不同的PCA旨在满足不同的用户需求。例如,一个PCA(组织PCA)可能支持商业组织的一般电子邮件需求,而另一个PCA(高保证PCA)可能有更严格的政策,旨在满足具有法律约束力的数字签名要求。
(c) Certification Authorities (CAs): CAs are at level 3 of the hierarchy and can also be at lower levels. Those at level 3 are certified by PCAs. CAs represent, for example, particular organizations, particular organizational units (e.g., departments, groups, sections), or particular geographical areas.
(c) 证书颁发机构(CA):CA处于层次结构的第3级,也可以处于较低级别。3级人员由PCAs认证。CA代表,例如,特定组织、特定组织单位(例如,部门、团体、部门)或特定地理区域。
RFC 1422 furthermore has a name subordination rule, which requires that a CA can only issue certificates for entities whose names are subordinate (in the X.500 naming tree) to the name of the CA itself. The trust associated with a PEM certification path is implied by the PCA name. The name subordination rule ensures that CAs below the PCA are sensibly constrained as to the set of subordinate entities they can certify (e.g., a CA for an organization can only certify entities in that organization's name tree). Certificate user systems are able to mechanically check that the name subordination rule has been followed.
RFC 1422还有一个名称从属规则,该规则要求CA只能为名称从属于(在X.500命名树中)CA本身名称的实体颁发证书。PCA名称暗示了与PEM认证路径关联的信任。名称从属规则确保PCA下的CA在其可以认证的从属实体集合方面受到合理的约束(例如,组织的CA只能认证该组织名称树中的实体)。证书用户系统能够机械地检查是否遵循了名称从属规则。
RFC 1422 uses the X.509 v1 certificate format. The limitations of X.509 v1 required imposition of several structural restrictions to clearly associate policy information or restrict the utility of certificates. These restrictions included:
RFC 1422使用X.509 v1证书格式。X.509 v1的限制要求强制实施若干结构限制,以明确关联策略信息或限制证书的效用。这些限制包括:
(a) a pure top-down hierarchy, with all certification paths starting from IPRA;
(a) 纯自上而下的层次结构,所有认证路径都从IPRA开始;
(b) a naming subordination rule restricting the names of a CA's subjects; and
(b) 限制CA受试者姓名的命名从属规则;和
(c) use of the PCA concept, which requires knowledge of individual PCAs to be built into certificate chain verification logic. Knowledge of individual PCAs was required to determine if a chain could be accepted.
(c) 使用PCA概念,这需要将单个PCA的知识构建到证书链验证逻辑中。需要了解单个PCA,以确定链是否可以接受。
With X.509 v3, most of the requirements addressed by RFC 1422 can be addressed using certificate extensions, without a need to restrict the CA structures used. In particular, the certificate extensions relating to certificate policies obviate the need for PCAs and the constraint extensions obviate the need for the name subordination rule. As a result, this document supports a more flexible architecture, including:
对于X.509 v3,RFC 1422解决的大多数需求都可以使用证书扩展来解决,而无需限制使用的CA结构。特别是,与证书策略相关的证书扩展消除了PCA的需要,而约束扩展消除了名称从属规则的需要。因此,本文档支持更灵活的体系结构,包括:
(a) Certification paths start with a public key of a CA in a user's own domain, or with the public key of the top of a hierarchy. Starting with the public key of a CA in a user's own domain has certain advantages. In some environments, the local domain is the most trusted.
(a) 认证路径以用户自己域中CA的公钥或层次结构顶部的公钥开始。从用户自己域中的CA公钥开始具有某些优势。在某些环境中,本地域是最受信任的。
(b) Name constraints may be imposed through explicit inclusion of a name constraints extension in a certificate, but are not required.
(b) 名称约束可以通过在证书中显式包含名称约束扩展来施加,但不是必需的。
(c) Policy extensions and policy mappings replace the PCA concept, which permits a greater degree of automation. The application can determine if the certification path is acceptable based on the contents of the certificates instead of a priori knowledge of PCAs. This permits automation of certification path processing.
(c) 策略扩展和策略映射取代了PCA概念,后者允许更高程度的自动化。应用程序可以基于证书的内容而不是pca的先验知识来确定证书路径是否可接受。这允许认证路径处理的自动化。
X.509 v3 also includes an extension that identifies the subject of a certificate as being either a CA or an end entity, reducing the reliance on out-of-band information demanded in PEM.
X.509 v3还包括一个扩展,该扩展将证书的主体标识为CA或终端实体,从而减少了对PEM中要求的带外信息的依赖。
This specification covers two classes of certificates: CA certificates and end entity certificates. CA certificates may be further divided into three classes: cross-certificates, self-issued
本规范涵盖两类证书:CA证书和终端实体证书。CA证书可进一步分为三类:交叉证书、自行颁发的证书
certificates, and self-signed certificates. Cross-certificates are CA certificates in which the issuer and subject are different entities. Cross-certificates describe a trust relationship between the two CAs. Self-issued certificates are CA certificates in which the issuer and subject are the same entity. Self-issued certificates are generated to support changes in policy or operations. Self-signed certificates are self-issued certificates where the digital signature may be verified by the public key bound into the certificate. Self-signed certificates are used to convey a public key for use to begin certification paths. End entity certificates are issued to subjects that are not authorized to issue certificates.
证书和自签名证书。交叉证书是CA证书,其中颁发者和主体是不同的实体。交叉证书描述两个CA之间的信任关系。自行颁发的证书是CA证书,其中颁发者和主体是同一实体。生成自颁发的证书以支持策略或操作的更改。自签名证书是自颁发的证书,其中数字签名可以通过绑定到证书中的公钥进行验证。自签名证书用于传递公钥,用于开始证书路径。终端实体证书颁发给无权颁发证书的主体。
When a certificate is issued, it is expected to be in use for its entire validity period. However, various circumstances may cause a certificate to become invalid prior to the expiration of the validity period. Such circumstances include change of name, change of association between subject and CA (e.g., an employee terminates employment with an organization), and compromise or suspected compromise of the corresponding private key. Under such circumstances, the CA needs to revoke the certificate.
颁发证书时,该证书预计将在其整个有效期内使用。但是,各种情况可能导致证书在有效期到期之前失效。此类情况包括姓名变更、主体与CA之间的关联变更(例如,员工终止与组织的雇佣关系)以及相应私钥的泄露或疑似泄露。在这种情况下,CA需要撤销证书。
X.509 defines one method of certificate revocation. This method involves each CA periodically issuing a signed data structure called a certificate revocation list (CRL). A CRL is a time-stamped list identifying revoked certificates that is signed by a CA or CRL issuer and made freely available in a public repository. Each revoked certificate is identified in a CRL by its certificate serial number. When a certificate-using system uses a certificate (e.g., for verifying a remote user's digital signature), that system not only checks the certificate signature and validity but also acquires a suitably recent CRL and checks that the certificate serial number is not on that CRL. The meaning of "suitably recent" may vary with local policy, but it usually means the most recently issued CRL. A new CRL is issued on a regular periodic basis (e.g., hourly, daily, or weekly). An entry is added to the CRL as part of the next update following notification of revocation. An entry MUST NOT be removed from the CRL until it appears on one regularly scheduled CRL issued beyond the revoked certificate's validity period.
X.509定义了一种证书撤销方法。此方法涉及每个CA定期发布一个称为证书吊销列表(CRL)的签名数据结构。CRL是一个时间戳列表,标识由CA或CRL颁发者签名并在公共存储库中免费提供的已吊销证书。每个被吊销的证书在CRL中都通过其证书序列号进行标识。当证书使用系统使用证书(例如,用于验证远程用户的数字签名)时,该系统不仅检查证书签名和有效性,还获取适当的最新CRL,并检查证书序列号不在该CRL上。“适当最近”的含义可能因当地政策而异,但通常指最近发布的CRL。定期(例如,每小时、每天或每周)发布新的CRL。在发出撤销通知后,将向CRL添加一个条目,作为下一次更新的一部分。除非条目出现在已撤销证书有效期之后发布的定期CRL上,否则不得从CRL中删除该条目。
An advantage of this revocation method is that CRLs may be distributed by exactly the same means as certificates themselves, namely, via untrusted servers and untrusted communications.
这种撤销方法的一个优点是,CRL可以通过与证书本身完全相同的方式分发,即通过不受信任的服务器和不受信任的通信。
One limitation of the CRL revocation method, using untrusted communications and servers, is that the time granularity of revocation is limited to the CRL issue period. For example, if a
使用不可信通信和服务器的CRL撤销方法的一个限制是,撤销的时间粒度限制在CRL发布期间。例如,如果
revocation is reported now, that revocation will not be reliably notified to certificate-using systems until all currently issued CRLs are scheduled to be updated -- this may be up to one hour, one day, or one week depending on the frequency that CRLs are issued.
现在报告了吊销,在计划更新所有当前发布的CRL之前,不会可靠地将吊销通知给证书使用系统—这可能长达一小时、一天或一周,具体取决于CRL的发布频率。
As with the X.509 v3 certificate format, in order to facilitate interoperable implementations from multiple vendors, the X.509 v2 CRL format needs to be profiled for Internet use. It is one goal of this document to specify that profile. However, this profile does not require the issuance of CRLs. Message formats and protocols supporting on-line revocation notification are defined in other PKIX specifications. On-line methods of revocation notification may be applicable in some environments as an alternative to the X.509 CRL. On-line revocation checking may significantly reduce the latency between a revocation report and the distribution of the information to relying parties. Once the CA accepts a revocation report as authentic and valid, any query to the on-line service will correctly reflect the certificate validation impacts of the revocation. However, these methods impose new security requirements: the certificate validator needs to trust the on-line validation service while the repository does not need to be trusted.
与X.509 v3证书格式一样,为了便于多个供应商的互操作实施,需要对X.509 v2 CRL格式进行分析,以供Internet使用。本文档的目标之一是指定该概要文件。但是,此配置文件不要求发布CRL。其他PKIX规范中定义了支持在线撤销通知的消息格式和协议。在线撤销通知方法可能适用于某些环境,作为X.509 CRL的替代方案。在线撤销检查可以显著减少撤销报告与向依赖方分发信息之间的延迟。一旦CA接受了真实有效的撤销报告,对在线服务的任何查询都将正确反映撤销对证书验证的影响。但是,这些方法带来了新的安全要求:证书验证器需要信任在线验证服务,而存储库不需要信任。
Operational protocols are required to deliver certificates and CRLs (or status information) to certificate-using client systems. Provisions are needed for a variety of different means of certificate and CRL delivery, including distribution procedures based on LDAP, HTTP, FTP, and X.500. Operational protocols supporting these functions are defined in other PKIX specifications. These specifications may include definitions of message formats and procedures for supporting all of the above operational environments, including definitions of or references to appropriate MIME content types.
使用客户端系统向证书传递证书和CRL(或状态信息)需要操作协议。需要为各种不同的证书和CRL交付方式提供规定,包括基于LDAP、HTTP、FTP和X.500的分发过程。其他PKIX规范中定义了支持这些功能的操作协议。这些规范可能包括支持上述所有操作环境的消息格式和过程的定义,包括对适当MIME内容类型的定义或引用。
Management protocols are required to support on-line interactions between PKI user and management entities. For example, a management protocol might be used between a CA and a client system with which a key pair is associated, or between two CAs that cross-certify each other. The set of functions that potentially need to be supported by management protocols include:
需要管理协议来支持PKI用户和管理实体之间的在线交互。例如,可以在CA和与密钥对关联的客户机系统之间使用管理协议,或者在相互交叉认证的两个CA之间使用管理协议。管理协议可能需要支持的一组功能包括:
(a) registration: This is the process whereby a user first makes itself known to a CA (directly, or through an RA), prior to that CA issuing a certificate or certificates for that user.
(a) 注册:这是一个过程,用户在CA为该用户颁发一个或多个证书之前,首先向CA(直接或通过RA)表明自己的身份。
(b) initialization: Before a client system can operate securely, it is necessary to install key materials that have the appropriate relationship with keys stored elsewhere in the infrastructure. For example, the client needs to be securely initialized with the public key and other assured information of the trusted CA(s), to be used in validating certificate paths.
(b) 初始化:在客户端系统能够安全运行之前,必须安装与基础结构中其他位置存储的密钥具有适当关系的密钥材料。例如,客户端需要使用公钥和受信任CA的其他有保证的信息进行安全初始化,以用于验证证书路径。
Furthermore, a client typically needs to be initialized with its own key pair(s).
此外,客户机通常需要使用自己的密钥对进行初始化。
(c) certification: This is the process in which a CA issues a certificate for a user's public key, and returns that certificate to the user's client system and/or posts that certificate in a repository.
(c) 认证:CA为用户的公钥颁发证书,并将该证书返回到用户的客户端系统和/或将该证书发布到存储库中的过程。
(d) key pair recovery: As an option, user client key materials (e.g., a user's private key used for encryption purposes) may be backed up by a CA or a key backup system. If a user needs to recover these backed-up key materials (e.g., as a result of a forgotten password or a lost key chain file), an on-line protocol exchange may be needed to support such recovery.
(d) 密钥对恢复:作为一种选择,用户客户端密钥材料(例如,用于加密目的的用户私钥)可以由CA或密钥备份系统进行备份。如果用户需要恢复这些备份的密钥材料(例如,由于忘记密码或丢失密钥链文件),则可能需要在线协议交换来支持此类恢复。
(e) key pair update: All key pairs need to be updated regularly, i.e., replaced with a new key pair, and new certificates issued.
(e) 密钥对更新:需要定期更新所有密钥对,即用新密钥对替换,并颁发新证书。
(f) revocation request: An authorized person advises a CA of an abnormal situation requiring certificate revocation.
(f) 撤销请求:授权人通知CA需要撤销证书的异常情况。
(g) cross-certification: Two CAs exchange information used in establishing a cross-certificate. A cross-certificate is a certificate issued by one CA to another CA that contains a CA signature key used for issuing certificates.
(g) 交叉认证:两个CA交换用于建立交叉证书的信息。交叉证书是由一个CA向另一个CA颁发的证书,其中包含用于颁发证书的CA签名密钥。
Note that on-line protocols are not the only way of implementing the above functions. For all functions, there are off-line methods of achieving the same result, and this specification does not mandate use of on-line protocols. For example, when hardware tokens are used, many of the functions may be achieved as part of the physical token delivery. Furthermore, some of the above functions may be combined into one protocol exchange. In particular, two or more of the registration, initialization, and certification functions can be combined into one protocol exchange.
请注意,在线协议不是实现上述功能的唯一方式。对于所有功能,都有实现相同结果的离线方法,本规范不强制使用在线协议。例如,当使用硬件令牌时,许多功能可以作为物理令牌传递的一部分来实现。此外,上述一些功能可以组合成一个协议交换。特别地,两个或多个注册、初始化和认证功能可以组合成一个协议交换。
The PKIX series of specifications defines a set of standard message formats supporting the above functions. The protocols for conveying these messages in different environments (e.g., email, file transfer, and WWW) are described in those specifications.
PKIX系列规范定义了一组支持上述功能的标准消息格式。这些规范中描述了在不同环境(例如电子邮件、文件传输和WWW)中传输这些消息的协议。
This section presents a profile for public key certificates that will foster interoperability and a reusable PKI. This section is based upon the X.509 v3 certificate format and the standard certificate extensions defined in [X.509]. The ISO/IEC and ITU-T documents use the 1997 version of ASN.1; while this document uses the 1988 ASN.1 syntax, the encoded certificate and standard extensions are equivalent. This section also defines private extensions required to support a PKI for the Internet community.
本节介绍了公钥证书的配置文件,它将促进互操作性和可重用的PKI。本节基于X.509 v3证书格式和[X.509]中定义的标准证书扩展。ISO/IEC和ITU-T文件使用1997版ASN.1;虽然本文档使用1988 ASN.1语法,但编码证书和标准扩展是等效的。本节还定义了为Internet社区支持PKI所需的专用扩展。
Certificates may be used in a wide range of applications and environments covering a broad spectrum of interoperability goals and a broader spectrum of operational and assurance requirements. The goal of this document is to establish a common baseline for generic applications requiring broad interoperability and limited special purpose requirements. In particular, the emphasis will be on supporting the use of X.509 v3 certificates for informal Internet electronic mail, IPsec, and WWW applications.
证书可用于广泛的应用程序和环境,涵盖广泛的互操作性目标和更广泛的操作和保证要求。本文档的目标是为需要广泛互操作性和有限特殊用途需求的通用应用程序建立通用基线。特别是,重点将是支持非正式Internet电子邮件、IPsec和WWW应用程序使用X.509 v3证书。
The X.509 v3 certificate basic syntax is as follows. For signature calculation, the data that is to be signed is encoded using the ASN.1 distinguished encoding rules (DER) [X.690]. ASN.1 DER encoding is a tag, length, value encoding system for each element.
X.509 v3证书的基本语法如下所示。对于签名计算,将要签名的数据使用ASN.1可分辨编码规则(DER)[X.690]进行编码。ASN.1 DER编码是每个元素的标记、长度、值编码系统。
Certificate ::= SEQUENCE { tbsCertificate TBSCertificate, signatureAlgorithm AlgorithmIdentifier, signatureValue BIT STRING }
Certificate ::= SEQUENCE { tbsCertificate TBSCertificate, signatureAlgorithm AlgorithmIdentifier, signatureValue BIT STRING }
TBSCertificate ::= SEQUENCE { version [0] EXPLICIT Version DEFAULT v1, serialNumber CertificateSerialNumber, signature AlgorithmIdentifier, issuer Name, validity Validity, subject Name, subjectPublicKeyInfo SubjectPublicKeyInfo, issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version MUST be v2 or v3
TBSCertificate ::= SEQUENCE { version [0] EXPLICIT Version DEFAULT v1, serialNumber CertificateSerialNumber, signature AlgorithmIdentifier, issuer Name, validity Validity, subject Name, subjectPublicKeyInfo SubjectPublicKeyInfo, issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version MUST be v2 or v3
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version MUST be v2 or v3 extensions [3] EXPLICIT Extensions OPTIONAL -- If present, version MUST be v3 }
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version MUST be v2 or v3 extensions [3] EXPLICIT Extensions OPTIONAL -- If present, version MUST be v3 }
Version ::= INTEGER { v1(0), v2(1), v3(2) }
Version ::= INTEGER { v1(0), v2(1), v3(2) }
CertificateSerialNumber ::= INTEGER
CertificateSerialNumber ::= INTEGER
Validity ::= SEQUENCE { notBefore Time, notAfter Time }
Validity ::= SEQUENCE { notBefore Time, notAfter Time }
Time ::= CHOICE { utcTime UTCTime, generalTime GeneralizedTime }
Time ::= CHOICE { utcTime UTCTime, generalTime GeneralizedTime }
UniqueIdentifier ::= BIT STRING
UniqueIdentifier ::= BIT STRING
SubjectPublicKeyInfo ::= SEQUENCE { algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING }
SubjectPublicKeyInfo ::= SEQUENCE { algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING }
Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
Extension ::= SEQUENCE { extnID OBJECT IDENTIFIER, critical BOOLEAN DEFAULT FALSE, extnValue OCTET STRING -- contains the DER encoding of an ASN.1 value -- corresponding to the extension type identified -- by extnID }
Extension ::= SEQUENCE { extnID OBJECT IDENTIFIER, critical BOOLEAN DEFAULT FALSE, extnValue OCTET STRING -- contains the DER encoding of an ASN.1 value -- corresponding to the extension type identified -- by extnID }
The following items describe the X.509 v3 certificate for use in the Internet.
以下项目描述了用于Internet的X.509 v3证书。
The Certificate is a SEQUENCE of three required fields. The fields are described in detail in the following subsections.
证书由三个必填字段组成。以下小节详细描述了这些字段。
The field contains the names of the subject and issuer, a public key associated with the subject, a validity period, and other associated information. The fields are described in detail in Section 4.1.2; the tbsCertificate usually includes extensions, which are described in Section 4.2.
该字段包含主题和颁发者的名称、与主题相关联的公钥、有效期和其他相关信息。第4.1.2节详细描述了这些字段;TBSC证书通常包括扩展,如第4.2节所述。
The signatureAlgorithm field contains the identifier for the cryptographic algorithm used by the CA to sign this certificate. [RFC3279], [RFC4055], and [RFC4491] list supported signature algorithms, but other signature algorithms MAY also be supported.
signatureAlgorithm字段包含CA用于签署此证书的加密算法的标识符。[RFC3279]、[RFC4055]和[RFC4491]列出了支持的签名算法,但也可能支持其他签名算法。
An algorithm identifier is defined by the following ASN.1 structure:
算法标识符由以下ASN.1结构定义:
AlgorithmIdentifier ::= SEQUENCE { algorithm OBJECT IDENTIFIER, parameters ANY DEFINED BY algorithm OPTIONAL }
AlgorithmIdentifier ::= SEQUENCE { algorithm OBJECT IDENTIFIER, parameters ANY DEFINED BY algorithm OPTIONAL }
The algorithm identifier is used to identify a cryptographic algorithm. The OBJECT IDENTIFIER component identifies the algorithm (such as DSA with SHA-1). The contents of the optional parameters field will vary according to the algorithm identified.
算法标识符用于识别加密算法。对象标识符组件标识算法(例如带有SHA-1的DSA)。可选参数字段的内容将根据识别的算法而变化。
This field MUST contain the same algorithm identifier as the signature field in the sequence tbsCertificate (Section 4.1.2.3).
该字段必须包含与序列tbsCertificate(第4.1.2.3节)中签名字段相同的算法标识符。
The signatureValue field contains a digital signature computed upon the ASN.1 DER encoded tbsCertificate. The ASN.1 DER encoded tbsCertificate is used as the input to the signature function. This signature value is encoded as a BIT STRING and included in the signature field. The details of this process are specified for each of the algorithms listed in [RFC3279], [RFC4055], and [RFC4491].
signatureValue字段包含根据ASN.1 DER编码的tbsCertificate计算的数字签名。ASN.1 DER编码的tbsCertificate用作签名函数的输入。此签名值编码为位字符串,并包含在签名字段中。此过程的详细信息针对[RFC3279]、[RFC4055]和[RFC4491]中列出的每种算法进行了说明。
By generating this signature, a CA certifies the validity of the information in the tbsCertificate field. In particular, the CA certifies the binding between the public key material and the subject of the certificate.
通过生成此签名,CA将证明tbsCertificate字段中信息的有效性。特别是,CA认证公钥材料与证书主题之间的绑定。
The sequence TBSCertificate contains information associated with the subject of the certificate and the CA that issued it. Every TBSCertificate contains the names of the subject and issuer, a public
序列TBSCertificate包含与证书主题和颁发证书的CA相关的信息。每一份TBSCertificate都包含主题和发行人的姓名,即公众姓名
key associated with the subject, a validity period, a version number, and a serial number; some MAY contain optional unique identifier fields. The remainder of this section describes the syntax and semantics of these fields. A TBSCertificate usually includes extensions. Extensions for the Internet PKI are described in Section 4.2.
与主题相关联的密钥、有效期、版本号和序列号;有些可能包含可选的唯一标识符字段。本节的其余部分介绍这些字段的语法和语义。TBSCertificate通常包括扩展。第4.2节介绍了Internet PKI的扩展。
This field describes the version of the encoded certificate. When extensions are used, as expected in this profile, version MUST be 3 (value is 2). If no extensions are present, but a UniqueIdentifier is present, the version SHOULD be 2 (value is 1); however, the version MAY be 3. If only basic fields are present, the version SHOULD be 1 (the value is omitted from the certificate as the default value); however, the version MAY be 2 or 3.
此字段描述编码证书的版本。当使用扩展时,正如此配置文件中所预期的,版本必须为3(值为2)。如果不存在扩展名,但存在唯一标识符,则版本应为2(值为1);但是,版本可能是3。如果仅存在基本字段,则版本应为1(该值作为默认值从证书中省略);但是,版本可能是2或3。
Implementations SHOULD be prepared to accept any version certificate. At a minimum, conforming implementations MUST recognize version 3 certificates.
实现应该准备好接受任何版本证书。至少,一致性实现必须识别版本3证书。
Generation of version 2 certificates is not expected by implementations based on this profile.
基于此配置文件的实现不希望生成版本2证书。
The serial number MUST be a positive integer assigned by the CA to each certificate. It MUST be unique for each certificate issued by a given CA (i.e., the issuer name and serial number identify a unique certificate). CAs MUST force the serialNumber to be a non-negative integer.
序列号必须是CA分配给每个证书的正整数。对于给定CA颁发的每个证书,它必须是唯一的(即,颁发者名称和序列号标识唯一的证书)。CAs必须强制serialNumber为非负整数。
Given the uniqueness requirements above, serial numbers can be expected to contain long integers. Certificate users MUST be able to handle serialNumber values up to 20 octets. Conforming CAs MUST NOT use serialNumber values longer than 20 octets.
鉴于上述唯一性要求,序列号可能包含长整数。证书用户必须能够处理多达20个八位字节的serialNumber值。符合条件的CA不得使用长度超过20个八位字节的serialNumber值。
Note: Non-conforming CAs may issue certificates with serial numbers that are negative or zero. Certificate users SHOULD be prepared to gracefully handle such certificates.
注:不合格的CA可能会颁发序列号为负数或零的证书。证书用户应该准备好优雅地处理此类证书。
This field contains the algorithm identifier for the algorithm used by the CA to sign the certificate.
此字段包含CA用于签署证书的算法的算法标识符。
This field MUST contain the same algorithm identifier as the signatureAlgorithm field in the sequence Certificate (Section
此字段必须包含与序列证书(第节)中的signatureAlgorithm字段相同的算法标识符
4.1.1.2). The contents of the optional parameters field will vary according to the algorithm identified. [RFC3279], [RFC4055], and [RFC4491] list supported signature algorithms, but other signature algorithms MAY also be supported.
4.1.1.2). 可选参数字段的内容将根据识别的算法而变化。[RFC3279]、[RFC4055]和[RFC4491]列出了支持的签名算法,但也可能支持其他签名算法。
The issuer field identifies the entity that has signed and issued the certificate. The issuer field MUST contain a non-empty distinguished name (DN). The issuer field is defined as the X.501 type Name [X.501]. Name is defined by the following ASN.1 structures:
颁发者字段标识已签署和颁发证书的实体。颁发者字段必须包含非空的可分辨名称(DN)。issuer字段定义为X.501类型名称[X.501]。名称由以下ASN.1结构定义:
Name ::= CHOICE { -- only one possibility for now -- rdnSequence RDNSequence }
Name ::= CHOICE { -- only one possibility for now -- rdnSequence RDNSequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue
RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue
AttributeTypeAndValue ::= SEQUENCE { type AttributeType, value AttributeValue }
AttributeTypeAndValue ::= SEQUENCE { type AttributeType, value AttributeValue }
AttributeType ::= OBJECT IDENTIFIER
AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY -- DEFINED BY AttributeType
AttributeValue ::= ANY -- DEFINED BY AttributeType
DirectoryString ::= CHOICE { teletexString TeletexString (SIZE (1..MAX)), printableString PrintableString (SIZE (1..MAX)), universalString UniversalString (SIZE (1..MAX)), utf8String UTF8String (SIZE (1..MAX)), bmpString BMPString (SIZE (1..MAX)) }
DirectoryString ::= CHOICE { teletexString TeletexString (SIZE (1..MAX)), printableString PrintableString (SIZE (1..MAX)), universalString UniversalString (SIZE (1..MAX)), utf8String UTF8String (SIZE (1..MAX)), bmpString BMPString (SIZE (1..MAX)) }
The Name describes a hierarchical name composed of attributes, such as country name, and corresponding values, such as US. The type of the component AttributeValue is determined by the AttributeType; in general it will be a DirectoryString.
名称描述由属性(如国家名称)和相应值(如美国)组成的层次名称。组件AttributeValue的类型由AttributeType确定;通常,它将是一个DirectoryString。
The DirectoryString type is defined as a choice of PrintableString, TeletexString, BMPString, UTF8String, and UniversalString. CAs conforming to this profile MUST use either the PrintableString or UTF8String encoding of DirectoryString, with two exceptions. When CAs have previously issued certificates with issuer fields with attributes encoded using TeletexString, BMPString, or UniversalString, then the CA MAY continue to use these encodings of the DirectoryString to preserve backward compatibility. Also, new
DirectoryString类型定义为可打印字符串、电传字符串、BMPString、UTF8String和UniversalString的选择。符合此配置文件的CA必须使用DirectoryString的PrintableString或UTF8String编码,但有两个例外。当CA先前已颁发具有使用TeletextString、BMPString或UniversalString编码的属性的颁发者字段的证书时,CA可以继续使用DirectoryString的这些编码来保持向后兼容性。还有,新的
CAs that are added to a domain where existing CAs issue certificates with issuer fields with attributes encoded using TeletexString, BMPString, or UniversalString MAY encode attributes that they share with the existing CAs using the same encodings as the existing CAs use.
添加到域中的CA,其中现有CA使用使用TeletextString、BMPString或UniversalString编码的属性颁发者字段颁发证书,这些CA可以使用与现有CA使用的相同编码对其与现有CA共享的属性进行编码。
As noted above, distinguished names are composed of attributes. This specification does not restrict the set of attribute types that may appear in names. However, conforming implementations MUST be prepared to receive certificates with issuer names containing the set of attribute types defined below. This specification RECOMMENDS support for additional attribute types.
如上所述,可分辨名称由属性组成。本规范不限制名称中可能出现的属性类型集。但是,一致性实现必须准备好接收具有包含以下定义的属性类型集的颁发者名称的证书。本规范建议支持其他属性类型。
Standard sets of attributes have been defined in the X.500 series of specifications [X.520]. Implementations of this specification MUST be prepared to receive the following standard attribute types in issuer and subject (Section 4.1.2.6) names:
标准属性集已在X.500系列规范[X.520]中定义。本规范的实施必须准备好接收发卡机构和主体(第4.1.2.6节)名称中的以下标准属性类型:
* country, * organization, * organizational unit, * distinguished name qualifier, * state or province name, * common name (e.g., "Susan Housley"), and * serial number.
* 国家、*组织、*组织单位、*专有名称限定符、*州或省名称、*通用名称(例如,“Susan Housley”)和*序列号。
In addition, implementations of this specification SHOULD be prepared to receive the following standard attribute types in issuer and subject names:
此外,应准备好本规范的实现,以接收发卡机构和主题名称中的以下标准属性类型:
* locality, * title, * surname, * given name, * initials, * pseudonym, and * generation qualifier (e.g., "Jr.", "3rd", or "IV").
* 地点、*头衔、*姓氏、*姓名、*首字母缩写、*笔名和*代限定词(例如,“Jr.”、“3rd”或“IV”)。
The syntax and associated object identifiers (OIDs) for these attribute types are provided in the ASN.1 modules in Appendix A.
附录A中的ASN.1模块提供了这些属性类型的语法和相关对象标识符(OID)。
In addition, implementations of this specification MUST be prepared to receive the domainComponent attribute, as defined in [RFC4519]. The Domain Name System (DNS) provides a hierarchical resource labeling system. This attribute provides a convenient mechanism for organizations that wish to use DNs that parallel their DNS names. This is not a replacement for the dNSName component of the alternative name extensions. Implementations are not required to
此外,本规范的实现必须准备好接收[RFC4519]中定义的domainComponent属性。域名系统(DNS)提供了一个分层的资源标签系统。此属性为希望使用与其DNs名称并行的DNs的组织提供了方便的机制。这不是替代替代名称扩展的dNSName组件。实现不需要
convert such names into DNS names. The syntax and associated OID for this attribute type are provided in the ASN.1 modules in Appendix A. Rules for encoding internationalized domain names for use with the domainComponent attribute type are specified in Section 7.3.
将这些名称转换为DNS名称。附录A中的ASN.1模块提供了该属性类型的语法和相关OID。第7.3节规定了用于domainComponent属性类型的国际化域名编码规则。
Certificate users MUST be prepared to process the issuer distinguished name and subject distinguished name (Section 4.1.2.6) fields to perform name chaining for certification path validation (Section 6). Name chaining is performed by matching the issuer distinguished name in one certificate with the subject name in a CA certificate. Rules for comparing distinguished names are specified in Section 7.1. If the names in the issuer and subject field in a certificate match according to the rules specified in Section 7.1, then the certificate is self-issued.
证书用户必须准备好处理颁发者可分辨名称和使用者可分辨名称(第4.1.2.6节)字段,以执行证书路径验证的名称链接(第6节)。名称链接是通过将一个证书中的颁发者可分辨名称与CA证书中的使用者名称相匹配来执行的。第7.1节规定了可分辨名称的比较规则。如果证书中“颁发者”和“主题”字段中的名称符合第7.1节规定的规则,则该证书为自颁发证书。
The certificate validity period is the time interval during which the CA warrants that it will maintain information about the status of the certificate. The field is represented as a SEQUENCE of two dates: the date on which the certificate validity period begins (notBefore) and the date on which the certificate validity period ends (notAfter). Both notBefore and notAfter may be encoded as UTCTime or GeneralizedTime.
证书有效期是CA保证其将维护有关证书状态的信息的时间间隔。该字段表示为两个日期的序列:证书有效期开始的日期(notBefore)和证书有效期结束的日期(notAfter)。notBefore和notAfter都可以编码为UTCTime或GeneralizedTime。
CAs conforming to this profile MUST always encode certificate validity dates through the year 2049 as UTCTime; certificate validity dates in 2050 or later MUST be encoded as GeneralizedTime. Conforming applications MUST be able to process validity dates that are encoded in either UTCTime or GeneralizedTime.
符合此配置文件的CA必须始终将2049年的证书有效期编码为UTCTime;2050年或以后的证书有效期必须编码为GeneralizedTime。符合要求的应用程序必须能够处理以UTCTime或GeneralizedTime编码的有效日期。
The validity period for a certificate is the period of time from notBefore through notAfter, inclusive.
证书的有效期为从之前到之后(含之前和之后)的时间段。
In some situations, devices are given certificates for which no good expiration date can be assigned. For example, a device could be issued a certificate that binds its model and serial number to its public key; such a certificate is intended to be used for the entire lifetime of the device.
在某些情况下,给设备颁发的证书不能指定有效的到期日期。例如,可以向设备颁发证书,将其型号和序列号与其公钥绑定;此类证书将在设备的整个生命周期内使用。
To indicate that a certificate has no well-defined expiration date, the notAfter SHOULD be assigned the GeneralizedTime value of 99991231235959Z.
要指示证书没有明确定义的过期日期,应为notAfter分配GeneralizedTime值9991231235959z。
When the issuer will not be able to maintain status information until the notAfter date (including when the notAfter date is 99991231235959Z), the issuer MUST ensure that no valid certification path exists for the certificate after maintenance of status
如果发卡机构在notAfter日期之前无法维护状态信息(包括notAfter日期为9991231235959Z时),则发卡机构必须确保在维护状态后不存在证书的有效认证路径
information is terminated. This may be accomplished by expiration or revocation of all CA certificates containing the public key used to verify the signature on the certificate and discontinuing use of the public key used to verify the signature on the certificate as a trust anchor.
信息被终止。这可以通过所有CA证书的到期或撤销来实现,这些CA证书包含用于验证证书上签名的公钥,并停止使用用于验证证书上签名的公钥作为信任锚。
The universal time type, UTCTime, is a standard ASN.1 type intended for representation of dates and time. UTCTime specifies the year through the two low-order digits and time is specified to the precision of one minute or one second. UTCTime includes either Z (for Zulu, or Greenwich Mean Time) or a time differential.
通用时间类型UTCTime是标准ASN.1类型,用于表示日期和时间。UTCTime通过两个低阶数字指定年份,时间指定精度为一分钟或一秒。UTCTime包括Z(代表Zulu或格林威治标准时间)或时间差。
For the purposes of this profile, UTCTime values MUST be expressed in Greenwich Mean Time (Zulu) and MUST include seconds (i.e., times are YYMMDDHHMMSSZ), even where the number of seconds is zero. Conforming systems MUST interpret the year field (YY) as follows:
在本配置文件中,UTCTime值必须以格林尼治平均时间(Zulu)表示,并且必须包括秒(即时间为YYMMDDHHMMSZ),即使秒数为零。一致性系统必须将年份字段(YY)解释为:
Where YY is greater than or equal to 50, the year SHALL be interpreted as 19YY; and
若YY大于或等于50,则年份应解释为19YY;和
Where YY is less than 50, the year SHALL be interpreted as 20YY.
如果YY小于50,则年份应解释为20YY。
The generalized time type, GeneralizedTime, is a standard ASN.1 type for variable precision representation of time. Optionally, the GeneralizedTime field can include a representation of the time differential between local and Greenwich Mean Time.
广义时间类型GeneratedTime是时间的可变精度表示的标准ASN.1类型。可选地,GeneratedTime字段可以包括本地时间和格林威治平均时间之间的时间差的表示。
For the purposes of this profile, GeneralizedTime values MUST be expressed in Greenwich Mean Time (Zulu) and MUST include seconds (i.e., times are YYYYMMDDHHMMSSZ), even where the number of seconds is zero. GeneralizedTime values MUST NOT include fractional seconds.
在本配置文件中,广义时间值必须以格林威治标准时间(Zulu)表示,并且必须包括秒(即时间为YYYYMMDDHHMMSSZ),即使秒数为零。GeneralizedTime值不能包含小数秒。
The subject field identifies the entity associated with the public key stored in the subject public key field. The subject name MAY be carried in the subject field and/or the subjectAltName extension. If the subject is a CA (e.g., the basic constraints extension, as discussed in Section 4.2.1.9, is present and the value of cA is TRUE), then the subject field MUST be populated with a non-empty distinguished name matching the contents of the issuer field (Section 4.1.2.4) in all certificates issued by the subject CA. If the subject is a CRL issuer (e.g., the key usage extension, as discussed in Section 4.2.1.3, is present and the value of cRLSign is TRUE),
主题字段标识与存储在主题公钥字段中的公钥关联的实体。主题名称可以包含在主题字段和/或主题名称扩展名中。如果主题是CA(例如,存在第4.2.1.9节中讨论的基本约束扩展,且CA值为TRUE),则必须使用与发卡机构字段内容匹配的非空可分辨名称填充主题字段(第4.1.2.4节)在主体CA颁发的所有证书中,如果主体是CRL颁发者(例如,存在第4.2.1.3节中讨论的密钥使用扩展,且cRLSign的值为真),
then the subject field MUST be populated with a non-empty distinguished name matching the contents of the issuer field (Section 5.1.2.3) in all CRLs issued by the subject CRL issuer. If subject naming information is present only in the subjectAltName extension (e.g., a key bound only to an email address or URI), then the subject name MUST be an empty sequence and the subjectAltName extension MUST be critical.
然后,必须使用一个非空的可分辨名称填充主题字段,该名称与主题CRL发行人发行的所有CRL中发行人字段(第5.1.2.3节)的内容相匹配。如果主题命名信息仅存在于subjectAltName扩展中(例如,仅绑定到电子邮件地址或URI的密钥),则主题名称必须是空序列,并且subjectAltName扩展必须是关键的。
Where it is non-empty, the subject field MUST contain an X.500 distinguished name (DN). The DN MUST be unique for each subject entity certified by the one CA as defined by the issuer field. A CA MAY issue more than one certificate with the same DN to the same subject entity.
如果不为空,则主题字段必须包含X.500可分辨名称(DN)。对于每个主体实体,DN必须是唯一的,由发卡机构字段定义的一个CA认证。CA可以向同一主体实体颁发多个具有相同DN的证书。
The subject field is defined as the X.501 type Name. Implementation requirements for this field are those defined for the issuer field (Section 4.1.2.4). Implementations of this specification MUST be prepared to receive subject names containing the attribute types required for the issuer field. Implementations of this specification SHOULD be prepared to receive subject names containing the recommended attribute types for the issuer field. The syntax and associated object identifiers (OIDs) for these attribute types are provided in the ASN.1 modules in Appendix A. Implementations of this specification MAY use the comparison rules in Section 7.1 to process unfamiliar attribute types (i.e., for name chaining) whose attribute values use one of the encoding options from DirectoryString. Binary comparison should be used when unfamiliar attribute types include attribute values with encoding options other than those found in DirectoryString. This allows implementations to process certificates with unfamiliar attributes in the subject name.
主题字段定义为X.501类型名称。该领域的实施要求是针对发卡机构领域定义的要求(第4.1.2.4节)。本规范的实现必须准备好接收包含issuer字段所需属性类型的主题名称。本规范的实现应准备好接收包含issuer字段的推荐属性类型的主题名称。附录A中的ASN.1模块中提供了这些属性类型的语法和相关对象标识符(OID)。本规范的实施可使用第7.1节中的比较规则来处理不熟悉的属性类型(即名称链接)其属性值使用DirectoryString中的一个编码选项。当不熟悉的属性类型包含编码选项不同于DirectoryString中的编码选项的属性值时,应使用二进制比较。这允许实现处理主题名称中具有不熟悉属性的证书。
When encoding attribute values of type DirectoryString, conforming CAs MUST use PrintableString or UTF8String encoding, with the following exceptions:
对DirectoryString类型的属性值进行编码时,符合条件的CA必须使用PrintableString或UTF8String编码,但以下情况除外:
(a) When the subject of the certificate is a CA, the subject field MUST be encoded in the same way as it is encoded in the issuer field (Section 4.1.2.4) in all certificates issued by the subject CA. Thus, if the subject CA encodes attributes in the issuer fields of certificates that it issues using the TeletexString, BMPString, or UniversalString encodings, then the subject field of certificates issued to that CA MUST use the same encoding.
(a) 当证书的主体是CA时,主体字段的编码方式必须与主体CA颁发的所有证书中的颁发者字段(第4.1.2.4节)的编码方式相同。因此,如果主体CA使用电传字符串BMPString对其颁发的证书的颁发者字段中的属性进行编码,或UniversalString编码,则颁发给该CA的证书的主题字段必须使用相同的编码。
(b) When the subject of the certificate is a CRL issuer, the subject field MUST be encoded in the same way as it is encoded in the issuer field (Section 5.1.2.3) in all CRLs issued by the subject CRL issuer.
(b) 当证书的主体是CRL发行人时,主体字段的编码方式必须与主体CRL发行人发行的所有CRL中的发卡人字段(第5.1.2.3节)的编码方式相同。
(c) TeletexString, BMPString, and UniversalString are included for backward compatibility, and SHOULD NOT be used for certificates for new subjects. However, these types MAY be used in certificates where the name was previously established, including cases in which a new certificate is being issued to an existing subject or a certificate is being issued to a new subject where the attributes being encoded have been previously established in certificates issued to other subjects. Certificate users SHOULD be prepared to receive certificates with these types.
(c) TeletextString、BMPString和UniversalString是为了向后兼容而包含的,不应用于新科目的证书。但是,这些类型可用于名称先前已建立的证书中,包括向现有主体颁发新证书或向新主体颁发证书的情况,其中编码的属性先前已在向其他主体颁发的证书中建立。证书用户应该准备好接收这些类型的证书。
Legacy implementations exist where an electronic mail address is embedded in the subject distinguished name as an emailAddress attribute [RFC2985]. The attribute value for emailAddress is of type IA5String to permit inclusion of the character '@', which is not part of the PrintableString character set. emailAddress attribute values are not case-sensitive (e.g., "subscriber@example.com" is the same as "SUBSCRIBER@EXAMPLE.COM").
旧式实现中,电子邮件地址作为emailAddress属性嵌入到主题可分辨名称中[RFC2985]。emailAddress的属性值为IA5String类型,以允许包含字符“@”,该字符不属于PrintableString字符集。emailAddress属性值不区分大小写(例如“subscriber@example.com“与”SUBSCRIBER@EXAMPLE.COM").
Conforming implementations generating new certificates with electronic mail addresses MUST use the rfc822Name in the subject alternative name extension (Section 4.2.1.6) to describe such identities. Simultaneous inclusion of the emailAddress attribute in the subject distinguished name to support legacy implementations is deprecated but permitted.
生成带有电子邮件地址的新证书的一致性实现必须使用主题替代名称扩展(第4.2.1.6节)中的RFC822名称来描述此类身份。不推荐同时在主题可分辨名称中包含emailAddress属性以支持旧式实现,但允许这样做。
This field is used to carry the public key and identify the algorithm with which the key is used (e.g., RSA, DSA, or Diffie-Hellman). The algorithm is identified using the AlgorithmIdentifier structure specified in Section 4.1.1.2. The object identifiers for the supported algorithms and the methods for encoding the public key materials (public key and parameters) are specified in [RFC3279], [RFC4055], and [RFC4491].
此字段用于携带公钥并标识使用该密钥的算法(例如RSA、DSA或Diffie-Hellman)。使用第4.1.1.2节规定的算法识别器结构识别算法。[RFC3279]、[RFC4055]和[RFC4491]中规定了受支持算法的对象标识符和对公钥材料(公钥和参数)进行编码的方法。
These fields MUST only appear if the version is 2 or 3 (Section 4.1.2.1). These fields MUST NOT appear if the version is 1. The subject and issuer unique identifiers are present in the certificate to handle the possibility of reuse of subject and/or issuer names over time. This profile RECOMMENDS that names not be reused for different entities and that Internet certificates not make use of unique identifiers. CAs conforming to this profile MUST NOT generate certificates with unique identifiers. Applications conforming to
这些字段必须仅在版本为2或3时出现(第4.1.2.1节)。如果版本为1,则不得显示这些字段。主体和颁发者的唯一标识符存在于证书中,以处理随着时间的推移主体和/或颁发者名称重复使用的可能性。此配置文件建议不要为不同的实体重用名称,并且Internet证书不要使用唯一标识符。符合此配置文件的CA不得生成具有唯一标识符的证书。符合
this profile SHOULD be capable of parsing certificates that include unique identifiers, but there are no processing requirements associated with the unique identifiers.
此概要文件应该能够解析包含唯一标识符的证书,但不存在与唯一标识符相关联的处理要求。
This field MUST only appear if the version is 3 (Section 4.1.2.1). If present, this field is a SEQUENCE of one or more certificate extensions. The format and content of certificate extensions in the Internet PKI are defined in Section 4.2.
仅当版本为3(第4.1.2.1节)时,此字段才能出现。如果存在,此字段是一个或多个证书扩展的序列。第4.2节定义了Internet PKI中证书扩展的格式和内容。
The extensions defined for X.509 v3 certificates provide methods for associating additional attributes with users or public keys and for managing relationships between CAs. The X.509 v3 certificate format also allows communities to define private extensions to carry information unique to those communities. Each extension in a certificate is designated as either critical or non-critical. A certificate-using system MUST reject the certificate if it encounters a critical extension it does not recognize or a critical extension that contains information that it cannot process. A non-critical extension MAY be ignored if it is not recognized, but MUST be processed if it is recognized. The following sections present recommended extensions used within Internet certificates and standard locations for information. Communities may elect to use additional extensions; however, caution ought to be exercised in adopting any critical extensions in certificates that might prevent use in a general context.
为X.509 v3证书定义的扩展提供了将附加属性与用户或公钥关联以及管理CA之间关系的方法。X.509 v3证书格式还允许社区定义专用扩展,以承载这些社区特有的信息。证书中的每个扩展都被指定为关键或非关键。如果证书使用系统遇到无法识别的关键扩展或包含无法处理的信息的关键扩展,则必须拒绝该证书。如果无法识别非关键扩展,则可以忽略它,但如果能够识别,则必须对其进行处理。以下各节介绍了Internet证书和标准位置中使用的推荐扩展,以供参考。社区可以选择使用额外的扩展;但是,在证书中采用任何可能会妨碍在一般环境中使用的关键扩展时,应该谨慎。
Each extension includes an OID and an ASN.1 structure. When an extension appears in a certificate, the OID appears as the field extnID and the corresponding ASN.1 DER encoded structure is the value of the octet string extnValue. A certificate MUST NOT include more than one instance of a particular extension. For example, a certificate may contain only one authority key identifier extension (Section 4.2.1.1). An extension includes the boolean critical, with a default value of FALSE. The text for each extension specifies the acceptable values for the critical field for CAs conforming to this profile.
每个扩展都包括一个OID和一个ASN.1结构。当扩展名出现在证书中时,OID显示为字段extnID,相应的ASN.1 DER编码结构是八位字节字符串extnValue的值。证书不能包含特定扩展的多个实例。例如,证书可能只包含一个授权密钥标识符扩展(第4.2.1.1节)。扩展包括布尔临界值,默认值为FALSE。每个扩展的文本指定了符合此配置文件的CA关键字段的可接受值。
Conforming CAs MUST support key identifiers (Sections 4.2.1.1 and 4.2.1.2), basic constraints (Section 4.2.1.9), key usage (Section 4.2.1.3), and certificate policies (Section 4.2.1.4) extensions. If the CA issues certificates with an empty sequence for the subject field, the CA MUST support the subject alternative name extension (Section 4.2.1.6). Support for the remaining extensions is OPTIONAL. Conforming CAs MAY support extensions that are not identified within
合格CA必须支持密钥标识符(第4.2.1.1节和第4.2.1.2节)、基本约束(第4.2.1.9节)、密钥使用(第4.2.1.3节)和证书策略(第4.2.1.4节)扩展。如果CA颁发的证书主题字段的序列为空,则CA必须支持主题替代名称扩展(第4.2.1.6节)。对其余扩展的支持是可选的。符合条件的CA可支持未在内部识别的扩展
this specification; certificate issuers are cautioned that marking such extensions as critical may inhibit interoperability.
本规范;证书颁发者应注意,将此类扩展标记为关键可能会抑制互操作性。
At a minimum, applications conforming to this profile MUST recognize the following extensions: key usage (Section 4.2.1.3), certificate policies (Section 4.2.1.4), subject alternative name (Section 4.2.1.6), basic constraints (Section 4.2.1.9), name constraints (Section 4.2.1.10), policy constraints (Section 4.2.1.11), extended key usage (Section 4.2.1.12), and inhibit anyPolicy (Section 4.2.1.14).
至少,符合此配置文件的应用程序必须识别以下扩展:密钥使用(第4.2.1.3节)、证书策略(第4.2.1.4节)、使用者备选名称(第4.2.1.6节)、基本约束(第4.2.1.9节)、名称约束(第4.2.1.10节)、策略约束(第4.2.1.11节)、扩展密钥使用(第4.2.1.12节)和禁止任何政策(第4.2.1.14节)。
In addition, applications conforming to this profile SHOULD recognize the authority and subject key identifier (Sections 4.2.1.1 and 4.2.1.2) and policy mappings (Section 4.2.1.5) extensions.
此外,符合此配置文件的应用程序应识别权限和主题密钥标识符(第4.2.1.1节和第4.2.1.2节)和策略映射(第4.2.1.5节)扩展。
This section identifies standard certificate extensions defined in [X.509] for use in the Internet PKI. Each extension is associated with an OID defined in [X.509]. These OIDs are members of the id-ce arc, which is defined by the following:
本节确定了[X.509]中定义的用于Internet PKI的标准证书扩展。每个扩展都与[X.509]中定义的OID相关联。这些OID是id ce arc的成员,其定义如下:
id-ce OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 29 }
id-ce OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 29 }
The authority key identifier extension provides a means of identifying the public key corresponding to the private key used to sign a certificate. This extension is used where an issuer has multiple signing keys (either due to multiple concurrent key pairs or due to changeover). The identification MAY be based on either the key identifier (the subject key identifier in the issuer's certificate) or the issuer name and serial number.
授权密钥标识符扩展提供了识别与用于签署证书的私钥相对应的公钥的方法。此扩展用于颁发者具有多个签名密钥(由于多个并发密钥对或由于转换)的情况。标识可以基于密钥标识符(颁发者证书中的主体密钥标识符)或颁发者名称和序列号。
The keyIdentifier field of the authorityKeyIdentifier extension MUST be included in all certificates generated by conforming CAs to facilitate certification path construction. There is one exception; where a CA distributes its public key in the form of a "self-signed" certificate, the authority key identifier MAY be omitted. The signature on a self-signed certificate is generated with the private key associated with the certificate's subject public key. (This proves that the issuer possesses both the public and private keys.) In this case, the subject and authority key identifiers would be identical, but only the subject key identifier is needed for certification path building.
authorityKeyIdentifier扩展的keyIdentifier字段必须包含在合格CA生成的所有证书中,以便于构建证书路径。有一个例外;如果CA以“自签名”证书的形式分发其公钥,则可以省略授权密钥标识符。自签名证书上的签名是使用与证书的主题公钥关联的私钥生成的。(这证明颁发者同时拥有公钥和私钥。)在这种情况下,主体密钥标识符和授权密钥标识符将是相同的,但构建认证路径只需要主体密钥标识符。
The value of the keyIdentifier field SHOULD be derived from the public key used to verify the certificate's signature or a method
keyIdentifier字段的值应从用于验证证书签名或方法的公钥派生
that generates unique values. Two common methods for generating key identifiers from the public key are described in Section 4.2.1.2. Where a key identifier has not been previously established, this specification RECOMMENDS use of one of these methods for generating keyIdentifiers or use of a similar method that uses a different hash algorithm. Where a key identifier has been previously established, the CA SHOULD use the previously established identifier.
这将生成唯一的值。第4.2.1.2节描述了从公钥生成密钥标识符的两种常用方法。在先前未建立密钥标识符的情况下,本规范建议使用这些方法之一来生成密钥标识符,或使用使用不同哈希算法的类似方法。如果先前已建立密钥标识符,CA应使用先前建立的标识符。
This profile RECOMMENDS support for the key identifier method by all certificate users.
此配置文件建议所有证书用户支持密钥标识符方法。
Conforming CAs MUST mark this extension as non-critical.
合格CA必须将此扩展标记为非关键扩展。
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }
AuthorityKeyIdentifier ::= SEQUENCE { keyIdentifier [0] KeyIdentifier OPTIONAL, authorityCertIssuer [1] GeneralNames OPTIONAL, authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }
AuthorityKeyIdentifier ::= SEQUENCE { keyIdentifier [0] KeyIdentifier OPTIONAL, authorityCertIssuer [1] GeneralNames OPTIONAL, authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }
KeyIdentifier ::= OCTET STRING
KeyIdentifier ::= OCTET STRING
The subject key identifier extension provides a means of identifying certificates that contain a particular public key.
主题密钥标识符扩展提供了一种识别包含特定公钥的证书的方法。
To facilitate certification path construction, this extension MUST appear in all conforming CA certificates, that is, all certificates including the basic constraints extension (Section 4.2.1.9) where the value of cA is TRUE. In conforming CA certificates, the value of the subject key identifier MUST be the value placed in the key identifier field of the authority key identifier extension (Section 4.2.1.1) of certificates issued by the subject of this certificate. Applications are not required to verify that key identifiers match when performing certification path validation.
为了促进认证路径的构建,该扩展必须出现在所有符合条件的CA证书中,即包括基本约束扩展(第4.2.1.9节)在内的所有证书中,其中CA的值为真。在一致性CA证书中,主体密钥标识符的值必须是由本证书主体颁发的证书的授权密钥标识符扩展(第4.2.1.1节)的密钥标识符字段中的值。执行认证路径验证时,应用程序无需验证密钥标识符是否匹配。
For CA certificates, subject key identifiers SHOULD be derived from the public key or a method that generates unique values. Two common methods for generating key identifiers from the public key are:
对于CA证书,主题密钥标识符应来自公钥或生成唯一值的方法。从公钥生成密钥标识符的两种常用方法是:
(1) The keyIdentifier is composed of the 160-bit SHA-1 hash of the value of the BIT STRING subjectPublicKey (excluding the tag, length, and number of unused bits).
(1) keyIdentifier由位字符串subjectPublicKey值的160位SHA-1散列组成(不包括标记、长度和未使用位的数量)。
(2) The keyIdentifier is composed of a four-bit type field with the value 0100 followed by the least significant 60 bits of the SHA-1 hash of the value of the BIT STRING subjectPublicKey (excluding the tag, length, and number of unused bits).
(2) keyIdentifier由一个四位类型字段组成,该字段的值为0100,后跟位字符串subjectPublicKey值的SHA-1散列的最低有效60位(不包括标记、长度和未使用位的数量)。
Other methods of generating unique numbers are also acceptable.
生成唯一编号的其他方法也是可以接受的。
For end entity certificates, the subject key identifier extension provides a means for identifying certificates containing the particular public key used in an application. Where an end entity has obtained multiple certificates, especially from multiple CAs, the subject key identifier provides a means to quickly identify the set of certificates containing a particular public key. To assist applications in identifying the appropriate end entity certificate, this extension SHOULD be included in all end entity certificates.
对于终端实体证书,主题密钥标识符扩展提供了一种方法,用于识别包含应用程序中使用的特定公钥的证书。当终端实体已经获得多个证书,特别是从多个CA获得多个证书时,主体密钥标识符提供了一种快速识别包含特定公钥的证书集的方法。为了帮助应用程序识别适当的终端实体证书,此扩展应包含在所有终端实体证书中。
For end entity certificates, subject key identifiers SHOULD be derived from the public key. Two common methods for generating key identifiers from the public key are identified above.
对于终端实体证书,主题密钥标识符应该从公钥派生。上面识别了用于从公钥生成密钥标识符的两种常用方法。
Where a key identifier has not been previously established, this specification RECOMMENDS use of one of these methods for generating keyIdentifiers or use of a similar method that uses a different hash algorithm. Where a key identifier has been previously established, the CA SHOULD use the previously established identifier.
在先前未建立密钥标识符的情况下,本规范建议使用这些方法之一来生成密钥标识符,或使用使用不同哈希算法的类似方法。如果先前已建立密钥标识符,CA应使用先前建立的标识符。
Conforming CAs MUST mark this extension as non-critical.
合格CA必须将此扩展标记为非关键扩展。
id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }
id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }
SubjectKeyIdentifier ::= KeyIdentifier
SubjectKeyIdentifier ::= KeyIdentifier
The key usage extension defines the purpose (e.g., encipherment, signature, certificate signing) of the key contained in the certificate. The usage restriction might be employed when a key that could be used for more than one operation is to be restricted. For example, when an RSA key should be used only to verify signatures on objects other than public key certificates and CRLs, the digitalSignature and/or nonRepudiation bits would be asserted. Likewise, when an RSA key should be used only for key management, the keyEncipherment bit would be asserted.
密钥使用扩展定义了证书中包含的密钥的用途(例如,加密、签名、证书签名)。当要限制可用于多个操作的密钥时,可以使用使用限制。例如,当RSA密钥仅用于验证公钥证书和CRL以外的对象上的签名时,将断言数字签名和/或不可否认位。同样,当RSA密钥仅用于密钥管理时,将断言密钥加密位。
Conforming CAs MUST include this extension in certificates that contain public keys that are used to validate digital signatures on other public key certificates or CRLs. When present, conforming CAs SHOULD mark this extension as critical.
合格CA必须在包含公钥的证书中包含此扩展,该公钥用于验证其他公钥证书或CRL上的数字签名。当存在时,合格CA应将该扩展标记为关键扩展。
id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }
id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }
KeyUsage ::= BIT STRING { digitalSignature (0), nonRepudiation (1), -- recent editions of X.509 have -- renamed this bit to contentCommitment keyEncipherment (2), dataEncipherment (3), keyAgreement (4), keyCertSign (5), cRLSign (6), encipherOnly (7), decipherOnly (8) }
KeyUsage ::= BIT STRING { digitalSignature (0), nonRepudiation (1), -- recent editions of X.509 have -- renamed this bit to contentCommitment keyEncipherment (2), dataEncipherment (3), keyAgreement (4), keyCertSign (5), cRLSign (6), encipherOnly (7), decipherOnly (8) }
Bits in the KeyUsage type are used as follows:
KeyUsage类型中的位使用如下:
The digitalSignature bit is asserted when the subject public key is used for verifying digital signatures, other than signatures on certificates (bit 5) and CRLs (bit 6), such as those used in an entity authentication service, a data origin authentication service, and/or an integrity service.
当主体公钥用于验证数字签名(证书上的签名(位5)和CRL(位6))以外的数字签名(如实体认证服务、数据源认证服务和/或完整性服务中使用的签名)时,数字签名位被断言。
The nonRepudiation bit is asserted when the subject public key is used to verify digital signatures, other than signatures on certificates (bit 5) and CRLs (bit 6), used to provide a non-repudiation service that protects against the signing entity falsely denying some action. In the case of later conflict, a reliable third party may determine the authenticity of the signed data. (Note that recent editions of X.509 have renamed the nonRepudiation bit to contentCommitment.)
当主体公钥用于验证数字签名(证书上的签名(位5)和CRL(位6)除外)时,非否认位被断言,该数字签名用于提供防止签名实体错误拒绝某些操作的非否认服务。在以后发生冲突的情况下,可靠的第三方可以确定签名数据的真实性。(请注意,X.509的最新版本已将不可否认性位重命名为ContentCommission。)
The keyEncipherment bit is asserted when the subject public key is used for enciphering private or secret keys, i.e., for key transport. For example, this bit shall be set when an RSA public key is to be used for encrypting a symmetric content-decryption key or an asymmetric private key.
当主体公钥用于加密私钥或私钥(即用于密钥传输)时,密钥加密位被断言。例如,当RSA公钥用于加密对称内容解密密钥或非对称私钥时,应设置该位。
The dataEncipherment bit is asserted when the subject public key is used for directly enciphering raw user data without the use of an intermediate symmetric cipher. Note that the use of this bit is extremely uncommon; almost all applications use key transport or key agreement to establish a symmetric key.
当主题公钥用于直接加密原始用户数据而不使用中间对称密码时,数据加密位被断言。请注意,该钻头的使用极为罕见;几乎所有应用程序都使用密钥传输或密钥协商来建立对称密钥。
The keyAgreement bit is asserted when the subject public key is used for key agreement. For example, when a Diffie-Hellman key is to be used for key management, then this bit is set.
当主题公钥用于密钥协商时,将断言密钥协商位。例如,当Diffie-Hellman密钥用于密钥管理时,设置该位。
The keyCertSign bit is asserted when the subject public key is used for verifying signatures on public key certificates. If the keyCertSign bit is asserted, then the cA bit in the basic constraints extension (Section 4.2.1.9) MUST also be asserted.
当主题公钥用于验证公钥证书上的签名时,会断言keyCertSign位。如果断言keyCertSign位,则还必须断言基本约束扩展(第4.2.1.9节)中的cA位。
The cRLSign bit is asserted when the subject public key is used for verifying signatures on certificate revocation lists (e.g., CRLs, delta CRLs, or ARLs).
当主体公钥用于验证证书撤销列表(例如CRL、增量CRL或ARL)上的签名时,cRLSign位被断言。
The meaning of the encipherOnly bit is undefined in the absence of the keyAgreement bit. When the encipherOnly bit is asserted and the keyAgreement bit is also set, the subject public key may be used only for enciphering data while performing key agreement.
在没有密钥协商位的情况下,仅加密位的含义未定义。当仅加密位被断言并且密钥协商位也被设置时,主体公钥可仅用于在执行密钥协商时对数据进行加密。
The meaning of the decipherOnly bit is undefined in the absence of the keyAgreement bit. When the decipherOnly bit is asserted and the keyAgreement bit is also set, the subject public key may be used only for deciphering data while performing key agreement.
在没有密钥协商位的情况下,仅解密位的含义未定义。当仅解密位被断言并且密钥协商位也被设置时,主体公钥可仅用于在执行密钥协商时解密数据。
If the keyUsage extension is present, then the subject public key MUST NOT be used to verify signatures on certificates or CRLs unless the corresponding keyCertSign or cRLSign bit is set. If the subject public key is only to be used for verifying signatures on certificates and/or CRLs, then the digitalSignature and nonRepudiation bits SHOULD NOT be set. However, the digitalSignature and/or nonRepudiation bits MAY be set in addition to the keyCertSign and/or cRLSign bits if the subject public key is to be used to verify signatures on certificates and/or CRLs as well as other objects.
如果存在keyUsage扩展,则除非设置了相应的keyCertSign或cRLSign位,否则不得使用主题公钥验证证书或CRL上的签名。如果主题公钥仅用于验证证书和/或CRL上的签名,则不应设置数字签名和非否认位。然而,如果主体公钥将用于验证证书和/或CRL以及其他对象上的签名,则可以在keyCertSign和/或cRLSign位之外设置数字签名和/或非否认位。
Combining the nonRepudiation bit in the keyUsage certificate extension with other keyUsage bits may have security implications depending on the context in which the certificate is to be used. Further distinctions between the digitalSignature and nonRepudiation bits may be provided in specific certificate policies.
根据要使用证书的上下文,将keyUsage证书扩展中的非否认位与其他keyUsage位组合可能具有安全含义。数字签名和非否认位之间的进一步区别可在特定证书策略中提供。
This profile does not restrict the combinations of bits that may be set in an instantiation of the keyUsage extension. However, appropriate values for keyUsage extensions for particular algorithms are specified in [RFC3279], [RFC4055], and [RFC4491]. When the keyUsage extension appears in a certificate, at least one of the bits MUST be set to 1.
此配置文件不限制可在keyUsage扩展的实例化中设置的位的组合。但是,[RFC3279]、[RFC4055]和[RFC4491]中规定了特定算法的密钥使用扩展的适当值。当证书中出现keyUsage扩展时,必须将至少一个位设置为1。
The certificate policies extension contains a sequence of one or more policy information terms, each of which consists of an object identifier (OID) and optional qualifiers. Optional qualifiers, which MAY be present, are not expected to change the definition of the policy. A certificate policy OID MUST NOT appear more than once in a certificate policies extension.
证书策略扩展包含一个或多个策略信息术语序列,每个术语由对象标识符(OID)和可选限定符组成。可能存在的可选限定符预计不会更改策略的定义。证书策略OID在证书策略扩展中不能出现多次。
In an end entity certificate, these policy information terms indicate the policy under which the certificate has been issued and the purposes for which the certificate may be used. In a CA certificate, these policy information terms limit the set of policies for certification paths that include this certificate. When a CA does not wish to limit the set of policies for certification paths that include this certificate, it MAY assert the special policy anyPolicy, with a value of { 2 5 29 32 0 }.
在终端实体证书中,这些策略信息术语表示颁发证书所依据的策略以及证书的用途。在CA证书中,这些策略信息术语限制了包含此证书的证书路径的策略集。当CA不希望限制包含此证书的证书路径的策略集时,它可以使用值{2 5 29 32 0}断言特殊策略anyPolicy。
Applications with specific policy requirements are expected to have a list of those policies that they will accept and to compare the policy OIDs in the certificate to that list. If this extension is critical, the path validation software MUST be able to interpret this extension (including the optional qualifier), or MUST reject the certificate.
具有特定策略要求的应用程序应具有其将接受的策略列表,并将证书中的策略OID与该列表进行比较。如果此扩展是关键的,则路径验证软件必须能够解释此扩展(包括可选限定符),或者必须拒绝证书。
To promote interoperability, this profile RECOMMENDS that policy information terms consist of only an OID. Where an OID alone is insufficient, this profile strongly recommends that the use of qualifiers be limited to those identified in this section. When qualifiers are used with the special policy anyPolicy, they MUST be limited to the qualifiers identified in this section. Only those qualifiers returned as a result of path validation are considered.
为了促进互操作性,此概要文件建议策略信息术语只包含OID。如果单独使用OID是不够的,本概要文件强烈建议限定符的使用仅限于本节中确定的限定符。当限定符与特殊政策anyPolicy一起使用时,它们必须限于本节中确定的限定符。仅考虑作为路径验证结果返回的限定符。
This specification defines two policy qualifier types for use by certificate policy writers and certificate issuers. The qualifier types are the CPS Pointer and User Notice qualifiers.
本规范定义了两种策略限定符类型,供证书策略编写者和证书颁发者使用。限定符类型是CPS指针限定符和用户通知限定符。
The CPS Pointer qualifier contains a pointer to a Certification Practice Statement (CPS) published by the CA. The pointer is in the form of a URI. Processing requirements for this qualifier are a local matter. No action is mandated by this specification regardless of the criticality value asserted for the extension.
CPS指针限定符包含指向CA发布的认证实践声明(CPS)的指针。该指针采用URI的形式。此限定符的处理要求是本地事务。无论为扩展断言的临界值如何,本规范均不强制执行任何操作。
User notice is intended for display to a relying party when a certificate is used. Only user notices returned as a result of path validation are intended for display to the user. If a notice is
用户通知旨在在使用证书时向依赖方显示。只有作为路径验证结果返回的用户通知才会显示给用户。如果通知是
duplicated, only one copy need be displayed. To prevent such duplication, this qualifier SHOULD only be present in end entity certificates and CA certificates issued to other organizations.
重复,只需显示一份副本。为防止此类重复,此限定符应仅出现在颁发给其他组织的最终实体证书和CA证书中。
The user notice has two optional fields: the noticeRef field and the explicitText field. Conforming CAs SHOULD NOT use the noticeRef option.
用户通知有两个可选字段:noticeRef字段和explicitText字段。符合条件的CA不应使用noticeRef选项。
The noticeRef field, if used, names an organization and identifies, by number, a particular textual statement prepared by that organization. For example, it might identify the organization "CertsRUs" and notice number 1. In a typical implementation, the application software will have a notice file containing the current set of notices for CertsRUs; the application will extract the notice text from the file and display it. Messages MAY be multilingual, allowing the software to select the particular language message for its own environment.
noticeRef字段(如果使用)命名一个组织,并通过编号标识该组织准备的特定文本声明。例如,它可能会标识组织“CertsRUs”并通知编号1。在典型的实现中,应用软件将有一个通知文件,其中包含CertSRU的当前通知集;应用程序将从文件中提取通知文本并显示它。消息可以是多语言的,允许软件为自己的环境选择特定的语言消息。
An explicitText field includes the textual statement directly in the certificate. The explicitText field is a string with a maximum size of 200 characters. Conforming CAs SHOULD use the UTF8String encoding for explicitText, but MAY use IA5String. Conforming CAs MUST NOT encode explicitText as VisibleString or BMPString. The explicitText string SHOULD NOT include any control characters (e.g., U+0000 to U+001F and U+007F to U+009F). When the UTF8String encoding is used, all character sequences SHOULD be normalized according to Unicode normalization form C (NFC) [NFC].
explicitText字段直接在证书中包含文本语句。explicitText字段是最大大小为200个字符的字符串。一致性CA应使用UTF8String编码作为explicitText,但也可以使用IA5String。符合条件的CA不得将explicitText编码为VisibleString或BMPString。explicitText字符串不应包含任何控制字符(例如,U+0000到U+001F和U+007F到U+009F)。当使用UTF8String编码时,所有字符序列都应该根据Unicode规范化格式C(NFC)[NFC]进行规范化。
If both the noticeRef and explicitText options are included in the one qualifier and if the application software can locate the notice text indicated by the noticeRef option, then that text SHOULD be displayed; otherwise, the explicitText string SHOULD be displayed.
如果noticeRef和explicitText选项都包含在一个限定符中,并且如果应用软件可以找到noticeRef选项指示的通知文本,则应显示该文本;否则,应显示explicitText字符串。
Note: While the explicitText has a maximum size of 200 characters, some non-conforming CAs exceed this limit. Therefore, certificate users SHOULD gracefully handle explicitText with more than 200 characters.
注意:虽然explicitText的最大大小为200个字符,但一些不符合要求的CA超过了此限制。因此,证书用户应该优雅地处理超过200个字符的explicitText。
id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }
id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }
anyPolicy OBJECT IDENTIFIER ::= { id-ce-certificatePolicies 0 }
anyPolicy OBJECT IDENTIFIER ::= { id-ce-certificatePolicies 0 }
certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation
certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation
PolicyInformation ::= SEQUENCE { policyIdentifier CertPolicyId, policyQualifiers SEQUENCE SIZE (1..MAX) OF PolicyQualifierInfo OPTIONAL }
PolicyInformation ::= SEQUENCE { policyIdentifier CertPolicyId, policyQualifiers SEQUENCE SIZE (1..MAX) OF PolicyQualifierInfo OPTIONAL }
CertPolicyId ::= OBJECT IDENTIFIER
CertPolicyId ::= OBJECT IDENTIFIER
PolicyQualifierInfo ::= SEQUENCE { policyQualifierId PolicyQualifierId, qualifier ANY DEFINED BY policyQualifierId }
PolicyQualifierInfo ::= SEQUENCE { policyQualifierId PolicyQualifierId, qualifier ANY DEFINED BY policyQualifierId }
-- policyQualifierIds for Internet policy qualifiers
--Internet策略限定符的PolicyQualifierID
id-qt OBJECT IDENTIFIER ::= { id-pkix 2 } id-qt-cps OBJECT IDENTIFIER ::= { id-qt 1 } id-qt-unotice OBJECT IDENTIFIER ::= { id-qt 2 }
id-qt OBJECT IDENTIFIER ::= { id-pkix 2 } id-qt-cps OBJECT IDENTIFIER ::= { id-qt 1 } id-qt-unotice OBJECT IDENTIFIER ::= { id-qt 2 }
PolicyQualifierId ::= OBJECT IDENTIFIER ( id-qt-cps | id-qt-unotice )
PolicyQualifierId ::= OBJECT IDENTIFIER ( id-qt-cps | id-qt-unotice )
Qualifier ::= CHOICE { cPSuri CPSuri, userNotice UserNotice }
Qualifier ::= CHOICE { cPSuri CPSuri, userNotice UserNotice }
CPSuri ::= IA5String
CPSuri ::= IA5String
UserNotice ::= SEQUENCE { noticeRef NoticeReference OPTIONAL, explicitText DisplayText OPTIONAL }
UserNotice ::= SEQUENCE { noticeRef NoticeReference OPTIONAL, explicitText DisplayText OPTIONAL }
NoticeReference ::= SEQUENCE { organization DisplayText, noticeNumbers SEQUENCE OF INTEGER }
NoticeReference ::= SEQUENCE { organization DisplayText, noticeNumbers SEQUENCE OF INTEGER }
DisplayText ::= CHOICE { ia5String IA5String (SIZE (1..200)), visibleString VisibleString (SIZE (1..200)), bmpString BMPString (SIZE (1..200)), utf8String UTF8String (SIZE (1..200)) }
DisplayText ::= CHOICE { ia5String IA5String (SIZE (1..200)), visibleString VisibleString (SIZE (1..200)), bmpString BMPString (SIZE (1..200)), utf8String UTF8String (SIZE (1..200)) }
This extension is used in CA certificates. It lists one or more pairs of OIDs; each pair includes an issuerDomainPolicy and a subjectDomainPolicy. The pairing indicates the issuing CA considers its issuerDomainPolicy equivalent to the subject CA's subjectDomainPolicy.
此扩展用于CA证书中。它列出了一对或多对OID;每对包括一个issuerDomainPolicy和一个subjectDomainPolicy。配对表示颁发CA认为其issuerDomainPolicy等同于主体CA的subjectDomainPolicy。
The issuing CA's users might accept an issuerDomainPolicy for certain applications. The policy mapping defines the list of policies associated with the subject CA that may be accepted as comparable to the issuerDomainPolicy.
颁发CA的用户可能会接受某些应用程序的颁发者域策略。策略映射定义了与主体CA相关联的策略列表,这些策略可能被认为与issuerDomainPolicy具有可比性。
Each issuerDomainPolicy named in the policy mappings extension SHOULD also be asserted in a certificate policies extension in the same certificate. Policies MUST NOT be mapped either to or from the special value anyPolicy (Section 4.2.1.4).
策略映射扩展中命名的每个issuerDomainPolicy也应在同一证书中的证书策略扩展中声明。不得将策略映射到特殊值anyPolicy(第4.2.1.4节)。
In general, certificate policies that appear in the issuerDomainPolicy field of the policy mappings extension are not considered acceptable policies for inclusion in subsequent certificates in the certification path. In some circumstances, a CA may wish to map from one policy (p1) to another (p2), but still wants the issuerDomainPolicy (p1) to be considered acceptable for inclusion in subsequent certificates. This may occur, for example, if the CA is in the process of transitioning from the use of policy p1 to the use of policy p2 and has valid certificates that were issued under each of the policies. A CA may indicate this by including two policy mappings in the CA certificates that it issues. Each policy mapping would have an issuerDomainPolicy of p1; one policy mapping would have a subjectDomainPolicy of p1 and the other would have a subjectDomainPolicy of p2.
通常,出现在策略映射扩展的issuerDomainPolicy字段中的证书策略不被视为可接受的策略,无法包含在证书路径的后续证书中。在某些情况下,CA可能希望从一个策略(p1)映射到另一个策略(p2),但仍然希望发卡域策略(p1)被认为可以包含在后续证书中。例如,如果CA正在从策略p1的使用过渡到策略p2的使用,并且具有根据每个策略颁发的有效证书,则可能会发生这种情况。CA可以通过在其颁发的CA证书中包含两个策略映射来表明这一点。每个策略映射的issuerDomainPolicy为p1;一个策略映射的subjectDomainPolicy为p1,另一个策略映射的subjectDomainPolicy为p2。
This extension MAY be supported by CAs and/or applications. Conforming CAs SHOULD mark this extension as critical.
CAs和/或应用程序可能支持此扩展。合格的CA应将此扩展标记为关键。
id-ce-policyMappings OBJECT IDENTIFIER ::= { id-ce 33 }
id-ce-policyMappings OBJECT IDENTIFIER ::= { id-ce 33 }
PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE { issuerDomainPolicy CertPolicyId, subjectDomainPolicy CertPolicyId }
PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE { issuerDomainPolicy CertPolicyId, subjectDomainPolicy CertPolicyId }
The subject alternative name extension allows identities to be bound to the subject of the certificate. These identities may be included in addition to or in place of the identity in the subject field of the certificate. Defined options include an Internet electronic mail
subject alternative name扩展允许将身份绑定到证书的主题。这些身份可以包括在证书主题字段中的身份之外或代替该身份。定义的选项包括Internet电子邮件
address, a DNS name, an IP address, and a Uniform Resource Identifier (URI). Other options exist, including completely local definitions. Multiple name forms, and multiple instances of each name form, MAY be included. Whenever such identities are to be bound into a certificate, the subject alternative name (or issuer alternative name) extension MUST be used; however, a DNS name MAY also be represented in the subject field using the domainComponent attribute as described in Section 4.1.2.4. Note that where such names are represented in the subject field implementations are not required to convert them into DNS names.
地址、DNS名称、IP地址和统一资源标识符(URI)。还有其他选项,包括完全本地定义。可以包括多个姓名表以及每个姓名表的多个实例。每当此类身份被绑定到证书中时,必须使用主体替代名称(或发行人替代名称)扩展名;但是,DNS名称也可以使用第4.1.2.4节所述的domainComponent属性在主题字段中表示。请注意,如果在主题字段中表示这些名称,则不需要将它们转换为DNS名称。
Because the subject alternative name is considered to be definitively bound to the public key, all parts of the subject alternative name MUST be verified by the CA.
因为主体替代名称被认为是与公钥的最终绑定,所以主体替代名称的所有部分都必须由CA进行验证。
Further, if the only subject identity included in the certificate is an alternative name form (e.g., an electronic mail address), then the subject distinguished name MUST be empty (an empty sequence), and the subjectAltName extension MUST be present. If the subject field contains an empty sequence, then the issuing CA MUST include a subjectAltName extension that is marked as critical. When including the subjectAltName extension in a certificate that has a non-empty subject distinguished name, conforming CAs SHOULD mark the subjectAltName extension as non-critical.
此外,如果证书中包含的唯一受试者身份是替代名称形式(例如电子邮件地址),则受试者可分辨名称必须为空(空序列),并且必须存在受试者名称扩展名。如果subject字段包含空序列,则发出CA必须包含标记为critical的subjectAltName扩展名。当在具有非空主题可分辨名称的证书中包含subjectAltName扩展名时,符合条件的CA应将subjectAltName扩展名标记为非关键。
When the subjectAltName extension contains an Internet mail address, the address MUST be stored in the rfc822Name. The format of an rfc822Name is a "Mailbox" as defined in Section 4.1.2 of [RFC2821]. A Mailbox has the form "Local-part@Domain". Note that a Mailbox has no phrase (such as a common name) before it, has no comment (text surrounded in parentheses) after it, and is not surrounded by "<" and ">". Rules for encoding Internet mail addresses that include internationalized domain names are specified in Section 7.5.
当subjectAltName扩展名包含Internet邮件地址时,该地址必须存储在RFC822名称中。RFC822名称的格式为[RFC2821]第4.1.2节中定义的“邮箱”。邮箱的格式为“本地”-part@Domain". 请注意,邮箱前面没有短语(如通用名称),后面没有注释(括号中包含的文本),并且没有被“<”和“>”包围。第7.5节规定了对包含国际化域名的互联网邮件地址进行编码的规则。
When the subjectAltName extension contains an iPAddress, the address MUST be stored in the octet string in "network byte order", as specified in [RFC791]. The least significant bit (LSB) of each octet is the LSB of the corresponding byte in the network address. For IP version 4, as specified in [RFC791], the octet string MUST contain exactly four octets. For IP version 6, as specified in [RFC2460], the octet string MUST contain exactly sixteen octets.
当subjectAltName扩展名包含iPAddress时,地址必须按照[RFC791]中的规定以“网络字节顺序”存储在八位字节字符串中。每个八位字节的最低有效位(LSB)是网络地址中相应字节的LSB。对于IP版本4,如[RFC791]中所述,八位字节字符串必须正好包含四个八位字节。对于IP版本6,如[RFC2460]中所述,八位字节字符串必须正好包含十六个八位字节。
When the subjectAltName extension contains a domain name system label, the domain name MUST be stored in the dNSName (an IA5String). The name MUST be in the "preferred name syntax", as specified by Section 3.5 of [RFC1034] and as modified by Section 2.1 of [RFC1123]. Note that while uppercase and lowercase letters are allowed in domain names, no significance is attached to the case. In
当subjectAltName扩展名包含域名系统标签时,域名必须存储在dNSName(IA5String)中。按照[RFC1034]第3.5节的规定和[RFC1123]第2.1节的修改,名称必须采用“首选名称语法”。请注意,虽然域名中允许使用大小写字母,但大小写没有任何意义。在里面
addition, while the string " " is a legal domain name, subjectAltName extensions with a dNSName of " " MUST NOT be used. Finally, the use of the DNS representation for Internet mail addresses (subscriber.example.com instead of subscriber@example.com) MUST NOT be used; such identities are to be encoded as rfc822Name. Rules for encoding internationalized domain names are specified in Section 7.2.
此外,虽然字符串“”是合法域名,但不得使用dNSName为“”的subjectAltName扩展名。最后,对Internet邮件地址使用DNS表示(subscriber.example.com而不是subscriber@example.com)不得使用;此类标识将被编码为rfc822Name。第7.2节规定了国际化域名的编码规则。
When the subjectAltName extension contains a URI, the name MUST be stored in the uniformResourceIdentifier (an IA5String). The name MUST NOT be a relative URI, and it MUST follow the URI syntax and encoding rules specified in [RFC3986]. The name MUST include both a scheme (e.g., "http" or "ftp") and a scheme-specific-part. URIs that include an authority ([RFC3986], Section 3.2) MUST include a fully qualified domain name or IP address as the host. Rules for encoding Internationalized Resource Identifiers (IRIs) are specified in Section 7.4.
当subjectAltName扩展名包含URI时,该名称必须存储在uniformResourceIdentifier(IA5String)中。名称不能是相对URI,并且必须遵循[RFC3986]中指定的URI语法和编码规则。名称必须包括方案(例如“http”或“ftp”)和特定于方案的部分。包含授权的URI([RFC3986],第3.2节)必须包含完全限定的域名或IP地址作为主机。第7.4节规定了国际化资源标识符(IRI)的编码规则。
As specified in [RFC3986], the scheme name is not case-sensitive (e.g., "http" is equivalent to "HTTP"). The host part, if present, is also not case-sensitive, but other components of the scheme-specific-part may be case-sensitive. Rules for comparing URIs are specified in Section 7.4.
如[RFC3986]所述,方案名称不区分大小写(例如,“http”相当于“http”)。主机部分(如果存在)也不区分大小写,但方案特定部分的其他组件可能区分大小写。第7.4节规定了比较URI的规则。
When the subjectAltName extension contains a DN in the directoryName, the encoding rules are the same as those specified for the issuer field in Section 4.1.2.4. The DN MUST be unique for each subject entity certified by the one CA as defined by the issuer field. A CA MAY issue more than one certificate with the same DN to the same subject entity.
当subjectAltName扩展名在directoryName中包含DN时,编码规则与第4.1.2.4节中为issuer字段指定的编码规则相同。对于每个主体实体,DN必须是唯一的,由发卡机构字段定义的一个CA认证。CA可以向同一主体实体颁发多个具有相同DN的证书。
The subjectAltName MAY carry additional name types through the use of the otherName field. The format and semantics of the name are indicated through the OBJECT IDENTIFIER in the type-id field. The name itself is conveyed as value field in otherName. For example, Kerberos [RFC4120] format names can be encoded into the otherName, using a Kerberos 5 principal name OID and a SEQUENCE of the Realm and the PrincipalName.
subjectAltName可以通过使用otherName字段携带其他名称类型。名称的格式和语义通过type id字段中的对象标识符指示。名称本身在otherName中作为值字段传递。例如,Kerberos[RFC4120]格式名称可以使用Kerberos 5主体名称OID以及领域和主体名称序列编码为otherName。
Subject alternative names MAY be constrained in the same manner as subject distinguished names using the name constraints extension as described in Section 4.2.1.10.
可使用第4.2.1.10节所述的名称约束扩展,以与受试者可分辨名称相同的方式约束受试者备选名称。
If the subjectAltName extension is present, the sequence MUST contain at least one entry. Unlike the subject field, conforming CAs MUST NOT issue certificates with subjectAltNames containing empty GeneralName fields. For example, an rfc822Name is represented as an IA5String. While an empty string is a valid IA5String, such an rfc822Name is not permitted by this profile. The behavior of clients
如果存在subjectAltName扩展名,则序列必须至少包含一个条目。与subject字段不同,一致性CA不得颁发SubjectAltName包含空GeneralName字段的证书。例如,RFC822名称表示为IA5String。虽然空字符串是有效的IA5String,但此配置文件不允许使用此类RFC822名称。客户的行为
that encounter such a certificate when processing a certification path is not defined by this profile.
此配置文件未定义在处理证书路径时遇到此类证书的。
Finally, the semantics of subject alternative names that include wildcard characters (e.g., as a placeholder for a set of names) are not addressed by this specification. Applications with specific requirements MAY use such names, but they must define the semantics.
最后,包含通配符(例如,作为一组名称的占位符)的主题备选名称的语义不在本规范中讨论。具有特定需求的应用程序可以使用此类名称,但它们必须定义语义。
id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }
id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }
SubjectAltName ::= GeneralNames
SubjectAltName ::= GeneralNames
GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
GeneralName ::= CHOICE { otherName [0] OtherName, rfc822Name [1] IA5String, dNSName [2] IA5String, x400Address [3] ORAddress, directoryName [4] Name, ediPartyName [5] EDIPartyName, uniformResourceIdentifier [6] IA5String, iPAddress [7] OCTET STRING, registeredID [8] OBJECT IDENTIFIER }
GeneralName ::= CHOICE { otherName [0] OtherName, rfc822Name [1] IA5String, dNSName [2] IA5String, x400Address [3] ORAddress, directoryName [4] Name, ediPartyName [5] EDIPartyName, uniformResourceIdentifier [6] IA5String, iPAddress [7] OCTET STRING, registeredID [8] OBJECT IDENTIFIER }
OtherName ::= SEQUENCE { type-id OBJECT IDENTIFIER, value [0] EXPLICIT ANY DEFINED BY type-id }
OtherName ::= SEQUENCE { type-id OBJECT IDENTIFIER, value [0] EXPLICIT ANY DEFINED BY type-id }
EDIPartyName ::= SEQUENCE { nameAssigner [0] DirectoryString OPTIONAL, partyName [1] DirectoryString }
EDIPartyName ::= SEQUENCE { nameAssigner [0] DirectoryString OPTIONAL, partyName [1] DirectoryString }
As with Section 4.2.1.6, this extension is used to associate Internet style identities with the certificate issuer. Issuer alternative name MUST be encoded as in 4.2.1.6. Issuer alternative names are not processed as part of the certification path validation algorithm in Section 6. (That is, issuer alternative names are not used in name chaining and name constraints are not enforced.)
与第4.2.1.6节一样,此扩展用于将Internet样式标识与证书颁发者关联。发卡机构备选名称必须按照4.2.1.6进行编码。发卡机构备选名称不作为第6节中认证路径验证算法的一部分进行处理。(也就是说,名称链接中不使用发卡机构备选名称,也不强制实施名称约束。)
Where present, conforming CAs SHOULD mark this extension as non-critical.
如果存在,合格CA应将该扩展标记为非关键扩展。
id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }
id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }
IssuerAltName ::= GeneralNames
IssuerAltName ::= GeneralNames
The subject directory attributes extension is used to convey identification attributes (e.g., nationality) of the subject. The extension is defined as a sequence of one or more attributes. Conforming CAs MUST mark this extension as non-critical.
主题目录属性扩展用于传递主题的标识属性(例如国籍)。扩展被定义为一个或多个属性的序列。合格CA必须将此扩展标记为非关键扩展。
id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= { id-ce 9 }
id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= { id-ce 9 }
SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute
SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute
The basic constraints extension identifies whether the subject of the certificate is a CA and the maximum depth of valid certification paths that include this certificate.
基本约束扩展标识证书的主题是否为CA以及包含此证书的有效证书路径的最大深度。
The cA boolean indicates whether the certified public key may be used to verify certificate signatures. If the cA boolean is not asserted, then the keyCertSign bit in the key usage extension MUST NOT be asserted. If the basic constraints extension is not present in a version 3 certificate, or the extension is present but the cA boolean is not asserted, then the certified public key MUST NOT be used to verify certificate signatures.
cA布尔值指示经认证的公钥是否可用于验证证书签名。如果未断言cA布尔值,则不得断言密钥使用扩展中的keyCertSign位。如果版本3证书中不存在基本约束扩展,或者存在扩展但未断言cA布尔值,则不得使用经认证的公钥验证证书签名。
The pathLenConstraint field is meaningful only if the cA boolean is asserted and the key usage extension, if present, asserts the keyCertSign bit (Section 4.2.1.3). In this case, it gives the maximum number of non-self-issued intermediate certificates that may follow this certificate in a valid certification path. (Note: The last certificate in the certification path is not an intermediate certificate, and is not included in this limit. Usually, the last certificate is an end entity certificate, but it can be a CA certificate.) A pathLenConstraint of zero indicates that no non-self-issued intermediate CA certificates may follow in a valid certification path. Where it appears, the pathLenConstraint field MUST be greater than or equal to zero. Where pathLenConstraint does not appear, no limit is imposed.
pathLenConstraint字段只有在cA布尔值被断言且密钥使用扩展(如果存在)断言keyCertSign位时才有意义(第4.2.1.3节)。在这种情况下,它给出了在有效的证书路径中该证书之后可能出现的非自颁发中间证书的最大数量。(注意:证书路径中的最后一个证书不是中间证书,不包括在此限制中。通常,最后一个证书是终端实体证书,但可以是CA证书。)pathLenConstraint为零表示有效的证书路径中不能有非自颁发的中间CA证书。出现时,pathLenConstraint字段必须大于或等于零。如果未出现pathLenConstraint,则不会施加任何限制。
Conforming CAs MUST include this extension in all CA certificates that contain public keys used to validate digital signatures on certificates and MUST mark the extension as critical in such certificates. This extension MAY appear as a critical or non-critical extension in CA certificates that contain public keys used exclusively for purposes other than validating digital signatures on certificates. Such CA certificates include ones that contain public keys used exclusively for validating digital signatures on CRLs and ones that contain key management public keys used with certificate
合格CA必须在所有CA证书中包含此扩展,这些CA证书包含用于验证证书上数字签名的公钥,并且必须在此类证书中将扩展标记为关键。此扩展可能在CA证书中显示为关键或非关键扩展,CA证书中包含的公钥仅用于验证证书上的数字签名以外的目的。此类CA证书包括包含专用于验证CRL上数字签名的公钥的证书和包含与证书一起使用的密钥管理公钥的证书
enrollment protocols. This extension MAY appear as a critical or non-critical extension in end entity certificates.
注册协议。此扩展可能在最终实体证书中显示为关键或非关键扩展。
CAs MUST NOT include the pathLenConstraint field unless the cA boolean is asserted and the key usage extension asserts the keyCertSign bit.
cA不得包含pathLenConstraint字段,除非cA布尔值被断言,并且密钥使用扩展断言keyCertSign位。
id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }
id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }
BasicConstraints ::= SEQUENCE { cA BOOLEAN DEFAULT FALSE, pathLenConstraint INTEGER (0..MAX) OPTIONAL }
BasicConstraints ::= SEQUENCE { cA BOOLEAN DEFAULT FALSE, pathLenConstraint INTEGER (0..MAX) OPTIONAL }
The name constraints extension, which MUST be used only in a CA certificate, indicates a name space within which all subject names in subsequent certificates in a certification path MUST be located. Restrictions apply to the subject distinguished name and apply to subject alternative names. Restrictions apply only when the specified name form is present. If no name of the type is in the certificate, the certificate is acceptable.
名称约束扩展只能在CA证书中使用,它指示一个名称空间,证书路径中后续证书中的所有使用者名称都必须位于该名称空间中。限制适用于受试者可分辨名称和受试者备选名称。仅当指定的名称表单存在时,限制才适用。如果证书中没有类型名称,则该证书是可接受的。
Name constraints are not applied to self-issued certificates (unless the certificate is the final certificate in the path). (This could prevent CAs that use name constraints from employing self-issued certificates to implement key rollover.)
名称约束不应用于自颁发的证书(除非该证书是路径中的最终证书)。(这可能会阻止使用名称约束的CA使用自颁发的证书来实现密钥翻转。)
Restrictions are defined in terms of permitted or excluded name subtrees. Any name matching a restriction in the excludedSubtrees field is invalid regardless of information appearing in the permittedSubtrees. Conforming CAs MUST mark this extension as critical and SHOULD NOT impose name constraints on the x400Address, ediPartyName, or registeredID name forms. Conforming CAs MUST NOT issue certificates where name constraints is an empty sequence. That is, either the permittedSubtrees field or the excludedSubtrees MUST be present.
限制是根据允许或排除的名称子树定义的。任何与excludedSubtrees字段中的限制匹配的名称都无效,无论permittedSubtrees中显示的信息如何。符合条件的CA必须将此扩展标记为关键扩展,并且不应对X400地址、ePartyName或registeredID名称表单施加名称约束。当名称约束为空序列时,符合条件的CA不得颁发证书。也就是说,permittedSubtrees字段或excludedSubtrees必须存在。
Applications conforming to this profile MUST be able to process name constraints that are imposed on the directoryName name form and SHOULD be able to process name constraints that are imposed on the rfc822Name, uniformResourceIdentifier, dNSName, and iPAddress name forms. If a name constraints extension that is marked as critical imposes constraints on a particular name form, and an instance of that name form appears in the subject field or subjectAltName extension of a subsequent certificate, then the application MUST either process the constraint or reject the certificate.
符合此配置文件的应用程序必须能够处理强加于directoryName名称表单的名称约束,并且应该能够处理强加于rfc822Name、uniformResourceIdentifier、dNSName和iPAddress名称表单的名称约束。如果标记为关键的名称约束扩展对特定名称表单施加约束,并且该名称表单的实例出现在后续证书的subject字段或subjectAltName扩展中,则应用程序必须处理该约束或拒绝该证书。
Within this profile, the minimum and maximum fields are not used with any name forms, thus, the minimum MUST be zero, and maximum MUST be absent. However, if an application encounters a critical name constraints extension that specifies other values for minimum or maximum for a name form that appears in a subsequent certificate, the application MUST either process these fields or reject the certificate.
在此配置文件中,最小和最大字段不与任何名称表单一起使用,因此,最小值必须为零,而最大值必须不存在。但是,如果应用程序遇到为后续证书中出现的名称表单的最小值或最大值指定其他值的关键名称约束扩展,则应用程序必须处理这些字段或拒绝证书。
For URIs, the constraint applies to the host part of the name. The constraint MUST be specified as a fully qualified domain name and MAY specify a host or a domain. Examples would be "host.example.com" and ".example.com". When the constraint begins with a period, it MAY be expanded with one or more labels. That is, the constraint ".example.com" is satisfied by both host.example.com and my.host.example.com. However, the constraint ".example.com" is not satisfied by "example.com". When the constraint does not begin with a period, it specifies a host. If a constraint is applied to the uniformResourceIdentifier name form and a subsequent certificate includes a subjectAltName extension with a uniformResourceIdentifier that does not include an authority component with a host name specified as a fully qualified domain name (e.g., if the URI either does not include an authority component or includes an authority component in which the host name is specified as an IP address), then the application MUST reject the certificate.
对于URI,约束将应用于名称的主机部分。必须将约束指定为完全限定的域名,并可以指定主机或域。例如“host.example.com”和“.example.com”。当约束以句点开始时,可以使用一个或多个标签展开。也就是说,host.example.com和my.host.example.com都满足约束“.example.com”。但是,“example.com”不满足约束“.example.com”。当约束不以句点开头时,它将指定一个主体。如果将约束应用于uniformResourceIdentifier名称表单,且后续证书包含subjectAltName扩展,且uniformResourceIdentifier不包含主机名指定为完全限定域名的授权组件(例如,如果URI不包含授权组件或包含主机名指定为IP地址的授权组件),则应用程序必须拒绝证书。
A name constraint for Internet mail addresses MAY specify a particular mailbox, all addresses at a particular host, or all mailboxes in a domain. To indicate a particular mailbox, the constraint is the complete mail address. For example, "root@example.com" indicates the root mailbox on the host "example.com". To indicate all Internet mail addresses on a particular host, the constraint is specified as the host name. For example, the constraint "example.com" is satisfied by any mail address at the host "example.com". To specify any address within a domain, the constraint is specified with a leading period (as with URIs). For example, ".example.com" indicates all the Internet mail addresses in the domain "example.com", but not Internet mail addresses on the host "example.com".
Internet邮件地址的名称约束可以指定特定邮箱、特定主机上的所有地址或域中的所有邮箱。要指示特定邮箱,约束条件是完整的邮件地址。例如,”root@example.com表示主机“example.com”上的根邮箱。要指示特定主机上的所有Internet邮件地址,将约束指定为主机名。例如,主机“example.com”上的任何邮件地址都满足约束“example.com”。若要指定域中的任何地址,将使用前导句点指定约束(与URI一样)。例如,“.example.com”表示域“example.com”中的所有Internet邮件地址,但不表示主机“example.com”上的Internet邮件地址。
DNS name restrictions are expressed as host.example.com. Any DNS name that can be constructed by simply adding zero or more labels to the left-hand side of the name satisfies the name constraint. For example, www.host.example.com would satisfy the constraint but host1.example.com would not.
DNS名称限制表示为host.example.com。只要在名称的左侧添加零个或多个标签即可构造的任何DNS名称都满足名称约束。例如,www.host.example.com将满足约束,但host1.example.com将不满足约束。
Legacy implementations exist where an electronic mail address is embedded in the subject distinguished name in an attribute of type emailAddress (Section 4.1.2.6). When constraints are imposed on the
旧式实现中,电子邮件地址嵌入在emailAddress类型属性的主题可分辨名称中(第4.1.2.6节)。当约束被施加到
rfc822Name name form, but the certificate does not include a subject alternative name, the rfc822Name constraint MUST be applied to the attribute of type emailAddress in the subject distinguished name. The ASN.1 syntax for emailAddress and the corresponding OID are supplied in Appendix A.
rfc822Name名称表单,但证书不包括使用者备选名称,rfc822Name约束必须应用于使用者可分辨名称中emailAddress类型的属性。附录A中提供了emailAddress的ASN.1语法和相应的OID。
Restrictions of the form directoryName MUST be applied to the subject field in the certificate (when the certificate includes a non-empty subject field) and to any names of type directoryName in the subjectAltName extension. Restrictions of the form x400Address MUST be applied to any names of type x400Address in the subjectAltName extension.
directoryName格式的限制必须应用于证书中的subject字段(当证书包含非空的subject字段时)和subjectAltName扩展名中directoryName类型的任何名称。x400Address格式的限制必须应用于subjectAltName扩展名中x400Address类型的任何名称。
When applying restrictions of the form directoryName, an implementation MUST compare DN attributes. At a minimum, implementations MUST perform the DN comparison rules specified in Section 7.1. CAs issuing certificates with a restriction of the form directoryName SHOULD NOT rely on implementation of the full ISO DN name comparison algorithm. This implies name restrictions MUST be stated identically to the encoding used in the subject field or subjectAltName extension.
应用directoryName表单的限制时,实现必须比较DN属性。实现至少必须执行第7.1节中指定的DN比较规则。CA颁发具有directoryName格式限制的证书不应依赖于完整ISO DN名称比较算法的实现。这意味着名称限制必须与subject字段或subjectAltName扩展中使用的编码相同。
The syntax of iPAddress MUST be as described in Section 4.2.1.6 with the following additions specifically for name constraints. For IPv4 addresses, the iPAddress field of GeneralName MUST contain eight (8) octets, encoded in the style of RFC 4632 (CIDR) to represent an address range [RFC4632]. For IPv6 addresses, the iPAddress field MUST contain 32 octets similarly encoded. For example, a name constraint for "class C" subnet 192.0.2.0 is represented as the octets C0 00 02 00 FF FF FF 00, representing the CIDR notation 192.0.2.0/24 (mask 255.255.255.0).
iPAddress的语法必须如第4.2.1.6节所述,并特别针对名称限制添加以下内容。对于IPv4地址,GeneralName的iPAddress字段必须包含八(8)个八位字节,以RFC 4632(CIDR)的样式编码以表示地址范围[RFC4632]。对于IPv6地址,iPAddress字段必须包含32个编码类似的八位字节。例如,“C类”子网192.0.2.0的名称约束表示为八位字节C000 02 00 FF 00,表示CIDR符号192.0.2.0/24(掩码255.255.255.0)。
Additional rules for encoding and processing name constraints are specified in Section 7.
第7节规定了编码和处理名称约束的其他规则。
The syntax and semantics for name constraints for otherName, ediPartyName, and registeredID are not defined by this specification, however, syntax and semantics for name constraints for other name forms may be specified in other documents.
本规范未定义otherName、ePartyName和registeredID的名称约束的语法和语义,但是,其他文档中可能会指定其他名称形式的名称约束的语法和语义。
id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }
id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }
NameConstraints ::= SEQUENCE { permittedSubtrees [0] GeneralSubtrees OPTIONAL, excludedSubtrees [1] GeneralSubtrees OPTIONAL }
NameConstraints ::= SEQUENCE { permittedSubtrees [0] GeneralSubtrees OPTIONAL, excludedSubtrees [1] GeneralSubtrees OPTIONAL }
GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
GeneralSubtree ::= SEQUENCE { base GeneralName, minimum [0] BaseDistance DEFAULT 0, maximum [1] BaseDistance OPTIONAL }
GeneralSubtree ::= SEQUENCE { base GeneralName, minimum [0] BaseDistance DEFAULT 0, maximum [1] BaseDistance OPTIONAL }
BaseDistance ::= INTEGER (0..MAX)
BaseDistance ::= INTEGER (0..MAX)
The policy constraints extension can be used in certificates issued to CAs. The policy constraints extension constrains path validation in two ways. It can be used to prohibit policy mapping or require that each certificate in a path contain an acceptable policy identifier.
策略约束扩展可用于颁发给CA的证书。策略约束扩展以两种方式约束路径验证。它可用于禁止策略映射或要求路径中的每个证书包含可接受的策略标识符。
If the inhibitPolicyMapping field is present, the value indicates the number of additional certificates that may appear in the path before policy mapping is no longer permitted. For example, a value of one indicates that policy mapping may be processed in certificates issued by the subject of this certificate, but not in additional certificates in the path.
如果存在inhibitPolicyMapping字段,则该值指示在不再允许策略映射之前路径中可能出现的其他证书的数量。例如,值为1表示可以在该证书的主体颁发的证书中处理策略映射,但不能在路径中的其他证书中处理。
If the requireExplicitPolicy field is present, the value of requireExplicitPolicy indicates the number of additional certificates that may appear in the path before an explicit policy is required for the entire path. When an explicit policy is required, it is necessary for all certificates in the path to contain an acceptable policy identifier in the certificate policies extension. An acceptable policy identifier is the identifier of a policy required by the user of the certification path or the identifier of a policy that has been declared equivalent through policy mapping.
如果存在requireExplicitPolicy字段,则requireExplicitPolicy的值指示在整个路径需要显式策略之前,路径中可能出现的其他证书数。当需要显式策略时,路径中的所有证书都必须在证书策略扩展中包含可接受的策略标识符。可接受的策略标识符是认证路径的用户所需的策略的标识符,或者是通过策略映射声明为等效的策略的标识符。
Conforming applications MUST be able to process the requireExplicitPolicy field and SHOULD be able to process the inhibitPolicyMapping field. Applications that support the inhibitPolicyMapping field MUST also implement support for the policyMappings extension. If the policyConstraints extension is marked as critical and the inhibitPolicyMapping field is present, applications that do not implement support for the inhibitPolicyMapping field MUST reject the certificate.
一致性应用程序必须能够处理requireExplicitPolicy字段,并且应该能够处理inhibitPolicyMapping字段。支持PolicyMapping字段的应用程序还必须实现对policyMappings扩展的支持。如果policyConstraints扩展标记为critical,并且存在inhibitPolicyMapping字段,则未实现对inhibitPolicyMapping字段支持的应用程序必须拒绝证书。
Conforming CAs MUST NOT issue certificates where policy constraints is an empty sequence. That is, either the inhibitPolicyMapping field or the requireExplicitPolicy field MUST be present. The behavior of clients that encounter an empty policy constraints field is not addressed in this profile.
当策略约束为空序列时,符合条件的CA不得颁发证书。也就是说,inhibitPolicyMapping字段或requireExplicitPolicy字段必须存在。遇到空策略约束字段的客户端的行为不在此配置文件中处理。
Conforming CAs MUST mark this extension as critical.
合格的CA必须将此扩展标记为关键。
id-ce-policyConstraints OBJECT IDENTIFIER ::= { id-ce 36 }
id-ce-policyConstraints OBJECT IDENTIFIER ::= { id-ce 36 }
PolicyConstraints ::= SEQUENCE { requireExplicitPolicy [0] SkipCerts OPTIONAL, inhibitPolicyMapping [1] SkipCerts OPTIONAL }
PolicyConstraints ::= SEQUENCE { requireExplicitPolicy [0] SkipCerts OPTIONAL, inhibitPolicyMapping [1] SkipCerts OPTIONAL }
SkipCerts ::= INTEGER (0..MAX)
SkipCerts ::= INTEGER (0..MAX)
This extension indicates one or more purposes for which the certified public key may be used, in addition to or in place of the basic purposes indicated in the key usage extension. In general, this extension will appear only in end entity certificates. This extension is defined as follows:
除了密钥使用扩展中指示的基本用途之外,此扩展还指示认证公钥可用于的一个或多个用途。通常,此扩展仅出现在最终实体证书中。该扩展定义如下:
id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 }
id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 }
ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
KeyPurposeId ::= OBJECT IDENTIFIER
KeyPurposeId ::= OBJECT IDENTIFIER
Key purposes may be defined by any organization with a need. Object identifiers used to identify key purposes MUST be assigned in accordance with IANA or ITU-T Recommendation X.660 [X.660].
关键目的可由任何有需要的组织确定。用于识别关键用途的对象标识符必须按照IANA或ITU-T建议X.660[X.660]进行分配。
This extension MAY, at the option of the certificate issuer, be either critical or non-critical.
根据证书颁发者的选择,此扩展可以是关键的,也可以是非关键的。
If the extension is present, then the certificate MUST only be used for one of the purposes indicated. If multiple purposes are indicated the application need not recognize all purposes indicated, as long as the intended purpose is present. Certificate using applications MAY require that the extended key usage extension be present and that a particular purpose be indicated in order for the certificate to be acceptable to that application.
如果存在扩展,则证书只能用于指定的目的之一。如果指示了多个目的,则只要存在预期目的,应用程序就不需要识别所指示的所有目的。使用证书的应用程序可能要求存在扩展密钥使用扩展,并指明特定用途,以便该应用程序可以接受证书。
If a CA includes extended key usages to satisfy such applications, but does not wish to restrict usages of the key, the CA can include the special KeyPurposeId anyExtendedKeyUsage in addition to the particular key purposes required by the applications. Conforming CAs SHOULD NOT mark this extension as critical if the anyExtendedKeyUsage KeyPurposeId is present. Applications that require the presence of a particular purpose MAY reject certificates that include the anyExtendedKeyUsage OID but not the particular OID expected for the application.
如果CA包括扩展密钥用法以满足此类应用,但不希望限制密钥的用法,则除了应用所需的特定密钥用途之外,CA还可以包括特殊的KeyPurposeId anyExtendedKeyUsage。如果存在anyExtendedKeyUsage KeyPurposeId,则符合条件的CA不应将此扩展标记为关键。需要存在特定用途的应用程序可能会拒绝包含anyExtendedKeyUsage OID但不包含应用程序预期的特定OID的证书。
If a certificate contains both a key usage extension and an extended key usage extension, then both extensions MUST be processed independently and the certificate MUST only be used for a purpose consistent with both extensions. If there is no purpose consistent with both extensions, then the certificate MUST NOT be used for any purpose.
如果证书同时包含密钥使用扩展和扩展密钥使用扩展,则必须独立处理这两个扩展,并且证书只能用于与这两个扩展一致的目的。如果没有与两个扩展一致的目的,则证书不得用于任何目的。
The following key usage purposes are defined:
定义了以下主要用途:
anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }
anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }
id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 } -- TLS WWW server authentication -- Key usage bits that may be consistent: digitalSignature, -- keyEncipherment or keyAgreement
id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 } -- TLS WWW server authentication -- Key usage bits that may be consistent: digitalSignature, -- keyEncipherment or keyAgreement
id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 } -- TLS WWW client authentication -- Key usage bits that may be consistent: digitalSignature -- and/or keyAgreement
id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 } -- TLS WWW client authentication -- Key usage bits that may be consistent: digitalSignature -- and/or keyAgreement
id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 } -- Signing of downloadable executable code -- Key usage bits that may be consistent: digitalSignature
id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 } -- Signing of downloadable executable code -- Key usage bits that may be consistent: digitalSignature
id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 } -- Email protection -- Key usage bits that may be consistent: digitalSignature, -- nonRepudiation, and/or (keyEncipherment or keyAgreement)
id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 } -- Email protection -- Key usage bits that may be consistent: digitalSignature, -- nonRepudiation, and/or (keyEncipherment or keyAgreement)
id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 } -- Binding the hash of an object to a time -- Key usage bits that may be consistent: digitalSignature -- and/or nonRepudiation
id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 } -- Binding the hash of an object to a time -- Key usage bits that may be consistent: digitalSignature -- and/or nonRepudiation
id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 } -- Signing OCSP responses -- Key usage bits that may be consistent: digitalSignature -- and/or nonRepudiation
id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 } -- Signing OCSP responses -- Key usage bits that may be consistent: digitalSignature -- and/or nonRepudiation
The CRL distribution points extension identifies how CRL information is obtained. The extension SHOULD be non-critical, but this profile RECOMMENDS support for this extension by CAs and applications. Further discussion of CRL management is contained in Section 5.
CRL分发点扩展标识如何获取CRL信息。扩展应该是非关键的,但此概要文件建议CAs和应用程序支持此扩展。关于CRL管理的进一步讨论见第5节。
The cRLDistributionPoints extension is a SEQUENCE of DistributionPoint. A DistributionPoint consists of three fields, each of which is optional: distributionPoint, reasons, and cRLIssuer. While each of these fields is optional, a DistributionPoint MUST NOT consist of only the reasons field; either distributionPoint or cRLIssuer MUST be present. If the certificate issuer is not the CRL issuer, then the cRLIssuer field MUST be present and contain the Name of the CRL issuer. If the certificate issuer is also the CRL issuer, then conforming CAs MUST omit the cRLIssuer field and MUST include the distributionPoint field.
cRLDistributionPoints扩展是一个DistributionPoint序列。DistributionPoint由三个字段组成,每个字段都是可选的:DistributionPoint、Reasions和cRLIssuer。虽然这些字段中的每一个都是可选的,但分发点不能仅包含原因字段;distributionPoint或cRLIssuer必须存在。如果证书颁发者不是CRL颁发者,则CRL颁发者字段必须存在并包含CRL颁发者的名称。如果证书颁发者也是CRL颁发者,则符合条件的CA必须省略cRLIssuer字段,并且必须包括distributionPoint字段。
When the distributionPoint field is present, it contains either a SEQUENCE of general names or a single value, nameRelativeToCRLIssuer. If the DistributionPointName contains multiple values, each name describes a different mechanism to obtain the same CRL. For example, the same CRL could be available for retrieval through both LDAP and HTTP.
当存在distributionPoint字段时,它包含常规名称序列或单个值nameRelativeToCRLIssuer。如果DistributionPointName包含多个值,则每个名称都描述了获取相同CRL的不同机制。例如,同一个CRL可以通过LDAP和HTTP进行检索。
If the distributionPoint field contains a directoryName, the entry for that directoryName contains the current CRL for the associated reasons and the CRL is issued by the associated cRLIssuer. The CRL may be stored in either the certificateRevocationList or authorityRevocationList attribute. The CRL is to be obtained by the application from whatever directory server is locally configured. The protocol the application uses to access the directory (e.g., DAP or LDAP) is a local matter.
如果distributionPoint字段包含directoryName,则该directoryName的条目将包含当前CRL(出于相关原因),并且CRL由相关cRLIssuer发出。CRL可以存储在CertificateRelationList或AuthorityRecovationList属性中。应用程序将从本地配置的任何目录服务器获取CRL。应用程序用于访问目录的协议(如DAP或LDAP)是本地事务。
If the DistributionPointName contains a general name of type URI, the following semantics MUST be assumed: the URI is a pointer to the current CRL for the associated reasons and will be issued by the associated cRLIssuer. When the HTTP or FTP URI scheme is used, the URI MUST point to a single DER encoded CRL as specified in [RFC2585]. HTTP server implementations accessed via the URI SHOULD specify the media type application/pkix-crl in the content-type header field of the response. When the LDAP URI scheme [RFC4516] is used, the URI MUST include a <dn> field containing the distinguished name of the entry holding the CRL, MUST include a single <attrdesc> that contains an appropriate attribute description for the attribute that holds the CRL [RFC4523], and SHOULD include a <host> (e.g., <ldap://ldap.example.com/cn=example%20CA,dc=example,dc=com? certificateRevocationList;binary>). Omitting the <host> (e.g., <ldap:///cn=CA,dc=example,dc=com?authorityRevocationList;binary>) has the effect of relying on whatever a priori knowledge the client might have to contact an appropriate server. When present, DistributionPointName SHOULD include at least one LDAP or HTTP URI.
如果DistributionPointName包含URI类型的通用名称,则必须假定以下语义:URI是指向当前CRL的指针,其原因与相关联,并将由相关cRLIssuer发出。使用HTTP或FTP URI方案时,URI必须指向[RFC2585]中指定的单个DER编码的CRL。通过URI访问的HTTP服务器实现应在响应的内容类型标头字段中指定媒体类型application/pkix crl。使用LDAP URI方案[RFC4516]时,URI必须包含一个<dn>字段,该字段包含保存CRL的条目的可分辨名称,必须包含一个<attrdesc>,该字段包含保存CRL的属性的适当属性描述[RFC4523],并且应该包含一个<host>(例如:<ldap://ldap.example.com/cn=example%20CA,dc=example,dc=com?certificaterejournalist;binary>)。省略<host>(例如<ldap:///cn=CA,dc=example,dc=com?authorityRevocationList;binary>)具有依赖于客户端可能必须联系适当服务器的任何先验知识的效果。如果存在,DistributionPointName应至少包括一个LDAP或HTTP URI。
If the DistributionPointName contains the single value nameRelativeToCRLIssuer, the value provides a distinguished name
如果DistributionPointName包含单个值nameRelativeToCRLIssuer,则该值提供可分辨名称
fragment. The fragment is appended to the X.500 distinguished name of the CRL issuer to obtain the distribution point name. If the cRLIssuer field in the DistributionPoint is present, then the name fragment is appended to the distinguished name that it contains; otherwise, the name fragment is appended to the certificate issuer distinguished name. Conforming CAs SHOULD NOT use nameRelativeToCRLIssuer to specify distribution point names. The DistributionPointName MUST NOT use the nameRelativeToCRLIssuer alternative when cRLIssuer contains more than one distinguished name.
碎片片段附加到CRL颁发者的X.500可分辨名称后,以获得分发点名称。如果DistributionPoint中存在cRLIssuer字段,则名称片段将附加到其包含的可分辨名称中;否则,名称片段将附加到证书颁发者的可分辨名称。一致性CA不应使用nameRelativeToCRLIssuer来指定分发点名称。当cRLIssuer包含多个可分辨名称时,DistributionPointName不得使用nameRelativeToCRLIssuer替代项。
If the DistributionPoint omits the reasons field, the CRL MUST include revocation information for all reasons. This profile RECOMMENDS against segmenting CRLs by reason code. When a conforming CA includes a cRLDistributionPoints extension in a certificate, it MUST include at least one DistributionPoint that points to a CRL that covers the certificate for all reasons.
如果DistributionPoint忽略了“原因”字段,则CRL必须包含所有原因的吊销信息。此配置文件建议不要按原因代码划分CRL。当合格CA在证书中包含cRLDistributionPoints扩展时,它必须至少包含一个分发点,该分发点指向基于各种原因覆盖该证书的CRL。
The cRLIssuer identifies the entity that signs and issues the CRL. If present, the cRLIssuer MUST only contain the distinguished name (DN) from the issuer field of the CRL to which the DistributionPoint is pointing. The encoding of the name in the cRLIssuer field MUST be exactly the same as the encoding in issuer field of the CRL. If the cRLIssuer field is included and the DN in that field does not correspond to an X.500 or LDAP directory entry where CRL is located, then conforming CAs MUST include the distributionPoint field.
cRLIssuer识别签署和发布CRL的实体。如果存在,cRLIssuer必须仅包含分发点所指向的CRL的issuer字段中的可分辨名称(DN)。cRLIssuer字段中的名称编码必须与CRL的issuer字段中的编码完全相同。如果包含cRLIssuer字段,且该字段中的DN与CRL所在的X.500或LDAP目录条目不对应,则符合条件的CA必须包含distributionPoint字段。
id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= { id-ce 31 }
id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= { id-ce 31 }
CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint
CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint
DistributionPoint ::= SEQUENCE { distributionPoint [0] DistributionPointName OPTIONAL, reasons [1] ReasonFlags OPTIONAL, cRLIssuer [2] GeneralNames OPTIONAL }
DistributionPoint ::= SEQUENCE { distributionPoint [0] DistributionPointName OPTIONAL, reasons [1] ReasonFlags OPTIONAL, cRLIssuer [2] GeneralNames OPTIONAL }
DistributionPointName ::= CHOICE { fullName [0] GeneralNames, nameRelativeToCRLIssuer [1] RelativeDistinguishedName }
DistributionPointName ::= CHOICE { fullName [0] GeneralNames, nameRelativeToCRLIssuer [1] RelativeDistinguishedName }
ReasonFlags ::= BIT STRING { unused (0), keyCompromise (1), cACompromise (2), affiliationChanged (3), superseded (4), cessationOfOperation (5), certificateHold (6), privilegeWithdrawn (7), aACompromise (8) }
ReasonFlags ::= BIT STRING { unused (0), keyCompromise (1), cACompromise (2), affiliationChanged (3), superseded (4), cessationOfOperation (5), certificateHold (6), privilegeWithdrawn (7), aACompromise (8) }
The inhibit anyPolicy extension can be used in certificates issued to CAs. The inhibit anyPolicy extension indicates that the special anyPolicy OID, with the value { 2 5 29 32 0 }, is not considered an explicit match for other certificate policies except when it appears in an intermediate self-issued CA certificate. The value indicates the number of additional non-self-issued certificates that may appear in the path before anyPolicy is no longer permitted. For example, a value of one indicates that anyPolicy may be processed in certificates issued by the subject of this certificate, but not in additional certificates in the path.
inhibit anyPolicy扩展可用于颁发给CA的证书。inhibit anyPolicy扩展指示值为{2 5 29 32 0}的特殊anyPolicy OID不被视为与其他证书策略的显式匹配,除非它出现在中间自颁发的CA证书中。该值表示在不再允许任何策略之前,路径中可能出现的其他非自颁发证书的数量。例如,值为1表示可以在该证书的主体颁发的证书中处理任何策略,但不能在路径中的其他证书中处理。
Conforming CAs MUST mark this extension as critical.
合格的CA必须将此扩展标记为关键。
id-ce-inhibitAnyPolicy OBJECT IDENTIFIER ::= { id-ce 54 }
id-ce-inhibitAnyPolicy OBJECT IDENTIFIER ::= { id-ce 54 }
InhibitAnyPolicy ::= SkipCerts
InhibitAnyPolicy ::= SkipCerts
SkipCerts ::= INTEGER (0..MAX)
SkipCerts ::= INTEGER (0..MAX)
The freshest CRL extension identifies how delta CRL information is obtained. The extension MUST be marked as non-critical by conforming CAs. Further discussion of CRL management is contained in Section 5.
最新的CRL扩展标识如何获取增量CRL信息。扩展必须由合格CAs标记为非关键。关于CRL管理的进一步讨论见第5节。
The same syntax is used for this extension and the cRLDistributionPoints extension, and is described in Section 4.2.1.13. The same conventions apply to both extensions.
该扩展和cRLDistributionPoints扩展使用相同的语法,第4.2.1.13节对此进行了描述。两种扩展都适用相同的约定。
id-ce-freshestCRL OBJECT IDENTIFIER ::= { id-ce 46 }
id-ce-freshestCRL OBJECT IDENTIFIER ::= { id-ce 46 }
FreshestCRL ::= CRLDistributionPoints
FreshestCRL ::= CRLDistributionPoints
This section defines two extensions for use in the Internet Public Key Infrastructure. These extensions may be used to direct applications to on-line information about the issuer or the subject. Each extension contains a sequence of access methods and access locations. The access method is an object identifier that indicates the type of information that is available. The access location is a GeneralName that implicitly specifies the location and format of the information and the method for obtaining the information.
本节定义了在Internet公钥基础设施中使用的两个扩展。这些扩展可用于将应用程序定向到有关发行人或主题的在线信息。每个扩展都包含一系列访问方法和访问位置。访问方法是一个对象标识符,指示可用信息的类型。访问位置是一个通用名称,隐式指定信息的位置和格式以及获取信息的方法。
Object identifiers are defined for the private extensions. The object identifiers associated with the private extensions are defined under the arc id-pe within the arc id-pkix. Any future extensions defined for the Internet PKI are also expected to be defined under the arc id-pe.
对象标识符是为私有扩展定义的。与专用扩展关联的对象标识符在arc id pkix中的arc id pe下定义。为Internet PKI定义的任何未来扩展也将在arc id pe下定义。
id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) }
id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) }
id-pe OBJECT IDENTIFIER ::= { id-pkix 1 }
id-pe OBJECT IDENTIFIER ::= { id-pkix 1 }
The authority information access extension indicates how to access information and services for the issuer of the certificate in which the extension appears. Information and services may include on-line validation services and CA policy data. (The location of CRLs is not specified in this extension; that information is provided by the cRLDistributionPoints extension.) This extension may be included in end entity or CA certificates. Conforming CAs MUST mark this extension as non-critical.
授权信息访问扩展指示如何访问扩展所在证书颁发者的信息和服务。信息和服务可能包括在线验证服务和CA策略数据。(此扩展中未指定CRL的位置;该信息由cRLDistributionPoints扩展提供。)此扩展可能包含在最终实体或CA证书中。合格CA必须将此扩展标记为非关键扩展。
id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }
id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }
AuthorityInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription
AuthorityInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription
AccessDescription ::= SEQUENCE { accessMethod OBJECT IDENTIFIER, accessLocation GeneralName }
AccessDescription ::= SEQUENCE { accessMethod OBJECT IDENTIFIER, accessLocation GeneralName }
id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }
id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }
id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }
id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }
id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 }
id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 }
Each entry in the sequence AuthorityInfoAccessSyntax describes the format and location of additional information provided by the issuer of the certificate in which this extension appears. The type and format of the information are specified by the accessMethod field; the accessLocation field specifies the location of the information. The retrieval mechanism may be implied by the accessMethod or specified by accessLocation.
sequence AuthorityInfoAccessSyntax中的每个条目都描述了由出现此扩展的证书颁发者提供的附加信息的格式和位置。信息的类型和格式由accessMethod字段指定;accessLocation字段指定信息的位置。检索机制可能由accessLocation指定的访问器方法暗示。
This profile defines two accessMethod OIDs: id-ad-caIssuers and id-ad-ocsp.
此概要文件定义了两个accessMethod OID:id ad caIssuers和id ad ocsp。
In a public key certificate, the id-ad-caIssuers OID is used when the additional information lists certificates that were issued to the CA that issued the certificate containing this extension. The referenced CA issuers description is intended to aid certificate users in the selection of a certification path that terminates at a point trusted by the certificate user.
在公钥证书中,当附加信息列出颁发给颁发包含此扩展的证书的CA的证书时,将使用id ad caIssuers OID。引用的CA颁发者描述旨在帮助证书用户选择终止于证书用户信任点的证书路径。
When id-ad-caIssuers appears as accessMethod, the accessLocation field describes the referenced description server and the access protocol to obtain the referenced description. The accessLocation field is defined as a GeneralName, which can take several forms.
当id ad caIssuers显示为accessMethod时,accessLocation字段描述引用的描述服务器和获取引用描述的访问协议。accessLocation字段定义为GeneralName,可以采用多种形式。
When the accessLocation is a directoryName, the information is to be obtained by the application from whatever directory server is locally configured. The entry for the directoryName contains CA certificates in the crossCertificatePair and/or cACertificate attributes as specified in [RFC4523]. The protocol that application uses to access the directory (e.g., DAP or LDAP) is a local matter.
当accessLocation是directoryName时,应用程序将从本地配置的任何目录服务器获取信息。directoryName条目包含[RFC4523]中指定的crossCertificatePair和/或cACertificate属性中的CA证书。应用程序用于访问目录的协议(如DAP或LDAP)是本地事务。
Where the information is available via LDAP, the accessLocation SHOULD be a uniformResourceIdentifier. The LDAP URI [RFC4516] MUST include a <dn> field containing the distinguished name of the entry holding the certificates, MUST include an <attributes> field that lists appropriate attribute descriptions for the attributes that hold the DER encoded certificates or cross-certificate pairs [RFC4523], and SHOULD include a <host> (e.g., <ldap://ldap.example.com/cn=CA, dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>). Omitting the <host> (e.g., <ldap:///cn=exampleCA,dc=example,dc=com? cACertificate;binary>) has the effect of relying on whatever a priori knowledge the client might have to contact an appropriate server.
如果信息通过LDAP可用,则accessLocation应该是uniformResourceIdentifier。LDAP URI[RFC4516]必须包含一个<dn>字段,该字段包含持有证书的条目的可分辨名称,必须包含一个<attributes>字段,该字段列出持有DER编码证书或交叉证书对的属性的适当属性描述[RFC4523],并且应该包含一个<host>(例如:<ldap://ldap.example.com/cn=CA,dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>)。省略<host>(例如<ldap:///cn=exampleCA,dc=example,dc=com?cACertificate;binary>)的作用是依赖于客户端可能必须联系适当服务器的任何先验知识。
Where the information is available via HTTP or FTP, accessLocation MUST be a uniformResourceIdentifier and the URI MUST point to either a single DER encoded certificate as specified in [RFC2585] or a collection of certificates in a BER or DER encoded "certs-only" CMS message as specified in [RFC2797].
当信息通过HTTP或FTP可用时,accessLocation必须是uniformResourceIdentifier,URI必须指向[RFC2585]中指定的单个DER编码证书或[RFC2797]中指定的BER或DER编码的“仅证书”CMS消息中的证书集合。
Conforming applications that support HTTP or FTP for accessing certificates MUST be able to accept individual DER encoded certificates and SHOULD be able to accept "certs-only" CMS messages.
支持HTTP或FTP访问证书的一致性应用程序必须能够接受单个DER编码的证书,并且应该能够接受“仅证书”CMS消息。
HTTP server implementations accessed via the URI SHOULD specify the media type application/pkix-cert [RFC2585] in the content-type header field of the response for a single DER encoded certificate and SHOULD specify the media type application/pkcs7-mime [RFC2797] in the content-type header field of the response for "certs-only" CMS messages. For FTP, the name of a file that contains a single DER encoded certificate SHOULD have a suffix of ".cer" [RFC2585] and the name of a file that contains a "certs-only" CMS message SHOULD have a suffix of ".p7c" [RFC2797]. Consuming clients may use the media type or file extension as a hint to the content, but should not depend solely on the presence of the correct media type or file extension in the server response.
通过URI访问的HTTP服务器实现应在单个DER编码证书响应的内容类型头字段中指定媒体类型应用程序/pkix证书[RFC2585],并应在“仅证书”CMS消息响应的内容类型头字段中指定媒体类型应用程序/pkcs7 mime[RFC2797]。对于FTP,包含单个DER编码证书的文件名的后缀应为“.cer”[RFC2585],包含“仅证书”CMS消息的文件名的后缀应为“.p7c”[RFC2797]。消费客户端可以使用媒体类型或文件扩展名作为内容提示,但不应仅依赖于服务器响应中是否存在正确的媒体类型或文件扩展名。
The semantics of other id-ad-caIssuers accessLocation name forms are not defined.
未定义其他id ad caIssuers访问位置名称表单的语义。
An authorityInfoAccess extension may include multiple instances of the id-ad-caIssuers accessMethod. The different instances may specify different methods for accessing the same information or may point to different information. When the id-ad-caIssuers accessMethod is used, at least one instance SHOULD specify an accessLocation that is an HTTP [RFC2616] or LDAP [RFC4516] URI.
authorityInfoAccess扩展可能包括id ad caIssuers ACCESS方法的多个实例。不同实例可以指定用于访问相同信息的不同方法,或者可以指向不同的信息。当使用id ad caIssuers ACCESS方法时,至少应该有一个实例指定一个accessLocation,该accessLocation是HTTP[RFC2616]或LDAP[RFC4516]URI。
The id-ad-ocsp OID is used when revocation information for the certificate containing this extension is available using the Online Certificate Status Protocol (OCSP) [RFC2560].
当使用在线证书状态协议(ocsp)[RFC2560]获取包含此扩展的证书的吊销信息时,使用id ad ocsp OID。
When id-ad-ocsp appears as accessMethod, the accessLocation field is the location of the OCSP responder, using the conventions defined in [RFC2560].
当id ad ocsp显示为accessMethod时,accessLocation字段是ocsp响应程序的位置,使用[RFC2560]中定义的约定。
Additional access descriptors may be defined in other PKIX specifications.
其他访问描述符可在其他PKIX规范中定义。
The subject information access extension indicates how to access information and services for the subject of the certificate in which the extension appears. When the subject is a CA, information and services may include certificate validation services and CA policy data. When the subject is an end entity, the information describes the type of services offered and how to access them. In this case, the contents of this extension are defined in the protocol
subject information access extension表示如何访问扩展所在证书的主题的信息和服务。当主体是CA时,信息和服务可能包括证书验证服务和CA策略数据。当主体是终端实体时,信息描述提供的服务类型以及如何访问这些服务。在这种情况下,此扩展的内容在协议中定义
specifications for the supported services. This extension may be included in end entity or CA certificates. Conforming CAs MUST mark this extension as non-critical.
支持服务的规范。此扩展可以包含在最终实体或CA证书中。合格CA必须将此扩展标记为非关键扩展。
id-pe-subjectInfoAccess OBJECT IDENTIFIER ::= { id-pe 11 }
id-pe-subjectInfoAccess OBJECT IDENTIFIER ::= { id-pe 11 }
SubjectInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription
SubjectInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription
AccessDescription ::= SEQUENCE { accessMethod OBJECT IDENTIFIER, accessLocation GeneralName }
AccessDescription ::= SEQUENCE { accessMethod OBJECT IDENTIFIER, accessLocation GeneralName }
Each entry in the sequence SubjectInfoAccessSyntax describes the format and location of additional information provided by the subject of the certificate in which this extension appears. The type and format of the information are specified by the accessMethod field; the accessLocation field specifies the location of the information. The retrieval mechanism may be implied by the accessMethod or specified by accessLocation.
序列SubjectInfoAccessSyntax中的每个条目都描述了由出现此扩展的证书的主题提供的附加信息的格式和位置。信息的类型和格式由accessMethod字段指定;accessLocation字段指定信息的位置。检索机制可能由accessLocation指定的访问器方法暗示。
This profile defines one access method to be used when the subject is a CA and one access method to be used when the subject is an end entity. Additional access methods may be defined in the future in the protocol specifications for other services.
此配置文件定义了当主题为CA时使用的一种访问方法,以及当主题为最终实体时使用的一种访问方法。将来可能会在其他服务的协议规范中定义其他访问方法。
The id-ad-caRepository OID is used when the subject is a CA that publishes certificates it issues in a repository. The accessLocation field is defined as a GeneralName, which can take several forms.
当主题是在存储库中发布其颁发的证书的CA时,将使用id ad caRepository OID。accessLocation字段定义为GeneralName,可以采用多种形式。
When the accessLocation is a directoryName, the information is to be obtained by the application from whatever directory server is locally configured. When the extension is used to point to CA certificates, the entry for the directoryName contains CA certificates in the crossCertificatePair and/or cACertificate attributes as specified in [RFC4523]. The protocol the application uses to access the directory (e.g., DAP or LDAP) is a local matter.
当accessLocation是directoryName时,应用程序将从本地配置的任何目录服务器获取信息。当扩展用于指向CA证书时,directoryName的条目包含[RFC4523]中指定的crossCertificatePair和/或cACertificate属性中的CA证书。应用程序用于访问目录的协议(如DAP或LDAP)是本地事务。
Where the information is available via LDAP, the accessLocation SHOULD be a uniformResourceIdentifier. The LDAP URI [RFC4516] MUST include a <dn> field containing the distinguished name of the entry holding the certificates, MUST include an <attributes> field that lists appropriate attribute descriptions for the attributes that hold the DER encoded certificates or cross-certificate pairs [RFC4523], and SHOULD include a <host> (e.g., <ldap://ldap.example.com/cn=CA, dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>).
如果信息通过LDAP可用,则accessLocation应该是uniformResourceIdentifier。LDAP URI[RFC4516]必须包含一个<dn>字段,该字段包含持有证书的条目的可分辨名称,必须包含一个<attributes>字段,该字段列出持有DER编码证书或交叉证书对的属性的适当属性描述[RFC4523],并且应该包含一个<host>(例如:<ldap://ldap.example.com/cn=CA,dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>)。
Omitting the <host> (e.g., <ldap:///cn=exampleCA,dc=example,dc=com? cACertificate;binary>) has the effect of relying on whatever a priori knowledge the client might have to contact an appropriate server.
省略<host>(例如<ldap:///cn=exampleCA,dc=example,dc=com?cACertificate;binary>)的作用是依赖于客户端可能必须联系适当服务器的任何先验知识。
Where the information is available via HTTP or FTP, accessLocation MUST be a uniformResourceIdentifier and the URI MUST point to either a single DER encoded certificate as specified in [RFC2585] or a collection of certificates in a BER or DER encoded "certs-only" CMS message as specified in [RFC2797].
当信息通过HTTP或FTP可用时,accessLocation必须是uniformResourceIdentifier,URI必须指向[RFC2585]中指定的单个DER编码证书或[RFC2797]中指定的BER或DER编码的“仅证书”CMS消息中的证书集合。
Conforming applications that support HTTP or FTP for accessing certificates MUST be able to accept individual DER encoded certificates and SHOULD be able to accept "certs-only" CMS messages.
支持HTTP或FTP访问证书的一致性应用程序必须能够接受单个DER编码的证书,并且应该能够接受“仅证书”CMS消息。
HTTP server implementations accessed via the URI SHOULD specify the media type application/pkix-cert [RFC2585] in the content-type header field of the response for a single DER encoded certificate and SHOULD specify the media type application/pkcs7-mime [RFC2797] in the content-type header field of the response for "certs-only" CMS messages. For FTP, the name of a file that contains a single DER encoded certificate SHOULD have a suffix of ".cer" [RFC2585] and the name of a file that contains a "certs-only" CMS message SHOULD have a suffix of ".p7c" [RFC2797]. Consuming clients may use the media type or file extension as a hint to the content, but should not depend solely on the presence of the correct media type or file extension in the server response.
通过URI访问的HTTP服务器实现应在单个DER编码证书响应的内容类型头字段中指定媒体类型应用程序/pkix证书[RFC2585],并应在“仅证书”CMS消息响应的内容类型头字段中指定媒体类型应用程序/pkcs7 mime[RFC2797]。对于FTP,包含单个DER编码证书的文件名的后缀应为“.cer”[RFC2585],包含“仅证书”CMS消息的文件名的后缀应为“.p7c”[RFC2797]。消费客户端可以使用媒体类型或文件扩展名作为内容提示,但不应仅依赖于服务器响应中是否存在正确的媒体类型或文件扩展名。
The semantics of other id-ad-caRepository accessLocation name forms are not defined.
未定义其他id ad caRepository accessLocation名称表单的语义。
A subjectInfoAccess extension may include multiple instances of the id-ad-caRepository accessMethod. The different instances may specify different methods for accessing the same information or may point to different information. When the id-ad-caRepository accessMethod is used, at least one instance SHOULD specify an accessLocation that is an HTTP [RFC2616] or LDAP [RFC4516] URI.
SubjectInfo访问扩展可以包括id ad caRepository访问方法的多个实例。不同实例可以指定用于访问相同信息的不同方法,或者可以指向不同的信息。当使用id ad caRepository accessMethod时,至少应该有一个实例指定一个accessLocation,该accessLocation是HTTP[RFC2616]或LDAP[RFC4516]URI。
The id-ad-timeStamping OID is used when the subject offers timestamping services using the Time Stamp Protocol defined in [RFC3161]. Where the timestamping services are available via HTTP or FTP, accessLocation MUST be a uniformResourceIdentifier. Where the timestamping services are available via electronic mail, accessLocation MUST be an rfc822Name. Where timestamping services are available using TCP/IP, the dNSName or iPAddress name forms may be used. The semantics of other name forms of accessLocation (when accessMethod is id-ad-timeStamping) are not defined by this specification.
当主体使用[RFC3161]中定义的时间戳协议提供时间戳服务时,使用id ad时间戳OID。当时间戳服务通过HTTP或FTP可用时,accessLocation必须是uniformResourceIdentifier。如果时间戳服务通过电子邮件提供,则accessLocation必须是RFC822名称。如果使用TCP/IP提供时间戳服务,则可以使用dNSName或iPAddress名称表单。accessLocation的其他名称形式的语义(当accessMethod为id ad时间戳时)不在本规范中定义。
Additional access descriptors may be defined in other PKIX specifications.
其他访问描述符可在其他PKIX规范中定义。
id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }
id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }
id-ad-caRepository OBJECT IDENTIFIER ::= { id-ad 5 }
id-ad-caRepository OBJECT IDENTIFIER ::= { id-ad 5 }
id-ad-timeStamping OBJECT IDENTIFIER ::= { id-ad 3 }
id-ad-timeStamping OBJECT IDENTIFIER ::= { id-ad 3 }
As discussed above, one goal of this X.509 v2 CRL profile is to foster the creation of an interoperable and reusable Internet PKI. To achieve this goal, guidelines for the use of extensions are specified, and some assumptions are made about the nature of information included in the CRL.
如上所述,X.509 v2 CRL概要文件的一个目标是促进创建可互操作和可重用的Internet PKI。为了实现这一目标,指定了扩展使用指南,并对CRL中包含的信息的性质进行了一些假设。
CRLs may be used in a wide range of applications and environments covering a broad spectrum of interoperability goals and an even broader spectrum of operational and assurance requirements. This profile establishes a common baseline for generic applications requiring broad interoperability. The profile defines a set of information that can be expected in every CRL. Also, the profile defines common locations within the CRL for frequently used attributes as well as common representations for these attributes.
CRL可用于范围广泛的应用程序和环境,涵盖广泛的互操作性目标以及更广泛的操作和保证要求。此概要文件为需要广泛互操作性的通用应用程序建立了通用基线。配置文件定义了一组可以在每个CRL中预期的信息。此外,配置文件还定义了CRL中常用属性的公共位置以及这些属性的公共表示。
CRL issuers issue CRLs. The CRL issuer is either the CA or an entity that has been authorized by the CA to issue CRLs. CAs publish CRLs to provide status information about the certificates they issued. However, a CA may delegate this responsibility to another trusted authority.
CRL发行人发行CRL。CRL发行人是CA或CA授权发行CRL的实体。CA发布CRL以提供有关其颁发的证书的状态信息。但是,CA可以将此职责委托给另一个受信任的机构。
Each CRL has a particular scope. The CRL scope is the set of certificates that could appear on a given CRL. For example, the scope could be "all certificates issued by CA X", "all CA certificates issued by CA X", "all certificates issued by CA X that have been revoked for reasons of key compromise and CA compromise", or a set of certificates based on arbitrary local information, such as "all certificates issued to the NIST employees located in Boulder".
每个CRL都有一个特定的范围。CRL作用域是可能出现在给定CRL上的一组证书。例如,范围可以是“CA X颁发的所有证书”、“CA X颁发的所有CA证书”、“因密钥泄露和CA泄露而被撤销的CA X颁发的所有证书”,或基于任意本地信息的一组证书,例如“颁发给位于博尔德的NIST员工的所有证书”。
A complete CRL lists all unexpired certificates, within its scope, that have been revoked for one of the revocation reasons covered by the CRL scope. A full and complete CRL lists all unexpired certificates issued by a CA that have been revoked for any reason. (Note that since CAs and CRL issuers are identified by name, the scope of a CRL is not affected by the key used to sign the CRL or the key(s) used to sign certificates.)
完整的CRL列出了其范围内由于CRL范围所涵盖的吊销原因之一而被吊销的所有未过期证书。完整的CRL列出了CA颁发的所有因任何原因被撤销的未过期证书。(请注意,由于CAs和CRL发行人是通过名称识别的,因此CRL的范围不受用于签署CRL的密钥或用于签署证书的密钥的影响。)
If the scope of the CRL includes one or more certificates issued by an entity other than the CRL issuer, then it is an indirect CRL. The scope of an indirect CRL may be limited to certificates issued by a single CA or may include certificates issued by multiple CAs. If the issuer of the indirect CRL is a CA, then the scope of the indirect CRL MAY also include certificates issued by the issuer of the CRL.
如果CRL的范围包括由CRL发行人以外的实体发行的一个或多个证书,则它是间接CRL。间接CRL的范围可能仅限于单个CA颁发的证书,也可能包括多个CA颁发的证书。如果间接CRL的发行人是CA,则间接CRL的范围也可能包括CRL发行人发行的证书。
The CRL issuer MAY also generate delta CRLs. A delta CRL only lists those certificates, within its scope, whose revocation status has changed since the issuance of a referenced complete CRL. The referenced complete CRL is referred to as a base CRL. The scope of a delta CRL MUST be the same as the base CRL that it references.
CRL发行人还可以生成增量CRL。delta CRL仅列出其范围内的证书,这些证书的吊销状态自引用的完整CRL发布后已更改。被引用的完整CRL称为基本CRL。增量CRL的范围必须与其引用的基本CRL相同。
This profile defines one private Internet CRL extension but does not define any private CRL entry extensions.
此配置文件定义了一个专用Internet CRL扩展,但未定义任何专用CRL条目扩展。
Environments with additional or special purpose requirements may build on this profile or may replace it.
具有附加或特殊用途需求的环境可以基于此配置文件构建,也可以替换此配置文件。
Conforming CAs are not required to issue CRLs if other revocation or certificate status mechanisms are provided. When CRLs are issued, the CRLs MUST be version 2 CRLs, include the date by which the next CRL will be issued in the nextUpdate field (Section 5.1.2.5), include the CRL number extension (Section 5.2.3), and include the authority key identifier extension (Section 5.2.1). Conforming applications that support CRLs are REQUIRED to process both version 1 and version 2 complete CRLs that provide revocation information for all certificates issued by one CA. Conforming applications are not required to support processing of delta CRLs, indirect CRLs, or CRLs with a scope other than all certificates issued by one CA.
如果提供了其他撤销或证书状态机制,则符合条件的CA无需颁发CRL。发布CRL时,CRL必须为版本2 CRL,包括下一个CRL发布的日期(第5.1.2.5节),包括CRL编号扩展(第5.2.3节),以及权限密钥标识符扩展(第5.2.1节)。支持CRL的一致性应用程序需要处理版本1和版本2完整的CRL,这些CRL为一个CA颁发的所有证书提供撤销信息。一致性应用程序不需要支持处理范围不同于一个CA颁发的所有证书的增量CRL、间接CRL或CRL。
The X.509 v2 CRL syntax is as follows. For signature calculation, the data that is to be signed is ASN.1 DER encoded. ASN.1 DER encoding is a tag, length, value encoding system for each element.
X.509 v2 CRL语法如下所示。对于签名计算,要签名的数据是ASN.1 DER编码的。ASN.1 DER编码是每个元素的标记、长度、值编码系统。
CertificateList ::= SEQUENCE { tbsCertList TBSCertList, signatureAlgorithm AlgorithmIdentifier, signatureValue BIT STRING }
CertificateList ::= SEQUENCE { tbsCertList TBSCertList, signatureAlgorithm AlgorithmIdentifier, signatureValue BIT STRING }
TBSCertList ::= SEQUENCE { version Version OPTIONAL, -- if present, MUST be v2 signature AlgorithmIdentifier, issuer Name, thisUpdate Time, nextUpdate Time OPTIONAL, revokedCertificates SEQUENCE OF SEQUENCE { userCertificate CertificateSerialNumber, revocationDate Time, crlEntryExtensions Extensions OPTIONAL -- if present, version MUST be v2 } OPTIONAL, crlExtensions [0] EXPLICIT Extensions OPTIONAL -- if present, version MUST be v2 }
TBSCertList ::= SEQUENCE { version Version OPTIONAL, -- if present, MUST be v2 signature AlgorithmIdentifier, issuer Name, thisUpdate Time, nextUpdate Time OPTIONAL, revokedCertificates SEQUENCE OF SEQUENCE { userCertificate CertificateSerialNumber, revocationDate Time, crlEntryExtensions Extensions OPTIONAL -- if present, version MUST be v2 } OPTIONAL, crlExtensions [0] EXPLICIT Extensions OPTIONAL -- if present, version MUST be v2 }
-- Version, Time, CertificateSerialNumber, and Extensions -- are all defined in the ASN.1 in Section 4.1
-- Version, Time, CertificateSerialNumber, and Extensions -- are all defined in the ASN.1 in Section 4.1
-- AlgorithmIdentifier is defined in Section 4.1.1.2
--第4.1.1.2节定义了算法标识符
The following items describe the use of the X.509 v2 CRL in the Internet PKI.
以下项目描述了X.509 v2 CRL在Internet PKI中的使用。
The CertificateList is a SEQUENCE of three required fields. The fields are described in detail in the following subsections.
CertificateList是由三个必填字段组成的序列。以下小节详细描述了这些字段。
The first field in the sequence is the tbsCertList. This field is itself a sequence containing the name of the issuer, issue date, issue date of the next list, the optional list of revoked certificates, and optional CRL extensions. When there are no revoked certificates, the revoked certificates list is absent. When one or more certificates are revoked, each entry on the revoked certificate list is defined by a sequence of user certificate serial number, revocation date, and optional CRL entry extensions.
序列中的第一个字段是tbsCertList。此字段本身是一个序列,包含颁发者名称、颁发日期、下一个列表的颁发日期、吊销证书的可选列表以及可选的CRL扩展名。如果没有吊销的证书,则不存在吊销的证书列表。当一个或多个证书被吊销时,吊销证书列表上的每个条目都由一系列用户证书序列号、吊销日期和可选的CRL条目扩展名定义。
The signatureAlgorithm field contains the algorithm identifier for the algorithm used by the CRL issuer to sign the CertificateList. The field is of type AlgorithmIdentifier, which is defined in Section 4.1.1.2. [RFC3279], [RFC4055], and [RFC4491] list supported algorithms for this specification, but other signature algorithms MAY also be supported.
signatureAlgorithm字段包含CRL颁发者用于签署证书列表的算法的算法标识符。该字段为第4.1.1.2节定义的AlgorithmIdentifier类型。[RFC3279]、[RFC4055]和[RFC4491]列出了本规范支持的算法,但也可能支持其他签名算法。
This field MUST contain the same algorithm identifier as the signature field in the sequence tbsCertList (Section 5.1.2.2).
该字段必须包含与序列tbsCertList中签名字段相同的算法标识符(第5.1.2.2节)。
The signatureValue field contains a digital signature computed upon the ASN.1 DER encoded tbsCertList. The ASN.1 DER encoded tbsCertList is used as the input to the signature function. This signature value is encoded as a BIT STRING and included in the CRL signatureValue field. The details of this process are specified for each of the supported algorithms in [RFC3279], [RFC4055], and [RFC4491].
signatureValue字段包含根据ASN.1 DER编码的tbsCertList计算的数字签名。ASN.1 DER编码的tbsCertList用作签名函数的输入。此签名值编码为位字符串,并包含在CRL signatureValue字段中。[RFC3279]、[RFC4055]和[RFC4491]中为每个受支持的算法指定了此过程的详细信息。
CAs that are also CRL issuers MAY use one private key to digitally sign certificates and CRLs, or MAY use separate private keys to digitally sign certificates and CRLs. When separate private keys are employed, each of the public keys associated with these private keys is placed in a separate certificate, one with the keyCertSign bit set in the key usage extension, and one with the cRLSign bit set in the key usage extension (Section 4.2.1.3). When separate private keys are employed, certificates issued by the CA contain one authority key identifier, and the corresponding CRLs contain a different authority key identifier. The use of separate CA certificates for validation of certificate signatures and CRL signatures can offer improved security characteristics; however, it imposes a burden on applications, and it might limit interoperability. Many applications construct a certification path, and then validate the certification path (Section 6). CRL checking in turn requires a separate certification path to be constructed and validated for the CA's CRL signature validation certificate. Applications that perform CRL checking MUST support certification path validation when certificates and CRLs are digitally signed with the same CA private key. These applications SHOULD support certification path validation when certificates and CRLs are digitally signed with different CA private keys.
同时也是CRL颁发者的CA可以使用一个私钥对证书和CRL进行数字签名,或者可以使用单独的私钥对证书和CRL进行数字签名。当使用单独的私钥时,与这些私钥相关联的每个公钥都放在单独的证书中,一个证书在密钥使用扩展中设置了keyCertSign位,另一个证书在密钥使用扩展中设置了cRLSign位(第4.2.1.3节)。当使用单独的私钥时,CA颁发的证书包含一个授权密钥标识符,而相应的CRL包含不同的授权密钥标识符。使用单独的CA证书验证证书签名和CRL签名可以提供改进的安全特性;然而,它给应用程序带来了负担,并且可能会限制互操作性。许多应用程序构造一个认证路径,然后验证该认证路径(第6节)。CRL检查反过来要求为CA的CRL签名验证证书构造和验证单独的证书路径。当证书和CRL使用相同的CA私钥进行数字签名时,执行CRL检查的应用程序必须支持证书路径验证。当证书和CRL使用不同的CA私钥进行数字签名时,这些应用程序应支持证书路径验证。
The certificate list to be signed, or TBSCertList, is a sequence of required and optional fields. The required fields identify the CRL issuer, the algorithm used to sign the CRL, and the date and time the CRL was issued.
要签名的证书列表或TBSCertList是一系列必填字段和可选字段。必填字段标识CRL颁发者、用于签署CRL的算法以及CRL颁发的日期和时间。
Optional fields include the date and time by which the CRL issuer will issue the next CRL, lists of revoked certificates, and CRL extensions. The revoked certificate list is optional to support the case where a CA has not revoked any unexpired certificates that it has issued. This profile requires conforming CRL issuers to include the nextUpdate field and the CRL number and authority key identifier CRL extensions in all CRLs issued.
可选字段包括CRL颁发者颁发下一个CRL的日期和时间、已吊销证书的列表以及CRL扩展。吊销证书列表是可选的,以支持CA未吊销其颁发的任何未过期证书的情况。此配置文件要求合格的CRL发行人在所有发行的CRL中包括下一个日期字段、CRL编号和机构密钥标识符CRL扩展。
This optional field describes the version of the encoded CRL. When extensions are used, as required by this profile, this field MUST be present and MUST specify version 2 (the integer value is 1).
此可选字段描述编码CRL的版本。使用扩展时,根据此配置文件的要求,此字段必须存在,并且必须指定版本2(整数值为1)。
This field contains the algorithm identifier for the algorithm used to sign the CRL. [RFC3279], [RFC4055], and [RFC4491] list OIDs for the most popular signature algorithms used in the Internet PKI.
此字段包含用于签署CRL的算法的算法标识符。[RFC3279]、[RFC4055]和[RFC4491]列出了互联网PKI中使用的最流行签名算法的OID。
This field MUST contain the same algorithm identifier as the signatureAlgorithm field in the sequence CertificateList (Section 5.1.1.2).
该字段必须包含与序列证书列表(第5.1.1.2节)中的signatureAlgorithm字段相同的算法标识符。
The issuer name identifies the entity that has signed and issued the CRL. The issuer identity is carried in the issuer field. Alternative name forms may also appear in the issuerAltName extension (Section 5.2.2). The issuer field MUST contain a non-empty X.500 distinguished name (DN). The issuer field is defined as the X.501 type Name, and MUST follow the encoding rules for the issuer name field in the certificate (Section 4.1.2.4).
发卡机构名称标识已签署和签发CRL的实体。发卡机构标识携带在“发卡机构”字段中。其他名称形式也可能出现在ISSUERATNAME扩展中(第5.2.2节)。issuer字段必须包含非空的X.500可分辨名称(DN)。发卡机构字段定义为X.501类型名称,必须遵循证书中发卡机构名称字段的编码规则(第4.1.2.4节)。
This field indicates the issue date of this CRL. thisUpdate may be encoded as UTCTime or GeneralizedTime.
此字段表示此CRL的发布日期。此更新可以编码为UTCTime或GeneralizedTime。
CRL issuers conforming to this profile MUST encode thisUpdate as UTCTime for dates through the year 2049. CRL issuers conforming to
符合此配置文件的CRL发行人必须将此更新编码为截止2049年的UTCTime。CRL发行人符合
this profile MUST encode thisUpdate as GeneralizedTime for dates in the year 2050 or later. Conforming applications MUST be able to process dates that are encoded in either UTCTime or GeneralizedTime.
此配置文件必须将此更新编码为2050年或更高日期的通用时间。符合要求的应用程序必须能够处理以UTCTime或GeneralizedTime编码的日期。
Where encoded as UTCTime, thisUpdate MUST be specified and interpreted as defined in Section 4.1.2.5.1. Where encoded as GeneralizedTime, thisUpdate MUST be specified and interpreted as defined in Section 4.1.2.5.2.
如果编码为UTCTime,则必须按照第4.1.2.5.1节中的定义指定和解释此更新。如果编码为GeneratedTime,则必须按照第4.1.2.5.2节中的定义指定和解释此更新。
This field indicates the date by which the next CRL will be issued. The next CRL could be issued before the indicated date, but it will not be issued any later than the indicated date. CRL issuers SHOULD issue CRLs with a nextUpdate time equal to or later than all previous CRLs. nextUpdate may be encoded as UTCTime or GeneralizedTime.
此字段表示下一个CRL的发布日期。下一个CRL可以在指定日期之前发布,但不会在指定日期之后发布。CRL发行人发行CRL的下一个日期时间应等于或晚于所有以前的CRL。nextUpdate可以编码为UTCTime或GeneralizedTime。
Conforming CRL issuers MUST include the nextUpdate field in all CRLs. Note that the ASN.1 syntax of TBSCertList describes this field as OPTIONAL, which is consistent with the ASN.1 structure defined in [X.509]. The behavior of clients processing CRLs that omit nextUpdate is not specified by this profile.
符合条件的CRL发行人必须在所有CRL中包含nextUpdate字段。请注意,TBSCertList的ASN.1语法将此字段描述为可选字段,这与[X.509]中定义的ASN.1结构一致。此配置文件未指定处理忽略nextUpdate的CRL的客户端的行为。
CRL issuers conforming to this profile MUST encode nextUpdate as UTCTime for dates through the year 2049. CRL issuers conforming to this profile MUST encode nextUpdate as GeneralizedTime for dates in the year 2050 or later. Conforming applications MUST be able to process dates that are encoded in either UTCTime or GeneralizedTime.
符合此配置文件的CRL发行人必须将nextUpdate编码为截止2049年的UTCTime。符合此配置文件的CRL发行人必须将nextUpdate编码为2050年或以后日期的通用时间。符合要求的应用程序必须能够处理以UTCTime或GeneralizedTime编码的日期。
Where encoded as UTCTime, nextUpdate MUST be specified and interpreted as defined in Section 4.1.2.5.1. Where encoded as GeneralizedTime, nextUpdate MUST be specified and interpreted as defined in Section 4.1.2.5.2.
如果编码为UTCTime,则必须按照第4.1.2.5.1节的定义指定和解释nextUpdate。如果编码为GeneralizedTime,则必须按照第4.1.2.5.2节的定义指定和解释nextUpdate。
When there are no revoked certificates, the revoked certificates list MUST be absent. Otherwise, revoked certificates are listed by their serial numbers. Certificates revoked by the CA are uniquely identified by the certificate serial number. The date on which the revocation occurred is specified. The time for revocationDate MUST be expressed as described in Section 5.1.2.4. Additional information may be supplied in CRL entry extensions; CRL entry extensions are discussed in Section 5.3.
如果没有吊销的证书,则必须缺少吊销的证书列表。否则,吊销的证书将按其序列号列出。CA吊销的证书由证书序列号唯一标识。已指定吊销发生的日期。撤销日期的时间必须如第5.1.2.4节所述。附加信息可在CRL条目扩展中提供;第5.3节讨论了CRL条目扩展。
This field may only appear if the version is 2 (Section 5.1.2.1). If present, this field is a sequence of one or more CRL extensions. CRL extensions are discussed in Section 5.2.
此字段仅在版本为2时出现(第5.1.2.1节)。如果存在,此字段是一个或多个CRL扩展的序列。第5.2节讨论了CRL扩展。
The extensions defined by ANSI X9, ISO/IEC, and ITU-T for X.509 v2 CRLs [X.509] [X9.55] provide methods for associating additional attributes with CRLs. The X.509 v2 CRL format also allows communities to define private extensions to carry information unique to those communities. Each extension in a CRL may be designated as critical or non-critical. If a CRL contains a critical extension that the application cannot process, then the application MUST NOT use that CRL to determine the status of certificates. However, applications may ignore unrecognized non-critical extensions. The following subsections present those extensions used within Internet CRLs. Communities may elect to include extensions in CRLs that are not defined in this specification. However, caution should be exercised in adopting any critical extensions in CRLs that might be used in a general context.
ANSI X9、ISO/IEC和ITU-T为X.509 v2 CRL[X.509][X9.55]定义的扩展提供了将附加属性与CRL关联的方法。X.509 v2 CRL格式还允许社区定义专用扩展,以承载这些社区特有的信息。CRL中的每个扩展可指定为关键或非关键。如果CRL包含应用程序无法处理的关键扩展,则应用程序不得使用该CRL确定证书的状态。但是,应用程序可能会忽略无法识别的非关键扩展。以下小节介绍了Internet CRL中使用的扩展。社区可以选择在本规范中未定义的CRL中包含扩展。然而,在采用CRL中可能在一般环境中使用的任何关键扩展时,应谨慎。
Conforming CRL issuers are REQUIRED to include the authority key identifier (Section 5.2.1) and the CRL number (Section 5.2.3) extensions in all CRLs issued.
要求合格的CRL发行人在所有发行的CRL中包括机构密钥标识符(第5.2.1节)和CRL编号(第5.2.3节)扩展。
The authority key identifier extension provides a means of identifying the public key corresponding to the private key used to sign a CRL. The identification can be based on either the key identifier (the subject key identifier in the CRL signer's certificate) or the issuer name and serial number. This extension is especially useful where an issuer has more than one signing key, either due to multiple concurrent key pairs or due to changeover.
授权密钥标识符扩展提供了识别与用于签署CRL的私钥相对应的公钥的方法。标识可以基于密钥标识符(CRL签名者证书中的主体密钥标识符)或颁发者名称和序列号。当颁发者由于多个并发密钥对或由于转换而具有多个签名密钥时,此扩展尤其有用。
Conforming CRL issuers MUST use the key identifier method, and MUST include this extension in all CRLs issued.
符合条件的CRL发行人必须使用密钥标识符方法,并且必须在所有发行的CRL中包含此扩展。
The syntax for this CRL extension is defined in Section 4.2.1.1.
第4.2.1.1节定义了此CRL扩展的语法。
The issuer alternative name extension allows additional identities to be associated with the issuer of the CRL. Defined options include an electronic mail address (rfc822Name), a DNS name, an IP address, and a URI. Multiple instances of a name form and multiple name forms may
发卡机构备选名称扩展允许其他身份与CRL的发卡机构关联。定义的选项包括电子邮件地址(rfc822Name)、DNS名称、IP地址和URI。一个名称表单的多个实例和多个名称表单可能
be included. Whenever such identities are used, the issuer alternative name extension MUST be used; however, a DNS name MAY be represented in the issuer field using the domainComponent attribute as described in Section 4.1.2.4.
包括在内。每当使用此类身份时,必须使用发卡机构备选名称扩展名;但是,DNS名称可以使用第4.1.2.4节所述的domainComponent属性在issuer字段中表示。
Conforming CRL issuers SHOULD mark the issuerAltName extension as non-critical.
符合条件的CRL发行人应将发行人名称扩展标记为非关键。
The OID and syntax for this CRL extension are defined in Section 4.2.1.7.
第4.2.1.7节定义了此CRL扩展的OID和语法。
The CRL number is a non-critical CRL extension that conveys a monotonically increasing sequence number for a given CRL scope and CRL issuer. This extension allows users to easily determine when a particular CRL supersedes another CRL. CRL numbers also support the identification of complementary complete CRLs and delta CRLs. CRL issuers conforming to this profile MUST include this extension in all CRLs and MUST mark this extension as non-critical.
CRL编号是一个非关键CRL扩展,它为给定CRL范围和CRL颁发者传递单调递增的序列号。此扩展允许用户轻松确定某个特定CRL何时取代另一个CRL。CRL编号还支持识别互补完整CRL和增量CRL。符合此配置文件的CRL发行人必须在所有CRL中包括此扩展,并且必须将此扩展标记为非关键。
If a CRL issuer generates delta CRLs in addition to complete CRLs for a given scope, the complete CRLs and delta CRLs MUST share one numbering sequence. If a delta CRL and a complete CRL that cover the same scope are issued at the same time, they MUST have the same CRL number and provide the same revocation information. That is, the combination of the delta CRL and an acceptable complete CRL MUST provide the same revocation information as the simultaneously issued complete CRL.
如果CRL颁发者在给定范围的完整CRL之外生成增量CRL,则完整CRL和增量CRL必须共享一个编号序列。如果同时发布涵盖相同范围的增量CRL和完整CRL,则它们必须具有相同的CRL编号并提供相同的撤销信息。也就是说,增量CRL和可接受的完整CRL的组合必须提供与同时发布的完整CRL相同的撤销信息。
If a CRL issuer generates two CRLs (two complete CRLs, two delta CRLs, or a complete CRL and a delta CRL) for the same scope at different times, the two CRLs MUST NOT have the same CRL number. That is, if the this update field (Section 5.1.2.4) in the two CRLs are not identical, the CRL numbers MUST be different.
如果CRL颁发者在不同时间为同一范围生成两个CRL(两个完整CRL、两个增量CRL或一个完整CRL和一个增量CRL),则两个CRL不得具有相同的CRL编号。也就是说,如果两个CRL中的“此更新”字段(第5.1.2.4节)不相同,则CRL编号必须不同。
Given the requirements above, CRL numbers can be expected to contain long integers. CRL verifiers MUST be able to handle CRLNumber values up to 20 octets. Conforming CRL issuers MUST NOT use CRLNumber values longer than 20 octets.
鉴于上述要求,CRL数字可能包含长整数。CRL验证器必须能够处理多达20个八位字节的CRL数字值。符合条件的CRL发行人不得使用长度超过20个八位字节的CRL编号值。
id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }
id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }
CRLNumber ::= INTEGER (0..MAX)
CRLNumber ::= INTEGER (0..MAX)
The delta CRL indicator is a critical CRL extension that identifies a CRL as being a delta CRL. Delta CRLs contain updates to revocation information previously distributed, rather than all the information that would appear in a complete CRL. The use of delta CRLs can significantly reduce network load and processing time in some environments. Delta CRLs are generally smaller than the CRLs they update, so applications that obtain delta CRLs consume less network bandwidth than applications that obtain the corresponding complete CRLs. Applications that store revocation information in a format other than the CRL structure can add new revocation information to the local database without reprocessing information.
增量CRL指示器是一个关键CRL扩展,它将CRL标识为增量CRL。增量CRL包含对以前分发的吊销信息的更新,而不是完整CRL中出现的所有信息。在某些环境中,使用增量CRL可以显著减少网络负载和处理时间。增量CRL通常比它们更新的CRL小,因此获得增量CRL的应用程序比获得相应完整CRL的应用程序消耗更少的网络带宽。以CRL结构以外的格式存储吊销信息的应用程序可以向本地数据库添加新的吊销信息,而无需重新处理信息。
The delta CRL indicator extension contains the single value of type BaseCRLNumber. The CRL number identifies the CRL, complete for a given scope, that was used as the starting point in the generation of this delta CRL. A conforming CRL issuer MUST publish the referenced base CRL as a complete CRL. The delta CRL contains all updates to the revocation status for that same scope. The combination of a delta CRL plus the referenced base CRL is equivalent to a complete CRL, for the applicable scope, at the time of publication of the delta CRL.
增量CRL指示符扩展包含BaseCRLNumber类型的单个值。CRL编号标识给定范围内完整的CRL,该CRL用作生成此增量CRL的起点。合格的CRL发行人必须将引用的基本CRL作为完整的CRL发布。增量CRL包含对同一作用域的吊销状态的所有更新。增量CRL加上参考基准CRL的组合相当于发布增量CRL时适用范围内的完整CRL。
When a conforming CRL issuer generates a delta CRL, the delta CRL MUST include a critical delta CRL indicator extension.
当符合条件的CRL发行人生成增量CRL时,增量CRL必须包括关键增量CRL指标扩展。
When a delta CRL is issued, it MUST cover the same set of reasons and the same set of certificates that were covered by the base CRL it references. That is, the scope of the delta CRL MUST be the same as the scope of the complete CRL referenced as the base. The referenced base CRL and the delta CRL MUST omit the issuing distribution point extension or contain identical issuing distribution point extensions. Further, the CRL issuer MUST use the same private key to sign the delta CRL and any complete CRL that it can be used to update.
发出增量CRL时,它必须包含与它引用的基本CRL相同的原因集和证书集。也就是说,增量CRL的范围必须与作为基准引用的完整CRL的范围相同。引用的基本CRL和增量CRL必须省略发布分发点扩展或包含相同的发布分发点扩展。此外,CRL颁发者必须使用相同的私钥对增量CRL和任何可用于更新的完整CRL进行签名。
An application that supports delta CRLs can construct a CRL that is complete for a given scope by combining a delta CRL for that scope with either an issued CRL that is complete for that scope or a locally constructed CRL that is complete for that scope.
支持增量CRL的应用程序可以通过将给定作用域的增量CRL与该作用域的已发布CRL或该作用域的本地构造CRL组合来构造该作用域的完整CRL。
When a delta CRL is combined with a complete CRL or a locally constructed CRL, the resulting locally constructed CRL has the CRL number specified in the CRL number extension found in the delta CRL used in its construction. In addition, the resulting locally constructed CRL has the thisUpdate and nextUpdate times specified in
当增量CRL与完整的CRL或本地构造的CRL组合时,生成的本地构造的CRL具有在其构造中使用的增量CRL中找到的CRL编号扩展中指定的CRL编号。此外,生成的本地构造的CRL具有中指定的thisUpdate和nextUpdate时间
the corresponding fields of the delta CRL used in its construction. In addition, the locally constructed CRL inherits the issuing distribution point from the delta CRL.
delta CRL的相应字段用于其构造。此外,本地构造的CRL从增量CRL继承发布分发点。
A complete CRL and a delta CRL MAY be combined if the following four conditions are satisfied:
如果满足以下四个条件,则可以组合完整CRL和增量CRL:
(a) The complete CRL and delta CRL have the same issuer.
(a) 完整CRL和增量CRL具有相同的发行人。
(b) The complete CRL and delta CRL have the same scope. The two CRLs have the same scope if either of the following conditions are met:
(b) 完整CRL和增量CRL具有相同的范围。如果满足以下任一条件,则两个CRL具有相同的范围:
(1) The issuingDistributionPoint extension is omitted from both the complete CRL and the delta CRL.
(1) 完整CRL和增量CRL中都省略了issuingDistributionPoint扩展。
(2) The issuingDistributionPoint extension is present in both the complete CRL and the delta CRL, and the values for each of the fields in the extensions are the same in both CRLs.
(2) issuingDistributionPoint扩展在完整CRL和增量CRL中都存在,并且扩展中每个字段的值在两个CRL中都相同。
(c) The CRL number of the complete CRL is equal to or greater than the BaseCRLNumber specified in the delta CRL. That is, the complete CRL contains (at a minimum) all the revocation information held by the referenced base CRL.
(c) 完整CRL的CRL编号等于或大于增量CRL中指定的BASECRL编号。也就是说,完整的CRL包含(至少)被引用的基本CRL所持有的所有撤销信息。
(d) The CRL number of the complete CRL is less than the CRL number of the delta CRL. That is, the delta CRL follows the complete CRL in the numbering sequence.
(d) 完整CRL的CRL编号小于增量CRL的CRL编号。也就是说,增量CRL遵循编号顺序中的完整CRL。
CRL issuers MUST ensure that the combination of a delta CRL and any appropriate complete CRL accurately reflects the current revocation status. The CRL issuer MUST include an entry in the delta CRL for each certificate within the scope of the delta CRL whose status has changed since the generation of the referenced base CRL:
CRL发行人必须确保增量CRL和任何适当完整CRL的组合准确反映当前撤销状态。CRL颁发者必须在delta CRL中为delta CRL范围内的每个证书包含一个条目,该证书的状态自引用的基本CRL生成以来发生了变化:
(a) If the certificate is revoked for a reason included in the scope of the CRL, list the certificate as revoked.
(a) 如果证书因CRL范围内的原因被吊销,请将证书列为已吊销。
(b) If the certificate is valid and was listed on the referenced base CRL or any subsequent CRL with reason code certificateHold, and the reason code certificateHold is included in the scope of the CRL, list the certificate with the reason code removeFromCRL.
(b) 如果证书有效,并且在引用的基本CRL或任何后续CRL上列出,且原因码证书Hold包含在CRL的范围内,请列出原因码从CRL中移除的证书。
(c) If the certificate is revoked for a reason outside the scope of the CRL, but the certificate was listed on the referenced base CRL or any subsequent CRL with a reason code included in the scope of this CRL, list the certificate as revoked but omit the reason code.
(c) 如果证书因CRL范围之外的原因被吊销,但该证书列在引用的基本CRL或任何后续CRL上,且原因代码包含在此CRL范围内,请将该证书列为已吊销,但忽略原因代码。
(d) If the certificate is revoked for a reason outside the scope of the CRL and the certificate was neither listed on the referenced base CRL nor any subsequent CRL with a reason code included in the scope of this CRL, do not list the certificate on this CRL.
(d) 如果证书因CRL范围以外的原因被吊销,且该证书既没有列在引用的基本CRL上,也没有列在任何后续CRL上,且原因代码包含在此CRL范围内,则不要在此CRL上列出该证书。
The status of a certificate is considered to have changed if it is revoked (for any revocation reason, including certificateHold), if it is released from hold, or if its revocation reason changes.
如果证书被吊销(出于任何吊销原因,包括certificateHold),证书被解除持有,或者证书的吊销原因发生变化,则认为证书的状态已发生变化。
It is appropriate to list a certificate with reason code removeFromCRL on a delta CRL even if the certificate was not on hold in the referenced base CRL. If the certificate was placed on hold in any CRL issued after the base but before this delta CRL and then released from hold, it MUST be listed on the delta CRL with revocation reason removeFromCRL.
在增量CRL上列出原因代码为removeFromCRL的证书是合适的,即使该证书未在引用的基本CRL中保留。如果证书在基础之后但在此增量CRL之前发布的任何CRL中被搁置,然后从搁置中释放,则必须在增量CRL上列出该证书,并带有吊销原因removeFromCRL。
A CRL issuer MAY optionally list a certificate on a delta CRL with reason code removeFromCRL if the notAfter time specified in the certificate precedes the thisUpdate time specified in the delta CRL and the certificate was listed on the referenced base CRL or in any CRL issued after the base but before this delta CRL.
如果证书中指定的notAfter时间早于delta CRL中指定的thisUpdate时间,并且证书列在引用的基本CRL上,或者列在该基本CRL之后但在此delta CRL之前发布的任何CRL上,CRL颁发者可以选择在delta CRL上列出证书,原因代码为removeFromCRL。
If a certificate revocation notice first appears on a delta CRL, then it is possible for the certificate validity period to expire before the next complete CRL for the same scope is issued. In this case, the revocation notice MUST be included in all subsequent delta CRLs until the revocation notice is included on at least one explicitly issued complete CRL for this scope.
如果证书撤销通知第一次出现在增量CRL上,则证书有效期可能在发布同一作用域的下一个完整CRL之前过期。在这种情况下,撤销通知必须包含在所有后续增量CRL中,直到撤销通知包含在此范围内至少一个明确发布的完整CRL中。
An application that supports delta CRLs MUST be able to construct a current complete CRL by combining a previously issued complete CRL and the most current delta CRL. An application that supports delta CRLs MAY also be able to construct a current complete CRL by combining a previously locally constructed complete CRL and the current delta CRL. A delta CRL is considered to be the current one if the current time is between the times contained in the thisUpdate and nextUpdate fields. Under some circumstances, the CRL issuer may publish one or more delta CRLs before the time indicated by the nextUpdate field. If more than one current delta CRL for a given scope is encountered, the application SHOULD consider the one with the latest value in thisUpdate to be the most current one.
支持增量CRL的应用程序必须能够通过组合先前发布的完整CRL和最新的增量CRL来构造当前的完整CRL。支持增量CRL的应用程序还可以通过组合先前本地构造的完整CRL和当前增量CRL来构造当前完整CRL。如果当前时间介于thisUpdate和nextUpdate字段中包含的时间之间,则增量CRL被视为当前时间。在某些情况下,CRL发行人可能会在nextUpdate字段指示的时间之前发布一个或多个增量CRL。如果遇到一个以上的给定的范围的Delta CRL,应用程序应该考虑在这个更新中最新的值是最新的值。
id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }
id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }
BaseCRLNumber ::= CRLNumber
BaseCRLNumber ::= CRLNumber
The issuing distribution point is a critical CRL extension that identifies the CRL distribution point and scope for a particular CRL, and it indicates whether the CRL covers revocation for end entity certificates only, CA certificates only, attribute certificates only, or a limited set of reason codes. Although the extension is critical, conforming implementations are not required to support this extension. However, implementations that do not support this extension MUST either treat the status of any certificate not listed on this CRL as unknown or locate another CRL that does not contain any unrecognized critical extensions.
发布分发点是一个关键的CRL扩展,它标识特定CRL的CRL分发点和范围,并指示CRL是否仅涵盖终端实体证书、CA证书、属性证书或有限的原因码集的吊销。尽管扩展非常关键,但不需要一致性实现来支持此扩展。但是,不支持此扩展的实现必须将未在此CRL上列出的任何证书的状态视为未知,或者定位不包含任何无法识别的关键扩展的另一个CRL。
The CRL is signed using the CRL issuer's private key. CRL distribution points do not have their own key pairs. If the CRL is stored in the X.500 directory, it is stored in the directory entry corresponding to the CRL distribution point, which may be different from the directory entry of the CRL issuer.
CRL使用CRL颁发者的私钥进行签名。CRL分发点没有自己的密钥对。如果CRL存储在X.500目录中,则它存储在对应于CRL分发点的目录条目中,该目录条目可能不同于CRL颁发者的目录条目。
The reason codes associated with a distribution point MUST be specified in onlySomeReasons. If onlySomeReasons does not appear, the distribution point MUST contain revocations for all reason codes. CAs may use CRL distribution points to partition the CRL on the basis of compromise and routine revocation. In this case, the revocations with reason code keyCompromise (1), cACompromise (2), and aACompromise (8) appear in one distribution point, and the revocations with other reason codes appear in another distribution point.
与分发点关联的原因代码必须仅在“用户原因”中指定。如果没有出现onlySomeReasons,分发点必须包含所有原因代码的撤销。CA可以使用CRL分发点根据折衷和例行撤销对CRL进行分区。在这种情况下,原因代码为KEYCONVISION(1)、cACompromise(2)和AACONVISION(8)的撤销出现在一个分发点,而原因代码为其他原因代码的撤销出现在另一个分发点。
If a CRL includes an issuingDistributionPoint extension with onlySomeReasons present, then every certificate in the scope of the CRL that is revoked MUST be assigned a revocation reason other than unspecified. The assigned revocation reason is used to determine on which CRL(s) to list the revoked certificate, however, there is no requirement to include the reasonCode CRL entry extension in the corresponding CRL entry.
如果CRL包含仅存在用户的issuingDistributionPoint扩展,则必须为CRL范围内被吊销的每个证书分配一个吊销原因,而不是未指定的原因。分配的吊销原因用于确定在哪个CRL上列出吊销的证书,但是,不要求在相应的CRL条目中包含reasonCode CRL条目扩展。
The syntax and semantics for the distributionPoint field are the same as for the distributionPoint field in the cRLDistributionPoints extension (Section 4.2.1.13). If the distributionPoint field is present, then it MUST include at least one of names from the corresponding distributionPoint field of the cRLDistributionPoints
distributionPoint字段的语法和语义与cRLDistributionPoints扩展中distributionPoint字段的语法和语义相同(第4.2.1.13节)。如果存在distributionPoint字段,则它必须至少包含来自cRLDistributionPoints的相应distributionPoint字段的一个名称
extension of every certificate that is within the scope of this CRL. The identical encoding MUST be used in the distributionPoint fields of the certificate and the CRL.
在此CRL范围内的每个证书的扩展。证书和CRL的分发点字段中必须使用相同的编码。
If the distributionPoint field is absent, the CRL MUST contain entries for all revoked unexpired certificates issued by the CRL issuer, if any, within the scope of the CRL.
如果缺少distributionPoint字段,CRL必须包含CRL颁发者颁发的所有已撤销未过期证书(如果有)的条目,这些证书在CRL范围内。
If the scope of the CRL only includes certificates issued by the CRL issuer, then the indirectCRL boolean MUST be set to FALSE. Otherwise, if the scope of the CRL includes certificates issued by one or more authorities other than the CRL issuer, the indirectCRL boolean MUST be set to TRUE. The authority responsible for each entry is indicated by the certificate issuer CRL entry extension (Section 5.3.3).
如果CRL的作用域仅包括CRL颁发者颁发的证书,则必须将间接CRL布尔值设置为FALSE。否则,如果CRL的范围包括由CRL颁发者以外的一个或多个机构颁发的证书,则必须将间接CRL布尔值设置为TRUE。负责每个条目的机构由证书颁发者CRL条目扩展(第5.3.3节)指示。
If the scope of the CRL only includes end entity public key certificates, then onlyContainsUserCerts MUST be set to TRUE. If the scope of the CRL only includes CA certificates, then onlyContainsCACerts MUST be set to TRUE. If either onlyContainsUserCerts or onlyContainsCACerts is set to TRUE, then the scope of the CRL MUST NOT include any version 1 or version 2 certificates. Conforming CRLs issuers MUST set the onlyContainsAttributeCerts boolean to FALSE.
如果CRL的作用域仅包括最终实体公钥证书,则必须将OnlyContainesSuserCerts设置为TRUE。如果CRL的作用域仅包括CA证书,则必须将OnlyContainesCACerts设置为TRUE。如果ONLYCONTAINSSUSERCERTS或onlyContainsCACerts设置为TRUE,则CRL的范围不得包括任何版本1或版本2证书。符合条件的CRLs颁发者必须将OnlyContainesAttributeCerts布尔值设置为FALSE。
Conforming CRLs issuers MUST NOT issue CRLs where the DER encoding of the issuing distribution point extension is an empty sequence. That is, if onlyContainsUserCerts, onlyContainsCACerts, indirectCRL, and onlyContainsAttributeCerts are all FALSE, then either the distributionPoint field or the onlySomeReasons field MUST be present.
如果发行分发点扩展的DER编码为空序列,则符合条件的CRL发行人不得发行CRL。也就是说,如果onlyContainsUserCerts、onlyContainsCACerts、indirectCRL和OnlyContainSatAttributeCerts都为FALSE,则必须存在distributionPoint字段或onlySomeReasons字段。
id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }
id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }
IssuingDistributionPoint ::= SEQUENCE { distributionPoint [0] DistributionPointName OPTIONAL, onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE, onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE, onlySomeReasons [3] ReasonFlags OPTIONAL, indirectCRL [4] BOOLEAN DEFAULT FALSE, onlyContainsAttributeCerts [5] BOOLEAN DEFAULT FALSE }
IssuingDistributionPoint ::= SEQUENCE { distributionPoint [0] DistributionPointName OPTIONAL, onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE, onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE, onlySomeReasons [3] ReasonFlags OPTIONAL, indirectCRL [4] BOOLEAN DEFAULT FALSE, onlyContainsAttributeCerts [5] BOOLEAN DEFAULT FALSE }
-- at most one of onlyContainsUserCerts, onlyContainsCACerts, -- and onlyContainsAttributeCerts may be set to TRUE.
-- at most one of onlyContainsUserCerts, onlyContainsCACerts, -- and onlyContainsAttributeCerts may be set to TRUE.
The freshest CRL extension identifies how delta CRL information for this complete CRL is obtained. Conforming CRL issuers MUST mark this extension as non-critical. This extension MUST NOT appear in delta CRLs.
最新的CRL扩展标识如何获取此完整CRL的增量CRL信息。合格的CRL发行人必须将该延期标记为非关键延期。此扩展不能出现在增量CRL中。
The same syntax is used for this extension as the cRLDistributionPoints certificate extension, and is described in Section 4.2.1.13. However, only the distribution point field is meaningful in this context. The reasons and cRLIssuer fields MUST be omitted from this CRL extension.
此扩展使用与cRLDistributionPoints证书扩展相同的语法,如第4.2.1.13节所述。但是,在此上下文中,只有“分发点”字段有意义。此CRL扩展中必须省略原因和cRLIssuer字段。
Each distribution point name provides the location at which a delta CRL for this complete CRL can be found. The scope of these delta CRLs MUST be the same as the scope of this complete CRL. The contents of this CRL extension are only used to locate delta CRLs; the contents are not used to validate the CRL or the referenced delta CRLs. The encoding conventions defined for distribution points in Section 4.2.1.13 apply to this extension.
每个分发点名称都提供了可以找到此完整CRL的增量CRL的位置。这些增量CRL的范围必须与此完整CRL的范围相同。此CRL扩展的内容仅用于定位增量CRL;内容不用于验证CRL或引用的增量CRL。第4.2.1.13节中为分发点定义的编码约定适用于此扩展。
id-ce-freshestCRL OBJECT IDENTIFIER ::= { id-ce 46 }
id-ce-freshestCRL OBJECT IDENTIFIER ::= { id-ce 46 }
FreshestCRL ::= CRLDistributionPoints
FreshestCRL ::= CRLDistributionPoints
This section defines the use of the Authority Information Access extension in a CRL. The syntax and semantics defined in Section 4.2.2.1 for the certificate extension are also used for the CRL extension.
本节定义了CRL中权限信息访问扩展的使用。第4.2.2.1节中定义的证书扩展的语法和语义也用于CRL扩展。
This CRL extension MUST be marked as non-critical.
此CRL扩展必须标记为非关键。
When present in a CRL, this extension MUST include at least one AccessDescription specifying id-ad-caIssuers as the accessMethod. The id-ad-caIssuers OID is used when the information available lists certificates that can be used to verify the signature on the CRL (i.e., certificates that have a subject name that matches the issuer name on the CRL and that have a subject public key that corresponds to the private key used to sign the CRL). Access method types other than id-ad-caIssuers MUST NOT be included. At least one instance of AccessDescription SHOULD specify an accessLocation that is an HTTP [RFC2616] or LDAP [RFC4516] URI.
当存在于CRL中时,此扩展必须至少包含一个AccessDescription,指定id ad caIssuers作为accessMethod。当可用信息列出可用于验证CRL上签名的证书时,使用id ad caIssuers OID(即,具有与CRL上的颁发者名称匹配的使用者名称的证书,以及具有与用于签署CRL的私钥相对应的使用者公钥的证书)。不得包括id ad caIssuers以外的访问方法类型。至少一个AccessDescription实例应该指定一个accessLocation,该accessLocation是HTTP[RFC2616]或LDAP[RFC4516]URI。
Where the information is available via HTTP or FTP, accessLocation MUST be a uniformResourceIdentifier and the URI MUST point to either a single DER encoded certificate as specified in [RFC2585] or a collection of certificates in a BER or DER encoded "certs-only" CMS message as specified in [RFC2797].
当信息通过HTTP或FTP可用时,accessLocation必须是uniformResourceIdentifier,URI必须指向[RFC2585]中指定的单个DER编码证书或[RFC2797]中指定的BER或DER编码的“仅证书”CMS消息中的证书集合。
Conforming applications that support HTTP or FTP for accessing certificates MUST be able to accept individual DER encoded certificates and SHOULD be able to accept "certs-only" CMS messages.
支持HTTP或FTP访问证书的一致性应用程序必须能够接受单个DER编码的证书,并且应该能够接受“仅证书”CMS消息。
HTTP server implementations accessed via the URI SHOULD specify the media type application/pkix-cert [RFC2585] in the content-type header field of the response for a single DER encoded certificate and SHOULD specify the media type application/pkcs7-mime [RFC2797] in the content-type header field of the response for "certs-only" CMS messages. For FTP, the name of a file that contains a single DER encoded certificate SHOULD have a suffix of ".cer" [RFC2585] and the name of a file that contains a "certs-only" CMS message SHOULD have a suffix of ".p7c" [RFC2797]. Consuming clients may use the media type or file extension as a hint to the content, but should not depend solely on the presence of the correct media type or file extension in the server response.
通过URI访问的HTTP服务器实现应在单个DER编码证书响应的内容类型头字段中指定媒体类型应用程序/pkix证书[RFC2585],并应在“仅证书”CMS消息响应的内容类型头字段中指定媒体类型应用程序/pkcs7 mime[RFC2797]。对于FTP,包含单个DER编码证书的文件名的后缀应为“.cer”[RFC2585],包含“仅证书”CMS消息的文件名的后缀应为“.p7c”[RFC2797]。消费客户端可以使用媒体类型或文件扩展名作为内容提示,但不应仅依赖于服务器响应中是否存在正确的媒体类型或文件扩展名。
When the accessLocation is a directoryName, the information is to be obtained by the application from whatever directory server is locally configured. When one CA public key is used to validate signatures on certificates and CRLs, the desired CA certificate is stored in the crossCertificatePair and/or cACertificate attributes as specified in [RFC4523]. When different public keys are used to validate signatures on certificates and CRLs, the desired certificate is stored in the userCertificate attribute as specified in [RFC4523]. Thus, implementations that support the directoryName form of accessLocation MUST be prepared to find the needed certificate in any of these three attributes. The protocol that an application uses to access the directory (e.g., DAP or LDAP) is a local matter.
当accessLocation是directoryName时,应用程序将从本地配置的任何目录服务器获取信息。当一个CA公钥用于验证证书和CRL上的签名时,所需的CA证书存储在[RFC4523]中指定的crossCertificatePair和/或cACertificate属性中。当使用不同的公钥验证证书和CRL上的签名时,所需的证书存储在[RFC4523]中指定的userCertificate属性中。因此,支持directoryName形式的accessLocation的实现必须准备好在这三个属性中的任何一个中找到所需的证书。应用程序用于访问目录的协议(如DAP或LDAP)是本地事务。
Where the information is available via LDAP, the accessLocation SHOULD be a uniformResourceIdentifier. The LDAP URI [RFC4516] MUST include a <dn> field containing the distinguished name of the entry holding the certificates, MUST include an <attributes> field that lists appropriate attribute descriptions for the attributes that hold the DER encoded certificates or cross-certificate pairs [RFC4523], and SHOULD include a <host> (e.g., <ldap://ldap.example.com/cn=CA, dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>). Omitting the <host> (e.g., <ldap:///cn=exampleCA,dc=example,dc=com? cACertificate;binary>) has the effect of relying on whatever a priori knowledge the client might have to contact an appropriate server.
如果信息通过LDAP可用,则accessLocation应该是uniformResourceIdentifier。LDAP URI[RFC4516]必须包含一个<dn>字段,该字段包含持有证书的条目的可分辨名称,必须包含一个<attributes>字段,该字段列出持有DER编码证书或交叉证书对的属性的适当属性描述[RFC4523],并且应该包含一个<host>(例如:<ldap://ldap.example.com/cn=CA,dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>)。省略<host>(例如<ldap:///cn=exampleCA,dc=example,dc=com?cACertificate;binary>)的作用是依赖于客户端可能必须联系适当服务器的任何先验知识。
The CRL entry extensions defined by ISO/IEC, ITU-T, and ANSI X9 for X.509 v2 CRLs provide methods for associating additional attributes with CRL entries [X.509] [X9.55]. The X.509 v2 CRL format also allows communities to define private CRL entry extensions to carry information unique to those communities. Each extension in a CRL entry may be designated as critical or non-critical. If a CRL contains a critical CRL entry extension that the application cannot process, then the application MUST NOT use that CRL to determine the status of any certificates. However, applications may ignore unrecognized non-critical CRL entry extensions.
ISO/IEC、ITU-T和ANSI X9为X.509 v2 CRL定义的CRL条目扩展提供了将附加属性与CRL条目[X.509][X9.55]关联的方法。X.509 v2 CRL格式还允许社区定义专用CRL条目扩展,以承载这些社区特有的信息。CRL条目中的每个扩展可指定为关键或非关键。如果CRL包含应用程序无法处理的关键CRL条目扩展,则应用程序不得使用该CRL确定任何证书的状态。但是,应用程序可能会忽略无法识别的非关键CRL条目扩展。
The following subsections present recommended extensions used within Internet CRL entries and standard locations for information. Communities may elect to use additional CRL entry extensions; however, caution should be exercised in adopting any critical CRL entry extensions in CRLs that might be used in a general context.
以下小节介绍了Internet CRL条目和标准位置中使用的推荐扩展,以供参考。社区可以选择使用额外的CRL进入扩展;但是,在CRL中采用任何可能在一般环境中使用的关键CRL条目扩展时,应谨慎。
Support for the CRL entry extensions defined in this specification is optional for conforming CRL issuers and applications. However, CRL issuers SHOULD include reason codes (Section 5.3.1) and invalidity dates (Section 5.3.2) whenever this information is available.
对本规范中定义的CRL条目扩展的支持对于符合条件的CRL发行人和应用程序是可选的。但是,CRL发行人应包括原因代码(第5.3.1节)和失效日期(第5.3.2节),只要该信息可用。
The reasonCode is a non-critical CRL entry extension that identifies the reason for the certificate revocation. CRL issuers are strongly encouraged to include meaningful reason codes in CRL entries; however, the reason code CRL entry extension SHOULD be absent instead of using the unspecified (0) reasonCode value.
reasonCode是识别证书吊销原因的非关键CRL条目扩展。强烈鼓励CRL发行人在CRL条目中包含有意义的原因代码;但是,应不存在原因代码CRL条目扩展名,而不是使用未指定的(0)原因代码值。
The removeFromCRL (8) reasonCode value may only appear in delta CRLs and indicates that a certificate is to be removed from a CRL because either the certificate expired or was removed from hold. All other reason codes may appear in any CRL and indicate that the specified certificate should be considered revoked.
removeFromCRL(8)reasonCode值只能出现在增量CRL中,并表示由于证书已过期或已从保留中删除,将从CRL中删除证书。所有其他原因代码可能出现在任何CRL中,并表明指定的证书应被视为已撤销。
id-ce-cRLReasons OBJECT IDENTIFIER ::= { id-ce 21 }
id-ce-cRLReasons OBJECT IDENTIFIER ::= { id-ce 21 }
-- reasonCode ::= { CRLReason }
-- reasonCode ::= { CRLReason }
CRLReason ::= ENUMERATED { unspecified (0), keyCompromise (1), cACompromise (2), affiliationChanged (3), superseded (4), cessationOfOperation (5), certificateHold (6), -- value 7 is not used removeFromCRL (8), privilegeWithdrawn (9), aACompromise (10) }
CRLReason ::= ENUMERATED { unspecified (0), keyCompromise (1), cACompromise (2), affiliationChanged (3), superseded (4), cessationOfOperation (5), certificateHold (6), -- value 7 is not used removeFromCRL (8), privilegeWithdrawn (9), aACompromise (10) }
The invalidity date is a non-critical CRL entry extension that provides the date on which it is known or suspected that the private key was compromised or that the certificate otherwise became invalid. This date may be earlier than the revocation date in the CRL entry, which is the date at which the CA processed the revocation. When a revocation is first posted by a CRL issuer in a CRL, the invalidity date may precede the date of issue of earlier CRLs, but the revocation date SHOULD NOT precede the date of issue of earlier CRLs. Whenever this information is available, CRL issuers are strongly encouraged to share it with CRL users.
无效日期是一个非关键CRL条目扩展,提供已知或怀疑私钥被泄露或证书以其他方式变得无效的日期。此日期可能早于CRL条目中的撤销日期,即CA处理撤销的日期。当CRL发行人首次在CRL中发布撤销时,失效日期可以先于较早CRL的发布日期,但撤销日期不应先于较早CRL的发布日期。只要该信息可用,强烈鼓励CRL发行人与CRL用户共享。
The GeneralizedTime values included in this field MUST be expressed in Greenwich Mean Time (Zulu), and MUST be specified and interpreted as defined in Section 4.1.2.5.2.
此字段中包含的广义时间值必须以格林威治平均时间(Zulu)表示,并且必须按照第4.1.2.5.2节的规定进行指定和解释。
id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }
id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }
InvalidityDate ::= GeneralizedTime
InvalidityDate ::= GeneralizedTime
This CRL entry extension identifies the certificate issuer associated with an entry in an indirect CRL, that is, a CRL that has the indirectCRL indicator set in its issuing distribution point extension. When present, the certificate issuer CRL entry extension includes one or more names from the issuer field and/or issuer alternative name extension of the certificate that corresponds to the CRL entry. If this extension is not present on the first entry in an indirect CRL, the certificate issuer defaults to the CRL issuer. On
此CRL条目扩展标识与间接CRL中的条目关联的证书颁发者,即在其颁发分发点扩展中设置了间接CRL指示符的CRL。当存在时,证书颁发者CRL条目扩展包括来自颁发者字段的一个或多个名称和/或与CRL条目对应的证书的颁发者备选名称扩展。如果间接CRL中的第一个条目上不存在此扩展名,则证书颁发者默认为CRL颁发者。在…上
subsequent entries in an indirect CRL, if this extension is not present, the certificate issuer for the entry is the same as that for the preceding entry. This field is defined as follows:
间接CRL中的后续条目,如果不存在此扩展,则该条目的证书颁发者与前一条目的证书颁发者相同。该字段定义如下:
id-ce-certificateIssuer OBJECT IDENTIFIER ::= { id-ce 29 }
id-ce-certificateIssuer OBJECT IDENTIFIER ::= { id-ce 29 }
CertificateIssuer ::= GeneralNames
CertificateIssuer ::= GeneralNames
Conforming CRL issuers MUST include in this extension the distinguished name (DN) from the issuer field of the certificate that corresponds to this CRL entry. The encoding of the DN MUST be identical to the encoding used in the certificate.
符合条件的CRL发行人必须在此扩展名中包含与此CRL条目对应的证书发行人字段中的可分辨名称(DN)。DN的编码必须与证书中使用的编码相同。
CRL issuers MUST mark this extension as critical since an implementation that ignored this extension could not correctly attribute CRL entries to certificates. This specification RECOMMENDS that implementations recognize this extension.
CRL颁发者必须将此扩展标记为关键,因为忽略此扩展的实现无法将CRL条目正确地属性化为证书。本规范建议实现识别此扩展。
Certification path validation procedures for the Internet PKI are based on the algorithm supplied in [X.509]. Certification path processing verifies the binding between the subject distinguished name and/or subject alternative name and subject public key. The binding is limited by constraints that are specified in the certificates that comprise the path and inputs that are specified by the relying party. The basic constraints and policy constraints extensions allow the certification path processing logic to automate the decision making process.
互联网PKI的认证路径验证程序基于[X.509]中提供的算法。认证路径处理验证使用者可分辨名称和/或使用者备选名称与使用者公钥之间的绑定。绑定受到由依赖方指定的路径和输入组成的证书中指定的约束的限制。基本约束和策略约束扩展允许认证路径处理逻辑自动化决策过程。
This section describes an algorithm for validating certification paths. Conforming implementations of this specification are not required to implement this algorithm, but MUST provide functionality equivalent to the external behavior resulting from this procedure. Any algorithm may be used by a particular implementation so long as it derives the correct result.
本节介绍验证证书路径的算法。实现该算法不需要符合本规范的实现,但必须提供与该程序产生的外部行为等效的功能。任何算法都可以由特定的实现使用,只要它得到正确的结果。
In Section 6.1, the text describes basic path validation. Valid paths begin with certificates issued by a trust anchor. The algorithm requires the public key of the CA, the CA's name, and any constraints upon the set of paths that may be validated using this key.
在第6.1节中,本文描述了基本路径验证。有效路径以信任锚点颁发的证书开始。该算法需要CA的公钥、CA的名称以及对可使用该密钥验证的路径集的任何约束。
The selection of a trust anchor is a matter of policy: it could be the top CA in a hierarchical PKI, the CA that issued the verifier's own certificate(s), or any other CA in a network PKI. The path
信任锚的选择是一个策略问题:它可以是分层PKI中的顶级CA、颁发验证者自己证书的CA或网络PKI中的任何其他CA。路径
validation procedure is the same regardless of the choice of trust anchor. In addition, different applications may rely on different trust anchors, or may accept paths that begin with any of a set of trust anchors.
无论信任锚的选择如何,验证过程都是相同的。此外,不同的应用程序可能依赖于不同的信任锚,或者可能接受以一组信任锚中的任何一个开始的路径。
Section 6.2 describes methods for using the path validation algorithm in specific implementations.
第6.2节描述了在特定实现中使用路径验证算法的方法。
Section 6.3 describes the steps necessary to determine if a certificate is revoked when CRLs are the revocation mechanism used by the certificate issuer.
第6.3节描述了当CRL是证书颁发者使用的撤销机制时,确定证书是否被撤销所需的步骤。
This text describes an algorithm for X.509 path processing. A conforming implementation MUST include an X.509 path processing procedure that is functionally equivalent to the external behavior of this algorithm. However, support for some of the certificate extensions processed in this algorithm are OPTIONAL for compliant implementations. Clients that do not support these extensions MAY omit the corresponding steps in the path validation algorithm.
本文介绍一种X.509路径处理算法。一致性实现必须包括一个X.509路径处理程序,该程序在功能上等同于该算法的外部行为。但是,对于兼容的实现,对该算法中处理的某些证书扩展的支持是可选的。不支持这些扩展的客户端可能会忽略路径验证算法中的相应步骤。
For example, clients are not required to support the policy mappings extension. Clients that do not support this extension MAY omit the path validation steps where policy mappings are processed. Note that clients MUST reject the certificate if it contains an unsupported critical extension.
例如,客户端不需要支持策略映射扩展。不支持此扩展的客户端可能会忽略处理策略映射的路径验证步骤。请注意,如果证书包含不受支持的关键扩展,则客户端必须拒绝该证书。
While the certificate and CRL profiles specified in Sections 4 and 5 of this document specify values for certificate and CRL fields and extensions that are considered to be appropriate for the Internet PKI, the algorithm presented in this section is not limited to accepting certificates and CRLs that conform to these profiles. Therefore, the algorithm only includes checks to verify that the certification path is valid according to X.509 and does not include checks to verify that the certificates and CRLs conform to this profile. While the algorithm could be extended to include checks for conformance to the profiles in Sections 4 and 5, this profile RECOMMENDS against including such checks.
虽然本文件第4节和第5节中规定的证书和CRL配置文件规定了被认为适用于Internet PKI的证书和CRL字段及扩展的值,但本节中介绍的算法不限于接受符合这些配置文件的证书和CRL。因此,该算法仅包括根据X.509验证证书路径是否有效的检查,而不包括验证证书和CRL是否符合此配置文件的检查。虽然该算法可以扩展到包括第4节和第5节中配置文件的一致性检查,但该配置文件建议不包括此类检查。
The algorithm presented in this section validates the certificate with respect to the current date and time. A conforming implementation MAY also support validation with respect to some point in the past. Note that mechanisms are not available for validating a certificate with respect to a time outside the certificate validity period.
本节介绍的算法根据当前日期和时间验证证书。一致性实现也可能支持过去某一点的验证。请注意,对于证书有效期之外的时间,无法使用验证证书的机制。
The trust anchor is an input to the algorithm. There is no requirement that the same trust anchor be used to validate all certification paths. Different trust anchors MAY be used to validate different paths, as discussed further in Section 6.2.
信任锚是算法的输入。不要求使用相同的信任锚来验证所有认证路径。不同的信任锚可用于验证不同的路径,详见第6.2节。
The primary goal of path validation is to verify the binding between a subject distinguished name or a subject alternative name and subject public key, as represented in the target certificate, based on the public key of the trust anchor. In most cases, the target certificate will be an end entity certificate, but the target certificate may be a CA certificate as long as the subject public key is to be used for a purpose other than verifying the signature on a public key certificate. Verifying the binding between the name and subject public key requires obtaining a sequence of certificates that support that binding. The procedure performed to obtain this sequence of certificates is outside the scope of this specification.
路径验证的主要目标是基于信任锚点的公钥,验证使用者可分辨名称或使用者替代名称与使用者公钥(如目标证书中所示)之间的绑定。在大多数情况下,目标证书将是最终实体证书,但只要主体公钥用于验证公钥证书上的签名以外的目的,目标证书可以是CA证书。验证名称和主题公钥之间的绑定需要获取支持该绑定的证书序列。为获得该系列证书而执行的程序不在本规范的范围内。
To meet this goal, the path validation process verifies, among other things, that a prospective certification path (a sequence of n certificates) satisfies the following conditions:
为了实现这一目标,路径验证过程验证预期认证路径(n个证书序列)是否满足以下条件:
(a) for all x in {1, ..., n-1}, the subject of certificate x is the issuer of certificate x+1;
(a) for all x in {1, ..., n-1}, the subject of certificate x is the issuer of certificate x+1;
(b) certificate 1 is issued by the trust anchor;
(b) 证书1由信托锚发行;
(c) certificate n is the certificate to be validated (i.e., the target certificate); and
(c) 证书n是要验证的证书(即目标证书);和
(d) for all x in {1, ..., n}, the certificate was valid at the time in question.
(d) 对于{1,…,n}中的所有x,证书在所述时间是有效的。
A certificate MUST NOT appear more than once in a prospective certification path.
证书在预期的证书路径中不得出现多次。
When the trust anchor is provided in the form of a self-signed certificate, this self-signed certificate is not included as part of the prospective certification path. Information about trust anchors is provided as inputs to the certification path validation algorithm (Section 6.1.1).
当信任锚以自签名证书的形式提供时,该自签名证书不作为预期证书路径的一部分。有关信任锚的信息作为认证路径验证算法的输入提供(第6.1.1节)。
A particular certification path may not, however, be appropriate for all applications. Therefore, an application MAY augment this algorithm to further limit the set of valid paths. The path validation process also determines the set of certificate policies that are valid for this path, based on the certificate policies extension, policy mappings extension, policy constraints extension, and inhibit anyPolicy extension. To achieve this, the path
但是,特定的认证路径可能并不适用于所有应用程序。因此,应用程序可以扩展此算法,以进一步限制有效路径集。路径验证过程还基于证书策略扩展、策略映射扩展、策略约束扩展和禁止任何策略扩展,确定对此路径有效的证书策略集。要实现这一点,我们必须采取以下措施:
validation algorithm constructs a valid policy tree. If the set of certificate policies that are valid for this path is not empty, then the result will be a valid policy tree of depth n, otherwise the result will be a null valid policy tree.
验证算法构造有效的策略树。如果对此路径有效的证书策略集不为空,则结果将是深度为n的有效策略树,否则结果将是空的有效策略树。
A certificate is self-issued if the same DN appears in the subject and issuer fields (the two DNs are the same if they match according to the rules specified in Section 7.1). In general, the issuer and subject of the certificates that make up a path are different for each certificate. However, a CA may issue a certificate to itself to support key rollover or changes in certificate policies. These self-issued certificates are not counted when evaluating path length or name constraints.
如果“主题”和“颁发者”字段中出现相同的DN,则证书是自颁发的(如果根据第7.1节中指定的规则匹配,则两个DN是相同的)。通常,构成路径的证书的颁发者和主题对于每个证书都是不同的。但是,CA可以向自己颁发证书以支持密钥滚动或证书策略的更改。在计算路径长度或名称约束时,不计算这些自颁发的证书。
This section presents the algorithm in four basic steps: (1) initialization, (2) basic certificate processing, (3) preparation for the next certificate, and (4) wrap-up. Steps (1) and (4) are performed exactly once. Step (2) is performed for all certificates in the path. Step (3) is performed for all certificates in the path except the final certificate. Figure 2 provides a high-level flowchart of this algorithm.
本节介绍了算法的四个基本步骤:(1)初始化,(2)基本证书处理,(3)准备下一个证书,以及(4)总结。步骤(1)和(4)只执行一次。对路径中的所有证书执行步骤(2)。对路径中除最终证书外的所有证书执行步骤(3)。图2提供了该算法的高级流程图。
+-------+ | START | +-------+ | V +----------------+ | Initialization | +----------------+ | +<--------------------+ | | V | +----------------+ | | Process Cert | | +----------------+ | | | V | +================+ | | IF Last Cert | | | in Path | | +================+ | | | | THEN | | ELSE | V V | +----------------+ +----------------+ | | Wrap up | | Prepare for | | +----------------+ | Next Cert | | | +----------------+ | V | | +-------+ +--------------+ | STOP | +-------+
+-------+ | START | +-------+ | V +----------------+ | Initialization | +----------------+ | +<--------------------+ | | V | +----------------+ | | Process Cert | | +----------------+ | | | V | +================+ | | IF Last Cert | | | in Path | | +================+ | | | | THEN | | ELSE | V V | +----------------+ +----------------+ | | Wrap up | | Prepare for | | +----------------+ | Next Cert | | | +----------------+ | V | | +-------+ +--------------+ | STOP | +-------+
Figure 2. Certification Path Processing Flowchart
图2。认证路径处理流程图
This algorithm assumes that the following nine inputs are provided to the path processing logic:
该算法假设为路径处理逻辑提供以下九个输入:
(a) a prospective certification path of length n.
(a) 长度为n的预期认证路径。
(b) the current date/time.
(b) 当前日期/时间。
(c) user-initial-policy-set: A set of certificate policy identifiers naming the policies that are acceptable to the certificate user. The user-initial-policy-set contains the special value any-policy if the user is not concerned about certificate policy.
(c) 用户初始策略集:一组证书策略标识符,用于命名证书用户可接受的策略。如果用户不关心证书策略,则用户初始策略集包含特殊值any policy。
(d) trust anchor information, describing a CA that serves as a trust anchor for the certification path. The trust anchor information includes:
(d) 信任锚信息,描述用作证书路径信任锚的CA。信任锚信息包括:
(1) the trusted issuer name,
(1) 受信任的颁发者名称,
(2) the trusted public key algorithm,
(2) 可信公钥算法,
(3) the trusted public key, and
(3) 受信任的公钥,以及
(4) optionally, the trusted public key parameters associated with the public key.
(4) (可选)与公钥关联的受信任公钥参数。
The trust anchor information may be provided to the path processing procedure in the form of a self-signed certificate. When the trust anchor information is provided in the form of a certificate, the name in the subject field is used as the trusted issuer name and the contents of the subjectPublicKeyInfo field is used as the source of the trusted public key algorithm and the trusted public key. The trust anchor information is trusted because it was delivered to the path processing procedure by some trustworthy out-of-band procedure. If the trusted public key algorithm requires parameters, then the parameters are provided along with the trusted public key.
信任锚信息可以以自签名证书的形式提供给路径处理过程。当以证书的形式提供信任锚信息时,subject字段中的名称用作受信任的颁发者名称,subjectPublicKeyInfo字段的内容用作受信任公钥算法和受信任公钥的源。信任锚点信息是可信的,因为它是通过一些可靠的带外过程传递到路径处理过程的。如果可信公钥算法需要参数,那么参数将与可信公钥一起提供。
(e) initial-policy-mapping-inhibit, which indicates if policy mapping is allowed in the certification path.
(e) 初始策略映射禁止,它指示证书路径中是否允许策略映射。
(f) initial-explicit-policy, which indicates if the path must be valid for at least one of the certificate policies in the user-initial-policy-set.
(f) 初始显式策略,指示路径是否必须对用户初始策略集中的至少一个证书策略有效。
(g) initial-any-policy-inhibit, which indicates whether the anyPolicy OID should be processed if it is included in a certificate.
(g) 初始化any policy inhibit,它指示如果any policy OID包含在证书中,是否应处理它。
(h) initial-permitted-subtrees, which indicates for each name type (e.g., X.500 distinguished names, email addresses, or IP addresses) a set of subtrees within which all subject names in every certificate in the certification path MUST fall. The initial-permitted-subtrees input includes a set for each name type. For each name type, the set may consist of a
(h) 初始允许子树,表示每种名称类型(例如,X.500可分辨名称、电子邮件地址或IP地址)的一组子树,其中证书路径中每个证书中的所有使用者名称都必须位于其中。初始允许子树输入包括每个名称类型的一组。对于每种名称类型,集合可能包括
single subtree that includes all names of that name type or one or more subtrees that each specifies a subset of the names of that name type, or the set may be empty. If the set for a name type is empty, then the certification path will be considered invalid if any certificate in the certification path includes a name of that name type.
包含该名称类型的所有名称的单个子树,或一个或多个子树,每个子树指定该名称类型名称的子集,或集合可能为空。如果名称类型的集合为空,则如果证书路径中的任何证书包含该名称类型的名称,则该证书路径将被视为无效。
(i) initial-excluded-subtrees, which indicates for each name type (e.g., X.500 distinguished names, email addresses, or IP addresses) a set of subtrees within which no subject name in any certificate in the certification path may fall. The initial-excluded-subtrees input includes a set for each name type. For each name type, the set may be empty or may consist of one or more subtrees that each specifies a subset of the names of that name type. If the set for a name type is empty, then no names of that name type are excluded.
(i) 初始排除子树,表示每种名称类型(例如,X.500可分辨名称、电子邮件地址或IP地址)的一组子树,其中证书路径中的任何证书中都不会有使用者名称。初始排除子树输入包括每个名称类型的一组。对于每个名称类型,集合可以为空,也可以由一个或多个子树组成,每个子树指定该名称类型名称的子集。如果名称类型的集合为空,则不排除该名称类型的名称。
Conforming implementations are not required to support the setting of all of these inputs. For example, a conforming implementation may be designed to validate all certification paths using a value of FALSE for initial-any-policy-inhibit.
一致性实现不需要支持所有这些输入的设置。例如,一致性实现可被设计为使用任何初始策略禁止的值FALSE来验证所有认证路径。
This initialization phase establishes eleven state variables based upon the nine inputs:
该初始化阶段根据九个输入建立十一个状态变量:
(a) valid_policy_tree: A tree of certificate policies with their optional qualifiers; each of the leaves of the tree represents a valid policy at this stage in the certification path validation. If valid policies exist at this stage in the certification path validation, the depth of the tree is equal to the number of certificates in the chain that have been processed. If valid policies do not exist at this stage in the certification path validation, the tree is set to NULL. Once the tree is set to NULL, policy processing ceases.
(a) valid_policy_tree:证书策略树及其可选限定符;树的每一片叶子都表示证书路径验证阶段的有效策略。如果在此阶段证书路径验证中存在有效策略,则树的深度等于链中已处理的证书数。如果在此阶段证书路径验证中不存在有效策略,则树将设置为NULL。一旦树设置为NULL,策略处理将停止。
Each node in the valid_policy_tree includes three data objects: the valid policy, a set of associated policy qualifiers, and a set of one or more expected policy values. If the node is at depth x, the components of the node have the following semantics:
valid_policy_树中的每个节点包括三个数据对象:valid policy、一组关联的策略限定符和一组一个或多个预期的策略值。如果节点位于深度x,则节点的组件具有以下语义:
(1) The valid_policy is a single policy OID representing a valid policy for the path of length x.
(1) valid_策略是表示长度为x的路径的有效策略的单个策略OID。
(2) The qualifier_set is a set of policy qualifiers associated with the valid policy in certificate x.
(2) 限定符_集是一组与证书x中的有效策略关联的策略限定符。
(3) The expected_policy_set contains one or more policy OIDs that would satisfy this policy in the certificate x+1.
(3) 预期的\u策略\u集包含一个或多个满足证书x+1中此策略的策略OID。
The initial value of the valid_policy_tree is a single node with valid_policy anyPolicy, an empty qualifier_set, and an expected_policy_set with the single value anyPolicy. This node is considered to be at depth zero.
有效的\u策略\u树的初始值是具有有效\u策略anyPolicy的单个节点、空限定符\u集和具有单个值anyPolicy的预期\u策略\u集。该节点被视为位于深度0处。
Figure 3 is a graphic representation of the initial state of the valid_policy_tree. Additional figures will use this format to describe changes in the valid_policy_tree during path processing.
图3是有效策略树的初始状态的图形表示。其他图将使用此格式描述路径处理期间有效策略树中的更改。
+----------------+ | anyPolicy | <---- valid_policy +----------------+ | {} | <---- qualifier_set +----------------+ | {anyPolicy} | <---- expected_policy_set +----------------+
+----------------+ | anyPolicy | <---- valid_policy +----------------+ | {} | <---- qualifier_set +----------------+ | {anyPolicy} | <---- expected_policy_set +----------------+
Figure 3. Initial Value of the valid_policy_tree State Variable
图3。有效的\u策略\u树状态变量的初始值
(b) permitted_subtrees: a set of root names for each name type (e.g., X.500 distinguished names, email addresses, or IP addresses) defining a set of subtrees within which all subject names in subsequent certificates in the certification path MUST fall. This variable includes a set for each name type, and the initial value is initial-permitted-subtrees.
(b) 允许的_子树:每种名称类型(例如,X.500可分辨名称、电子邮件地址或IP地址)的一组根名称,定义了一组子树,其中证书路径中后续证书中的所有主题名称必须位于其中。此变量包括每个名称类型的集合,初始值为初始允许子树。
(c) excluded_subtrees: a set of root names for each name type (e.g., X.500 distinguished names, email addresses, or IP addresses) defining a set of subtrees within which no subject name in subsequent certificates in the certification path may fall. This variable includes a set for each name type, and the initial value is initial-excluded-subtrees.
(c) 排除的_子树:每种名称类型(例如,X.500可分辨名称、电子邮件地址或IP地址)的一组根名称,定义了一组子树,其中认证路径中后续证书中的主题名称可能不在其中。此变量包括每个名称类型的集合,初始值为初始排除子树。
(d) explicit_policy: an integer that indicates if a non-NULL valid_policy_tree is required. The integer indicates the number of non-self-issued certificates to be processed before this requirement is imposed. Once set, this variable may be decreased, but may not be increased. That is, if a certificate in the path requires a non-NULL valid_policy_tree, a later certificate cannot remove this requirement. If initial-explicit-policy is set, then the initial value is 0, otherwise the initial value is n+1.
(d) 显式\u策略:一个整数,指示是否需要非空的有效\u策略\u树。整数表示在强制执行此要求之前要处理的非自行颁发证书的数量。一旦设置,该变量可以减少,但不能增加。也就是说,如果路径中的证书需要非空的有效\u策略\u树,则以后的证书无法删除此要求。如果设置了初始显式策略,则初始值为0,否则初始值为n+1。
(e) inhibit_anyPolicy: an integer that indicates whether the anyPolicy policy identifier is considered a match. The integer indicates the number of non-self-issued certificates to be processed before the anyPolicy OID, if asserted in a certificate other than an intermediate self-issued certificate, is ignored. Once set, this variable may be decreased, but may not be increased. That is, if a certificate in the path inhibits processing of anyPolicy, a later certificate cannot permit it. If initial-any-policy-inhibit is set, then the initial value is 0, otherwise the initial value is n+1.
(e) inhibit\ U anyPolicy:一个整数,指示anyPolicy策略标识符是否被视为匹配项。整数表示在忽略anyPolicy OID(如果在非中间自颁发证书的证书中断言)之前要处理的非自颁发证书的数量。一旦设置,该变量可以减少,但不能增加。也就是说,如果路径中的证书禁止处理任何策略,则稍后的证书将不允许处理该策略。如果设置了初始策略禁止,则初始值为0,否则初始值为n+1。
(f) policy_mapping: an integer that indicates if policy mapping is permitted. The integer indicates the number of non-self-issued certificates to be processed before policy mapping is inhibited. Once set, this variable may be decreased, but may not be increased. That is, if a certificate in the path specifies that policy mapping is not permitted, it cannot be overridden by a later certificate. If initial-policy-mapping-inhibit is set, then the initial value is 0, otherwise the initial value is n+1.
(f) 策略映射:一个整数,指示是否允许策略映射。整数表示在禁止策略映射之前要处理的非自颁发证书的数量。一旦设置,该变量可以减少,但不能增加。也就是说,如果路径中的证书指定不允许策略映射,则它不能被以后的证书覆盖。如果设置了初始策略映射禁止,则初始值为0,否则初始值为n+1。
(g) working_public_key_algorithm: the digital signature algorithm used to verify the signature of a certificate. The working_public_key_algorithm is initialized from the trusted public key algorithm provided in the trust anchor information.
(g) 工作公钥算法:用于验证证书签名的数字签名算法。工作公钥算法由信任锚信息中提供的可信公钥算法初始化。
(h) working_public_key: the public key used to verify the signature of a certificate. The working_public_key is initialized from the trusted public key provided in the trust anchor information.
(h) 工作公钥:用于验证证书签名的公钥。工作公钥由信任锚信息中提供的受信任公钥初始化。
(i) working_public_key_parameters: parameters associated with the current public key that may be required to verify a signature (depending upon the algorithm). The working_public_key_parameters variable is initialized from the trusted public key parameters provided in the trust anchor information.
(i) 工作公钥参数:与验证签名所需的当前公钥相关联的参数(取决于算法)。工作_public _key _parameters变量是根据信任锚信息中提供的受信任公钥参数初始化的。
(j) working_issuer_name: the issuer distinguished name expected in the next certificate in the chain. The working_issuer_name is initialized to the trusted issuer name provided in the trust anchor information.
(j) 工作颁发者名称:链中下一个证书中预期的颁发者可分辨名称。工作颁发者名称初始化为信任锚信息中提供的受信任颁发者名称。
(k) max_path_length: this integer is initialized to n, is decremented for each non-self-issued certificate in the path, and may be reduced to the value in the path length constraint field within the basic constraints extension of a CA certificate.
(k) max_path_length:该整数初始化为n,对于路径中的每个非自颁发证书递减,并且可以减少为CA证书的基本约束扩展中的路径长度约束字段中的值。
Upon completion of the initialization steps, perform the basic certificate processing steps specified in 6.1.3.
完成初始化步骤后,执行6.1.3中规定的基本证书处理步骤。
The basic path processing actions to be performed for certificate i (for all i in [1..n]) are listed below.
下面列出了要对证书i(对于[1..n]中的所有i)执行的基本路径处理操作。
(a) Verify the basic certificate information. The certificate MUST satisfy each of the following:
(a) 验证基本证书信息。证书必须满足以下各项要求:
(1) The signature on the certificate can be verified using working_public_key_algorithm, the working_public_key, and the working_public_key_parameters.
(1) 证书上的签名可以使用工作公钥算法、工作公钥和工作公钥参数进行验证。
(2) The certificate validity period includes the current time.
(2) 证书有效期包括当前时间。
(3) At the current time, the certificate is not revoked. This may be determined by obtaining the appropriate CRL (Section 6.3), by status information, or by out-of-band mechanisms.
(3) 目前,证书未被吊销。这可以通过获得适当的CRL(第6.3节)、状态信息或带外机制来确定。
(4) The certificate issuer name is the working_issuer_name.
(4) 证书颁发者名称是工作颁发者名称。
(b) If certificate i is self-issued and it is not the final certificate in the path, skip this step for certificate i. Otherwise, verify that the subject name is within one of the permitted_subtrees for X.500 distinguished names, and verify that each of the alternative names in the subjectAltName extension (critical or non-critical) is within one of the permitted_subtrees for that name type.
(b) 如果证书i是自行颁发的,并且不是路径中的最终证书,请跳过证书i的此步骤。否则,请验证主题名称是否位于X.500可分辨名称的一个允许的_子树内,并验证subjectAltName扩展名(关键或非关键)中的每个备选名称是否位于该名称类型的一个允许的_子树内。
(c) If certificate i is self-issued and it is not the final certificate in the path, skip this step for certificate i. Otherwise, verify that the subject name is not within any of the excluded_subtrees for X.500 distinguished names, and verify that each of the alternative names in the subjectAltName extension (critical or non-critical) is not within any of the excluded_subtrees for that name type.
(c) 如果证书i是自行颁发的,并且不是路径中的最终证书,请跳过证书i的此步骤。否则,请验证主题名称不在X.500可分辨名称的任何排除的_子树内,并验证subjectAltName扩展名(关键或非关键)中的每个备选名称不在该名称类型的任何排除的_子树内。
(d) If the certificate policies extension is present in the certificate and the valid_policy_tree is not NULL, process the policy information by performing the following steps in order:
(d) 如果证书中存在证书策略扩展且有效的策略树不为NULL,请按顺序执行以下步骤来处理策略信息:
(1) For each policy P not equal to anyPolicy in the certificate policies extension, let P-OID denote the OID for policy P and P-Q denote the qualifier set for policy P. Perform the following steps in order:
(1) 对于不等于证书策略扩展中任何策略的每个策略P,让P-OID表示策略P的OID,P-Q表示策略P的限定符集。按顺序执行以下步骤:
(i) For each node of depth i-1 in the valid_policy_tree where P-OID is in the expected_policy_set, create a child node as follows: set the valid_policy to P-OID, set the qualifier_set to P-Q, and set the expected_policy_set to {P-OID}.
(i) 对于有效_策略_树中深度为i-1的每个节点(其中P-OID在预期_策略_集中),按如下方式创建子节点:将有效_策略设置为P-OID,将限定符_集设置为P-Q,并将预期_策略_集设置为{P-OID}。
For example, consider a valid_policy_tree with a node of depth i-1 where the expected_policy_set is {Gold, White}. Assume the certificate policies Gold and Silver appear in the certificate policies extension of certificate i. The Gold policy is matched, but the Silver policy is not. This rule will generate a child node of depth i for the Gold policy. The result is shown as Figure 4.
例如,考虑一个具有深度I-1节点的ValueRealPosithType,其中ExpEdTyPraveSt集合是{GOLD,White }。假设证书策略黄金和白银出现在证书i的证书策略扩展中。黄金政策匹配,但白银政策不匹配。此规则将为黄金策略生成深度为i的子节点。结果如图4所示。
+-----------------+ | Red | +-----------------+ | {} | +-----------------+ node of depth i-1 | {Gold, White} | +-----------------+ | | | V +-----------------+ | Gold | +-----------------+ | {} | +-----------------+ node of depth i | {Gold} | +-----------------+
+-----------------+ | Red | +-----------------+ | {} | +-----------------+ node of depth i-1 | {Gold, White} | +-----------------+ | | | V +-----------------+ | Gold | +-----------------+ | {} | +-----------------+ node of depth i | {Gold} | +-----------------+
Figure 4. Processing an Exact Match
图4。处理精确匹配
(ii) If there was no match in step (i) and the valid_policy_tree includes a node of depth i-1 with the valid_policy anyPolicy, generate a child node with the following values: set the valid_policy to P-OID, set the qualifier_set to P-Q, and set the expected_policy_set to {P-OID}.
(ii)如果在步骤(i)中没有匹配,并且有效的_策略_树包含深度为i-1的节点和有效的_策略anyPolicy,则生成具有以下值的子节点:将有效的_策略设置为P-OID,将限定符_集设置为P-Q,并将预期的_策略_集设置为{P-OID}。
For example, consider a valid_policy_tree with a node of depth i-1 where the valid_policy is anyPolicy. Assume the certificate policies Gold and Silver appear in the certificate policies extension of certificate i. The Gold policy does not have a qualifier, but the Silver policy has the qualifier Q-Silver. If Gold and Silver were not matched in (i) above, this rule will generate two child nodes of depth i, one for each policy. The result is shown as Figure 5.
例如,考虑一个具有深度I-1节点的ValueRealPraseType,其中ValuePosikRead是任意策略。假设证书策略黄金和白银出现在证书i的证书策略扩展中。黄金策略没有限定符,但白银策略有限定符Q-Silver。如果黄金和白银在上述(i)中不匹配,则此规则将生成深度为i的两个子节点,每个策略一个子节点。结果如图5所示。
+-----------------+ | anyPolicy | +-----------------+ | {} | +-----------------+ node of depth i-1 | {anyPolicy} | +-----------------+ / \ / \ / \ / \ +-----------------+ +-----------------+ | Gold | | Silver | +-----------------+ +-----------------+ | {} | | {Q-Silver} | +-----------------+ nodes of +-----------------+ | {Gold} | depth i | {Silver} | +-----------------+ +-----------------+
+-----------------+ | anyPolicy | +-----------------+ | {} | +-----------------+ node of depth i-1 | {anyPolicy} | +-----------------+ / \ / \ / \ / \ +-----------------+ +-----------------+ | Gold | | Silver | +-----------------+ +-----------------+ | {} | | {Q-Silver} | +-----------------+ nodes of +-----------------+ | {Gold} | depth i | {Silver} | +-----------------+ +-----------------+
Figure 5. Processing Unmatched Policies when a Leaf Node Specifies anyPolicy
图5。当叶节点指定anyPolicy时处理不匹配的策略
(2) If the certificate policies extension includes the policy anyPolicy with the qualifier set AP-Q and either (a) inhibit_anyPolicy is greater than 0 or (b) i<n and the certificate is self-issued, then:
(2) 如果证书策略扩展包括具有限定符集AP-Q的策略anyPolicy,并且(a)inhibit_anyPolicy大于0或(b)i<n且证书是自颁发的,则:
For each node in the valid_policy_tree of depth i-1, for each value in the expected_policy_set (including anyPolicy) that does not appear in a child node, create a child node with the following values: set the valid_policy
对于深度为i-1的有效_策略_树中的每个节点,对于预期_策略_集中未出现在子节点中的每个值(包括anyPolicy),使用以下值创建子节点:设置有效_策略
to the value from the expected_policy_set in the parent node, set the qualifier_set to AP-Q, and set the expected_policy_set to the value in the valid_policy from this node.
要从父节点中的预期_策略_集中获取值,请将限定符_集设置为AP-Q,并将预期_策略_集设置为此节点中有效_策略中的值。
For example, consider a valid_policy_tree with a node of depth i-1 where the expected_policy_set is {Gold, Silver}. Assume anyPolicy appears in the certificate policies extension of certificate i with no policy qualifiers, but Gold and Silver do not appear. This rule will generate two child nodes of depth i, one for each policy. The result is shown below as Figure 6.
例如,考虑一个具有深度I-1节点的ValueRealPraseType树,其中ExpEdTyPraveSt集合是{金,银}。假设anyPolicy出现在证书i的证书策略扩展中,没有策略限定符,但黄金和白银不会出现。此规则将生成深度为i的两个子节点,每个策略一个子节点。结果如下图6所示。
+-----------------+ | Red | +-----------------+ | {} | +-----------------+ node of depth i-1 | {Gold, Silver} | +-----------------+ / \ / \ / \ / \ +-----------------+ +-----------------+ | Gold | | Silver | +-----------------+ +-----------------+ | {} | | {} | +-----------------+ nodes of +-----------------+ | {Gold} | depth i | {Silver} | +-----------------+ +-----------------+
+-----------------+ | Red | +-----------------+ | {} | +-----------------+ node of depth i-1 | {Gold, Silver} | +-----------------+ / \ / \ / \ / \ +-----------------+ +-----------------+ | Gold | | Silver | +-----------------+ +-----------------+ | {} | | {} | +-----------------+ nodes of +-----------------+ | {Gold} | depth i | {Silver} | +-----------------+ +-----------------+
Figure 6. Processing Unmatched Policies When the Certificate Policies Extension Specifies anyPolicy
图6。当证书策略扩展指定anyPolicy时处理不匹配的策略
(3) If there is a node in the valid_policy_tree of depth i-1 or less without any child nodes, delete that node. Repeat this step until there are no nodes of depth i-1 or less without children.
(3) 如果在深度为i-1或更低的有效_策略_树中存在没有任何子节点的节点,请删除该节点。重复此步骤,直到没有深度为i-1或以下且没有子节点的节点。
For example, consider the valid_policy_tree shown in Figure 7 below. The two nodes at depth i-1 that are marked with an 'X' have no children, and they are deleted. Applying this rule to the resulting tree will cause the node at depth i-2 that is marked with a 'Y' to be deleted. In the resulting tree, there are no nodes of depth i-1 or less without children, and this step is complete.
例如,考虑下面的图7所示的ValueRealPosij树。深度i-1处标记为“X”的两个节点没有子节点,它们将被删除。将此规则应用于结果树将导致删除深度i-2处标记为“Y”的节点。在生成的树中,没有深度为i-1或更小的节点没有子节点,此步骤已完成。
(e) If the certificate policies extension is not present, set the valid_policy_tree to NULL.
(e) 如果证书策略扩展不存在,请将有效的策略树设置为NULL。
(f) Verify that either explicit_policy is greater than 0 or the valid_policy_tree is not equal to NULL;
(f) 验证显式_策略大于0或有效的_策略树不等于NULL;
If any of steps (a), (b), (c), or (f) fails, the procedure terminates, returning a failure indication and an appropriate reason.
如果步骤(a)、(b)、(c)或(f)中的任何一个失败,则程序终止,返回失败指示和适当原因。
If i is not equal to n, continue by performing the preparatory steps listed in Section 6.1.4. If i is equal to n, perform the wrap-up steps listed in Section 6.1.5.
如果i不等于n,继续执行第6.1.4节中列出的准备步骤。如果i等于n,则执行第6.1.5节中列出的总结步骤。
+-----------+ | | node of depth i-3 +-----------+ / | \ / | \ / | \ +-----------+ +-----------+ +-----------+ | | | | | Y | nodes of +-----------+ +-----------+ +-----------+ depth i-2 / \ | | / \ | | / \ | | +-----------+ +-----------+ +-----------+ +-----------+ nodes of | | | X | | | | X | depth +-----------+ +-----------+ +-----------+ +-----------+ i-1 | / | \ | / | \ | / | \ +-----------+ +-----------+ +-----------+ +-----------+ nodes of | | | | | | | | depth +-----------+ +-----------+ +-----------+ +-----------+ i
+-----------+ | | node of depth i-3 +-----------+ / | \ / | \ / | \ +-----------+ +-----------+ +-----------+ | | | | | Y | nodes of +-----------+ +-----------+ +-----------+ depth i-2 / \ | | / \ | | / \ | | +-----------+ +-----------+ +-----------+ +-----------+ nodes of | | | X | | | | X | depth +-----------+ +-----------+ +-----------+ +-----------+ i-1 | / | \ | / | \ | / | \ +-----------+ +-----------+ +-----------+ +-----------+ nodes of | | | | | | | | depth +-----------+ +-----------+ +-----------+ +-----------+ i
Figure 7. Pruning the valid_policy_tree
图7。修剪有效的策略树
To prepare for processing of certificate i+1, perform the following steps for certificate i:
要准备处理证书i+1,请对证书i执行以下步骤:
(a) If a policy mappings extension is present, verify that the special value anyPolicy does not appear as an issuerDomainPolicy or a subjectDomainPolicy.
(a) 如果存在策略映射扩展,请验证特殊值anyPolicy未显示为issuerDomainPolicy或subjectDomainPolicy。
(b) If a policy mappings extension is present, then for each issuerDomainPolicy ID-P in the policy mappings extension:
(b) 如果存在策略映射扩展,则对于策略映射扩展中的每个issuerDomainPolicy ID-P:
(1) If the policy_mapping variable is greater than 0, for each node in the valid_policy_tree of depth i where ID-P is the valid_policy, set expected_policy_set to the set of subjectDomainPolicy values that are specified as equivalent to ID-P by the policy mappings extension.
(1) 如果policy_mapping变量大于0,则对于深度i的有效_policy_树(其中ID-P是有效的_策略)中的每个节点,将预期的_policy_集设置为策略映射扩展指定为等同于ID-P的subjectDomainPolicy值集。
If no node of depth i in the valid_policy_tree has a valid_policy of ID-P but there is a node of depth i with a valid_policy of anyPolicy, then generate a child node of the node of depth i-1 that has a valid_policy of anyPolicy as follows:
如果有效的\u策略\u树中没有深度i的节点具有ID-P的有效\u策略,但存在深度i的节点具有anyPolicy的有效\u策略,则生成深度i-1的节点的子节点,该节点具有anyPolicy的有效\u策略,如下所示:
(i) set the valid_policy to ID-P;
(i) 将有效的_策略设置为ID-P;
(ii) set the qualifier_set to the qualifier set of the policy anyPolicy in the certificate policies extension of certificate i; and
(ii)在证书i的证书策略扩展中,将限定符\u集设置为策略anyPolicy的限定符集;和
(iii) set the expected_policy_set to the set of subjectDomainPolicy values that are specified as equivalent to ID-P by the policy mappings extension.
(iii)将预期的_policy_集设置为策略映射扩展指定为等同于ID-P的subjectDomainPolicy值集。
(2) If the policy_mapping variable is equal to 0:
(2) 如果策略映射变量等于0:
(i) delete each node of depth i in the valid_policy_tree where ID-P is the valid_policy.
(i) 删除有效_策略_树中深度i的每个节点,其中ID-P是有效_策略。
(ii) If there is a node in the valid_policy_tree of depth i-1 or less without any child nodes, delete that node. Repeat this step until there are no nodes of depth i-1 or less without children.
(ii)如果在深度为i-1或更低的有效_策略_树中存在没有任何子节点的节点,则删除该节点。重复此步骤,直到没有深度为i-1或以下且没有子节点的节点。
(c) Assign the certificate subject name to working_issuer_name.
(c) 将证书使用者名称分配给工作颁发者名称。
(d) Assign the certificate subjectPublicKey to working_public_key.
(d) 将证书subjectPublicKey分配给工作公钥。
(e) If the subjectPublicKeyInfo field of the certificate contains an algorithm field with non-null parameters, assign the parameters to the working_public_key_parameters variable.
(e) 如果证书的subjectPublicKeyInfo字段包含具有非null参数的算法字段,请将参数分配给working_public_key_parameters变量。
If the subjectPublicKeyInfo field of the certificate contains an algorithm field with null parameters or parameters are omitted, compare the certificate subjectPublicKey algorithm to the working_public_key_algorithm. If the certificate subjectPublicKey algorithm and the working_public_key_algorithm are different, set the working_public_key_parameters to null.
如果证书的subjectPublicKeyInfo字段包含带有空参数的算法字段或省略了参数,请将证书subjectPublicKey算法与工作的公钥算法进行比较。如果证书主题公钥算法和工作公钥算法不同,请将工作公钥参数设置为null。
(f) Assign the certificate subjectPublicKey algorithm to the working_public_key_algorithm variable.
(f) 将证书subjectPublicKey algorithm分配给working_public_key_algorithm变量。
(g) If a name constraints extension is included in the certificate, modify the permitted_subtrees and excluded_subtrees state variables as follows:
(g) 如果证书中包含名称约束扩展,请按如下方式修改允许的_子树和排除的_子树状态变量:
(1) If permittedSubtrees is present in the certificate, set the permitted_subtrees state variable to the intersection of its previous value and the value indicated in the extension field. If permittedSubtrees does not include a particular name type, the permitted_subtrees state variable is unchanged for that name type. For example, the intersection of example.com and foo.example.com is foo.example.com. And the intersection of example.com and example.net is the empty set.
(1) 如果证书中存在permittedSubtrees,请将permittedSubtrees状态变量设置为其先前值与扩展字段中指示的值的交点。如果permittedSubtrees不包括特定的名称类型,则该名称类型的permittedSubtrees状态变量将保持不变。例如,example.com和foo.example.com的交集是foo.example.com。example.com和example.net的交集是空集。
(2) If excludedSubtrees is present in the certificate, set the excluded_subtrees state variable to the union of its previous value and the value indicated in the extension field. If excludedSubtrees does not include a particular name type, the excluded_subtrees state variable is unchanged for that name type. For example, the union of the name spaces example.com and foo.example.com is example.com. And the union of example.com and example.net is both name spaces.
(2) 如果证书中存在excludedSubtrees,请将excluded_子树状态变量设置为其上一个值与扩展字段中指示的值的并集。如果excludedSubtrees不包含特定的名称类型,则该名称类型的excluded_子树状态变量将保持不变。例如,名称空间example.com和foo.example.com的并集就是example.com。example.com和example.net的并集都是名称空间。
(h) If certificate i is not self-issued:
(h) 如果证书i不是自行颁发的:
(1) If explicit_policy is not 0, decrement explicit_policy by 1.
(1) 如果explicit_policy不是0,则将explicit_policy递减1。
(2) If policy_mapping is not 0, decrement policy_mapping by 1.
(2) 如果策略_映射不是0,则将策略_映射递减1。
(3) If inhibit_anyPolicy is not 0, decrement inhibit_anyPolicy by 1.
(3) 如果inhibit_anyPolicy不是0,则将inhibit_anyPolicy减1。
(i) If a policy constraints extension is included in the certificate, modify the explicit_policy and policy_mapping state variables as follows:
(i) 如果证书中包含策略约束扩展,请修改显式策略和策略映射状态变量,如下所示:
(1) If requireExplicitPolicy is present and is less than explicit_policy, set explicit_policy to the value of requireExplicitPolicy.
(1) 如果存在requireExplicitPolicy且小于explicit_策略,请将explicit_策略设置为requireExplicitPolicy的值。
(2) If inhibitPolicyMapping is present and is less than policy_mapping, set policy_mapping to the value of inhibitPolicyMapping.
(2) 如果存在inhibitPolicyMapping并且小于policy_mapping,请将policy_mapping设置为inhibitPolicyMapping的值。
(j) If the inhibitAnyPolicy extension is included in the certificate and is less than inhibit_anyPolicy, set inhibit_anyPolicy to the value of inhibitAnyPolicy.
(j) 如果证书中包含inhibitAnyPolicy扩展,并且该扩展小于inhibit_anyPolicy,请将inhibit_anyPolicy设置为inhibitAnyPolicy的值。
(k) If certificate i is a version 3 certificate, verify that the basicConstraints extension is present and that cA is set to TRUE. (If certificate i is a version 1 or version 2 certificate, then the application MUST either verify that certificate i is a CA certificate through out-of-band means or reject the certificate. Conforming implementations may choose to reject all version 1 and version 2 intermediate certificates.)
(k) 如果证书i是版本3证书,请验证basicConstraints扩展是否存在,以及cA是否设置为TRUE。(如果证书i是版本1或版本2证书,则应用程序必须通过带外方式验证证书i是否为CA证书,或者拒绝证书。符合要求的实现可以选择拒绝所有版本1和版本2中间证书。)
(l) If the certificate was not self-issued, verify that max_path_length is greater than zero and decrement max_path_length by 1.
(l) 如果证书不是自行颁发的,请验证max_path_length是否大于零,并将max_path_length减1。
(m) If pathLenConstraint is present in the certificate and is less than max_path_length, set max_path_length to the value of pathLenConstraint.
(m) 如果证书中存在pathLenConstraint并且小于max_path_length,请将max_path_length设置为pathLenConstraint的值。
(n) If a key usage extension is present, verify that the keyCertSign bit is set.
(n) 如果存在密钥使用扩展,请验证是否设置了keyCertSign位。
(o) Recognize and process any other critical extension present in the certificate. Process any other recognized non-critical extension present in the certificate that is relevant to path processing.
(o) 识别并处理证书中存在的任何其他关键扩展。处理证书中与路径处理相关的任何其他已识别的非关键扩展。
If check (a), (k), (l), (n), or (o) fails, the procedure terminates, returning a failure indication and an appropriate reason.
如果检查(a)、(k)、(l)、(n)或(o)失败,程序终止,返回失败指示和适当原因。
If (a), (k), (l), (n), and (o) have completed successfully, increment i and perform the basic certificate processing specified in Section 6.1.3.
如果(a)、(k)、(l)、(n)和(o)已成功完成,则增加i并执行第6.1.3节中规定的基本证书处理。
To complete the processing of the target certificate, perform the following steps for certificate n:
要完成目标证书的处理,请对证书n执行以下步骤:
(a) If explicit_policy is not 0, decrement explicit_policy by 1.
(a) 如果explicit_policy不是0,则将explicit_policy递减1。
(b) If a policy constraints extension is included in the certificate and requireExplicitPolicy is present and has a value of 0, set the explicit_policy state variable to 0.
(b) 如果证书中包含策略约束扩展,并且存在requireExplicitPolicy且其值为0,请将explicit_策略状态变量设置为0。
(c) Assign the certificate subjectPublicKey to working_public_key.
(c) 将证书subjectPublicKey分配给工作公钥。
(d) If the subjectPublicKeyInfo field of the certificate contains an algorithm field with non-null parameters, assign the parameters to the working_public_key_parameters variable.
(d) 如果证书的subjectPublicKeyInfo字段包含具有非null参数的算法字段,请将参数分配给working_public_key_parameters变量。
If the subjectPublicKeyInfo field of the certificate contains an algorithm field with null parameters or parameters are omitted, compare the certificate subjectPublicKey algorithm to the working_public_key_algorithm. If the certificate subjectPublicKey algorithm and the working_public_key_algorithm are different, set the working_public_key_parameters to null.
如果证书的subjectPublicKeyInfo字段包含带有空参数的算法字段或省略了参数,请将证书subjectPublicKey算法与工作的公钥算法进行比较。如果证书主题公钥算法和工作公钥算法不同,请将工作公钥参数设置为null。
(e) Assign the certificate subjectPublicKey algorithm to the working_public_key_algorithm variable.
(e) 将证书subjectPublicKey algorithm分配给working_public_key_algorithm变量。
(f) Recognize and process any other critical extension present in the certificate n. Process any other recognized non-critical extension present in certificate n that is relevant to path processing.
(f) 识别并处理证书n中存在的任何其他关键扩展。处理证书n中与路径处理相关的任何其他已识别的非关键扩展。
(g) Calculate the intersection of the valid_policy_tree and the user-initial-policy-set, as follows:
(g) 计算有效策略树与用户初始策略集的交集,如下所示:
(i) If the valid_policy_tree is NULL, the intersection is NULL.
(i) 如果有效的_策略_树为空,则交集为空。
(ii) If the valid_policy_tree is not NULL and the user-initial-policy-set is any-policy, the intersection is the entire valid_policy_tree.
(ii)如果有效_策略_树不为空,且用户初始策略集为任何策略,则交集为整个有效_策略_树。
(iii) If the valid_policy_tree is not NULL and the user-initial-policy-set is not any-policy, calculate the intersection of the valid_policy_tree and the user-initial-policy-set as follows:
(iii)如果有效的_策略_树不为空且用户初始策略集不是任何策略,则计算有效的_策略_树与用户初始策略集的交集,如下所示:
1. Determine the set of policy nodes whose parent nodes have a valid_policy of anyPolicy. This is the valid_policy_node_set.
1. 确定其父节点具有有效的\u策略anyPolicy的策略节点集。这是有效的\u策略\u节点\u集。
2. If the valid_policy of any node in the valid_policy_node_set is not in the user-initial-policy-set and is not anyPolicy, delete this node and all its children.
2. 如果有效\u策略\u节点\u集中任何节点的有效\u策略不在用户初始策略集中且不是anyPolicy,请删除此节点及其所有子节点。
3. If the valid_policy_tree includes a node of depth n with the valid_policy anyPolicy and the user-initial-policy-set is not any-policy, perform the following steps:
3. 如果有效的\u策略\u树包含一个深度为n的节点,该节点具有有效的\u策略anyPolicy,并且用户初始策略集不是anyPolicy,请执行以下步骤:
a. Set P-Q to the qualifier_set in the node of depth n with valid_policy anyPolicy.
a. 使用有效的\u策略anyPolicy将P-Q设置为深度n节点中的限定符\u集。
b. For each P-OID in the user-initial-policy-set that is not the valid_policy of a node in the valid_policy_node_set, create a child node whose parent is the node of depth n-1 with the valid_policy anyPolicy. Set the values in the child node as follows: set the valid_policy to P-OID, set the qualifier_set to P-Q, and set the expected_policy_set to {P-OID}.
b. 对于用户初始策略集中不是有效\u策略\u节点\u集中节点的有效\u策略的每个P-OID,创建一个子节点,其父节点是深度为n-1且具有有效\u策略anyPolicy的节点。按如下方式设置子节点中的值:将有效的_策略设置为P-OID,将限定符_设置为P-Q,并将预期的_策略_设置为{P-OID}。
c. Delete the node of depth n with the valid_policy anyPolicy.
c. 使用有效的\u策略anyPolicy删除深度为n的节点。
4. If there is a node in the valid_policy_tree of depth n-1 or less without any child nodes, delete that node. Repeat this step until there are no nodes of depth n-1 or less without children.
4. 如果在深度为n-1或更小的有效_策略_树中存在没有任何子节点的节点,请删除该节点。重复此步骤,直到没有深度为n-1或更小且没有子节点的节点。
If either (1) the value of explicit_policy variable is greater than zero or (2) the valid_policy_tree is not NULL, then path processing has succeeded.
如果(1)显式\u策略变量的值大于零或(2)有效的\u策略\u树不为空,则路径处理已成功。
If path processing succeeds, the procedure terminates, returning a success indication together with final value of the valid_policy_tree, the working_public_key, the working_public_key_algorithm, and the working_public_key_parameters.
如果路径处理成功,则过程终止,返回一个成功指示以及有效的策略树、工作公钥、工作公钥算法和工作公钥参数的最终值。
The path validation algorithm describes the process of validating a single certification path. While each certification path begins with a specific trust anchor, there is no requirement that all certification paths validated by a particular system share a single trust anchor. The selection of one or more trusted CAs is a local decision. A system may provide any one of its trusted CAs as the trust anchor for a particular path. The inputs to the path validation algorithm may be different for each path. The inputs used to process a path may reflect application-specific requirements or limitations in the trust accorded a particular trust anchor. For
路径验证算法描述验证单个认证路径的过程。虽然每个认证路径都以一个特定的信任锚点开始,但不要求特定系统验证的所有认证路径共享一个信任锚点。选择一个或多个受信任的CA是本地决定。系统可以提供其任何一个受信任CA作为特定路径的信任锚。对于每个路径,路径验证算法的输入可能不同。用于处理路径的输入可能反映特定信任锚中的特定于应用程序的需求或限制。对于
example, a trusted CA may only be trusted for a particular certificate policy. This restriction can be expressed through the inputs to the path validation procedure.
例如,受信任的CA只能针对特定的证书策略受信任。此限制可以通过路径验证过程的输入来表示。
An implementation MAY augment the algorithm presented in Section 6.1 to further limit the set of valid certification paths that begin with a particular trust anchor. For example, an implementation MAY modify the algorithm to apply a path length constraint to a specific trust anchor during the initialization phase, or the application MAY require the presence of a particular alternative name form in the target certificate, or the application MAY impose requirements on application-specific extensions. Thus, the path validation algorithm presented in Section 6.1 defines the minimum conditions for a path to be considered valid.
一个实现可以扩充第6.1节中介绍的算法,以进一步限制以特定信任锚开始的有效认证路径集。例如,实现可以修改算法以在初始化阶段将路径长度约束应用于特定信任锚点,或者应用可以要求在目标证书中存在特定替代名称形式,或者应用可以对特定于应用的扩展施加要求。因此,第6.1节中介绍的路径验证算法定义了路径被视为有效的最低条件。
Where a CA distributes self-signed certificates to specify trust anchor information, certificate extensions can be used to specify recommended inputs to path validation. For example, a policy constraints extension could be included in the self-signed certificate to indicate that paths beginning with this trust anchor should be trusted only for the specified policies. Similarly, a name constraints extension could be included to indicate that paths beginning with this trust anchor should be trusted only for the specified name spaces. The path validation algorithm presented in Section 6.1 does not assume that trust anchor information is provided in self-signed certificates and does not specify processing rules for additional information included in such certificates. Implementations that use self-signed certificates to specify trust anchor information are free to process or ignore such information.
当CA分发自签名证书以指定信任锚信息时,可以使用证书扩展来指定路径验证的建议输入。例如,自签名证书中可以包含一个策略约束扩展,以指示以该信任锚点开头的路径只应为指定的策略受信任。类似地,可以包括名称约束扩展,以指示以该信任锚点开头的路径只应在指定的名称空间中受信任。第6.1节中介绍的路径验证算法不假设自签名证书中提供了信任锚信息,也不指定此类证书中包含的其他信息的处理规则。使用自签名证书指定信任锚信息的实现可以自由处理或忽略此类信息。
This section describes the steps necessary to determine if a certificate is revoked when CRLs are the revocation mechanism used by the certificate issuer. Conforming implementations that support CRLs are not required to implement this algorithm, but they MUST be functionally equivalent to the external behavior resulting from this procedure when processing CRLs that are issued in conformance with this profile. Any algorithm may be used by a particular implementation so long as it derives the correct result.
本节描述了当CRL是证书颁发者使用的吊销机制时,确定证书是否被吊销所需的步骤。支持CRL的一致性实现不需要实现此算法,但在处理根据此配置文件发布的CRL时,它们必须在功能上等同于此过程产生的外部行为。任何算法都可以由特定的实现使用,只要它得到正确的结果。
This algorithm assumes that all of the needed CRLs are available in a local cache. Further, if the next update time of a CRL has passed, the algorithm assumes a mechanism to fetch a current CRL and place it in the local CRL cache.
该算法假设所有需要的CRL都在本地缓存中可用。此外,如果CRL的下一次更新时间已过,则该算法采用一种机制来获取当前CRL并将其放置在本地CRL缓存中。
This algorithm defines a set of inputs, a set of state variables, and processing steps that are performed for each certificate in the path. The algorithm output is the revocation status of the certificate.
该算法定义了一组输入、一组状态变量以及为路径中的每个证书执行的处理步骤。算法输出是证书的吊销状态。
To support revocation processing, the algorithm requires two inputs:
为了支持撤销处理,该算法需要两个输入:
(a) certificate: The algorithm requires the certificate serial number and issuer name to determine whether a certificate is on a particular CRL. The basicConstraints extension is used to determine whether the supplied certificate is associated with a CA or an end entity. If present, the algorithm uses the cRLDistributionPoints and freshestCRL extensions to determine revocation status.
(a) 证书:该算法需要证书序列号和颁发者名称来确定证书是否位于特定CRL上。basicConstraints扩展用于确定提供的证书是与CA关联还是与最终实体关联。如果存在,该算法将使用cRLDistributionPoints和FreshStCRL扩展来确定吊销状态。
(b) use-deltas: This boolean input determines whether delta CRLs are applied to CRLs.
(b) 使用增量:此布尔输入确定是否将增量CRL应用于CRL。
To support CRL processing, the algorithm requires the following state variables:
为了支持CRL处理,该算法需要以下状态变量:
(a) reasons_mask: This variable contains the set of revocation reasons supported by the CRLs and delta CRLs processed so far. The legal members of the set are the possible revocation reason values minus unspecified: keyCompromise, cACompromise, affiliationChanged, superseded, cessationOfOperation, certificateHold, privilegeWithdrawn, and aACompromise. The special value all-reasons is used to denote the set of all legal members. This variable is initialized to the empty set.
(a) 原因\u掩码:此变量包含迄今为止处理的CRL和增量CRL支持的撤销原因集。该集合的合法成员是可能的撤销原因值减去未指定的值:keyConvertive、cACompromise、affiliationChanged、Excepended、certificateHold、PrivilegeRetracted和AaConvertive。特殊值all Reasures用于表示所有合法成员的集合。此变量初始化为空集。
(b) cert_status: This variable contains the status of the certificate. This variable may be assigned one of the following values: unspecified, keyCompromise, cACompromise, affiliationChanged, superseded, cessationOfOperation, certificateHold, removeFromCRL, privilegeWithdrawn, aACompromise, the special value UNREVOKED, or the special value UNDETERMINED. This variable is initialized to the special value UNREVOKED.
(b) 证书状态:此变量包含证书的状态。此变量可以指定以下值之一:未指定、密钥妥协、CACOMPREMISE、从属关系已更改、已取代、操作许可、证书所有权、从CRL移除、权限撤回、AACOMPREMITION、未撤销的特殊值或未确定的特殊值。此变量初始化为未还原的特殊值。
(c) interim_reasons_mask: This contains the set of revocation reasons supported by the CRL or delta CRL currently being processed.
(c) 临时原因掩码:包含当前正在处理的CRL或增量CRL支持的撤销原因集。
Note: In some environments, it is not necessary to check all reason codes. For example, some environments are only concerned with cACompromise and keyCompromise for CA certificates. This algorithm checks all reason codes. Additional processing and state variables may be necessary to limit the checking to a subset of the reason codes.
注意:在某些环境中,不必检查所有原因代码。例如,有些环境只关心CA证书的cACompromise和KeyComprovise。该算法检查所有原因代码。可能需要额外的处理和状态变量,以将检查限制在原因代码的子集内。
This algorithm begins by assuming that the certificate is not revoked. The algorithm checks one or more CRLs until either the certificate status is determined to be revoked or sufficient CRLs have been checked to cover all reason codes.
此算法首先假定证书未被吊销。该算法检查一个或多个CRL,直到确定证书状态为吊销,或者检查了足够的CRL以覆盖所有原因码。
For each distribution point (DP) in the certificate's CRL distribution points extension, for each corresponding CRL in the local CRL cache, while ((reasons_mask is not all-reasons) and (cert_status is UNREVOKED)) perform the following:
对于证书的CRL分发点扩展中的每个分发点(DP),对于本地CRL缓存中的每个相应CRL,同时((原因\u掩码不是全部原因)和(证书\u状态为未撤销))执行以下操作:
(a) Update the local CRL cache by obtaining a complete CRL, a delta CRL, or both, as required:
(a) 根据需要,通过获取完整CRL、增量CRL或两者来更新本地CRL缓存:
(1) If the current time is after the value of the CRL next update field, then do one of the following:
(1) 如果当前时间晚于CRL next update字段的值,则执行以下操作之一:
(i) If use-deltas is set and either the certificate or the CRL contains the freshest CRL extension, obtain a delta CRL with a next update value that is after the current time and can be used to update the locally cached CRL as specified in Section 5.2.4.
(i) 如果设置了使用增量,并且证书或CRL包含最新的CRL扩展,则获取增量CRL,该增量CRL具有当前时间之后的下一个更新值,可用于按照第5.2.4节的规定更新本地缓存的CRL。
(ii) Update the local CRL cache with a current complete CRL, verify that the current time is before the next update value in the new CRL, and continue processing with the new CRL. If use-deltas is set and either the certificate or the CRL contains the freshest CRL extension, then obtain the current delta CRL that can be used to update the new locally cached complete CRL as specified in Section 5.2.4.
(ii)使用当前完整的CRL更新本地CRL缓存,验证当前时间是否早于新CRL中的下一个更新值,并使用新CRL继续处理。如果设置了使用增量,并且证书或CRL包含最新的CRL扩展,则获取当前增量CRL,该增量CRL可用于更新第5.2.4节中指定的新本地缓存完整CRL。
(2) If the current time is before the value of the next update field, use-deltas is set, and either the certificate or the CRL contains the freshest CRL extension, then obtain the current delta CRL that can be used to update the locally cached complete CRL as specified in Section 5.2.4.
(2) 如果当前时间早于下一个更新字段的值,则设置使用增量,并且证书或CRL包含最新的CRL扩展,然后获取可用于更新本地缓存的完整CRL的当前增量CRL,如第5.2.4节所述。
(b) Verify the issuer and scope of the complete CRL as follows:
(b) 验证完整CRL的发行人和范围,如下所示:
(1) If the DP includes cRLIssuer, then verify that the issuer field in the complete CRL matches cRLIssuer in the DP and that the complete CRL contains an issuing distribution point extension with the indirectCRL boolean asserted. Otherwise, verify that the CRL issuer matches the certificate issuer.
(1) 如果DP包括cRLIssuer,则验证完整CRL中的issuer字段是否与DP中的cRLIssuer匹配,以及完整CRL是否包含声明间接CRL布尔值的发布分发点扩展。否则,请验证CRL颁发者是否与证书颁发者匹配。
(2) If the complete CRL includes an issuing distribution point (IDP) CRL extension, check the following:
(2) 如果完整的CRL包括发行分发点(IDP)CRL扩展,请检查以下内容:
(i) If the distribution point name is present in the IDP CRL extension and the distribution field is present in the DP, then verify that one of the names in the IDP matches one of the names in the DP. If the distribution point name is present in the IDP CRL extension and the distribution field is omitted from the DP, then verify that one of the names in the IDP matches one of the names in the cRLIssuer field of the DP.
(i) 如果分发点名称存在于IDP CRL扩展中且分发字段存在于DP中,则验证IDP中的一个名称是否与DP中的一个名称匹配。如果IDP CRL扩展中存在分发点名称,且DP中省略了分发字段,则验证IDP中的一个名称与DP的cRLIssuer字段中的一个名称是否匹配。
(ii) If the onlyContainsUserCerts boolean is asserted in the IDP CRL extension, verify that the certificate does not include the basic constraints extension with the cA boolean asserted.
(ii)如果在IDP CRL扩展中声明了OnlyContainesSuserCerts布尔值,请验证证书是否不包括声明了cA布尔值的基本约束扩展。
(iii) If the onlyContainsCACerts boolean is asserted in the IDP CRL extension, verify that the certificate includes the basic constraints extension with the cA boolean asserted.
(iii)如果在IDP CRL扩展中声明了OnlyContainesCACerts布尔值,请验证证书是否包含声明了cA布尔值的基本约束扩展。
(iv) Verify that the onlyContainsAttributeCerts boolean is not asserted.
(iv)验证是否未断言OnlyContainesAttributeCerts布尔值。
(c) If use-deltas is set, verify the issuer and scope of the delta CRL as follows:
(c) 如果设置了使用增量,请按如下方式验证增量CRL的颁发者和范围:
(1) Verify that the delta CRL issuer matches the complete CRL issuer.
(1) 验证增量CRL颁发者是否与完整的CRL颁发者匹配。
(2) If the complete CRL includes an issuing distribution point (IDP) CRL extension, verify that the delta CRL contains a matching IDP CRL extension. If the complete CRL omits an IDP CRL extension, verify that the delta CRL also omits an IDP CRL extension.
(2) 如果完整的CRL包含发布分发点(IDP)CRL扩展,请验证增量CRL是否包含匹配的IDP CRL扩展。如果完整的CRL省略了IDP CRL扩展,请验证增量CRL是否也省略了IDP CRL扩展。
(3) Verify that the delta CRL authority key identifier extension matches the complete CRL authority key identifier extension.
(3) 验证增量CRL授权密钥标识符扩展是否与完整的CRL授权密钥标识符扩展匹配。
(d) Compute the interim_reasons_mask for this CRL as follows:
(d) 计算此CRL的临时原因掩码,如下所示:
(1) If the issuing distribution point (IDP) CRL extension is present and includes onlySomeReasons and the DP includes reasons, then set interim_reasons_mask to the intersection of reasons in the DP and onlySomeReasons in the IDP CRL extension.
(1) 如果发布分发点(IDP)CRL扩展存在且仅包含客户,且DP包含原因,则将临时原因屏蔽设置为DP中的原因与IDP CRL扩展中的仅客户的交叉点。
(2) If the IDP CRL extension includes onlySomeReasons but the DP omits reasons, then set interim_reasons_mask to the value of onlySomeReasons in the IDP CRL extension.
(2) 如果IDP CRL扩展仅包括客户,但DP忽略了原因,则将“临时原因”掩码设置为IDP CRL扩展中的“仅客户”值。
(3) If the IDP CRL extension is not present or omits onlySomeReasons but the DP includes reasons, then set interim_reasons_mask to the value of DP reasons.
(3) 如果IDP CRL扩展不存在或仅忽略了客户原因,但DP包含原因,则将“临时原因”掩码设置为DP原因的值。
(4) If the IDP CRL extension is not present or omits onlySomeReasons and the DP omits reasons, then set interim_reasons_mask to the special value all-reasons.
(4) 如果IDP CRL扩展不存在或仅忽略了用户原因,而DP忽略了原因,则将“临时原因”掩码设置为特殊值“所有原因”。
(e) Verify that interim_reasons_mask includes one or more reasons that are not included in the reasons_mask.
(e) 验证临时原因掩码是否包含原因掩码中未包含的一个或多个原因。
(f) Obtain and validate the certification path for the issuer of the complete CRL. The trust anchor for the certification path MUST be the same as the trust anchor used to validate the target certificate. If a key usage extension is present in the CRL issuer's certificate, verify that the cRLSign bit is set.
(f) 获取并验证完整CRL颁发者的认证路径。证书路径的信任锚点必须与用于验证目标证书的信任锚点相同。如果CRL颁发者的证书中存在密钥使用扩展,请验证是否设置了cRLSign位。
(g) Validate the signature on the complete CRL using the public key validated in step (f).
(g) 使用步骤(f)中验证的公钥验证完整CRL上的签名。
(h) If use-deltas is set, then validate the signature on the delta CRL using the public key validated in step (f).
(h) 如果设置了使用增量,则使用步骤(f)中验证的公钥验证增量CRL上的签名。
(i) If use-deltas is set, then search for the certificate on the delta CRL. If an entry is found that matches the certificate issuer and serial number as described in Section 5.3.3, then set the cert_status variable to the indicated reason as follows:
(i) 如果设置了使用增量,则在增量CRL上搜索证书。如果发现条目与第5.3.3节所述的证书颁发者和序列号匹配,则将cert_status变量设置为所示原因,如下所示:
(1) If the reason code CRL entry extension is present, set the cert_status variable to the value of the reason code CRL entry extension.
(1) 如果存在原因代码CRL条目扩展名,请将cert_status变量设置为原因代码CRL条目扩展名的值。
(2) If the reason code CRL entry extension is not present, set the cert_status variable to the value unspecified.
(2) 如果原因代码CRL条目扩展不存在,请将cert_status变量设置为未指定的值。
(j) If (cert_status is UNREVOKED), then search for the certificate on the complete CRL. If an entry is found that matches the certificate issuer and serial number as described in Section 5.3.3, then set the cert_status variable to the indicated reason as described in step (i).
(j) 如果(证书状态为未撤销),则在完整的CRL上搜索证书。如果发现条目与第5.3.3节所述的证书颁发者和序列号匹配,则将cert_status变量设置为步骤(i)中所述的指示原因。
(k) If (cert_status is removeFromCRL), then set cert_status to UNREVOKED.
(k) 如果(证书状态为removeFromCRL),则将证书状态设置为UNREVOKED。
(l) Set the reasons_mask state variable to the union of its previous value and the value of the interim_reasons_mask state variable.
(l) 将原因\u掩码状态变量设置为其上一个值与临时原因\u掩码状态变量值的并集。
If ((reasons_mask is all-reasons) OR (cert_status is not UNREVOKED)), then the revocation status has been determined, so return cert_status.
如果((原因屏蔽为所有原因)或(证书状态为未撤销)),则已确定撤销状态,因此返回证书状态。
If the revocation status has not been determined, repeat the process above with any available CRLs not specified in a distribution point but issued by the certificate issuer. For the processing of such a CRL, assume a DP with both the reasons and the cRLIssuer fields omitted and a distribution point name of the certificate issuer. That is, the sequence of names in fullName is generated from the certificate issuer field as well as the certificate issuerAltName extension. After processing such CRLs, if the revocation status has still not been determined, then return the cert_status UNDETERMINED.
如果尚未确定吊销状态,请对分发点中未指定但由证书颁发者颁发的任何可用CRL重复上述过程。对于此类CRL的处理,假设DP同时省略了原因和cRLIssuer字段以及证书颁发者的分发点名称。也就是说,全名中的名称序列是从证书颁发者字段以及证书颁发者名称扩展生成的。处理此类CRL后,如果吊销状态尚未确定,则返回证书状态未确定。
Internationalized names may be encountered in numerous certificate and CRL fields and extensions, including distinguished names, internationalized domain names, electronic mail addresses, and Internationalized Resource Identifiers (IRIs). Storage, comparison, and presentation of such names require special care. Some characters may be encoded in multiple ways. The same names could be represented in multiple encodings (e.g., ASCII or UTF8). This section establishes conformance requirements for storage or comparison of each of these name forms. Informative guidance on presentation is provided for some of these name forms.
在众多证书和CRL字段和扩展中可能会遇到国际化名称,包括可分辨名称、国际化域名、电子邮件地址和国际化资源标识符(IRI)。此类名称的存储、比较和表示需要特别小心。有些字符可以用多种方式编码。相同的名称可以用多种编码(例如,ASCII或UTF8)表示。本节规定了存储或比较这些名称表格的一致性要求。其中一些姓名表提供了详细的介绍指南。
Representation of internationalized names in distinguished names is covered in Sections 4.1.2.4, Issuer Name, and 4.1.2.6, Subject Name. Standard naming attributes, such as common name, employ the DirectoryString type, which supports internationalized names through a variety of language encodings. Conforming implementations MUST support UTF8String and PrintableString. RFC 3280 required only binary comparison of attribute values encoded in UTF8String, however, this specification requires a more comprehensive handling of comparison. Implementations may encounter certificates and CRLs with names encoded using TeletexString, BMPString, or UniversalString, but support for these is OPTIONAL.
第4.1.2.4节“发行人名称”和第4.1.2.6节“主体名称”中涵盖了以可分辨名称表示国际化名称。标准命名属性(如common name)采用DirectoryString类型,该类型通过各种语言编码支持国际化名称。一致性实现必须支持UTF8String和PrintableString。RFC3280只需要对UTF8String中编码的属性值进行二进制比较,然而,该规范要求对比较进行更全面的处理。实现可能会遇到名称使用TeletextString、BMPString或UniversalString编码的证书和CRL,但对它们的支持是可选的。
Conforming implementations MUST use the LDAP StringPrep profile (including insignificant space handling), as specified in [RFC4518], as the basis for comparison of distinguished name attributes encoded in either PrintableString or UTF8String. Conforming implementations MUST support name comparisons using caseIgnoreMatch. Support for attribute types that use other equality matching rules is optional.
一致性实现必须使用[RFC4518]中规定的LDAP StringPrep配置文件(包括不重要的空间处理),作为比较以PrintableString或UTF8String编码的可分辨名称属性的基础。一致性实现必须支持使用caseIgnoreMatch进行名称比较。支持使用其他相等匹配规则的属性类型是可选的。
Before comparing names using the caseIgnoreMatch matching rule, conforming implementations MUST perform the six-step string preparation algorithm described in [RFC4518] for each attribute of type DirectoryString, with the following clarifications:
在使用caseIgnoreMatch匹配规则比较名称之前,一致性实现必须对DirectoryString类型的每个属性执行[RFC4518]中描述的六步字符串准备算法,并进行以下说明:
* In step 2, Map, the mapping shall include case folding as specified in Appendix B.2 of [RFC3454].
* 在步骤2 Map中,映射应包括[RFC3454]附录B.2中规定的箱子折叠。
* In step 6, Insignificant Character Removal, perform white space compression as specified in Section 2.6.1, Insignificant Space Handling, of [RFC4518].
* 在步骤6,不重要字符删除中,按照[RFC4518]第2.6.1节“不重要空间处理”中的规定执行空格压缩。
When performing the string preparation algorithm, attributes MUST be treated as stored values.
执行字符串准备算法时,必须将属性视为存储值。
Comparisons of domainComponent attributes MUST be performed as specified in Section 7.3.
必须按照第7.3节的规定对domainComponent属性进行比较。
Two naming attributes match if the attribute types are the same and the values of the attributes are an exact match after processing with the string preparation algorithm. Two relative distinguished names RDN1 and RDN2 match if they have the same number of naming attributes and for each naming attribute in RDN1 there is a matching naming attribute in RDN2. Two distinguished names DN1 and DN2 match if they have the same number of RDNs, for each RDN in DN1 there is a matching RDN in DN2, and the matching RDNs appear in the same order in both DNs. A distinguished name DN1 is within the subtree defined by the
如果属性类型相同且使用字符串准备算法处理后属性值完全匹配,则两个命名属性匹配。如果两个相对的可分辨名称RDN1和RDN2具有相同数量的命名属性,并且RDN1中的每个命名属性在RDN2中都有一个匹配的命名属性,则它们匹配。如果具有相同数量的RDN,则两个可分辨名称DN1和DN2匹配,对于DN1中的每个RDN,DN2中都有一个匹配的RDN,并且匹配的RDN在两个DNs中以相同的顺序出现。可分辨名称DN1位于
distinguished name DN2 if DN1 contains at least as many RDNs as DN2, and DN1 and DN2 are a match when trailing RDNs in DN1 are ignored.
可分辨名称DN2,如果DN1包含的RDN至少与DN2一样多,并且当忽略DN1中的尾随RDN时,DN1和DN2是匹配的。
Internationalized Domain Names (IDNs) may be included in certificates and CRLs in the subjectAltName and issuerAltName extensions, name constraints extension, authority information access extension, subject information access extension, CRL distribution points extension, and issuing distribution point extension. Each of these extensions uses the GeneralName type; one choice in GeneralName is the dNSName field, which is defined as type IA5String.
国际化域名(IDN)可以包含在subjectAltName和issuerAltName扩展、名称约束扩展、权限信息访问扩展、主题信息访问扩展、CRL分发点扩展和发布分发点扩展中的证书和CRL中。每个扩展都使用GeneralName类型;GeneralName中的一个选项是dNSName字段,该字段定义为IA5String类型。
IA5String is limited to the set of ASCII characters. To accommodate internationalized domain names in the current structure, conforming implementations MUST convert internationalized domain names to the ASCII Compatible Encoding (ACE) format as specified in Section 4 of RFC 3490 before storage in the dNSName field. Specifically, conforming implementations MUST perform the conversion operation specified in Section 4 of RFC 3490, with the following clarifications:
IA5String仅限于ASCII字符集。为了在当前结构中容纳国际化域名,一致性实现必须将国际化域名转换为RFC 3490第4节规定的ASCII兼容编码(ACE)格式,然后再存储到dNSName字段中。具体而言,符合性实施必须执行RFC 3490第4节规定的转换操作,并进行以下澄清:
* in step 1, the domain name SHALL be considered a "stored string". That is, the AllowUnassigned flag SHALL NOT be set;
* 在步骤1中,域名应被视为“存储字符串”。即,不应设置AllowUnassigned标志;
* in step 3, set the flag called "UseSTD3ASCIIRules";
* 在步骤3中,设置名为“usestd3ascirules”的标志;
* in step 4, process each label with the "ToASCII" operation; and
* 在步骤4中,使用“ToASCII”操作处理每个标签;和
* in step 5, change all label separators to U+002E (full stop).
* 在步骤5中,将所有标签分隔符更改为U+002E(句号)。
When comparing DNS names for equality, conforming implementations MUST perform a case-insensitive exact match on the entire DNS name. When evaluating name constraints, conforming implementations MUST perform a case-insensitive exact match on a label-by-label basis. As noted in Section 4.2.1.10, any DNS name that may be constructed by adding labels to the left-hand side of the domain name given as the constraint is considered to fall within the indicated subtree.
在比较DNS名称是否相等时,一致性实现必须对整个DNS名称执行不区分大小写的精确匹配。在评估名称约束时,一致性实现必须逐个标签执行不区分大小写的精确匹配。如第4.2.1.10节所述,通过在作为约束条件给出的域名左侧添加标签来构造的任何DNS名称都被视为属于指定子树。
Implementations should convert IDNs to Unicode before display. Specifically, conforming implementations should perform the conversion operation specified in Section 4 of RFC 3490, with the following clarifications:
实现应在显示之前将IDN转换为Unicode。具体而言,符合性实施应执行RFC 3490第4节规定的转换操作,并进行以下澄清:
* in step 1, the domain name SHALL be considered a "stored string". That is, the AllowUnassigned flag SHALL NOT be set;
* 在步骤1中,域名应被视为“存储字符串”。即,不应设置AllowUnassigned标志;
* in step 3, set the flag called "UseSTD3ASCIIRules";
* 在步骤3中,设置名为“usestd3ascirules”的标志;
* in step 4, process each label with the "ToUnicode" operation; and
* 在步骤4中,使用“ToUnicode”操作处理每个标签;和
* skip step 5.
* 跳过第5步。
Note: Implementations MUST allow for increased space requirements for IDNs. An IDN ACE label will begin with the four additional characters "xn--" and may require as many as five ASCII characters to specify a single international character.
注意:实施必须考虑到IDN增加的空间需求。IDN ACE标签将以四个附加字符“xn--”开头,并且可能需要多达五个ASCII字符来指定单个国际字符。
Domain Names may also be represented as distinguished names using domain components in the subject field, the issuer field, the subjectAltName extension, or the issuerAltName extension. As with the dNSName in the GeneralName type, the value of this attribute is defined as an IA5String. Each domainComponent attribute represents a single label. To represent a label from an IDN in the distinguished name, the implementation MUST perform the "ToASCII" label conversion specified in Section 4.1 of RFC 3490. The label SHALL be considered a "stored string". That is, the AllowUnassigned flag SHALL NOT be set.
域名也可以使用subject字段、issuer字段、subjectAltName扩展名或issuerAltName扩展名中的域组件表示为可分辨名称。与GeneralName类型中的dNSName一样,此属性的值定义为IA5String。每个domainComponent属性表示一个标签。要以可分辨名称表示IDN中的标签,实现必须执行RFC 3490第4.1节中规定的“ToASCII”标签转换。标签应视为“存储字符串”。也就是说,不应设置AllowUnassigned标志。
Conforming implementations shall perform a case-insensitive exact match when comparing domainComponent attributes in distinguished names, as described in Section 7.2.
如第7.2节所述,在比较区分名称中的domainComponent属性时,一致性实现应执行不区分大小写的精确匹配。
Implementations should convert ACE labels to Unicode before display. Specifically, conforming implementations should perform the "ToUnicode" conversion operation specified, as described in Section 7.2, on each ACE label before displaying the name.
实现应在显示前将ACE标签转换为Unicode。具体而言,符合要求的实施应在显示名称之前,在每个ACE标签上执行第7.2节所述的“ToUnicode”转换操作。
Internationalized Resource Identifiers (IRIs) are the internationalized complement to the Uniform Resource Identifier (URI). IRIs are sequences of characters from Unicode, while URIs are sequences of characters from the ASCII character set. [RFC3987] defines a mapping from IRIs to URIs. While IRIs are not encoded directly in any certificate fields or extensions, their mapped URIs may be included in certificates and CRLs. URIs may appear in the subjectAltName and issuerAltName extensions, name constraints extension, authority information access extension, subject information access extension, issuing distribution point extension, and CRL distribution points extension. Each of these extensions uses the GeneralName type; URIs are encoded in the uniformResourceIdentifier field in GeneralName, which is defined as type IA5String.
国际化资源标识符(IRI)是对统一资源标识符(URI)的国际化补充。IRI是来自Unicode的字符序列,而URI是来自ASCII字符集的字符序列。[RFC3987]定义从IRIs到URI的映射。虽然虹膜不直接编码在任何证书字段或扩展中,但其映射的URI可能包含在证书和CRL中。URI可能出现在subjectAltName和issuerAltName扩展、name constraints扩展、authority information access扩展、subject information access扩展、issuing distribution point扩展和CRL distribution points扩展中。每个扩展都使用GeneralName类型;URI编码在GeneralName中的uniformResourceIdentifier字段中,该字段定义为IA5String类型。
To accommodate IRIs in the current structure, conforming implementations MUST map IRIs to URIs as specified in Section 3.1 of [RFC3987], with the following clarifications:
为了在当前结构中容纳IRI,一致性实施必须按照[RFC3987]第3.1节的规定将IRI映射到URI,并进行以下澄清:
* in step 1, generate a UCS character sequence from the original IRI format normalizing according to the NFC as specified in Variant b (normalization according to NFC);
* 在步骤1中,根据变体b(根据NFC标准化)中指定的NFC标准化的原始IRI格式生成UCS字符序列;
* perform step 2 using the output from step 1.
* 使用步骤1的输出执行步骤2。
Implementations MUST NOT convert the ireg-name component before performing step 2.
在执行步骤2之前,实现不得转换ireg名称组件。
Before URIs may be compared, conforming implementations MUST perform a combination of the syntax-based and scheme-based normalization techniques described in [RFC3987]. Specifically, conforming implementations MUST prepare URIs for comparison as follows:
在比较URI之前,一致性实现必须结合[RFC3987]中描述的基于语法和基于方案的规范化技术。具体而言,一致性实现必须准备URI进行比较,如下所示:
* Step 1: Where IRIs allow the usage of IDNs, those names MUST be converted to ASCII Compatible Encoding as specified in Section 7.2 above.
* 步骤1:如果IRIs允许使用IDN,则必须将这些名称转换为上文第7.2节规定的ASCII兼容编码。
* Step 2: The scheme and host are normalized to lowercase, as described in Section 5.3.2.1 of [RFC3987].
* 步骤2:将方案和主机规范化为小写,如[RFC3987]第5.3.2.1节所述。
* Step 3: Perform percent-encoding normalization, as specified in Section 5.3.2.3 of [RFC3987].
* 步骤3:按照[RFC3987]第5.3.2.3节的规定,执行百分比编码规范化。
* Step 4: Perform path segment normalization, as specified in Section 5.3.2.4 of [RFC3987].
* 步骤4:按照[RFC3987]第5.3.2.4节的规定,执行路径段规范化。
* Step 5: If recognized, the implementation MUST perform scheme-based normalization as specified in Section 5.3.3 of [RFC3987].
* 步骤5:如果识别,实现必须按照[RFC3987]第5.3.3节的规定执行基于方案的规范化。
Conforming implementations MUST recognize and perform scheme-based normalization for the following schemes: ldap, http, https, and ftp. If the scheme is not recognized, step 5 is omitted.
一致性实现必须识别并执行以下方案的基于方案的规范化:ldap、http、https和ftp。如果方案未被识别,则省略步骤5。
When comparing URIs for equivalence, conforming implementations shall perform a case-sensitive exact match.
在比较URI的等效性时,一致性实现应执行区分大小写的精确匹配。
Implementations should convert URIs to Unicode before display. Specifically, conforming implementations should perform the conversion operation specified in Section 3.2 of [RFC3987].
实现应在显示之前将URI转换为Unicode。具体而言,一致性实施应执行[RFC3987]第3.2节中规定的转换操作。
Electronic Mail addresses may be included in certificates and CRLs in the subjectAltName and issuerAltName extensions, name constraints extension, authority information access extension, subject information access extension, issuing distribution point extension, or CRL distribution points extension. Each of these extensions uses the GeneralName construct; GeneralName includes the rfc822Name choice, which is defined as type IA5String. To accommodate email addresses with internationalized domain names using the current structure, conforming implementations MUST convert the addresses into an ASCII representation.
电子邮件地址可能包含在subjectAltName和issuerAltName扩展、name constraints扩展、authority information access扩展、subject information access扩展、issuing distribution point扩展或CRL distribution points扩展中的证书和CRL中。每个扩展都使用GeneralName构造;GeneralName包括rfc822Name选项,该选项定义为IA5String类型。为了使用当前结构容纳具有国际化域名的电子邮件地址,一致性实现必须将地址转换为ASCII表示形式。
Where the host-part (the Domain of the Mailbox) contains an internationalized name, the domain name MUST be converted from an IDN to the ASCII Compatible Encoding (ACE) format as specified in Section 7.2.
如果主机部分(邮箱的域)包含国际化名称,则必须按照第7.2节的规定将域名从IDN转换为ASCII兼容编码(ACE)格式。
Two email addresses are considered to match if:
如果出现以下情况,则认为两个电子邮件地址匹配:
1) the local-part of each name is an exact match, AND
1) 每个名称的本地部分完全匹配,并且
2) the host-part of each name matches using a case-insensitive ASCII comparison.
2) 每个名称的主机部分使用不区分大小写的ASCII比较进行匹配。
Implementations should convert the host-part of internationalized email addresses specified in these extensions to Unicode before display. Specifically, conforming implementations should perform the conversion of the host-part of the Mailbox as described in Section 7.2.
在显示之前,实现应该将这些扩展中指定的国际化电子邮件地址的主机部分转换为Unicode。具体而言,一致性实施应按照第7.2节所述对邮箱的主机部分进行转换。
The majority of this specification is devoted to the format and content of certificates and CRLs. Since certificates and CRLs are digitally signed, no additional integrity service is necessary. Neither certificates nor CRLs need be kept secret, and unrestricted and anonymous access to certificates and CRLs has no security implications.
本规范的大部分内容用于证书和CRL的格式和内容。由于证书和CRL是数字签名的,因此不需要额外的完整性服务。证书和CRL都不需要保密,对证书和CRL的无限制匿名访问没有安全隐患。
However, security factors outside the scope of this specification will affect the assurance provided to certificate users. This section highlights critical issues to be considered by implementers, administrators, and users.
但是,本规范范围之外的安全因素将影响向证书用户提供的保证。本节重点介绍实施者、管理员和用户需要考虑的关键问题。
The procedures performed by CAs and RAs to validate the binding of the subject's identity to their public key greatly affect the assurance that ought to be placed in the certificate. Relying
CAs和RAs为验证主体身份与其公钥的绑定而执行的程序极大地影响了应该放在证书中的保证。依靠
parties might wish to review the CA's certification practice statement. This is particularly important when issuing certificates to other CAs.
缔约方不妨审查认证机构的认证实践声明。这在向其他CA颁发证书时尤为重要。
The use of a single key pair for both signature and other purposes is strongly discouraged. Use of separate key pairs for signature and key management provides several benefits to the users. The ramifications associated with loss or disclosure of a signature key are different from loss or disclosure of a key management key. Using separate key pairs permits a balanced and flexible response. Similarly, different validity periods or key lengths for each key pair may be appropriate in some application environments. Unfortunately, some legacy applications (e.g., Secure Sockets Layer (SSL)) use a single key pair for signature and key management.
强烈反对将单个密钥对用于签名和其他目的。使用单独的密钥对进行签名和密钥管理为用户提供了一些好处。与签名密钥的丢失或泄露相关的后果不同于密钥管理密钥的丢失或泄露。使用单独的密钥对允许平衡和灵活的响应。类似地,在某些应用程序环境中,每个密钥对的不同有效期或密钥长度可能是合适的。不幸的是,一些遗留应用程序(例如,安全套接字层(SSL))使用单个密钥对进行签名和密钥管理。
The protection afforded private keys is a critical security factor. On a small scale, failure of users to protect their private keys will permit an attacker to masquerade as them or decrypt their personal information. On a larger scale, compromise of a CA's private signing key may have a catastrophic effect. If an attacker obtains the private key unnoticed, the attacker may issue bogus certificates and CRLs. Existence of bogus certificates and CRLs will undermine confidence in the system. If such a compromise is detected, all certificates issued to the compromised CA MUST be revoked, preventing services between its users and users of other CAs. Rebuilding after such a compromise will be problematic, so CAs are advised to implement a combination of strong technical measures (e.g., tamper-resistant cryptographic modules) and appropriate management procedures (e.g., separation of duties) to avoid such an incident.
私钥的保护是一个关键的安全因素。在小范围内,如果用户未能保护其私钥,攻击者就可以伪装成私钥或解密其个人信息。在更大范围内,CA私有签名密钥的泄露可能会产生灾难性的影响。如果攻击者在未被注意的情况下获取私钥,则攻击者可能会颁发伪造的证书和CRL。伪造证书和CRL的存在将削弱对系统的信心。如果检测到此类泄露,则必须吊销颁发给泄露CA的所有证书,从而阻止其用户与其他CA用户之间的服务。在这种妥协之后进行重建会有问题,因此建议CA实施强有力的技术措施(例如,防篡改加密模块)和适当的管理程序(例如,职责分离)相结合,以避免此类事件。
Loss of a CA's private signing key may also be problematic. The CA would not be able to produce CRLs or perform normal key rollover. CAs SHOULD maintain secure backup for signing keys. The security of the key backup procedures is a critical factor in avoiding key compromise.
CA的私人签名密钥丢失也可能有问题。CA将无法生成CRL或执行正常的密钥翻转。CA应维护签名密钥的安全备份。密钥备份过程的安全性是避免密钥泄露的关键因素。
The availability and freshness of revocation information affects the degree of assurance that ought to be placed in a certificate. While certificates expire naturally, events may occur during its natural lifetime that negate the binding between the subject and public key. If revocation information is untimely or unavailable, the assurance associated with the binding is clearly reduced. Relying parties might not be able to process every critical extension that can appear in a CRL. CAs SHOULD take extra care when making revocation information available only through CRLs that contain critical extensions, particularly if support for those extensions is not mandated by this profile. For example, if revocation information is supplied using a combination of delta CRLs and full CRLs, and the
撤销信息的可用性和新鲜度会影响应该放在证书中的保证程度。虽然证书自然过期,但在其自然生存期内可能会发生否定主题和公钥之间绑定的事件。如果撤销信息不及时或不可用,则与绑定相关的保证将明显减少。依赖方可能无法处理CRL中可能出现的每个关键扩展。CA在仅通过包含关键扩展的CRL提供撤销信息时应格外小心,特别是在此配置文件未强制要求支持这些扩展的情况下。例如,如果使用增量CRL和完整CRL的组合提供吊销信息,则
delta CRLs are issued more frequently than the full CRLs, then relying parties that cannot handle the critical extensions related to delta CRL processing will not be able to obtain the most recent revocation information. Alternatively, if a full CRL is issued whenever a delta CRL is issued, then timely revocation information will be available to all relying parties. Similarly, implementations of the certification path validation mechanism described in Section 6 that omit revocation checking provide less assurance than those that support it.
增量CRL的发布频率高于完整CRL,因此无法处理与增量CRL处理相关的关键扩展的依赖方将无法获得最新的撤销信息。或者,如果在发出增量CRL时发出完整CRL,则所有依赖方都可以及时获得撤销信息。类似地,第6节中描述的省略撤销检查的认证路径验证机制的实现比支持撤销检查的实现提供的保证要少。
The certification path validation algorithm depends on the certain knowledge of the public keys (and other information) about one or more trusted CAs. The decision to trust a CA is an important decision as it ultimately determines the trust afforded a certificate. The authenticated distribution of trusted CA public keys (usually in the form of a "self-signed" certificate) is a security critical out-of-band process that is beyond the scope of this specification.
认证路径验证算法取决于关于一个或多个受信任CA的公钥(和其他信息)的特定知识。信任CA的决定是一个重要的决定,因为它最终决定了对证书的信任。可信CA公钥的认证分发(通常以“自签名”证书的形式)是一个安全关键的带外过程,超出了本规范的范围。
In addition, where a key compromise or CA failure occurs for a trusted CA, the user will need to modify the information provided to the path validation routine. Selection of too many trusted CAs makes the trusted CA information difficult to maintain. On the other hand, selection of only one trusted CA could limit users to a closed community of users.
此外,当可信CA出现密钥泄露或CA故障时,用户需要修改提供给路径验证例程的信息。选择过多的可信CA会使可信CA信息难以维护。另一方面,仅选择一个受信任的CA可能会将用户限制在一个封闭的用户社区中。
The quality of implementations that process certificates also affects the degree of assurance provided. The path validation algorithm described in Section 6 relies upon the integrity of the trusted CA information, and especially the integrity of the public keys associated with the trusted CAs. By substituting public keys for which an attacker has the private key, an attacker could trick the user into accepting false certificates.
处理证书的实现质量也会影响所提供的保证程度。第6节中描述的路径验证算法依赖于可信CA信息的完整性,尤其是与可信CA相关联的公钥的完整性。通过替换攻击者拥有私钥的公钥,攻击者可以欺骗用户接受虚假证书。
The binding between a key and certificate subject cannot be stronger than the cryptographic module implementation and algorithms used to generate the signature. Short key lengths or weak hash algorithms will limit the utility of a certificate. CAs are encouraged to note advances in cryptology so they can employ strong cryptographic techniques. In addition, CAs SHOULD decline to issue certificates to CAs or end entities that generate weak signatures.
密钥和证书主体之间的绑定不能强于用于生成签名的加密模块实现和算法。短密钥长度或弱哈希算法将限制证书的实用性。鼓励CA注意密码学的进展,以便他们能够使用强大的密码技术。此外,CA应拒绝向生成弱签名的CA或终端实体颁发证书。
Inconsistent application of name comparison rules can result in acceptance of invalid X.509 certification paths or rejection of valid ones. The X.500 series of specifications defines rules for comparing distinguished names that require comparison of strings without regard
名称比较规则的不一致应用可能导致接受无效的X.509认证路径或拒绝有效路径。X.500系列规范定义了用于比较区分名称的规则,这些名称要求不考虑字符串的比较
to case, character set, multi-character white space substring, or leading and trailing white space. This specification relaxes these requirements, requiring support for binary comparison at a minimum.
大小写、字符集、多字符空格子字符串或前导和尾随空格。本规范放宽了这些要求,至少需要支持二进制比较。
CAs MUST encode the distinguished name in the subject field of a CA certificate identically to the distinguished name in the issuer field in certificates issued by that CA. If CAs use different encodings, implementations might fail to recognize name chains for paths that include this certificate. As a consequence, valid paths could be rejected.
CA必须将CA证书主题字段中的可分辨名称编码为与该CA颁发的证书中颁发者字段中的可分辨名称相同的名称。如果CA使用不同的编码,则实现可能无法识别包含此证书的路径的名称链。因此,可能会拒绝有效路径。
In addition, name constraints for distinguished names MUST be stated identically to the encoding used in the subject field or subjectAltName extension. If not, then name constraints stated as excludedSubtrees will not match and invalid paths will be accepted and name constraints expressed as permittedSubtrees will not match and valid paths will be rejected. To avoid acceptance of invalid paths, CAs SHOULD state name constraints for distinguished names as permittedSubtrees wherever possible.
此外,可分辨名称的名称约束必须与subject字段或subjectAltName扩展中使用的编码相同。如果不匹配,则表示为excludedSubtrees的名称约束将不匹配,并且将接受无效路径,表示为permittedSubtrees的名称约束将不匹配,并且将拒绝有效路径。为避免接受无效路径,CA应尽可能将可分辨名称的名称约束声明为permittedSubtrees。
In general, using the nameConstraints extension to constrain one name form (e.g., DNS names) offers no protection against use of other name forms (e.g., electronic mail addresses).
一般来说,使用nameConstraints扩展来约束一种名称形式(例如DNS名称)无法防止使用其他名称形式(例如电子邮件地址)。
While X.509 mandates that names be unambiguous, there is a risk that two unrelated authorities will issue certificates and/or CRLs under the same issuer name. As a means of reducing problems and security issues related to issuer name collisions, CA and CRL issuer names SHOULD be formed in a way that reduces the likelihood of name collisions. Implementers should take into account the possible existence of multiple unrelated CAs and CRL issuers with the same name. At a minimum, implementations validating CRLs MUST ensure that the certification path of a certificate and the CRL issuer certification path used to validate the certificate terminate at the same trust anchor.
虽然X.509要求名称必须明确,但存在两个不相关的机构以相同的发行人名称发行证书和/或CRL的风险。作为减少与颁发者名称冲突相关的问题和安全问题的一种手段,CA和CRL颁发者名称的形成方式应减少名称冲突的可能性。实施者应考虑到可能存在多个同名的不相关CA和CRL发行者。验证CRL的实现至少必须确保证书的证书路径和用于验证证书的CRL颁发者证书路径终止于同一信任锚点。
While the local-part of an electronic mail address is case sensitive [RFC2821], emailAddress attribute values are not case sensitive [RFC2985]. As a result, there is a risk that two different email addresses will be treated as the same address when the matching rule for the emailAddress attribute is used, if the email server exploits the case sensitivity of mailbox local-parts. Implementers should not include an email address in the emailAddress attribute if the email server that hosts the email address treats the local-part of email addresses as case sensitive.
虽然电子邮件地址的本地部分区分大小写[RFC2821],但emailAddress属性值不区分大小写[RFC2985]。因此,如果电子邮件服务器利用邮箱本地部分的大小写敏感度,则在使用emailAddress属性的匹配规则时,存在两个不同的电子邮件地址将被视为同一地址的风险。如果承载电子邮件地址的电子邮件服务器将电子邮件地址的本地部分视为区分大小写,则实施者不应在emailAddress属性中包含电子邮件地址。
Implementers should be aware of risks involved if the CRL distribution points or authority information access extensions of
如果CRL分发点或权限信息访问扩展
corrupted certificates or CRLs contain links to malicious code. Implementers should always take the steps of validating the retrieved data to ensure that the data is properly formed.
损坏的证书或CRL包含指向恶意代码的链接。实现者应该始终采取验证检索到的数据的步骤,以确保数据的格式正确。
When certificates include a cRLDistributionPoints extension with an https URI or similar scheme, circular dependencies can be introduced. The relying party is forced to perform an additional path validation in order to obtain the CRL required to complete the initial path validation! Circular conditions can also be created with an https URI (or similar scheme) in the authorityInfoAccess or subjectInfoAccess extensions. At worst, this situation can create unresolvable dependencies.
当证书包含带有https URI或类似方案的cRLDistributionPoints扩展时,可以引入循环依赖关系。依赖方被迫执行额外的路径验证,以获得完成初始路径验证所需的CRL!还可以使用authorityInfoAccess或subjectInfoAccess扩展中的https URI(或类似方案)创建循环条件。在最坏的情况下,这种情况会产生无法解决的依赖关系。
CAs SHOULD NOT include URIs that specify https, ldaps, or similar schemes in extensions. CAs that include an https URI in one of these extensions MUST ensure that the server's certificate can be validated without using the information that is pointed to by the URI. Relying parties that choose to validate the server's certificate when obtaining information pointed to by an https URI in the cRLDistributionPoints, authorityInfoAccess, or subjectInfoAccess extensions MUST be prepared for the possibility that this will result in unbounded recursion.
CA不应包括在扩展中指定https、LDAP或类似方案的URI。在其中一个扩展中包含https URI的CA必须确保可以在不使用URI所指向的信息的情况下验证服务器的证书。在获取由cRLDistributionPoints、authorityInfoAccess或subjectInfoAccess扩展中的https URI指向的信息时,选择验证服务器证书的依赖方必须做好准备,以防这会导致无限递归。
Self-issued certificates provide CAs with one automated mechanism to indicate changes in the CA's operations. In particular, self-issued certificates may be used to implement a graceful change-over from one non-compromised CA key pair to the next. Detailed procedures for "CA key update" are specified in [RFC4210], where the CA protects its new public key using its previous private key and vice versa using two self-issued certificates. Conforming client implementations will process the self-issued certificate and determine whether certificates issued under the new key may be trusted. Self-issued certificates MAY be used to support other changes in CA operations, such as additions to the CA's policy set, using similar procedures.
自我颁发的证书为CA提供了一种自动机制,以指示CA操作的变化。特别地,可以使用自颁发的证书来实现从一个未泄露的CA密钥对到下一个CA密钥对的优雅转换。[RFC4210]中规定了“CA密钥更新”的详细过程,其中CA使用其先前的私钥保护其新公钥,反之亦然,使用两个自颁发的证书。一致性客户端实现将处理自颁发的证书,并确定根据新密钥颁发的证书是否可信。使用类似的过程,自颁发的证书可用于支持CA操作中的其他更改,例如添加到CA的策略集。
Some legacy implementations support names encoded in the ISO 8859-1 character set (Latin1String) [ISO8859] but tag them as TeletexString. TeletexString encodes a larger character set than ISO 8859-1, but it encodes some characters differently. The name comparison rules specified in Section 7.1 assume that TeletexStrings are encoded as described in the ASN.1 standard. When comparing names encoded using the Latin1String character set, false positives and negatives are possible.
一些传统实现支持以ISO 8859-1字符集(拉丁字符串)[ISO8859]编码的名称,但将其标记为TeletextString。TELETEXTSTRING编码的字符集比ISO 8859-1大,但对某些字符的编码不同。第7.1节中规定的名称比较规则假设电传字符串按照ASN.1标准中的描述进行编码。比较使用拉丁字符串字符集编码的名称时,可能会出现误报和漏报。
When strings are mapped from internal representations to visual representations, sometimes two different strings will have the same or similar visual representations. This can happen for many different reasons, including use of similar glyphs and use of
当字符串从内部表示映射到视觉表示时,有时两个不同的字符串将具有相同或相似的视觉表示。这可能是由于许多不同的原因造成的,包括使用类似的图示符和
composed characters (such as e + ' equaling U+00E9, the Korean composed characters, and vowels above consonant clusters in certain languages). As a result of this situation, people doing visual comparisons between two different names may think they are the same when in fact they are not. Also, people may mistake one string for another. Issuers of certificates and relying parties both need to be aware of this situation.
组合字符(如e+'等于U+00E9、韩国语组合字符以及某些语言中辅音簇上方的元音)。由于这种情况,在两个不同名字之间进行视觉比较的人可能会认为他们是相同的,而事实上他们不是。此外,人们可能会把一根绳子误认为另一根。证书的发行人和依赖方都需要了解这种情况。
Extensions in certificates and CRLs are identified using object identifiers. The objects are defined in an arc delegated by IANA to the PKIX Working Group. No further action by IANA is necessary for this document or any anticipated updates.
证书和CRL中的扩展使用对象标识符标识。这些对象在IANA委托给PKIX工作组的arc中定义。IANA无需对本文件或任何预期更新采取进一步行动。
Warwick Ford participated with the authors in some of the design team meetings that directed development of this document. The design team's efforts were guided by contributions from Matt Crawford, Tom Gindin, Steve Hanna, Stephen Henson, Paul Hoffman, Takashi Ito, Denis Pinkas, and Wen-Cheng Wang.
沃里克·福特和作者一起参加了指导本文件开发的一些设计团队会议。设计团队的工作受到马特·克劳福德、汤姆·金丁、史蒂夫·汉纳、斯蒂芬·汉森、保罗·霍夫曼、伊藤隆志、丹尼斯·平卡斯和王文成的贡献的指导。
[RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.
[RFC791]Postel,J.,“互联网协议”,标准5,RFC7911981年9月。
[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November 1987.
[RFC1034]Mockapetris,P.,“域名-概念和设施”,STD 13,RFC 1034,1987年11月。
[RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -- Application and Support", STD 3, RFC 1123, October 1989.
[RFC1123]Braden,R.,Ed.“互联网主机的要求——应用和支持”,STD 3,RFC 1123,1989年10月。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.
[RFC2460]Deering,S.和R.Hinden,“互联网协议,第6版(IPv6)规范”,RFC 2460,1998年12月。
[RFC2585] Housley, R. and P. Hoffman, "Internet X.509 Public Key Infrastructure: Operational Protocols: FTP and HTTP", RFC 2585, May 1999.
[RFC2585]Housley,R.和P.Hoffman,“互联网X.509公钥基础设施:操作协议:FTP和HTTP”,RFC 25851999年5月。
[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.
[RFC2616]菲尔丁,R.,盖蒂斯,J.,莫卧儿,J.,弗莱斯蒂克,H.,马斯特,L.,利奇,P.,和T.伯纳斯李,“超文本传输协议——HTTP/1.1”,RFC 2616,1999年6月。
[RFC2797] Myers, M., Liu, X., Schaad, J., and J. Weinstein, "Certificate Management Messages over CMS", RFC 2797, April 2000.
[RFC2797]Myers,M.,Liu,X.,Schaad,J.,和J.Weinstein,“CMS上的证书管理消息”,RFC 2797,2000年4月。
[RFC2821] Klensin, J., Ed., "Simple Mail Transfer Protocol", RFC 2821, April 2001.
[RFC2821]Klensin,J.,Ed.,“简单邮件传输协议”,RFC 28212001年4月。
[RFC3454] Hoffman, P. and M. Blanchet, "Preparation of Internationalized Strings ("stringprep")", RFC 3454, December 2002.
[RFC3454]Hoffman,P.和M.Blanchet,“国际化弦的准备(“stringprep”)”,RFC 3454,2002年12月。
[RFC3490] Faltstrom, P., Hoffman, P., and A. Costello, "Internationalizing Domain Names in Applications (IDNA)", RFC 3490, March 2003.
[RFC3490]Faltstrom,P.,Hoffman,P.,和A.Costello,“应用程序中的域名国际化(IDNA)”,RFC 34902003年3月。
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003.
[RFC3629]Yergeau,F.,“UTF-8,ISO 10646的转换格式”,STD 63,RFC 3629,2003年11月。
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January 2005.
[RFC3986]Berners Lee,T.,Fielding,R.,和L.Masinter,“统一资源标识符(URI):通用语法”,STD 66,RFC 3986,2005年1月。
[RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource Identifiers (IRIs)", RFC 3987, January 2005.
[RFC3987]Duerst,M.和M.Suignard,“国际化资源标识符(IRIs)”,RFC 3987,2005年1月。
[RFC4516] Smith, M., Ed., and T. Howes, "Lightweight Directory Access Protocol (LDAP): Uniform Resource Locator", RFC 4516, June 2006.
[RFC4516]Smith,M.,Ed.,和T.Howes,“轻量级目录访问协议(LDAP):统一资源定位器”,RFC4516,2006年6月。
[RFC4518] Zeilenga, K., "Lightweight Directory Access Protocol (LDAP): Internationalized String Preparation", RFC 4518, June 2006.
[RFC4518]Zeilenga,K.,“轻量级目录访问协议(LDAP):国际化字符串准备”,RFC4518,2006年6月。
[RFC4523] Zeilenga, K., "Lightweight Directory Access Protocol (LDAP) Schema Definitions for X.509 Certificates", RFC 4523, June 2006.
[RFC4523]Zeilenga,K.,“X.509证书的轻型目录访问协议(LDAP)模式定义”,RFC4523,2006年6月。
[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, August 2006.
[RFC4632]Fuller,V.和T.Li,“无类域间路由(CIDR):互联网地址分配和聚合计划”,BCP 122,RFC 4632,2006年8月。
[X.680] ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002, Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation.
[X.680]ITU-T建议X.680(2002)| ISO/IEC 8824-1:2002,信息技术-抽象语法符号1(ASN.1):基本符号规范。
[X.690] ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002, Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).
[X.690]ITU-T建议X.690(2002)| ISO/IEC 8825-1:2002,信息技术-ASN.1编码规则:基本编码规则(BER)、规范编码规则(CER)和区分编码规则(DER)规范。
[ISO8859] ISO/IEC 8859-1:1998. Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1.
[ISO8859]ISO/IEC 8859-1:1998。信息技术8位单字节编码图形字符集第1部分:拉丁字母表1。
[ISO10646] ISO/IEC 10646:2003. Information technology -- Universal Multiple-Octet Coded Character Set (UCS).
[ISO10646]ISO/IEC 10646:2003。信息技术通用多八位编码字符集(UCS)。
[NFC] Davis, M. and M. Duerst, "Unicode Standard Annex #15: Unicode Normalization Forms", October 2006, <http://www.unicode.org/reports/tr15/>.
[NFC]Davis,M.和M.Duerst,“Unicode标准附件#15:Unicode规范化格式”,2006年10月<http://www.unicode.org/reports/tr15/>.
[RFC1422] Kent, S., "Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management", RFC 1422, February 1993.
[RFC1422]Kent,S.,“互联网电子邮件的隐私增强:第二部分:基于证书的密钥管理”,RFC 1422,1993年2月。
[RFC2277] Alvestrand, H., "IETF Policy on Character Sets and Languages", BCP 18, RFC 2277, January 1998.
[RFC2277]Alvestrand,H.,“IETF字符集和语言政策”,BCP 18,RFC 2277,1998年1月。
[RFC2459] Housley, R., Ford, W., Polk, W., and D. Solo, "Internet X.509 Public Key Infrastructure Certificate and CRL Profile", RFC 2459, January 1999.
[RFC2459]Housley,R.,Ford,W.,Polk,W.,和D.Solo,“互联网X.509公钥基础设施证书和CRL配置文件”,RFC 2459,1999年1月。
[RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP", RFC 2560, June 1999.
[RFC2560]Myers,M.,Ankney,R.,Malpani,A.,Galperin,S.,和C.Adams,“X.509互联网公钥基础设施在线证书状态协议-OCSP”,RFC 25601999年6月。
[RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object Classes and Attribute Types Version 2.0", RFC 2985, November 2000.
[RFC2985]Nystrom,M.和B.Kaliski,“PKCS#9:选定对象类和属性类型版本2.0”,RFC 29852000年11月。
[RFC3161] Adams, C., Cain, P., Pinkas, D., and R. Zuccherato, "Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)", RFC 3161, August 2001.
[RFC3161]Adams,C.,Cain,P.,Pinkas,D.,和R.Zuccherato,“互联网X.509公钥基础设施时间戳协议(TSP)”,RFC3161,2001年8月。
[RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279, April 2002.
[RFC3279]Bassham,L.,Polk,W.,和R.Housley,“互联网X.509公钥基础设施证书和证书撤销列表(CRL)配置文件的算法和标识符”,RFC 3279,2002年4月。
[RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002.
[RFC3280]Housley,R.,Polk,W.,Ford,W.,和D.Solo,“互联网X.509公钥基础设施证书和证书撤销列表(CRL)概要”,RFC 32802002年4月。
[RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 4055, June 2005.
[RFC4055]Schaad,J.,Kaliski,B.,和R.Housley,“Internet X.509公钥基础设施证书和证书撤销列表(CRL)配置文件中使用的RSA加密的其他算法和标识符”,RFC 4055,2005年6月。
[RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The Kerberos Network Authentication Service (V5)", RFC 4120, July 2005.
[RFC4120]Neuman,C.,Yu,T.,Hartman,S.,和K.Raeburn,“Kerberos网络身份验证服务(V5)”,RFC41202005年7月。
[RFC4210] Adams, C., Farrell, S., Kause, T., and T. Mononen, "Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)", RFC 4210, September 2005.
[RFC4210]Adams,C.,Farrell,S.,Kause,T.,和T.Mononen,“互联网X.509公钥基础设施证书管理协议(CMP)”,RFC 42102005年9月。
[RFC4325] Santesson, S. and R. Housley, "Internet X.509 Public Key Infrastructure Authority Information Access Certificate Revocation List (CRL) Extension", RFC 4325, December 2005.
[RFC4325]Santesson,S.和R.Housley,“互联网X.509公钥基础设施管理局信息访问证书撤销列表(CRL)扩展”,RFC 43252005年12月。
[RFC4491] Leontiev, S., Ed., and D. Shefanovski, Ed., "Using the GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms with the Internet X.509 Public Key Infrastructure Certificate and CRL Profile", RFC 4491, May 2006.
[RFC4491]Leontiev,S.,Ed.,和D.Shefanovski,Ed.,“将GOST R 34.10-94、GOST R 34.10-2001和GOST R 34.11-94算法与Internet X.509公钥基础设施证书和CRL配置文件结合使用”,RFC 4491,2006年5月。
[RFC4510] Zeilenga, K., Ed., "Lightweight Directory Access Protocol (LDAP): Technical Specification Road Map", RFC 4510, June 2006.
[RFC4510]Zeilenga,K.,Ed.“轻量级目录访问协议(LDAP):技术规范路线图”,RFC45102006年6月。
[RFC4512] Zeilenga, K., Ed., "Lightweight Directory Access Protocol (LDAP): Directory Information Models", RFC 4512, June 2006.
[RFC4512]Zeilenga,K.,Ed.,“轻量级目录访问协议(LDAP):目录信息模型”,RFC4512,2006年6月。
[RFC4514] Zeilenga, K., Ed., "Lightweight Directory Access Protocol (LDAP): String Representation of Distinguished Names", RFC 4514, June 2006.
[RFC4514]Zeilenga,K.,Ed.“轻量级目录访问协议(LDAP):可分辨名称的字符串表示”,RFC4514,2006年6月。
[RFC4519] Sciberras, A., Ed., "Lightweight Directory Access Protocol (LDAP): Schema for User Applications", RFC 4519, June 2006.
[RFC4519]Sciberras,A.,Ed.,“轻量级目录访问协议(LDAP):用户应用程序模式”,RFC4519,2006年6月。
[RFC4630] Housley, R. and S. Santesson, "Update to DirectoryString Processing in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 4630, August 2006.
[RFC4630]Housley,R.和S.Santesson,“更新Internet X.509公钥基础设施证书和证书撤销列表(CRL)配置文件中的DirectoryString处理”,RFC 4630,2006年8月。
[X.500] ITU-T Recommendation X.500 (2005) | ISO/IEC 9594-1:2005, Information technology - Open Systems Interconnection - The Directory: Overview of concepts, models and services.
[X.500]ITU-T建议X.500(2005)| ISO/IEC 9594-1:2005,信息技术-开放系统互连-目录:概念、模型和服务概述。
[X.501] ITU-T Recommendation X.501 (2005) | ISO/IEC 9594-2:2005, Information technology - Open Systems Interconnection - The Directory: Models.
[X.501]ITU-T建议X.501(2005)| ISO/IEC 9594-2:2005,信息技术-开放系统互连-目录:模型。
[X.509] ITU-T Recommendation X.509 (2005) | ISO/IEC 9594-8:2005, Information technology - Open Systems Interconnection - The Directory: Public-key and attribute certificate frameworks.
[X.509]ITU-T建议X.509(2005)| ISO/IEC 9594-8:2005,信息技术-开放系统互连-目录:公钥和属性证书框架。
[X.520] ITU-T Recommendation X.520 (2005) | ISO/IEC 9594-6:2005, Information technology - Open Systems Interconnection - The Directory: Selected attribute types.
[X.520]ITU-T建议X.520(2005)| ISO/IEC 9594-6:2005,信息技术-开放系统互连-目录:选定的属性类型。
[X.660] ITU-T Recommendation X.660 (2004) | ISO/IEC 9834-1:2005, Information technology - Open Systems Interconnection - Procedures for the operation of OSI Registration Authorities: General procedures, and top arcs of the ASN.1 Object Identifier tree.
[X.660]ITU-T建议X.660(2004)| ISO/IEC 9834-1:2005,信息技术-开放系统互连-OSI注册机构的操作程序:一般程序和ASN.1对象标识符树的顶部弧。
[X.683] ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.
[X.683]ITU-T建议X.683(2002)| ISO/IEC 8824-4:2002,信息技术-抽象语法符号1(ASN.1):ASN.1规范的参数化。
[X9.55] ANSI X9.55-1997, Public Key Cryptography for the Financial Services Industry: Extensions to Public Key Certificates and Certificate Revocation Lists, January 1997.
[X9.55]ANSI X9.55-1997,金融服务业的公钥加密:公钥证书和证书撤销列表的扩展,1997年1月。
This appendix describes data objects used by conforming PKI components in an "ASN.1-like" syntax. This syntax is a hybrid of the 1988 and 1993 ASN.1 syntaxes. The 1988 ASN.1 syntax is augmented with 1993 UNIVERSAL Types UniversalString, BMPString, and UTF8String.
本附录以“ASN.1-like”语法描述了一致性PKI组件使用的数据对象。这种语法是1988年和1993年ASN.1语法的混合。1988年的ASN.1语法由1993年的通用类型UniversalString、BMPString和UTF8String扩展而成。
The ASN.1 syntax does not permit the inclusion of type statements in the ASN.1 module, and the 1993 ASN.1 standard does not permit use of the new UNIVERSAL types in modules using the 1988 syntax. As a result, this module does not conform to either version of the ASN.1 standard.
ASN.1语法不允许在ASN.1模块中包含类型语句,1993年ASN.1标准不允许在使用1988语法的模块中使用新的通用类型。因此,该模块不符合ASN.1标准的任何版本。
This appendix may be converted into 1988 ASN.1 by replacing the definitions for the UNIVERSAL Types with the 1988 catch-all "ANY".
本附录可转换为1988年ASN.1,方法是将通用类型的定义替换为1988年的“任何”。
PKIX1Explicit88 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit(18) }
PKIX1Explicit88 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit(18) }
DEFINITIONS EXPLICIT TAGS ::=
DEFINITIONS EXPLICIT TAGS ::=
BEGIN
开始
-- EXPORTS ALL --
--全部出口--
-- IMPORTS NONE --
--没有进口--
-- UNIVERSAL Types defined in 1993 and 1998 ASN.1 -- and required by this specification
-- UNIVERSAL Types defined in 1993 and 1998 ASN.1 -- and required by this specification
UniversalString ::= [UNIVERSAL 28] IMPLICIT OCTET STRING -- UniversalString is defined in ASN.1:1993
UniversalString ::= [UNIVERSAL 28] IMPLICIT OCTET STRING -- UniversalString is defined in ASN.1:1993
BMPString ::= [UNIVERSAL 30] IMPLICIT OCTET STRING -- BMPString is the subtype of UniversalString and models -- the Basic Multilingual Plane of ISO/IEC 10646
BMPString ::= [UNIVERSAL 30] IMPLICIT OCTET STRING -- BMPString is the subtype of UniversalString and models -- the Basic Multilingual Plane of ISO/IEC 10646
UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING -- The content of this type conforms to RFC 3629.
UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING -- The content of this type conforms to RFC 3629.
-- PKIX specific OIDs
--PKIX特定OID
id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) }
id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) }
-- PKIX arcs
--PKIX弧
id-pe OBJECT IDENTIFIER ::= { id-pkix 1 } -- arc for private certificate extensions id-qt OBJECT IDENTIFIER ::= { id-pkix 2 } -- arc for policy qualifier types id-kp OBJECT IDENTIFIER ::= { id-pkix 3 } -- arc for extended key purpose OIDS id-ad OBJECT IDENTIFIER ::= { id-pkix 48 } -- arc for access descriptors
id-pe OBJECT IDENTIFIER ::= { id-pkix 1 } -- arc for private certificate extensions id-qt OBJECT IDENTIFIER ::= { id-pkix 2 } -- arc for policy qualifier types id-kp OBJECT IDENTIFIER ::= { id-pkix 3 } -- arc for extended key purpose OIDS id-ad OBJECT IDENTIFIER ::= { id-pkix 48 } -- arc for access descriptors
-- policyQualifierIds for Internet policy qualifiers
--Internet策略限定符的PolicyQualifierID
id-qt-cps OBJECT IDENTIFIER ::= { id-qt 1 } -- OID for CPS qualifier id-qt-unotice OBJECT IDENTIFIER ::= { id-qt 2 } -- OID for user notice qualifier
id-qt-cps OBJECT IDENTIFIER ::= { id-qt 1 } -- OID for CPS qualifier id-qt-unotice OBJECT IDENTIFIER ::= { id-qt 2 } -- OID for user notice qualifier
-- access descriptor definitions
--访问描述符定义
id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 } id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 } id-ad-timeStamping OBJECT IDENTIFIER ::= { id-ad 3 } id-ad-caRepository OBJECT IDENTIFIER ::= { id-ad 5 }
id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 } id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 } id-ad-timeStamping OBJECT IDENTIFIER ::= { id-ad 3 } id-ad-caRepository OBJECT IDENTIFIER ::= { id-ad 5 }
-- attribute data types
--属性数据类型
Attribute ::= SEQUENCE { type AttributeType, values SET OF AttributeValue } -- at least one value is required
Attribute ::= SEQUENCE { type AttributeType, values SET OF AttributeValue } -- at least one value is required
AttributeType ::= OBJECT IDENTIFIER
AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY -- DEFINED BY AttributeType
AttributeValue ::= ANY -- DEFINED BY AttributeType
AttributeTypeAndValue ::= SEQUENCE { type AttributeType, value AttributeValue }
AttributeTypeAndValue ::= SEQUENCE { type AttributeType, value AttributeValue }
-- suggested naming attributes: Definition of the following -- information object set may be augmented to meet local -- requirements. Note that deleting members of the set may -- prevent interoperability with conforming implementations. -- presented in pairs: the AttributeType followed by the -- type definition for the corresponding AttributeValue
-- suggested naming attributes: Definition of the following -- information object set may be augmented to meet local -- requirements. Note that deleting members of the set may -- prevent interoperability with conforming implementations. -- presented in pairs: the AttributeType followed by the -- type definition for the corresponding AttributeValue
-- Arc for standard naming attributes
--标准命名属性的弧
id-at OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 4 }
id-at OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 4 }
-- Naming attributes of type X520name
--X520name类型的命名属性
id-at-name AttributeType ::= { id-at 41 } id-at-surname AttributeType ::= { id-at 4 } id-at-givenName AttributeType ::= { id-at 42 } id-at-initials AttributeType ::= { id-at 43 } id-at-generationQualifier AttributeType ::= { id-at 44 }
id-at-name AttributeType ::= { id-at 41 } id-at-surname AttributeType ::= { id-at 4 } id-at-givenName AttributeType ::= { id-at 42 } id-at-initials AttributeType ::= { id-at 43 } id-at-generationQualifier AttributeType ::= { id-at 44 }
-- Naming attributes of type X520Name: -- X520name ::= DirectoryString (SIZE (1..ub-name)) -- -- Expanded to avoid parameterized type: X520name ::= CHOICE { teletexString TeletexString (SIZE (1..ub-name)), printableString PrintableString (SIZE (1..ub-name)), universalString UniversalString (SIZE (1..ub-name)), utf8String UTF8String (SIZE (1..ub-name)), bmpString BMPString (SIZE (1..ub-name)) }
-- Naming attributes of type X520Name: -- X520name ::= DirectoryString (SIZE (1..ub-name)) -- -- Expanded to avoid parameterized type: X520name ::= CHOICE { teletexString TeletexString (SIZE (1..ub-name)), printableString PrintableString (SIZE (1..ub-name)), universalString UniversalString (SIZE (1..ub-name)), utf8String UTF8String (SIZE (1..ub-name)), bmpString BMPString (SIZE (1..ub-name)) }
-- Naming attributes of type X520CommonName
--X520CommonName类型的命名属性
id-at-commonName AttributeType ::= { id-at 3 }
id-at-commonName AttributeType ::= { id-at 3 }
-- Naming attributes of type X520CommonName: -- X520CommonName ::= DirectoryName (SIZE (1..ub-common-name)) -- -- Expanded to avoid parameterized type: X520CommonName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-common-name)), printableString PrintableString (SIZE (1..ub-common-name)), universalString UniversalString (SIZE (1..ub-common-name)), utf8String UTF8String (SIZE (1..ub-common-name)), bmpString BMPString (SIZE (1..ub-common-name)) }
-- Naming attributes of type X520CommonName: -- X520CommonName ::= DirectoryName (SIZE (1..ub-common-name)) -- -- Expanded to avoid parameterized type: X520CommonName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-common-name)), printableString PrintableString (SIZE (1..ub-common-name)), universalString UniversalString (SIZE (1..ub-common-name)), utf8String UTF8String (SIZE (1..ub-common-name)), bmpString BMPString (SIZE (1..ub-common-name)) }
-- Naming attributes of type X520LocalityName
--X520LocalityName类型的命名属性
id-at-localityName AttributeType ::= { id-at 7 }
id-at-localityName AttributeType ::= { id-at 7 }
-- Naming attributes of type X520LocalityName: -- X520LocalityName ::= DirectoryName (SIZE (1..ub-locality-name)) -- -- Expanded to avoid parameterized type: X520LocalityName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-locality-name)), printableString PrintableString (SIZE (1..ub-locality-name)), universalString UniversalString (SIZE (1..ub-locality-name)), utf8String UTF8String (SIZE (1..ub-locality-name)), bmpString BMPString (SIZE (1..ub-locality-name)) }
-- Naming attributes of type X520LocalityName: -- X520LocalityName ::= DirectoryName (SIZE (1..ub-locality-name)) -- -- Expanded to avoid parameterized type: X520LocalityName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-locality-name)), printableString PrintableString (SIZE (1..ub-locality-name)), universalString UniversalString (SIZE (1..ub-locality-name)), utf8String UTF8String (SIZE (1..ub-locality-name)), bmpString BMPString (SIZE (1..ub-locality-name)) }
-- Naming attributes of type X520StateOrProvinceName
--X520StateOrProvinceName类型的命名属性
id-at-stateOrProvinceName AttributeType ::= { id-at 8 }
id-at-stateOrProvinceName AttributeType ::= { id-at 8 }
-- Naming attributes of type X520StateOrProvinceName: -- X520StateOrProvinceName ::= DirectoryName (SIZE (1..ub-state-name)) -- -- Expanded to avoid parameterized type: X520StateOrProvinceName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-state-name)), printableString PrintableString (SIZE (1..ub-state-name)), universalString UniversalString (SIZE (1..ub-state-name)), utf8String UTF8String (SIZE (1..ub-state-name)), bmpString BMPString (SIZE (1..ub-state-name)) }
-- Naming attributes of type X520StateOrProvinceName: -- X520StateOrProvinceName ::= DirectoryName (SIZE (1..ub-state-name)) -- -- Expanded to avoid parameterized type: X520StateOrProvinceName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-state-name)), printableString PrintableString (SIZE (1..ub-state-name)), universalString UniversalString (SIZE (1..ub-state-name)), utf8String UTF8String (SIZE (1..ub-state-name)), bmpString BMPString (SIZE (1..ub-state-name)) }
-- Naming attributes of type X520OrganizationName
--X520OrganizationName类型的命名属性
id-at-organizationName AttributeType ::= { id-at 10 }
id-at-organizationName AttributeType ::= { id-at 10 }
-- Naming attributes of type X520OrganizationName: -- X520OrganizationName ::= -- DirectoryName (SIZE (1..ub-organization-name)) -- -- Expanded to avoid parameterized type: X520OrganizationName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-organization-name)), printableString PrintableString (SIZE (1..ub-organization-name)), universalString UniversalString (SIZE (1..ub-organization-name)), utf8String UTF8String (SIZE (1..ub-organization-name)), bmpString BMPString (SIZE (1..ub-organization-name)) }
-- Naming attributes of type X520OrganizationName: -- X520OrganizationName ::= -- DirectoryName (SIZE (1..ub-organization-name)) -- -- Expanded to avoid parameterized type: X520OrganizationName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-organization-name)), printableString PrintableString (SIZE (1..ub-organization-name)), universalString UniversalString (SIZE (1..ub-organization-name)), utf8String UTF8String (SIZE (1..ub-organization-name)), bmpString BMPString (SIZE (1..ub-organization-name)) }
-- Naming attributes of type X520OrganizationalUnitName
--X520OrganizationalUnitName类型的命名属性
id-at-organizationalUnitName AttributeType ::= { id-at 11 }
id-at-organizationalUnitName AttributeType ::= { id-at 11 }
-- Naming attributes of type X520OrganizationalUnitName: -- X520OrganizationalUnitName ::= -- DirectoryName (SIZE (1..ub-organizational-unit-name)) -- -- Expanded to avoid parameterized type: X520OrganizationalUnitName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-organizational-unit-name)), printableString PrintableString (SIZE (1..ub-organizational-unit-name)), universalString UniversalString (SIZE (1..ub-organizational-unit-name)), utf8String UTF8String (SIZE (1..ub-organizational-unit-name)), bmpString BMPString (SIZE (1..ub-organizational-unit-name)) }
-- Naming attributes of type X520OrganizationalUnitName: -- X520OrganizationalUnitName ::= -- DirectoryName (SIZE (1..ub-organizational-unit-name)) -- -- Expanded to avoid parameterized type: X520OrganizationalUnitName ::= CHOICE { teletexString TeletexString (SIZE (1..ub-organizational-unit-name)), printableString PrintableString (SIZE (1..ub-organizational-unit-name)), universalString UniversalString (SIZE (1..ub-organizational-unit-name)), utf8String UTF8String (SIZE (1..ub-organizational-unit-name)), bmpString BMPString (SIZE (1..ub-organizational-unit-name)) }
-- Naming attributes of type X520Title
--X520Title类型的命名属性
id-at-title AttributeType ::= { id-at 12 }
id-at-title AttributeType ::= { id-at 12 }
-- Naming attributes of type X520Title: -- X520Title ::= DirectoryName (SIZE (1..ub-title)) -- -- Expanded to avoid parameterized type: X520Title ::= CHOICE { teletexString TeletexString (SIZE (1..ub-title)), printableString PrintableString (SIZE (1..ub-title)), universalString UniversalString (SIZE (1..ub-title)), utf8String UTF8String (SIZE (1..ub-title)), bmpString BMPString (SIZE (1..ub-title)) }
-- Naming attributes of type X520Title: -- X520Title ::= DirectoryName (SIZE (1..ub-title)) -- -- Expanded to avoid parameterized type: X520Title ::= CHOICE { teletexString TeletexString (SIZE (1..ub-title)), printableString PrintableString (SIZE (1..ub-title)), universalString UniversalString (SIZE (1..ub-title)), utf8String UTF8String (SIZE (1..ub-title)), bmpString BMPString (SIZE (1..ub-title)) }
-- Naming attributes of type X520dnQualifier
--X520dnQualifier类型的命名属性
id-at-dnQualifier AttributeType ::= { id-at 46 }
id-at-dnQualifier AttributeType ::= { id-at 46 }
X520dnQualifier ::= PrintableString
X520dnQualifier ::= PrintableString
-- Naming attributes of type X520countryName (digraph from IS 3166)
--X520countryName类型的命名属性(来自IS 3166的有向图)
id-at-countryName AttributeType ::= { id-at 6 }
id-at-countryName AttributeType ::= { id-at 6 }
X520countryName ::= PrintableString (SIZE (2))
X520countryName ::= PrintableString (SIZE (2))
-- Naming attributes of type X520SerialNumber
--X520SerialNumber类型的命名属性
id-at-serialNumber AttributeType ::= { id-at 5 }
id-at-serialNumber AttributeType ::= { id-at 5 }
X520SerialNumber ::= PrintableString (SIZE (1..ub-serial-number))
X520SerialNumber ::= PrintableString (SIZE (1..ub-serial-number))
-- Naming attributes of type X520Pseudonym
--X520假名类型的命名属性
id-at-pseudonym AttributeType ::= { id-at 65 }
id-at-pseudonym AttributeType ::= { id-at 65 }
-- Naming attributes of type X520Pseudonym: -- X520Pseudonym ::= DirectoryName (SIZE (1..ub-pseudonym)) -- -- Expanded to avoid parameterized type: X520Pseudonym ::= CHOICE { teletexString TeletexString (SIZE (1..ub-pseudonym)), printableString PrintableString (SIZE (1..ub-pseudonym)), universalString UniversalString (SIZE (1..ub-pseudonym)), utf8String UTF8String (SIZE (1..ub-pseudonym)), bmpString BMPString (SIZE (1..ub-pseudonym)) }
-- Naming attributes of type X520Pseudonym: -- X520Pseudonym ::= DirectoryName (SIZE (1..ub-pseudonym)) -- -- Expanded to avoid parameterized type: X520Pseudonym ::= CHOICE { teletexString TeletexString (SIZE (1..ub-pseudonym)), printableString PrintableString (SIZE (1..ub-pseudonym)), universalString UniversalString (SIZE (1..ub-pseudonym)), utf8String UTF8String (SIZE (1..ub-pseudonym)), bmpString BMPString (SIZE (1..ub-pseudonym)) }
-- Naming attributes of type DomainComponent (from RFC 4519)
--DomainComponent类型的命名属性(来自RFC 4519)
id-domainComponent AttributeType ::= { 0 9 2342 19200300 100 1 25 }
id-domainComponent AttributeType ::= { 0 9 2342 19200300 100 1 25 }
DomainComponent ::= IA5String
DomainComponent ::= IA5String
-- Legacy attributes
--遗留属性
pkcs-9 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 9 }
pkcs-9 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 9 }
id-emailAddress AttributeType ::= { pkcs-9 1 }
id-emailAddress AttributeType ::= { pkcs-9 1 }
EmailAddress ::= IA5String (SIZE (1..ub-emailaddress-length))
EmailAddress ::= IA5String (SIZE (1..ub-emailaddress-length))
-- naming data types --
--命名数据类型--
Name ::= CHOICE { -- only one possibility for now -- rdnSequence RDNSequence }
Name ::= CHOICE { -- only one possibility for now -- rdnSequence RDNSequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
DistinguishedName ::= RDNSequence
DistinguishedName ::= RDNSequence
RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue
RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue
-- Directory string type --
--目录字符串类型--
DirectoryString ::= CHOICE { teletexString TeletexString (SIZE (1..MAX)), printableString PrintableString (SIZE (1..MAX)), universalString UniversalString (SIZE (1..MAX)), utf8String UTF8String (SIZE (1..MAX)), bmpString BMPString (SIZE (1..MAX)) }
DirectoryString ::= CHOICE { teletexString TeletexString (SIZE (1..MAX)), printableString PrintableString (SIZE (1..MAX)), universalString UniversalString (SIZE (1..MAX)), utf8String UTF8String (SIZE (1..MAX)), bmpString BMPString (SIZE (1..MAX)) }
-- certificate and CRL specific structures begin here
--证书和CRL特定结构从这里开始
Certificate ::= SEQUENCE { tbsCertificate TBSCertificate, signatureAlgorithm AlgorithmIdentifier, signature BIT STRING }
Certificate ::= SEQUENCE { tbsCertificate TBSCertificate, signatureAlgorithm AlgorithmIdentifier, signature BIT STRING }
TBSCertificate ::= SEQUENCE { version [0] Version DEFAULT v1, serialNumber CertificateSerialNumber, signature AlgorithmIdentifier, issuer Name, validity Validity, subject Name, subjectPublicKeyInfo SubjectPublicKeyInfo, issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version MUST be v2 or v3 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version MUST be v2 or v3 extensions [3] Extensions OPTIONAL -- If present, version MUST be v3 -- }
TBSCertificate ::= SEQUENCE { version [0] Version DEFAULT v1, serialNumber CertificateSerialNumber, signature AlgorithmIdentifier, issuer Name, validity Validity, subject Name, subjectPublicKeyInfo SubjectPublicKeyInfo, issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version MUST be v2 or v3 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version MUST be v2 or v3 extensions [3] Extensions OPTIONAL -- If present, version MUST be v3 -- }
Version ::= INTEGER { v1(0), v2(1), v3(2) }
Version ::= INTEGER { v1(0), v2(1), v3(2) }
CertificateSerialNumber ::= INTEGER
CertificateSerialNumber ::= INTEGER
Validity ::= SEQUENCE { notBefore Time, notAfter Time }
Validity ::= SEQUENCE { notBefore Time, notAfter Time }
Time ::= CHOICE { utcTime UTCTime, generalTime GeneralizedTime }
Time ::= CHOICE { utcTime UTCTime, generalTime GeneralizedTime }
UniqueIdentifier ::= BIT STRING
UniqueIdentifier ::= BIT STRING
SubjectPublicKeyInfo ::= SEQUENCE { algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING }
SubjectPublicKeyInfo ::= SEQUENCE { algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING }
Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
Extension ::= SEQUENCE { extnID OBJECT IDENTIFIER, critical BOOLEAN DEFAULT FALSE, extnValue OCTET STRING -- contains the DER encoding of an ASN.1 value -- corresponding to the extension type identified -- by extnID }
Extension ::= SEQUENCE { extnID OBJECT IDENTIFIER, critical BOOLEAN DEFAULT FALSE, extnValue OCTET STRING -- contains the DER encoding of an ASN.1 value -- corresponding to the extension type identified -- by extnID }
-- CRL structures
--CRL结构
CertificateList ::= SEQUENCE { tbsCertList TBSCertList, signatureAlgorithm AlgorithmIdentifier, signature BIT STRING }
CertificateList ::= SEQUENCE { tbsCertList TBSCertList, signatureAlgorithm AlgorithmIdentifier, signature BIT STRING }
TBSCertList ::= SEQUENCE { version Version OPTIONAL, -- if present, MUST be v2 signature AlgorithmIdentifier, issuer Name, thisUpdate Time, nextUpdate Time OPTIONAL, revokedCertificates SEQUENCE OF SEQUENCE { userCertificate CertificateSerialNumber, revocationDate Time, crlEntryExtensions Extensions OPTIONAL -- if present, version MUST be v2 } OPTIONAL, crlExtensions [0] Extensions OPTIONAL } -- if present, version MUST be v2
TBSCertList ::= SEQUENCE { version Version OPTIONAL, -- if present, MUST be v2 signature AlgorithmIdentifier, issuer Name, thisUpdate Time, nextUpdate Time OPTIONAL, revokedCertificates SEQUENCE OF SEQUENCE { userCertificate CertificateSerialNumber, revocationDate Time, crlEntryExtensions Extensions OPTIONAL -- if present, version MUST be v2 } OPTIONAL, crlExtensions [0] Extensions OPTIONAL } -- if present, version MUST be v2
-- Version, Time, CertificateSerialNumber, and Extensions were -- defined earlier for use in the certificate structure
-- Version, Time, CertificateSerialNumber, and Extensions were -- defined earlier for use in the certificate structure
AlgorithmIdentifier ::= SEQUENCE { algorithm OBJECT IDENTIFIER, parameters ANY DEFINED BY algorithm OPTIONAL } -- contains a value of the type -- registered for use with the -- algorithm object identifier value
AlgorithmIdentifier ::= SEQUENCE { algorithm OBJECT IDENTIFIER, parameters ANY DEFINED BY algorithm OPTIONAL } -- contains a value of the type -- registered for use with the -- algorithm object identifier value
-- X.400 address syntax starts here
--X.400地址语法从这里开始
ORAddress ::= SEQUENCE { built-in-standard-attributes BuiltInStandardAttributes, built-in-domain-defined-attributes BuiltInDomainDefinedAttributes OPTIONAL, -- see also teletex-domain-defined-attributes extension-attributes ExtensionAttributes OPTIONAL }
ORAddress ::= SEQUENCE { built-in-standard-attributes BuiltInStandardAttributes, built-in-domain-defined-attributes BuiltInDomainDefinedAttributes OPTIONAL, -- see also teletex-domain-defined-attributes extension-attributes ExtensionAttributes OPTIONAL }
-- Built-in Standard Attributes
--内置标准属性
BuiltInStandardAttributes ::= SEQUENCE { country-name CountryName OPTIONAL, administration-domain-name AdministrationDomainName OPTIONAL, network-address [0] IMPLICIT NetworkAddress OPTIONAL, -- see also extended-network-address terminal-identifier [1] IMPLICIT TerminalIdentifier OPTIONAL, private-domain-name [2] PrivateDomainName OPTIONAL, organization-name [3] IMPLICIT OrganizationName OPTIONAL, -- see also teletex-organization-name numeric-user-identifier [4] IMPLICIT NumericUserIdentifier OPTIONAL, personal-name [5] IMPLICIT PersonalName OPTIONAL, -- see also teletex-personal-name organizational-unit-names [6] IMPLICIT OrganizationalUnitNames OPTIONAL } -- see also teletex-organizational-unit-names
BuiltInStandardAttributes ::= SEQUENCE { country-name CountryName OPTIONAL, administration-domain-name AdministrationDomainName OPTIONAL, network-address [0] IMPLICIT NetworkAddress OPTIONAL, -- see also extended-network-address terminal-identifier [1] IMPLICIT TerminalIdentifier OPTIONAL, private-domain-name [2] PrivateDomainName OPTIONAL, organization-name [3] IMPLICIT OrganizationName OPTIONAL, -- see also teletex-organization-name numeric-user-identifier [4] IMPLICIT NumericUserIdentifier OPTIONAL, personal-name [5] IMPLICIT PersonalName OPTIONAL, -- see also teletex-personal-name organizational-unit-names [6] IMPLICIT OrganizationalUnitNames OPTIONAL } -- see also teletex-organizational-unit-names
CountryName ::= [APPLICATION 1] CHOICE { x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)), iso-3166-alpha2-code PrintableString (SIZE (ub-country-name-alpha-length)) }
CountryName ::= [APPLICATION 1] CHOICE { x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)), iso-3166-alpha2-code PrintableString (SIZE (ub-country-name-alpha-length)) }
AdministrationDomainName ::= [APPLICATION 2] CHOICE { numeric NumericString (SIZE (0..ub-domain-name-length)), printable PrintableString (SIZE (0..ub-domain-name-length)) }
AdministrationDomainName ::= [APPLICATION 2] CHOICE { numeric NumericString (SIZE (0..ub-domain-name-length)), printable PrintableString (SIZE (0..ub-domain-name-length)) }
NetworkAddress ::= X121Address -- see also extended-network-address
NetworkAddress ::= X121Address -- see also extended-network-address
X121Address ::= NumericString (SIZE (1..ub-x121-address-length))
X121Address ::= NumericString (SIZE (1..ub-x121-address-length))
TerminalIdentifier ::= PrintableString (SIZE (1..ub-terminal-id-length))
TerminalIdentifier ::= PrintableString (SIZE (1..ub-terminal-id-length))
PrivateDomainName ::= CHOICE { numeric NumericString (SIZE (1..ub-domain-name-length)), printable PrintableString (SIZE (1..ub-domain-name-length)) }
PrivateDomainName ::= CHOICE { numeric NumericString (SIZE (1..ub-domain-name-length)), printable PrintableString (SIZE (1..ub-domain-name-length)) }
OrganizationName ::= PrintableString (SIZE (1..ub-organization-name-length)) -- see also teletex-organization-name
OrganizationName ::= PrintableString (SIZE (1..ub-organization-name-length)) -- see also teletex-organization-name
NumericUserIdentifier ::= NumericString (SIZE (1..ub-numeric-user-id-length))
NumericUserIdentifier ::= NumericString (SIZE (1..ub-numeric-user-id-length))
PersonalName ::= SET { surname [0] IMPLICIT PrintableString (SIZE (1..ub-surname-length)), given-name [1] IMPLICIT PrintableString (SIZE (1..ub-given-name-length)) OPTIONAL, initials [2] IMPLICIT PrintableString (SIZE (1..ub-initials-length)) OPTIONAL, generation-qualifier [3] IMPLICIT PrintableString (SIZE (1..ub-generation-qualifier-length)) OPTIONAL } -- see also teletex-personal-name
PersonalName ::= SET { surname [0] IMPLICIT PrintableString (SIZE (1..ub-surname-length)), given-name [1] IMPLICIT PrintableString (SIZE (1..ub-given-name-length)) OPTIONAL, initials [2] IMPLICIT PrintableString (SIZE (1..ub-initials-length)) OPTIONAL, generation-qualifier [3] IMPLICIT PrintableString (SIZE (1..ub-generation-qualifier-length)) OPTIONAL } -- see also teletex-personal-name
OrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units) OF OrganizationalUnitName -- see also teletex-organizational-unit-names
OrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units) OF OrganizationalUnitName -- see also teletex-organizational-unit-names
OrganizationalUnitName ::= PrintableString (SIZE (1..ub-organizational-unit-name-length))
OrganizationalUnitName ::= PrintableString (SIZE (1..ub-organizational-unit-name-length))
-- Built-in Domain-defined Attributes
--内置域定义属性
BuiltInDomainDefinedAttributes ::= SEQUENCE SIZE (1..ub-domain-defined-attributes) OF BuiltInDomainDefinedAttribute
BuiltInDomainDefinedAttributes ::= SEQUENCE SIZE (1..ub-domain-defined-attributes) OF BuiltInDomainDefinedAttribute
BuiltInDomainDefinedAttribute ::= SEQUENCE { type PrintableString (SIZE (1..ub-domain-defined-attribute-type-length)), value PrintableString (SIZE (1..ub-domain-defined-attribute-value-length)) }
BuiltInDomainDefinedAttribute ::= SEQUENCE { type PrintableString (SIZE (1..ub-domain-defined-attribute-type-length)), value PrintableString (SIZE (1..ub-domain-defined-attribute-value-length)) }
-- Extension Attributes
--扩展属性
ExtensionAttributes ::= SET SIZE (1..ub-extension-attributes) OF ExtensionAttribute
ExtensionAttributes ::= SET SIZE (1..ub-extension-attributes) OF ExtensionAttribute
ExtensionAttribute ::= SEQUENCE { extension-attribute-type [0] IMPLICIT INTEGER (0..ub-extension-attributes), extension-attribute-value [1] ANY DEFINED BY extension-attribute-type }
ExtensionAttribute ::= SEQUENCE { extension-attribute-type [0] IMPLICIT INTEGER (0..ub-extension-attributes), extension-attribute-value [1] ANY DEFINED BY extension-attribute-type }
-- Extension types and attribute values
--扩展类型和属性值
common-name INTEGER ::= 1
common-name INTEGER ::= 1
CommonName ::= PrintableString (SIZE (1..ub-common-name-length))
CommonName ::= PrintableString (SIZE (1..ub-common-name-length))
teletex-common-name INTEGER ::= 2
teletex-common-name INTEGER ::= 2
TeletexCommonName ::= TeletexString (SIZE (1..ub-common-name-length))
TeletexCommonName ::= TeletexString (SIZE (1..ub-common-name-length))
teletex-organization-name INTEGER ::= 3
teletex-organization-name INTEGER ::= 3
TeletexOrganizationName ::= TeletexString (SIZE (1..ub-organization-name-length))
TeletexOrganizationName ::= TeletexString (SIZE (1..ub-organization-name-length))
teletex-personal-name INTEGER ::= 4
teletex-personal-name INTEGER ::= 4
TeletexPersonalName ::= SET { surname [0] IMPLICIT TeletexString (SIZE (1..ub-surname-length)), given-name [1] IMPLICIT TeletexString (SIZE (1..ub-given-name-length)) OPTIONAL, initials [2] IMPLICIT TeletexString (SIZE (1..ub-initials-length)) OPTIONAL, generation-qualifier [3] IMPLICIT TeletexString (SIZE (1..ub-generation-qualifier-length)) OPTIONAL }
TeletexPersonalName ::= SET { surname [0] IMPLICIT TeletexString (SIZE (1..ub-surname-length)), given-name [1] IMPLICIT TeletexString (SIZE (1..ub-given-name-length)) OPTIONAL, initials [2] IMPLICIT TeletexString (SIZE (1..ub-initials-length)) OPTIONAL, generation-qualifier [3] IMPLICIT TeletexString (SIZE (1..ub-generation-qualifier-length)) OPTIONAL }
teletex-organizational-unit-names INTEGER ::= 5
teletex-organizational-unit-names INTEGER ::= 5
TeletexOrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units) OF TeletexOrganizationalUnitName
TeletexOrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units) OF TeletexOrganizationalUnitName
TeletexOrganizationalUnitName ::= TeletexString (SIZE (1..ub-organizational-unit-name-length))
TeletexOrganizationalUnitName ::= TeletexString (SIZE (1..ub-organizational-unit-name-length))
pds-name INTEGER ::= 7
pds-name INTEGER ::= 7
PDSName ::= PrintableString (SIZE (1..ub-pds-name-length))
PDSName ::= PrintableString (SIZE (1..ub-pds-name-length))
physical-delivery-country-name INTEGER ::= 8
physical-delivery-country-name INTEGER ::= 8
PhysicalDeliveryCountryName ::= CHOICE { x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)), iso-3166-alpha2-code PrintableString (SIZE (ub-country-name-alpha-length)) }
PhysicalDeliveryCountryName ::= CHOICE { x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)), iso-3166-alpha2-code PrintableString (SIZE (ub-country-name-alpha-length)) }
postal-code INTEGER ::= 9
postal-code INTEGER ::= 9
PostalCode ::= CHOICE { numeric-code NumericString (SIZE (1..ub-postal-code-length)), printable-code PrintableString (SIZE (1..ub-postal-code-length)) }
PostalCode ::= CHOICE { numeric-code NumericString (SIZE (1..ub-postal-code-length)), printable-code PrintableString (SIZE (1..ub-postal-code-length)) }
physical-delivery-office-name INTEGER ::= 10
physical-delivery-office-name INTEGER ::= 10
PhysicalDeliveryOfficeName ::= PDSParameter
PhysicalDeliveryOfficeName ::= PDSParameter
physical-delivery-office-number INTEGER ::= 11
physical-delivery-office-number INTEGER ::= 11
PhysicalDeliveryOfficeNumber ::= PDSParameter
PhysicalDeliveryOfficeNumber ::= PDSParameter
extension-OR-address-components INTEGER ::= 12
extension-OR-address-components INTEGER ::= 12
ExtensionORAddressComponents ::= PDSParameter
ExtensionORAddressComponents ::= PDSParameter
physical-delivery-personal-name INTEGER ::= 13
physical-delivery-personal-name INTEGER ::= 13
PhysicalDeliveryPersonalName ::= PDSParameter
PhysicalDeliveryPersonalName ::= PDSParameter
physical-delivery-organization-name INTEGER ::= 14
physical-delivery-organization-name INTEGER ::= 14
PhysicalDeliveryOrganizationName ::= PDSParameter
PhysicalDeliveryOrganizationName ::= PDSParameter
extension-physical-delivery-address-components INTEGER ::= 15
extension-physical-delivery-address-components INTEGER ::= 15
ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter
ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter
unformatted-postal-address INTEGER ::= 16
unformatted-postal-address INTEGER ::= 16
UnformattedPostalAddress ::= SET { printable-address SEQUENCE SIZE (1..ub-pds-physical-address-lines) OF PrintableString (SIZE (1..ub-pds-parameter-length)) OPTIONAL, teletex-string TeletexString (SIZE (1..ub-unformatted-address-length)) OPTIONAL }
UnformattedPostalAddress ::= SET { printable-address SEQUENCE SIZE (1..ub-pds-physical-address-lines) OF PrintableString (SIZE (1..ub-pds-parameter-length)) OPTIONAL, teletex-string TeletexString (SIZE (1..ub-unformatted-address-length)) OPTIONAL }
street-address INTEGER ::= 17
street-address INTEGER ::= 17
StreetAddress ::= PDSParameter
StreetAddress ::= PDSParameter
post-office-box-address INTEGER ::= 18
post-office-box-address INTEGER ::= 18
PostOfficeBoxAddress ::= PDSParameter
PostOfficeBoxAddress ::= PDSParameter
poste-restante-address INTEGER ::= 19
poste-restante-address INTEGER ::= 19
PosteRestanteAddress ::= PDSParameter
PosteRestanteAddress ::= PDSParameter
unique-postal-name INTEGER ::= 20
unique-postal-name INTEGER ::= 20
UniquePostalName ::= PDSParameter
UniquePostalName ::= PDSParameter
local-postal-attributes INTEGER ::= 21
local-postal-attributes INTEGER ::= 21
LocalPostalAttributes ::= PDSParameter
LocalPostalAttributes ::= PDSParameter
PDSParameter ::= SET { printable-string PrintableString (SIZE(1..ub-pds-parameter-length)) OPTIONAL, teletex-string TeletexString (SIZE(1..ub-pds-parameter-length)) OPTIONAL }
PDSParameter ::= SET { printable-string PrintableString (SIZE(1..ub-pds-parameter-length)) OPTIONAL, teletex-string TeletexString (SIZE(1..ub-pds-parameter-length)) OPTIONAL }
extended-network-address INTEGER ::= 22
extended-network-address INTEGER ::= 22
ExtendedNetworkAddress ::= CHOICE { e163-4-address SEQUENCE { number [0] IMPLICIT NumericString (SIZE (1..ub-e163-4-number-length)), sub-address [1] IMPLICIT NumericString (SIZE (1..ub-e163-4-sub-address-length)) OPTIONAL }, psap-address [0] IMPLICIT PresentationAddress }
ExtendedNetworkAddress ::= CHOICE { e163-4-address SEQUENCE { number [0] IMPLICIT NumericString (SIZE (1..ub-e163-4-number-length)), sub-address [1] IMPLICIT NumericString (SIZE (1..ub-e163-4-sub-address-length)) OPTIONAL }, psap-address [0] IMPLICIT PresentationAddress }
PresentationAddress ::= SEQUENCE { pSelector [0] EXPLICIT OCTET STRING OPTIONAL, sSelector [1] EXPLICIT OCTET STRING OPTIONAL, tSelector [2] EXPLICIT OCTET STRING OPTIONAL, nAddresses [3] EXPLICIT SET SIZE (1..MAX) OF OCTET STRING }
PresentationAddress ::= SEQUENCE { pSelector [0] EXPLICIT OCTET STRING OPTIONAL, sSelector [1] EXPLICIT OCTET STRING OPTIONAL, tSelector [2] EXPLICIT OCTET STRING OPTIONAL, nAddresses [3] EXPLICIT SET SIZE (1..MAX) OF OCTET STRING }
terminal-type INTEGER ::= 23
terminal-type INTEGER ::= 23
TerminalType ::= INTEGER { telex (3), teletex (4), g3-facsimile (5), g4-facsimile (6), ia5-terminal (7), videotex (8) } (0..ub-integer-options)
TerminalType ::= INTEGER { telex (3), teletex (4), g3-facsimile (5), g4-facsimile (6), ia5-terminal (7), videotex (8) } (0..ub-integer-options)
-- Extension Domain-defined Attributes
--扩展域定义的属性
teletex-domain-defined-attributes INTEGER ::= 6
teletex-domain-defined-attributes INTEGER ::= 6
TeletexDomainDefinedAttributes ::= SEQUENCE SIZE (1..ub-domain-defined-attributes) OF TeletexDomainDefinedAttribute
TeletexDomainDefinedAttributes ::= SEQUENCE SIZE (1..ub-domain-defined-attributes) OF TeletexDomainDefinedAttribute
TeletexDomainDefinedAttribute ::= SEQUENCE { type TeletexString (SIZE (1..ub-domain-defined-attribute-type-length)), value TeletexString (SIZE (1..ub-domain-defined-attribute-value-length)) }
TeletexDomainDefinedAttribute ::= SEQUENCE { type TeletexString (SIZE (1..ub-domain-defined-attribute-type-length)), value TeletexString (SIZE (1..ub-domain-defined-attribute-value-length)) }
-- specifications of Upper Bounds MUST be regarded as mandatory -- from Annex B of ITU-T X.411 Reference Definition of MTS Parameter -- Upper Bounds
-- specifications of Upper Bounds MUST be regarded as mandatory -- from Annex B of ITU-T X.411 Reference Definition of MTS Parameter -- Upper Bounds
-- Upper Bounds ub-name INTEGER ::= 32768 ub-common-name INTEGER ::= 64 ub-locality-name INTEGER ::= 128 ub-state-name INTEGER ::= 128 ub-organization-name INTEGER ::= 64 ub-organizational-unit-name INTEGER ::= 64 ub-title INTEGER ::= 64 ub-serial-number INTEGER ::= 64 ub-match INTEGER ::= 128 ub-emailaddress-length INTEGER ::= 255 ub-common-name-length INTEGER ::= 64 ub-country-name-alpha-length INTEGER ::= 2 ub-country-name-numeric-length INTEGER ::= 3 ub-domain-defined-attributes INTEGER ::= 4 ub-domain-defined-attribute-type-length INTEGER ::= 8 ub-domain-defined-attribute-value-length INTEGER ::= 128 ub-domain-name-length INTEGER ::= 16 ub-extension-attributes INTEGER ::= 256 ub-e163-4-number-length INTEGER ::= 15 ub-e163-4-sub-address-length INTEGER ::= 40 ub-generation-qualifier-length INTEGER ::= 3 ub-given-name-length INTEGER ::= 16 ub-initials-length INTEGER ::= 5 ub-integer-options INTEGER ::= 256 ub-numeric-user-id-length INTEGER ::= 32 ub-organization-name-length INTEGER ::= 64 ub-organizational-unit-name-length INTEGER ::= 32 ub-organizational-units INTEGER ::= 4 ub-pds-name-length INTEGER ::= 16 ub-pds-parameter-length INTEGER ::= 30 ub-pds-physical-address-lines INTEGER ::= 6 ub-postal-code-length INTEGER ::= 16 ub-pseudonym INTEGER ::= 128 ub-surname-length INTEGER ::= 40 ub-terminal-id-length INTEGER ::= 24 ub-unformatted-address-length INTEGER ::= 180 ub-x121-address-length INTEGER ::= 16
-- Upper Bounds ub-name INTEGER ::= 32768 ub-common-name INTEGER ::= 64 ub-locality-name INTEGER ::= 128 ub-state-name INTEGER ::= 128 ub-organization-name INTEGER ::= 64 ub-organizational-unit-name INTEGER ::= 64 ub-title INTEGER ::= 64 ub-serial-number INTEGER ::= 64 ub-match INTEGER ::= 128 ub-emailaddress-length INTEGER ::= 255 ub-common-name-length INTEGER ::= 64 ub-country-name-alpha-length INTEGER ::= 2 ub-country-name-numeric-length INTEGER ::= 3 ub-domain-defined-attributes INTEGER ::= 4 ub-domain-defined-attribute-type-length INTEGER ::= 8 ub-domain-defined-attribute-value-length INTEGER ::= 128 ub-domain-name-length INTEGER ::= 16 ub-extension-attributes INTEGER ::= 256 ub-e163-4-number-length INTEGER ::= 15 ub-e163-4-sub-address-length INTEGER ::= 40 ub-generation-qualifier-length INTEGER ::= 3 ub-given-name-length INTEGER ::= 16 ub-initials-length INTEGER ::= 5 ub-integer-options INTEGER ::= 256 ub-numeric-user-id-length INTEGER ::= 32 ub-organization-name-length INTEGER ::= 64 ub-organizational-unit-name-length INTEGER ::= 32 ub-organizational-units INTEGER ::= 4 ub-pds-name-length INTEGER ::= 16 ub-pds-parameter-length INTEGER ::= 30 ub-pds-physical-address-lines INTEGER ::= 6 ub-postal-code-length INTEGER ::= 16 ub-pseudonym INTEGER ::= 128 ub-surname-length INTEGER ::= 40 ub-terminal-id-length INTEGER ::= 24 ub-unformatted-address-length INTEGER ::= 180 ub-x121-address-length INTEGER ::= 16
-- Note - upper bounds on string types, such as TeletexString, are -- measured in characters. Excepting PrintableString or IA5String, a -- significantly greater number of octets will be required to hold -- such a value. As a minimum, 16 octets, or twice the specified -- upper bound, whichever is the larger, should be allowed for
-- Note - upper bounds on string types, such as TeletexString, are -- measured in characters. Excepting PrintableString or IA5String, a -- significantly greater number of octets will be required to hold -- such a value. As a minimum, 16 octets, or twice the specified -- upper bound, whichever is the larger, should be allowed for
-- TeletexString. For UTF8String or UniversalString at least four -- times the upper bound should be allowed.
-- TeletexString. For UTF8String or UniversalString at least four -- times the upper bound should be allowed.
END
终止
PKIX1Implicit88 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-implicit(19) }
PKIX1Implicit88 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-implicit(19) }
DEFINITIONS IMPLICIT TAGS ::=
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
开始
-- EXPORTS ALL --
--全部出口--
IMPORTS id-pe, id-kp, id-qt-unotice, id-qt-cps, -- delete following line if "new" types are supported -- BMPString, UTF8String, -- end "new" types -- ORAddress, Name, RelativeDistinguishedName, CertificateSerialNumber, Attribute, DirectoryString FROM PKIX1Explicit88 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit(18) };
IMPORTS id-pe, id-kp, id-qt-unotice, id-qt-cps, -- delete following line if "new" types are supported -- BMPString, UTF8String, -- end "new" types -- ORAddress, Name, RelativeDistinguishedName, CertificateSerialNumber, Attribute, DirectoryString FROM PKIX1Explicit88 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit(18) };
-- ISO arc for standard certificate and CRL extensions
--标准证书和CRL扩展的ISO arc
id-ce OBJECT IDENTIFIER ::= {joint-iso-ccitt(2) ds(5) 29}
id-ce OBJECT IDENTIFIER ::= {joint-iso-ccitt(2) ds(5) 29}
-- authority key identifier OID and syntax
--授权密钥标识符OID和语法
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }
AuthorityKeyIdentifier ::= SEQUENCE { keyIdentifier [0] KeyIdentifier OPTIONAL, authorityCertIssuer [1] GeneralNames OPTIONAL, authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL } -- authorityCertIssuer and authorityCertSerialNumber MUST both -- be present or both be absent
AuthorityKeyIdentifier ::= SEQUENCE { keyIdentifier [0] KeyIdentifier OPTIONAL, authorityCertIssuer [1] GeneralNames OPTIONAL, authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL } -- authorityCertIssuer and authorityCertSerialNumber MUST both -- be present or both be absent
KeyIdentifier ::= OCTET STRING
KeyIdentifier ::= OCTET STRING
-- subject key identifier OID and syntax
--主题键标识符OID和语法
id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }
id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }
SubjectKeyIdentifier ::= KeyIdentifier
SubjectKeyIdentifier ::= KeyIdentifier
-- key usage extension OID and syntax
--密钥使用扩展OID和语法
id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }
id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }
KeyUsage ::= BIT STRING { digitalSignature (0), nonRepudiation (1), -- recent editions of X.509 have -- renamed this bit to contentCommitment keyEncipherment (2), dataEncipherment (3), keyAgreement (4), keyCertSign (5), cRLSign (6), encipherOnly (7), decipherOnly (8) }
KeyUsage ::= BIT STRING { digitalSignature (0), nonRepudiation (1), -- recent editions of X.509 have -- renamed this bit to contentCommitment keyEncipherment (2), dataEncipherment (3), keyAgreement (4), keyCertSign (5), cRLSign (6), encipherOnly (7), decipherOnly (8) }
-- private key usage period extension OID and syntax
--私钥使用期限扩展OID和语法
id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= { id-ce 16 }
id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= { id-ce 16 }
PrivateKeyUsagePeriod ::= SEQUENCE { notBefore [0] GeneralizedTime OPTIONAL, notAfter [1] GeneralizedTime OPTIONAL } -- either notBefore or notAfter MUST be present
PrivateKeyUsagePeriod ::= SEQUENCE { notBefore [0] GeneralizedTime OPTIONAL, notAfter [1] GeneralizedTime OPTIONAL } -- either notBefore or notAfter MUST be present
-- certificate policies extension OID and syntax
--证书策略扩展OID和语法
id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }
id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }
anyPolicy OBJECT IDENTIFIER ::= { id-ce-certificatePolicies 0 }
anyPolicy OBJECT IDENTIFIER ::= { id-ce-certificatePolicies 0 }
CertificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation
CertificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation
PolicyInformation ::= SEQUENCE { policyIdentifier CertPolicyId, policyQualifiers SEQUENCE SIZE (1..MAX) OF PolicyQualifierInfo OPTIONAL }
PolicyInformation ::= SEQUENCE { policyIdentifier CertPolicyId, policyQualifiers SEQUENCE SIZE (1..MAX) OF PolicyQualifierInfo OPTIONAL }
CertPolicyId ::= OBJECT IDENTIFIER
CertPolicyId ::= OBJECT IDENTIFIER
PolicyQualifierInfo ::= SEQUENCE { policyQualifierId PolicyQualifierId, qualifier ANY DEFINED BY policyQualifierId }
PolicyQualifierInfo ::= SEQUENCE { policyQualifierId PolicyQualifierId, qualifier ANY DEFINED BY policyQualifierId }
-- Implementations that recognize additional policy qualifiers MUST -- augment the following definition for PolicyQualifierId
-- Implementations that recognize additional policy qualifiers MUST -- augment the following definition for PolicyQualifierId
PolicyQualifierId ::= OBJECT IDENTIFIER ( id-qt-cps | id-qt-unotice )
PolicyQualifierId ::= OBJECT IDENTIFIER ( id-qt-cps | id-qt-unotice )
-- CPS pointer qualifier
--指针限定符
CPSuri ::= IA5String
CPSuri ::= IA5String
-- user notice qualifier
--用户通知限定符
UserNotice ::= SEQUENCE { noticeRef NoticeReference OPTIONAL, explicitText DisplayText OPTIONAL }
UserNotice ::= SEQUENCE { noticeRef NoticeReference OPTIONAL, explicitText DisplayText OPTIONAL }
NoticeReference ::= SEQUENCE { organization DisplayText, noticeNumbers SEQUENCE OF INTEGER }
NoticeReference ::= SEQUENCE { organization DisplayText, noticeNumbers SEQUENCE OF INTEGER }
DisplayText ::= CHOICE { ia5String IA5String (SIZE (1..200)), visibleString VisibleString (SIZE (1..200)), bmpString BMPString (SIZE (1..200)), utf8String UTF8String (SIZE (1..200)) }
DisplayText ::= CHOICE { ia5String IA5String (SIZE (1..200)), visibleString VisibleString (SIZE (1..200)), bmpString BMPString (SIZE (1..200)), utf8String UTF8String (SIZE (1..200)) }
-- policy mapping extension OID and syntax
--策略映射扩展OID和语法
id-ce-policyMappings OBJECT IDENTIFIER ::= { id-ce 33 }
id-ce-policyMappings OBJECT IDENTIFIER ::= { id-ce 33 }
PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE { issuerDomainPolicy CertPolicyId, subjectDomainPolicy CertPolicyId }
PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE { issuerDomainPolicy CertPolicyId, subjectDomainPolicy CertPolicyId }
-- subject alternative name extension OID and syntax
--主题可选名称扩展OID和语法
id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }
id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }
SubjectAltName ::= GeneralNames
SubjectAltName ::= GeneralNames
GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
GeneralName ::= CHOICE { otherName [0] AnotherName, rfc822Name [1] IA5String, dNSName [2] IA5String, x400Address [3] ORAddress, directoryName [4] Name, ediPartyName [5] EDIPartyName, uniformResourceIdentifier [6] IA5String, iPAddress [7] OCTET STRING, registeredID [8] OBJECT IDENTIFIER }
GeneralName ::= CHOICE { otherName [0] AnotherName, rfc822Name [1] IA5String, dNSName [2] IA5String, x400Address [3] ORAddress, directoryName [4] Name, ediPartyName [5] EDIPartyName, uniformResourceIdentifier [6] IA5String, iPAddress [7] OCTET STRING, registeredID [8] OBJECT IDENTIFIER }
-- AnotherName replaces OTHER-NAME ::= TYPE-IDENTIFIER, as -- TYPE-IDENTIFIER is not supported in the '88 ASN.1 syntax
-- AnotherName replaces OTHER-NAME ::= TYPE-IDENTIFIER, as -- TYPE-IDENTIFIER is not supported in the '88 ASN.1 syntax
AnotherName ::= SEQUENCE { type-id OBJECT IDENTIFIER, value [0] EXPLICIT ANY DEFINED BY type-id }
AnotherName ::= SEQUENCE { type-id OBJECT IDENTIFIER, value [0] EXPLICIT ANY DEFINED BY type-id }
EDIPartyName ::= SEQUENCE { nameAssigner [0] DirectoryString OPTIONAL, partyName [1] DirectoryString }
EDIPartyName ::= SEQUENCE { nameAssigner [0] DirectoryString OPTIONAL, partyName [1] DirectoryString }
-- issuer alternative name extension OID and syntax
--发卡机构替代名称扩展OID和语法
id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }
id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }
IssuerAltName ::= GeneralNames
IssuerAltName ::= GeneralNames
id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= { id-ce 9 }
id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= { id-ce 9 }
SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute
SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute
-- basic constraints extension OID and syntax
--基本约束扩展OID和语法
id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }
id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }
BasicConstraints ::= SEQUENCE { cA BOOLEAN DEFAULT FALSE, pathLenConstraint INTEGER (0..MAX) OPTIONAL }
BasicConstraints ::= SEQUENCE { cA BOOLEAN DEFAULT FALSE, pathLenConstraint INTEGER (0..MAX) OPTIONAL }
-- name constraints extension OID and syntax
--名称约束扩展OID和语法
id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }
id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }
NameConstraints ::= SEQUENCE { permittedSubtrees [0] GeneralSubtrees OPTIONAL, excludedSubtrees [1] GeneralSubtrees OPTIONAL }
NameConstraints ::= SEQUENCE { permittedSubtrees [0] GeneralSubtrees OPTIONAL, excludedSubtrees [1] GeneralSubtrees OPTIONAL }
GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
GeneralSubtree ::= SEQUENCE { base GeneralName, minimum [0] BaseDistance DEFAULT 0, maximum [1] BaseDistance OPTIONAL }
GeneralSubtree ::= SEQUENCE { base GeneralName, minimum [0] BaseDistance DEFAULT 0, maximum [1] BaseDistance OPTIONAL }
BaseDistance ::= INTEGER (0..MAX)
BaseDistance ::= INTEGER (0..MAX)
-- policy constraints extension OID and syntax
--策略约束扩展OID和语法
id-ce-policyConstraints OBJECT IDENTIFIER ::= { id-ce 36 }
id-ce-policyConstraints OBJECT IDENTIFIER ::= { id-ce 36 }
PolicyConstraints ::= SEQUENCE { requireExplicitPolicy [0] SkipCerts OPTIONAL, inhibitPolicyMapping [1] SkipCerts OPTIONAL }
PolicyConstraints ::= SEQUENCE { requireExplicitPolicy [0] SkipCerts OPTIONAL, inhibitPolicyMapping [1] SkipCerts OPTIONAL }
SkipCerts ::= INTEGER (0..MAX)
SkipCerts ::= INTEGER (0..MAX)
-- CRL distribution points extension OID and syntax
--CRL分发点扩展OID和语法
id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce 31}
id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce 31}
CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint
CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint
DistributionPoint ::= SEQUENCE { distributionPoint [0] DistributionPointName OPTIONAL, reasons [1] ReasonFlags OPTIONAL, cRLIssuer [2] GeneralNames OPTIONAL }
DistributionPoint ::= SEQUENCE { distributionPoint [0] DistributionPointName OPTIONAL, reasons [1] ReasonFlags OPTIONAL, cRLIssuer [2] GeneralNames OPTIONAL }
DistributionPointName ::= CHOICE { fullName [0] GeneralNames, nameRelativeToCRLIssuer [1] RelativeDistinguishedName }
DistributionPointName ::= CHOICE { fullName [0] GeneralNames, nameRelativeToCRLIssuer [1] RelativeDistinguishedName }
ReasonFlags ::= BIT STRING { unused (0), keyCompromise (1), cACompromise (2), affiliationChanged (3), superseded (4), cessationOfOperation (5), certificateHold (6), privilegeWithdrawn (7), aACompromise (8) }
ReasonFlags ::= BIT STRING { unused (0), keyCompromise (1), cACompromise (2), affiliationChanged (3), superseded (4), cessationOfOperation (5), certificateHold (6), privilegeWithdrawn (7), aACompromise (8) }
-- extended key usage extension OID and syntax
--扩展密钥用法扩展OID和语法
id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37}
id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37}
ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
KeyPurposeId ::= OBJECT IDENTIFIER
KeyPurposeId ::= OBJECT IDENTIFIER
-- permit unspecified key uses
--允许未指定的关键用途
anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }
anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }
-- extended key purpose OIDs
--扩展关键用途OID
id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 } id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 } id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 } id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 } id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 } id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 }
id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 } id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 } id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 } id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 } id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 } id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 }
-- inhibit any policy OID and syntax
--禁止任何策略OID和语法
id-ce-inhibitAnyPolicy OBJECT IDENTIFIER ::= { id-ce 54 }
id-ce-inhibitAnyPolicy OBJECT IDENTIFIER ::= { id-ce 54 }
InhibitAnyPolicy ::= SkipCerts
InhibitAnyPolicy ::= SkipCerts
-- freshest (delta)CRL extension OID and syntax
--最新(增量)CRL扩展OID和语法
id-ce-freshestCRL OBJECT IDENTIFIER ::= { id-ce 46 }
id-ce-freshestCRL OBJECT IDENTIFIER ::= { id-ce 46 }
FreshestCRL ::= CRLDistributionPoints
FreshestCRL ::= CRLDistributionPoints
-- authority info access
--权限信息访问
id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }
id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }
AuthorityInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription
AuthorityInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription
AccessDescription ::= SEQUENCE { accessMethod OBJECT IDENTIFIER, accessLocation GeneralName }
AccessDescription ::= SEQUENCE { accessMethod OBJECT IDENTIFIER, accessLocation GeneralName }
-- subject info access
--主题信息访问
id-pe-subjectInfoAccess OBJECT IDENTIFIER ::= { id-pe 11 }
id-pe-subjectInfoAccess OBJECT IDENTIFIER ::= { id-pe 11 }
SubjectInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription
SubjectInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription
-- CRL number extension OID and syntax
--CRL数字扩展OID和语法
id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }
id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }
CRLNumber ::= INTEGER (0..MAX)
CRLNumber ::= INTEGER (0..MAX)
-- issuing distribution point extension OID and syntax
--发布分发点扩展OID和语法
id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }
id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }
IssuingDistributionPoint ::= SEQUENCE { distributionPoint [0] DistributionPointName OPTIONAL, onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE, onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE, onlySomeReasons [3] ReasonFlags OPTIONAL, indirectCRL [4] BOOLEAN DEFAULT FALSE, onlyContainsAttributeCerts [5] BOOLEAN DEFAULT FALSE } -- at most one of onlyContainsUserCerts, onlyContainsCACerts, -- and onlyContainsAttributeCerts may be set to TRUE.
IssuingDistributionPoint ::= SEQUENCE { distributionPoint [0] DistributionPointName OPTIONAL, onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE, onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE, onlySomeReasons [3] ReasonFlags OPTIONAL, indirectCRL [4] BOOLEAN DEFAULT FALSE, onlyContainsAttributeCerts [5] BOOLEAN DEFAULT FALSE } -- at most one of onlyContainsUserCerts, onlyContainsCACerts, -- and onlyContainsAttributeCerts may be set to TRUE.
id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }
id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }
BaseCRLNumber ::= CRLNumber
BaseCRLNumber ::= CRLNumber
-- reason code extension OID and syntax
--原因代码扩展OID和语法
id-ce-cRLReasons OBJECT IDENTIFIER ::= { id-ce 21 }
id-ce-cRLReasons OBJECT IDENTIFIER ::= { id-ce 21 }
CRLReason ::= ENUMERATED { unspecified (0), keyCompromise (1), cACompromise (2), affiliationChanged (3), superseded (4), cessationOfOperation (5), certificateHold (6), removeFromCRL (8), privilegeWithdrawn (9), aACompromise (10) }
CRLReason ::= ENUMERATED { unspecified (0), keyCompromise (1), cACompromise (2), affiliationChanged (3), superseded (4), cessationOfOperation (5), certificateHold (6), removeFromCRL (8), privilegeWithdrawn (9), aACompromise (10) }
-- certificate issuer CRL entry extension OID and syntax
--证书颁发者CRL条目扩展OID和语法
id-ce-certificateIssuer OBJECT IDENTIFIER ::= { id-ce 29 }
id-ce-certificateIssuer OBJECT IDENTIFIER ::= { id-ce 29 }
CertificateIssuer ::= GeneralNames
CertificateIssuer ::= GeneralNames
-- hold instruction extension OID and syntax
--hold指令扩展OID和语法
id-ce-holdInstructionCode OBJECT IDENTIFIER ::= { id-ce 23 }
id-ce-holdInstructionCode OBJECT IDENTIFIER ::= { id-ce 23 }
HoldInstructionCode ::= OBJECT IDENTIFIER
HoldInstructionCode ::= OBJECT IDENTIFIER
-- ANSI x9 arc holdinstruction arc
--ANSI x9电弧指示弧
holdInstruction OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) member-body(2) us(840) x9cm(10040) 2}
holdInstruction OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) member-body(2) us(840) x9cm(10040) 2}
-- ANSI X9 holdinstructions
--ANSI X9标准说明
id-holdinstruction-none OBJECT IDENTIFIER ::= {holdInstruction 1} -- deprecated
id-holdinstruction-none OBJECT IDENTIFIER ::= {holdInstruction 1} -- deprecated
id-holdinstruction-callissuer OBJECT IDENTIFIER ::= {holdInstruction 2}
id-holdinstruction-callissuer OBJECT IDENTIFIER ::= {holdInstruction 2}
id-holdinstruction-reject OBJECT IDENTIFIER ::= {holdInstruction 3}
id-holdinstruction-reject OBJECT IDENTIFIER ::= {holdInstruction 3}
-- invalidity date CRL entry extension OID and syntax
--无效日期CRL条目扩展OID和语法
id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }
id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }
InvalidityDate ::= GeneralizedTime
InvalidityDate ::= GeneralizedTime
END
终止
CAs MUST force the serialNumber to be a non-negative integer, that is, the sign bit in the DER encoding of the INTEGER value MUST be zero. This can be done by adding a leading (leftmost) `00'H octet if necessary. This removes a potential ambiguity in mapping between a string of octets and an integer value.
CAs必须强制serialNumber为非负整数,即整数值的DER编码中的符号位必须为零。如有必要,可通过添加前导(最左侧)`00'H八位字节来实现。这消除了八位字节字符串和整数值之间映射的潜在歧义。
As noted in Section 4.1.2.2, serial numbers can be expected to contain long integers. Certificate users MUST be able to handle serialNumber values up to 20 octets in length. Conforming CAs MUST NOT use serialNumber values longer than 20 octets.
如第4.1.2.2节所述,序列号可能包含长整数。证书用户必须能够处理长度不超过20个八位字节的serialNumber值。符合条件的CA不得使用长度超过20个八位字节的serialNumber值。
As noted in Section 5.2.3, CRL numbers can be expected to contain long integers. CRL validators MUST be able to handle cRLNumber values up to 20 octets in length. Conforming CRL issuers MUST NOT use cRLNumber values longer than 20 octets.
如第5.2.3节所述,CRL编号可能包含长整数。CRL验证器必须能够处理长度不超过20个八位字节的CRL数字值。符合条件的CRL发行人不得使用长度超过20个八位字节的CRL编号值。
The construct "SEQUENCE SIZE (1..MAX) OF" appears in several ASN.1 constructs. A valid ASN.1 sequence will have zero or more entries. The SIZE (1..MAX) construct constrains the sequence to have at least one entry. MAX indicates that the upper bound is unspecified. Implementations are free to choose an upper bound that suits their environment.
构造“序列大小(1..MAX)”出现在几个ASN.1构造中。一个有效的ASN.1序列将有零个或多个条目。SIZE(1..MAX)构造将序列约束为至少有一个条目。MAX表示未指定上限。实现可以自由选择适合其环境的上限。
The character string type PrintableString supports a very basic Latin character set: the lowercase letters 'a' through 'z', uppercase letters 'A' through 'Z', the digits '0' through '9', eleven special characters ' = ( ) + , - . / : ? and space.
The character string type PrintableString supports a very basic Latin character set: the lowercase letters 'a' through 'z', uppercase letters 'A' through 'Z', the digits '0' through '9', eleven special characters ' = ( ) + , - . / : ? and space.
Implementers should note that the at sign ('@') and underscore ('_') characters are not supported by the ASN.1 type PrintableString. These characters often appear in Internet addresses. Such addresses MUST be encoded using an ASN.1 type that supports them. They are usually encoded as IA5String in either the emailAddress attribute within a distinguished name or the rfc822Name field of GeneralName. Conforming implementations MUST NOT encode strings that include either the at sign or underscore character as PrintableString.
实现者应该注意,ASN.1类型的PrintableString不支持at符号('@')和下划线(''.')字符。这些字符经常出现在Internet地址中。这些地址必须使用支持它们的ASN.1类型进行编码。它们通常在可分辨名称内的emailAddress属性或GeneralName的rfc822Name字段中编码为IA5String。一致性实现不得将包含at符号或下划线字符的字符串编码为可打印字符串。
The character string type TeletexString is a superset of PrintableString. TeletexString supports a fairly standard (ASCII-like) Latin character set: Latin characters with non-spacing accents and Japanese characters.
字符串类型的电传字符串是可打印字符串的超集。TeletextString支持相当标准(类似ASCII)的拉丁字符集:带有非空格重音符号的拉丁字符和日语字符。
Named bit lists are BIT STRINGs where the values have been assigned names. This specification makes use of named bit lists in the definitions for the key usage, CRL distribution points, and freshest CRL certificate extensions, as well as the freshest CRL and issuing distribution point CRL extensions. When DER encoding a named bit list, trailing zeros MUST be omitted. That is, the encoded value ends with the last named bit that is set to one.
命名位列表是已为值指定名称的位字符串。本规范在密钥使用、CRL分发点、最新CRL证书扩展以及最新CRL和发布分发点CRL扩展的定义中使用命名位列表。对命名位列表进行DER编码时,必须省略尾随的零。也就是说,编码值以设置为1的最后一个命名位结束。
The character string type UniversalString supports any of the characters allowed by [ISO10646]. ISO 10646 is the Universal multiple-octet coded Character Set (UCS).
字符串类型UniversalString支持[ISO10646]允许的任何字符。ISO10646是通用的多八位编码字符集(UCS)。
The character string type UTF8String was introduced in the 1997 version of ASN.1, and UTF8String was added to the list of choices for DirectoryString in the 2001 version of [X.520]. UTF8String is a universal type and has been assigned tag number 12. The content of UTF8String was defined by RFC 2044 and updated in RFC 2279, which was updated in [RFC3629].
1997年版本的ASN.1中引入了字符串类型UTF8String,2001年版本的[X.520]中将UTF8String添加到DirectoryString的选项列表中。UTF8String是一种通用类型,已分配标签号12。UTF8String的内容由RFC 2044定义并在RFC 2279中更新,RFC 2279在[RFC3629]中更新。
In anticipation of these changes, and in conformance with IETF Best Practices codified in [RFC2277], IETF Policy on Character Sets and Languages, this document includes UTF8String as a choice in DirectoryString and in the userNotice certificate policy qualifier.
考虑到这些变化,并根据[RFC2277]中编纂的IETF最佳实践,IETF字符集和语言政策,本文档将UTF8String作为DirectoryString和userNotice证书策略限定符中的选项。
For many of the attribute types defined in [X.520], the AttributeValue uses the DirectoryString type. Of the attributes specified in Appendix A, the name, surname, givenName, initials, generationQualifier, commonName, localityName, stateOrProvinceName, organizationName, organizationalUnitName, title, and pseudonym attributes all use the DirectoryString type. X.520 uses a parameterized type definition [X.683] of DirectoryString to specify the syntax for each of these attributes. The parameter is used to indicate the maximum string length allowed for the attribute. In Appendix A, in order to avoid the use of parameterized type definitions, the DirectoryString type is written in its expanded form for the definition of each of these attribute types. So, the ASN.1 in Appendix A describes the syntax for each of these attributes as being a CHOICE of TeletexString, PrintableString, UniversalString, UTF8String, and BMPString, with the appropriate constraints on the string length applied to each of the types in the CHOICE, rather than using the ASN.1 type DirectoryString to describe the syntax.
对于[X.520]中定义的许多属性类型,AttributeValue使用DirectoryString类型。在附录A中指定的属性中,名称、姓氏、给定名称、首字母缩写、generationQualifier、commonName、LocationName、stateOrProvinceName、organizationName、organizationalUnitName、title和假名属性都使用DirectoryString类型。X.520使用DirectoryString的参数化类型定义[X.683]来指定每个属性的语法。该参数用于指示属性允许的最大字符串长度。在附录A中,为了避免使用参数化类型定义,DirectoryString类型以其扩展形式编写,用于每个属性类型的定义。因此,附录A中的ASN.1将这些属性的语法描述为TELETEXTSTRING、PrintableString、UniversalString、UTF8String和BMPString的选择,并对选择中的每种类型应用适当的字符串长度约束,而不是使用ASN.1 type DirectoryString来描述语法。
Implementers should note that the DER encoding of the SET OF values requires ordering of the encodings of the values. In particular, this issue arises with respect to distinguished names.
实现者应该注意,值集的顺序编码需要对值的编码进行排序。特别是,这一问题涉及可分辨名称。
Implementers should note that the DER encoding of SET or SEQUENCE components whose value is the DEFAULT omit the component from the encoded certificate or CRL. For example, a BasicConstraints extension whose cA value is FALSE would omit the cA boolean from the encoded certificate.
实现者应该注意,值为默认值的集合或序列组件的DER编码会从编码的证书或CRL中忽略该组件。例如,cA值为FALSE的BasicConstraints扩展将从编码证书中忽略cA布尔值。
Object Identifiers (OIDs) are used throughout this specification to identify certificate policies, public key and signature algorithms, certificate extensions, etc. There is no maximum size for OIDs. This specification mandates support for OIDs that have arc elements with values that are less than 2^28, that is, they MUST be between 0 and 268,435,455, inclusive. This allows each arc element to be represented within a single 32-bit word. Implementations MUST also support OIDs where the length of the dotted decimal (see Section 1.4 of [RFC4512]) string representation can be up to 100 bytes (inclusive). Implementations MUST be able to handle OIDs with up to 20 elements (inclusive). CAs SHOULD NOT issue certificates that contain OIDs that exceed these requirements. Likewise, CRL issuers SHOULD NOT issue CRLs that contain OIDs that exceed these requirements.
本规范使用对象标识符(OID)来标识证书策略、公钥和签名算法、证书扩展等。OID没有最大大小。本规范要求支持具有值小于2^28的弧元素的OID,即它们必须介于0和268435455之间(包括0和268435455)。这允许在单个32位字中表示每个arc元素。实现还必须支持OID,其中点十进制(见[RFC4512]第1.4节)字符串表示的长度最多可达100字节(含100字节)。实现必须能够处理多达20个元素(包括)的OID。CA不应颁发包含超出这些要求的OID的证书。同样,CRL发行人不应发行包含超出这些要求的OID的CRL。
The content-specific rules for encoding GeneralName field values in the nameConstraints extension differ from rules that apply in other extensions. In all other certificate, CRL, and CRL entry extensions specified in this document the encoding rules conform to the rules for the underlying type. For example, values in the uniformResourceIdentifier field must contain a valid URI as specified in [RFC3986]. The content-specific rules for encoding values in the nameConstraints extension are specified in Section 4.2.1.10, and these rules may not conform to the rules for the underlying type. For example, when the uniformResourceIdentifier field appears in a nameConstraints extension, it must hold a DNS name (e.g., "host.example.com" or ".example.com") rather than a URI.
nameConstraints扩展中用于编码GeneralName字段值的特定于内容的规则与其他扩展中适用的规则不同。在本文档中指定的所有其他证书、CRL和CRL条目扩展中,编码规则符合基础类型的规则。例如,uniformResourceIdentifier字段中的值必须包含[RFC3986]中指定的有效URI。nameConstraints扩展中编码值的内容特定规则在第4.2.1.10节中指定,这些规则可能不符合基础类型的规则。例如,当uniformResourceIdentifier字段出现在nameConstraints扩展中时,它必须包含DNS名称(例如,“host.example.com”或“.example.com”)而不是URI。
Implementors are warned that the X.500 standards community has developed a series of extensibility rules. These rules determine when an ASN.1 definition can be changed without assigning a new Object Identifier (OID). For example, at least two extension definitions included in [RFC2459], the predecessor to this profile document, have different ASN.1 definitions in this specification, but the same OID is used. If unknown elements appear within an extension, and the extension is not marked as critical, those unknown elements ought to be ignored, as follows:
实现者被警告X.500标准社区已经开发了一系列扩展性规则。这些规则确定何时可以在不指定新对象标识符(OID)的情况下更改ASN.1定义。例如,本概要文件的前身[RFC2459]中包含的至少两个扩展定义在本规范中具有不同的ASN.1定义,但使用相同的OID。如果扩展中出现未知元素,且扩展未标记为关键元素,则应忽略这些未知元素,如下所示:
(a) ignore all unknown bit name assignments within a bit string;
(a) 忽略位字符串中的所有未知位名称分配;
(b) ignore all unknown named numbers in an ENUMERATED type or INTEGER type that is being used in the enumerated style, provided the number occurs as an optional element of a SET or SEQUENCE; and
(b) 忽略枚举样式中使用的枚举类型或整数类型中的所有未知命名数字,前提是该数字作为集合或序列的可选元素出现;和
(c) ignore all unknown elements in SETs, at the end of SEQUENCEs, or in CHOICEs where the CHOICE is itself an optional element of a SET or SEQUENCE.
(c) 忽略集合中、序列末尾或选项中的所有未知元素,其中选项本身是集合或序列的可选元素。
If an extension containing unexpected values is marked as critical, the implementation MUST reject the certificate or CRL containing the unrecognized extension.
如果包含意外值的扩展被标记为关键,则实现必须拒绝包含无法识别的扩展的证书或CRL。
This appendix contains four examples: three certificates and a CRL. The first two certificates and the CRL comprise a minimal certification path.
本附录包含四个示例:三个证书和一个CRL。前两个证书和CRL包含一个最小的证书路径。
Appendix C.1 contains an annotated hex dump of a "self-signed" certificate issued by a CA whose distinguished name is cn=Example CA,dc=example,dc=com. The certificate contains an RSA public key, and is signed by the corresponding RSA private key.
附录C.1包含由CA颁发的“自签名”证书的带注释的十六进制转储,其可分辨名称为cn=Example CA,dc=Example,dc=com。证书包含一个RSA公钥,并由相应的RSA私钥签名。
Appendix C.2 contains an annotated hex dump of an end entity certificate. The end entity certificate contains an RSA public key, and is signed by the private key corresponding to the "self-signed" certificate in Appendix C.1.
附录C.2包含终端实体证书的带注释的十六进制转储。终端实体证书包含一个RSA公钥,并由与附录C.1中“自签名”证书相对应的私钥签名。
Appendix C.3 contains an annotated hex dump of an end entity certificate that contains a DSA public key with parameters, and is signed with DSA and SHA-1. This certificate is not part of the minimal certification path.
附录C.3包含最终实体证书的带注释的十六进制转储,该证书包含带参数的DSA公钥,并由DSA和SHA-1签名。此证书不是最小证书路径的一部分。
Appendix C.4 contains an annotated hex dump of a CRL. The CRL is issued by the CA whose distinguished name is cn=Example CA,dc=example,dc=com and the list of revoked certificates includes the end entity certificate presented in Appendix C.2.
附录C.4包含CRL的带注释的十六进制转储。CRL由可分辨名称为cn=Example CA、dc=Example、dc=com的CA颁发,已撤销证书列表包括附录C.2中给出的最终实体证书。
The certificates were processed using Peter Gutmann's dumpasn1 utility to generate the output. The source for the dumpasn1 utility is available at <http://www.cs.auckland.ac.nz/~pgut001/dumpasn1.c>. The binaries for the certificates and CRLs are available at http://csrc.nist.gov/groups/ST/crypto_apps_infra/documents/pkixtools.
使用Peter Gutmann的dumpasn1实用程序处理证书以生成输出。dumpasn1实用程序的源代码位于<http://www.cs.auckland.ac.nz/~pgut001/dumpasn1.c>。证书和CRL的二进制文件可在http://csrc.nist.gov/groups/ST/crypto_apps_infra/documents/pkixtools.
In places in this appendix where a distinguished name is specified using a string representation, the strings are formatted using the rules specified in [RFC4514].
在本附录中使用字符串表示法指定可分辨名称的地方,使用[RFC4514]中指定的规则格式化字符串。
This appendix contains an annotated hex dump of a 578 byte version 3 certificate. The certificate contains the following information:
本附录包含578字节版本3证书的带注释十六进制转储。证书包含以下信息:
(a) the serial number is 17; (b) the certificate is signed with RSA and the SHA-1 hash algorithm; (c) the issuer's distinguished name is cn=Example CA,dc=example,dc=com; (d) the subject's distinguished name is cn=Example CA,dc=example,dc=com; (e) the certificate was issued on April 30, 2004 and expired on April 30, 2005; (f) the certificate contains a 1024-bit RSA public key; (g) the certificate contains a subject key identifier extension generated using method (1) of Section 4.2.1.2; and (h) the certificate is a CA certificate (as indicated through the basic constraints extension).
(a) the serial number is 17; (b) the certificate is signed with RSA and the SHA-1 hash algorithm; (c) the issuer's distinguished name is cn=Example CA,dc=example,dc=com; (d) the subject's distinguished name is cn=Example CA,dc=example,dc=com; (e) the certificate was issued on April 30, 2004 and expired on April 30, 2005; (f) the certificate contains a 1024-bit RSA public key; (g) the certificate contains a subject key identifier extension generated using method (1) of Section 4.2.1.2; and (h) the certificate is a CA certificate (as indicated through the basic constraints extension).
0 574: SEQUENCE { 4 423: SEQUENCE { 8 3: [0] { 10 1: INTEGER 2 : } 13 1: INTEGER 17 16 13: SEQUENCE { 18 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 29 0: NULL : } 31 67: SEQUENCE { 33 19: SET { 35 17: SEQUENCE { 37 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 49 3: IA5String 'com' : } : } 54 23: SET { 56 21: SEQUENCE { 58 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 70 7: IA5String 'example' : }
0 574: SEQUENCE { 4 423: SEQUENCE { 8 3: [0] { 10 1: INTEGER 2 : } 13 1: INTEGER 17 16 13: SEQUENCE { 18 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 29 0: NULL : } 31 67: SEQUENCE { 33 19: SET { 35 17: SEQUENCE { 37 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 49 3: IA5String 'com' : } : } 54 23: SET { 56 21: SEQUENCE { 58 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 70 7: IA5String 'example' : }
: } 79 19: SET { 81 17: SEQUENCE { 83 3: OBJECT IDENTIFIER commonName (2 5 4 3) 88 10: PrintableString 'Example CA' : } : } : } 100 30: SEQUENCE { 102 13: UTCTime 30/04/2004 14:25:34 GMT 117 13: UTCTime 30/04/2005 14:25:34 GMT : } 132 67: SEQUENCE { 134 19: SET { 136 17: SEQUENCE { 138 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 150 3: IA5String 'com' : } : } 155 23: SET { 157 21: SEQUENCE { 159 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 171 7: IA5String 'example' : } : } 180 19: SET { 182 17: SEQUENCE { 184 3: OBJECT IDENTIFIER commonName (2 5 4 3) 189 10: PrintableString 'Example CA' : } : } : } 201 159: SEQUENCE { 204 13: SEQUENCE { 206 9: OBJECT IDENTIFIER : rsaEncryption (1 2 840 113549 1 1 1) 217 0: NULL : } 219 141: BIT STRING, encapsulates { 223 137: SEQUENCE { 226 129: INTEGER : 00 C2 D7 97 6D 28 70 AA 5B CF 23 2E 80 70 39 EE : DB 6F D5 2D D5 6A 4F 7A 34 2D F9 22 72 47 70 1D : EF 80 E9 CA 30 8C 00 C4 9A 6E 5B 45 B4 6E A5 E6 : 6C 94 0D FA 91 E9 40 FC 25 9D C7 B7 68 19 56 8F : 11 70 6A D7 F1 C9 11 4F 3A 7E 3F 99 8D 6E 76 A5
: } 79 19: SET { 81 17: SEQUENCE { 83 3: OBJECT IDENTIFIER commonName (2 5 4 3) 88 10: PrintableString 'Example CA' : } : } : } 100 30: SEQUENCE { 102 13: UTCTime 30/04/2004 14:25:34 GMT 117 13: UTCTime 30/04/2005 14:25:34 GMT : } 132 67: SEQUENCE { 134 19: SET { 136 17: SEQUENCE { 138 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 150 3: IA5String 'com' : } : } 155 23: SET { 157 21: SEQUENCE { 159 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 171 7: IA5String 'example' : } : } 180 19: SET { 182 17: SEQUENCE { 184 3: OBJECT IDENTIFIER commonName (2 5 4 3) 189 10: PrintableString 'Example CA' : } : } : } 201 159: SEQUENCE { 204 13: SEQUENCE { 206 9: OBJECT IDENTIFIER : rsaEncryption (1 2 840 113549 1 1 1) 217 0: NULL : } 219 141: BIT STRING, encapsulates { 223 137: SEQUENCE { 226 129: INTEGER : 00 C2 D7 97 6D 28 70 AA 5B CF 23 2E 80 70 39 EE : DB 6F D5 2D D5 6A 4F 7A 34 2D F9 22 72 47 70 1D : EF 80 E9 CA 30 8C 00 C4 9A 6E 5B 45 B4 6E A5 E6 : 6C 94 0D FA 91 E9 40 FC 25 9D C7 B7 68 19 56 8F : 11 70 6A D7 F1 C9 11 4F 3A 7E 3F 99 8D 6E 76 A5
: 74 5F 5E A4 55 53 E5 C7 68 36 53 C7 1D 3B 12 A6 : 85 FE BD 6E A1 CA DF 35 50 AC 08 D7 B9 B4 7E 5C : FE E2 A3 2C D1 23 84 AA 98 C0 9B 66 18 9A 68 47 : E9 358 3: INTEGER 65537 : } : } : } 363 66: [3] { 365 64: SEQUENCE { 367 29: SEQUENCE { 369 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14) 374 22: OCTET STRING, encapsulates { 376 20: OCTET STRING : 08 68 AF 85 33 C8 39 4A 7A F8 82 93 8E 70 6A 4A : 20 84 2C 32 : } : } 398 14: SEQUENCE { 400 3: OBJECT IDENTIFIER keyUsage (2 5 29 15) 405 1: BOOLEAN TRUE 408 4: OCTET STRING, encapsulates { 410 2: BIT STRING 1 unused bits : '0000011'B : } : } 414 15: SEQUENCE { 416 3: OBJECT IDENTIFIER basicConstraints (2 5 29 19) 421 1: BOOLEAN TRUE 424 5: OCTET STRING, encapsulates { 426 3: SEQUENCE { 428 1: BOOLEAN TRUE : } : } : } : } : } : } 431 13: SEQUENCE { 433 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 444 0: NULL : } 446 129: BIT STRING : 6C F8 02 74 A6 61 E2 64 04 A6 54 0C 6C 72 13 AD : 3C 47 FB F6 65 13 A9 85 90 33 EA 76 A3 26 D9 FC : D1 0E 15 5F 28 B7 EF 93 BF 3C F3 E2 3E 7C B9 52 : FC 16 6E 29 AA E1 F4 7A 6F D5 7F EF B3 95 CA F3
: 74 5F 5E A4 55 53 E5 C7 68 36 53 C7 1D 3B 12 A6 : 85 FE BD 6E A1 CA DF 35 50 AC 08 D7 B9 B4 7E 5C : FE E2 A3 2C D1 23 84 AA 98 C0 9B 66 18 9A 68 47 : E9 358 3: INTEGER 65537 : } : } : } 363 66: [3] { 365 64: SEQUENCE { 367 29: SEQUENCE { 369 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14) 374 22: OCTET STRING, encapsulates { 376 20: OCTET STRING : 08 68 AF 85 33 C8 39 4A 7A F8 82 93 8E 70 6A 4A : 20 84 2C 32 : } : } 398 14: SEQUENCE { 400 3: OBJECT IDENTIFIER keyUsage (2 5 29 15) 405 1: BOOLEAN TRUE 408 4: OCTET STRING, encapsulates { 410 2: BIT STRING 1 unused bits : '0000011'B : } : } 414 15: SEQUENCE { 416 3: OBJECT IDENTIFIER basicConstraints (2 5 29 19) 421 1: BOOLEAN TRUE 424 5: OCTET STRING, encapsulates { 426 3: SEQUENCE { 428 1: BOOLEAN TRUE : } : } : } : } : } : } 431 13: SEQUENCE { 433 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 444 0: NULL : } 446 129: BIT STRING : 6C F8 02 74 A6 61 E2 64 04 A6 54 0C 6C 72 13 AD : 3C 47 FB F6 65 13 A9 85 90 33 EA 76 A3 26 D9 FC : D1 0E 15 5F 28 B7 EF 93 BF 3C F3 E2 3E 7C B9 52 : FC 16 6E 29 AA E1 F4 7A 6F D5 7F EF B3 95 CA F3
: 66 88 83 4E A1 35 45 84 CB BC 9B B8 C8 AD C5 5E : 46 D9 0B 0E 8D 80 E1 33 2B DC BE 2B 92 7E 4A 43 : A9 6A EF 8A 63 61 B3 6E 47 38 BE E8 0D A3 67 5D : F3 FA 91 81 3C 92 BB C5 5F 25 25 EB 7C E7 D8 A1 : }
: 66 88 83 4E A1 35 45 84 CB BC 9B B8 C8 AD C5 5E : 46 D9 0B 0E 8D 80 E1 33 2B DC BE 2B 92 7E 4A 43 : A9 6A EF 8A 63 61 B3 6E 47 38 BE E8 0D A3 67 5D : F3 FA 91 81 3C 92 BB C5 5F 25 25 EB 7C E7 D8 A1 : }
This appendix contains an annotated hex dump of a 629-byte version 3 certificate. The certificate contains the following information:
本附录包含629字节版本3证书的带注释十六进制转储。证书包含以下信息:
(a) the serial number is 18; (b) the certificate is signed with RSA and the SHA-1 hash algorithm; (c) the issuer's distinguished name is cn=Example CA,dc=example,dc=com; (d) the subject's distinguished name is cn=End Entity,dc=example,dc=com; (e) the certificate was valid from September 15, 2004 through March 15, 2005; (f) the certificate contains a 1024-bit RSA public key; (g) the certificate is an end entity certificate, as the basic constraints extension is not present; (h) the certificate contains an authority key identifier extension matching the subject key identifier of the certificate in appendix C.1; and (i) the certificate includes one alternative name -- an electronic mail address (rfc822Name) of "end.entity@example.com".
(a) the serial number is 18; (b) the certificate is signed with RSA and the SHA-1 hash algorithm; (c) the issuer's distinguished name is cn=Example CA,dc=example,dc=com; (d) the subject's distinguished name is cn=End Entity,dc=example,dc=com; (e) the certificate was valid from September 15, 2004 through March 15, 2005; (f) the certificate contains a 1024-bit RSA public key; (g) the certificate is an end entity certificate, as the basic constraints extension is not present; (h) the certificate contains an authority key identifier extension matching the subject key identifier of the certificate in appendix C.1; and (i) the certificate includes one alternative name -- an electronic mail address (rfc822Name) of "end.entity@example.com".
0 625: SEQUENCE { 4 474: SEQUENCE { 8 3: [0] { 10 1: INTEGER 2 : } 13 1: INTEGER 18 16 13: SEQUENCE { 18 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 29 0: NULL : } 31 67: SEQUENCE { 33 19: SET { 35 17: SEQUENCE { 37 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 49 3: IA5String 'com' : } : } 54 23: SET {
0 625: SEQUENCE { 4 474: SEQUENCE { 8 3: [0] { 10 1: INTEGER 2 : } 13 1: INTEGER 18 16 13: SEQUENCE { 18 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 29 0: NULL : } 31 67: SEQUENCE { 33 19: SET { 35 17: SEQUENCE { 37 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 49 3: IA5String 'com' : } : } 54 23: SET {
56 21: SEQUENCE { 58 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 70 7: IA5String 'example' : } : } 79 19: SET { 81 17: SEQUENCE { 83 3: OBJECT IDENTIFIER commonName (2 5 4 3) 88 10: PrintableString 'Example CA' : } : } : } 100 30: SEQUENCE { 102 13: UTCTime 15/09/2004 11:48:21 GMT 117 13: UTCTime 15/03/2005 11:48:21 GMT : } 132 67: SEQUENCE { 134 19: SET { 136 17: SEQUENCE { 138 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 150 3: IA5String 'com' : } : } 155 23: SET { 157 21: SEQUENCE { 159 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 171 7: IA5String 'example' : } : } 180 19: SET { 182 17: SEQUENCE { 184 3: OBJECT IDENTIFIER commonName (2 5 4 3) 189 10: PrintableString 'End Entity' : } : } : } 201 159: SEQUENCE { 204 13: SEQUENCE { 206 9: OBJECT IDENTIFIER : rsaEncryption (1 2 840 113549 1 1 1) 217 0: NULL : } 219 141: BIT STRING, encapsulates { 223 137: SEQUENCE { 226 129: INTEGER
56 21: SEQUENCE { 58 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 70 7: IA5String 'example' : } : } 79 19: SET { 81 17: SEQUENCE { 83 3: OBJECT IDENTIFIER commonName (2 5 4 3) 88 10: PrintableString 'Example CA' : } : } : } 100 30: SEQUENCE { 102 13: UTCTime 15/09/2004 11:48:21 GMT 117 13: UTCTime 15/03/2005 11:48:21 GMT : } 132 67: SEQUENCE { 134 19: SET { 136 17: SEQUENCE { 138 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 150 3: IA5String 'com' : } : } 155 23: SET { 157 21: SEQUENCE { 159 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 171 7: IA5String 'example' : } : } 180 19: SET { 182 17: SEQUENCE { 184 3: OBJECT IDENTIFIER commonName (2 5 4 3) 189 10: PrintableString 'End Entity' : } : } : } 201 159: SEQUENCE { 204 13: SEQUENCE { 206 9: OBJECT IDENTIFIER : rsaEncryption (1 2 840 113549 1 1 1) 217 0: NULL : } 219 141: BIT STRING, encapsulates { 223 137: SEQUENCE { 226 129: INTEGER
: 00 E1 6A E4 03 30 97 02 3C F4 10 F3 B5 1E 4D 7F : 14 7B F6 F5 D0 78 E9 A4 8A F0 A3 75 EC ED B6 56 : 96 7F 88 99 85 9A F2 3E 68 77 87 EB 9E D1 9F C0 : B4 17 DC AB 89 23 A4 1D 7E 16 23 4C 4F A8 4D F5 : 31 B8 7C AA E3 1A 49 09 F4 4B 26 DB 27 67 30 82 : 12 01 4A E9 1A B6 C1 0C 53 8B 6C FC 2F 7A 43 EC : 33 36 7E 32 B2 7B D5 AA CF 01 14 C6 12 EC 13 F2 : 2D 14 7A 8B 21 58 14 13 4C 46 A3 9A F2 16 95 FF : 23 358 3: INTEGER 65537 : } : } : } 363 117: [3] { 365 115: SEQUENCE { 367 33: SEQUENCE { 369 3: OBJECT IDENTIFIER subjectAltName (2 5 29 17) 374 26: OCTET STRING, encapsulates { 376 24: SEQUENCE { 378 22: [1] 'end.entity@example.com' : } : } : } 402 29: SEQUENCE { 404 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14) 409 22: OCTET STRING, encapsulates { 411 20: OCTET STRING : 17 7B 92 30 FF 44 D6 66 E1 90 10 22 6C 16 4F C0 : 8E 41 DD 6D : } : } 433 31: SEQUENCE { 435 3: OBJECT IDENTIFIER : authorityKeyIdentifier (2 5 29 35) 440 24: OCTET STRING, encapsulates { 442 22: SEQUENCE { 444 20: [0] : 08 68 AF 85 33 C8 39 4A 7A F8 82 93 8E 70 6A : 4A 20 84 2C 32 : } : } : } 466 14: SEQUENCE { 468 3: OBJECT IDENTIFIER keyUsage (2 5 29 15) 473 1: BOOLEAN TRUE 476 4: OCTET STRING, encapsulates { 478 2: BIT STRING 6 unused bits : '11'B
: 00 E1 6A E4 03 30 97 02 3C F4 10 F3 B5 1E 4D 7F : 14 7B F6 F5 D0 78 E9 A4 8A F0 A3 75 EC ED B6 56 : 96 7F 88 99 85 9A F2 3E 68 77 87 EB 9E D1 9F C0 : B4 17 DC AB 89 23 A4 1D 7E 16 23 4C 4F A8 4D F5 : 31 B8 7C AA E3 1A 49 09 F4 4B 26 DB 27 67 30 82 : 12 01 4A E9 1A B6 C1 0C 53 8B 6C FC 2F 7A 43 EC : 33 36 7E 32 B2 7B D5 AA CF 01 14 C6 12 EC 13 F2 : 2D 14 7A 8B 21 58 14 13 4C 46 A3 9A F2 16 95 FF : 23 358 3: INTEGER 65537 : } : } : } 363 117: [3] { 365 115: SEQUENCE { 367 33: SEQUENCE { 369 3: OBJECT IDENTIFIER subjectAltName (2 5 29 17) 374 26: OCTET STRING, encapsulates { 376 24: SEQUENCE { 378 22: [1] 'end.entity@example.com' : } : } : } 402 29: SEQUENCE { 404 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14) 409 22: OCTET STRING, encapsulates { 411 20: OCTET STRING : 17 7B 92 30 FF 44 D6 66 E1 90 10 22 6C 16 4F C0 : 8E 41 DD 6D : } : } 433 31: SEQUENCE { 435 3: OBJECT IDENTIFIER : authorityKeyIdentifier (2 5 29 35) 440 24: OCTET STRING, encapsulates { 442 22: SEQUENCE { 444 20: [0] : 08 68 AF 85 33 C8 39 4A 7A F8 82 93 8E 70 6A : 4A 20 84 2C 32 : } : } : } 466 14: SEQUENCE { 468 3: OBJECT IDENTIFIER keyUsage (2 5 29 15) 473 1: BOOLEAN TRUE 476 4: OCTET STRING, encapsulates { 478 2: BIT STRING 6 unused bits : '11'B
: } : } : } : } : } 482 13: SEQUENCE { 484 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 495 0: NULL : } 497 129: BIT STRING : 00 20 28 34 5B 68 32 01 BB 0A 36 0E AD 71 C5 95 : 1A E1 04 CF AE AD C7 62 14 A4 1B 36 31 C0 E2 0C : 3D D9 1E C0 00 DC 10 A0 BA 85 6F 41 CB 62 7A B7 : 4C 63 81 26 5E D2 80 45 5E 33 E7 70 45 3B 39 3B : 26 4A 9C 3B F2 26 36 69 08 79 BB FB 96 43 77 4B : 61 8B A1 AB 91 64 E0 F3 37 61 3C 1A A3 A4 C9 8A : B2 BF 73 D4 4D E4 58 E4 62 EA BC 20 74 92 86 0E : CE 84 60 76 E9 73 BB C7 85 D3 91 45 EA 62 5D CD : }
: } : } : } : } : } 482 13: SEQUENCE { 484 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 495 0: NULL : } 497 129: BIT STRING : 00 20 28 34 5B 68 32 01 BB 0A 36 0E AD 71 C5 95 : 1A E1 04 CF AE AD C7 62 14 A4 1B 36 31 C0 E2 0C : 3D D9 1E C0 00 DC 10 A0 BA 85 6F 41 CB 62 7A B7 : 4C 63 81 26 5E D2 80 45 5E 33 E7 70 45 3B 39 3B : 26 4A 9C 3B F2 26 36 69 08 79 BB FB 96 43 77 4B : 61 8B A1 AB 91 64 E0 F3 37 61 3C 1A A3 A4 C9 8A : B2 BF 73 D4 4D E4 58 E4 62 EA BC 20 74 92 86 0E : CE 84 60 76 E9 73 BB C7 85 D3 91 45 EA 62 5D CD : }
This appendix contains an annotated hex dump of a 914-byte version 3 certificate. The certificate contains the following information:
本附录包含914字节版本3证书的带注释十六进制转储。证书包含以下信息:
(a) the serial number is 256;
(a) 序列号为256;
(b) the certificate is signed with DSA and the SHA-1 hash algorithm;
(b) 使用DSA和SHA-1哈希算法对证书进行签名;
(c) the issuer's distinguished name is cn=Example DSA CA,dc=example,dc=com;
(c) the issuer's distinguished name is cn=Example DSA CA,dc=example,dc=com;
(d) the subject's distinguished name is cn=DSA End Entity,dc=example,dc=com;
(d) the subject's distinguished name is cn=DSA End Entity,dc=example,dc=com;
(e) the certificate was issued on May 2, 2004 and expired on May 2, 2005;
(e) 该证书于2004年5月2日签发,并于2005年5月2日到期;
(f) the certificate contains a 1024-bit DSA public key with parameters;
(f) 证书包含带参数的1024位DSA公钥;
(g) the certificate is an end entity certificate (not a CA certificate);
(g) 该证书是终端实体证书(不是CA证书);
(h) the certificate includes a subject alternative name of "<http://www.example.com/users/DSAendentity.html>" and an issuer alternative name of "<http://www.example.com>" -- both are URLs;
(h) the certificate includes a subject alternative name of "<http://www.example.com/users/DSAendentity.html>" and an issuer alternative name of "<http://www.example.com>" -- both are URLs;
(i) the certificate includes an authority key identifier extension and a certificate policies extension specifying the policy OID 2.16.840.1.101.3.2.1.48.9; and
(i) 证书包括授权密钥标识符扩展和证书策略扩展,指定策略OID 2.16.840.1.101.3.2.1.48.9;和
(j) the certificate includes a critical key usage extension specifying that the public key is intended for verification of digital signatures.
(j) 该证书包括一个关键密钥使用扩展,指定公钥用于验证数字签名。
0 910: SEQUENCE { 4 846: SEQUENCE { 8 3: [0] { 10 1: INTEGER 2 : } 13 2: INTEGER 256 17 9: SEQUENCE { 19 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3) : } 28 71: SEQUENCE { 30 19: SET { 32 17: SEQUENCE { 34 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 46 3: IA5String 'com' : } : } 51 23: SET { 53 21: SEQUENCE { 55 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 67 7: IA5String 'example' : } : } 76 23: SET { 78 21: SEQUENCE { 80 3: OBJECT IDENTIFIER commonName (2 5 4 3) 85 14: PrintableString 'Example DSA CA' : } : } : } 101 30: SEQUENCE { 103 13: UTCTime 02/05/2004 16:47:38 GMT 118 13: UTCTime 02/05/2005 16:47:38 GMT : } 133 71: SEQUENCE { 135 19: SET { 137 17: SEQUENCE { 139 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25)
0 910: SEQUENCE { 4 846: SEQUENCE { 8 3: [0] { 10 1: INTEGER 2 : } 13 2: INTEGER 256 17 9: SEQUENCE { 19 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3) : } 28 71: SEQUENCE { 30 19: SET { 32 17: SEQUENCE { 34 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 46 3: IA5String 'com' : } : } 51 23: SET { 53 21: SEQUENCE { 55 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 67 7: IA5String 'example' : } : } 76 23: SET { 78 21: SEQUENCE { 80 3: OBJECT IDENTIFIER commonName (2 5 4 3) 85 14: PrintableString 'Example DSA CA' : } : } : } 101 30: SEQUENCE { 103 13: UTCTime 02/05/2004 16:47:38 GMT 118 13: UTCTime 02/05/2005 16:47:38 GMT : } 133 71: SEQUENCE { 135 19: SET { 137 17: SEQUENCE { 139 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25)
151 3: IA5String 'com' : } : } 156 23: SET { 158 21: SEQUENCE { 160 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 172 7: IA5String 'example' : } : } 181 23: SET { 183 21: SEQUENCE { 185 3: OBJECT IDENTIFIER commonName (2 5 4 3) 190 14: PrintableString 'DSA End Entity' : } : } : } 206 439: SEQUENCE { 210 300: SEQUENCE { 214 7: OBJECT IDENTIFIER dsa (1 2 840 10040 4 1) 223 287: SEQUENCE { 227 129: INTEGER : 00 B6 8B 0F 94 2B 9A CE A5 25 C6 F2 ED FC FB 95 : 32 AC 01 12 33 B9 E0 1C AD 90 9B BC 48 54 9E F3 : 94 77 3C 2C 71 35 55 E6 FE 4F 22 CB D5 D8 3E 89 : 93 33 4D FC BD 4F 41 64 3E A2 98 70 EC 31 B4 50 : DE EB F1 98 28 0A C9 3E 44 B3 FD 22 97 96 83 D0 : 18 A3 E3 BD 35 5B FF EE A3 21 72 6A 7B 96 DA B9 : 3F 1E 5A 90 AF 24 D6 20 F0 0D 21 A7 D4 02 B9 1A : FC AC 21 FB 9E 94 9E 4B 42 45 9E 6A B2 48 63 FE : 43 359 21: INTEGER : 00 B2 0D B0 B1 01 DF 0C 66 24 FC 13 92 BA 55 F7 : 7D 57 74 81 E5 382 129: INTEGER : 00 9A BF 46 B1 F5 3F 44 3D C9 A5 65 FB 91 C0 8E : 47 F1 0A C3 01 47 C2 44 42 36 A9 92 81 DE 57 C5 : E0 68 86 58 00 7B 1F F9 9B 77 A1 C5 10 A5 80 91 : 78 51 51 3C F6 FC FC CC 46 C6 81 78 92 84 3D F4 : 93 3D 0C 38 7E 1A 5B 99 4E AB 14 64 F6 0C 21 22 : 4E 28 08 9C 92 B9 66 9F 40 E8 95 F6 D5 31 2A EF : 39 A2 62 C7 B2 6D 9E 58 C4 3A A8 11 81 84 6D AF : F8 B4 19 B4 C2 11 AE D0 22 3B AA 20 7F EE 1E 57 : 18 : } : } 514 132: BIT STRING, encapsulates { 518 128: INTEGER
151 3: IA5String 'com' : } : } 156 23: SET { 158 21: SEQUENCE { 160 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 172 7: IA5String 'example' : } : } 181 23: SET { 183 21: SEQUENCE { 185 3: OBJECT IDENTIFIER commonName (2 5 4 3) 190 14: PrintableString 'DSA End Entity' : } : } : } 206 439: SEQUENCE { 210 300: SEQUENCE { 214 7: OBJECT IDENTIFIER dsa (1 2 840 10040 4 1) 223 287: SEQUENCE { 227 129: INTEGER : 00 B6 8B 0F 94 2B 9A CE A5 25 C6 F2 ED FC FB 95 : 32 AC 01 12 33 B9 E0 1C AD 90 9B BC 48 54 9E F3 : 94 77 3C 2C 71 35 55 E6 FE 4F 22 CB D5 D8 3E 89 : 93 33 4D FC BD 4F 41 64 3E A2 98 70 EC 31 B4 50 : DE EB F1 98 28 0A C9 3E 44 B3 FD 22 97 96 83 D0 : 18 A3 E3 BD 35 5B FF EE A3 21 72 6A 7B 96 DA B9 : 3F 1E 5A 90 AF 24 D6 20 F0 0D 21 A7 D4 02 B9 1A : FC AC 21 FB 9E 94 9E 4B 42 45 9E 6A B2 48 63 FE : 43 359 21: INTEGER : 00 B2 0D B0 B1 01 DF 0C 66 24 FC 13 92 BA 55 F7 : 7D 57 74 81 E5 382 129: INTEGER : 00 9A BF 46 B1 F5 3F 44 3D C9 A5 65 FB 91 C0 8E : 47 F1 0A C3 01 47 C2 44 42 36 A9 92 81 DE 57 C5 : E0 68 86 58 00 7B 1F F9 9B 77 A1 C5 10 A5 80 91 : 78 51 51 3C F6 FC FC CC 46 C6 81 78 92 84 3D F4 : 93 3D 0C 38 7E 1A 5B 99 4E AB 14 64 F6 0C 21 22 : 4E 28 08 9C 92 B9 66 9F 40 E8 95 F6 D5 31 2A EF : 39 A2 62 C7 B2 6D 9E 58 C4 3A A8 11 81 84 6D AF : F8 B4 19 B4 C2 11 AE D0 22 3B AA 20 7F EE 1E 57 : 18 : } : } 514 132: BIT STRING, encapsulates { 518 128: INTEGER
: 30 B6 75 F7 7C 20 31 AE 38 BB 7E 0D 2B AB A0 9C : 4B DF 20 D5 24 13 3C CD 98 E5 5F 6C B7 C1 BA 4A : BA A9 95 80 53 F0 0D 72 DC 33 37 F4 01 0B F5 04 : 1F 9D 2E 1F 62 D8 84 3A 9B 25 09 5A 2D C8 46 8E : 2B D4 F5 0D 3B C7 2D C6 6C B9 98 C1 25 3A 44 4E : 8E CA 95 61 35 7C CE 15 31 5C 23 13 1E A2 05 D1 : 7A 24 1C CB D3 72 09 90 FF 9B 9D 28 C0 A1 0A EC : 46 9F 0D B8 D0 DC D0 18 A6 2B 5E F9 8F B5 95 BE : } : } 649 202: [3] { 652 199: SEQUENCE { 655 57: SEQUENCE { 657 3: OBJECT IDENTIFIER subjectAltName (2 5 29 17) 662 50: OCTET STRING, encapsulates { 664 48: SEQUENCE { 666 46: [6] : 'http://www.example.com/users/DSAendentity.' : 'html' : } : } : } 714 33: SEQUENCE { 716 3: OBJECT IDENTIFIER issuerAltName (2 5 29 18) 721 26: OCTET STRING, encapsulates { 723 24: SEQUENCE { 725 22: [6] 'http://www.example.com' : } : } : } 749 29: SEQUENCE { 751 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14) 756 22: OCTET STRING, encapsulates { 758 20: OCTET STRING : DD 25 66 96 43 AB 78 11 43 44 FE 95 16 F9 D9 B6 : B7 02 66 8D : } : } 780 31: SEQUENCE { 782 3: OBJECT IDENTIFIER : authorityKeyIdentifier (2 5 29 35) 787 24: OCTET STRING, encapsulates { 789 22: SEQUENCE { 791 20: [0] : 86 CA A5 22 81 62 EF AD 0A 89 BC AD 72 41 2C : 29 49 F4 86 56 : } : }
: 30 B6 75 F7 7C 20 31 AE 38 BB 7E 0D 2B AB A0 9C : 4B DF 20 D5 24 13 3C CD 98 E5 5F 6C B7 C1 BA 4A : BA A9 95 80 53 F0 0D 72 DC 33 37 F4 01 0B F5 04 : 1F 9D 2E 1F 62 D8 84 3A 9B 25 09 5A 2D C8 46 8E : 2B D4 F5 0D 3B C7 2D C6 6C B9 98 C1 25 3A 44 4E : 8E CA 95 61 35 7C CE 15 31 5C 23 13 1E A2 05 D1 : 7A 24 1C CB D3 72 09 90 FF 9B 9D 28 C0 A1 0A EC : 46 9F 0D B8 D0 DC D0 18 A6 2B 5E F9 8F B5 95 BE : } : } 649 202: [3] { 652 199: SEQUENCE { 655 57: SEQUENCE { 657 3: OBJECT IDENTIFIER subjectAltName (2 5 29 17) 662 50: OCTET STRING, encapsulates { 664 48: SEQUENCE { 666 46: [6] : 'http://www.example.com/users/DSAendentity.' : 'html' : } : } : } 714 33: SEQUENCE { 716 3: OBJECT IDENTIFIER issuerAltName (2 5 29 18) 721 26: OCTET STRING, encapsulates { 723 24: SEQUENCE { 725 22: [6] 'http://www.example.com' : } : } : } 749 29: SEQUENCE { 751 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14) 756 22: OCTET STRING, encapsulates { 758 20: OCTET STRING : DD 25 66 96 43 AB 78 11 43 44 FE 95 16 F9 D9 B6 : B7 02 66 8D : } : } 780 31: SEQUENCE { 782 3: OBJECT IDENTIFIER : authorityKeyIdentifier (2 5 29 35) 787 24: OCTET STRING, encapsulates { 789 22: SEQUENCE { 791 20: [0] : 86 CA A5 22 81 62 EF AD 0A 89 BC AD 72 41 2C : 29 49 F4 86 56 : } : }
: } 813 23: SEQUENCE { 815 3: OBJECT IDENTIFIER certificatePolicies (2 5 29 32) 820 16: OCTET STRING, encapsulates { 822 14: SEQUENCE { 824 12: SEQUENCE { 826 10: OBJECT IDENTIFIER '2 16 840 1 101 3 2 1 48 9' : } : } : } : } 838 14: SEQUENCE { 840 3: OBJECT IDENTIFIER keyUsage (2 5 29 15) 845 1: BOOLEAN TRUE 848 4: OCTET STRING, encapsulates { 850 2: BIT STRING 7 unused bits : '1'B (bit 0) : } : } : } : } : } 854 9: SEQUENCE { 856 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3) : } 865 47: BIT STRING, encapsulates { 868 44: SEQUENCE { 870 20: INTEGER : 65 57 07 34 DD DC CA CC 5E F4 02 F4 56 42 2C 5E : E1 B3 3B 80 892 20: INTEGER : 60 F4 31 17 CA F4 CF FF EE F4 08 A7 D9 B2 61 BE : B1 C3 DA BF : } : } : }
: } 813 23: SEQUENCE { 815 3: OBJECT IDENTIFIER certificatePolicies (2 5 29 32) 820 16: OCTET STRING, encapsulates { 822 14: SEQUENCE { 824 12: SEQUENCE { 826 10: OBJECT IDENTIFIER '2 16 840 1 101 3 2 1 48 9' : } : } : } : } 838 14: SEQUENCE { 840 3: OBJECT IDENTIFIER keyUsage (2 5 29 15) 845 1: BOOLEAN TRUE 848 4: OCTET STRING, encapsulates { 850 2: BIT STRING 7 unused bits : '1'B (bit 0) : } : } : } : } : } 854 9: SEQUENCE { 856 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3) : } 865 47: BIT STRING, encapsulates { 868 44: SEQUENCE { 870 20: INTEGER : 65 57 07 34 DD DC CA CC 5E F4 02 F4 56 42 2C 5E : E1 B3 3B 80 892 20: INTEGER : 60 F4 31 17 CA F4 CF FF EE F4 08 A7 D9 B2 61 BE : B1 C3 DA BF : } : } : }
This appendix contains an annotated hex dump of a version 2 CRL with two extensions (cRLNumber and authorityKeyIdentifier). The CRL was issued by cn=Example CA,dc=example,dc=com on February 5, 2005; the next scheduled issuance was February 6, 2005. The CRL includes one revoked certificate: serial number 18, which was revoked on November 19, 2004 due to keyCompromise. The CRL itself is number 12, and it was signed with RSA and SHA-1.
本附录包含带有两个扩展名(cRLNumber和authorityKeyIdentifier)的版本2 CRL的带注释的十六进制转储。该CRL由cn=Example CA,dc=Example,dc=com于2005年2月5日发布;下一次预定发行日期为2005年2月6日。CRL包括一个已撤销的证书:序列号18,该证书因密钥泄露于2004年11月19日被撤销。CRL本身是12号,它是用RSA和SHA-1签名的。
0 352: SEQUENCE { 4 202: SEQUENCE { 7 1: INTEGER 1 10 13: SEQUENCE { 12 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 23 0: NULL : } 25 67: SEQUENCE { 27 19: SET { 29 17: SEQUENCE { 31 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 43 3: IA5String 'com' : } : } 48 23: SET { 50 21: SEQUENCE { 52 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 64 7: IA5String 'example' : } : } 73 19: SET { 75 17: SEQUENCE { 77 3: OBJECT IDENTIFIER commonName (2 5 4 3) 82 10: PrintableString 'Example CA' : } : } : } 94 13: UTCTime 05/02/2005 12:00:00 GMT 109 13: UTCTime 06/02/2005 12:00:00 GMT 124 34: SEQUENCE { 126 32: SEQUENCE { 128 1: INTEGER 18 131 13: UTCTime 19/11/2004 15:57:03 GMT 146 12: SEQUENCE { 148 10: SEQUENCE { 150 3: OBJECT IDENTIFIER cRLReason (2 5 29 21) 155 3: OCTET STRING, encapsulates { 157 1: ENUMERATED 1 : } : } : } : } : } 160 47: [0] { 162 45: SEQUENCE {
0 352: SEQUENCE { 4 202: SEQUENCE { 7 1: INTEGER 1 10 13: SEQUENCE { 12 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 23 0: NULL : } 25 67: SEQUENCE { 27 19: SET { 29 17: SEQUENCE { 31 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 43 3: IA5String 'com' : } : } 48 23: SET { 50 21: SEQUENCE { 52 10: OBJECT IDENTIFIER : domainComponent (0 9 2342 19200300 100 1 25) 64 7: IA5String 'example' : } : } 73 19: SET { 75 17: SEQUENCE { 77 3: OBJECT IDENTIFIER commonName (2 5 4 3) 82 10: PrintableString 'Example CA' : } : } : } 94 13: UTCTime 05/02/2005 12:00:00 GMT 109 13: UTCTime 06/02/2005 12:00:00 GMT 124 34: SEQUENCE { 126 32: SEQUENCE { 128 1: INTEGER 18 131 13: UTCTime 19/11/2004 15:57:03 GMT 146 12: SEQUENCE { 148 10: SEQUENCE { 150 3: OBJECT IDENTIFIER cRLReason (2 5 29 21) 155 3: OCTET STRING, encapsulates { 157 1: ENUMERATED 1 : } : } : } : } : } 160 47: [0] { 162 45: SEQUENCE {
164 31: SEQUENCE { 166 3: OBJECT IDENTIFIER : authorityKeyIdentifier (2 5 29 35) 171 24: OCTET STRING, encapsulates { 173 22: SEQUENCE { 175 20: [0] : 08 68 AF 85 33 C8 39 4A 7A F8 82 93 8E 70 6A : 4A 20 84 2C 32 : } : } : } 197 10: SEQUENCE { 199 3: OBJECT IDENTIFIER cRLNumber (2 5 29 20) 204 3: OCTET STRING, encapsulates { 206 1: INTEGER 12 : } : } : } : } : } 209 13: SEQUENCE { 211 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 222 0: NULL : } 224 129: BIT STRING : 22 DC 18 7D F7 08 CE CC 75 D0 D0 6A 9B AD 10 F4 : 76 23 B4 81 6E B5 6D BE 0E FB 15 14 6C C8 17 6D : 1F EE 90 17 A2 6F 60 E4 BD AA 8C 55 DE 8E 84 6F : 92 F8 9F 10 12 27 AF 4A D4 2F 85 E2 36 44 7D AA : A3 4C 25 38 15 FF 00 FD 3E 7E EE 3D 26 12 EB D8 : E7 2B 62 E2 2B C3 46 80 EF 78 82 D1 15 C6 D0 9C : 72 6A CB CE 7A ED 67 99 8B 6E 70 81 7D 43 42 74 : C1 A6 AF C1 55 17 A2 33 4C D6 06 98 2B A4 FC 2E : }
164 31: SEQUENCE { 166 3: OBJECT IDENTIFIER : authorityKeyIdentifier (2 5 29 35) 171 24: OCTET STRING, encapsulates { 173 22: SEQUENCE { 175 20: [0] : 08 68 AF 85 33 C8 39 4A 7A F8 82 93 8E 70 6A : 4A 20 84 2C 32 : } : } : } 197 10: SEQUENCE { 199 3: OBJECT IDENTIFIER cRLNumber (2 5 29 20) 204 3: OCTET STRING, encapsulates { 206 1: INTEGER 12 : } : } : } : } : } 209 13: SEQUENCE { 211 9: OBJECT IDENTIFIER : sha1withRSAEncryption (1 2 840 113549 1 1 5) 222 0: NULL : } 224 129: BIT STRING : 22 DC 18 7D F7 08 CE CC 75 D0 D0 6A 9B AD 10 F4 : 76 23 B4 81 6E B5 6D BE 0E FB 15 14 6C C8 17 6D : 1F EE 90 17 A2 6F 60 E4 BD AA 8C 55 DE 8E 84 6F : 92 F8 9F 10 12 27 AF 4A D4 2F 85 E2 36 44 7D AA : A3 4C 25 38 15 FF 00 FD 3E 7E EE 3D 26 12 EB D8 : E7 2B 62 E2 2B C3 46 80 EF 78 82 D1 15 C6 D0 9C : 72 6A CB CE 7A ED 67 99 8B 6E 70 81 7D 43 42 74 : C1 A6 AF C1 55 17 A2 33 4C D6 06 98 2B A4 FC 2E : }
Authors' Addresses
作者地址
David Cooper National Institute of Standards and Technology 100 Bureau Drive, Mail Stop 8930 Gaithersburg, MD 20899-8930 USA EMail: david.cooper@nist.gov
David Cooper美国马里兰州盖瑟斯堡市局道100号国家标准与技术研究所邮政站8930邮编:20899-8930电子邮件:David。cooper@nist.gov
Stefan Santesson Microsoft One Microsoft Way Redmond, WA 98052 USA EMail: stefans@microsoft.com
Stefan Santesson Microsoft One Microsoft Way Redmond,WA 98052美国电子邮件:stefans@microsoft.com
Stephen Farrell Distributed Systems Group Computer Science Department Trinity College Dublin Ireland EMail: stephen.farrell@cs.tcd.ie
斯蒂芬·法雷尔分布式系统集团计算机科学系都柏林三一学院爱尔兰电子邮件:斯蒂芬。farrell@cs.tcd.ie
Sharon Boeyen Entrust 1000 Innovation Drive Ottawa, Ontario Canada K2K 3E7 EMail: sharon.boeyen@entrust.com
Sharon Boeyn委托1000加拿大安大略省渥太华创新大道K2K 3E7电子邮件:Sharon。boeyen@entrust.com
Russell Housley Vigil Security, LLC 918 Spring Knoll Drive Herndon, VA 20170 USA EMail: housley@vigilsec.com
Russell Housley Vigil Security,LLC 918 Spring Knoll Drive Herndon,弗吉尼亚州20170美国电子邮件:housley@vigilsec.com
Tim Polk National Institute of Standards and Technology 100 Bureau Drive, Mail Stop 8930 Gaithersburg, MD 20899-8930 USA EMail: wpolk@nist.gov
Tim Polk国家标准与技术研究所美国马里兰州盖瑟斯堡市局道100号邮政站8930邮编20899-8930电子邮件:wpolk@nist.gov
Full Copyright Statement
完整版权声明
Copyright (C) The IETF Trust (2008).
版权所有(C)IETF信托基金(2008年)。
This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.
本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。
This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件及其包含的信息以“原样”为基础提供,贡献者、他/她所代表或赞助的组织(如有)、互联网协会、IETF信托基金和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Intellectual Property
知识产权
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.
IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.
向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.