Network Working Group                                     M-K. Shin, Ed.
Request for Comments: 5181                                          ETRI
Category: Informational                                         Y-H. Han
                                                                     KUT
                                                                S-E. Kim
                                                                      KT
                                                               D. Premec
                                                          Siemens Mobile
                                                                May 2008
        
Network Working Group                                     M-K. Shin, Ed.
Request for Comments: 5181                                          ETRI
Category: Informational                                         Y-H. Han
                                                                     KUT
                                                                S-E. Kim
                                                                      KT
                                                               D. Premec
                                                          Siemens Mobile
                                                                May 2008
        

IPv6 Deployment Scenarios in 802.16 Networks

802.16网络中的IPv6部署方案

Status of This Memo

关于下段备忘

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。

Abstract

摘要

This document provides a detailed description of IPv6 deployment and integration methods and scenarios in wireless broadband access networks in coexistence with deployed IPv4 services. In this document, we will discuss the main components of IPv6 IEEE 802.16 access networks and their differences from IPv4 IEEE 802.16 networks and how IPv6 is deployed and integrated in each of the IEEE 802.16 technologies.

本文档详细描述了与已部署IPv4服务共存的无线宽带接入网络中的IPv6部署和集成方法及场景。在本文档中,我们将讨论IPv6 IEEE 802.16接入网络的主要组件及其与IPv4 IEEE 802.16网络的区别,以及IPv6如何部署和集成到每种IEEE 802.16技术中。

Table of Contents

目录

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
     1.1.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  2
   2.  Deploying IPv6 in IEEE 802.16 Networks . . . . . . . . . . . .  3
     2.1.  Elements of IEEE 802.16 Networks . . . . . . . . . . . . .  3
     2.2.  Scenarios and IPv6 Deployment  . . . . . . . . . . . . . .  3
       2.2.1.  Mobile Access Deployment Scenarios . . . . . . . . . .  4
       2.2.2.  Fixed/Nomadic Deployment Scenarios . . . . . . . . . .  8
     2.3.  IPv6 Multicast . . . . . . . . . . . . . . . . . . . . . . 10
     2.4.  IPv6 QoS . . . . . . . . . . . . . . . . . . . . . . . . . 11
     2.5.  IPv6 Security  . . . . . . . . . . . . . . . . . . . . . . 11
     2.6.  IPv6 Network Management  . . . . . . . . . . . . . . . . . 11
   3.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
   4.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 12
   5.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 12
     5.1.  Normative References . . . . . . . . . . . . . . . . . . . 12
     5.2.  Informative References . . . . . . . . . . . . . . . . . . 13
        
   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
     1.1.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  2
   2.  Deploying IPv6 in IEEE 802.16 Networks . . . . . . . . . . . .  3
     2.1.  Elements of IEEE 802.16 Networks . . . . . . . . . . . . .  3
     2.2.  Scenarios and IPv6 Deployment  . . . . . . . . . . . . . .  3
       2.2.1.  Mobile Access Deployment Scenarios . . . . . . . . . .  4
       2.2.2.  Fixed/Nomadic Deployment Scenarios . . . . . . . . . .  8
     2.3.  IPv6 Multicast . . . . . . . . . . . . . . . . . . . . . . 10
     2.4.  IPv6 QoS . . . . . . . . . . . . . . . . . . . . . . . . . 11
     2.5.  IPv6 Security  . . . . . . . . . . . . . . . . . . . . . . 11
     2.6.  IPv6 Network Management  . . . . . . . . . . . . . . . . . 11
   3.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
   4.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 12
   5.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 12
     5.1.  Normative References . . . . . . . . . . . . . . . . . . . 12
     5.2.  Informative References . . . . . . . . . . . . . . . . . . 13
        
1. Introduction
1. 介绍

As the deployment of IEEE 802.16 access networks progresses, users will be connected to IPv6 networks. While the IEEE 802.16 standard defines the encapsulation of an IPv4/IPv6 datagram in an IEEE 802.16 Media Access Control (MAC) payload, a complete description of IPv4/ IPv6 operation and deployment is not present. The IEEE 802.16 standards are limited to L1 and L2, so they may be used within any number of IP network architectures and scenarios. In this document, we will discuss the main components of IPv6 IEEE 802.16 access networks and their differences from IPv4 IEEE 802.16 networks and how IPv6 is deployed and integrated in each of the IEEE 802.16 technologies.

随着IEEE 802.16接入网络的部署,用户将连接到IPv6网络。虽然IEEE 802.16标准定义了IPv4/IPv6数据报在IEEE 802.16媒体访问控制(MAC)有效负载中的封装,但未提供IPv4/IPv6操作和部署的完整描述。IEEE 802.16标准仅限于L1和L2,因此可在任何数量的IP网络架构和场景中使用。在本文档中,我们将讨论IPv6 IEEE 802.16接入网络的主要组件及其与IPv4 IEEE 802.16网络的区别,以及IPv6如何部署和集成到每种IEEE 802.16技术中。

This document extends the work of [RFC4779] and follows the structure and common terminology of that document.

本文件扩展了[RFC4779]的工作,并遵循该文件的结构和通用术语。

1.1. Terminology
1.1. 术语

The IEEE 802.16-related terminologies in this document are to be interpreted as described in [RFC5154].

本文件中的IEEE 802.16相关术语应按照[RFC5154]中所述进行解释。

o Subscriber Station (SS): An end-user equipment that provides connectivity to the 802.16 networks. It can be either fixed/ nomadic or mobile equipment. In a mobile environment, SS represents the Mobile Subscriber Station (MS) introduced in [IEEE802.16e].

o 用户站(SS):提供802.16网络连接的最终用户设备。它可以是固定/游牧或移动设备。在移动环境中,SS表示[IEEE802.16e]中引入的移动用户站(MS)。

o Base Station (BS): A generalized equipment set providing connectivity, management, and control between the subscriber station and the 802.16 networks.

o 基站(BS):在用户站和802.16网络之间提供连接、管理和控制的通用设备集。

o Access Router (AR): An entity that performs an IP routing function to provide IP connectivity for a subscriber station (SS or MS).

o 接入路由器(AR):执行IP路由功能为用户站(SS或MS)提供IP连接的实体。

o Connection Identifier (CID): A 16-bit value that identifies a connection to equivalent peers in the 802.16 MAC of the SS(MS) and BS.

o 连接标识符(CID):一个16位值,用于标识与SS(MS)和BS的802.16 MAC中等效对等方的连接。

o Ethernet CS (Convergence Sublayer): 802.3/Ethernet CS-specific part of the Packet CS defined in 802.16 STD.

o 以太网CS(汇聚子层):802.3/Ethernet CS特定于802.16标准中定义的数据包CS的一部分。

o IPv6 CS (Convergence Sublayer): IPv6-specific subpart of the Packet CS, Classifier 2 (Packet, IPv6) defined in 802.16 STD.

o IPv6 CS(汇聚子层):802.16标准中定义的分组CS的IPv6特定子部分,分类器2(分组,IPv6)。

2. Deploying IPv6 in IEEE 802.16 Networks
2. 在IEEE 802.16网络中部署IPv6
2.1. Elements of IEEE 802.16 Networks
2.1. IEEE 802.16网络的要素

[IEEE802.16e] is an air interface for fixed and mobile broadband wireless access systems. [IEEE802.16] only specifies the convergence sublayers and the ability to transport IP over the air interface. The details of IPv6 (and IPv4) operations over IEEE 802.16 are defined in the 16ng WG. The IPv6 over IPv6 CS definition is already an approved specification [RFC5121]. IP over Ethernet CS in IEEE 802.16 is defined in [IP-ETHERNET].

[IEEE802.16e]是用于固定和移动宽带无线接入系统的空中接口。[IEEE802.16]仅指定汇聚子层和通过空中接口传输IP的能力。16ng工作组中定义了IEEE 802.16上IPv6(和IPv4)操作的详细信息。IPv6 over IPv6 CS定义已经是经批准的规范[RFC5121]。IEEE 802.16中的IP over Ethernet CS在[IP-Ethernet]中定义。

Figure 1 illustrates the key elements of typical mobile 802.16 deployments.

图1说明了典型移动802.16部署的关键要素。

          Customer |     Access Provider    | Service Provider
          Premise  |                        | (Backend Network)
        
          Customer |     Access Provider    | Service Provider
          Premise  |                        | (Backend Network)
        
       +-----+            +----+     +----+   +--------+
       | SSs |--(802.16)--| BS |-----|    |   | Edge   |   ISP
       +-----+            +----+     | AR |---| Router |==>Network
                                  +--|    |   | (ER)   |
                                  |  +----+   +--------+
       +-----+            +----+  |                |  +------+
       | SSs |--(802.16)--| BS |--+                +--|AAA   |
       +-----+            +----+                      |Server|
                                                      +------+
        
       +-----+            +----+     +----+   +--------+
       | SSs |--(802.16)--| BS |-----|    |   | Edge   |   ISP
       +-----+            +----+     | AR |---| Router |==>Network
                                  +--|    |   | (ER)   |
                                  |  +----+   +--------+
       +-----+            +----+  |                |  +------+
       | SSs |--(802.16)--| BS |--+                +--|AAA   |
       +-----+            +----+                      |Server|
                                                      +------+
        

Figure 1: Key Elements of IEEE 802.16(e) Networks

图1:IEEE 802.16(e)网络的关键要素

2.2. Scenarios and IPv6 Deployment
2.2. 场景和IPv6部署

[IEEE802.16] specifies two modes for sharing the wireless medium: point-to-multipoint (PMP) and mesh (optional). This document only focuses on the PMP mode.

[IEEE802.16]指定了两种共享无线介质的模式:点对多点(PMP)和网状(可选)。本文件仅关注PMP模式。

Some of the factors that hinder deployment of native IPv6 core protocols are already introduced by [RFC5154].

[RFC5154]已经介绍了阻碍本机IPv6核心协议部署的一些因素。

There are two different deployment scenarios: fixed and mobile access deployment scenarios. A fixed access scenario substitutes for existing wired-based access technologies such as digital subscriber lines (xDSL) and cable networks. This fixed access scenario can provide nomadic access within the radio coverages, which is called the Hot-zone model. A mobile access scenario exists for the new paradigm of transmitting voice, data, and video over mobile networks. This scenario can provide high-speed data rates equivalent to the wire-based Internet as well as mobility functions equivalent to

有两种不同的部署场景:固定和移动访问部署场景。固定接入方案替代了现有的有线接入技术,如数字用户线(xDSL)和有线网络。这种固定接入方案可在无线电覆盖范围内提供游牧接入,称为热区模式。移动接入场景适用于通过移动网络传输语音、数据和视频的新模式。该场景可以提供相当于有线互联网的高速数据速率,以及相当于无线网络的移动功能

cellular systems. There are the different IPv6 impacts on convergence sublayer type, link model, addressing, mobility, etc. between fixed and mobile access deployment scenarios. The details will be discussed below. The mobile access scenario can be classified into two different IPv6 link models: shared IPv6 prefix link model and point-to-point link model.

蜂窝系统。在固定和移动接入部署场景之间,IPv6对融合子层类型、链路模型、寻址、移动性等有不同的影响。详情将在下文讨论。移动接入场景可分为两种不同的IPv6链路模型:共享IPv6前缀链路模型和点到点链路模型。

2.2.1. Mobile Access Deployment Scenarios
2.2.1. 移动接入部署场景

Unlike IEEE 802.11, the IEEE 802.16 BS can provide mobility functions and fixed communications. [IEEE802.16e] has been standardized to provide mobility features on IEEE 802.16 environments. IEEE 802.16 BS might be deployed with a proprietary backend managed by an operator.

与IEEE 802.11不同,IEEE 802.16基站可以提供移动功能和固定通信。[IEEE802.16e]已标准化,以在IEEE 802.16环境中提供移动性功能。IEEE 802.16 BS可能部署有一个由运营商管理的专有后端。

There are two possible IPv6 link models for mobile access deployment scenarios: shared IPv6 prefix link model and point-to-point link model [RFC4968]. There is always a default access router in the scenarios. There can exist multiple hosts behind an MS (networks behind an MS may exist). The mobile access deployment models, Mobile WiMax and WiBro, fall within this deployment model.

移动接入部署场景有两种可能的IPv6链路模型:共享IPv6前缀链路模型和点对点链路模型[RFC4968]。在这些场景中总是有一个默认的访问路由器。一个MS后面可以存在多个主机(一个MS后面可能存在网络)。移动接入部署模型,移动WiMax和WiBro,都属于这种部署模型。

(1) Shared IPv6 Prefix Link Model

(1) 共享IPv6前缀链路模型

This link model represents the IEEE 802.16 mobile access network deployment where a subnet consists of only single AR interfaces and multiple MSs. Therefore, all MSs and corresponding AR interfaces share the same IPv6 prefix as shown in Figure 2. The IPv6 prefix will be different from the interface of the AR.

此链路模型表示IEEE 802.16移动接入网络部署,其中子网仅由单个AR接口和多个MS组成。因此,所有MSs和相应的AR接口共享相同的IPv6前缀,如图2所示。IPv6前缀将与AR的接口不同。

     +-----+
     | MS1 |<-(16)-+
     +-----+       |    +-----+
     +-----+       +----| BS1 |--+
     | MS2 |<-(16)-+    +-----+  |
     +-----+                     |  +-----+    +--------+
                                 +->| AR  |----| Edge   |    ISP
     +-----+                     |  +-----+    | Router +==>Network
     | MS3 |<-(16)-+    +-----+  |             +--------+
     +-----+       +----| BS2 |--+
     +-----+       |    +-----+
     | MS4 |<-(16)-+
     +-----+
        
     +-----+
     | MS1 |<-(16)-+
     +-----+       |    +-----+
     +-----+       +----| BS1 |--+
     | MS2 |<-(16)-+    +-----+  |
     +-----+                     |  +-----+    +--------+
                                 +->| AR  |----| Edge   |    ISP
     +-----+                     |  +-----+    | Router +==>Network
     | MS3 |<-(16)-+    +-----+  |             +--------+
     +-----+       +----| BS2 |--+
     +-----+       |    +-----+
     | MS4 |<-(16)-+
     +-----+
        

Figure 2: Shared IPv6 Prefix Link Model

图2:共享IPv6前缀链路模型

(2) Point-to-Point Link Model

(2) 点对点链接模型

This link model represents IEEE 802.16 mobile access network deployments where a subnet consists of only a single AR, BS, and MS. That is, each connection to a mobile node is treated as a single link. Each link between the MS and the AR is allocated a separate, unique prefix or a set of unique prefixes by the AR. The point-to-point link model follows the recommendations of [RFC3314].

此链路模型表示IEEE 802.16移动接入网络部署,其中子网仅由单个AR、BS和MS组成。也就是说,到移动节点的每个连接都被视为单个链路。MS和AR之间的每条链路由AR分配一个单独的唯一前缀或一组唯一前缀。点到点链路模型遵循[RFC3314]的建议。

      +-----+            +-----+     +-----+
      | MS1 |<-(16)------|     |---->|     |
      +-----+            | BS1 |     |     |
      +-----+            |     |     |     |    +--------+
      | MS2 |<-(16)------|     |---->|     |----| Edge   |    ISP
      +-----+            +-----+     |     |    | Router +==>Network
                                     | AR  |    +--------+
      +-----+            +-----+     |     |
      | MS3 |<-(16)------|     |---->|     |
      +-----+            | BS2 |     |     |
      +-----+            |     |     |     |
      | MS4 |<-(16)------|     |---->|     |
      +-----+            +-----+     +-----+
        
      +-----+            +-----+     +-----+
      | MS1 |<-(16)------|     |---->|     |
      +-----+            | BS1 |     |     |
      +-----+            |     |     |     |    +--------+
      | MS2 |<-(16)------|     |---->|     |----| Edge   |    ISP
      +-----+            +-----+     |     |    | Router +==>Network
                                     | AR  |    +--------+
      +-----+            +-----+     |     |
      | MS3 |<-(16)------|     |---->|     |
      +-----+            | BS2 |     |     |
      +-----+            |     |     |     |
      | MS4 |<-(16)------|     |---->|     |
      +-----+            +-----+     +-----+
        

Figure 3: Point-to-Point Link Model

图3:点对点链接模型

2.2.1.1. IPv6-Related Infrastructure Changes
2.2.1.1. 与IPv6相关的基础架构更改

IPv6 will be deployed in this scenario by upgrading the following devices to dual stack: MS, AR, and ER. In this scenario, IEEE 802.16 BSs have only MAC and PHY (Physical Layer) layers without router functionality and operate as a bridge. The BS should support IPv6 classifiers as specified in [IEEE802.16].

在这种情况下,将通过将以下设备升级到双堆栈来部署IPv6:MS、AR和ER。在这种情况下,IEEE 802.16 BSs只有MAC和PHY(物理层)层,没有路由器功能,并作为网桥运行。BS应支持[IEEE802.16]中规定的IPv6分类器。

2.2.1.2. Addressing
2.2.1.2. 寻址

An IPv6 MS has two possible options to get an IPv6 address. These options will be equally applied to the other scenario below (Section 2.2.2).

IPv6 MS有两个可能的选项来获取IPv6地址。这些选项将同样适用于以下其他场景(第2.2.2节)。

(1) An IPv6 MS can get the IPv6 address from an access router using stateless auto-configuration. In this case, router discovery and Duplicate Address Detection (DAD) operation should be properly operated over an IEEE 802.16 link.

(1) IPv6 MS可以使用无状态自动配置从访问路由器获取IPv6地址。在这种情况下,路由器发现和重复地址检测(DAD)操作应在IEEE 802.16链路上正常运行。

(2) An IPv6 MS can use Dynamic Host Configuration Protocol for IPv6 (DHCPv6) to get an IPv6 address from the DHCPv6 server. In this case, the DHCPv6 server would be located in the service provider core network, and the AR should provide a DHCPv6 relay agent. This option is similar to what we do today in case of DHCPv4.

(2) IPv6 MS可以使用IPv6的动态主机配置协议(DHCPv6)从DHCPv6服务器获取IPv6地址。在这种情况下,DHCPv6服务器将位于服务提供商核心网络中,AR应提供DHCPv6中继代理。此选项类似于我们今天在DHCPv4中所做的操作。

In this scenario, a router and multiple BSs form an IPv6 subnet, and a single prefix is allocated to all the attached MSs. All MSs attached to the same AR can be on the same IPv6 link.

在这种情况下,一个路由器和多个基站构成一个IPv6子网,并为所有连接的基站分配一个前缀。连接到同一AR的所有MS可以位于同一IPv6链路上。

As for the prefix assignment, in the case of the shared IPv6 prefix link model, one or more IPv6 prefixes are assigned to the link and are hence shared by all the nodes that are attached to the link. In the point-to-point link model, the AR assigns a unique prefix or a set of unique prefixes for each MS. Prefix delegation can be required if networks exist behind an MS.

至于前缀分配,在共享IPv6前缀链路模型的情况下,一个或多个IPv6前缀被分配给链路,因此被连接到链路的所有节点共享。在点到点链路模型中,AR为每个MS分配唯一前缀或一组唯一前缀。如果MS后面存在网络,则可能需要前缀委派。

2.2.1.3. IPv6 Transport
2.2.1.3. IPv6传输

In an IPv6 subnet, there are always two underlying links: one is the IEEE 802.16 wireless link between the MS and BS, and the other is a wired link between the BS and AR.

在IPv6子网中,始终存在两个底层链路:一个是MS和BS之间的IEEE 802.16无线链路,另一个是BS和AR之间的有线链路。

IPv6 packets can be sent and received via the IP-specific part of the packet convergence sublayer. The Packet CS is used for the transport of packet-based protocols, which include Ethernet and Internet Protocol (IPv4 and IPv6). Note that in this scenario, IPv6 CS may be more appropriate than Ethernet CS to transport IPv6 packets, since there is some overhead of Ethernet CS (e.g., Ethernet header) under mobile access environments. However, when PHS (Payload Header Suppression) is deployed, it mitigates this overhead through the compression of packet headers. The details of IPv6 operations over the IP-specific part of the packet CS are defined in [RFC5121].

IPv6数据包可以通过数据包汇聚子层的IP特定部分发送和接收。数据包CS用于传输基于数据包的协议,包括以太网和互联网协议(IPv4和IPv6)。请注意,在这种情况下,IPv6 CS可能比以太网CS更适合传输IPv6数据包,因为在移动访问环境下,以太网CS(例如,以太网报头)会有一些开销。然而,当部署PHS(有效负载报头抑制)时,它通过压缩数据包报头来减轻这种开销。[RFC5121]中定义了通过数据包CS的IP特定部分进行IPv6操作的详细信息。

Simple or complex network equipment may constitute the underlying wired network between the AR and the ER. If the IP-aware equipment between the AR and the ER does not support IPv6, the service providers can deploy IPv6-in-IPv4 tunneling mechanisms to transport IPv6 packets between the AR and the ER.

简单或复杂的网络设备可以构成AR和ER之间的底层有线网络。如果AR和ER之间的IP感知设备不支持IPv6,则服务提供商可以部署IPv6-in-IPv4隧道机制来在AR和ER之间传输IPv6数据包。

The service providers are deploying tunneling mechanisms to transport IPv6 over their existing IPv4 networks as well as deploying native IPv6 where possible. Native IPv6 should be preferred over tunneling mechanisms as native IPv6 deployment options might be more scalable and provide the required service performance. Tunneling mechanisms should only be used when native IPv6 deployment is not an option. This can be equally applied to other scenarios below (Section 2.2.2).

服务提供商正在部署隧道机制,以便在其现有IPv4网络上传输IPv6,并在可能的情况下部署本机IPv6。本机IPv6应优先于隧道机制,因为本机IPv6部署选项可能更具可扩展性,并提供所需的服务性能。仅当本机IPv6部署不是选项时,才应使用隧道机制。这同样适用于以下其他场景(第2.2.2节)。

2.2.1.4. Routing
2.2.1.4. 路由

In general, the MS is configured with a default route that points to the AR. Therefore, no routing protocols are needed on the MS. The MS just sends to the AR using the default route.

通常,MS配置有指向AR的默认路由。因此,MS上不需要路由协议。MS仅使用默认路由发送到AR。

The AR can configure multiple links to the ER for network reliability. The AR should support IPv6 routing protocols such as OSPFv3 [RFC2740] or Intermediate System to Intermediate System (IS-IS) for IPv6 when connected to the ER with multiple links.

AR可以配置到ER的多条链路以提高网络可靠性。当通过多个链路连接到ER时,AR应支持IPv6路由协议,如OSPFv3[RFC2740]或IPv6的中间系统到中间系统(IS-IS)。

The ER runs the Interior Gateway Protocol (IGP) such as OSPFv3 or IS-IS for IPv6 in the service provider network. The routing information of the ER can be redistributed to the AR. Prefix summarization should be done at the ER.

ER在服务提供商网络中运行内部网关协议(IGP),如用于IPv6的OSPFv3或IS-IS。ER的路由信息可以重新分配给AR。前缀摘要应该在ER进行。

2.2.1.5. Mobility
2.2.1.5. 流动性

There are two types of handovers for the IEEE 802.16e networks: link layer handover and IP layer handover. In a link layer handover, BSs involved in the handover reside in the same IP subnet. An MS only needs to reestablish a link layer connection with a new BS without changing its IP configuration, such as its IP address, default router, on-link prefix, etc. The link layer handover in IEEE 802.16e is by nature a hard handover since the MS has to cut off the connection with the current BS at the beginning of the handover process and cannot resume communication with the new BS until the handover completes [IEEE802.16e]. In an IP layer handover, the BSs involved reside in different IP subnets, or in different networks. Thus, in an IP layer handover, an MS needs to establish both a new link layer connection, as in a link layer handover, and a new IP configuration to maintain connectivity.

IEEE 802.16e网络有两种类型的切换:链路层切换和IP层切换。在链路层切换中,参与切换的BSs驻留在同一IP子网中。MS只需重新建立与新BS的链路层连接,而无需更改其IP配置,例如其IP地址、默认路由器、链路前缀、,IEEE 802.16e中的链路层切换本质上是硬切换,因为MS必须在切换过程开始时切断与当前BS的连接,并且在切换完成之前无法恢复与新BS的通信[IEEE802.16e]。在IP层切换中,涉及的BSs驻留在不同的IP子网或不同的网络中。因此,在IP层切换中,MS需要建立新的链路层连接(如在链路层切换中)和新的IP配置以保持连接性。

IP layer handover for MSs is handled by Mobile IPv6 [RFC3775]. Mobile IPv6 defines that movement detection uses Neighbor Unreachability Detection to detect when the default router is no longer bidirectionally reachable, in which case the mobile node must discover a new default router. Periodic Router Advertisements for reachability and movement detection may be unnecessary because the IEEE 802.16 MAC provides the reachability by its ranging procedure and the movement detection by the Handoff procedure.

MSs的IP层切换由移动IPv6[RFC3775]处理。移动IPv6定义移动检测使用邻居不可达性检测来检测默认路由器何时不再双向可达,在这种情况下,移动节点必须发现新的默认路由器。由于IEEE 802.16 MAC通过其测距过程提供可达性,并通过切换过程提供移动检测,因此用于可达性和移动检测的定期路由器广告可能是不必要的。

Mobile IPv6 alone will not solve the handover latency problem for the IEEE 802.16e networks. To reduce or eliminate packet loss and to reduce the handover delay in Mobile IPv6, therefore, Fast Handover for Mobile IPv6 (FMIPv6) [RFC4068] can be deployed together with MIPv6. To perform predictive packet forwarding, the FMIPv6's IP layer assumes the presence of handover-related triggers delivered by

仅移动IPv6无法解决IEEE 802.16e网络的切换延迟问题。为了减少或消除移动IPv6中的丢包和切换延迟,因此,可以将移动IPv6快速切换(FMIPv6)[RFC4068]与MIPv6一起部署。为了执行预测性数据包转发,FMIPv6的IP层假设存在由网络交付的与切换相关的触发器

the IEEE 802.16 MAC layers. Thus, there is a need for cross-layering design to support proper behavior of the FMIPv6 solution. This issue is also discussed in [MIPSHOP-FH80216E].

IEEE 802.16 MAC层。因此,需要跨层设计来支持FMIPv6解决方案的正确行为。[MIPSHOP-FH80216E]中也讨论了此问题。

Also, [IEEE802.16g] defines L2 triggers for link status such as link-up, link-down, and handoff-start. These L2 triggers may make the Mobile IPv6 or FMIPv6 procedure more efficient and faster.

此外,[IEEE802.16g]还定义了链路状态的二级触发器,如链路上升、链路下降和切换开始。这些L2触发器可能使移动IPv6或FMIPv6过程更高效、更快。

In addition, due to the problems caused by the existence of multiple convergence sublayers [RFC4840], the mobile access scenarios need solutions about how roaming will work when forced to move from one CS to another (e.g., IPv6 CS to Ethernet CS). Note that, at this phase, this issue is the out of scope of this document.

此外,由于存在多个汇聚子层[RFC4840]所导致的问题,移动接入场景需要解决当被迫从一个CS移动到另一个CS(例如,IPv6 CS到以太网CS)时漫游将如何工作的问题。注意,在这个阶段,这个问题超出了本文档的范围。

2.2.2. Fixed/Nomadic Deployment Scenarios
2.2.2. 固定/游牧部署场景

The IEEE 802.16 access networks can provide plain Ethernet end-to-end connectivity. This scenario represents a deployment model using Ethernet CS. A wireless DSL deployment model is an example of a fixed/nomadic IPv6 deployment of IEEE 802.16. Many wireless Internet service providers (wireless ISPs) have planned to use IEEE 802.16 for the purpose of high-quality broadband wireless services. A company can use IEEE 802.16 to build up a mobile office. Wireless Internet spreading through a campus or a cafe can also be implemented with it.

IEEE 802.16接入网络可以提供纯以太网端到端连接。此场景表示使用以太网CS的部署模型。无线DSL部署模型是IEEE 802.16固定/漫游IPv6部署的一个示例。许多无线互联网服务提供商(无线ISP)计划使用IEEE 802.16实现高质量的宽带无线服务。公司可以使用IEEE 802.16建立移动办公室。也可以通过它实现校园或咖啡馆的无线互联网传播。

            +-----+                        +-----+    +-----+    ISP 1
            | SS1 |<-(16)+              +->| AR1 |----| ER1 |===>Network
            +-----+      |              |  +-----+    +-----+
            +-----+      |     +-----+  |
            | SS2 |<-(16)+-----| BS1 |--|
            +-----+            +-----+  |  +-----+    +-----+    ISP 2
                                        +->| AR2 |----| ER2 |===>Network
 +-----+    +-----+            +-----+  |  +-----+    +-----+
 |Hosts|<-->|SS/GW|<-(16)------| BS2 |--+
 +-----+    +-----+            +-----+
    This network
 behind SS may exist
        
            +-----+                        +-----+    +-----+    ISP 1
            | SS1 |<-(16)+              +->| AR1 |----| ER1 |===>Network
            +-----+      |              |  +-----+    +-----+
            +-----+      |     +-----+  |
            | SS2 |<-(16)+-----| BS1 |--|
            +-----+            +-----+  |  +-----+    +-----+    ISP 2
                                        +->| AR2 |----| ER2 |===>Network
 +-----+    +-----+            +-----+  |  +-----+    +-----+
 |Hosts|<-->|SS/GW|<-(16)------| BS2 |--+
 +-----+    +-----+            +-----+
    This network
 behind SS may exist
        

Figure 4: Fixed/Nomadic Deployment Scenario

图4:固定/游牧部署场景

This scenario also represents IEEE 802.16 network deployment where a subnet consists of multiple MSs and multiple interfaces of the multiple BSs. Multiple access routers can exist. There exist multiple hosts behind an SS (networks behind an SS may exist). When 802.16 access networks are widely deployed as in a Wireless Local Area Network (WLAN), this case should also be considered. The Hot-zone deployment model falls within this case.

此场景还表示IEEE 802.16网络部署,其中子网由多个MS和多个BSs的多个接口组成。可以存在多址路由器。SS后面存在多个主机(SS后面可能存在网络)。在无线局域网(WLAN)中广泛部署802.16接入网络时,也应考虑这种情况。热区部署模型属于这种情况。

While Figure 4 illustrates a generic deployment scenario, the following, Figure 5, shows in more detail how an existing DSL ISP would integrate the 802.16 access network into its existing infrastructure.

虽然图4展示了一个通用部署场景,但下面的图5更详细地展示了现有DSL ISP如何将802.16接入网络集成到其现有基础设施中。

 +-----+                        +---+      +-----+    +-----+    ISP 1
 | SS1 |<-(16)+                 |   |  +-->|BRAS |----| ER1 |===>Network
 +-----+      |                 |  b|  |   +-----+    +-----+
 +-----+      |     +-----+     |E r|  |
 | SS2 |<-(16)+-----| BS1 |-----|t i|  |
 +-----+            +-----+     |h d|--+
                                |  g|  |   +-----+    +-----+    ISP 2
 +-----+            +-----+     |  e|  +-->|BRAS |----| ER2 |===>Network
 | SS3 |<-(16)------| BS2 |-----|   |  |   +-----+    +-----+
 +-----+            +-----+     +---+  |
                                       |
 +-----+            +-----+            |
 | TE  |<-(DSL)-----|DSLAM|------------+
 +-----+            +-----+
        
 +-----+                        +---+      +-----+    +-----+    ISP 1
 | SS1 |<-(16)+                 |   |  +-->|BRAS |----| ER1 |===>Network
 +-----+      |                 |  b|  |   +-----+    +-----+
 +-----+      |     +-----+     |E r|  |
 | SS2 |<-(16)+-----| BS1 |-----|t i|  |
 +-----+            +-----+     |h d|--+
                                |  g|  |   +-----+    +-----+    ISP 2
 +-----+            +-----+     |  e|  +-->|BRAS |----| ER2 |===>Network
 | SS3 |<-(16)------| BS2 |-----|   |  |   +-----+    +-----+
 +-----+            +-----+     +---+  |
                                       |
 +-----+            +-----+            |
 | TE  |<-(DSL)-----|DSLAM|------------+
 +-----+            +-----+
        

Figure 5: Integration of 802.16 Access into the DSL Infrastructure

图5:802.16接入与DSL基础设施的集成

In this approach, the 802.16 BS is acting as a DSLAM (Digital Subscriber Line Access Multiplexer). On the network side, the BS is connected to an Ethernet bridge, which can be separate equipment or integrated into the BRAS (Broadband Remote Access Server).

在该方法中,802.16 BS充当DSLAM(数字用户线路接入多路复用器)。在网络侧,BS连接到以太网桥,以太网桥可以是单独的设备,也可以集成到BRAS(宽带远程访问服务器)中。

2.2.2.1. IPv6-Related Infrastructure Changes
2.2.2.1. 与IPv6相关的基础架构更改

IPv6 will be deployed in this scenario by upgrading the following devices to dual stack: MS, AR, ER, and the Ethernet bridge. The BS should support IPv6 classifiers as specified in [IEEE802.16].

IPv6将通过将以下设备升级到双栈来部署:MS、AR、ER和以太网桥。BS应支持[IEEE802.16]中规定的IPv6分类器。

The BRAS in Figure 5 is providing the functionality of the AR. An Ethernet bridge is necessary for protecting the BRAS from 802.16 link layer peculiarities. The Ethernet bridge relays all traffic received through the BS to its network side port(s) connected to the BRAS. Any traffic received from the BRAS is relayed to the appropriate BS. Since the 802.16 MAC layer has no native support for multicast (and broadcast) in the uplink direction, the Ethernet bridge will implement multicast (and broadcast) by relaying the multicast frame received from the MS to all of its ports. The Ethernet bridge may also provide some IPv6-specific functions to increase link efficiency of the 802.16 radio link (see Section 2.2.2.3).

图5中的BRA提供AR的功能。以太网网桥对于保护BRA免受802.16链路层特性的影响是必要的。以太网桥将通过BS接收的所有流量中继到其连接到BRAS的网络侧端口。从BRA接收到的任何通信量都会中继到相应的BS。由于802.16 MAC层在上行链路方向上对多播(和广播)没有本机支持,因此以太网网桥将通过将从MS接收的多播帧中继到其所有端口来实现多播(和广播)。以太网网桥还可以提供一些特定于IPv6的功能,以提高802.16无线链路的链路效率(参见第2.2.2.3节)。

2.2.2.2. Addressing
2.2.2.2. 寻址

One or more IPv6 prefixes can be shared to all the attached MSs. Prefix delegation can be required if networks exist behind the SS.

可以将一个或多个IPv6前缀共享给所有连接的MS。如果SS后面存在网络,则可能需要前缀委派。

2.2.2.3. IPv6 Transport
2.2.2.3. IPv6传输

Transmission of IPv6 over Ethernet CS follows [RFC2464] and does not introduce any changes to [RFC4861] and [RFC4862]. However, there are a few considerations in the viewpoint of operation, such as preventing periodic router advertisement messages from an access router and broadcast transmission, deciding path MTU size, and so on. The details about the considerations are described in [IP-ETHERNET].

IPv6在以太网CS上的传输遵循[RFC2464],并且没有对[RFC4861]和[RFC4862]进行任何更改。然而,从操作的角度来看,存在一些考虑,例如防止来自接入路由器的周期性路由器广告消息和广播传输,确定路径MTU大小,等等。有关注意事项的详细信息,请参见[IP-ETHERNET]。

2.2.2.4. Routing
2.2.2.4. 路由

In this scenario, IPv6 multi-homing considerations exist. For example, if there exist two routers to support MSs, a default router must be selected.

在这种情况下,需要考虑IPv6多宿主问题。例如,如果有两个路由器支持MSs,则必须选择默认路由器。

The Edge Router runs the IGP used in the SP network such as OSPFv3 [RFC2740] or IS-IS for IPv6. The connected prefixes have to be redistributed. Prefix summarization should be done at the Edge Router.

边缘路由器运行SP网络中使用的IGP,如用于IPv6的OSPFv3[RFC2740]或IS-IS。连接的前缀必须重新分配。前缀摘要应该在边缘路由器上完成。

2.2.2.5. Mobility
2.2.2.5. 流动性

No mobility functions of Layer 2 and Layer 3 are supported in the fixed access scenario. Like WLAN technology, however, nomadicity can be supported in the radio coverage without any mobility protocol. So, a user can access Internet nomadically in the coverage.

固定接入场景中不支持第2层和第3层的移动性功能。然而,与WLAN技术一样,无需任何移动协议即可在无线电覆盖范围内支持漫游。因此,用户可以在覆盖范围内正常访问互联网。

Sometimes, service users can demand IP session continuity or home address reusability even in the nomadic environment. In that case, Mobile IPv6 [RFC3775] may be used in this scenario even in the absence of Layer 2's mobility support.

有时,即使在游牧环境中,服务用户也可能要求IP会话连续性或家庭地址可重用性。在这种情况下,即使在没有第2层移动支持的情况下,也可以在这种情况下使用移动IPv6[RFC3775]。

2.3. IPv6 Multicast
2.3. IPv6多播

[IP-ETHERNET] realizes IPv6 multicast support by Internet Group Management Protocol/Multicast Listener Discovery (IGMP/MLD) proxying [RFC4605] and IGMP/MLD snooping [RFC4541]. Additionally, it may be possible to efficiently implement multicast packet transmission among the multicast subscribers by means of IEEE 802.16 Multicast CIDs. However, such a protocol is not yet available and under development in WiMAX Forum.

[IP-ETHERNET]通过Internet组管理协议/多播侦听器发现(IGMP/MLD)代理[RFC4605]和IGMP/MLD侦听[RFC4541]实现IPv6多播支持。此外,可以借助IEEE 802.16多播cid在多播订户之间有效地实现多播分组传输。但是,WiMAX论坛目前还没有并正在开发这样的协议。

2.4. IPv6 QoS
2.4. IPv6服务质量

In IEEE 802.16 networks, a connection is unidirectional and has a Quality of Service (QoS) specification. Each connection is associated with a single data service flow, and each service flow is associated with a set of QoS parameters in [IEEE802.16]. The QoS-related parameters are managed using the Dynamic Service Addition (DSA) and Dynamic Service Change (DSC) MAC management messages specified in [IEEE802.16]. The [IEEE802.16] provides QoS differentiation for the different types of applications by five scheduling services. Four scheduling services are defined in 802.16: Unsolicited Grant Service (UGS), real-time Polling Service (rtPS), non-real-time Polling Service (nrtPS), and Best Effort (BE). A fifth scheduling service is Extended Real-time Polling Service (ertPS), defined in [IEEE802.16e]. It is required to define IP layer quality of service mapping to MAC layer QoS types [IEEE802.16], [IEEE802.16e].

在IEEE 802.16网络中,连接是单向的,并且具有服务质量(QoS)规范。每个连接与单个数据业务流相关联,每个业务流与[IEEE802.16]中的一组QoS参数相关联。QoS相关参数使用[IEEE802.16]中指定的动态服务添加(DSA)和动态服务更改(DSC)MAC管理消息进行管理。[IEEE802.16]通过五种调度服务为不同类型的应用程序提供QoS区分。802.16中定义了四种调度服务:非请求授权服务(UGS)、实时轮询服务(rtPS)、非实时轮询服务(nrtPS)和尽力而为(BE)。第五种调度服务是[IEEE802.16e]中定义的扩展实时轮询服务(ertPS)。需要定义IP层服务质量映射到MAC层QoS类型[IEEE802.16],[IEEE802.16e]。

2.5. IPv6 Security
2.5. IPv6安全

When initiating the connection, an MS is authenticated by the Authentication, Authorization, and Accounting (AAA) server located at its service provider network. To achieve that, the MS and the BS use Privacy Key Management [IEEE802.16],[IEEE802.16e], while the BS communicates with the AAA server using a AAA protocol. Once the MS is authenticated with the AAA server, it can associate successfully with the BS and acquire an IPv6 address through stateless auto-configuration or DHCPv6. Note that the initiation and authentication process is the same as the one used in IPv4.

启动连接时,MS由位于其服务提供商网络上的身份验证、授权和计费(AAA)服务器进行身份验证。为了实现这一点,MS和BS使用隐私密钥管理[IEEE802.16]、[IEEE802.16e],而BS使用AAA协议与AAA服务器通信。一旦MS通过AAA服务器的身份验证,它就可以成功地与BS关联,并通过无状态自动配置或DHCPv6获取IPv6地址。请注意,启动和身份验证过程与IPv4中使用的过程相同。

2.6. IPv6 Network Management
2.6. IPv6网络管理

[IEEE802.16f] includes the management information base for IEEE 802.16 networks. For IPv6 network management, the necessary instrumentation (such as MIBs, NetFlow Records, etc.) should be available.

[IEEE802.16f]包括IEEE 802.16网络的管理信息库。对于IPv6网络管理,应提供必要的工具(如MIB、NetFlow记录等)。

Upon entering the network, an MS is assigned three management connections in each direction. These three connections reflect the three different QoS requirements used by different management levels. The first of these is the basic connection, which is used for the transfer of short, time-critical MAC management messages and radio link control (RLC) messages. The primary management connection is used to transfer longer, more delay-tolerant messages such as those used for authentication and connection setup. The secondary management connection is used for the transfer of standards-based

进入网络后,MS在每个方向上分配三个管理连接。这三个连接反映了不同管理级别使用的三种不同的QoS需求。第一个是基本连接,用于传输短的、时间关键的MAC管理消息和无线链路控制(RLC)消息。主管理连接用于传输更长、更容延迟的消息,如用于身份验证和连接设置的消息。辅助管理连接用于基于标准的数据传输

management messages such as Dynamic Host Configuration Protocol (DHCP), Trivial File Transfer Protocol (TFTP), and Simple Network Management Protocol (SNMP).

管理消息,如动态主机配置协议(DHCP)、普通文件传输协议(TFTP)和简单网络管理协议(SNMP)。

IPv6-based IEEE 802.16 networks can be managed by IPv4 or IPv6 when network elements are implemented dual stack. SNMP messages can be carried by either IPv4 or IPv6.

基于IPv6的IEEE 802.16网络可以通过IPv4或IPv6管理,当网络元素实现双栈时。SNMP消息可以由IPv4或IPv6承载。

3. Security Considerations
3. 安全考虑

This document provides a detailed description of various IPv6 deployment scenarios and link models for IEEE 802.16-based networks, and as such does not introduce any new security threats. No matter what the scenario applied is, the networks should employ the same link layer security mechanisms defined in [IEEE802.16e] and IPv6 transition security considerations defined in [RFC4942]. However, as already described in [RFC4968], a shared prefix model-based mobile access deployment scenario may have security implications for protocols that are designed to work within the scope. This is the concern for a shared prefix link model wherein private resources cannot be put onto a public 802.16-based network. This may restrict the usage of a shared prefix model to enterprise environments.

本文档详细描述了基于IEEE 802.16的网络的各种IPv6部署场景和链路模型,因此不会引入任何新的安全威胁。无论应用何种场景,网络都应采用[IEEE802.16e]中定义的相同链路层安全机制和[RFC4942]中定义的IPv6过渡安全注意事项。然而,如[RFC4968]中所述,基于共享前缀模型的移动接入部署场景可能会对设计在该范围内工作的协议产生安全影响。这是共享前缀链路模型的关注点,在共享前缀链路模型中,私有资源不能放在基于802.16的公共网络上。这可能会将共享前缀模型的使用限制在企业环境中。

4. Acknowledgements
4. 致谢

This work extends v6ops work on [RFC4779]. We thank all the authors of the document. Special thanks are due to Maximilian Riegel, Jonne Soininen, Brian E. Carpenter, Jim Bound, David Johnston, Basavaraj Patil, Byoung-Jo Kim, Eric Klein, Bruno Sousa, Jung-Mo Moon, Sangjin Jeong, and Jinhyeock Choi for extensive review of this document. We acknowledge Dominik Kaspar for proofreading the document.

这项工作扩展了[RFC4779]上的v6ops工作。我们感谢该文件的所有作者。特别感谢Maximilian Riegel、Jonne Soininen、Brian E.Carpenter、Jim Bound、David Johnston、Basavaraj Patil、Byoung Jo Kim、Eric Klein、Bruno Sousa、Jung Moo Moon、Sangjin Jeong和Jinhyeock Choi对本文件的广泛审查。我们感谢Dominik Kaspar校对该文件。

5. References
5. 工具书类
5.1. Normative References
5.1. 规范性引用文件

[RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, September 2007.

[RFC4861]Narten,T.,Nordmark,E.,Simpson,W.,和H.Soliman,“IP版本6(IPv6)的邻居发现”,RFC 48612007年9月。

[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address Autoconfiguration", RFC 4862, September 2007.

[RFC4862]Thomson,S.,Narten,T.,和T.Jinmei,“IPv6无状态地址自动配置”,RFC 48622007年9月。

5.2. Informative References
5.2. 资料性引用

[IEEE802.16] "IEEE 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems", October 2004.

[IEEE802.16]“IEEE 802.16-2004,IEEE局域网和城域网标准,第16部分:固定宽带无线接入系统的空中接口”,2004年10月。

[IEEE802.16e] "IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1", February 2006.

[IEEE802.16e]“IEEE局域网和城域网标准第16部分:固定和移动宽带无线接入系统的空中接口修改件2:在许可频带和勘误表1中组合固定和移动操作的物理和介质接入控制层”,2006年2月。

[IEEE802.16f] "Amendment to IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems - Management Information Base", December 2005.

[IEEE802.16f]“对IEEE局域网和城域网标准的修订,第16部分:固定宽带无线接入系统的空中接口-管理信息库”,2005年12月。

[IEEE802.16g] "Draft Amendment to IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems - Management Plane Procedures and Services", January 2007.

[IEEE802.16g]“IEEE局域网和城域网标准修订草案,第16部分:固定宽带无线接入系统的空中接口-管理平面程序和服务”,2007年1月。

[IP-ETHERNET] Jeon, H., Riegel, M., and S. Jeong, "Transmission of IP over Ethernet over IEEE 802.16 Networks", Work in Progress, April 2008.

[IP-ETHERNET]Jeon,H.,Riegel,M.,和S.Jeong,“通过IEEE 802.16网络通过以太网传输IP”,正在进行的工作,2008年4月。

[MIPSHOP-FH80216E] Jang, H., Jee, J., Han, Y., Park, S., and J. Cha, "Mobile IPv6 Fast Handovers over IEEE 802.16e Networks", Work in Progress, March 2008.

[MIPSHOP-FH80216E]Jang,H.,Jee,J.,Han,Y.,Park,S.,和J.Cha,“IEEE 802.16e网络上的移动IPv6快速切换”,正在进行的工作,2008年3月。

[RFC2464] Crawford, M., "Transmission of IPv6 Packets over Ethernet Networks", RFC 2464, December 1998.

[RFC2464]克劳福德,M.,“通过以太网传输IPv6数据包”,RFC2464,1998年12月。

[RFC2740] Coltun, R., Ferguson, D., and J. Moy, "OSPF for IPv6", RFC 2740, December 1999.

[RFC2740]Coltun,R.,Ferguson,D.,和J.Moy,“IPv6的OSPF”,RFC 27401999年12月。

[RFC3314] Wasserman, M., "Recommendations for IPv6 in Third Generation Partnership Project (3GPP) Standards", RFC 3314, September 2002.

[RFC3314]Wasserman,M.,“第三代合作伙伴项目(3GPP)标准中IPv6的建议”,RFC 3314,2002年9月。

[RFC3775] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in IPv6", RFC 3775, June 2004.

[RFC3775]Johnson,D.,Perkins,C.,和J.Arkko,“IPv6中的移动支持”,RFC 37752004年6月。

[RFC4068] Koodli, R., "Fast Handovers for Mobile IPv6", RFC 4068, July 2005.

[RFC4068]Koodli,R.,“移动IPv6的快速切换”,RFC4068,2005年7月。

[RFC4541] Christensen, M., Kimball, K., and F. Solensky, "Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches", RFC 4541, May 2006.

[RFC4541]Christensen,M.,Kimball,K.,和F.Solensky,“互联网组管理协议(IGMP)和多播侦听器发现(MLD)窥探交换机的注意事项”,RFC 4541,2006年5月。

[RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick, "Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("IGMP/MLD Proxying")", RFC 4605, August 2006.

[RFC4605]Fenner,B.,He,H.,Haberman,B.,和H.Sandick,“基于Internet组管理协议(IGMP)/多播侦听器发现(MLD)的多播转发(“IGMP/MLD代理”)”,RFC 4605,2006年8月。

[RFC4779] Asadullah, S., Ahmed, A., Popoviciu, C., Savola, P., and J. Palet, "ISP IPv6 Deployment Scenarios in Broadband Access Networks", RFC 4779, January 2007.

[RFC4779]Asadullah,S.,Ahmed,A.,Popoviciu,C.,Savola,P.,和J.Palet,“宽带接入网络中的ISP IPv6部署场景”,RFC 4779,2007年1月。

[RFC4840] Aboba, B., Davies, E., and D. Thaler, "Multiple Encapsulation Methods Considered Harmful", RFC 4840, April 2007.

[RFC4840]Aboba,B.,Davies,E.,和D.Thaler,“认为有害的多种封装方法”,RFC 4840,2007年4月。

[RFC4942] Davies, E., Krishnan, S., and P. Savola, "IPv6 Transition/Co-existence Security Considerations", RFC 4942, September 2007.

[RFC4942]Davies,E.,Krishnan,S.,和P.Savola,“IPv6过渡/共存安全考虑”,RFC 49422007年9月。

[RFC4968] Madanapalli, S., "Analysis of IPv6 Link Models for 802.16 Based Networks", RFC 4968, August 2007.

[RFC4968]Madanapalli,S.,“基于802.16网络的IPv6链路模型分析”,RFC 4968,2007年8月。

[RFC5121] Patil, B., Xia, F., Sarikaya, B., Choi, JH., and S. Madanapalli, "Transmission of IPv6 via the IPv6 Convergence Sublayer over IEEE 802.16 Networks", RFC 5121, February 2008.

[RFC5121]Patil,B.,Xia,F.,Sarikaya,B.,Choi,JH.,和S.Madanapalli,“通过IEEE 802.16网络上的IPv6聚合子层传输IPv6”,RFC 51212008年2月。

[RFC5154] Jee, J., Madanapalli, S., and J. Mandin, "IP over IEEE 802.16 Problem Statement and Goals", RFC 5154, April 2008.

[RFC5154]Jee,J.,Madanapalli,S.,和J.Mandin,“IP over IEEE 802.16问题陈述和目标”,RFC 5154,2008年4月。

Authors' Addresses

作者地址

Myung-Ki Shin ETRI 161 Gajeong-dong Yuseng-gu Daejeon, 305-350 Korea

Myung Ki Shin ETRI 161 Gajeong dong Yuseng gu Daejeon,305-350韩国

   Phone: +82 42 860 4847
   EMail: myungki.shin@gmail.com
        
   Phone: +82 42 860 4847
   EMail: myungki.shin@gmail.com
        

Youn-Hee Han KUT Gajeon-Ri 307 Byeongcheon-Myeon Cheonan-Si Chungnam Province, 330-708 Korea

永熙韩局加全里307朝鲜省永川明川天安寺中南省,330-708

   EMail: yhhan@kut.ac.kr
        
   EMail: yhhan@kut.ac.kr
        

Sang-Eon Kim KT 17 Woomyeon-dong, Seocho-gu Seoul, 137-791 Korea

Sang Eon Kim KT 17 Woomyeon dong,首尔Seocho gu,137-791

   EMail: sekim@kt.com
        
   EMail: sekim@kt.com
        

Domagoj Premec Siemens Mobile Heinzelova 70a 10010 Zagreb Croatia

克罗地亚萨格勒布海因泽洛娃70a 10010西门子移动电话公司

   EMail: domagoj.premec@siemens.com
        
   EMail: domagoj.premec@siemens.com
        

Full Copyright Statement

完整版权声明

Copyright (C) The IETF Trust (2008).

版权所有(C)IETF信托基金(2008年)。

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息以“原样”为基础提供,贡献者、他/她所代表或赞助的组织(如有)、互联网协会、IETF信托基金和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.