Network Working Group P. Srisuresh Request for Comments: 4973 Kazeon Systems Category: Experimental P. Joseph Consultant July 2007
Network Working Group P. Srisuresh Request for Comments: 4973 Kazeon Systems Category: Experimental P. Joseph Consultant July 2007
OSPF-xTE: Experimental Extension to OSPF for Traffic Engineering
OSPF xTE:用于流量工程的OSPF实验扩展
Status of This Memo
关于下段备忘
This memo defines an Experimental Protocol for the Internet community. It does not specify an Internet standard of any kind. Discussion and suggestions for improvement are requested. Distribution of this memo is unlimited.
这份备忘录为互联网社区定义了一个实验性协议。它没有规定任何类型的互联网标准。要求进行讨论并提出改进建议。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The IETF Trust (2007).
版权所有(C)IETF信托基金(2007年)。
Abstract
摘要
This document defines OSPF-xTE, an experimental traffic engineering (TE) extension to the link-state routing protocol OSPF. OSPF-xTE defines new TE Link State Advertisements (LSAs) to disseminate TE metrics within an autonomous System (AS), which may consist of multiple areas. When an AS consists of TE and non-TE nodes, OSPF-xTE ensures that non-TE nodes in the AS are unaffected by the TE LSAs. OSPF-xTE generates a stand-alone TE Link State Database (TE-LSDB), distinct from the native OSPF LSDB, for computation of TE circuit paths. OSPF-xTE is versatile and extendible to non-packet networks such as Synchronous Optical Network (SONET) / Time Division Multiplexing (TDM) and optical networks.
本文档定义了OSPF xTE,它是链路状态路由协议OSPF的实验性流量工程(TE)扩展。OSPF xTE定义了新的TE链路状态公告(LSA),以在自治系统(AS)内传播TE度量,该自治系统可能由多个区域组成。当AS由TE和非TE节点组成时,OSPF xTE确保AS中的非TE节点不受TE LSA的影响。OSPF xTE生成独立的TE链路状态数据库(TE-LSDB),与本机OSPF LSDB不同,用于计算TE电路路径。OSPF xTE用途广泛,可扩展到非分组网络,如同步光网络(SONET)/时分复用(TDM)和光网络。
IESG Note
IESG注释
The content of this RFC was at one time considered by the IETF, and therefore it may resemble a current IETF work in progress or a published IETF work. This RFC is not a candidate for any level of Internet Standard. The IETF disclaims any knowledge of the fitness of this RFC for any purpose and in particular notes that the decision to publish is not based on IETF review for such things as security, congestion control, or inappropriate interaction with deployed protocols. The RFC Editor has chosen to publish this document at its discretion. Readers of this RFC should exercise caution in evaluating its value for implementation and deployment. See RFC 3932 for more information.
IETF曾考虑过本RFC的内容,因此它可能类似于当前正在进行的IETF工作或已发布的IETF工作。本RFC不适用于任何级别的互联网标准。IETF不承认本RFC适用于任何目的的任何知识,特别注意到,发布决定并非基于IETF对安全、拥塞控制或与已部署协议的不当交互等事项的审查。RFC编辑已自行决定发布本文件。本RFC的读者应谨慎评估其实施和部署价值。有关更多信息,请参阅RFC 3932。
See RFC 3630 for the IETF consensus protocol for OSPF Traffic Engineering. The OSPF WG position at the time of publication is that although this proposal has some useful properties, the protocol in RFC 3630 is sufficient for the traffic engineering needs that have been identified so far, and the cost of migrating to this proposal exceeds its benefits.
有关OSPF流量工程的IETF一致协议,请参见RFC 3630。OSPF工作组在发布时的立场是,尽管本提案具有一些有用的特性,但RFC 3630中的协议足以满足迄今为止确定的流量工程需求,并且迁移到本提案的成本超过了其好处。
Table of Contents
目录
1. Introduction ....................................................3 2. Principles of Traffic Engineering ...............................3 3. Terminology .....................................................5 3.1. Native OSPF Terms ..........................................5 3.2. OSPF-xTE Terms .............................................6 4. Motivations behind the Design of OSPF-xTE .......................9 4.1. Scalable Design ............................................9 4.2. Operable in Mixed and Peer Networks ........................9 4.3. Efficient in Flooding Reach ................................9 4.4. Ability to Reserve TE-Exclusive Links .....................10 4.5. Extensible Design .........................................11 4.6. Unified for Packet and Non-Packet Networks ................11 4.7. Networks Benefiting from the OSPF-xTE Design ..............11 5. OSPF-xTE Solution Overview .....................................12 5.1. OSPF-xTE Solution .........................................12 5.2. Assumptions ...............................................13 6. Strategy for Transition of Opaque LSAs to OSPF-xTE .............14 7. OSPF-xTE Router Adjacency -- TE Topology Discovery .............14 7.1. The OSPF-xTE Router Adjacency .............................14 7.2. The Hello Protocol ........................................15 7.3. The Designated Router .....................................15 7.4. The Backup Designated Router ..............................15 7.5. Flooding and the Synchronization of Databases .............16 7.6. The Graph of Adjacencies ..................................16 8. TE LSAs for Packet Network .....................................18 8.1. TE-Router LSA (0x81) ......................................18 8.1.1. Router-TE Flags: TE Capabilities of the Router .....19 8.1.2. Router-TE TLVs .....................................20 8.1.3. Link-TE Flags: TE Capabilities of a Link ...........22 8.1.4. Link-TE TLVs .......................................23 8.2. TE-Incremental-Link-Update LSA (0x8d) .....................26 8.3. TE-Circuit-Path LSA (0x8C) ................................28 8.4. TE-Summary LSAs ...........................................31 8.4.1. TE-Summary Network LSA (0x83) ......................32 8.4.2. TE-Summary Router LSA (0x84) .......................33 8.5. TE-AS-external LSAs (0x85) ................................34 9. TE LSAs for Non-Packet Network .................................36 9.1. TE-Router LSA (0x81) ......................................36 9.1.1. Router-TE flags - TE Capabilities of a Router ......37
1. Introduction ....................................................3 2. Principles of Traffic Engineering ...............................3 3. Terminology .....................................................5 3.1. Native OSPF Terms ..........................................5 3.2. OSPF-xTE Terms .............................................6 4. Motivations behind the Design of OSPF-xTE .......................9 4.1. Scalable Design ............................................9 4.2. Operable in Mixed and Peer Networks ........................9 4.3. Efficient in Flooding Reach ................................9 4.4. Ability to Reserve TE-Exclusive Links .....................10 4.5. Extensible Design .........................................11 4.6. Unified for Packet and Non-Packet Networks ................11 4.7. Networks Benefiting from the OSPF-xTE Design ..............11 5. OSPF-xTE Solution Overview .....................................12 5.1. OSPF-xTE Solution .........................................12 5.2. Assumptions ...............................................13 6. Strategy for Transition of Opaque LSAs to OSPF-xTE .............14 7. OSPF-xTE Router Adjacency -- TE Topology Discovery .............14 7.1. The OSPF-xTE Router Adjacency .............................14 7.2. The Hello Protocol ........................................15 7.3. The Designated Router .....................................15 7.4. The Backup Designated Router ..............................15 7.5. Flooding and the Synchronization of Databases .............16 7.6. The Graph of Adjacencies ..................................16 8. TE LSAs for Packet Network .....................................18 8.1. TE-Router LSA (0x81) ......................................18 8.1.1. Router-TE Flags: TE Capabilities of the Router .....19 8.1.2. Router-TE TLVs .....................................20 8.1.3. Link-TE Flags: TE Capabilities of a Link ...........22 8.1.4. Link-TE TLVs .......................................23 8.2. TE-Incremental-Link-Update LSA (0x8d) .....................26 8.3. TE-Circuit-Path LSA (0x8C) ................................28 8.4. TE-Summary LSAs ...........................................31 8.4.1. TE-Summary Network LSA (0x83) ......................32 8.4.2. TE-Summary Router LSA (0x84) .......................33 8.5. TE-AS-external LSAs (0x85) ................................34 9. TE LSAs for Non-Packet Network .................................36 9.1. TE-Router LSA (0x81) ......................................36 9.1.1. Router-TE flags - TE Capabilities of a Router ......37
9.1.2. Link-TE Options: TE Capabilities of a TE Link ......38 9.2. TE-positional-ring-network LSA (0x82) .....................38 9.3. TE-Router-Proxy LSA (0x8e) ................................40 10. Abstract Topology Representation with TE Support ..............42 11. Changes to Data Structures in OSPF-xTE Nodes ..................44 11.1. Changes to Router Data Structure .........................44 11.2. Two Sets of Neighbors ....................................44 11.3. Changes to Interface Data Structure ......................44 12. IANA Considerations ...........................................45 12.1. TE LSA Type Values .......................................45 12.2. TE TLV Tag Values ........................................46 13. Acknowledgements ..............................................46 14. Security Considerations .......................................47 15. Normative References ..........................................48 16. Informative References ........................................48
9.1.2. Link-TE Options: TE Capabilities of a TE Link ......38 9.2. TE-positional-ring-network LSA (0x82) .....................38 9.3. TE-Router-Proxy LSA (0x8e) ................................40 10. Abstract Topology Representation with TE Support ..............42 11. Changes to Data Structures in OSPF-xTE Nodes ..................44 11.1. Changes to Router Data Structure .........................44 11.2. Two Sets of Neighbors ....................................44 11.3. Changes to Interface Data Structure ......................44 12. IANA Considerations ...........................................45 12.1. TE LSA Type Values .......................................45 12.2. TE TLV Tag Values ........................................46 13. Acknowledgements ..............................................46 14. Security Considerations .......................................47 15. Normative References ..........................................48 16. Informative References ........................................48
This document defines OSPF-xTE, an experimental traffic engineering (TE) extension to the link-state routing protocol OSPF. The objective of OSPF-xTE is to discover TE network topology and disseminate TE metrics within an autonomous system (AS). A stand-alone TE Link State Database (TE-LSDB), different from the native OSPF LSDB, is created to facilitate computation of TE circuit paths. Devising algorithms to compute TE circuit paths is not an objective of this document.
本文档定义了OSPF xTE,它是链路状态路由协议OSPF的实验性流量工程(TE)扩展。OSPF xTE的目标是发现TE网络拓扑并在自治系统(AS)内传播TE度量。创建独立的TE链路状态数据库(TE-LSDB),与本机OSPF LSDB不同,以便于计算TE电路路径。设计计算TE电路路径的算法不是本文件的目标。
OSPF-xTE is different from the Opaque-LSA-based approach outlined in [OPQLSA-TE]. Section 4 describes the motivations behind the design of OSPF-xTE. Section 6 outlines a transition path for those currently using [OPQLSA-TE] for intra-area and wish to extend this using OSPF-xTE across the AS.
OSPF xTE不同于[OPQLSA-TE]中概述的基于不透明LSA的方法。第4节描述了OSPF xTE设计背后的动机。第6节概述了当前使用[OPQLSA-TE]进行内部区域的转换路径,并希望使用OSPF xTE在整个AS中扩展此路径。
Readers interested in TE extensions for packet networks alone may skip section 9.0.
对仅针对分组网络的TE扩展感兴趣的读者可以跳过第9.0节。
The objective of traffic engineering (TE) is to set up circuit path(s) between a pair of nodes or links and to forward traffic of a certain forwarding equivalency class (FEC) through the circuit path. Only unicast circuit paths are considered in this section; multicast variations are outside the scope.
流量工程(TE)的目标是在一对节点或链路之间建立电路路径,并通过电路路径转发特定转发等价类(FEC)的流量。本节仅考虑单播电路路径;多播变体不在范围内。
A traffic engineered circuit path is unidirectional and may be identified by the tuple: (FEC, TE circuit parameters, origin node/link, destination node/link).
流量工程电路路径是单向的,可以通过元组(FEC、TE电路参数、起点节点/链路、终点节点/链路)来识别。
A forwarding equivalency class (FEC) is a grouping of traffic that is forwarded in the same manner by a node. An FEC may be classified based on a number of criteria, as follows:
转发等价类(FEC)是由节点以相同方式转发的流量分组。FEC可根据以下多个标准进行分类:
a) traffic arriving on a specific interface, b) traffic arriving at a certain time of day, c) traffic meeting a certain packet based classification criteria (ex: based on a match of the fields in the IP and transport headers within a packet), d) traffic in a certain priority class, e) traffic arriving on a specific set of TDM (Synchronous Transport Signal (STS)) circuits on an interface, or f) traffic arriving on a certain wavelength of an interface.
a) 到达特定接口的通信量,b)到达一天中特定时间的通信量,c)满足特定基于分组的分类标准的通信量(例如:基于IP中的字段和分组中的传输报头的匹配),d)特定优先级的通信量,e)到达特定TDM集的通信量(同步传输信号(STS))接口上的电路,或f)到达接口特定波长的通信量。
Discerning traffic based on the FEC criteria is mandatory for Label Edge Routers (LERs). The intermediate Label-Switched Routers (LSRs) are transparent to the traffic content. LSRs are only responsible for maintaining the circuit for its lifetime. This document will not address definition of FEC criteria, the mapping of an FEC to circuit, or the associated signaling to set up circuits. [MPLS-TE] and [GMPLS-TE] address the FEC criteria. [RSVP-TE] and [CR-LDP] address signaling protocols to set up circuits.
标签边缘路由器(LER)必须根据FEC标准识别流量。中间标签交换路由器(LSR)对流量内容是透明的。LSR仅负责维持电路的使用寿命。本文件不涉及FEC标准的定义、FEC到电路的映射或设置电路的相关信令。[MPLS-TE]和[GMPLS-TE]处理FEC标准。[RSVP-TE]和[CR-LDP]寻址信令协议以建立电路。
This document is concerned with the collection of TE metrics for all the TE enforceable nodes and links within an autonomous system. TE metrics for a node may include the following.
本文档涉及自治系统内所有TE可执行节点和链路的TE度量集合。节点的TE度量可以包括以下内容。
a) Ability to perform traffic prioritization, b) Ability to provision bandwidth on interfaces, c) Support for Constrained Shortest Path First (CSPF) algorithms, d) Support for certain TE-Circuit switch type, and e) Support for a certain type of automatic protection switching.
a) 执行流量优先级的能力,b)在接口上提供带宽的能力,c)支持受限最短路径优先(CSPF)算法,d)支持特定TE电路开关类型,以及e)支持特定类型的自动保护开关。
TE metrics for a link may include the following.
链接的TE度量可能包括以下内容。
a) available bandwidth, b) reliability of the link, c) color assigned to the link, d) cost of bandwidth usage on the link, and e) membership in a Shared Risk Link Group (SRLG).
a) 可用带宽,b)链路的可靠性,c)分配给链路的颜色,d)链路上的带宽使用成本,以及e)共享风险链路组(SRLG)的成员资格。
A number of CSPF (Constraint-based Shortest Path First) algorithms may be used to dynamically set up TE circuit paths in a TE network.
许多CSPF(基于约束的最短路径优先)算法可用于在TE网络中动态设置TE电路路径。
OSPF-xTE mandates that the originating and the terminating entities of a TE circuit path be identifiable by IP addresses.
OSPF xTE要求TE电路路径的起始实体和终止实体可以通过IP地址识别。
Definitions of the majority of the terms used in the context of the OSPF protocol may be found in [OSPF-V2]. MPLS and traffic engineering terms may be found in [MPLS-ARCH]. RSVP-TE and CR-LDP signaling-specific terms may be found in [RSVP-TE] and [CR-LDP], respectively.
OSPF协议中使用的大多数术语的定义见[OSPF-V2]。MPLS和流量工程术语可在[MPLS-ARCH]中找到。RSVP-TE和CR-LDP信令专用术语可分别在[RSVP-TE]和[CR-LDP]中找到。
The following subsections describe the native OSPF terms and the OSPF-xTE terms used within this document.
以下小节描述了本文档中使用的本机OSPF术语和OSPF xTE术语。
o Native node (Non-TE node)
o 本机节点(非TE节点)
A native or non-TE node is an OSPF router that is capable of IP packet forwarding but does not take part in a TE network. A native OSPF node forwards IP traffic using the shortest-path forwarding algorithm and does not run the OSPF-xTE extensions.
本机或非TE节点是一种OSPF路由器,能够转发IP数据包,但不参与TE网络。本机OSPF节点使用最短路径转发算法转发IP流量,并且不运行OSPF xTE扩展。
o Native link (Non-TE link)
o 本机链接(非TE链接)
A native (or non-TE) link is a network attachment to a TE or non-TE node used for IP packet traversal.
本机(或非TE)链路是用于IP数据包遍历的TE或非TE节点的网络附件。
o Native OSPF network (Non-TE network)
o 本机OSPF网络(非TE网络)
A native OSPF network refers to an OSPF network that does not support TE. "Non-TE network", "native-OSPF network", and "non-TE topology" are used synonymously throughout the document.
本机OSPF网络是指不支持TE的OSPF网络。“非TE网络”、“本机OSPF网络”和“非TE拓扑”在整个文档中同义使用。
o LSP
o LSP
LSP stands for "Label-Switched Path". An LSP is a TE circuit path in a packet network. The terms "LSP" and "TE circuit path" are used synonymously in the context of packet networks.
LSP代表“标签交换路径”。LSP是分组网络中的TE电路路径。术语“LSP”和“TE电路路径”在分组网络上下文中同义使用。
o LSA
o LSA
LSA stands for OSPF "Link State Advertisement".
LSA代表OSPF“链路状态广告”。
o LSDB
o LSDB
LSDB stands for "Link State Database". An LSDB contains a representation of the topology of a network. A native LSDB, constituted of native OSPF LSAs, represents the topology of a native IP network. The TE-LSDB, on the other hand, is constituted of TE LSAs and is a representation of the TE network topology.
LSDB代表“链路状态数据库”。LSDB包含网络拓扑的表示。本机LSDB由本机OSPF LSA组成,表示本机IP网络的拓扑结构。另一方面,TE-LSDB由TE LSA组成,是TE网络拓扑的表示。
o TE node
o TE节点
A TE node is a node in the traffic engineering (TE) network. A TE node has a minimum of one TE link attached to it. Associated with each TE node is a set of supported TE metrics. A TE node may also participate in a native IP network.
TE节点是流量工程(TE)网络中的节点。TE节点至少连接一个TE链接。与每个TE节点关联的是一组受支持的TE度量。TE节点还可以参与本机IP网络。
In a SONET/TDM or photonic cross-connect network, a TE node is not required to be an OSPF-xTE node. An external OSPF-xTE node may act as proxy for the TE nodes that cannot be routers themselves.
在SONET/TDM或光子交叉连接网络中,TE节点不需要是OSPF xTE节点。外部OSPF xTE节点可以作为TE节点的代理,而TE节点本身不能作为路由器。
o TE link
o TE链接
A TE link is a network attachment point to a TE node and is intended for traffic engineering use. Associated with each TE link is a set of supported TE metrics. A TE link may also optionally carry native IP traffic.
TE链路是到TE节点的网络连接点,用于流量工程。与每个TE链接关联的是一组受支持的TE度量。TE链路还可以可选地承载本机IP流量。
Of the various links attached to a TE node, only the links that take part in a traffic-engineered network are called TE links.
在连接到TE节点的各种链路中,只有参与流量工程网络的链路称为TE链路。
o TE circuit path
o TE电路路径
A TE circuit path is a unidirectional data path that is defined by a list of TE nodes connected to each other through TE links. A TE circuit path is also often referred simply as a circuit path or a circuit.
TE电路路径是由通过TE链路相互连接的TE节点列表定义的单向数据路径。TE电路路径通常也称为电路路径或电路。
For the purposes of OSPF-xTE, the originating and terminating entities of a TE circuit path must be identifiable by their IP addresses. As a general rule, all nodes and links party to a traffic-engineered network should be uniquely identifiable by an IP address.
就OSPF xTE而言,TE电路路径的起始和终止实体必须通过其IP地址进行识别。作为一般规则,到流量工程网络的所有节点和链路都应通过IP地址进行唯一标识。
o OSPF-xTE node (OSPF-xTE router)
o OSPF xTE节点(OSPF xTE路由器)
An OSPF-xTE node is a TE node that runs the OSPF routing protocol and the OSPF-xTE extensions described in this document. An autonomous system (AS) may consist of a combination of native and OSPF-xTE nodes.
OSPF xTE节点是运行本文档中描述的OSPF路由协议和OSPF xTE扩展的TE节点。自治系统(AS)可以由本机和OSPF xTE节点的组合组成。
o TE Control network
o TE控制网
The IP network used by the OSPF-xTE nodes for OSPF-xTE communication is referred as the TE control network or simply the control network. The control network can be independent of the TE data network.
OSPF xTE节点用于OSPF xTE通信的IP网络称为TE控制网络或简称为控制网络。控制网络可以独立于TE数据网络。
o TE network (TE topology)
o TE网络(TE拓扑)
A TE network is a network of connected TE nodes and TE links, for the purpose of setting up one or more TE circuit paths. The terms "TE network", "TE data network", and "TE topology" are used synonymously throughout the document.
TE网络是连接的TE节点和TE链路的网络,用于建立一个或多个TE电路路径。术语“TE网络”、“TE数据网络”和“TE拓扑”在整个文档中同义使用。
o Packet-TE network (Packet network)
o 分组TE网络(分组网络)
A packet-TE network is a TE network in which the nodes switch MPLS packets. An MPLS packet is defined in [MPLS-TE] as a packet with an MPLS header, followed by data octets. The intermediary node(s) of a circuit path in a packet-TE network perform MPLS label swapping to emulate the circuit.
分组TE网络是节点交换MPLS分组的TE网络。MPLS数据包在[MPLS-TE]中定义为一个带有MPLS报头的数据包,后跟数据八位字节。分组TE网络中电路路径的中间节点执行MPLS标签交换以模拟电路。
Unless specified otherwise, the term "packet network" is used throughout the document to refer to a packet-TE network.
除非另有规定,否则在整个文档中使用术语“分组网络”来指代分组TE网络。
o Non-packet-TE network (Non-packet network)
o 非分组TE网络(非分组网络)
A non-packet-TE network is a TE network in which the nodes switch non-packet entities such as STS time slots, Lambda wavelengths, or simply interfaces.
非分组TE网络是一种TE网络,其中节点交换非分组实体,例如STS时隙、Lambda波长或简单的接口。
SONET/TDM and fiber cross-connect networks are examples of non-packet-TE networks. Circuit emulation in these networks is accomplished by the switch fabric in the intermediary nodes (based on TDM time slot, fiber interface, or Lambda).
SONET/TDM和光纤交叉连接网络是非分组TE网络的示例。这些网络中的电路仿真由中间节点中的交换机结构(基于TDM时隙、光纤接口或Lambda)完成。
Unless specified otherwise, the term non-packet network is used throughout the document to refer a non-packet-TE network.
除非另有规定,否则在整个文档中使用术语非分组网络来指代非分组TE网络。
o Mixed network
o 混合网络
A mixed network is a network that is constituted of both packet-TE and non-TE networks. Traffic in the network is strictly datagram oriented, i.e., IP datagrams or MPLS packets. Routers in a mixed network may be TE or native nodes.
混合网络是由分组TE网络和非TE网络组成的网络。网络中的流量严格面向数据报,即IP数据报或MPLS数据包。混合网络中的路由器可以是TE或本机节点。
OSPF-xTE is usable within a packet network or a mixed network.
OSPF xTE可在分组网络或混合网络中使用。
o Peer network
o 对等网络
A peer network is a network that is constituted of packet-TE and non-packet-TE networks combined. In a peer network, a TE node could potentially support TE links for the packet as well as non-packet data.
对等网络是由分组TE网络和非分组TE网络组合而成的网络。在对等网络中,TE节点可能支持分组和非分组数据的TE链路。
OSPF-xTE is usable within a packet network or a non-packet network or a peer network, which is a combination of the two.
OSPF xTE可在分组网络、非分组网络或对等网络(两者的组合)内使用。
o CSPF
o CSPF
CSPF stands for "Constrained Shortest Path First". Given a TE LSDB and a set of constraints that must be satisfied to form a circuit path, there may be several CSPF algorithms to obtain a TE circuit path that meets the criteria.
CSPF代表“受限最短路径优先”。给定TE LSDB和形成电路路径必须满足的一组约束条件,可能有几种CSPF算法来获得满足标准的TE电路路径。
o TLV
o TLV
A TLV stands for a data object in the form: Tag-Length-Value. All TLVs are assumed to be of the following format, unless specified otherwise. The Tag and Length are 16 bits wide each. The Length includes the 4 octets required for Tag and Length specification. All TLVs described in this document are padded to 32-bit alignment. Any padding required for alignment will not be a part of the length field, however. TLVs are used to describe traffic engineering characteristics of the TE nodes, TE links, and TE circuit paths.
TLV表示数据对象,格式为:标记长度值。除非另有规定,否则假定所有TLV采用以下格式。标签和长度各为16位宽。长度包括标签和长度规格所需的4个八位字节。本文档中描述的所有TLV均填充为32位对齐。但是,对齐所需的任何填充都不会是长度字段的一部分。TLV用于描述TE节点、TE链路和TE电路路径的流量工程特性。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag | Length (4 or more) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Value .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag | Length (4 or more) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Value .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o Router-TE TLVs (Router TLVs)
o 路由器TE TLV(路由器TLV)
TLVs used to describe the TE capabilities of a TE node.
TLV用于描述TE节点的TE功能。
o Link-TE TLVs (Link TLVs)
o 链路TE TLV(链路TLV)
TLVs used to describe the TE capabilities of a TE link.
TLV用于描述TE链路的TE能力。
There are several motivations that led to the design of OSPF-xTE. OSPF-xTE is scalable, efficient, and usable across a variety of network topologies. These motivations are explained in detail in the following subsections. The last subsection lists real-world network scenarios that benefit from the OSPF-xTE.
有几个动机导致了OSPF xTE的设计。OSPF xTE具有可扩展性、高效性和跨多种网络拓扑的可用性。以下小节将详细解释这些动机。最后一小节列出了受益于OSPF xTE的真实网络场景。
In OSPF-xTE, an area-level abstraction provides the scaling required for the TE topology in a large autonomous system (AS). An OSPF-xTE area border router will advertise summary LSAs for TE and non-TE topologies independent of each other. Readers may refer to section 10 for a topological view of the AS from the perspective of a OSPF-xTE node in an area.
在OSPF xTE中,区域级抽象提供了大型自治系统(AS)中TE拓扑所需的可伸缩性。OSPF xTE区域边界路由器将为彼此独立的TE和非TE拓扑播发摘要LSA。读者可参考第10节,从区域中OSPF xTE节点的角度了解AS的拓扑视图。
[OPQLSA-TE], on the other hand, is designed for intra-area and is not scalable to AS-wide scope.
另一方面,[OPQLSA-TE]是为内部区域而设计的,不能扩展到尽可能宽的范围。
OSPF-xTE assumes that an AS may be constituted of coexisting TE and non-TE networks. OSPF-xTE dynamically discovers TE topology and the associated TE metrics of the nodes and links that form the TE network. As such, OSPF-xTE generates a stand-alone TE-LSDB that is fully representative of the TE network. Stand-alone TE-LSDB allows for speedy TE computations.
OSPF xTE假设AS可能由共存的TE和非TE网络构成。OSPF xTE动态发现TE拓扑以及形成TE网络的节点和链路的关联TE度量。因此,OSPF xTE生成完全代表TE网络的独立TE-LSDB。独立TE-LSDB允许快速TE计算。
[OPQLSA-TE] is designed for packet networks and is not suitable for mixes and peer networks. TE-LSDB in [OPQLSA-TE] is derived from the combination of Opaque LSAs and native LSDB. Further, the TE-LSDB thus derived has no knowledge of the TE capabilities of the routers in the network.
[OPQLSA-TE]专为分组网络设计,不适用于混合网络和对等网络。[OPQLSA-TE]中的TE-LSDB是从不透明LSA和本机LSDB的组合中派生出来的。此外,由此导出的TE-LSDB不知道网络中路由器的TE能力。
OSPF-xTE is able to identify the TE topology in a mixed network and to limit the flooding of TE LSAs to only the TE nodes. Non-TE nodes are not bombarded with TE LSAs.
OSPF xTE能够识别混合网络中的TE拓扑,并将TE LSA的泛洪限制为仅TE节点。非TE节点不会受到TE LSA的轰炸。
In a TE network, a subset of the TE metrics may be prone to rapid change, while others remain largely unchanged. Changes in TE metrics must be communicated at the earliest throughout the network to ensure that the TE-LSDB is up-to-date within the network. As a general rule, a TE network is likely to generate significantly more control traffic than a native network. The excess traffic is almost directly proportional to the rate at which TE circuits are set up and torn down within the TE network. The TE database synchronization should occur much quicker compared to the aggregate circuit set up and tear-down rates. OSPF-xTE defines TE-Incremental-Link-update LSA (section 8.2) to advertise only a subset of the metrics that are prone to rapid changes.
在TE网络中,TE指标的一个子集可能会快速变化,而其他指标基本保持不变。TE指标的变化必须在整个网络中尽早传达,以确保TE-LSDB在网络中是最新的。作为一般规则,TE网络可能产生比本机网络多得多的控制流量。过量流量几乎与TE网络内TE电路的建立和拆除速率成正比。TE数据库同步应比聚合电路设置和拆除率快得多。OSPF xTE定义了TE增量链路更新LSA(第8.2节),以仅公布易于快速更改的度量的子集。
The more frequent and wider the flooding, the larger the number of retransmissions and acknowledgements. The same information (needed or not) may reach a router through multiple links. Even if the router did not forward the information past the node, it would still have to send acknowledgements across all the various links on which the LSAs tried to converge. It is undesirable to flood non-TE nodes with TE information.
洪水越频繁、范围越广,重传和确认的次数就越多。相同的信息(需要或不需要)可以通过多个链路到达路由器。即使路由器没有通过节点转发信息,它仍然必须在LSA试图聚合的所有链路上发送确认。不希望用TE信息淹没非TE节点。
OSPF-xTE draws a clear distinction between TE and non-TE links. A TE link may be configured to permit TE traffic alone, and not permit best-effort IP traffic on the link. This permits TE enforceability on the TE links.
OSPF xTE明确区分TE和非TE链路。TE链路可被配置为仅允许TE通信,而不允许链路上的尽力而为IP通信。这允许TE链接上的TE可执行性。
When links of a TE topology do not overlap the links of a native IP network, OSPF-xTE allows for virtual isolation of the two networks. Best-effort IP network and TE network often have different service requirements. Keeping the two networks physically isolated can be expensive. Combining the two networks into a single physically connected network will bring economies of scale, while service enforceability can be maintained individually for each of the TE and non-TE sections of the network.
当TE拓扑的链路不与本机IP网络的链路重叠时,OSPF xTE允许对两个网络进行虚拟隔离。尽力而为的IP网络和TE网络通常有不同的服务要求。保持这两个网络的物理隔离可能代价高昂。将两个网络组合成一个物理连接的网络将带来规模经济,同时可以为网络的每个TE和非TE部分单独维护服务可执行性。
[OPQLSA-TE] does not support the ability to isolate best-effort IP traffic from TE traffic on a link. All links are subject to best-effort IP traffic. An OSPF router could potentially select a TE link to be its least cost link and inundate the link with best-effort IP traffic, thereby rendering the link unusable for TE purposes.
[OPQLSA-TE]不支持将尽力而为的IP通信与链路上的TE通信隔离开来。所有链接都受尽最大努力IP流量的影响。OSPF路由器可能会选择TE链路作为其成本最低的链路,并用尽最大努力的IP流量淹没该链路,从而使该链路无法用于TE目的。
The OSPF-xTE design is based on the tried-and-tested OSPF paradigm, and it inherits all the benefits of OSPF, present and future. TE LSAs are extensible, just as the native OSPF on which OSPF-xTE is founded are extensible.
OSPF xTE设计基于久经考验的OSPF范式,它继承了OSPF的所有优点,无论是现在还是将来。TE LSA是可扩展的,就像OSPF xTE所基于的本机OSPF是可扩展的一样。
OSPF-xTE is usable within a packet network or a non-packet network or a combination peer network.
OSPF xTE可在分组网络、非分组网络或组合对等网络内使用。
Signaling protocols such as RSVP and LDP work the same across packet and non-packet networks. Signaling protocols merely need the TE characteristics of nodes and links so they can signal the nodes to formulate TE circuit paths. In a peer network, the underlying control protocol must be capable of providing a unified LSDB for all TE nodes (nodes with packet-TE links as well as non-packet-TE links) in the network. OSPF-xTE meets this requirement.
诸如RSVP和LDP之类的信令协议在分组和非分组网络中工作相同。信令协议只需要节点和链路的TE特性,就可以向节点发送信号以形成TE电路路径。在对等网络中,底层控制协议必须能够为网络中的所有TE节点(具有分组TE链路以及非分组TE链路的节点)提供统一的LSDB。OSPF xTE符合这一要求。
Below are examples of some real-world network scenarios that benefit from OSPF-xTE.
下面是一些受益于OSPF xTE的真实网络场景的示例。
o IP providers transitioning to provide TE services
o IP提供商过渡到提供TE服务
Providers needing to support MPLS-based TE in their IP network may choose to transition gradually. They may add new TE links or convert existing links into TE links within an area first and progressively advance to offering MPLS in the entire AS.
需要在其IP网络中支持基于MPLS的TE的提供商可以选择逐步过渡。他们可以先在一个区域内添加新的TE链路或将现有链路转换为TE链路,然后逐步在整个AS中提供MPLS。
Not all routers will support TE extensions at the same time during the migration process. Use of TE-specific LSAs and their flooding to OSPF-xTE only nodes will allow the vendor to introduce MPLS TE without destabilizing the existing network. The native OSPF-LSDB will remain undisturbed while newer TE links are added to the network.
在迁移过程中,并非所有路由器都同时支持TE扩展。使用特定于TE的LSA及其向OSPF xTE only节点的泛洪将允许供应商在不破坏现有网络稳定的情况下引入MPLS TE。在向网络添加较新的TE链路时,本机OSPF-LSDB将保持不受干扰。
o Providers offering best-effort-IP & TE services
o 提供尽力而为的IP&TE服务的提供商
Providers choosing to offer both best-effort-IP and TE based packet services simultaneously on the same physically connected network will benefit from the OSPF-xTE design. By maintaining independent LSDBs for each type of service, TE links are not cannibalized in a mixed network.
选择在同一物理连接网络上同时提供尽力而为的IP和基于TE的分组服务的提供商将受益于OSPF xTE设计。通过为每种类型的服务维护独立的LSDB,TE链路不会在混合网络中被分解。
o Large TE networks
o 大型TE网络
The OSPF-xTE design is advantageous in large TE networks that require the AS to be sub-divided into multiple areas. OSPF-xTE permits inter-area exchange of TE information, which ensures that all nodes in the AS have up-to-date, AS-wide, TE reachability knowledge. This in turn will make TE circuit setup predictable and computationally bounded.
OSPF xTE设计在需要将AS细分为多个区域的大型TE网络中具有优势。OSPF xTE允许TE信息的区域间交换,这确保AS中的所有节点都具有最新的、尽可能广泛的TE可达性知识。这反过来将使TE电路设置具有可预测性和计算范围。
o Non-Packet Networks and Peer Networks
o 非分组网络和对等网络
Vendors may also use OSPF-xTE for their non-packet TE networks. OSPF-xTE defines the following functions in support of non-packet TE networks. (a) "Positional-Ring" type network LSAs. (b) Router proxying -- allowing a router to advertise on behalf of other nodes (that are not packet/OSPF-capable).
供应商也可以将OSPF xTE用于其非分组TE网络。OSPF xTE定义了以下功能以支持非分组TE网络。(a) “位置环”型网络LSA。(b) 路由器代理——允许路由器代表其他节点(不支持数据包/OSPF)进行广告。
Locally-scoped Opaque LSA (type 9) is used to discovery the TE topology within a network. Section 7.1 describes in detail the use of type 9 Opaque LSA for TE topology discovery. TE LSAs are designed for use by the OSPF-xTE nodes. Section 8.0 describes the TE LSAs in detail. Changes required of the OSPF data structures to support OSPF-xTE are described in section 11.0. A new TE-neighbors data structure will be used to advertise TE LSAs along TE topology.
局部作用域不透明LSA(类型9)用于发现网络中的TE拓扑。第7.1节详细描述了使用类型9不透明LSA进行TE拓扑发现。TE LSA设计用于OSPF xTE节点。第8.0节详细描述了TE LSA。第11.0节描述了支持OSPF xTE所需的OSPF数据结构更改。新的TE邻居数据结构将用于沿TE拓扑公布TE LSA。
An OSPF-xTE node will have a native LSDB and a TE-LSDB, while a native OSPF node will have just a native LSDB. Consider the OSPF area, constituted of OSPF-xTE and native OSPF routers, shown in Figure 1. Nodes RT1, RT2, RT3, and RT6 are OSPF-xTE routers with TE and non-TE link attachments. Nodes RT4 and RT5 are native OSPF routers with no TE links. When the LSA database is synchronized, all nodes will share the same native LSDB. OSPF-xTE nodes alone will have the additional TE-LSDB.
OSPF xTE节点将有一个本机LSDB和一个TE-LSDB,而本机OSPF节点将只有一个本机LSDB。考虑OSPF区域,由OSPF XTE和本地OSPF路由器组成,如图1所示。节点RT1、RT2、RT3和RT6是带有TE和非TE链路附件的OSPF xTE路由器。节点RT4和RT5是没有TE链路的本机OSPF路由器。同步LSA数据库时,所有节点将共享同一个本地LSDB。OSPF xTE节点本身将具有额外的TE-LSDB。
+---+ | |--------------------------------------+ |RT6|\\ | +---+ \\ | || \\ | || \\ | || \\ | || +---+ | || | |----------------+ | || |RT1|\\ | | || +---+ \\ | | || //| \\ | | || // | \\ | | || // | \\ | | +---+ // | \\ +---+ | |RT2|// | \\|RT3|------+ | |----------|----------------| | +---+ | +---+ | | | | | | +---+ +---+ |RT5|--------------|RT4| +---+ +---+ Legend: -- Native (non-TE) network link | Native (non-TE) network link \\ TE network link || TE network link
+---+ | |--------------------------------------+ |RT6|\\ | +---+ \\ | || \\ | || \\ | || \\ | || +---+ | || | |----------------+ | || |RT1|\\ | | || +---+ \\ | | || //| \\ | | || // | \\ | | || // | \\ | | +---+ // | \\ +---+ | |RT2|// | \\|RT3|------+ | |----------|----------------| | +---+ | +---+ | | | | | | +---+ +---+ |RT5|--------------|RT4| +---+ +---+ Legend: -- Native (non-TE) network link | Native (non-TE) network link \\ TE network link || TE network link
Figure 1. A (TE + native) OSPF Network Topology
图1。(TE+本机)OSPF网络拓扑
OSPF-xTE is an extension to the native OSPF protocol and does not mandate changes to the existing OSPF. OSPF-xTE design makes the following assumptions.
OSPF xTE是本机OSPF协议的扩展,不强制更改现有OSPF。OSPF xTE设计做出以下假设。
(1) An OSPF-xTE node will need to establish router adjacency with at least one other OSPF-xTE node in the area in order for the router's TE database to be synchronized within the area. Failing this, the OSPF router will not be in the TE calculations of other TE routers in the area.
(1) OSPF xTE节点需要与该区域中至少一个其他OSPF xTE节点建立路由器邻接,以便路由器的TE数据库在该区域内同步。否则,OSPF路由器将不会参与该地区其他TE路由器的TE计算。
It is the responsibility of the network administrator(s) to ensure connectedness of the TE network. Otherwise, there can be disjoint TE topologies within a network.
网络管理员有责任确保TE网络的连接。否则,网络中可能存在不相交的TE拓扑。
(2) OSPF-xTE nodes must advertise the link state of its TE links. TE links are not obligated to support native IP traffic. Hence, an OSPF-xTE node cannot be required to synchronize its link-state database with neighbors on all its links. The only requirement is to have the TE LSDB synchronized across all OSPF-xTE nodes in the area.
(2) OSPF xTE节点必须公布其TE链路的链路状态。TE链路没有义务支持本机IP通信。因此,不能要求OSPF xTE节点将其链路状态数据库与其所有链路上的邻居同步。唯一的要求是在该区域的所有OSPF xTE节点上同步TE LSDB。
(3) A link in a packet network may be designated as a TE link or a native-IP link or both. For example, a link may be used for both TE and non-TE traffic, as long as the link is under subscribed in bandwidth for TE traffic (for example, 50% of the link capacity is set aside for TE traffic).
(3) 分组网络中的链路可被指定为TE链路或本机IP链路或两者。例如,链路可用于TE和非TE业务,只要该链路在TE业务的带宽上订阅不足(例如,为TE业务预留50%的链路容量)。
(4) Non-packet TE sub-topologies must have a minimum of one node running OSPF-xTE protocol. For example, a SONET/SDH TDM ring must have a minimum of one Gateway Network Element (GNE) running OSPF-xTE. The OSPF-xTE node will advertise on behalf of all the TE nodes in the ring.
(4) 非分组TE子拓扑必须至少有一个节点运行OSPF xTE协议。例如,SONET/SDH TDM环必须至少有一个运行OSPF xTE的网关网元(GNE)。OSPF xTE节点将代表环中的所有TE节点进行播发。
Below is a strategy to transition implementations currently using Opaque LSAs ([OPQLSA-TE]) within an area to adapt OSPF-xTE in a gradual fashion across the AS.
下面是一种策略,用于在一个区域内转换当前使用不透明LSA([OPQLSA-TE])的实现,以在整个AS中逐步适应OSPF xTE。
(1) Use [OPQLSA-TE] within an area. Derive TE topology within the area from the combination of Opaque LSAs and native LSDB.
(1) 在区域内使用[OPQLSA-TE]。从不透明LSA和本机LSDB的组合中导出区域内的TE拓扑。
(2) Use TE-Summary LSAs and TE-AS-external LSAs for inter-area communication. Use the TE topology within an area to summarize the TE networks in the area and advertise the same to all TE nodes in the backbone. The TE-ABRs (TE area border routers) on the backbone area will in turn advertise these summaries within their connected areas.
(2) 使用TE摘要LSA和TE作为区域间通信的外部LSA。使用某个区域内的TE拓扑汇总该区域内的TE网络,并向主干中的所有TE节点公布相同的TE网络。主干区域上的TE ABR(TE区域边界路由器)将依次在其连接的区域内发布这些摘要。
OSPF creates adjacencies between neighboring routers for the purpose of exchanging routing information. The following subsections describe the use of locally-scoped Opaque LSAs to discover OSPF-xTE neighboring routers. The capability is used as the basis to build a TE topology.
OSPF在相邻路由器之间创建邻接,以交换路由信息。以下小节描述了如何使用本地范围的不透明LSA来发现OSPF xTE相邻路由器。该功能被用作构建TE拓扑的基础。
OSPF uses the options field in the Hello packet to advertise optional router capabilities [OSPF-V2]. However, all the bits in this field have been allocated and there is no way to advertise OSPF-xTE
OSPF使用Hello数据包中的选项字段公布可选路由器功能[OSPF-V2]。但是,此字段中的所有位都已分配,无法公布OSPF xTE
capability using the options field at this time. This document proposes using local-scope Opaque LSA (OPAQUE-9 LSA) to advertise support for OSPF-xTE and establish OSPF-xTE adjacency. In order to exchange Opaque LSAs, the neighboring routers must have the O-bit (Opaque option bit) set in the options field.
此时使用选项字段的功能。本文档建议使用局部作用域不透明LSA(不透明-9 LSA)来宣传对OSPF xTE的支持并建立OSPF xTE邻接。为了交换不透明LSA,相邻路由器必须在选项字段中设置O位(不透明选项位)。
[OSPF-CAP] proposes a format for exchanging router capabilities via OPAQUE-9 LSA. Routers supporting OSPF-xTE will be required to set the "OSPF Experimental TE" bit within the "router capabilities" field. Two routers will not become TE neighbors unless they share a common network link on which both routers advertise support for OSPF-xTE. Routers that do not support OSPF-xTE may simply ignore the advertisement.
[OSPF-CAP]提出了一种通过不透明-9 LSA交换路由器功能的格式。支持OSPF xTE的路由器需要在“路由器能力”字段中设置“OSPF实验TE”位。两个路由器不会成为TE邻居,除非它们共享一个公共网络链路,在该链路上两个路由器都宣传支持OSPF xTE。不支持OSPF xTE的路由器可能会忽略广告。
The Hello protocol is primarily responsible for dynamically establishing and maintaining neighbor adjacencies. In a TE network, it is not required for all links and neighbors to establish adjacency using this protocol. OSPF-xTE router adjacency between two routers is established using the method described in the previous section.
Hello协议主要负责动态建立和维护邻居邻接。在TE网络中,并不要求所有链路和邻居使用该协议建立邻接。两个路由器之间的OSPF xTE路由器邻接是使用上一节中描述的方法建立的。
For non-broadcast multi-access (NBMA) and broadcast networks, the HELLO protocol is responsible for electing the Designated Router and the Backup Designated Router. Routers supporting the TE option shall be given a higher precedence for becoming a designated router over those that do not support TE.
对于非广播多址(NBMA)和广播网络,HELLO协议负责选择指定路由器和备份指定路由器。支持TE选项的路由器应优先于不支持TE的路由器成为指定路由器。
When a router's non-TE link first becomes functional, it checks to see whether there is currently a Designated Router for the network. If there is one, it accepts that Designated Router, regardless of its router priority, so long as the current designated router is TE compliant. Otherwise, the router itself becomes Designated Router if it has the highest Router Priority on the network and is TE compliant.
当路由器的非TE链路第一次起作用时,它会检查网络当前是否有指定的路由器。如果有,它接受指定的路由器,不管其路由器优先级如何,只要当前指定的路由器符合TE。否则,如果路由器本身在网络上具有最高的路由器优先级并且是TE兼容的,则它将成为指定路由器。
OSPF-xTE must be implemented on the most robust routers, as they become likely candidates to take on the role as Designated Router.
OSPF xTE必须在最健壮的路由器上实现,因为它们很可能成为担当指定路由器角色的候选者。
The Backup Designated Router is also elected by the Hello Protocol. Each Hello Packet has a field that specifies the Backup Designated Router for the network. Once again, TE-compliance must be weighed in conjunction with router priority in electing the Backup Designated Router.
备份指定路由器也由Hello协议选择。每个Hello数据包都有一个字段,用于指定网络的备份指定路由器。在选择备份指定路由器时,必须再次结合路由器优先级对TE合规性进行权衡。
In OSPF, adjacent routers within an area are required to synchronize their databases. However, a more concise requirement is that all routers in an area must converge on the same LSDB. As stated in item 2 of section 5.2, a basic assertion of OSPF-xTE is that the links used by the OSPF-xTE control network for flooding must not be required to match the links used by the data network for real-time data forwarding. For instance, it should not be required to send OSPF-xTE messages over a TE link that is configured to reject non-TE traffic. However, the control network must be set up such that a minimum of one path exists between any two OSPF or OSPF-xTE routers within the network, for flooding purposes. This revised control network connectivity requirement does not jeopardize convergence of LSDB within an area.
在OSPF中,一个区域内的相邻路由器需要同步其数据库。然而,一个更简洁的要求是,一个区域中的所有路由器必须汇聚在同一个LSDB上。如第5.2节第2项所述,OSPF xTE的基本主张是,OSPF xTE控制网络用于泛洪的链路不得要求与数据网络用于实时数据转发的链路相匹配。例如,不需要通过配置为拒绝非TE流量的TE链路发送OSPF xTE消息。但是,控制网络的设置必须确保网络内任何两个OSPF或OSPF xTE路由器之间至少存在一条路径,以达到泛洪目的。修订后的控制网络连接要求不会影响区域内LSDB的融合。
In a mixed network, where some of the neighbors are TE compliant and others are not, the designated OSPF-xTE router will exchange different sets of LSAs with its neighbors. TE LSAs are exchanged only with the TE neighbors. Native LSAs are exchanged with all neighbors (TE and non-TE alike). Restricting the scope of TE LSA flooding to just the OSPF-xTE nodes will not affect the native nodes that coexist with the OSPF-xTE nodes.
在混合网络中,其中一些邻居是TE兼容的,而另一些不是,指定的OSPF xTE路由器将与其邻居交换不同的LSA集。TE LSA仅与TE邻居交换。本地LSA与所有邻居(TE和非TE相同)交换。将TE LSA泛洪的范围仅限于OSPF xTE节点不会影响与OSPF xTE节点共存的本机节点。
The control traffic for a TE network (i.e., TE LSA advertisement) is likely to be higher than that of a native OSPF network. This is because the TE metrics may vary with each TE circuit setup and the corresponding state change must be advertised at the earliest, not exceeding the MinLSInterval of 5 seconds. To minimize advertising repetitive content, OSPF-xTE defines a new TE-incremental-Link-update LSA (section 8.2) that would advertise just the TLVs that changed for a link.
TE网络(即TE LSA广告)的控制流量可能高于本机OSPF网络的控制流量。这是因为TE指标可能随每个TE电路设置而变化,并且必须尽早公布相应的状态更改,但不得超过5秒的最小间隔。为了最大限度地减少广告重复内容,OSPF xTE定义了一个新的TE增量链路更新LSA(第8.2节),该LSA将仅广告为链路更改的TLV。
The OSPFIGP-TE well-known multicast address 224.0.0.24 has been assigned by IANA for the exchange of TE-compliant database descriptors during database synchronization.
IANA已分配OSPFIGP-TE众所周知的多播地址224.0.0.24,用于在数据库同步期间交换符合TE的数据库描述符。
If two routers have multiple networks in common, they may have multiple adjacencies between them. The adjacency may be one of two types - native OSPF adjacency and TE adjacency. OSPF-xTE routers will form both types of adjacency.
如果两个路由器有多个共同的网络,它们之间可能有多个邻接。邻接可以是两种类型之一-本机OSPF邻接和TE邻接。OSPF xTE路由器将形成两种类型的邻接。
Two types of adjacency graphs are possible, depending on whether a Designated Router is elected for the network. On physical point-to-point networks, point-to-multipoint networks, and virtual links, neighboring routers become adjacent whenever they can communicate
两种类型的邻接图是可能的,这取决于是否为网络选择了指定的路由器。在物理点对点网络、点对多点网络和虚拟链路上,只要能够通信,相邻路由器就会变得相邻
directly. The adjacency can be either (a) TE-compliant or (b) native. In contrast, on broadcast and NBMA networks the designated router and the backup designated router may maintain two sets of adjacency. The remaining routers will form either TE-compliant or native adjacency.
直接地邻接可以是(a)TE兼容的或(b)本机的。相反,在广播和NBMA网络上,指定路由器和备份指定路由器可以保持两组相邻。其余路由器将形成TE兼容或本机邻接。
In the broadcast network in Figure 2, routers RT7 and RT3 are chosen as the Designated and Backup Designated Routers, respectively. Routers RT3, RT4 and RT7 are TE-compliant, but RT5 and RT6 are not. So RT4 will have TE-compliant adjacency with the designated and backup routers, while RT5 and RT6 will only have native adjacency with the Designated and Backup Designated Routers.
在图2中的广播网络中,路由器RT7和RT3分别被选为指定路由器和备份指定路由器。路由器RT3、RT4和RT7与TE兼容,但RT5和RT6不兼容。所以RT4将与指定路由器和备份路由器具有TE兼容的邻接,而RT5和RT6将仅与指定路由器和备份指定路由器具有本机邻接。
Network Adjacency
网络邻接
+---+ +---+ |RT1|------------|RT2| o-----------------o +---+ N1 +---+ RT1 RT2
+---+ +---+ |RT1|------------|RT2| o-----------------o +---+ N1 +---+ RT1 RT2
RT7 o::::: +---+ +---+ +---+ /| : |RT7| |RT3| |RT4| / | : +---+ +---+ +---+ / | : | | | / | : +-----------------------+ RT5o RT6o oRT4 N2 | | * * ; +---+ +---+ * * ; |RT5| |RT6| * * ; +---+ +---+ ** ; o;;;;; RT3
RT7 o::::: +---+ +---+ +---+ /| : |RT7| |RT3| |RT4| / | : +---+ +---+ +---+ / | : | | | / | : +-----------------------+ RT5o RT6o oRT4 N2 | | * * ; +---+ +---+ * * ; |RT5| |RT6| * * ; +---+ +---+ ** ; o;;;;; RT3
Adjacency Legend:
邻接图例:
----- Native adjacency (primary) ***** Native adjacency (backup) ::::: TE-compliant adjacency (primary) ;;;;; TE-compliant adjacency (backup)
----- Native adjacency (primary) ***** Native adjacency (backup) ::::: TE-compliant adjacency (primary) ;;;;; TE-compliant adjacency (backup)
Figure 2. Two Adjacency Graphs with TE-Compliant Routers
图2。具有TE兼容路由器的两个邻接图
The OSPFv2 protocol currently has a total of 11 LSA types. LSA types 1 through 5 are defined in [OSPF-V2]. LSA types 6, 7, and 8 are defined in [MOSPF], [NSSA], and [BGP-OSPF], respectively. LSA types 9 through 11 are defined in [OPAQUE].
OSPFv2协议目前共有11种LSA类型。LSA类型1至5在[OSPF-V2]中定义。LSA类型6、7和8分别在[MOSPF]、[NSSA]和[BGP-OSPF]中定义。LSA类型9至11在[不透明]中定义。
Each LSA type has a unique flooding scope. Opaque LSA types 9 through 11 are general purpose LSAs, with flooding scope set to link-local, area-local, and AS-wide (except stub areas) respectively.
每种LSA类型都有一个唯一的泛洪范围。不透明LSA类型9至11为通用LSA,泛洪范围分别设置为连接局部、局部区域和AS宽(存根区域除外)。
In the following subsections, we define new LSAs for traffic engineering (TE) use. The values for the new TE LSA types are assigned with the high bit of the LSA-type octet set to 1. The new TE LSAs are largely modeled after the existing LSAs for content format and have a unique flooding scope.
在以下小节中,我们定义了用于流量工程(TE)的新LSA。新TE LSA类型的值将LSA类型八位字节的高位设置为1。新的TE LSA在很大程度上模仿了内容格式的现有LSA,并具有独特的泛洪范围。
TE-router LSA is defined to advertise TE characteristics of an OSPF-xTE router and all the TE links attached to the router. TE-incremental-Link-Update LSA is defined to advertise incremental updates to the metrics of a TE link. Flooding scope for both these LSAs is restricted to an area.
TE路由器LSA定义为公布OSPF xTE路由器的TE特性以及连接到路由器的所有TE链路。TE增量链路更新LSA定义为向TE链路的度量发布增量更新。这两个LSA的泛洪范围仅限于一个区域。
TE-Summary network and router LSAs are defined to advertise the reachability of area-specific TE networks and area border routers (along with router TE characteristics) to external areas. Flooding scope of the TE-Summary LSAs is the TE topology in the entire AS less the non-backbone area for which the advertising router is an ABR. Just as with native OSPF summary LSAs, the TE-Summary LSAs do not reveal the topological details of an area to external areas.
TE摘要网络和路由器LSA被定义为向外部区域宣传特定于区域的TE网络和区域边界路由器(以及路由器TE特征)的可达性。TE摘要LSA的泛洪范围是整个AS中的TE拓扑,小于广告路由器为ABR的非主干区域。与本机OSPF摘要LSA一样,TE摘要LSA不会向外部区域显示区域的拓扑细节。
TE-AS-external LSA and TE-Circuit-Path LSA are defined to advertise AS external network reachability and pre-engineered TE circuits, respectively. While flooding scope for both these LSAs can be the entire AS, flooding scope for the pre-engineered TE circuit LSA may optionally be restricted to just the TE topology within an area.
TE AS外部LSA和TE电路路径LSA分别定义为外部网络可达性和预制TE电路。虽然这两个LSA的泛洪范围可以是整个AS,但预制TE电路LSA的泛洪范围可以选择性地仅限于一个区域内的TE拓扑。
The TE-router LSA (0x81) is modeled after the router LSA and has the same flooding scope as the router LSA. However, the scope is restricted to only the OSPF-xTE nodes within the area. The TE router LSA describes the TE metrics of the router as well as the TE links attached to the router. Below is the format of the TE-router LSA. Unless specified explicitly otherwise, the fields carry the same meaning as they do in a router LSA. Only the differences are explained below. Router-TE flags, Router-TE TLVs, Link-TE options, and Link-TE TLVs are each described in the following sub-sections.
TE路由器LSA(0x81)以路由器LSA为模型,与路由器LSA具有相同的泛洪范围。但是,范围仅限于该区域内的OSPF xTE节点。TE路由器LSA描述路由器的TE度量以及连接到路由器的TE链路。下面是TE路由器LSA的格式。除非另有明确规定,否则这些字段的含义与路由器LSA中的相同。下面仅解释这些差异。路由器TE标志、路由器TE TLV、链路TE选项和链路TE TLV分别在以下小节中描述。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x81 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 |V|E|B| 0 | Router-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router-TE flags (contd.) | Router-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | .... | # of TE links | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Link-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE flags (contd.) | Zero or more Link-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x81 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 |V|E|B| 0 | Router-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router-TE flags (contd.) | Router-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | .... | # of TE links | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Link-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE flags (contd.) | Zero or more Link-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
The following flags are used to describe the TE capabilities of an OSPF-xTE router. The remaining bits of the 32-bit word are reserved for future use.
以下标志用于描述OSPF xTE路由器的TE功能。32位字的剩余位保留供将来使用。
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |L|L|P| | | | |L|S|C| |S|E|S| | | | |S|I|S| |R|R|C| | | | |P|G|P| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |L|L|P| | | | |L|S|C| |S|E|S| | | | |S|I|S| |R|R|C| | | | |P|G|P| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
Bit LSR - When set, the router is considered to have LSR (Label-Switched Router) capability.
位LSR-设置后,路由器被认为具有LSR(标签交换路由器)功能。
Bit LER - When set, the router is considered to have LER capability. All MPLS border routers will be required to have LER capability. Setting both the LER and E bits indicates an AS Boundary router with LER capability. Setting both the LER and B bits indicates an area border router with LER capability.
位LER-设置后,路由器被认为具有LER功能。所有MPLS边界路由器都需要具有LER功能。同时设置LER和E位表示具有LER功能的AS边界路由器。同时设置LER和B位表示具有LER功能的区域边界路由器。
Bit PSC - Indicates the node is packet-switch capable.
位PSC-表示节点具有分组交换能力。
Bit LSP - An MPLS Label switch TLV TE-NODE-TLV-MPLS-SWITCHING follows. This is applicable only when the PSC flag is set.
位LSP-MPLS标签交换机TLV TE-NODE-TLV-MPLS-SWITCHING如下。这仅在设置PSC标志时适用。
Bit SIG - An MPLS Signaling-protocol-support TLV TE-NODE-TLV-MPLS-SIG-PROTOCOLS follows.
Bit SIG—一种MPLS信令协议,支持TLV TE-NODE-TLV-MPLS-SIG协议。
BIT CSPF - A CSPF algorithm support TLV TE-NODE-TLV-CSPF-ALG follows.
比特CSPF-支持TLV TE-NODE-TLV-CSPF-ALG的CSPF算法如下。
The following Router-TE TLVs are defined.
定义了以下路由器TE TLV。
MPLS switching TLV is applicable only for packet switched nodes. The TLV specifies the MPLS packet switching capabilities of the TE node.
MPLS交换TLV仅适用于分组交换节点。TLV指定TE节点的MPLS数据包交换能力。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x8001 | Length = 6 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Label Depth | QOS | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x8001 | Length = 6 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Label Depth | QOS | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Label Depth is the depth of label stack the node is capable of processing on its ingress interfaces. An octet is used to represent label depth. A default value of 1 is assumed when the TLV is not listed. Label depth is relevant when an LER has to pop multiple labels off the MPLS stack.
Label Depth是节点能够在其入口接口上处理的标签堆栈的深度。八位字节用于表示标签深度。未列出TLV时,默认值为1。当LER必须从MPLS堆栈中弹出多个标签时,标签深度是相关的。
QOS is a single-octet field that may be assigned '1' or '0'. Nodes supporting QOS are able to interpret the EXP bits in the MPLS header to prioritize multiple classes of traffic through the same LSP.
QOS是一个八位字节字段,可分配为“1”或“0”。支持QOS的节点能够解释MPLS报头中的EXP位,以便通过同一LSP对多类流量进行优先级排序。
MPLS signaling protocols TLV lists all the signaling protocol supported by the node. An octet is used to list each signaling protocol supported.
MPLS信令协议TLV列出了节点支持的所有信令协议。八位字节用于列出支持的每个信令协议。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x8002 | Length = 5, 6 or 7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Protocol-1 | ... | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x8002 | Length = 5, 6 or 7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Protocol-1 | ... | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RSVP-TE protocol is represented as 1, CR-LDP as 2, and LDP as 3. These are the only permitted signaling protocols at this time.
RSVP-TE协议表示为1,CR-LDP表示为2,LDP表示为3。这些是目前唯一允许的信令协议。
The CSPF algorithms TLV lists all the CSPF algorithm codes supported. Support for CSPF algorithms makes the node eligible to compute complete or partial circuit paths. Support for CSPF algorithms can also be beneficial in knowing whether or not a node is capable of expanding loose routes (in an MPLS signaling request) into a detailed circuit path.
CSPF算法TLV列出了支持的所有CSPF算法代码。对CSPF算法的支持使节点有资格计算完整或部分电路路径。支持CSPF算法也有助于了解节点是否能够将松散路由(在MPLS信令请求中)扩展到详细的电路路径。
Two octets are used to list each CSPF algorithm code. The algorithm codes may be vendor defined and unique within an Autonomous System. If the node supports 'n' CSPF algorithms, the Length would be (4 + 4 * ((n+1)/2)) octets.
两个八位字节用于列出每个CSPF算法代码。算法代码可以是供应商定义的,并且在自治系统中是唯一的。如果节点支持“n”个CSPF算法,则长度为(4+4*((n+1)/2))个八位字节。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x8003 | Length = 4(1 + (n+1)/2) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | CSPF-1 | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | CSPF-n | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x8003 | Length = 4(1 + (n+1)/2) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | CSPF-1 | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | CSPF-n | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
When a TE-Router or a TE link has multiple TLVs to describe the metrics, the NULL TLV is used to terminate the TLV list.
当TE路由器或TE链路具有多个TLV来描述度量时,空TLV用于终止TLV列表。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x8888 | Length = 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x8888 | Length = 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The following flags are used to describe the TE capabilities of a link. The remaining bits of the 32-bit word are reserved for future use.
以下标志用于描述链接的TE功能。32位字的剩余位保留供将来使用。
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |T|N|P| | | |D| |S|L|B|C| |E|T|K| | | |B| |R|U|W|O| | |E|T| | | |S| |L|G| |L| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |T|N|P| | | |D| |S|L|B|C| |E|T|K| | | |B| |R|U|W|O| | |E|T| | | |S| |L|G| |L| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
Bit TE - Indicates whether TE is permitted on the link. A link can be denied for TE use by setting the flag to 0.
位TE-指示链路上是否允许TE。通过将标志设置为0,可以拒绝使用链接。
Bit NTE - Indicates whether non-TE traffic is permitted on the TE link. This flag is relevant only when the TE flag is set.
位NTE-指示TE链路上是否允许非TE通信。此标志仅在设置TE标志时相关。
Bit PKT - Indicates whether or not the link is capable of IP packet processing.
位PKT-指示链路是否能够处理IP数据包。
Bit DBS - Indicates whether or not database synchronization is permitted on this link.
位DBS-指示此链接上是否允许数据库同步。
Bit SRLG - Shared Risk Link Group TLV TE-LINK-TLV-SRLG follows.
Bit SRLG-共享风险链接组TLV TE-Link-TLV-SRLG如下。
Bit LUG - Link Usage Cost Metric TLV TE-LINK-TLV-LUG follows.
比特耳-链路使用成本指标TLV TE-Link-TLV-LUG如下。
Bit BW - One or more Link Bandwidth TLVs follow.
比特BW-一个或多个链路带宽TLV跟随。
Bit COL - Link Color TLV TE-LINK-TLV-COLOR follows.
位列-链接颜色TLV TE-Link-TLV-Color如下。
The SRLG describes the list of Shared Risk Link Groups (SRLG) the link belongs to. Two octets are used to list each SRLG. If the link belongs to 'n' SRLGs, the Length would be (4 + 4 * ((n+1)/2)) octets.
SRLG描述了该链接所属的共享风险链接组(SRLG)列表。两个八位字节用于列出每个SRLG。如果链接属于“n”个SRLGs,则长度将为(4+4*((n+1)/2))个八位字节。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0001 | Length = 4(1 + (n+1)/2) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SRLG-1 | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SRLG-n | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0001 | Length = 4(1 + (n+1)/2) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SRLG-1 | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SRLG-n | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Bandwidth TLV specifies the maximum bandwidth of the link, as follows.
带宽TLV指定链路的最大带宽,如下所示。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0002 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0002 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bandwidth is expressed in units of 32 bytes/sec (256 bits/sec). A 32-bit field for bandwidth would permit specification not exceeding 1 terabit/sec.
带宽以32字节/秒(256位/秒)为单位表示。带宽的32位字段将允许不超过1TB/秒的规格。
Maximum Bandwidth is the maximum link capacity expressed in bandwidth units. Portions or all of this bandwidth may be used for TE use.
最大带宽是以带宽单位表示的最大链路容量。部分或全部带宽可用于TE使用。
The Bandwidth TLV specifies the maximum bandwidth available for TE use, as follows.
带宽TLV指定可供TE使用的最大带宽,如下所示。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0003 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum Bandwidth available for TE use | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0003 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum Bandwidth available for TE use | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bandwidth is expressed in units of 32 bytes/sec (256 bits/sec). A 32-bit field for bandwidth would permit specification not exceeding 1 terabit/sec.
带宽以32字节/秒(256位/秒)为单位表示。带宽的32位字段将允许不超过1TB/秒的规格。
"Maximum Bandwidth available for TE use" is the total reservable bandwidth on the link for use by all the TE circuit paths traversing the link. The link is oversubscribed when this field is more than the Maximum Bandwidth. When the field is less than the Maximum Bandwidth, the remaining bandwidth on the link may be used for non-TE traffic in a mixed network.
“可供TE使用的最大带宽”是链路上供所有穿过链路的TE电路路径使用的总可保留带宽。当此字段超过最大带宽时,链接被超额订阅。当该字段小于最大带宽时,链路上的剩余带宽可用于混合网络中的非TE业务。
The Bandwidth TLV specifies the bandwidth reserved for TE as follows.
带宽TLV指定为TE保留的带宽,如下所示。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0004 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE Bandwidth subscribed | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0004 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE Bandwidth subscribed | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bandwidth is expressed in units of 32 bytes/sec (256 bits/sec). A 32-bit field for bandwidth would permit specification not exceeding 1 terabit/sec.
带宽以32字节/秒(256位/秒)为单位表示。带宽的32位字段将允许不超过1TB/秒的规格。
"TE Bandwidth subscribed" is the bandwidth that is currently subscribed from of the link. "TE Bandwidth subscribed" must be less than the "Maximum bandwidth available for TE use". New TE circuit paths are able to claim no more than the difference between the two bandwidths for reservation.
“TE Bandwidth subscribed”(已订阅带宽)是指当前从链路中订阅的带宽。“订阅的TE带宽”必须小于“可供TE使用的最大带宽”。新的TE电路路径能够要求不超过两个带宽之间的差异进行保留。
The link usage cost TLV specifies bandwidth unit usage cost, TE circuit set-up cost, and any time constraints for setup and teardown of TE circuits on the link.
链路使用成本TLV指定带宽单位使用成本、TE电路设置成本以及链路上TE电路设置和拆卸的任何时间限制。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0005 | Length = 28 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Bandwidth unit usage cost | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE circuit set-up cost | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE circuit set-up time constraint | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE circuit tear-down time constraint | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0005 | Length = 28 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Bandwidth unit usage cost | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE circuit set-up cost | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE circuit set-up time constraint | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE circuit tear-down time constraint | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Circuit Setup time constraint
电路设置时间限制
This 64-bit number specifies the time at or after which a TE-circuit path may be set up on the link. The set-up time constraint is specified as the number of seconds from the start of January 1, 1970 UTC. A reserved value of 0 implies no circuit setup time constraint.
此64位数字指定在链路上设置TE电路路径的时或之后的时间。设置时间限制指定为从UTC 1970年1月1日开始的秒数。保留值0表示没有回路设置时间限制。
Circuit Teardown time constraint
电路拆卸时间约束
This 64-bit number specifies the time at or before which all TE-circuit paths using the link must be torn down. The teardown time constraint is specified as the number of seconds from the start of January 1 1970 UTC. A reserved value of 0 implies no circuit teardown time constraint.
此64位数字指定必须断开使用链路的所有TE电路路径的时间或之前的时间。拆卸时间限制指定为从1970年1月1日UTC开始算起的秒数。保留值0表示没有电路拆卸时间限制。
The color TLV is similar to the SRLG TLV, in that an Autonomous System may choose to issue colors to a TE link meeting certain criteria. The color TLV can be used to specify one or more colors assigned to the link as follows. Two octets are used to list each color. If the link belongs to 'n' number of colors, the Length would be (4 + 4 * ((n+1)/2)) octets.
彩色TLV与SRLG TLV相似,因为自治系统可以选择向满足特定标准的TE链路发出颜色。颜色TLV可用于指定分配给链接的一种或多种颜色,如下所示。两个八位字节用于列出每种颜色。如果链接属于“n”个颜色,则长度为(4+4*((n+1)/2))个八位字节。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0006 | Length = 4(1 + (n+1)/2) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Color-1 | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Color-n | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag = 0x0006 | Length = 4(1 + (n+1)/2) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Color-1 | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Color-n | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
When a TE link has multiple TLVs to describe its metrics, the NULL TLV is used to terminate the TLV list. The TE-LINK-TLV-NULL is same as the TE-NODE-TLV-NULL described in section 8.1.2.4
当TE链路有多个TLV来描述其指标时,空TLV用于终止TLV列表。TE-LINK-TLV-NULL与第8.1.2.4节中描述的TE-NODE-TLV-NULL相同
A significant difference between a native OSPF network and a TE network is that the latter may be subject to frequent real-time circuit pinning and is likely to undergo TE-state updates. Some links might undergo changes more frequently than others. Flooding the network with TE-router LSAs at the aggregated speed of all link metric changes is simply not desirable. A smaller in size TE-incremental-link-update LSA is designed to advertise only the incremental link updates.
本机OSPF网络和TE网络之间的一个显著区别是后者可能受到频繁的实时电路钉扎,并且可能经历TE状态更新。某些链接可能比其他链接更频繁地进行更改。以所有链路度量变化的聚合速度用TE路由器LSA淹没网络是不可取的。较小的TE增量链路更新LSA设计用于仅公布增量链路更新。
A TE-incremental-link-update LSA will be advertised as frequently as the link state is changed (not exceeding once every MinLSInterval seconds). The TE link sequence is largely the advertisement of a sub-portion of router LSA. The sequence number on this will be incremented with the TE-router LSA's sequence as the basis. When an updated TE-router LSA is advertised within 30 minutes of the previous advertisement, the updated TE-router LSA will assume a sequence number that is larger than the most frequently updated of its links.
TE增量链路更新LSA将随着链路状态的更改而频繁发布(不超过每分钟间隔秒一次)。TE链路序列主要是路由器LSA的子部分的广告。序列号将以TE路由器LSA的序列为基础递增。当更新的TE路由器LSA在前一广告的30分钟内被广告时,更新的TE路由器LSA将采用大于其链路中最频繁更新的序列号。
Below is the format of the TE-incremental-link-update LSA.
下面是TE增量链路更新LSA的格式。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x8d | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID (same as Link ID) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Link-TE options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE options | Zero or more Link-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # TOS | metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TOS | 0 | TOS metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x8d | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID (same as Link ID) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Link-TE options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE options | Zero or more Link-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # TOS | metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TOS | 0 | TOS metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Link State ID
链路状态ID
This would be exactly the same as would have been specified for Link ID, for a link within the router LSA.
对于路由器LSA内的链路,这将与为链路ID指定的完全相同。
Link Data
链接数据
This specifies the router ID the link belongs to. In majority of cases, this would be same as the advertising router. This choice for Link Data is primarily to facilitate proxy advertisement for incremental link updates.
这指定链接所属的路由器ID。在大多数情况下,这与广告路由器相同。链接数据的这种选择主要是为了促进增量链接更新的代理广告。
Suppose that a proxy router LSA was used to advertise the TE-router LSA of a SONET/TDM node, and that the proxy router is now required to advertise incremental-link-update for the same SONET/TDM node. Specifying the actual router-ID to which the link in the incremental-link-update LSA belongs helps receiving nodes in finding the exact match for the LSA in their database.
假设代理路由器LSA用于通告SONET/TDM节点的TE路由器LSA,并且代理路由器现在需要通告同一SONET/TDM节点的增量链路更新。指定增量链路更新LSA中的链路所属的实际路由器ID有助于接收节点在其数据库中查找LSA的精确匹配。
The tuple of (LS Type, LSA ID, Advertising router) uniquely identifies the LSA and replaces LSAs of the same tuple with an older sequence number. However, there is an exception to this rule in the context of TE-link-update LSA. TE-Link-update LSA will initially assume the sequence number of the TE-router LSA it belongs to. Further, when a new TE-router LSA update with a larger sequence number is advertised, the newer sequence number is assumed by all the link LSAs.
元组(LS类型、LSA ID、广告路由器)唯一标识LSA,并用旧序列号替换同一元组的LSA。但是,在TE link update LSA的上下文中,此规则有一个例外。TE链路更新LSA最初将采用它所属的TE路由器LSA的序列号。此外,当通告具有较大序列号的新TE路由器LSA更新时,所有链路LSA都假定较新的序列号。
TE-Circuit-path LSA (next page) may be used to advertise the availability of pre-engineered TE circuit path(s) originating from any router in the network. The flooding scope may be area-wide or AS-wide. Fields are as follows.
TE电路路径LSA(下一页)可用于公布源自网络中任何路由器的预制TE电路路径的可用性。洪水范围可以是区域范围,也可以是相同的范围。字段如下所示。
Link State ID
链路状态ID
The ID of the far-end router or the far-end link-ID to which the TE circuit path(s) is being advertised.
正在播发TE电路路径的远端路由器的ID或远端链路ID。
TE-circuit-path(s) flags
TE电路路径标志
Bit G - When set, the flooding scope is set to be AS-wide. Otherwise, the flooding scope is set to be area-wide.
G位-设置时,泛洪范围设置为同样宽。否则,泛洪范围设置为区域范围。
Bit E - When set, the advertised Link-State ID is an AS boundary router (E is for external). The advertising router and the Link State ID belong to the same area.
位E-设置时,播发链路状态ID为AS边界路由器(E为外部路由器)。广告路由器和链路状态ID属于同一区域。
Bit B - When set, the advertised Link State ID is an area border router (B is for Border)
位B-设置时,播发链路状态ID为区域边界路由器(B表示边界)
Bit D - When set, this indicates that the duration of circuit path validity follows.
位D-设置时,表示电路路径有效期如下。
Bit S - When set, this indicates that setup time of the circuit path follows.
位S-设置时,表示电路路径的设置时间如下。
Bit T - When set, this indicates that teardown time of the circuit path follows.
位T-设置时,表示电路路径的拆卸时间如下。
CktType - This 4-bit field specifies the circuit type of the Forward Equivalency Class (FEC).
CktType-此4位字段指定正向等效类(FEC)的电路类型。
0x01 - Origin is Router, Destination is Router. 0x02 - Origin is Link, Destination is Link. 0x04 - Origin is Router, Destination is Link. 0x08 - Origin is Link, Destination is Router.
0x01-起点为路由器,终点为路由器。0x02-起点为链路,终点为链路。0x04-起点为路由器,终点为链路。0x08-起点为链路,终点为路由器。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x84 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 |G|E|B|D|S|T|CktType| Circuit Duration (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Duration cont... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Duration cont.. | Circuit Setup time (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Setup time cont... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Setup time cont.. |Circuit Teardown time(Optional)| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Teardown time cont... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Teardown time cont.. | No. of TE Circuit Paths | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Circuit-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE flags (contd.) | Zero or more Circuit-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x84 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 |G|E|B|D|S|T|CktType| Circuit Duration (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Duration cont... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Duration cont.. | Circuit Setup time (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Setup time cont... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Setup time cont.. |Circuit Teardown time(Optional)| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Teardown time cont... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit Teardown time cont.. | No. of TE Circuit Paths | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Circuit-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE flags (contd.) | Zero or more Circuit-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Circuit-TE Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
Circuit Duration (Optional)
电路持续时间(可选)
This 64-bit number specifies the seconds from the time of the LSA advertisement for which the pre-engineered circuit path will be valid. This field is specified only when the D-bit is set in the TE-circuit-path flags.
此64位数字指定从LSA播发开始的秒数,对于该秒数,预制电路路径将有效。仅当在TE电路路径标志中设置了D位时,才指定此字段。
Circuit Setup time (Optional)
电路设置时间(可选)
This 64-bit number specifies the time at which the TE circuit path may be set up. This field is specified only when the S-bit is set in the TE-circuit-path flags. The set-up time is specified as the number of seconds from the start of January 1, 1970 UTC.
此64位数字指定TE电路路径的设置时间。仅当在TE电路路径标志中设置了S位时,才指定此字段。设置时间指定为UTC 1970年1月1日起的秒数。
Circuit Teardown time (Optional)
电路拆卸时间(可选)
This 64-bit number specifies the time at which the TE circuit path may be torn down. This field is specified only when the T-bit is set in the TE-circuit-path flags. The teardown time is specified as the number of seconds from the start of January 1 1970 UTC.
此64位数字指定TE电路路径可能被拆除的时间。仅当在TE电路路径标志中设置T位时,才指定此字段。拆卸时间指定为从1970年1月1日UTC开始算起的秒数。
No. of TE Circuit Paths
TE电路路径数
This specifies the number of pre-engineered TE circuit paths between the advertising router and the router specified in the Link State ID.
这指定了广告路由器和链路状态ID中指定的路由器之间的预制TE电路路径数。
Circuit-TE ID
电路TE ID
This is the ID of the far-end router for a given TE circuit path segment.
这是给定TE电路路径段的远端路由器的ID。
Circuit-TE Data
电路TE数据
This is the virtual link identifier on the near-end router for a given TE circuit path segment. This can be a private interface or handle the near-end router uses to identify the virtual link.
这是近端路由器上给定TE电路路径段的虚拟链路标识符。这可以是专用接口,也可以是近端路由器用来识别虚拟链路的句柄。
The sequence of (Circuit-TE ID, Circuit-TE Data) pairs lists the end-point nodes and links in the LSA as a series.
(回路TE ID、回路TE数据)对的序列将LSA中的端点节点和链路列为一系列。
Circuit-TE flags
电路TE标志
This lists the zero or more TE-link TLVs that all member elements of the LSP meet.
该列表列出了LSP所有成员元素满足的零个或多个TE链路TLV。
TE-Summary LSAs are Type 0x83 and 0x84 LSAs. These LSAs are originated by area border routers. A TE-Summary-network LSA (0x83) describes the reachability of TE networks in a non-backbone area, advertised by the area border router. A Type 0x84 summary LSA describes the reachability of area border routers and AS border routers and their TE capabilities.
TE摘要LSA类型为0x83和0x84 LSA。这些LSA由区域边界路由器发起。TE摘要网络LSA(0x83)描述由区域边界路由器公布的非主干区域内TE网络的可达性。类型0x84摘要LSA描述区域边界路由器和AS边界路由器的可达性及其TE功能。
One of the benefits of having multiple areas within an AS is that frequent TE advertisements within the area do not impact outside the area. Only the TE abstractions befitting the external areas are advertised.
AS内有多个区域的好处之一是,该区域内频繁的TE广告不会影响区域外。只有适合外部区域的TE抽象才会被宣传。
A TE-Summary network LSA may be used to advertise reachability of TE-networks accessible to areas external to the originating area. The content and the flooding scope of a TE-Summary LSA is different from that of a native Summary LSA.
TE摘要网络LSA可用于通告TE网络的可达性,该TE网络可由发起区域外部的区域访问。TE摘要LSA的内容和泛洪范围不同于本机摘要LSA。
The scope of flooding for a TE-Summary network LSA is AS-wide, with the exception of the originating area and the stub areas. The area border router for each non-backbone area is responsible for advertising the reachability of backbone networks into the area.
TE摘要网络LSA的泛洪范围同样广泛,但起始区域和存根区域除外。每个非主干区域的区域边界路由器负责向该区域宣传主干网络的可达性。
Unlike a native-summary network LSA, a TE-Summary network LSA does not advertise summary costs to reach networks within an area. This is because TE parameters are not necessarily additive or comparable. The parameters can be varied in their expression. For example, a TE-Summary network LSA will not summarize a network whose links do not fall under an SRLG (Shared-Risk Link Group). This way, the TE-Summary LSA merely advertises the reachability of TE networks within an area. The specific circuit paths can be computed by the ABR. Pre-engineered circuit paths are advertised using TE-Circuit-path LSAs(refer to Section 8.3).
与本机摘要网络LSA不同,TE摘要网络LSA不公布摘要成本以到达区域内的网络。这是因为TE参数不一定是可加的或可比较的。参数的表达式可以变化。例如,TE汇总网络LSA不会汇总其链接不属于SRLG(共享风险链接组)的网络。这样,TE摘要LSA仅宣传一个区域内TE网络的可达性。具体电路路径可由ABR计算。使用TE电路路径LSA公布预制电路路径(参考第8.3节)。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x83 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID (IP Network Number) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router (Area Border Router) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Network Mask | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area-ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x83 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID (IP Network Number) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router (Area Border Router) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Network Mask | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area-ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A TE-Summary router LSA may be used to advertise the availability of area border routers (ABRs) and AS border routers (ASBRs) that are TE-capable. The TE-Summary router LSAs are originated by the Area Border Routers. The scope of flooding for the TE-Summary router LSA is the non-backbone area the advertising ABR belongs to.
TE摘要路由器LSA可用于通告具有TE能力的区域边界路由器(abr)和AS边界路由器(asbr)的可用性。TE摘要路由器LSA由区域边界路由器发起。TE摘要路由器LSA的泛洪范围是广告ABR所属的非主干区域。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x84 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router (ABR) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 |E|B| 0 | No. of Areas | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area-ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x84 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router (ABR) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 |E|B| 0 | No. of Areas | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area-ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Link State ID
链路状态ID
The ID of the area border router or the AS border router whose TE capability is being advertised.
正在公布其TE功能的区域边界路由器或AS边界路由器的ID。
Advertising Router
公告路由器
The ABR that advertises its TE capabilities (and the OSPF areas it belongs to) or the TE capabilities of an ASBR within one of the areas for which the ABR is a border router.
在ABR作为边界路由器的一个区域内宣传其TE能力(及其所属OSPF区域)或ASBR TE能力的ABR。
No. of Areas
地区数目
Specifies the number of OSPF areas the link state ID belongs to.
指定链路状态ID所属的OSPF区域数。
Area-ID
区域ID
Specifies the OSPF area(s) the link state ID belongs to. When the link state ID is same as the advertising router ID, the Area-ID lists all the areas the ABR belongs to. In the case the link state ID is an ASBR, the Area-ID simply lists the area the ASBR belongs to. The advertising router is assumed to be the ABR from the same area the ASBR is located in.
指定链路状态ID所属的OSPF区域。当链路状态ID与广告路由器ID相同时,区域ID列出ABR所属的所有区域。如果链接状态ID是ASBR,则区域ID仅列出ASBR所属的区域。广告路由器被假定为来自ASBR所在区域的ABR。
Summary-router-TE flags
路由器TE标志摘要
Bit E - When set, the advertised Link-State ID is an AS boundary router (E is for external). The advertising router and the Link State ID belong to the same area.
位E-设置时,播发链路状态ID为AS边界路由器(E为外部路由器)。广告路由器和链路状态ID属于同一区域。
Bit B - When set, the advertised Link state ID is an Area border router (B is for Border)
位B-设置时,播发链路状态ID为区域边界路由器(B表示边界)
Router-TE flags, Router-TE TLVs
路由器TE标志,路由器TE TLV
TE capabilities of the link-state-ID router.
链路状态ID路由器的TE功能。
TE Flags and TE TLVs are as applicable to the ABR/ASBR specified in the link state ID. The semantics is same as specified in the Router-TE LSA.
TE标志和TE TLV适用于链路状态ID中指定的ABR/ASBR。语义与路由器TE LSA中指定的相同。
TE-AS-external LSAs are the Type 0x85 LSAs. This is modeled after AS-external LSA format and flooding scope. TE-AS-external LSAs are originated by AS boundary routers with TE extensions, and describe the TE networks and pre-engineered circuit paths external to the AS. As with AS-external LSA, the flooding scope of the TE-AS-external LSA is AS-wide, with the exception of stub areas.
TE AS外部LSA为0x85 LSA类型。这被建模为外部LSA格式和泛洪范围。TE AS外部LSA由具有TE扩展的AS边界路由器发起,并描述AS外部的TE网络和预制电路路径。与外部LSA一样,TE As外部LSA的泛洪范围同样宽,但存根区域除外。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x85 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Network Mask | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Forwarding address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | External Route Tag | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # of Virtual TE links | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE-Forwarding address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | External Route TE Tag | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x85 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Network Mask | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Forwarding address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | External Route Tag | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # of Virtual TE links | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE-Forwarding address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | External Route TE Tag | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
Network Mask
网络掩码
The IP address mask for the advertised TE destination. For example, this can be used to specify access to a specific TE node or TE link with an mask of 0xffffffff. This can also be used to specify access to an aggregated set of destinations using a different mask. ex: 0xff000000.
播发的TE目标的IP地址掩码。例如,这可用于指定对掩码为0xFFFFFF的特定TE节点或TE链接的访问。这也可用于指定使用不同掩码访问聚合的目的地集。例如:0xff000000。
Link-TE flags, Link-TE TLVs
链接TE标志,链接TE TLV
The TE attributes of this route. These fields are optional and are provided only when one or more pre-engineered circuits can be specified with the advertisement. Without these fields, the LSA will simply state TE reachability info.
此路由的TE属性。这些字段是可选的,仅当广告中可以指定一个或多个预制电路时才提供。如果没有这些字段,LSA将简单地声明TE可达性信息。
Forwarding address
转发地址
Data traffic for the advertised destination will be forwarded to this address. If the Forwarding address is set to 0.0.0.0, data traffic will be forwarded instead to the LSA's originator (i.e., the responsible AS boundary router).
播发目的地的数据流量将转发到此地址。如果转发地址设置为0.0.0.0,则数据流量将转发给LSA的发起人(即负责的AS边界路由器)。
External Route Tag
外部路线标签
A 32-bit field attached to each external route. This is not used by the OSPF protocol itself. It may be used to communicate information between AS boundary routers; the precise nature of such information is outside the scope of this specification.
连接到每个外部路由的32位字段。OSPF协议本身不使用此选项。它可用于在AS边界路由器之间进行信息通信;此类信息的准确性质不在本规范范围内。
A non-packet network would use the TE LSAs described in the previous section for a packet network with some variations. These variations are described in the following subsections.
非分组网络将使用上一节中描述的用于分组网络的TE LSAs,但有一些变化。这些变化在以下小节中描述。
Two new LSAs, TE-Positional-ring-network LSA and TE-Router-Proxy LSA are defined for use in non-packet TE networks.
定义了两种新的LSA,TE位置环网LSA和TE路由器代理LSA,用于非分组TE网络。
Readers may refer to [SONET-SDH] for a detailed description of the terms used in the context of SONET/SDH TDM networks,
读者可参考[SONET-SDH]了解SONET/SDH TDM网络上下文中使用的术语的详细说明,
The following fields are used to describe each router link (i.e., interface). Each router link is typed (see the below Type field). The Type field indicates the kind of link being described.
以下字段用于描述每个路由器链路(即接口)。每个路由器链接都已键入(请参见下面的类型字段)。类型字段指示所描述的链接类型。
Type
类型
A new link type "Positional-Ring Type" (value 5) is defined. This is essentially a connection to a TDM-Ring. TDM ring network is different from LAN/NBMA transit network in that nodes on the TDM ring do not necessarily have a terminating path between themselves. Second, the order of links is important in determining the circuit path. Third, the protection switching and the number of fibers from a node going into a ring are determined by the ring characteristics, for example, 2-fiber vs. 4-fiber ring and Unidirectional Path Switched Ring (UPSR) vs. Bidirectional Line Switched Ring (BLSR).
定义了一个新的链接类型“定位环类型”(值5)。这本质上是与TDM环的连接。TDM环网不同于LAN/NBMA传输网,因为TDM环上的节点之间不一定有终止路径。其次,链路的顺序对于确定电路路径很重要。第三,保护交换和从节点进入环的光纤数量由环特性决定,例如,2光纤环与4光纤环以及单向路径交换环(UPSR)与双向线路交换环(BLSR)。
Type Description __________________________________________________ 1 Point-to-point connection to another router 2 Connection to a transit network 3 Connection to a stub network 4 Virtual link 5 Positional-Ring type.
Type Description __________________________________________________ 1 Point-to-point connection to another router 2 Connection to a transit network 3 Connection to a stub network 4 Virtual link 5 Positional-Ring type.
Link ID
链接ID
Identifies the object that this router link connects to. Value depends on the link's Type. For a positional-ring type, the Link ID shall be IP Network/Subnet number just as the case with a broadcast transit network. The following table summarizes the updated Link ID values.
标识此路由器链接连接到的对象。值取决于链接的类型。对于位置环类型,链路ID应为IP网络/子网编号,就像广播传输网络一样。下表总结了更新的链接ID值。
Type Link ID ______________________________________ 1 Neighboring router's Router ID 2 IP address of Designated Router 3 IP network/subnet number 4 Neighboring router's Router ID 5 IP network/subnet number
Type Link ID ______________________________________ 1 Neighboring router's Router ID 2 IP address of Designated Router 3 IP network/subnet number 4 Neighboring router's Router ID 5 IP network/subnet number
Link Data
链接数据
This depends on the link's Type field. For type-5 links, this specifies the router interface's IP address.
这取决于链接的类型字段。对于类型5链路,这指定路由器接口的IP地址。
Flags specific to non-packet TE nodes are described below.
下面描述特定于非分组TE节点的标志。
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |L|L|P|T|L|F| |S|S|S|C| |S|E|S|D|S|S| |T|E|I|S| |R|R|C|M|C|C| |A|L|G|P| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |L|L|P|T|L|F| |S|S|S|C| |S|E|S|D|S|S| |T|E|I|S| |R|R|C|M|C|C| |A|L|G|P| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
Bit TDM - Indicates the node is TDM circuit switch capable.
位TDM-表示节点支持TDM电路开关。
Bit LSC - Indicates the node is capable of Lambda switching.
位LSC-表示节点能够进行Lambda切换。
Bit FSC - Indicates the node is capable of fiber-switching (can also be a non-fiber link type).
位FSC-表示节点能够进行光纤交换(也可以是非光纤链路类型)。
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |T|N|P|T|L|F|D| |S|L|B|C| |E|T|K|D|S|S|B| |R|U|W|O| | |E|T|M|C|C|S| |L|G|A|L| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |T|N|P|T|L|F|D| |S|L|B|C| |E|T|K|D|S|S|B| |R|U|W|O| | |E|T|M|C|C|S| |L|G|A|L| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|
TDM, LSC, FSC bits - Same as defined for router TE options.
TDM、LSC、FSC位-与路由器TE选项定义的相同。
Network LSA is adequate for packet TE networks. A new TE-positional-ring-network LSA is defined to represent type-5 link networks, found in non-packet networks such as SONET/SDH TDM rings. A type-5 ring is a collection of network elements (NEs) forming a closed loop. Each NE is connected to two adjacent NEs via a duplex connection to provide redundancy in the ring. The sequence in which the NEs are placed on the Ring is pertinent. The NE that provides the OSPF-xTE functionality is termed the Gateway Network Element (GNE). The GNE selection criteria is outside the scope of this document. The GNE is also termed the Designated Router for the ring.
网络LSA适用于分组TE网络。定义了一种新的TE位置环网络LSA,用于表示在SONET/SDH TDM环等非分组网络中发现的5型链路网络。5型环是构成闭环的网络元件(NE)的集合。每个网元通过双工连接连接到两个相邻的网元,以在环中提供冗余。网元放置在环上的顺序是相关的。提供OSPF xTE功能的网元称为网关网元(GNE)。GNE选择标准不在本文件范围内。GNE也被称为环的指定路由器。
The TE-positional-ring-network LSA (0x82) is modeled after the network LSA and has the same flooding scope as the network LSA amongst the OSPF-xTE nodes within the area. Below is the format of the TE-Positional-Ring-network LSA. Unless specified explicitly otherwise, the fields carry the same meaning as they do in a network LSA. Only the differences are explained below.
TE位置环形网络LSA(0x82)是根据网络LSA建模的,并且在该区域内的OSPF xTE节点之间具有与网络LSA相同的泛洪范围。下面是TE位置环网络LSA的格式。除非另有明确规定,否则这些字段的含义与它们在网络LSA中的含义相同。下面仅解释这些差异。
A TE-positional-ring-network LSA is originated for each Positional-Ring type network in the area. The tuple of (Link State ID, Network Mask) below uniquely represents a ring. The TE option must be set in the Options flag while propagating the LSA.
为区域中的每个位置环类型网络发起TE位置环网络LSA。下面的元组(链接状态ID,网络掩码)唯一地表示一个环。传播LSA时,必须在选项标志中设置TE选项。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x82 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Network Mask | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ring Type | Capacity Unit | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ring capacity | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Network Element Node Id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x82 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Network Mask | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ring Type | Capacity Unit | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ring capacity | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Network Element Node Id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
Link State ID
链路状态ID
This is the IP interface address of the network's Gateway Network Element, which is also the designated router.
这是网络网关网元的IP接口地址,也是指定的路由器。
Advertising Router
公告路由器
Router ID of the network's Designated Router.
网络指定路由器的路由器ID。
Ring type
环形
There are 8 types of SONET/SDH rings defined as follows.
SONET/SDH环有8种类型,定义如下。
1 - A Unidirectional Line Switched 2-fiber ring (2-fiber ULSR) 2 - A Bidirectional Line switched 2-fiber ring (2-fiber BLSR) 3 - A Unidirectional Path Switched 2-fiber ring (2-fiber UPSR) 4 - A Bidirectional Path switched 2-fiber ring (2-fiber BPSR) 5 - A Unidirectional Line Switched 4-fiber ring (4-fiber ULSR) 6 - A Bidirectional Line switched 4-fiber ring (4-fiber BLSR) 7 - A Unidirectional Path Switched 4-fiber ring (4-fiber UPSR) 8 - A Bidirectional Path switched 4-fiber ring (4-fiber BPSR)
1-单向线路交换2光纤环(2光纤ULSR)2-双向线路交换2光纤环(2光纤BLSR)3-单向路径交换2光纤环(2光纤UPSR)4-双向路径交换2光纤环(2光纤BPSR)5-单向线路交换4光纤环(4光纤ULSR)6-双向线路交换4光纤环(4光纤BLSR)7-单向路径交换4光纤环(4光纤UPSR)8-双向路径交换4光纤环(4光纤BPSR)
Capacity Unit
容量单位
Two units are currently defined, as follows.
目前定义了两个单位,如下所示。
1 - Synchronous Transport Signal (STS), which is the basic signal rate for SONET signals. The rate of an STS signal is 51.84 Mbps
1-同步传输信号(STS),这是SONET信号的基本信号速率。STS信号的速率为51.84 Mbps
2 - Synchronous Transport Multiplexer (STM), which is the basic signal rate for SDH signals. The rate of an STM signal is 155.52 Mbps
2-同步传输多路复用器(STM),它是SDH信号的基本信号速率。STM信号的速率为155.52 Mbps
Ring capacity
环容量
Ring capacity expressed in number of Capacity Units.
环容量以容量单位的数量表示。
Network Element Node Id
网元节点Id
The Router ID of each of the routers in the positional-ring network. The list must start with the designated router as the first element. The Network Elements (NEs) must be listed in strict clockwise order as they appear on the ring, starting with the Gateway Network Element (GNE). The number of NEs in the ring can be deduced from the LSA header's length field.
位置环网络中每个路由器的路由器ID。列表必须以指定的路由器作为第一个元素开始。网元(NE)必须严格按顺时针顺序在环上列出,从网关网元(GNE)开始。环中网元的数量可以从LSA报头的长度字段中推断出来。
This is a variation to the TE-router LSA in that the TE-router LSA is not advertised by the network element, but rather by a trusted TE-router Proxy. This is typically the scenario in a non-packet TE network, where some of the nodes do not have OSPF functionality and count on a helper node to do the advertisement for them. One such example would be the SONET/SDH Add-Drop Multiplexer (ADM) nodes in a TDM ring. The nodes may principally depend upon the GNE (Gateway Network Element) to do the advertisement for them. TE-router-Proxy LSA shall not be used to advertise area border routers and/or AS border routers.
这是TE路由器LSA的一种变体,其中TE路由器LSA不是由网络元件通告的,而是由受信任的TE路由器代理通告的。这通常是非分组TE网络中的场景,其中一些节点不具有OSPF功能,并且依靠助手节点为它们执行广告。一个这样的例子是TDM环中的SONET/SDH分插复用器(ADM)节点。节点可以主要依赖于GNE(网关网元)来为它们进行广告。TE路由器代理LSA不得用于宣传区域边界路由器和/或作为边界路由器。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x8e | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID (Router ID of the TE Network Element) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Router-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router-TE flags (contd.) | Router-TE TLVs | +---------------------------------------------------------------+ | .... | +---------------------------------------------------------------+ | .... | # of TE links | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Link-TE options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE flags | Zero or more Link-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | Options | 0x8e | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID (Router ID of the TE Network Element) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Router-TE flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router-TE flags (contd.) | Router-TE TLVs | +---------------------------------------------------------------+ | .... | +---------------------------------------------------------------+ | .... | # of TE links | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Link-TE options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link-TE flags | Zero or more Link-TE TLVs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
Below, we consider a TE network composed of three OSPF areas, Area-1, Area-2 and Area-3, attached together through the backbone area. Area-1 an has a single area border router, ABR-A1 and no ASBRs. Area-2 has an area border router ABR-A2 and an AS border router ASBR-S1. Area-3 has two area border routers ABR-A2 and ABR-A3 and an AS border router ASBR-S2. The following network also assumes a pre-engineered TE circuit path between ABR-A1 and ABR-A2; between ABR-A1 and ABR-A3; between ABR-A2 and ASBR-S1; and between ABR-A3 and ASBR-S2.
下面,我们考虑一个由三个OSPF区域组成的TE网络,ALA-1,ALA-2和AARA-3,通过主干区域连接在一起。Area-1 an有一个单区域边界路由器ABR-A1,没有ASBR。区域2有一个区域边界路由器ABR-A2和一个AS边界路由器ASBR-S1。区域3有两个区域边界路由器ABR-A2和ABR-A3以及一个AS边界路由器ASBR-S2。以下网络也采用ABR-A1和ABR-A2之间的预制TE电路路径;在ABR-A1和ABR-A3之间;ABR-A2和ASBR-S1之间;在ABR-A3和ASBR-S2之间。
The following figure is an inter-area topology abstraction from the perspective of routers in Area-1. The abstraction illustrates reachability of TE networks and nodes within area to the external areas in the same AS and to the external ASes. The abstraction also illustrates pre-engineered TE circuit paths advertised by ABRs and ASBRs.
下图是从区域1中路由器的角度进行的区域间拓扑抽象。该抽象说明了TE网络和区域内节点与外部区域的可达性,以及与外部ASE的可达性。该抽象还说明了ABR和ASBR宣传的预制TE电路路径。
+-------+ |Area-1 | +-------+ +-------------+ | |Reachable TE | +--------+ |networks in |-------| ABR-A1 | |backbone area| +--------+ +-------------+ | | | +--------------+ | +-----------------+ | | | +-----------------+ | +-----------------+ |Pre-engineered TE| +----------+ |Pre-engineered TE| |circuit path(s) | | Backbone | |circuit path(s) | |to ABR-A2 | | Area | |to ABR-A3 | +-----------------+ +----------+ +-----------------+ | | | | +----------+ | +--------------+ | +-----------+ | | | | +-----------+ |Reachable | +--------+ +--------+ |Reachable | |TE networks|------| ABR-A2 | | ABR-A3 |--|TE networks| |in Area A2 | +--------+ +--------+ |in Area A3 | +-----------+ | | | | | | +-----------+ +-------------+ | | +-----------------+ | +----------+ | | +-----------+ | | | +-----------+ +--------------+ | | | +--------------+ |Reachable | |Pre-engineered| | | | |Pre-engineered| |TE networks| |TE Ckt path(s)| +------+ +------+ |TE Ckt path(s)| |in Area A3 | |to ASBR-S1 | |Area-2| |Area-3| |to ASBR-S2 | +-----------+ +--------------+ +------+ +------+ +--------------+ | | | | | +--------+ | +-----------+ +-------------+ | | | | |AS external | +---------+ +---------+ |TE-network |----| ASBR-S1 | | ASBR-S2 | |reachability | +---------+ +---------+ |from ASBR-S1 | | | | +-------------+ +---+ +-------+ +-----------+ | | | +-----------------+ +-------------+ +-----------------+ |Pre-engineered TE| |AS External | |Pre-engineered TE| |circuit path(s) | |TE-Network | |circuit path(s) | |reachable from | |reachability | |reachable from | |ASBR-S1 | |from ASBR-S2 | |ASBR-S2 | +-----------------+ +-------------+ +-----------------+
+-------+ |Area-1 | +-------+ +-------------+ | |Reachable TE | +--------+ |networks in |-------| ABR-A1 | |backbone area| +--------+ +-------------+ | | | +--------------+ | +-----------------+ | | | +-----------------+ | +-----------------+ |Pre-engineered TE| +----------+ |Pre-engineered TE| |circuit path(s) | | Backbone | |circuit path(s) | |to ABR-A2 | | Area | |to ABR-A3 | +-----------------+ +----------+ +-----------------+ | | | | +----------+ | +--------------+ | +-----------+ | | | | +-----------+ |Reachable | +--------+ +--------+ |Reachable | |TE networks|------| ABR-A2 | | ABR-A3 |--|TE networks| |in Area A2 | +--------+ +--------+ |in Area A3 | +-----------+ | | | | | | +-----------+ +-------------+ | | +-----------------+ | +----------+ | | +-----------+ | | | +-----------+ +--------------+ | | | +--------------+ |Reachable | |Pre-engineered| | | | |Pre-engineered| |TE networks| |TE Ckt path(s)| +------+ +------+ |TE Ckt path(s)| |in Area A3 | |to ASBR-S1 | |Area-2| |Area-3| |to ASBR-S2 | +-----------+ +--------------+ +------+ +------+ +--------------+ | | | | | +--------+ | +-----------+ +-------------+ | | | | |AS external | +---------+ +---------+ |TE-network |----| ASBR-S1 | | ASBR-S2 | |reachability | +---------+ +---------+ |from ASBR-S1 | | | | +-------------+ +---+ +-------+ +-----------+ | | | +-----------------+ +-------------+ +-----------------+ |Pre-engineered TE| |AS External | |Pre-engineered TE| |circuit path(s) | |TE-Network | |circuit path(s) | |reachable from | |reachability | |reachable from | |ASBR-S1 | |from ASBR-S2 | |ASBR-S2 | +-----------------+ +-------------+ +-----------------+
Figure 3: Inter-Area Abstraction as viewed by Area-1 TE-routers
图3:Area-1 TE路由器查看的区域间抽象
An OSPF-xTE router must be able to include the router-TE capabilities (as specified in section 8.1) in the router data structure. OSPF-xTE routers providing proxy service to other TE routers must also track the router and associated interface data structures for all the TE client nodes for which the proxy service is being provided. Presumably, the interaction between the Proxy server and the proxy clients is out-of-band.
OSPF xTE路由器必须能够在路由器数据结构中包含路由器TE功能(如第8.1节所述)。向其他TE路由器提供代理服务的OSPF xTE路由器还必须跟踪路由器以及为其提供代理服务的所有TE客户端节点的相关接口数据结构。据推测,代理服务器和代理客户端之间的交互是带外的。
Two sets of neighbor data structures are required. TE-neighbors set is used to advertise TE LSAs. Only the TE nodes will be members of the TE-neighbor set. Native neighbors set will be used to advertise native LSAs. All neighboring nodes supporting non-TE links are part of the Native neighbors set.
需要两组相邻数据结构。TE邻居集用于公布TE LSA。只有TE节点将是TE邻居集的成员。本机邻居集将用于播发本机LSA。所有支持非TE链路的相邻节点都是本机邻居集的一部分。
The following new fields are introduced to the interface data structure.
接口数据结构中引入了以下新字段。
TePermitted
允许
If the value of the flag is TRUE, the interface may be advertised as a TE-enabled interface.
如果该标志的值为TRUE,则该接口可能会被公告为启用TE的接口。
NonTePermitted
不允许
If the value of the flag is TRUE, the interface permits non-TE traffic on the interface. Specifically, this is applicable to packet networks, where data links may permit both TE and IP packets. For FSC and LSC TE networks, this flag is set to FALSE.
如果标志值为TRUE,则接口允许接口上的非TE通信。具体而言,这适用于分组网络,其中数据链路可允许TE和IP分组。对于FSC和LSC TE网络,此标志设置为FALSE。
FloodingPermitted
允许洪水泛滥
If the value of the flag is TRUE, the interface may be used for OSPF and OSPF-xTE packet exchange to synchronize the LSDB across all adjacent neighbors. This is TRUE by default to all NonTePermitted interfaces that are enabled for OSPF. However, it is possible to set this to FALSE for some of the interfaces.
如果该标志的值为真,则该接口可用于OSPF和OSPF xTE数据包交换,以在所有相邻邻居之间同步LSDB。默认情况下,所有为OSPF启用的未经许可的接口都是如此。但是,对于某些接口,可以将其设置为FALSE。
TE-TLVs
TE TLV
Each interface may define any number of TLVS that describe the link characteristics.
每个接口可以定义描述链路特性的任意数量的TLV。
The following existing fields in Interface data structure will take on additional values to support TE extensions.
接口数据结构中的以下现有字段将采用其他值来支持TE扩展。
Type
类型
The OSPF interface type can also be of type "Positional-Ring". The Positional-Ring type is different from other types (such as broadcast and NBMA) in that the exact location of the nodes on the ring is relevant, even though they are all on the same ring. SONET ADM ring is a good example of this. Complete ring positional-ring description may be provided by the GNE on a ring as a TE-network LSA for the ring.
OSPF接口类型也可以是“定位环”类型。位置环类型不同于其他类型(如广播和NBMA),因为环上节点的确切位置是相关的,即使它们都在同一个环上。SONET ADM ring就是一个很好的例子。完整的环位置环描述可由环上的GNE作为环的TE网络LSA提供。
List of Neighbors
邻居名单
The list may be statically defined for an interface without requiring the use of Hello protocol.
可以为接口静态定义列表,而无需使用Hello协议。
The IANA has assigned multicast address 224.0.0.24 to OSPFIGP-TE for the exchange of TE database descriptors.
IANA已将多播地址224.0.0.24分配给OSPFIGP-TE,用于交换TE数据库描述符。
TE LSA types and TE TLVs will be maintained by the IANA, using the following criteria.
TE LSA类型和TE TLV将由IANA使用以下标准进行维护。
LSA type is an 8-bit field required by each LSA. TE LSA types will have the high bit set to 1. TE LSAs can range from 0x80 through 0xFF. The following values are defined in sections 8.0 and 9.0. The remaining values are available for assignment by the IANA with IETF Consensus [RFC2434].
LSA类型是每个LSA所需的8位字段。TE LSA类型的高位将设置为1。TE LSA的范围从0x80到0xFF。第8.0节和第9.0节定义了以下值。剩余值可由IANA与IETF协商一致[RFC2434]分配。
TE LSA Type Value _________________________________________ TE-Router LSA 0x81 TE-Positional-ring-network LSA 0x82 TE-Summary Network LSA 0x83 TE-Summary router LSA 0x84 TE-AS-external LSAs 0x85 TE-Circuit-paths LSA 0x8C TE-incremental-link-Update LSA 0x8d TE-Router-Proxy LSA 0x8e
TE LSA Type Value _________________________________________ TE-Router LSA 0x81 TE-Positional-ring-network LSA 0x82 TE-Summary Network LSA 0x83 TE-Summary router LSA 0x84 TE-AS-external LSAs 0x85 TE-Circuit-paths LSA 0x8C TE-incremental-link-Update LSA 0x8d TE-Router-Proxy LSA 0x8e
TLV type is a 16-bit field required by each TE TLV. TLV type shall be unique across the router and link TLVs. A TLV type can range from 0x0001 through 0xFFFF. TLV type 0 is reserved and unassigned. The following TLV types are defined in sections 8.0 and 9.0. The remaining values are available for assignment by the IANA with IETF Consensus [RFC2434].
TLV类型是每个TE TLV所需的16位字段。整个路由器和链路TLV的TLV类型应是唯一的。TLV类型的范围从0x0001到0xFFFF。TLV类型0已保留且未分配。第8.0节和第9.0节定义了以下TLV类型。剩余值可由IANA与IETF协商一致[RFC2434]分配。
TE TLV Tag Reference Value Section _________________________________________________________
TE TLV Tag Reference Value Section _________________________________________________________
TE-LINK-TLV-SRLG Section 8.1.4.1 0x0001 TE-LINK-TLV-BANDWIDTH-MAX Section 8.1.4.2 0x0002 TE-LINK-TLV-BANDWIDTH-MAX-FOR-TE Section 8.1.4.3 0x0003 TE-LINK-TLV-BANDWIDTH-TE Section 8.1.4.4 0x0004 TE-LINK-TLV-LUG Section 8.1.4.5 0x0005 TE-LINK-TLV-COLOR Section 8.1.4.6 0x0006 TE-LINK-TLV-NULL Section 8.1.4.7 0x8888 TE-NODE-TLV-MPLS-SWITCHING Section 8.1.2.1 0x8001 TE-NODE-TLV-MPLS-SIG-PROTOCOLS Section 8.1.2.2 0x8002 TE-NODE-TLV-CSPF-ALG Section 8.1.2.3 0x8003 TE-NODE-TLV-NULL Section 8.1.2.4 0x8888
TE-LINK-TLV-SRLG第8.1.4.1节0x0001 TE-LINK-TLV-BANDWIDTH-MAX第8.1.4.2节0x0002 TE-LINK-TLV-BANDWIDTH-MAX-FOR-TE第8.1.4.3节0x0003 TE-LINK-TLV-BANDWIDTH-TE第8.1.4.4.4节0x0004 TE-LINK-TLV-LUG第8.1.4.5节0x0005 TE-LINK-TLV-COLOR第8.1.4.6节0x0006 TE-LINK-TLV-NULL第8.1.4.7节0x8888节TLV-NODE-MPLS切换8.1.2.1 0x8001 TE-NODE-TLV-MPLS-SIG-PROTOCOLS第8.1.2.2节0x8002 TE-NODE-TLV-CSPF-ALG第8.1.2.3节0x8003 TE-NODE-TLV-NULL第8.1.2.4节0x8888
The authors wish to specially thank Chitti Babu and his team for implementing the protocol specified in a packet network and verifying several portions of the specification in a mixed packet network. The authors also wish to thank Vishwas Manral, Riyad Hartani, and Tricci So for their valuable comments and feedback on the document. Lastly, the authors wish to thank Alex Zinin and Mike Shand for their document (now defunct) titled "Flooding optimizations in link state routing protocols". The document provided inspiration to the authors to be sensitive to the high flooding rate, likely in TE networks.
作者希望特别感谢Chitti Babu及其团队在分组网络中实现了指定的协议,并在混合分组网络中验证了规范的几个部分。作者还希望感谢Vishwas Manral、Riyad Hartani和Tricci So对该文件的宝贵意见和反馈。最后,作者要感谢Alex Zinin和Mike Shand撰写的题为“链路状态路由协议中的泛洪优化”的文档(现已失效)。该文件启发了作者对可能存在于TE网络中的高洪泛率保持敏感。
Security considerations for the base OSPF protocol are covered in [OSPF-V2] and [SEC-OSPF]. This memo does not create any new security issues for the OSPF protocol. Security measures applied to the native OSPF (refer [SEC-OSPF]) are directly applicable to the TE LSAs described in the document. Discussed below are the security considerations in processing TE LSAs.
[OSPF-V2]和[SEC-OSPF]中介绍了基本OSPF协议的安全注意事项。此备忘录不会给OSPF协议带来任何新的安全问题。适用于本机OSPF(参考[SEC-OSPF])的安全措施直接适用于本文件所述的TE LSF。下面讨论处理TE LSA时的安全注意事项。
Secure communication between OSPF-xTE nodes has a number of components. Authorization, authentication, integrity and confidentiality. Authorization refers to whether a particular OSPF-xTE node is authorized to receive or propagate the TE LSAs to its neighbors. Failing the authorization process might indicate a resource theft attempt or unauthorized resource advertisement. In either case, the OSPF-xTE nodes should take proper measures to audit/log such attempts so as to alert the administrator to take necessary action. OSPF-xTE nodes may refuse to communicate with the neighboring nodes that fail to prompt the required credentials.
OSPF xTE节点之间的安全通信有许多组件。授权、认证、完整性和保密性。授权是指特定OSPF xTE节点是否被授权接收或传播TE LSA到其邻居。授权过程失败可能表示有资源盗窃企图或未经授权的资源播发。在任何一种情况下,OSPF xTE节点都应采取适当的措施来审核/记录此类尝试,以便提醒管理员采取必要的措施。OSPF xTE节点可能拒绝与未能提示所需凭据的相邻节点通信。
Authentication refers to confirming the identity of an originator for the datagrams received from the originator. Lack of strong credentials for authentication of OSPF-xTE LSAs can seriously jeopardize the TE service rendered by the network. A consequence of not authenticating a neighbor would be that an attacker could spoof the identity of a "legitimate" OSPF-xTE node and manipulate the state, and the TE database including the topology and metrics collected. This could potentially cause denial-of-service on the TE network. Another consequence of not authenticating is that an attacker could pose as OSPF-xTE neighbor and respond in a manner that would divert TE data to the attacker.
认证是指确认发端人从发端人接收的数据报的发端人身份。缺少用于OSPF xTE LSA身份验证的强凭据可能会严重危害网络提供的TE服务。不验证邻居的后果是,攻击者可以伪造“合法”OSPF xTE节点的身份,并操纵状态和TE数据库,包括收集的拓扑和度量。这可能会导致TE网络上的拒绝服务。不进行身份验证的另一个后果是,攻击者可以冒充OSPF xTE邻居,并以将TE数据转移给攻击者的方式进行响应。
Integrity is required to ensure that an OSPF-xTE message has not been accidentally or maliciously altered or destroyed. The result of a lack of data integrity enforcement in an untrusted environment could be that an imposter will alter the messages sent by a legitimate adjacent neighbor and bring the OSPF-xTE on a node and the whole network to a halt or cause a denial of service for the TE circuit paths effected by the alteration.
完整性是确保OSPF xTE消息未被意外或恶意更改或破坏所必需的。在不受信任的环境中缺乏数据完整性实施的结果可能是,冒名顶替者将更改合法相邻邻居发送的消息,并使节点和整个网络上的OSPF xTE停止,或对受更改影响的TE电路路径造成拒绝服务。
Confidentiality of OSPF-xTE messages ensures that the TE LSAs are accessible only to the authorized entities. When OSPF-xTE is deployed in an untrusted environment, lack of confidentiality will allow an intruder to perform traffic flow analysis and snoop the TE control network to monitor the traffic metrics and the rate at which circuit paths are being setup and torn-down. The intruder could cannibalize a lesser secure OSPF-xTE node and destroy or compromise the state and TE-LSDB on the node. Needless to say, the least secure
OSPF xTE消息的保密性确保TE LSA仅可供授权实体访问。当OSPF xTE部署在不受信任的环境中时,缺乏保密性将允许入侵者执行流量分析并窥探TE控制网络,以监控流量指标以及电路路径设置和拆除的速率。入侵者可能会蚕食不太安全的OSPF xTE节点,破坏或破坏节点上的状态和TE-LSDB。不用说,最不安全的
OSPF-xTE will become the Achilles heel and make the TE network vulnerable to security attacks.
OSPF xTE将成为致命弱点,使TE网络容易受到安全攻击。
[MPLS-ARCH] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol Label Switching Architecture", RFC 3031, Jaunary 2001.
[MPLS-ARCH]Rosen,E.,Viswanathan,A.,和R.Callon,“多协议标签交换体系结构”,RFC 3031,2001年1月。
[MPLS-TE] Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J. McManus, "Requirements for Traffic Engineering Over MPLS", RFC 2702, September 1999.
[MPLS-TE]Awduche,D.,Malcolm,J.,Agogbua,J.,O'Dell,M.,和J.McManus,“MPLS上的流量工程要求”,RFC 2702,1999年9月。
[OSPF-V2] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[OSPF-V2]莫伊,J.,“OSPF版本2”,STD 54,RFC 23281998年4月。
[SEC-OSPF] Murphy, S., Badger, M., and B. Wellington, "OSPF with Digital Signatures", RFC 2154, June 1997.
[SEC-OSPF]Murphy,S.,Badger,M.,和B.Wellington,“具有数字签名的OSPF”,RFC 2154,1997年6月。
[OSPF-CAP] Lindem, A., Ed., Shen, N., Vasseur, J., Aggarwal, R., and S. Schaffer, "Extensions to OSPF for Advertising Optional Router Capabilities", RFC 4970, July 2007.
[OSPF-CAP]Lindem,A.,Ed.,Shen,N.,Vasseur,J.,Aggarwal,R.,和S.Schaffer,“用于宣传可选路由器功能的OSPF扩展”,RFC 49702007年7月。
[RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
[RFC2434]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 2434,1998年10月。
[BGP-OSPF] Ferguson, D., "The OSPF External Attribute LSA", unpublished.
[BGP-OSPF]Ferguson,D.,“OSPF外部属性LSA”,未出版。
[CR-LDP] Jamoussi, B., Andersson, L., Callon, R., Dantu, R., Wu, L., Doolan, P., Worster, T., Feldman, N., Fredette, A., Girish, M., Gray, E., Heinanen, J., Kilty, T., and A. Malis, "Constraint-Based LSP Setup using LDP", RFC 3212, January 2002.
[CR-LDP]Jamoussi,B.,Andersson,L.,Callon,R.,Dantu,R.,Wu,L.,Doolan,P.,Worster,T.,Feldman,N.,Fredette,A.,Girish,M.,Gray,E.,Heinanen,J.,Kilty,T.,和A.Malis,“使用LDP的基于约束的LSP设置”,RFC 3212,2002年1月。
[GMPLS-TE] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.
[GMPLS-TE]Berger,L.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。
[MOSPF] Moy, J., "Multicast Extensions to OSPF", RFC 1584, March 1994.
[MOSPF]Moy,J.,“OSPF的多播扩展”,RFC1584,1994年3月。
[NSSA] Murphy, P., "The OSPF Not-So-Stubby Area (NSSA) Option", RFC 3101, January 2003.
[NSSA]Murphy,P.,“OSPF不那么短的区域(NSSA)选项”,RFC3101,2003年1月。
[OPAQUE] Coltun, R., "The OSPF Opaque LSA Option", RFC 2370, July 1998.
[不透明]Coltun,R.,“OSPF不透明LSA选项”,RFC 23701998年7月。
[OPQLSA-TE] Katz, D., Yeung, D., and K. Kompella, "Traffic Engineering Extensions to OSPF", RFC 3630, September 2003.
[OPQLSA-TE]Katz,D.,Yeung,D.,和K.Kompella,“OSPF的交通工程扩展”,RFC 3630,2003年9月。
[RSVP-TE] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, December 2001.
[RSVP-TE]Awduche,D.,Berger,L.,Gan,D.,Li,T.,Srinivasan,V.,和G.Swallow,“RSVP-TE:LSP隧道RSVP的扩展”,RFC 3209,2001年12月。
[SONET-SDH] Chow, M.-C., "Understanding SONET/SDH Standards and Applications", Holmdel, N.J.: Andan Publisher, 1995.
[SONET-SDH]Chow,M.-C.“理解SONET/SDH标准和应用”,新泽西州霍姆德尔:安丹出版社,1995年。
Authors' Addresses
作者地址
Pyda Srisuresh Kazeon Systems, Inc. 1161 San Antonio Rd. Mountain View, CA 94043 U.S.A.
美国加利福尼亚州山景城圣安东尼奥路1161号Pyda Srisuresh Kazeon Systems,Inc.94043。
Phone: (408) 836-4773 EMail: srisuresh@yahoo.com
电话:(408)836-4773电子邮件:srisuresh@yahoo.com
Paul Joseph Consultant 10100 Torre Avenue, # 121 Cupertino, CA 95014 U.S.A.
美国加利福尼亚州库比蒂诺托瑞大道10100号保罗·约瑟夫咨询公司,邮编95014。
Phone: (408) 777-8493 EMail: paul_95014@yahoo.com
电话:(408)777-8493电子邮件:paul_95014@yahoo.com
Full Copyright Statement
完整版权声明
Copyright (C) The IETF Trust (2007).
版权所有(C)IETF信托基金(2007年)。
This document is subject to the rights, licenses and restrictions contained in BCP 78 and at www.rfc-editor.org/copyright.html, and except as set forth therein, the authors retain all their rights.
本文件受BCP 78和www.rfc-editor.org/copyright.html中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。
This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件及其包含的信息以“原样”为基础提供,贡献者、他/她所代表或赞助的组织(如有)、互联网协会、IETF信托基金和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Intellectual Property
知识产权
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.
IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.
向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.
Acknowledgement
确认
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC编辑功能的资金目前由互联网协会提供。