Network Working Group B. Aboba, Ed. Request for Comments: 4907 Internet Architecture Board Category: Informational IAB June 2007
Network Working Group B. Aboba, Ed. Request for Comments: 4907 Internet Architecture Board Category: Informational IAB June 2007
Architectural Implications of Link Indications
链接指示的建筑含义
Status of This Memo
关于下段备忘
This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.
本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The IETF Trust (2007).
版权所有(C)IETF信托基金(2007年)。
Abstract
摘要
A link indication represents information provided by the link layer to higher layers regarding the state of the link. This document describes the role of link indications within the Internet architecture. While the judicious use of link indications can provide performance benefits, inappropriate use can degrade both robustness and performance. This document summarizes current proposals, describes the architectural issues, and provides examples of appropriate and inappropriate uses of link indications.
链路指示表示链路层向更高层提供的关于链路状态的信息。本文件描述了链接指示在互联网体系结构中的作用。虽然明智地使用链路指示可以提供性能优势,但不适当的使用会降低鲁棒性和性能。本文件总结了当前的提案,描述了架构问题,并提供了链接指示的适当和不适当使用示例。
Table of Contents
目录
1. Introduction ....................................................3 1.1. Requirements ...............................................3 1.2. Terminology ................................................3 1.3. Overview ...................................................5 1.4. Layered Indication Model ...................................7 2. Architectural Considerations ...................................14 2.1. Model Validation ..........................................15 2.2. Clear Definitions .........................................16 2.3. Robustness ................................................17 2.4. Congestion Control ........................................20 2.5. Effectiveness .............................................21 2.6. Interoperability ..........................................22 2.7. Race Conditions ...........................................22 2.8. Layer Compression .........................................25 2.9. Transport of Link Indications .............................26 3. Future Work ....................................................27 4. Security Considerations ........................................28 4.1. Spoofing ..................................................28 4.2. Indication Validation .....................................29 4.3. Denial of Service .........................................30 5. References .....................................................31 5.1. Normative References ......................................31 5.2. Informative References ....................................31 6. Acknowledgments ................................................40 Appendix A. Literature Review .....................................41 A.1. Link Layer .................................................41 A.2. Internet Layer .............................................53 A.3. Transport Layer ............................................55 A.4. Application Layer ..........................................60 Appendix B. IAB Members ...........................................60
1. Introduction ....................................................3 1.1. Requirements ...............................................3 1.2. Terminology ................................................3 1.3. Overview ...................................................5 1.4. Layered Indication Model ...................................7 2. Architectural Considerations ...................................14 2.1. Model Validation ..........................................15 2.2. Clear Definitions .........................................16 2.3. Robustness ................................................17 2.4. Congestion Control ........................................20 2.5. Effectiveness .............................................21 2.6. Interoperability ..........................................22 2.7. Race Conditions ...........................................22 2.8. Layer Compression .........................................25 2.9. Transport of Link Indications .............................26 3. Future Work ....................................................27 4. Security Considerations ........................................28 4.1. Spoofing ..................................................28 4.2. Indication Validation .....................................29 4.3. Denial of Service .........................................30 5. References .....................................................31 5.1. Normative References ......................................31 5.2. Informative References ....................................31 6. Acknowledgments ................................................40 Appendix A. Literature Review .....................................41 A.1. Link Layer .................................................41 A.2. Internet Layer .............................................53 A.3. Transport Layer ............................................55 A.4. Application Layer ..........................................60 Appendix B. IAB Members ...........................................60
A link indication represents information provided by the link layer to higher layers regarding the state of the link. While the judicious use of link indications can provide performance benefits, inappropriate use can degrade both robustness and performance.
链路指示表示链路层向更高层提供的关于链路状态的信息。虽然明智地使用链路指示可以提供性能优势,但不适当的使用会降低鲁棒性和性能。
This document summarizes the current understanding of the role of link indications within the Internet architecture, and provides advice to document authors about the appropriate use of link indications within the Internet, transport, and application layers.
本文件总结了当前对互联网体系结构中链接指示作用的理解,并就互联网、传输和应用层中链接指示的适当使用向文件作者提供了建议。
Section 1 describes the history of link indication usage within the Internet architecture and provides a model for the utilization of link indications. Section 2 describes the architectural considerations and provides advice to document authors. Section 3 describes recommendations and future work. Appendix A summarizes the literature on link indications, focusing largely on wireless Local Area Networks (WLANs).
第1节描述了互联网体系结构中链路指示使用的历史,并提供了链路指示使用的模型。第2节描述了体系结构考虑事项,并向文档作者提供了建议。第3节介绍了建议和今后的工作。附录A总结了有关链路指示的文献,主要集中在无线局域网(WLAN)上。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。
Access Point (AP) A station that provides access to the fixed network (e.g., an 802.11 Distribution System), via the wireless medium (WM) for associated stations.
接入点(AP)通过无线媒体(WM)为相关站点提供对固定网络(例如802.11分发系统)的访问的站点。
Asymmetric A link with transmission characteristics that are different depending upon the relative position or design characteristics of the transmitter and the receiver is said to be asymmetric. For instance, the range of one transmitter may be much higher than the range of another transmitter on the same medium.
非对称传输特性根据发射机和接收机的相对位置或设计特性而不同的链路称为非对称链路。例如,一个发射机的范围可能远高于同一介质上另一个发射机的范围。
Beacon A control message broadcast by a station (typically an Access Point), informing stations in the neighborhood of its continuing presence, possibly along with additional status or configuration information.
信标由站点(通常是接入点)广播的控制消息,通知附近的站点其持续存在,可能还有其他状态或配置信息。
Binding Update (BU) A message indicating a mobile node's current mobility binding, and in particular its Care-of Address.
绑定更新(BU)指示移动节点当前移动绑定的消息,特别是其转交地址。
Correspondent Node A peer node with which a mobile node is communicating. The correspondent node may be either mobile or stationary.
对应节点移动节点与之通信的对等节点。对应节点可以是移动的或静止的。
Link A communication facility or medium over which nodes can communicate at the link layer, i.e., the layer immediately below the Internet Protocol (IP).
链路节点可在链路层(即互联网协议(IP)正下方的层)上进行通信的通信设施或介质。
Link Down An event provided by the link layer that signifies a state change associated with the interface no longer being capable of communicating data frames; transient periods of high frame loss are not sufficient.
链路断开由链路层提供的事件,该事件表示与不再能够通信数据帧的接口相关联的状态改变;高帧丢失的瞬态周期是不够的。
Link Indication Information provided by the link layer to higher layers regarding the state of the link.
链路层向更高层提供的关于链路状态的链路指示信息。
Link Layer Conceptual layer of control or processing logic that is responsible for maintaining control of the link. The link layer functions provide an interface between the higher-layer logic and the link. The link layer is the layer immediately below the Internet Protocol (IP).
链路层控制或处理逻辑的概念层,负责维护链路的控制。链路层功能提供高层逻辑和链路之间的接口。链路层是紧挨着Internet协议(IP)的一层。
Link Up An event provided by the link layer that signifies a state change associated with the interface becoming capable of communicating data frames.
链路层提供的一个事件,表示与接口相关的状态变化,该接口能够传输数据帧。
Maximum Segment Size (MSS) The maximum payload size available to the transport layer.
最大段大小(MSS)传输层可用的最大有效负载大小。
Maximum Transmission Unit (MTU) The size in octets of the largest IP packet, including the IP header and payload, that can be transmitted on a link or path.
最大传输单元(MTU):可在链路或路径上传输的最大IP数据包(包括IP报头和有效负载)的大小(以八位字节为单位)。
Mobile Node A node that can change its point of attachment from one link to another, while still being reachable via its home address.
移动节点可以将其连接点从一个链接更改为另一个链接,同时仍可通过其家庭地址访问的节点。
Operable Address A static or dynamically assigned address that has not been relinquished and has not expired.
可操作地址未放弃且未过期的静态或动态分配的地址。
Point of Attachment The endpoint on the link to which the host is currently connected.
连接点主机当前连接到的链接上的端点。
Routable Address Any IP address for which routers will forward packets. This includes private addresses as specified in "Address Allocation for Private Internets" [RFC1918].
可路由地址路由器将转发数据包的任何IP地址。这包括“专用互联网地址分配”[RFC1918]中规定的专用地址。
Station (STA) Any device that contains an IEEE 802.11 conformant medium access control (MAC) and physical layer (PHY) interface to the wireless medium (WM).
站点(STA)包含符合IEEE 802.11的媒体访问控制(MAC)和无线媒体(WM)物理层(PHY)接口的任何设备。
Strong End System Model The Strong End System model emphasizes the host/router distinction, tending to model a multi-homed host as a set of logical hosts within the same physical host. In the Strong End System model, addresses refer to an interface, rather than to the host to which they attach. As a result, packets sent on an outgoing interface have a source address configured on that interface, and incoming packets whose destination address does not correspond to the physical interface through which it is received are silently discarded.
强端系统模型强端系统模型强调主机/路由器的区别,倾向于将多宿主主机建模为同一物理主机内的一组逻辑主机。在强端系统模型中,地址指的是接口,而不是它们所连接的主机。结果,在传出接口上发送的数据包具有在该接口上配置的源地址,并且其目标地址与接收数据包的物理接口不对应的传入数据包被静默地丢弃。
Weak End System Model In the Weak End System model, addresses refer to a host. As a result, packets sent on an outgoing interface need not necessarily have a source address configured on that interface, and incoming packets whose destination address does not correspond to the physical interface through which it is received are accepted.
弱端系统模型在弱端系统模型中,地址指的是主机。结果,在输出接口上发送的分组不必在该接口上配置源地址,并且接收其目的地址与接收它的物理接口不对应的输入分组。
The use of link indications within the Internet architecture has a long history. In response to an attempt to send to a host that was off-line, the ARPANET link layer protocol provided a "Destination Dead" indication, described in "Fault Isolation and Recovery" [RFC816]. The ARPANET packet radio experiment [PRNET] incorporated frame loss in the calculation of routing metrics, a precursor to more recent link-aware routing metrics such as Expected Transmission Count (ETX), described in "A High-Throughput Path Metric for Multi-Hop Wireless Routing" [ETX].
在互联网体系结构中使用链接指示有着悠久的历史。为了响应发送到离线主机的尝试,ARPANET链路层协议提供了“目的地死机”指示,如“故障隔离和恢复”[RFC816]所述。ARPANET分组无线电实验[PRNET]将帧丢失纳入路由度量的计算中,这是“多跳无线路由的高吞吐量路径度量”[ETX]中描述的预期传输计数(ETX)等较新链路感知路由度量的前身。
"Routing Information Protocol" [RFC1058] defined RIP, which is descended from the Xerox Network Systems (XNS) Routing Information Protocol. "The OSPF Specification" [RFC1131] defined Open Shortest Path First, which uses Link State Advertisements (LSAs) in order to flood information relating to link status within an OSPF area. [RFC2328] defines version 2 of OSPF. While these and other routing protocols can utilize "Link Up" and "Link Down" indications provided by those links that support them, they also can detect link loss based on loss of routing packets. As noted in "Requirements for IP Version 4 Routers" [RFC1812]:
“路由信息协议”[RFC1058]定义了RIP,它是Xerox网络系统(XNS)路由信息协议的后代。“OSPF规范”[RFC1131]首先定义了开放式最短路径,它使用链路状态公告(LSA)在OSPF区域内传播与链路状态相关的信息。[RFC2328]定义了OSPF的版本2。虽然这些和其他路由协议可以利用那些支持它们的链路提供的“链路向上”和“链路向下”指示,但它们也可以基于路由数据包的丢失来检测链路丢失。如“IP版本4路由器的要求”[RFC1812]所述:
It is crucial that routers have workable mechanisms for determining that their network connections are functioning properly. Failure to detect link loss, or failure to take the proper actions when a problem is detected, can lead to black holes.
路由器必须有可行的机制来确定其网络连接是否正常工作。未能检测到链路丢失,或在检测到问题时未能采取适当措施,都可能导致黑洞。
Attempts have also been made to define link indications other than "Link Up" and "Link Down". "Dynamically Switched Link Control Protocol" [RFC1307] defines an experimental protocol for control of links, incorporating "Down", "Coming Up", "Up", "Going Down", "Bring Down", and "Bring Up" states.
还尝试定义除“连接向上”和“连接向下”之外的连接指示。“动态切换链路控制协议”[RFC1307]定义了一种用于链路控制的实验协议,包括“下降”、“上升”、“上升”、“下降”、“下降”和“上升”状态。
"A Generalized Model for Link Layer Triggers" [GenTrig] defines "generic triggers", including "Link Up", "Link Down", "Link Going Down", "Link Going Up", "Link Quality Crosses Threshold", "Trigger Rollback", and "Better Signal Quality AP Available". IEEE 802.21 [IEEE-802.21] defines a Media Independent Handover Event Service (MIH-ES) that provides event reporting relating to link characteristics, link status, and link quality. Events defined include "Link Down", "Link Up", "Link Going Down", "Link Signal Strength", and "Link Signal/Noise Ratio".
“链路层触发器的通用模型”[GenTrig]定义了“通用触发器”,包括“链路向上”、“链路向下”、“链路向下”、“链路向上”、“链路质量超过阈值”、“触发器回滚”和“更好的信号质量AP可用”。IEEE 802.21[IEEE-802.21]定义了媒体独立切换事件服务(MIH-ES),该服务提供与链路特性、链路状态和链路质量相关的事件报告。定义的事件包括“链路下降”、“链路上升”、“链路下降”、“链路信号强度”和“链路信噪比”。
Under ideal conditions, links in the "up" state experience low frame loss in both directions and are immediately ready to send and receive data frames; links in the "down" state are unsuitable for sending and receiving data frames in either direction.
在理想条件下,处于“向上”状态的链路在两个方向上都具有较低的帧丢失,并且可以立即发送和接收数据帧;处于“关闭”状态的链路不适合在任一方向发送和接收数据帧。
Unfortunately, links frequently exhibit non-ideal behavior. Wired links may fail in half-duplex mode, or exhibit partial impairment resulting in intermediate loss rates. Wireless links may exhibit asymmetry, intermittent frame loss, or rapid changes in throughput due to interference or signal fading. In both wired and wireless links, the link state may rapidly flap between the "up" and "down" states. This real-world behavior presents challenges to the integration of link indications with the Internet, transport, and application layers.
不幸的是,链接经常表现出不理想的行为。有线链路可能在半双工模式下发生故障,或表现出部分损坏,从而导致中等损耗率。由于干扰或信号衰落,无线链路可能表现出不对称、间歇性帧丢失或吞吐量的快速变化。在有线和无线链路中,链路状态可在“向上”和“向下”状态之间快速切换。这种现实行为对链接指示与Internet、传输和应用层的集成提出了挑战。
A layered indication model is shown in Figure 1 that includes both internally generated link indications (such as link state and rate) and indications arising from external interactions such as path change detection. In this model, it is assumed that the link layer provides indications to higher layers primarily in the form of abstract indications that are link-technology agnostic.
分层指示模型如图1所示,包括内部生成的链路指示(如链路状态和速率)和外部交互(如路径变化检测)产生的指示。在该模型中,假设链路层主要以链路技术不可知的抽象指示的形式向更高层提供指示。
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Application | | Layer | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ^ ^ ^ ! ! ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-!-+-+-!-+-!-+-+-+-+ | ! ! ! | | ! ^ ^ | | Connection Management ! ! Teardown | Transport | ! ! | Layer +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-!-+-+-!-+-+-+-+-+-+ | ! ! | | ! ! | | ^ ! | | Transport Parameter Estimation ! | |(MSS, RTT, RTO, cwnd, bw, ssthresh)! | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-!-+-+-+-+-+-+ ^ ^ ^ ^ ^ ! ! ! ! ! ! ! +-!-+-!-+-+-+-+-+-!-+-+-+-!-+-!-+-+-!-+-+-+-+-+-+ | ! ! Incoming !MIP ! ! ! | | ! ! Interface !BU ! ! ! | | ! ! Change !Receipt! ! ! | | ! ^ ^ ^ ! ^ | Internet | ! ! Mobility ! ! ! ! | Layer +-!-+-!-+-+-+-+-+-!-+-+-+-!-+-!-+-+-!-+-+-+-+-+-+ | ! ! Outgoing ! Path ! ! ! | | ! ! Interface ! Change! ! ! | | ^ ^ Change ^ ^ ! ^ | | ! ! ! ! | | ! Routing ! ! ! | +-!-+-+-+-+-+-+-+-+-+-+-+-!-+-!-+-+-!-+-+-+-+-+-+ | ! ! v ! IP | | ! ! Path ! Address | | ! IP Configuration ^ Info ^ Config/ | | ! ! Cache Changes | +-!-+-+-+-+-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-+-+-+-+ ! ! ! ! +-!-+-+-+-+-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-+-+-+-+ | ! ! | Link | ^ ^ | Layer | Rate, FER, Link | | Delay Up/Down | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Application | | Layer | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ^ ^ ^ ! ! ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-!-+-+-!-+-!-+-+-+-+ | ! ! ! | | ! ^ ^ | | Connection Management ! ! Teardown | Transport | ! ! | Layer +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-!-+-+-!-+-+-+-+-+-+ | ! ! | | ! ! | | ^ ! | | Transport Parameter Estimation ! | |(MSS, RTT, RTO, cwnd, bw, ssthresh)! | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-!-+-+-+-+-+-+ ^ ^ ^ ^ ^ ! ! ! ! ! ! ! +-!-+-!-+-+-+-+-+-!-+-+-+-!-+-!-+-+-!-+-+-+-+-+-+ | ! ! Incoming !MIP ! ! ! | | ! ! Interface !BU ! ! ! | | ! ! Change !Receipt! ! ! | | ! ^ ^ ^ ! ^ | Internet | ! ! Mobility ! ! ! ! | Layer +-!-+-!-+-+-+-+-+-!-+-+-+-!-+-!-+-+-!-+-+-+-+-+-+ | ! ! Outgoing ! Path ! ! ! | | ! ! Interface ! Change! ! ! | | ^ ^ Change ^ ^ ! ^ | | ! ! ! ! | | ! Routing ! ! ! | +-!-+-+-+-+-+-+-+-+-+-+-+-!-+-!-+-+-!-+-+-+-+-+-+ | ! ! v ! IP | | ! ! Path ! Address | | ! IP Configuration ^ Info ^ Config/ | | ! ! Cache Changes | +-!-+-+-+-+-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-+-+-+-+ ! ! ! ! +-!-+-+-+-+-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-+-+-+-+ | ! ! | Link | ^ ^ | Layer | Rate, FER, Link | | Delay Up/Down | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1. Layered Indication Model
图1。分层指示模型
One of the functions of the Internet layer is to shield higher layers from the specifics of link behavior. As a result, the Internet layer validates and filters link indications and selects outgoing and incoming interfaces based on routing metrics.
互联网层的功能之一是屏蔽更高层次的链接行为细节。因此,Internet层验证和过滤链路指示,并根据路由度量选择传出和传入接口。
The Internet layer composes its routing table based on information available from local interfaces as well as potentially by taking into account information provided by routers. This enables the state of the local routing table to reflect link conditions on both local and remote links. For example, prefixes to be added or removed from the routing table may be determined from Dynamic Host Configuration Protocol (DHCP) [RFC2131][RFC3315], Router Advertisements [RFC1256][RFC2461], redirect messages, or route updates incorporating information on the state of links multiple hops away.
Internet层根据本地接口提供的信息以及考虑路由器提供的信息来组成路由表。这使本地路由表的状态能够反映本地和远程链路上的链路状况。例如,可根据动态主机配置协议(DHCP)[RFC2131][RFC3315]、路由器广告[RFC1256][RFC2461]、重定向消息或包含多跳链路状态信息的路由更新来确定要从路由表中添加或移除的前缀。
As described in "Packetization Layer Path MTU Discovery" [RFC4821], the Internet layer may maintain a path information cache, enabling sharing of Path MTU information between concurrent or subsequent connections. The shared cache is accessed and updated by packetization protocols implementing packetization layer Path MTU Discovery.
如“分组化层路径MTU发现”[RFC4821]中所述,因特网层可维护路径信息高速缓存,从而能够在并发或后续连接之间共享路径MTU信息。共享缓存由实现打包层路径MTU发现的打包协议访问和更新。
The Internet layer also utilizes link indications in order to optimize aspects of Internet Protocol (IP) configuration and mobility. After receipt of a "Link Up" indication, hosts validate potential IP configurations by Detecting Network Attachment (DNA) [RFC4436]. Once the IP configuration is confirmed, it may be determined that an address change has occurred. However, "Link Up" indications may not necessarily result in a change to Internet layer configuration.
因特网层还利用链路指示来优化因特网协议(IP)配置和移动性的各个方面。在收到“连接”指示后,主机通过检测网络连接(DNA)来验证潜在的IP配置[RFC4436]。一旦确认了IP配置,就可以确定发生了地址更改。但是,“连接”指示不一定会导致更改Internet层配置。
In "Detecting Network Attachment in IPv4" [RFC4436], after receipt of a "Link Up" indication, potential IP configurations are validated using a bidirectional reachability test. In "Detecting Network Attachment in IPv6 Networks (DNAv6)" [DNAv6], IP configuration is validated using reachability detection and Router Solicitation/Advertisement.
在“检测IPv4中的网络连接”[RFC4436]中,在收到“连接”指示后,使用双向可达性测试验证潜在的IP配置。在“检测IPv6网络中的网络连接(DNAv6)”[DNAv6]中,使用可达性检测和路由器请求/公布来验证IP配置。
The routing sub-layer may utilize link indications in order to enable more rapid response to changes in link state and effective throughput. Link rate is often used in computing routing metrics. However, in wired networks the transmission rate may be negotiated in order to enhance energy efficiency [EfficientEthernet]. In wireless networks, the negotiated rate and Frame Error Rate (FER) may change
路由子层可以利用链路指示,以便能够更快速地响应链路状态的变化和有效吞吐量。链路速率通常用于计算路由度量。然而,在有线网络中,传输速率可以协商以提高能量效率[EfficientThernet]。在无线网络中,协商速率和帧错误率(FER)可能会改变
with link conditions so that effective throughput may vary on a packet-by-packet basis. In such situations, routing metrics may also exhibit rapid variation.
具有链路条件,因此有效吞吐量可以根据分组而变化。在这种情况下,路由度量也可能表现出快速变化。
Routing metrics incorporating link indications such as Link Up/Down and effective throughput enable routers to take link conditions into account for the purposes of route selection. If a link experiences decreased rate or high frame loss, the route metric will increase for the prefixes that it serves, encouraging use of alternate paths if available. When the link condition improves, the route metric will decrease, encouraging use of the link.
结合链路指示(如链路上/下和有效吞吐量)的路由度量使路由器能够考虑链路条件以进行路由选择。如果链路的速率降低或高帧丢失,则其所服务的前缀的路由度量将增加,从而鼓励使用备用路径(如果可用)。当链路条件改善时,路由度量将降低,从而鼓励使用链路。
Within Weak End System implementations, changes in routing metrics and link state may result in a change in the outgoing interface for one or more transport connections. Routes may also be added or withdrawn, resulting in loss or gain of peer connectivity. However, link indications such as changes in transmission rate or frame loss do not necessarily result in a change of outgoing interface.
在弱端系统实现中,路由度量和链路状态的更改可能会导致一个或多个传输连接的传出接口发生更改。路由也可能被添加或撤销,从而导致对等连接的丢失或增加。然而,诸如传输速率或帧丢失的变化之类的链路指示不一定导致输出接口的变化。
The Internet layer may also become aware of path changes by other mechanisms, such as receipt of updates from a routing protocol, receipt of a Router Advertisement, dead gateway detection [RFC816] or network unreachability detection [RFC2461], ICMP redirects, or a change in the IPv4 TTL (Time to Live)/IPv6 Hop Limit of received packets. A change in the outgoing interface may in turn influence the mobility sub-layer, causing a change in the incoming interface. The mobility sub-layer may also become aware of a change in the incoming interface of a peer (via receipt of a Mobile IP Binding Update [RFC3775]).
互联网层还可以通过其他机制意识到路径变化,例如从路由协议接收更新、接收路由器公告、死网关检测[RFC816]或网络不可达性检测[RFC2461]、ICMP重定向或接收到的分组的IPv4 TTL(生存时间)/IPv6跳数限制的变化。传出接口中的改变可反过来影响移动性子层,导致传入接口中的改变。移动性子层还可以意识到对等方的传入接口中的变化(通过接收移动IP绑定更新[RFC3775])。
The transport layer processes received link indications differently for the purposes of transport parameter estimation and connection management.
为了传输参数估计和连接管理的目的,传输层以不同的方式处理接收到的链路指示。
For the purposes of parameter estimation, the transport layer is primarily interested in path properties that impact performance, and where link indications may be determined to be relevant to path properties they may be utilized directly. Link indications such as "Link Up"/"Link Down" or changes in rate, delay, and frame loss may prove relevant. This will not always be the case, however; where the bandwidth of the bottleneck on the end-to-end path is already much lower than the transmission rate, an increase in transmission rate may not materially affect path properties. As described in Appendix A.3, the algorithms for utilizing link layer indications to improve transport parameter estimates are still under development.
为了参数估计的目的,传输层主要关心影响性能的路径特性,并且在链路指示可以被确定为与路径特性相关的情况下,可以直接使用它们。链路指示,如“链路上升”/“链路下降”或速率、延迟和帧丢失的变化可能被证明是相关的。然而,情况并非总是如此;当端到端路径上瓶颈的带宽已经远低于传输速率时,传输速率的增加可能不会实质性地影响路径属性。如附录A.3所述,利用链路层指示改善传输参数估计的算法仍在开发中。
Strict layering considerations do not apply in transport path parameter estimation in order to enable the transport layer to make use of all available information. For example, the transport layer may determine that a link indication came from a link forming part of a path of one or more connections. In this case, it may utilize the receipt of a "Link Down" indication followed by a subsequent "Link Up" indication to infer the possibility of non-congestive packet loss during the period between the indications, even if the IP configuration does not change as a result, so that no Internet layer indication would be sent.
严格的分层考虑不适用于传输路径参数估计,以使传输层能够利用所有可用信息。例如,传输层可以确定链路指示来自形成一个或多个连接的路径的一部分的链路。在这种情况下,即使IP配置没有因此而改变,它也可以利用在随后的“链路断开”指示之后的“链路断开”指示的接收来推断在指示之间的时段期间非拥塞性分组丢失的可能性,从而不会发送因特网层指示。
The transport layer may also find Internet layer indications useful for path parameter estimation. For example, path change indications can be used as a signal to reset path parameter estimates. Where there is no default route, loss of segments sent to a destination lacking a prefix in the local routing table may be assumed to be due to causes other than congestion, regardless of the reason for the removal (either because local link conditions caused it to be removed or because the route was withdrawn by a remote router).
传输层还可以发现对路径参数估计有用的因特网层指示。例如,路径改变指示可用作重置路径参数估计的信号。在没有默认路由的情况下,发送到本地路由表中缺少前缀的目的地的段丢失可以被认为是由于拥塞以外的原因造成的,而不管删除的原因是什么(或者是因为本地链路条件导致其被删除,或者是因为路由被远程路由器撤销)。
For the purposes of connection management, layering considerations are important. The transport layer may tear down a connection based on Internet layer indications (such as a endpoint address changes), but does not take link indications into account. Just as a "Link Up" event may not result in a configuration change, and a configuration change may not result in connection teardown, the transport layer does not tear down connections on receipt of a "Link Down" indication, regardless of the cause. Where the "Link Down" indication results from frame loss rather than an explicit exchange, the indication may be transient, to be soon followed by a "Link Up" indication.
对于连接管理,分层考虑非常重要。传输层可以基于互联网层指示(例如端点地址更改)中断连接,但不考虑链路指示。正如“链路断开”事件可能不会导致配置更改,并且配置更改可能不会导致连接断开一样,传输层不会在收到“链路断开”指示时断开连接,无论原因如何。如果“链路断开”指示是由帧丢失而不是显式交换引起的,则该指示可能是暂时的,随后紧接着是“链路断开”指示。
Even where the "Link Down" indication results from an explicit exchange such as receipt of a Point-to-Point Protocol (PPP) Link Control Protocol (LCP)-Terminate or an IEEE 802.11 Disassociate or Deauthenticate frame, an alternative point of attachment may be available, allowing connectivity to be quickly restored. As a result, robustness is best achieved by allowing connections to remain up until an endpoint address changes, or the connection is torn down due to lack of response to repeated retransmission attempts.
即使“链路断开”指示源于显式交换,例如接收点对点协议(PPP)链路控制协议(LCP)-终止或IEEE 802.11解除关联或取消验证帧,也可以使用替代连接点,从而允许快速恢复连接。因此,健壮性的最佳实现方式是允许连接一直保持到端点地址发生更改,或者由于对重复的重新传输尝试没有响应而中断连接。
For the purposes of connection management, the transport layer is cautious with the use of Internet layer indications. Changes in the routing table are not relevant for the purposes of connection management, since it is desirable for connections to remain up during transitory routing flaps. However, the transport layer may tear down transport connections due to invalidation of a connection endpoint IP address. Where the connection has been established based on a Mobile
出于连接管理的目的,传输层谨慎使用Internet层指示。路由表中的更改与连接管理的目的无关,因为在临时路由过程中,希望连接保持正常。然而,传输层可能会由于连接端点IP地址无效而中断传输连接。其中已基于移动设备建立连接
IP home address, a change in the Care-of Address need not result in connection teardown, since the configuration change is masked by the mobility functionality within the Internet layer, and is therefore transparent to the transport layer.
IP主地址,照管地址的更改不必导致连接断开,因为配置更改被互联网层内的移动功能掩盖,因此对传输层是透明的。
"Requirements for Internet Hosts -- Communication Layers" [RFC1122], Section 2.4, requires Destination Unreachable, Source Quench, Echo Reply, Timestamp Reply, and Time Exceeded ICMP messages to be passed up to the transport layer. [RFC1122], Section 4.2.3.9, requires Transmission Control Protocol (TCP) to react to an Internet Control Message Protocol (ICMP) Source Quench by slowing transmission.
“互联网主机的要求——通信层”[RFC1122]第2.4节要求将目标不可到达、源猝灭、回显回复、时间戳回复和超过时间的ICMP消息传递到传输层。[RFC1122]第4.2.3.9节要求传输控制协议(TCP)通过减慢传输速度对互联网控制消息协议(ICMP)源猝灭作出反应。
[RFC1122], Section 4.2.3.9, distinguishes between ICMP messages indicating soft error conditions, which must not cause TCP to abort a connection, and hard error conditions, which should cause an abort. ICMP messages indicating soft error conditions include Destination Unreachable codes 0 (Net), 1 (Host), and 5 (Source Route Failed), which may result from routing transients; Time Exceeded; and Parameter Problem. ICMP messages indicating hard error conditions include Destination Unreachable codes 2 (Protocol Unreachable), 3 (Port Unreachable), and 4 (Fragmentation Needed and Don't Fragment Was Set). Since hosts implementing classical ICMP-based Path MTU Discovery [RFC1191] use Destination Unreachable code 4, they do not treat this as a hard error condition. Hosts implementing "Path MTU Discovery for IP version 6" [RFC1981] utilize ICMPv6 Packet Too Big messages. As noted in "TCP Problems with Path MTU Discovery" [RFC2923], classical Path MTU Discovery is vulnerable to failure if ICMP messages are not delivered or processed. In order to address this problem, "Packetization Layer Path MTU Discovery" [RFC4821] does depend on the delivery of ICMP messages.
[RFC1122]第4.2.3.9节区分了指示软错误条件(不得导致TCP中止连接)的ICMP消息和应导致中止的硬错误条件。指示软错误条件的ICMP消息包括目标不可到达代码0(网络)、1(主机)和5(源路由失败),这可能是路由瞬变造成的;超过时间;和参数问题。指示硬错误条件的ICMP消息包括目标不可访问代码2(协议不可访问)、3(端口不可访问)和4(需要碎片且未设置碎片)。由于实现基于ICMP的经典路径MTU发现[RFC1191]的主机使用目标不可访问代码4,因此它们不会将此视为硬错误条件。实现“IP版本6的路径MTU发现”[RFC1981]的主机利用ICMPv6数据包太大的消息。如“路径MTU发现的TCP问题”[RFC2923]所述,如果未传递或处理ICMP消息,则经典路径MTU发现容易失败。为了解决这个问题,“打包层路径MTU发现”[RFC4821]确实依赖于ICMP消息的传递。
"Fault Isolation and Recovery" [RFC816], Section 6, states:
“故障隔离和恢复”[RFC816]第6节规定:
It is not obvious, when error messages such as ICMP Destination Unreachable arrive, whether TCP should abandon the connection. The reason that error messages are difficult to interpret is that, as discussed above, after a failure of a gateway or network, there is a transient period during which the gateways may have incorrect information, so that irrelevant or incorrect error messages may sometimes return. An isolated ICMP Destination Unreachable may arrive at a host, for example, if a packet is sent during the period when the gateways are trying to find a new route. To abandon a TCP connection based on such a message arriving would be to ignore the valuable feature of the Internet that for many internal failures it reconstructs its function without any disruption of the end points.
当ICMP Destination Unreachable等错误消息到达时,TCP是否应该放弃连接并不明显。错误消息难以解释的原因是,如上所述,在网关或网络发生故障后,存在一个过渡期,在此期间网关可能有不正确的信息,因此有时可能会返回不相关或不正确的错误消息。例如,如果在网关尝试寻找新路由期间发送数据包,则无法到达的隔离ICMP目的地可能到达主机。放弃基于此类消息到达的TCP连接将忽略互联网的宝贵功能,即对于许多内部故障,它在不中断端点的情况下重建其功能。
"Requirements for IP Version 4 Routers" [RFC1812], Section 4.3.3.3, states that "Research seems to suggest that Source Quench consumes network bandwidth but is an ineffective (and unfair) antidote to congestion", indicating that routers should not originate them. In general, since the transport layer is able to determine an appropriate (and conservative) response to congestion based on packet loss or explicit congestion notification, ICMP Source Quench indications are not needed, and the sending of additional Source Quench packets during periods of congestion may be detrimental.
“IP版本4路由器的要求”[RFC1812],第4.3.3.3节指出,“研究似乎表明源猝灭消耗网络带宽,但对拥塞是无效(且不公平)的解毒剂”,这表明路由器不应发起它们。通常,由于传输层能够基于分组丢失或显式拥塞通知来确定对拥塞的适当(且保守)响应,因此不需要ICMP源猝灭指示,并且在拥塞期间发送额外的源猝灭分组可能是有害的。
"ICMP attacks against TCP" [Gont] argues that accepting ICMP messages based on a correct four-tuple without additional security checks is ill-advised. For example, an attacker forging an ICMP hard error message can cause one or more transport connections to abort. The authors discuss a number of precautions, including mechanisms for validating ICMP messages and ignoring or delaying response to hard error messages under various conditions. They also recommend that hosts ignore ICMP Source Quench messages.
“针对TCP的ICMP攻击”[Gont]认为,在不进行额外安全检查的情况下接受基于正确四元组的ICMP消息是不明智的。例如,攻击者伪造ICMP硬错误消息可能导致一个或多个传输连接中止。作者讨论了一些预防措施,包括在各种情况下验证ICMP消息和忽略或延迟硬错误消息响应的机制。他们还建议主机忽略ICMP源消息。
The transport layer may also provide information to the link layer. For example, the transport layer may wish to control the maximum number of times that a link layer frame may be retransmitted, so that the link layer does not continue to retransmit after a transport layer timeout. In IEEE 802.11, this can be achieved by adjusting the Management Information Base (MIB) [IEEE-802.11] variables dot11ShortRetryLimit (default: 7) and dot11LongRetryLimit (default: 4), which control the maximum number of retries for frames shorter and longer in length than dot11RTSThreshold, respectively. However, since these variables control link behavior as a whole they cannot be used to separately adjust behavior on a per-transport connection basis. In situations where the link layer retransmission timeout is of the same order as the path round-trip timeout, link layer control may not be possible at all.
传输层还可以向链路层提供信息。例如,传输层可能希望控制链路层帧可被重传的最大次数,以便链路层在传输层超时之后不继续重传。在IEEE 802.11中,这可以通过调整管理信息库(MIB)[IEEE-802.11]变量dot11ShortRetryLimit(默认值:7)和dot11LongRetryLimit(默认值:4)来实现,这两个变量分别控制长度比dot11RTStreshold短和长的帧的最大重试次数。但是,由于这些变量作为一个整体控制链路行为,因此它们不能用于在每个传输连接的基础上单独调整行为。在链路层重传超时与路径往返超时的顺序相同的情况下,链路层控制可能根本不可能。
The transport layer provides indications to the application layer by propagating Internet layer indications (such as IP address configuration and changes), as well as providing its own indications, such as connection teardown.
传输层通过传播互联网层指示(如IP地址配置和更改)以及提供自己的指示(如连接断开),向应用层提供指示。
Since applications can typically obtain the information they need more reliably from the Internet and transport layers, they will typically not need to utilize link indications. A "Link Up" indication implies that the link is capable of communicating IP packets, but does not indicate that it has been configured; applications should use an Internet layer "IP Address Configured" event instead. "Link Down" indications are typically not useful to
由于应用程序通常可以从Internet和传输层更可靠地获得所需的信息,因此它们通常不需要利用链路指示。“链路向上”指示意味着链路能够传送IP数据包,但不表示它已被配置;应用程序应改为使用Internet层“IP地址配置”事件。“链路断开”指示通常对以下情况没有帮助:
applications, since they can be rapidly followed by a "Link Up" indication; applications should respond to transport layer teardown indications instead. Similarly, changes in the transmission rate may not be relevant to applications if the bottleneck bandwidth on the path does not change; the transport layer is best equipped to determine this. As a result, Figure 1 does not show link indications being provided directly to applications.
应用程序,因为它们可以快速跟随“连接”指示;应用程序应响应传输层拆卸指示。类似地,如果路径上的瓶颈带宽没有改变,则传输速率的改变可能与应用无关;传输层最好能够确定这一点。因此,图1没有显示直接提供给应用程序的链接指示。
The complexity of real-world link behavior poses a challenge to the integration of link indications within the Internet architecture. While the literature provides persuasive evidence of the utility of link indications, difficulties can arise in making effective use of them. To avoid these issues, the following architectural principles are suggested and discussed in more detail in the sections that follow:
现实世界链接行为的复杂性对互联网体系结构中链接指示的集成提出了挑战。虽然文献提供了链接指示实用性的有说服力的证据,但有效使用链接指示可能会出现困难。为避免这些问题,建议采用以下架构原则,并在以下章节中进行更详细的讨论:
(1) Proposals should avoid use of simplified link models in circumstances where they do not apply (Section 2.1).
(1) 提案应避免在不适用的情况下使用简化链接模型(第2.1节)。
(2) Link indications should be clearly defined, so that it is understood when they are generated on different link layers (Section 2.2).
(2) 链路指示应明确定义,以便在不同链路层上生成时理解(第2.2节)。
(3) Proposals must demonstrate robustness against spurious link indications (Section 2.3).
(3) 提案必须证明对虚假链路指示的鲁棒性(第2.3节)。
(4) Upper layers should utilize a timely recovery step so as to limit the potential damage from link indications determined to be invalid after they have been acted on (Section 2.3.2).
(4) 应在第2.3步确定损伤上限后,及时将其作为失效指示。
(5) Proposals must demonstrate that effective congestion control is maintained (Section 2.4).
(5) 提案必须证明维持了有效的拥塞控制(第2.4节)。
(6) Proposals must demonstrate the effectiveness of proposed optimizations (Section 2.5).
(6) 提案必须证明拟议优化的有效性(第2.5节)。
(7) Link indications should not be required by upper layers, in order to maintain link independence (Section 2.6).
(7) 上层不需要链路指示,以保持链路独立性(第2.6节)。
(8) Proposals should avoid race conditions, which can occur where link indications are utilized directly by multiple layers of the stack (Section 2.7).
(8) 提案应避免竞态条件,竞态条件可能发生在多个堆栈层直接使用链路指示的情况下(第2.7节)。
(9) Proposals should avoid inconsistencies between link and routing layer metrics (Section 2.7.3).
(9) 提案应避免链路和路由层指标之间的不一致(第2.7.3节)。
(10) Overhead reduction schemes must avoid compromising interoperability and introducing link layer dependencies into the Internet and transport layers (Section 2.8).
(10) 开销减少方案必须避免损害互操作性,并将链路层依赖性引入互联网和传输层(第2.8节)。
(11) Proposals for transport of link indications beyond the local host need to carefully consider the layering, security, and transport implications (Section 2.9).
(11)运输指示超出本地主机的运输需要仔细考虑分层、安全和运输影响(第2.9节)。
Proposals should avoid the use of link models in circumstances where they do not apply.
提案应避免在不适用链接模型的情况下使用链接模型。
In "The mistaken axioms of wireless-network research" [Kotz], the authors conclude that mistaken assumptions relating to link behavior may lead to the design of network protocols that may not work in practice. For example, the authors note that the three-dimensional nature of wireless propagation can result in large signal strength changes over short distances. This can result in rapid changes in link indications such as rate, frame loss, and signal strength.
在《无线网络研究的错误公理》(The Mirror axioms of wireless network research)[Kotz]中,作者得出结论,与链路行为相关的错误假设可能导致网络协议的设计在实践中可能不起作用。例如,作者指出,无线传播的三维特性可能导致短距离内的大信号强度变化。这可能导致链路指示的快速变化,例如速率、帧丢失和信号强度。
In "Modeling Wireless Links for Transport Protocols" [GurtovFloyd], the authors provide examples of modeling mistakes and examples of how to improve modeling of link characteristics. To accompany the paper, the authors provide simulation scenarios in ns-2.
在“为传输协议建模无线链路”[GurtovFloyd]中,作者提供了建模错误的示例以及如何改进链路特性建模的示例。为了配合本文,作者在ns-2中提供了模拟场景。
In order to avoid the pitfalls described in [Kotz] [GurtovFloyd], documents that describe capabilities that are dependent on link indications should explicitly articulate the assumptions of the link model and describe the circumstances in which they apply.
为了避免[Kotz][GurtovFloyd]中所述的缺陷,描述依赖于链路指示的能力的文件应明确阐述链路模型的假设,并描述其适用的情况。
Generic "trigger" models may include implicit assumptions that may prove invalid in outdoor or mesh wireless LAN deployments. For example, two-state Markov models assume that the link is either in a state experiencing low frame loss ("up") or in a state where few frames are successfully delivered ("down"). In these models, symmetry is also typically assumed, so that the link is either "up" in both directions or "down" in both directions. In situations where intermediate loss rates are experienced, these assumptions may be invalid.
一般的“触发器”模型可能包括在室外或网状无线LAN部署中可能被证明无效的隐含假设。例如,两状态马尔可夫模型假设链路要么处于经历低帧丢失(“向上”)的状态,要么处于很少帧成功交付(“向下”)的状态。在这些模型中,通常也假设对称,因此链接在两个方向上要么“向上”,要么在两个方向上“向下”。在发生中间损失率的情况下,这些假设可能无效。
As noted in "Hybrid Rate Control for IEEE 802.11" [Haratcherev], signal strength data is noisy and sometimes inconsistent, so that it needs to be filtered in order to avoid erratic results. Given this, link indications based on raw signal strength data may be unreliable. In order to avoid problems, it is best to combine signal strength data with other techniques. For example, in developing a "Going Down" indication for use with [IEEE-802.21] it would be advisable to
如“IEEE 802.11混合速率控制[Haratcherev]中所述,信号强度数据有噪声,有时不一致,因此需要对其进行过滤,以避免不稳定的结果。鉴于此,基于原始信号强度数据的链路指示可能不可靠。为了避免出现问题,最好将信号强度数据与其他技术相结合。例如,在开发用于[IEEE-802.21]的“下降”指示时,建议
validate filtered signal strength measurements with other indications of link loss such as lack of Beacon reception.
验证滤波后的信号强度测量值与链路丢失的其他指示,如缺少信标接收。
Link indications should be clearly defined, so that it is understood when they are generated on different link layers. For example, considerable work has been required in order to come up with the definitions of "Link Up" and "Link Down", and to define when these indications are sent on various link layers.
链路指示应明确定义,以便在不同链路层上生成时理解。例如,需要进行大量工作,以确定“链接向上”和“链接向下”的定义,并确定这些指示何时在不同的链接层上发送。
Link indication definitions should heed the following advice:
链路指示定义应遵循以下建议:
(1) Do not assume symmetric link performance or frame loss that is either low ("up") or high ("down").
(1) 不要假设对称链路性能或帧丢失为低(“向上”)或高(“向下”)。
In wired networks, links in the "up" state typically experience low frame loss in both directions and are ready to send and receive data frames; links in the "down" state are unsuitable for sending and receiving data frames in either direction. Therefore, a link providing a "Link Up" indication will typically experience low frame loss in both directions, and high frame loss in any direction can only be experienced after a link provides a "Link Down" indication. However, these assumptions may not hold true for wireless LAN networks. Asymmetry is typically less of a problem for cellular networks where propagation occurs over longer distances, multi-path effects may be less severe, and the base station can transmit at much higher power than mobile stations while utilizing a more sensitive antenna.
在有线网络中,处于“向上”状态的链路通常在两个方向上都具有较低的帧丢失,并且准备好发送和接收数据帧;处于“关闭”状态的链路不适合在任一方向发送和接收数据帧。因此,提供“链路向上”指示的链路通常在两个方向上都会经历低帧丢失,并且只有在链路提供“链路向下”指示之后,才能在任何方向上经历高帧丢失。然而,这些假设可能不适用于无线LAN网络。不对称性对于蜂窝网络来说通常不是什么问题,其中传播发生在更长的距离上,多径效应可能不那么严重,并且基站可以比移动站以更高的功率发射,同时使用更灵敏的天线。
Specifications utilizing a "Link Up" indication should not assume that receipt of this indication means that the link is experiencing symmetric link conditions or low frame loss in either direction. In general, a "Link Up" event should not be sent due to transient changes in link conditions, but only due to a change in link layer state. It is best to assume that a "Link Up" event may not be sent in a timely way. Large handoff latencies can result in a delay in the generation of a "Link Up" event as movement to an alternative point of attachment is delayed.
使用“链路连接”指示的规范不应假定收到该指示意味着链路在任一方向上都处于对称链路状态或低帧丢失。通常,由于链路条件的瞬态变化,不应发送“链路启动”事件,而应仅由于链路层状态的变化。最好假设“链接”事件可能未及时发送。大的切换延迟可能导致“链接”事件的生成延迟,因为移动到备用连接点的延迟。
(2) Consider the sensitivity of link indications to transient link conditions. Due to common effects such as multi-path interference, signal strength and signal to noise ratio (SNR) may vary rapidly over a short distance, causing erratic behavior of link indications based on unfiltered measurements. As noted in [Haratcherev], signal strength may prove most useful when
(2) 考虑链路指示对瞬态链路条件的敏感性。由于多径干扰等常见影响,信号强度和信噪比(SNR)可能在短距离内迅速变化,导致基于未滤波测量的链路指示行为不稳定。如[Haratcherev]所述,信号强度在以下情况下可能最有用:
utilized in combination with other measurements, such as frame loss.
与其他测量(如帧损耗)结合使用。
(3) Where possible, design link indications with built-in damping. By design, the "Link Up" and "Link Down" events relate to changes in the state of the link layer that make it able and unable to communicate IP packets. These changes are generated either by the link layer state machine based on link layer exchanges (e.g., completion of the IEEE 802.11i four-way handshake for "Link Up", or receipt of a PPP LCP-Terminate for "Link Down") or by protracted frame loss, so that the link layer concludes that the link is no longer usable. As a result, these link indications are typically less sensitive to changes in transient link conditions.
(3) 在可能的情况下,设计带有内置阻尼的连接指示。根据设计,“链路上升”和“链路下降”事件与链路层状态的变化有关,这使得链路层能够和无法通信IP数据包。这些变化要么由基于链路层交换的链路层状态机产生(例如,完成IEEE 802.11i“链路向上”的四向握手,要么接收到PPP LCP“链路向下”终止),要么由延长的帧丢失产生,以便链路层得出链路不再可用的结论。因此,这些链路指示通常对瞬态链路条件的变化不太敏感。
(4) Do not assume that a "Link Down" event will be sent at all, or that, if sent, it will be received in a timely way. A good link layer implementation will both rapidly detect connectivity failure (such as by tracking missing Beacons) while sending a "Link Down" event only when it concludes the link is unusable, not due to transient frame loss.
(4) 不要假设“链接断开”事件将被发送,或者如果发送,它将被及时接收。一个好的链路层实现将快速检测连接故障(例如通过跟踪丢失的信标),同时仅在确定链路不可用时(而不是由于瞬时帧丢失)发送“链路断开”事件。
However, existing wireless LAN implementations often do not do a good job of detecting link failure. During a lengthy detection phase, a "Link Down" event is not sent by the link layer, yet IP packets cannot be transmitted or received on the link. Initiation of a scan may be delayed so that the station cannot find another point of attachment. This can result in inappropriate backoff of retransmission timers within the transport layer, among other problems. This is not as much of a problem for cellular networks that utilize transmit power adjustment.
然而,现有的无线局域网实现通常不能很好地检测链路故障。在漫长的检测阶段,链路层不会发送“链路断开”事件,但无法在链路上发送或接收IP数据包。扫描的启动可能会延迟,从而使工作站无法找到另一个连接点。除其他问题外,这可能导致传输层内的重传计时器的不适当退避。对于利用发射功率调整的蜂窝网络来说,这并不是一个很大的问题。
Link indication proposals must demonstrate robustness against misleading indications. Elements to consider include:
链路指示方案必须证明对误导性指示的鲁棒性。要考虑的因素包括:
Implementation variation Recovery from invalid indications Damping and hysteresis
从无效指示、阻尼和滞后中恢复实施变化
Variations in link layer implementations may have a substantial impact on the behavior of link indications. These variations need to be taken into account in evaluating the performance of proposals. For example, radio propagation and implementation differences can impact the reliability of link indications.
链路层实现的变化可能会对链路指示的行为产生重大影响。在评估提案的执行情况时,需要考虑到这些变化。例如,无线传播和实施差异可能会影响链路指示的可靠性。
In "Link-level Measurements from an 802.11b Mesh Network" [Aguayo], the authors analyze the cause of frame loss in a 38-node urban multi-hop IEEE 802.11 ad-hoc network. In most cases, links that are very bad in one direction tend to be bad in both directions, and links that are very good in one direction tend to be good in both directions. However, 30 percent of links exhibited loss rates differing substantially in each direction.
在“来自802.11b网状网络的链路级测量”[Aguayo]中,作者分析了38节点城市多跳IEEE 802.11 adhoc网络中帧丢失的原因。在大多数情况下,在一个方向上非常糟糕的链接往往在两个方向上都不好,而在一个方向上非常好的链接往往在两个方向上都好。然而,30%的链路在每个方向上表现出明显不同的损耗率。
As described in [Aguayo], wireless LAN links often exhibit loss rates intermediate between "up" (low loss) and "down" (high loss) states, as well as substantial asymmetry. As a result, receipt of a "Link Up" indication may not necessarily indicate bidirectional reachability, since it could have been generated after exchange of small frames at low rates, which might not imply bidirectional connectivity for large frames exchanged at higher rates.
如[Aguayo]所述,无线LAN链路通常表现出介于“上升”(低损耗)和“下降”(高损耗)状态之间的损耗率,以及严重的不对称性。结果,“连接”指示的接收不一定指示双向可达性,因为它可能是在以低速率交换小帧之后生成的,这可能并不意味着以较高速率交换大帧的双向连接。
Where multi-path interference or hidden nodes are encountered, signal strength may vary widely over a short distance. Several techniques may be used to reduce potential disruptions. Multiple transmitting and receiving antennas may be used to reduce multi-path effects; transmission rate adaptation can be used to find a more satisfactory transmission rate; transmit power adjustment can be used to improve signal quality and reduce interference; Request-to-Send/Clear-to-Send (RTS/CTS) signaling can be used to reduce hidden node problems. These techniques may not be completely effective, so that high frame loss may be encountered, causing the link to cycle between "up" and "down" states.
当遇到多径干扰或隐藏节点时,信号强度可能在短距离内变化很大。可以使用几种技术来减少潜在的中断。多个发射和接收天线可用于减少多径效应;传输速率自适应可用于找到更令人满意的传输速率;发射功率调整可用于改善信号质量和减少干扰;请求发送/清除发送(RTS/CTS)信令可用于减少隐藏节点问题。这些技术可能不是完全有效的,因此可能会遇到高帧丢失,导致链路在“向上”和“向下”状态之间循环。
To improve robustness against spurious link indications, it is recommended that upper layers treat the indication as a "hint" (advisory in nature), rather than a "trigger" dictating a particular action. Upper layers may then attempt to validate the hint.
为了提高对虚假链路指示的鲁棒性,建议上层将指示视为“提示”(本质上是建议),而不是指示特定操作的“触发器”。上层可能会尝试验证提示。
In [RFC4436], "Link Up" indications are rate limited, and IP configuration is confirmed using bidirectional reachability tests carried out coincident with a request for configuration via DHCP. As a result, bidirectional reachability is confirmed prior to activation of an IP configuration. However, where a link exhibits an intermediate loss rate, demonstration of bidirectional reachability may not necessarily indicate that the link is suitable for carrying IP data packets.
在[RFC4436]中,“连接”指示是速率限制的,IP配置是使用双向可达性测试确认的,该测试与通过DHCP的配置请求同时进行。结果,在激活IP配置之前确认双向可达性。然而,在链路表现出中间丢失率的情况下,双向可达性的证明不一定表明链路适合承载IP数据分组。
Another example of validation occurs in IPv4 Link-Local address configuration [RFC3927]. Prior to configuration of an IPv4 Link-Local address, it is necessary to run a claim-and-defend protocol. Since a host needs to be present to defend its address against another claimant, and address conflicts are relatively likely, a host returning from sleep mode or receiving a "Link Up" indication could
验证的另一个示例发生在IPv4链路本地地址配置[RFC3927]中。在配置IPv4链路本地地址之前,必须运行声明和保护协议。由于主机需要在场以保护其地址免受另一索赔人的侵害,并且地址冲突的可能性相对较大,因此从睡眠模式返回或接收到“链接”指示的主机可能会
encounter an address conflict were it to utilize a formerly configured IPv4 Link-Local address without rerunning claim and defend.
如果使用以前配置的IPv4链路本地地址而不重新运行claim and Defense,则会遇到地址冲突。
In some situations, improper use of link indications can result in operational malfunctions. It is recommended that upper layers utilize a timely recovery step so as to limit the potential damage from link indications determined to be invalid after they have been acted on.
在某些情况下,不当使用链路指示可能导致操作故障。建议上层采用及时的恢复步骤,以限制作用后被确定为无效的链路指示的潜在损害。
In Detecting Network Attachment in IPv4 (DNAv4) [RFC4436], reachability tests are carried out coincident with a request for configuration via DHCP. Therefore, if the bidirectional reachability test times out, the host can still obtain an IP configuration via DHCP, and if that fails, the host can still continue to use an existing valid address if it has one.
在检测IPv4(DNAv4)[RFC4436]中的网络连接时,可达性测试与通过DHCP的配置请求同时执行。因此,如果双向可达性测试超时,主机仍然可以通过DHCP获得IP配置,如果失败,主机仍然可以继续使用现有的有效地址(如果有)。
Where a proposal involves recovery at the transport layer, the recovered transport parameters (such as the Maximum Segment Size (MSS), RoundTrip Time (RTT), Retransmission TimeOut (RTO), Bandwidth (bw), congestion window (cwnd), etc.) should be demonstrated to remain valid. Congestion window validation is discussed in "TCP Congestion Window Validation" [RFC2861].
如果提案涉及传输层的恢复,则应证明恢复的传输参数(如最大段大小(MSS)、往返时间(RTT)、重传超时(RTO)、带宽(bw)、拥塞窗口(cwnd)等)保持有效。拥塞窗口验证在“TCP拥塞窗口验证”[RFC2861]中讨论。
Where timely recovery is not supported, unexpected consequences may result. As described in [RFC3927], early IPv4 Link-Local implementations would wait five minutes before attempting to obtain a routable address after assigning an IPv4 Link-Local address. In one implementation, it was observed that where mobile hosts changed their point of attachment more frequently than every five minutes, they would never obtain a routable address. The problem was caused by an invalid link indication (signaling of "Link Up" prior to completion of link layer authentication), resulting in an initial failure to obtain a routable address using DHCP. As a result, [RFC3927] recommends against modification of the maximum retransmission timeout (64 seconds) provided in [RFC2131].
如果不支持及时恢复,可能会导致意外后果。如[RFC3927]所述,早期的IPv4链路本地实现将在分配IPv4链路本地地址后等待五分钟,然后再尝试获取可路由地址。在一个实现中,有人观察到,如果移动主机更改其连接点的频率超过每五分钟一次,则它们将永远无法获得可路由地址。该问题是由无效的链路指示(在链路层身份验证完成之前发出“链路向上”的信号)引起的,导致使用DHCP获取可路由地址的初始失败。因此,[RFC3927]建议不要修改[RFC2131]中提供的最大重传超时(64秒)。
Damping and hysteresis can be utilized to limit damage from unstable link indications. This may include damping unstable indications or placing constraints on the frequency of link indication-induced actions within a time period.
阻尼和滞后可用于限制不稳定链路指示造成的损坏。这可能包括阻尼不稳定指示或在一段时间内对链路指示诱发动作的频率施加限制。
While [Aguayo] found that frame loss was relatively stable for stationary stations, obstacles to radio propagation and multi-path interference can result in rapid changes in signal strength for a mobile station. As a result, it is possible for mobile stations to encounter rapid changes in link characteristics, including changes in transmission rate, throughput, frame loss, and even "Link Up"/"Link Down" indications.
虽然[Aguayo]发现固定电台的帧丢失相对稳定,但无线电传播障碍和多径干扰可导致移动台信号强度的快速变化。结果,移动站可能遇到链路特性的快速变化,包括传输速率、吞吐量、帧丢失的变化,甚至“链路上升”/“链路下降”指示的变化。
Where link-aware routing metrics are implemented, this can result in rapid metric changes, potentially resulting in frequent changes in the outgoing interface for Weak End System implementations. As a result, it may be necessary to introduce route flap dampening.
在实现链路感知路由度量的情况下,这可能会导致快速的度量更改,可能会导致弱端系统实现的传出接口频繁更改。因此,可能需要引入路线襟翼阻尼。
However, the benefits of damping need to be weighed against the additional latency that can be introduced. For example, in order to filter out spurious "Link Down" indications, these indications may be delayed until it can be determined that a "Link Up" indication will not follow shortly thereafter. However, in situations where multiple Beacons are missed such a delay may not be needed, since there is no evidence of a suitable point of attachment in the vicinity.
然而,阻尼的好处需要与可能引入的额外延迟进行权衡。例如,为了过滤掉虚假的“链路断开”指示,这些指示可能会被延迟,直到可以确定“链路断开”指示不久后不会出现。然而,在多个信标丢失的情况下,可能不需要这样的延迟,因为附近没有合适的连接点。
In some cases, it is desirable to ignore link indications entirely. Since it is possible for a host to transition from an ad-hoc network to a network with centralized address management, a host receiving a "Link Up" indication cannot necessarily conclude that it is appropriate to configure an IPv4 Link-Local address prior to determining whether a DHCP server is available [RFC3927] or an operable configuration is valid [RFC4436].
在某些情况下,最好完全忽略链接指示。由于主机可以从自组织网络过渡到具有集中地址管理的网络,因此在确定DHCP服务器是否可用之前,接收到“链接”指示的主机不一定认为配置IPv4链路本地地址是合适的[RFC3927]或可操作配置有效[RFC4436]。
As noted in Section 1.4, the transport layer does not utilize "Link Up" and "Link Down" indications for the purposes of connection management.
如第1.4节所述,传输层不使用“连接向上”和“连接向下”指示进行连接管理。
Link indication proposals must demonstrate that effective congestion control is maintained [RFC2914]. One or more of the following techniques may be utilized:
链路指示方案必须证明维持了有效的拥塞控制[RFC2914]。可以使用以下一种或多种技术:
Rate limiting. Packets generated based on receipt of link indications can be rate limited (e.g., a limit of one packet per end-to-end path RTO).
速率限制。基于链路指示的接收而生成的分组可以是速率限制的(例如,每个端到端路径RTO限制一个分组)。
Utilization of upper-layer indications. Applications should depend on upper-layer indications such as IP address configuration/change notification, rather than utilizing link indications such as "Link Up".
上层显示的利用。应用程序应依赖上层指示,如IP地址配置/更改通知,而不是利用链接指示,如“链接”。
Keepalives. In order to improve robustness against spurious link indications, an application keepalive or transport layer indication (such as connection teardown) can be used instead of consuming "Link Down" indications.
Keepalives。为了提高对虚假链路指示的鲁棒性,可以使用应用程序保持活动或传输层指示(例如连接断开),而不是使用“链路断开”指示。
Conservation of resources. Proposals must demonstrate that they are not vulnerable to congestive collapse.
保护资源。提案必须证明它们不易发生充血性崩溃。
As noted in "Robust Rate Adaptation for 802.11 Wireless Networks" [Robust], decreasing transmission rate in response to frame loss increases contention, potentially leading to congestive collapse. To avoid this, the link layer needs to distinguish frame loss due to congestion from loss due to channel conditions. Only frame loss due to deterioration in channel conditions can be used as a basis for decreasing transmission rate.
正如“802.11无线网络的鲁棒速率自适应”[Robust]中所述,响应帧丢失而降低传输速率会增加争用,可能导致拥塞崩溃。为了避免这种情况,链路层需要区分拥塞引起的帧丢失和信道条件引起的帧丢失。只有由于信道条件恶化而导致的帧丢失可以用作降低传输速率的基础。
Consider a proposal where a "Link Up" indication is used by a host to trigger retransmission of the last previously sent packet, in order to enable ACK reception prior to expiration of the host's retransmission timer. On a rapidly moving mobile node where "Link Up" indications follow in rapid succession, this could result in a burst of retransmitted packets, violating the principle of "conservation of packets".
考虑一种建议,其中主机使用“链接”指示来触发最后一次发送的分组的重传,以便在主机重传计时器到期之前启用ACK接收。在快速移动的移动节点上,如果“链接”指示快速连续出现,这可能会导致重传数据包的突发,违反“数据包保护”原则。
At the application layer, link indications have been utilized by applications such as Presence [RFC2778] in order to optimize registration and user interface update operations. For example, implementations may attempt presence registration on receipt of a "Link Up" indication, and presence de-registration by a surrogate receiving a "Link Down" indication. Presence implementations using "Link Up"/"Link Down" indications this way violate the principle of "conservation of packets" since link indications can be generated on a time scale less than the end-to-end path RTO. The problem is magnified since for each presence update, notifications can be delivered to many watchers. In addition, use of a "Link Up" indication in this manner is unwise since the interface may not yet even have an operable Internet layer configuration. Instead, an "IP address configured" indication may be utilized.
在应用层,诸如Presence[RFC2778]之类的应用程序已利用链路指示来优化注册和用户界面更新操作。例如,实现可以尝试在接收到“链接向上”指示时进行存在注册,以及由接收到“链接向下”指示的代理进行存在取消注册。以这种方式使用“向上链路”/“向下链路”指示的存在实现违反了“数据包保护”原则,因为可以在小于端到端路径RTO的时间尺度上生成链路指示。问题被放大了,因为对于每个状态更新,通知都可以传递给许多观察者。此外,以这种方式使用“链接”指示是不明智的,因为接口甚至可能还没有可操作的因特网层配置。相反,可以使用“IP地址配置”指示。
Proposals must demonstrate the effectiveness of proposed optimizations. Since optimizations typically increase complexity, substantial performance improvement is required in order to make a compelling case.
提案必须证明拟议优化的有效性。由于优化通常会增加复杂性,因此需要大量的性能改进才能做出令人信服的结论。
In the face of unreliable link indications, effectiveness may depend on the penalty for false positives and false negatives. In the case of DNAv4 [RFC4436], the benefits of successful optimization are modest, but the penalty for being unable to confirm an operable configuration is a lengthy timeout. As a result, the recommended strategy is to test multiple potential configurations in parallel in addition to attempting configuration via DHCP. This virtually guarantees that DNAv4 will always result in performance equal to or better than use of DHCP alone.
面对不可靠的链路指示,有效性可能取决于对误报和误报的惩罚。在DNAv4[RFC4436]的情况下,成功优化的好处不大,但无法确认可操作配置的代价是长时间超时。因此,除了尝试通过DHCP进行配置外,建议的策略是并行测试多个潜在配置。这实际上保证了DNAv4的性能始终等于或优于单独使用DHCP。
While link indications can be utilized where available, they should not be required by upper layers, in order to maintain link layer independence. For example, if information on supported prefixes is provided at the link layer, hosts not understanding those hints must still be able to obtain an IP address.
虽然链路指示可以在可用的情况下使用,但上层不需要它们,以保持链路层的独立性。例如,如果在链路层提供了有关支持的前缀的信息,那么不理解这些提示的主机必须仍然能够获得IP地址。
Where link indications are proposed to optimize Internet layer configuration, proposals must demonstrate that they do not compromise robustness by interfering with address assignment or routing protocol behavior, making address collisions more likely, or compromising Duplicate Address Detection (DAD) [RFC4429].
当建议链路指示以优化互联网层配置时,建议必须证明它们不会通过干扰地址分配或路由协议行为、增加地址冲突的可能性或损害重复地址检测(DAD)而损害健壮性[RFC4429]。
To avoid compromising interoperability in the pursuit of performance optimization, proposals must demonstrate that interoperability remains possible (potentially with degraded performance) even if one or more participants do not implement the proposal.
为了避免在追求性能优化的过程中损害互操作性,提案必须证明即使一个或多个参与者没有实施提案,互操作性仍然是可能的(性能可能会降低)。
Link indication proposals should avoid race conditions, which can occur where link indications are utilized directly by multiple layers of the stack.
链路指示建议应避免竞态条件,竞态条件可能发生在链路指示被多个堆栈层直接利用的情况下。
Link indications are useful for optimization of Internet Protocol layer addressing and configuration as well as routing. Although "The BU-trigger method for improving TCP performance over Mobile IPv6" [Kim] describes situations in which link indications are first processed by the Internet Protocol layer (e.g., MIPv6) before being utilized by the transport layer, for the purposes of parameter estimation, it may be desirable for the transport layer to utilize link indications directly.
链路指示对于优化Internet协议层寻址和配置以及路由非常有用。尽管“用于在移动IPv6上改进TCP性能的BU触发方法”[Kim]描述了链路指示在被传输层使用之前首先由互联网协议层(例如,MIPv6)处理的情况,但出于参数估计的目的,传输层可能希望直接利用链路指示。
In situations where the Weak End System model is implemented, a change of outgoing interface may occur at the same time the transport layer is modifying transport parameters based on other link
在实现弱端系统模型的情况下,在传输层基于其他链路修改传输参数的同时,可能会发生传出接口的更改
indications. As a result, transport behavior may differ depending on the order in which the link indications are processed.
适应症。因此,传输行为可能因处理链路指示的顺序而异。
Where a multi-homed host experiences increasing frame loss or decreased rate on one of its interfaces, a routing metric taking these effects into account will increase, potentially causing a change in the outgoing interface for one or more transport connections. This may trigger Mobile IP signaling so as to cause a change in the incoming path as well. As a result, the transport parameters estimated for the original outgoing and incoming paths (congestion state, Maximum Segment Size (MSS) derived from the link maximum transmission unit (MTU) or Path MTU) may no longer be valid for the new outgoing and incoming paths.
如果多宿主主机的一个接口上的帧丢失率增加或速率降低,则考虑到这些影响的路由度量将增加,这可能会导致一个或多个传输连接的传出接口发生变化。这可能触发移动IP信令,以便也引起传入路径的改变。结果,为原始出站路径和入站路径(拥塞状态、从链路最大传输单元(MTU)或路径MTU导出的最大段大小(MSS))估计的传输参数可能不再对新的出站路径和入站路径有效。
To avoid race conditions, the following measures are recommended:
为避免比赛条件,建议采取以下措施:
Path change re-estimation Layering Metric consistency
路径变化重估计分层度量一致性
When the Internet layer detects a path change, such as a major change in transmission rate, a change in the outgoing or incoming interface of the host or the incoming interface of a peer, or perhaps even a substantial change in the IPv4 TTL/IPv6 Hop Limit of received packets, it may be worth considering whether to reset transport parameters (RTT, RTO, cwnd, bw, MSS) to their initial values so as to allow them to be re-estimated. This ensures that estimates based on the former path do not persist after they have become invalid. Appendix A.3 summarizes the research on this topic.
当因特网层检测到路径变化时,例如传输速率的重大变化、主机的传出或传入接口的变化或对等方的传入接口的变化,或者甚至可能是所接收分组的IPv4 TTL/IPv6跃点限制的重大变化,可能值得考虑是否重置传输参数(RTT、RTO、cwnd、bw、MSS)恢复到其初始值,以便重新估计。这确保基于前一路径的估计在失效后不会持续。附录A.3总结了该主题的研究。
Another technique to avoid race conditions is to rely on layering to damp transient link indications and provide greater link layer independence.
另一种避免竞争条件的技术是依靠分层来抑制瞬态链路指示,并提供更大的链路层独立性。
The Internet layer is responsible for routing as well as IP configuration and mobility, providing higher layers with an abstraction that is independent of link layer technologies.
互联网层负责路由、IP配置和移动性,为更高层提供独立于链路层技术的抽象。
In general, it is advisable for applications to utilize indications from the Internet or transport layers rather than consuming link indications directly.
通常,建议应用程序利用来自Internet或传输层的指示,而不是直接使用链路指示。
Proposals should avoid inconsistencies between link and routing layer metrics. Without careful design, potential differences between link indications used in routing and those used in roaming and/or link enablement can result in instability, particularly in multi-homed hosts.
建议应避免链路和路由层指标之间的不一致。如果不仔细设计,路由中使用的链路指示与漫游和/或链路启用中使用的链路指示之间的潜在差异可能会导致不稳定,特别是在多宿主主机中。
Once a link is in the "up" state, its effectiveness in transmission of data packets can be used to determine an appropriate routing metric. In situations where the transmission time represents a large portion of the total transit time, minimizing total transmission time is equivalent to maximizing effective throughput. "A High-Throughput Path Metric for Multi-Hop Wireless Routing" [ETX] describes a proposed routing metric based on the Expected Transmission Count (ETX). The authors demonstrate that ETX, based on link layer frame loss rates (prior to retransmission), enables the selection of routes maximizing effective throughput. Where the transmission rate is constant, the expected transmission time is proportional to ETX, so that minimizing ETX also minimizes expected transmission time.
一旦链路处于“向上”状态,其在数据包传输中的有效性可用于确定适当的路由度量。在传输时间占总传输时间很大一部分的情况下,最小化总传输时间相当于最大化有效吞吐量。“用于多跳无线路由的高吞吐量路径度量”[ETX]描述了基于预期传输计数(ETX)的拟议路由度量。作者证明,基于链路层帧丢失率(重传前)的ETX能够选择最大化有效吞吐量的路由。在传输速率恒定的情况下,预期传输时间与ETX成比例,因此最小化ETX也会最小化预期传输时间。
However, where the transmission rate may vary, ETX may not represent a good estimate of the estimated transmission time. In "Routing in multi-radio, multi-hop wireless mesh networks" [ETX-Rate], the authors define a new metric called Expected Transmission Time (ETT). This is described as a "bandwidth adjusted ETX" since ETT = ETX * S/B where S is the size of the probe packet and B is the bandwidth of the link as measured by a packet pair [Morgan]. However, ETT assumes that the loss fraction of small probe frames sent at 1 Mbps data rate is indicative of the loss fraction of larger data frames at higher rates, which tends to underestimate the ETT at higher rates, where frame loss typically increases. In "A Radio Aware Routing Protocol for Wireless Mesh Networks" [ETX-Radio], the authors refine the ETT metric further by estimating the loss fraction as a function of transmission rate.
然而,在传输速率可能变化的情况下,ETX可能不代表对估计的传输时间的良好估计。在“多无线电、多跳无线网状网络中的路由”[ETX速率]中,作者定义了一个称为预期传输时间(ETT)的新指标。这被描述为“带宽调整ETX”,因为ETT=ETX*S/B,其中S是探测包的大小,B是由包对测量的链路带宽[Morgan]。然而,ETT假设以1 Mbps数据速率发送的小探测帧的丢失率表示以较高速率发送的较大数据帧的丢失率,这往往会低估较高速率下的ETT,而在较高速率下,帧丢失通常会增加。在“无线网状网络的无线感知路由协议”[ETX Radio]中,作者通过估计作为传输速率函数的损耗分数,进一步细化了ETT度量。
However, prior to sending data packets over the link, the appropriate routing metric may not easily be predicted. As noted in [Shortest], a link that can successfully transmit the short frames utilized for control, management, or routing may not necessarily be able to reliably transport larger data packets.
然而,在通过链路发送数据分组之前,可能不容易预测适当的路由度量。如[Shortest]中所述,能够成功传输用于控制、管理或路由的短帧的链路不一定能够可靠地传输较大的数据分组。
Therefore, it may be necessary to utilize alternative metrics (such as signal strength or Access Point load) in order to assist in attachment/handoff decisions. However, unless the new interface is the preferred route for one or more destination prefixes, a Weak End System implementation will not use the new interface for outgoing traffic. Where "idle timeout" functionality is implemented, the
因此,可能有必要利用替代指标(例如信号强度或接入点负载)以协助附件/切换决策。但是,除非新接口是一个或多个目的地前缀的首选路由,否则弱端系统实现不会将新接口用于传出流量。在实现“空闲超时”功能的情况下
unused interface will be brought down, only to be brought up again by the link enablement algorithm.
未使用的接口将被关闭,但链接启用算法将再次启动。
Within the link layer, metrics such as signal strength and frame loss may be used to determine the transmission rate, as well as to determine when to select an alternative point of attachment. In order to enable stations to roam prior to encountering packet loss, studies such as "An experimental study of IEEE 802.11b handover performance and its effect on voice traffic" [Vatn] have suggested using signal strength as a mechanism to more rapidly detect loss of connectivity, rather than frame loss, as suggested in "Techniques to Reduce IEEE 802.11b MAC Layer Handover Time" [Velayos].
在链路层内,诸如信号强度和帧丢失之类的度量可用于确定传输速率,以及确定何时选择替代连接点。为了使站点能够在遇到数据包丢失之前漫游,诸如“IEEE 802.11b切换性能及其对语音通信量影响的实验研究”[Vatn]等研究建议使用信号强度作为一种机制,以更快速地检测连接丢失,而不是如中所建议的帧丢失“减少IEEE 802.11b MAC层切换时间的技术”[Velayos]。
[Aguayo] notes that signal strength and distance are not good predictors of frame loss or throughput, due to the potential effects of multi-path interference. As a result, a link brought up due to good signal strength may subsequently exhibit significant frame loss and a low throughput. Similarly, an Access Point (AP) demonstrating low utilization may not necessarily be the best choice, since utilization may be low due to hardware or software problems. "OSPF Optimized Multipath (OSPF-OMP)" [Villamizar] notes that link-utilization-based routing metrics have a history of instability.
[Aguayo]注意到,由于多径干扰的潜在影响,信号强度和距离并不能很好地预测帧丢失或吞吐量。结果,由于良好的信号强度而建立的链路可能随后表现出显著的帧丢失和低吞吐量。类似地,显示低利用率的接入点(AP)不一定是最佳选择,因为由于硬件或软件问题,利用率可能较低。“OSPF优化多路径(OSPF-OMP)”[Villamizar]指出,基于链路利用率的路由度量具有不稳定的历史。
In many situations, the exchanges required for a host to complete a handoff and reestablish connectivity are considerable, leading to proposals to combine exchanges occurring within multiple layers in order to reduce overhead. While overhead reduction is a laudable goal, proposals need to avoid compromising interoperability and introducing link layer dependencies into the Internet and transport layers.
在许多情况下,主机完成切换和重新建立连接所需的交换量很大,因此建议将发生在多个层中的交换组合起来,以减少开销。虽然降低开销是一个值得称赞的目标,但提案需要避免损害互操作性,并将链路层依赖性引入互联网和传输层。
Exchanges required for handoff and connectivity reestablishment may include link layer scanning, authentication, and association establishment; Internet layer configuration, routing, and mobility exchanges; transport layer retransmission and recovery; security association reestablishment; application protocol re-authentication and re-registration exchanges, etc.
切换和连接重建所需的交换可能包括链路层扫描、认证和关联建立;互联网层配置、路由和移动交换;传输层重传和恢复;重建安全协会;应用协议重新认证和重新注册交换等。
Several proposals involve combining exchanges within the link layer. For example, in [EAPIKEv2], a link layer Extensible Authentication Protocol (EAP) [RFC3748] exchange may be used for the purpose of IP address assignment, potentially bypassing Internet layer configuration. Within [PEAP], it is proposed that a link layer EAP exchange be used for the purpose of carrying Mobile IPv6 Binding Updates. [MIPEAP] proposes that EAP exchanges be used for configuration of Mobile IPv6. Where link, Internet, or transport
有几项建议涉及在链路层内合并交换。例如,在[EAPIKEv2]中,链路层可扩展认证协议(EAP)[RFC3748]交换可用于IP地址分配的目的,可能绕过互联网层配置。在[PEAP]中,建议使用链路层EAP交换来承载移动IPv6绑定更新。[MIPEAP]建议使用EAP交换机配置移动IPv6。链接、互联网或传输的位置
layer mechanisms are combined, hosts need to maintain backward compatibility to permit operation on networks where compression schemes are not available.
层机制结合在一起,主机需要保持向后兼容性,以允许在没有压缩方案的网络上运行。
Layer compression schemes may also negatively impact robustness. For example, in order to optimize IP address assignment, it has been proposed that prefixes be advertised at the link layer, such as within the 802.11 Beacon and Probe Response frames. However, [IEEE-802.1X] enables the Virtual LAN Identifier (VLANID) to be assigned dynamically, so that prefix(es) advertised within the Beacon and/or Probe Response may not correspond to the prefix(es) configured by the Internet layer after the host completes link layer authentication. Were the host to handle IP configuration at the link layer rather than within the Internet layer, the host might be unable to communicate due to assignment of the wrong IP address.
层压缩方案也可能对鲁棒性产生负面影响。例如,为了优化IP地址分配,已经提出在链路层(例如在802.11信标和探测响应帧内)通告前缀。但是,[IEEE-802.1X]允许动态分配虚拟LAN标识符(VLANID),以便在主机完成链路层身份验证后,在信标和/或探测响应中播发的前缀可能与Internet层配置的前缀不对应。如果主机在链路层而不是在Internet层处理IP配置,则由于分配了错误的IP地址,主机可能无法通信。
Proposals for the transport of link indications need to carefully consider the layering, security, and transport implications.
关于运输指示的建议需要仔细考虑分层、安全和运输的影响。
As noted earlier, the transport layer may take the state of the local routing table into account in improving the quality of transport parameter estimates. While absence of positive feedback that the path is sending data end-to-end must be heeded, where a route that had previously been absent is recovered, this may be used to trigger congestion control probing. While this enables transported link indications that affect the local routing table to improve the quality of transport parameter estimates, security and interoperability considerations relating to routing protocols still apply.
如前所述,传输层在改进传输参数估计的质量时可以考虑本地路由表的状态。虽然必须注意路径正在端到端发送数据的正反馈缺失,但在恢复之前缺失的路由的情况下,这可用于触发拥塞控制探测。虽然这使得影响本地路由表的传输链路指示能够提高传输参数估计的质量,但与路由协议相关的安全性和互操作性考虑仍然适用。
Proposals involving transport of link indications need to demonstrate the following:
涉及连接指示运输的提案需要证明以下内容:
(a) Superiority to implicit signals. In general, implicit signals are preferred to explicit transport of link indications since they do not require participation in the routing mesh, add no new packets in times of network distress, operate more reliably in the presence of middle boxes such as NA(P)Ts, are more likely to be backward compatible, and are less likely to result in security vulnerabilities. As a result, explicit signaling proposals must prove that implicit signals are inadequate.
(a) 优于隐式信号。通常,隐式信号优先于链路指示的显式传输,因为隐式信号不需要参与路由网,在网络故障时不添加新分组,在诸如NA(P)Ts的中间盒的存在下操作更可靠,更可能向后兼容,并且不太可能导致安全漏洞。因此,明确的信号建议必须证明隐含的信号是不充分的。
(b) Mitigation of security vulnerabilities. Transported link indications should not introduce new security vulnerabilities. Link indications that result in modifications to the local routing table represent a routing protocol, so that the
(b) 缓解安全漏洞。传输链路指示不应引入新的安全漏洞。导致修改本地路由表的链路指示表示路由协议,因此
vulnerabilities associated with unsecured routing protocols apply, including spoofing by off-link attackers. While mechanisms such as "SEcure Neighbor Discovery (SEND)" [RFC3971] may enable authentication and integrity protection of router-originated messages, protecting against forgery of transported link indications, they are not yet widely deployed.
存在与不安全路由协议相关的漏洞,包括断开链接的攻击者的欺骗。虽然诸如“安全邻居发现(SEND)”[RFC3971]等机制可以对源自路由器的消息进行身份验证和完整性保护,从而防止伪造传输的链路指示,但它们尚未得到广泛部署。
(c) Validation of transported indications. Even if a transported link indication can be integrity protected and authenticated, if the indication is sent by a host off the local link, it may not be clear that the sender is on the actual path in use, or which transport connection(s) the indication relates to. Proposals need to describe how the receiving host can validate the transported link indication.
(c) 运输指示的验证。即使传输的链路指示可以进行完整性保护和身份验证,如果该指示是由主机从本地链路发送的,则可能不清楚发送方是否在使用的实际路径上,或者该指示与哪个传输连接有关。提案需要说明接收主机如何验证传输链路指示。
(d) Mapping of Identifiers. When link indications are transported, it is generally for the purposes of providing information about Internet, transport, or application layer operations at a remote element. However, application layer sessions or transport connections may not be visible to the remote element due to factors such as load sharing between links, or use of IPsec, tunneling protocols, or nested headers. As a result, proposals need to demonstrate how the link indication can be mapped to the relevant higher-layer state. For example, on receipt of a link indication, the transport layer will need to identify the set of transport sessions (source address, destination address, source port, destination port, transport) that are affected. If a presence server is receiving remote indications of "Link Up"/"Link Down" status for a particular Media Access Control (MAC) address, the presence server will need to associate that MAC address with the identity of the user (pres:user@example.com) to whom that link status change is relevant.
(d) 标识符的映射。传输链路指示时,通常是为了提供有关远程元素的Internet、传输或应用层操作的信息。但是,由于链路之间的负载共享、IPsec、隧道协议或嵌套头的使用等因素,远程元素可能看不到应用层会话或传输连接。因此,提案需要证明链路指示如何映射到相关的高层状态。例如,在接收到链路指示时,传输层需要识别受影响的传输会话集(源地址、目标地址、源端口、目标端口、传输)。如果存在服务器正在接收特定媒体访问控制(MAC)地址的“链接打开”/“链接关闭”状态的远程指示,则存在服务器将需要将该MAC地址与用户的身份相关联(pres:user@example.com)链接状态更改与谁相关。
Further work is needed in order to understand how link indications can be utilized by the Internet, transport, and application layers.
为了理解互联网、传输层和应用层如何利用链路指示,还需要进一步的工作。
More work is needed to understand the connection between link indications and routing metrics. For example, the introduction of block ACKs (supported in [IEEE-802.11e]) complicates the relationship between effective throughput and frame loss, which may necessitate the development of revised routing metrics for ad-hoc networks. More work is also needed to reconcile handoff metrics (e.g., signal strength and link utilization) with routing metrics based on link indications (e.g., frame error rate and negotiated rate).
需要更多的工作来理解链路指示和路由度量之间的联系。例如,块ack的引入(在[IEEE-802.11e]中得到支持)使有效吞吐量和帧丢失之间的关系复杂化,这可能需要为adhoc网络开发修改的路由度量。还需要更多的工作来协调切换度量(例如,信号强度和链路利用率)与基于链路指示的路由度量(例如,帧错误率和协商速率)。
A better understanding of the use of physical and link layer metrics in rate negotiation is required. For example, recent work [Robust][CARA] has suggested that frame loss due to contention (which would be exacerbated by rate reduction) can be distinguished from loss due to channel conditions (which may be improved via rate reduction).
需要更好地理解在速率协商中使用物理层和链路层度量。例如,最近的工作[Robust][CARA]表明,由于争用而导致的帧丢失(这将因速率降低而加剧)可以与由于信道条件而导致的丢失(这可能通过速率降低而得到改善)区分开来。
At the transport layer, more work is needed to determine the appropriate reaction to Internet layer indications such as routing table and path changes. More work is also needed in utilization of link layer indications in transport parameter estimation, including rate changes, "Link Up"/"Link Down" indications, link layer retransmissions, and frame loss of various types (due to contention or channel conditions).
在传输层,需要做更多的工作来确定对Internet层指示(如路由表和路径更改)的适当反应。在传输参数估计中利用链路层指示还需要更多的工作,包括速率变化、“链路上行”/“链路下行”指示、链路层重传和各种类型的帧丢失(由于争用或信道条件)。
More work is also needed to determine how link layers may utilize information from the transport layer. For example, it is undesirable for a link layer to retransmit so aggressively that the link layer round-trip time approaches that of the end-to-end transport connection. Instead, it may make sense to do downward rate adjustment so as to decrease frame loss and improve latency. Also, in some cases, the transport layer may not require heroic efforts to avoid frame loss; timely delivery may be preferred instead.
还需要更多的工作来确定链路层如何利用来自传输层的信息。例如,链路层不希望如此积极地重新传输,以致链路层往返时间接近端到端传输连接的往返时间。相反,向下调整速率以减少帧丢失和改善延迟可能是有意义的。此外,在某些情况下,传输层可能不需要英勇的努力来避免帧丢失;最好是及时交货。
Proposals for the utilization of link indications may introduce new security vulnerabilities. These include:
利用链路指示的建议可能会引入新的安全漏洞。这些措施包括:
Spoofing Indication validation Denial of service
欺骗指示验证拒绝服务
Where link layer control frames are unprotected, they may be spoofed by an attacker. For example, PPP does not protect LCP frames such as LCP-Terminate, and [IEEE-802.11] does not protect management frames such as Associate/Reassociate, Disassociate, or Deauthenticate.
在链路层控制帧未受保护的情况下,攻击者可能会对其进行欺骗。例如,PPP不保护LCP帧(如LCP Terminate),而[IEEE-802.11]不保护管理帧(如关联/重新关联、解除关联或取消身份验证)。
Spoofing of link layer control traffic may enable attackers to exploit weaknesses in link indication proposals. For example, proposals that do not implement congestion avoidance can enable attackers to mount denial-of-service attacks.
欺骗链路层控制流量可能使攻击者能够利用链路指示建议中的弱点。例如,未实现拥塞避免的方案可使攻击者发起拒绝服务攻击。
However, even where the link layer incorporates security, attacks may still be possible if the security model is not consistent. For example, wireless LANs implementing [IEEE-802.11i] do not enable
然而,即使链路层包含安全性,如果安全模型不一致,攻击仍然可能发生。例如,实现[IEEE-802.11i]的无线局域网不启用
stations to send or receive IP packets on the link until completion of an authenticated key exchange protocol known as the "4-way handshake". As a result, a link implementing [IEEE-802.11i] cannot be considered usable at the Internet layer ("Link Up") until completion of the authenticated key exchange.
站点在链路上发送或接收IP数据包,直到完成称为“4路握手”的经过身份验证的密钥交换协议。因此,在完成认证密钥交换之前,实现[IEEE-802.11i]的链路不能被视为在互联网层可用(“链路连接”)。
However, while [IEEE-802.11i] requires sending of authenticated frames in order to obtain a "Link Up" indication, it does not support management frame authentication. This weakness can be exploited by attackers to enable denial-of-service attacks on stations attached to distant Access Points (APs).
然而,尽管[IEEE-802.11i]需要发送经过认证的帧以获得“链接”指示,但它不支持管理帧认证。攻击者可以利用此弱点对连接到远程访问点(AP)的站点发起拒绝服务攻击。
In [IEEE-802.11F], "Link Up" is considered to occur when an AP sends a Reassociation Response. At that point, the AP sends a spoofed frame with the station's source address to a multicast address, thereby causing switches within the Distribution System (DS) to learn the station's MAC address. While this enables forwarding of frames to the station at the new point of attachment, it also permits an attacker to disassociate a station located anywhere within the ESS, by sending an unauthenticated Reassociation Request frame.
在[IEEE-802.11F]中,当AP发送重新关联响应时,“链接”被视为发生。此时,AP将带有站点源地址的伪造帧发送到多播地址,从而使分发系统(DS)内的交换机了解站点的MAC地址。虽然这允许将帧转发到新连接点的站点,但它也允许攻击者通过发送未经验证的重新关联请求帧来解除位于ESS内任何位置的站点的关联。
"Fault Isolation and Recovery" [RFC816], Section 3, describes how hosts interact with routers for the purpose of fault recovery:
“故障隔离和恢复”[RFC816]第3节描述了主机如何与路由器交互以实现故障恢复:
Since the gateways always attempt to have a consistent and correct model of the internetwork topology, the host strategy for fault recovery is very simple. Whenever the host feels that something is wrong, it asks the gateway for advice, and, assuming the advice is forthcoming, it believes the advice completely. The advice will be wrong only during the transient period of negotiation, which immediately follows an outage, but will otherwise be reliably correct.
由于网关总是试图拥有一致且正确的网络拓扑模型,因此故障恢复的主机策略非常简单。每当主人觉得有什么不对劲时,它就会向网关寻求建议,并且,假设建议即将提出,它就会完全相信这些建议。只有在短暂的协商期间,该建议才是错误的,而协商期间紧接着大修,但在其他方面,该建议都是可靠的正确建议。
In fact, it is never necessary for a host to explicitly ask a gateway for advice, because the gateway will provide it as appropriate. When a host sends a datagram to some distant net, the host should be prepared to receive back either of two advisory messages which the gateway may send. The ICMP "redirect" message indicates that the gateway to which the host sent the datagram is no longer the best gateway to reach the net in question. The gateway will have forwarded the datagram, but the host should revise its routing table to have a different immediate address for this net. The ICMP "destination unreachable" message indicates that as a result of an outage, it is currently impossible to reach the addressed net or host
事实上,主机从来没有必要显式地向网关请求建议,因为网关会根据需要提供建议。当主机向某个远程网络发送数据报时,主机应准备接收网关可能发送的两条建议消息中的任何一条。ICMP“重定向”消息表示主机向其发送数据报的网关不再是到达所述网络的最佳网关。网关将转发数据报,但主机应修改其路由表,以使该网络具有不同的即时地址。ICMP“destination unreachable”(目的地不可到达)消息表示,由于中断,目前无法到达寻址网络或主机
in any manner. On receipt of this message, a host can either abandon the connection immediately without any further retransmission, or resend slowly to see if the fault is corrected in reasonable time.
无论如何。收到此消息后,主机可以立即放弃连接而不进行任何进一步的重新传输,也可以缓慢地重新发送以查看故障是否在合理的时间内得到纠正。
Given today's security environment, it is inadvisable for hosts to act on indications provided by routers without careful consideration. As noted in "ICMP attacks against TCP" [Gont], existing ICMP error messages may be exploited by attackers in order to abort connections in progress, prevent setup of new connections, or reduce throughput of ongoing connections. Similar attacks may also be launched against the Internet layer via forging of ICMP redirects.
考虑到当今的安全环境,主机在没有仔细考虑的情况下根据路由器提供的指示进行操作是不可取的。如“针对TCP的ICMP攻击”[Gont]中所述,攻击者可能利用现有ICMP错误消息中止正在进行的连接、阻止建立新连接或降低正在进行的连接的吞吐量。通过伪造ICMP重定向,也可能对互联网层发起类似的攻击。
Proposals for transported link indications need to demonstrate that they will not add a new set of similar vulnerabilities. Since transported link indications are typically unauthenticated, hosts receiving them may not be able to determine whether they are authentic, or even plausible.
传输链路指示方案需要证明它们不会增加一组新的类似漏洞。由于传输链路指示通常未经验证,因此接收它们的主机可能无法确定它们是否真实,甚至不可信。
Where link indication proposals may respond to unauthenticated link layer frames, they should utilize upper-layer security mechanisms, where possible. For example, even though a host might utilize an unauthenticated link layer control frame to conclude that a link has become operational, it can use SEND [RFC3971] or authenticated DHCP [RFC3118] in order to obtain secure Internet layer configuration.
如果链路指示建议可能响应未经验证的链路层帧,则应尽可能利用上层安全机制。例如,即使主机可能利用未经验证的链路层控制帧来推断链路已开始运行,它也可以使用发送[RFC3971]或经验证的DHCP[RFC3118]来获得安全的Internet层配置。
Link indication proposals need to be particularly careful to avoid enabling denial-of-service attacks that can be mounted at a distance. While wireless links are naturally vulnerable to interference, such attacks can only be perpetrated by an attacker capable of establishing radio contact with the target network. However, attacks that can be mounted from a distance, either by an attacker on another point of attachment within the same network or by an off-link attacker, expand the level of vulnerability.
链路指示建议需要特别小心,以避免在远距离发起拒绝服务攻击。虽然无线链路自然容易受到干扰,但此类攻击只能由能够与目标网络建立无线电联系的攻击者实施。但是,攻击者在同一网络内的另一个连接点上或断开链接的攻击者可以远距离发起的攻击会扩大漏洞级别。
The transport of link indications can increase risk by enabling vulnerabilities exploitable only by attackers on the local link to be executed across the Internet. Similarly, by integrating link indications with upper layers, proposals may enable a spoofed link layer frame to consume more resources on the host than might otherwise be the case. As a result, while it is important for upper layers to validate link indications, they should not expend excessive resources in doing so.
链路指示的传输会增加风险,因为它使只有本地链路上的攻击者才能利用的漏洞能够在互联网上执行。类似地,通过将链路指示与上层集成,建议可以使得伪造的链路层帧能够消耗主机上比其他情况更多的资源。因此,尽管上层验证链路指示很重要,但他们不应为此花费过多资源。
Congestion control is not only a transport issue, it is also a security issue. In order to not provide leverage to an attacker, a single forged link layer frame should not elicit a magnified response
拥塞控制不仅是一个交通问题,也是一个安全问题。为了不利用攻击者,单个伪造的链路层帧不应引发放大的响应
from one or more hosts, by generating either multiple responses or a single larger response. For example, proposals should not enable multiple hosts to respond to a frame with a multicast destination address.
通过生成多个响应或单个更大的响应,从一个或多个主机。例如,建议不应允许多个主机响应具有多播目标地址的帧。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[RFC816] Clark, D., "Fault Isolation and Recovery", RFC 816, July 1982.
[RFC816]Clark,D.,“故障隔离和恢复”,RFC816,1982年7月。
[RFC1058] Hedrick, C., "Routing Information Protocol", RFC 1058, June 1988.
[RFC1058]Hedrick,C.,“路由信息协议”,RFC10581988年6月。
[RFC1122] Braden, R., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC 1122, October 1989.
[RFC1122]Braden,R.,“互联网主机的要求——通信层”,标准3,RFC 1122,1989年10月。
[RFC1131] Moy, J., "The OSPF Specification", RFC 1131, October 1989.
[RFC1131]Moy,J.,“OSPF规范”,RFC11311989年10月。
[RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191, November 1990.
[RFC1191]Mogul,J.和S.Deering,“MTU发现路径”,RFC1191,1990年11月。
[RFC1256] Deering, S., "ICMP Router Discovery Messages", RFC 1256, September 1991.
[RFC1256]Deering,S.,“ICMP路由器发现消息”,RFC 12561991年9月。
[RFC1305] Mills, D., "Network Time Protocol (Version 3) Specification, Implementation and Analysis", RFC 1305, March 1992.
[RFC1305]Mills,D.,“网络时间协议(第3版)规范、实施和分析”,RFC1305,1992年3月。
[RFC1307] Young, J. and A. Nicholson, "Dynamically Switched Link Control Protocol", RFC 1307, March 1992.
[RFC1307]Young,J.和A.Nicholson,“动态交换链路控制协议”,RFC1307,1992年3月。
[RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994.
[RFC1661]辛普森,W.“点对点协议(PPP)”,标准51,RFC1661,1994年7月。
[RFC1812] Baker, F., "Requirements for IP Version 4 Routers", RFC 1812, June 1995.
[RFC1812]Baker,F.,“IP版本4路由器的要求”,RFC1812,1995年6月。
[RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, D., and E. Lear, "Address Allocation for Private Internets", BCP 5, RFC 1918, February 1996.
[RFC1918]Rekhter,Y.,Moskowitz,B.,Karrenberg,D.,de Groot,D.,和E.Lear,“私人互联网地址分配”,BCP 5,RFC 1918,1996年2月。
[RFC1981] McCann, J., Deering, S. and J. Mogul, "Path MTU Discovery for IP version 6", RFC 1981, June 1996.
[RFC1981]McCann,J.,Deering,S.和J.Mogul,“IP版本6的路径MTU发现”,RFC 1981,1996年6月。
[RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997.
[RFC2131]Droms,R.,“动态主机配置协议”,RFC21311997年3月。
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[RFC2328]Moy,J.,“OSPF版本2”,STD 54,RFC 2328,1998年4月。
[RFC2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", RFC 2461, December 1998.
[RFC2461]Narten,T.,Nordmark,E.,和W.Simpson,“IP版本6(IPv6)的邻居发现”,RFC2461,1998年12月。
[RFC2778] Day, M., Rosenberg, J., and H. Sugano, "A Model for Presence and Instant Messaging", RFC 2778, February 2000.
[RFC2778]Day,M.,Rosenberg,J.,和H.Sugano,“状态和即时信息模型”,RFC 27782000年2月。
[RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion Window Validation", RFC 2861, June 2000.
[RFC2861]Handley,M.,Padhye,J.,和S.Floyd,“TCP拥塞窗口验证”,RFC 28612000年6月。
[RFC2914] Floyd, S., "Congestion Control Principles", RFC 2914, BCP 41, September 2000.
[RFC2914]Floyd,S.,“拥塞控制原则”,RFC 2914,BCP 412000年9月。
[RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery", RFC 2923, September 2000.
[RFC2923]Lahey,K.,“路径MTU发现的TCP问题”,RFC 29232000年9月。
[RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H. Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V. Paxson, "Stream Control Transmission Protocol" RFC 2960, October 2000.
[RFC2960]Stewart,R.,Xie,Q.,Morneault,K.,Sharp,C.,Schwarzbauer,H.Taylor,T.,Rytina,I.,Kalla,M.,Zhang,L.,和V.Paxson,“流控制传输协议”RFC 29602000年10月。
[RFC3118] Droms, R. and B. Arbaugh, "Authentication for DHCP Messages", RFC 3118, June 2001.
[RFC3118]Droms,R.和B.Arbaugh,“DHCP消息的身份验证”,RFC31182001年6月。
[RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003.
[RFC3315]Droms,R.,Bound,J.,Volz,B.,Lemon,T.,Perkins,C.,和M.Carney,“IPv6的动态主机配置协议(DHCPv6)”,RFC3315,2003年7月。
[RFC3366] Fairhurst, G. and L. Wood, "Advice to link designers on link Automatic Repeat reQuest (ARQ)", BCP 62, RFC 3366, August 2002.
[RFC3366]Fairhurst,G.和L.Wood,“链接自动重复请求(ARQ)对链接设计者的建议”,BCP 62,RFC 3366,2002年8月。
[RFC3428] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and D. Gurle, "Session Initiation Protocol (SIP) Extension for Instant Messaging", RFC 3428, December 2002.
[RFC3428]Campbell,B.,Rosenberg,J.,Schulzrinne,H.,Huitema,C.,和D.Gurle,“即时消息的会话启动协议(SIP)扩展”,RFC 34282002年12月。
[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H. Levkowetz, "Extensible Authentication Protocol (EAP)", RFC 3748, June 2004.
[RFC3748]Aboba,B.,Blunk,L.,Vollbrecht,J.,Carlson,J.,和H.Levkowetz,“可扩展身份验证协议(EAP)”,RFC 3748,2004年6月。
[RFC3775] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in IPv6", RFC 3775, June 2004.
[RFC3775]Johnson,D.,Perkins,C.,和J.Arkko,“IPv6中的移动支持”,RFC 37752004年6月。
[RFC3921] Saint-Andre, P., "Extensible Messaging and Presence protocol (XMPP): Instant Messaging and Presence", RFC 3921, October 2004.
[RFC3921]Saint Andre,P.,“可扩展消息和状态协议(XMPP):即时消息和状态”,RFC 39212004年10月。
[RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic Configuration of Link-Local IPv4 Addresses", RFC 3927, May 2005.
[RFC3927]Cheshire,S.,Aboba,B.和E.Guttman,“链路本地IPv4地址的动态配置”,RFC 3927,2005年5月。
[RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure Neighbor Discovery (SEND)", RFC 3971, March 2005.
[RFC3971]Arkko,J.,Kempf,J.,Zill,B.,和P.Nikander,“安全邻居发现(SEND)”,RFC 39712005年3月。
[RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram Congestion Control Protocol (DCCP)", RFC 4340, March 2006.
[RFC4340]Kohler,E.,Handley,M.和S.Floyd,“数据报拥塞控制协议(DCCP)”,RFC 43402006年3月。
[RFC4423] Moskowitz, R. and P. Nikander, "Host Identity Protocol (HIP) Architecture", RFC 4423, May 2006.
[RFC4423]Moskowitz,R.和P.Nikander,“主机身份协议(HIP)体系结构”,RFC 4423,2006年5月。
[RFC4429] Moore, N., "Optimistic Duplicate Address Detection (DAD) for IPv6", RFC 4429, April 2006.
[RFC4429]Moore,N.,“IPv6的乐观重复地址检测(DAD)”,RFC4429,2006年4月。
[RFC4436] Aboba, B., Carlson, J., and S. Cheshire, "Detecting Network Attachment in IPv4 (DNAv4)", RFC 4436, March 2006.
[RFC4436]Aboba,B.,Carlson,J.,和S.Cheshire,“检测IPv4中的网络连接(DNAv4)”,RFC 44362006年3月。
[RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU Discovery", RFC 4821, March 2007.
[RFC4821]Mathis,M.和J.Heffner,“打包层路径MTU发现”,RFC 48212007年3月。
[Alimian] Alimian, A., "Roaming Interval Measurements", 11-04-0378-00-roaming-intervals-measurements.ppt, IEEE 802.11 submission (work in progress), March 2004.
[Alimian]Alimian,A.,“漫游间隔测量”,11-04-0378-00-Roaming-Interval-Measurements.ppt,IEEE 802.11提交(正在进行的工作),2004年3月。
[Aguayo] Aguayo, D., Bicket, J., Biswas, S., Judd, G., and R. Morris, "Link-level Measurements from an 802.11b Mesh Network", SIGCOMM '04, September 2004, Portland, Oregon.
[Aguayo]Aguayo,D.,Bicket,J.,Biswas,S.,Judd,G.,和R.Morris,“802.11b网状网络的链路级测量”,SIGCOMM'042004年9月,俄勒冈州波特兰。
[Bakshi] Bakshi, B., Krishna, P., Vadiya, N., and D.Pradhan, "Improving Performance of TCP over Wireless Networks", Proceedings of the 1997 International Conference on Distributed Computer Systems, Baltimore, May 1997.
[Bakshi]Bakshi,B.,Krishna,P.,Vadiya,N.,和D.Pradhan,“改进无线网络上TCP的性能”,1997年分布式计算机系统国际会议记录,巴尔的摩,1997年5月。
[BFD] Katz, D. and D. Ward, "Bidirectional Forwarding Detection", Work in Progress, March 2007.
[BFD]Katz,D.和D.Ward,“双向转发检测”,正在进行的工作,2007年3月。
[Biaz] Biaz, S. and N. Vaidya, "Discriminating Congestion Losses from Wireless Losses Using Interarrival Times at the Receiver", Proceedings of the IEEE Symposium on Application-Specific Systems and Software Engineering and Technology, Richardson, TX, Mar 1999.
[Biaz]Biaz,S.和N.Vaidya,“利用接收机的到达间隔时间区分拥塞损失和无线损失”,IEEE应用特定系统和软件工程与技术研讨会论文集,德克萨斯州理查森,1999年3月。
[CARA] Kim, J., Kim, S., and S. Choi, "CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs", Korean Institute of Communication Sciences (KICS) Journal, Feb. 2006
[CARA]Kim,J.,Kim,S.,和S.Choi,“CARA:IEEE 802.11无线局域网的碰撞感知速率自适应”,韩国通信科学研究所(KICS)杂志,2006年2月
[Chandran] Chandran, K., Raghunathan, S., Venkatesan, S., and R. Prakash, "A Feedback-Based Scheme for Improving TCP Performance in Ad-Hoc Wireless Networks", Proceedings of the 18th International Conference on Distributed Computing Systems (ICDCS), Amsterdam, May 1998.
[Chandran]Chandran,K.,Raghunathan,S.,Venkatesan,S.,和R.Prakash,“改进无线自组网中TCP性能的基于反馈的方案”,第18届分布式计算系统国际会议记录,阿姆斯特丹,1998年5月。
[DNAv6] Narayanan, S., "Detecting Network Attachment in IPv6 (DNAv6)", Work in Progress, March 2007.
[DNAv6]Narayanan,S.,“在IPv6中检测网络连接(DNAv6)”,正在进行的工作,2007年3月。
[E2ELinkup] Dawkins, S. and C. Williams, "End-to-end, Implicit 'Link-Up' Notification", Work in Progress, October 2003.
[E2ELinkup]Dawkins,S.和C.Williams,“端到端,隐含的‘连接’通知”,正在进行的工作,2003年10月。
[EAPIKEv2] Tschofenig, H., Kroeselberg, D., Pashalidis, A., Ohba, Y., and F. Bersani, "EAP IKEv2 Method", Work in Progress, March 2007.
[EAPIKEv2]Tschofenig,H.,Kroeselberg,D.,Pashalidis,A.,Ohba,Y.,和F.Bersani,“EAP IKEv2方法”,正在进行的工作,2007年3月。
[Eckhardt] Eckhardt, D. and P. Steenkiste, "Measurement and Analysis of the Error Characteristics of an In-Building Wireless Network", SIGCOMM '96, August 1996, Stanford, CA.
[Eckhardt]Eckhardt,D.和P.Steenkiste,“建筑内无线网络误差特性的测量和分析”,SIGCOMM'961996年8月,加利福尼亚州斯坦福。
[Eddy] Eddy, W. and Y. Swami, "Adapting End Host Congestion Control for Mobility", Technical Report CR-2005- 213838, NASA Glenn Research Center, July 2005.
[Eddy]Eddy,W.和Y.Swami,“为移动性调整终端主机拥塞控制”,技术报告CR-2005-213838,NASA格伦研究中心,2005年7月。
[EfficientEthernet] Gunaratne, C. and K. Christensen, "Ethernet Adaptive Link Rate: System Design and Performance Evaluation", Proceedings of the IEEE Conference on Local Computer Networks, pp. 28-35, November 2006.
[EfficientThernet]Gunaratne,C.和K.Christensen,“以太网自适应链路速率:系统设计和性能评估”,IEEE本地计算机网络会议记录,第28-35页,2006年11月。
[Eggert] Eggert, L., Schuetz, S., and S. Schmid, "TCP Extensions for Immediate Retransmissions", Work in Progress, June 2005.
[Eggert]Eggert,L.,Schuetz,S.和S.Schmid,“用于立即重传的TCP扩展”,正在进行的工作,2005年6月。
[Eggert2] Eggert, L. and W. Eddy, "Towards More Expressive Transport-Layer Interfaces", MobiArch '06, San Francisco, CA.
[EGGETT2] EGGETT,L和W. Eddy,“朝向更具表现力的传输层接口”,MiBARCH 06,旧金山,CA.
[ETX] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris, "A High-Throughput Path Metric for Multi-Hop Wireless Routing", Proceedings of the 9th ACM International Conference on Mobile Computing and Networking (MobiCom '03), San Diego, California, September 2003.
[ETX]Douglas S.J.De Couto、Daniel Aguayo、John Bicket和Robert Morris,“多跳无线路由的高吞吐量路径度量”,第九届ACM移动计算和网络国际会议记录(MobiCom'03),加利福尼亚州圣地亚哥,2003年9月。
[ETX-Rate] Padhye, J., Draves, R. and B. Zill, "Routing in multi-radio, multi-hop wireless mesh networks", Proceedings of ACM MobiCom Conference, September 2003.
[ETX Rate]Padhye,J.,Draves,R.和B.Zill,“多无线电、多跳无线网状网络中的路由”,ACM MobiCom会议记录,2003年9月。
[ETX-Radio] Kulkarni, G., Nandan, A., Gerla, M., and M. Srivastava, "A Radio Aware Routing Protocol for Wireless Mesh Networks", UCLA Computer Science Department, Los Angeles, CA.
[ETX Radio]Kulkarni,G.,Nandan,A.,Gerla,M.,和M.Srivastava,“无线网状网络的无线感知路由协议”,加州大学洛杉矶分校计算机科学系,加利福尼亚州洛杉矶。
[GenTrig] Gupta, V. and D. Johnston, "A Generalized Model for Link Layer Triggers", submission to IEEE 802.21 (work in progress), March 2004, available at: <http://www.ieee802.org/handoff/march04_meeting_docs/ Generalized_triggers-02.pdf>.
[GenTrig]Gupta,V.和D.Johnston,“链路层触发器的通用模型”,提交至IEEE 802.21(正在进行的工作),2004年3月,可在以下网址获得:<http://www.ieee802.org/handoff/march04_meeting_docs/ 通用触发器-02.pdf>。
[Goel] Goel, S. and D. Sanghi, "Improving TCP Performance over Wireless Links", Proceedings of TENCON'98, pages 332-335. IEEE, December 1998.
[Goel]Goel,S.和D.Sanghi,“改善无线链路上的TCP性能”,TENCON'98会议记录,第332-335页。IEEE,1998年12月。
[Gont] Gont, F., "ICMP attacks against TCP", Work in Progress, October 2006.
[Gont]Gont,F.,“ICMP对TCP的攻击”,正在进行的工作,2006年10月。
[Gurtov] Gurtov, A. and J. Korhonen, "Effect of Vertical Handovers on Performance of TCP-Friendly Rate Control", to appear in ACM MCCR, 2004.
[Gurtov]Gurtov,A.和J.Korhonen,“垂直切换对TCP友好速率控制性能的影响”,发表于ACM MCCR,2004年。
[GurtovFloyd] Gurtov, A. and S. Floyd, "Modeling Wireless Links for Transport Protocols", Computer Communications Review (CCR) 34, 2 (2003).
[GurtovFloyd]Gurtov,A.和S.Floyd,“传输协议的无线链路建模”,计算机通信评论(CCR)34,2(2003)。
[Haratcherev] Haratcherev, I., Lagendijk, R., Langendoen, K., and H. Sips, "Hybrid Rate Control for IEEE 802.11", MobiWac '04, October 1, 2004, Philadelphia, Pennsylvania, USA.
[Haratcherev]Haratcherev,I.,Lagendijk,R.,Langenden,K.,和H.Sips,“IEEE 802.11的混合速率控制”,MobiWac'042004年10月1日,美国宾夕法尼亚州费城。
[Haratcherev2] Haratcherev, I., "Application-oriented Link Adaptation for IEEE 802.11", Ph.D. Thesis, Technical University of Delft, Netherlands, ISBN-10:90-9020513-6, ISBN-13:978-90-9020513-7, March 2006.
[Haratcherev2]Haratcherev,I.,“IEEE 802.11面向应用的链路适配”,博士。毕业论文,荷兰代尔夫特技术大学,ISBN-10:90-902053-6,ISBN-13:9890-902053-3-7,2006年3月。
[HMP] Lee, S., Cho, J., and A. Campbell, "Hotspot Mitigation Protocol (HMP)", Work in Progress, October 2003.
[HMP]Lee,S.,Cho,J.和A.Campbell,“热点缓解协议(HMP)”,正在进行的工作,2003年10月。
[Holland] Holland, G. and N. Vaidya, "Analysis of TCP Performance over Mobile Ad Hoc Networks", Proceedings of the Fifth International Conference on Mobile Computing and Networking, pages 219-230. ACM/IEEE, Seattle, August 1999.
[Holland]Holland,G.和N.Vaidya,“移动adhoc网络上TCP性能的分析”,《第五届移动计算和网络国际会议论文集》,第219-230页。ACM/IEEE,西雅图,1999年8月。
[Iannaccone] Iannaccone, G., Chuah, C., Mortier, R., Bhattacharyya, S., and C. Diot, "Analysis of link failures in an IP backbone", Proc. of ACM Sigcomm Internet Measurement Workshop, November, 2002.
[Ianaccone]Ianaccone,G.,Chuah,C.,Mortier,R.,Bhattacharyya,S.,和C.Diot,“IP主干网链路故障分析”,Proc。ACM Sigcomm互联网测量研讨会,2002年11月。
[IEEE-802.1X] Institute of Electrical and Electronics Engineers, "Local and Metropolitan Area Networks: Port-Based Network Access Control", IEEE Standard 802.1X, December 2004.
[IEEE-802.1X]电气和电子工程师协会,“局域网和城域网:基于端口的网络访问控制”,IEEE标准802.1X,2004年12月。
[IEEE-802.11] Institute of Electrical and Electronics Engineers, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE Standard 802.11, 2003.
[IEEE-802.11]电气和电子工程师协会,“无线LAN介质访问控制(MAC)和物理层(PHY)规范”,IEEE标准802.11,2003年。
[IEEE-802.11e] Institute of Electrical and Electronics Engineers, "Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements", IEEE 802.11e, November 2005.
[IEEE-802.11e]电气和电子工程师协会,“系统间电信和信息交换标准——LAN/MAN特定要求——第11部分:无线LAN介质访问控制(MAC)和物理层(PHY)规范——修改件8:介质访问控制(MAC)服务质量增强”,IEEE 802.11e,2005年11月。
[IEEE-802.11F] Institute of Electrical and Electronics Engineers, "IEEE Trial-Use Recommended Practice for Multi-Vendor Access Point Interoperability via an Inter-Access Point Protocol Across Distribution Systems Supporting IEEE 802.11 Operation", IEEE 802.11F, June 2003 (now deprecated).
[IEEE-802.11F]电气和电子工程师协会,“通过支持IEEE 802.11运行的配电系统间接入点协议实现多供应商接入点互操作性的IEEE试用推荐规程”,IEEE 802.11F,2003年6月(现已弃用)。
[IEEE-802.11i] Institute of Electrical and Electronics Engineers, "Supplement to Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Specification for Enhanced Security", IEEE 802.11i, July 2004.
[IEEE-802.11i]电气和电子工程师协会,“系统间电信和信息交换标准的补充-局域网/城域网特定要求-第11部分:无线局域网介质访问控制(MAC)和物理层(PHY)规范:增强安全规范”,IEEE 802.11i,2004年7月。
[IEEE-802.11k] Institute of Electrical and Electronics Engineers, "Draft Amendment to Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 7: Radio Resource Management", IEEE 802.11k/D7.0, January 2007.
[IEEE-802.11k]电气和电子工程师协会,“系统间电信和信息交换修正草案——LAN/MAN特定要求——第11部分:无线LAN介质访问控制(MAC)和物理层(PHY)规范——修正案7:无线电资源管理”,IEEE 802.11k/D7.0,2007年1月。
[IEEE-802.21] Institute of Electrical and Electronics Engineers, "Draft Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 21: Media Independent Handover", IEEE 802.21D0, June 2005.
[IEEE-802.21]电气和电子工程师协会,“系统间电信和信息交换标准草案-局域网/城域网特定要求-第21部分:媒体独立切换”,IEEE 802.21D0,2005年6月。
[Kamerman] Kamerman, A. and L. Monteban, "WaveLAN II: A High-Performance Wireless LAN for the Unlicensed Band", Bell Labs Technical Journal, Summer 1997.
[Kamerman]Kamerman,A.和L.Monteban,“WaveLAN II:用于未经许可频段的高性能无线局域网”,贝尔实验室技术期刊,1997年夏季。
[Kim] Kim, K., Park, Y., Suh, K., and Y. Park, "The BU-trigger method for improving TCP performance over Mobile IPv6", Work in Progress, August 2004.
[Kim]Kim,K.,Park,Y.,Suh,K.,和Y.Park,“移动IPv6上改进TCP性能的BU触发方法”,正在进行的工作,2004年8月。
[Kotz] Kotz, D., Newport, C., and C. Elliot, "The mistaken axioms of wireless-network research", Dartmouth College Computer Science Technical Report TR2003-467, July 2003.
[Kotz]Kotz,D.,Newport,C.Elliot,“无线网络研究的错误公理”,达特茅斯学院计算机科学技术报告TR2003-467,2003年7月。
[Krishnan] Krishnan, R., Sterbenz, J., Eddy, W., Partridge, C., and M. Allman, "Explicit Transport Error Notification (ETEN) for Error-Prone Wireless and Satellite Networks", Computer Networks, 46 (3), October 2004.
[Krishnan]Krishnan,R.,Sterbenz,J.,Eddy,W.,Partridge,C.,和M.Allman,“易出错无线和卫星网络的显式传输错误通知(ETEN)”,计算机网络,46(3),2004年10月。
[Lacage] Lacage, M., Manshaei, M., and T. Turletti, "IEEE 802.11 Rate Adaptation: A Practical Approach", MSWiM '04, October 4-6, 2004, Venezia, Italy.
[Lacage]Lacage,M.,Manshaei,M.,和T.Turletti,“IEEE 802.11速率自适应:一种实用方法”,MSWiM'042004年10月4-6日,意大利威尼斯。
[Lee] Park, S., Lee, M., and J. Korhonen, "Link Characteristics Information for Mobile IP", Work in Progress, January 2007.
[Lee]Park,S.,Lee,M.,和J.Korhonen,“移动IP的链路特征信息”,正在进行的工作,2007年1月。
[Ludwig] Ludwig, R. and B. Rathonyi, "Link-layer Enhancements for TCP/IP over GSM", Proceedings of IEEE Infocom '99, March 1999.
[Ludwig]Ludwig,R.和B.Rathonyi,“GSM上TCP/IP的链路层增强”,IEEE Infocom'99会议记录,1999年3月。
[MIPEAP] Giaretta, C., Guardini, I., Demaria, E., Bournelle, J., and M. Laurent-Maknavicius, "MIPv6 Authorization and Configuration based on EAP", Work in Progress, October 2006.
[MIPEAP]Giaretta,C.,Guardini,I.,Demaria,E.,Bournelle,J.,和M.Laurent Maknavicius,“基于EAP的MIPv6授权和配置”,正在进行的工作,2006年10月。
[Mishra] Mitra, A., Shin, M., and W. Arbaugh, "An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process", CS-TR-4395, University of Maryland Department of Computer Science, September 2002.
[米斯拉]米特拉,A,Shin,M.和W. Arbaugh,“对IEEE 802.11 MAC层切换过程的实证分析”,CS-TR 4395,马里兰大学计算机科学系,2002年9月。
[Morgan] Morgan, S. and S. Keshav, "Packet-Pair Rate Control - Buffer Requirements and Overload Performance", Technical Memorandum, AT&T Bell Laboratories, October 1994.
[Morgan]Morgan,S.和S.Keshav,“数据包对速率控制-缓冲区要求和过载性能”,技术备忘录,AT&T贝尔实验室,1994年10月。
[Mun] Mun, Y. and J. Park, "Layer 2 Handoff for Mobile-IPv4 with 802.11", Work in Progress, March 2004.
[Mun]Mun,Y.和J.Park,“802.11移动IPv4的第2层切换”,正在进行的工作,2004年3月。
[ONOE] Onoe Rate Control, <http://madwifi.org/browser/trunk/ath_rate/onoe>.
[ONOE]ONOE速率控制<http://madwifi.org/browser/trunk/ath_rate/onoe>.
[Park] Park, S., Njedjou, E., and N. Montavont, "L2 Triggers Optimized Mobile IPv6 Vertical Handover: The 802.11/GPRS Example", Work in Progress, July 2004.
[Park]Park,S.,Njedjou,E.,和N.Montavont,“L2触发优化移动IPv6垂直切换:802.11/GPRS示例”,正在进行的工作,2004年7月。
[Pavon] Pavon, J. and S. Choi, "Link adaptation strategy for IEEE802.11 WLAN via received signal strength measurement", IEEE International Conference on Communications, 2003 (ICC '03), volume 2, pages 1108- 1113, Anchorage, Alaska, USA, May 2003.
[Pavon]Pavon,J.和S.Choi,“通过接收信号强度测量的IEEE802.11 WLAN链路自适应策略”,IEEE国际通信会议,2003年(ICC'03),第2卷,第1108-1113页,美国阿拉斯加州安克雷奇,2003年5月。
[PEAP] Palekar, A., Simon, D., Salowey, J., Zhou, H., Zorn, G., and S. Josefsson, "Protected EAP Protocol (PEAP) Version 2", Work in Progress, October 2004.
[PEAP]Palekar,A.,Simon,D.,Salowey,J.,Zhou,H.,Zorn,G.,和S.Josefsson,“受保护的EAP协议(PEAP)版本2”,正在进行的工作,2004年10月。
[PRNET] Jubin, J. and J. Tornow, "The DARPA packet radio network protocols", Proceedings of the IEEE, 75(1), January 1987.
[PRNET]Jubin,J.和J.Tornow,“DARPA分组无线网络协议”,IEEE会议记录,75(1),1987年1月。
[Qiao] Qiao D., Choi, S., Jain, A., and Kang G. Shin, "MiSer: An Optimal Low-Energy Transmission Strategy for IEEE 802.11 a/h", in Proc. ACM MobiCom'03, San Diego, CA, September 2003.
[Qiao]Qiao D.,Choi,S.,Jain,A.,和Kang G.Shin,“吝啬鬼:IEEE 802.11 A/h的最佳低能传输策略”,在Proc。ACM MobiCom'03,加利福尼亚州圣地亚哥,2003年9月。
[RBAR] Holland, G., Vaidya, N., and P. Bahl, "A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks", Proceedings ACM MOBICOM, July 2001.
[RBAR]Holland,G.,Vaidya,N.,和P.Bahl,“用于多跳无线网络的速率自适应MAC协议”,ACM MOBICOM论文集,2001年7月。
[Ramani] Ramani, I. and S. Savage, "SyncScan: Practical Fast Handoff for 802.11 Infrastructure Networks", Proceedings of the IEEE InfoCon 2005, March 2005.
[Ramani]Ramani,I.和S.Savage,“同步扫描:802.11基础设施网络的实用快速切换”,IEEE信息大会2005年会议记录,2005年3月。
[Robust] Wong, S., Yang, H ., Lu, S., and V. Bharghavan, "Robust Rate Adaptation for 802.11 Wireless Networks", ACM MobiCom'06, Los Angeles, CA, September 2006.
[稳健]Wong,S.,Yang,H.,Lu,S.,和V.Bharghavan,“802.11无线网络的稳健速率自适应”,ACM MobiCom'06,加利福尼亚州洛杉矶,2006年9月。
[SampleRate] Bicket, J., "Bit-rate Selection in Wireless networks", MIT Master's Thesis, 2005.
[SampleRate]Bicket,J.,“无线网络中的比特率选择”,麻省理工学院硕士论文,2005年。
[Scott] Scott, J., Mapp, G., "Link Layer Based TCP Optimisation for Disconnecting Networks", ACM SIGCOMM Computer Communication Review, 33(5), October 2003.
[Scott]Scott,J.,Mapp,G.,“基于链路层的TCP断开网络优化”,ACM SIGCOMM计算机通信评论,33(5),2003年10月。
[Schuetz] Schutz, S., Eggert, L., Schmid, S., and M. Brunner, "Protocol Enhancements for Intermittently Connected Hosts", ACM SIGCOMM Computer Communications Review, Volume 35, Number 2, July 2005.
[Schuetz]Schutz,S.,Eggert,L.,Schmid,S.,和M.Brunner,“间歇性连接主机的协议增强”,ACM SIGCOMM计算机通信评论,第35卷,第2期,2005年7月。
[Shortest] Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Chambers and Robert Morris, "Performance of Multihop Wireless Networks: Shortest Path is Not Enough", Proceedings of the First Workshop on Hot Topics in Networking (HotNets-I), Princeton, New Jersey, October 2002.
[最短]道格拉斯·S·J·德·库托、丹尼尔·阿加约、本杰明·A·钱伯斯和罗伯特·莫里斯,“多跳无线网络的性能:最短路径是不够的”,网络热门话题第一次研讨会论文集(HotNets-I),新泽西州普林斯顿,2002年10月。
[TRIGTRAN] Dawkins, S., Williams, C., and A. Yegin, "Framework and Requirements for TRIGTRAN", Work in Progress, August 2003.
[TRIGTRAN]Dawkins,S.,Williams,C.,和A.Yegin,“TRIGTRAN的框架和要求”,正在进行的工作,2003年8月。
[Vatn] Vatn, J., "An experimental study of IEEE 802.11b handover performance and its effect on voice traffic", TRITA-IMIT-TSLAB R 03:01, KTH Royal Institute of Technology, Stockholm, Sweden, July 2003.
[Vatn]Vatn,J.,“IEEE 802.11b切换性能及其对语音流量影响的实验研究”,TRITA-IMIT-TSLAB R 03:01,瑞典斯德哥尔摩KTH皇家理工学院,2003年7月。
[Velayos] Velayos, H. and G. Karlsson, "Techniques to Reduce IEEE 802.11b MAC Layer Handover Time", TRITA-IMIT-LCN R 03:02, KTH Royal Institute of Technology, Stockholm, Sweden, April 2003.
[Velayos]Velayos,H.和G.Karlsson,“减少IEEE 802.11b MAC层切换时间的技术”,TRITA-IMIT-LCN R 03:02,第K皇家理工学院,斯德哥尔摩,瑞典,2003年4月。
[Vertical] Zhang, Q., Guo, C., Guo, Z., and W. Zhu, "Efficient Mobility Management for Vertical Handoff between WWAN and WLAN", IEEE Communications Magazine, November 2003.
[垂直]Zhang,Q.,Guo,C.,Guo,Z.,和W.Zhu,“WWAN和WLAN之间垂直切换的有效移动性管理”,IEEE通信杂志,2003年11月。
[Villamizar] Villamizar, C., "OSPF Optimized Multipath (OSPF-OMP)", Work in Progress, February 1999.
[Villamizar]Villamizar,C.,“OSPF优化多路径(OSPF-OMP)”,正在进行的工作,1999年2月。
[Xylomenos] Xylomenos, G., "Multi Service Link Layers: An Approach to Enhancing Internet Performance over Wireless Links", Ph.D. thesis, University of California at San Diego, 1999.
[Xylomenos]Xylomenos,G.,“多服务链路层:通过无线链路增强互联网性能的方法”,博士。毕业论文,加州大学圣地亚哥分校,1999。
[Yegin] Yegin, A., "Link-layer Triggers Protocol", Work in Progress, June 2002.
[Yegin]Yegin,A.,“链路层触发协议”,正在进行的工作,2002年6月。
The authors would like to acknowledge James Kempf, Phil Roberts, Gorry Fairhurst, John Wroclawski, Aaron Falk, Sally Floyd, Pekka Savola, Pekka Nikander, Dave Thaler, Yogesh Swami, Wesley Eddy, and Janne Peisa for contributions to this document.
作者感谢詹姆斯·坎普夫、菲尔·罗伯茨、戈里·费尔赫斯特、约翰·沃克罗夫斯基、亚伦·福克、萨利·弗洛伊德、佩卡·萨沃拉、佩卡·尼坎德、戴夫·泰勒、约格什·斯瓦米、卫斯理·艾迪和詹妮·佩萨对本文件的贡献。
This appendix summarizes the literature with respect to link indications on wireless local area networks.
本附录总结了有关无线局域网链路指示的文献。
The characteristics of wireless links have been found to vary considerably depending on the environment.
人们发现,无线链路的特性因环境而异。
In "Performance of Multihop Wireless Networks: Shortest Path is Not Enough" [Shortest], the authors studied the performance of both an indoor and outdoor mesh network. By measuring inter-node throughput, the best path between nodes was computed. The throughput of the best path was compared with the throughput of the shortest path computed based on a hop-count metric. In almost all cases, the shortest path route offered considerably lower throughput than the best path.
在“多跳无线网络的性能:最短路径是不够的”[最短],作者研究了室内和室外网状网络的性能。通过测量节点间吞吐量,计算节点间的最佳路径。将最佳路径的吞吐量与基于跳数度量计算的最短路径的吞吐量进行比较。在几乎所有情况下,最短路径提供的吞吐量比最佳路径低得多。
In examining link behavior, the authors found that rather than exhibiting a bi-modal distribution between "up" (low loss rate) and "down" (high loss rate), many links exhibited intermediate loss rates. Asymmetry was also common, with 30 percent of links demonstrating substantial differences in the loss rates in each direction. As a result, on wireless networks the measured throughput can differ substantially from the negotiated rate due to retransmissions, and successful delivery of routing packets is not necessarily an indication that the link is useful for delivery of data.
在研究链路行为时,作者发现,许多链路没有表现出“上升”(低损耗率)和“下降”(高损耗率)之间的双峰分布,而是表现出中等损耗率。不对称现象也很普遍,30%的链接在每个方向上的损失率都有很大差异。结果,在无线网络上,由于重传,所测量的吞吐量可以与协商速率显著不同,并且路由分组的成功递送不一定表示链路对于数据递送有用。
In "Measurement and Analysis of the Error Characteristics of an In-Building Wireless Network" [Eckhardt], the authors characterize the performance of an AT&T Wavelan 2 Mbps in-building WLAN operating in Infrastructure mode on the Carnegie Mellon campus. In this study, very low frame loss was experienced. As a result, links could be assumed to operate either very well or not at all.
在“建筑内无线网络误差特性的测量和分析”[Eckhardt]中,作者描述了在卡内基梅隆校园内,AT&T Wavelan 2Mbps建筑WLAN在基础设施模式下的性能。在这项研究中,经历了非常低的帧丢失。因此,可以假设链路运行良好或根本不运行。
In "Link-level Measurements from an 802.11b Mesh Network" [Aguayo], the authors analyze the causes of frame loss in a 38-node urban multi-hop 802.11 ad-hoc network. In most cases, links that are very bad in one direction tend to be bad in both directions, and links that are very good in one direction tend to be good in both directions. However, 30 percent of links exhibited loss rates differing substantially in each direction.
在“来自802.11b网状网络的链路级测量”[Aguayo]中,作者分析了38节点城市多跳802.11 adhoc网络中帧丢失的原因。在大多数情况下,在一个方向上非常糟糕的链接往往在两个方向上都不好,而在一个方向上非常好的链接往往在两个方向上都好。然而,30%的链路在每个方向上表现出明显不同的损耗率。
Signal to noise ratio (SNR) and distance showed little value in predicting loss rates, and rather than exhibiting a step-function transition between "up" (low loss) or "down" (high loss) states, inter-node loss rates varied widely, demonstrating a nearly uniform
信噪比(SNR)和距离在预测损耗率方面没有什么价值,节点间损耗率变化很大,表现出几乎一致的趋势,而不是在“上升”(低损耗)或“下降”(高损耗)状态之间表现出阶跃函数转换
distribution over the range at the lower rates. The authors attribute the observed effects to multi-path fading, rather than attenuation or interference.
以较低的速率分布在整个范围内。作者将观察到的影响归因于多径衰落,而不是衰减或干扰。
The findings of [Eckhardt] and [Aguayo] demonstrate the diversity of link conditions observed in practice. While for indoor infrastructure networks site surveys and careful measurement can assist in promoting ideal behavior, in ad-hoc/mesh networks node mobility and external factors such as weather may not be easily controlled.
[Eckhardt]和[Aguayo]的研究结果证明了实践中观察到的链路条件的多样性。虽然对于室内基础设施网络,现场调查和仔细测量有助于促进理想行为,但在adhoc/mesh网络中,节点移动性和天气等外部因素可能不容易控制。
Considerable diversity in behavior is also observed due to implementation effects. "Techniques to reduce IEEE 802.11b MAC layer handover time" [Velayos] measured handover times for a stationary STA after the AP was turned off. This study divided handover times into detection (determination of disconnection from the existing point of attachment), search (discovery of alternative attachment points), and execution (connection to an alternative point of attachment) phases. These measurements indicated that the duration of the detection phase (the largest component of handoff delay) is determined by the number of non-acknowledged frames triggering the search phase and delays due to precursors such as RTS/CTS and rate adaptation.
由于实施效果,还观察到相当多的行为差异。“减少IEEE 802.11b MAC层切换时间的技术”[Velayos]测量了AP关闭后静止STA的切换时间。本研究将切换时间分为检测(确定与现有连接点的断开连接)、搜索(发现替代连接点)和执行(连接到替代连接点)阶段。这些测量表明,检测阶段(切换延迟的最大组成部分)的持续时间由触发搜索阶段的未确认帧的数量以及由于诸如RTS/CTS和速率自适应等前体引起的延迟来确定。
Detection behavior varied widely between implementations. For example, network interface cards (NICs) designed for desktops attempted more retransmissions prior to triggering search as compared with laptop designs, since they assumed that the AP was always in range, regardless of whether the Beacon was received.
不同实现之间的检测行为差异很大。例如,与笔记本电脑设计相比,为台式机设计的网络接口卡(NIC)在触发搜索之前尝试了更多的重传,因为它们假设AP始终在范围内,而不管是否接收到信标。
The study recommends that the duration of the detection phase be reduced by initiating the search phase as soon as collisions can be excluded as the cause of non-acknowledged transmissions; the authors recommend three consecutive transmission failures as the cutoff. This approach is both quicker and more immune to multi-path interference than monitoring of the SNR. Where the STA is not sending or receiving frames, it is recommended that Beacon reception be tracked in order to detect disconnection, and that Beacon spacing be reduced to 60 ms in order to reduce detection times. In order to compensate for more frequent triggering of the search phase, the authors recommend algorithms for wait time reduction, as well as interleaving of search and data frame transmission.
该研究建议,一旦可以排除碰撞作为未确认传输的原因,立即启动搜索阶段,从而缩短检测阶段的持续时间;作者建议将连续三次传输故障作为截止点。与监测信噪比相比,这种方法速度更快,对多径干扰的免疫力更强。在STA不发送或接收帧的情况下,建议跟踪信标接收以检测断开,并将信标间隔减小到60 ms以减少检测时间。为了补偿搜索阶段更频繁的触发,作者推荐了减少等待时间的算法,以及搜索和数据帧传输的交错。
"An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process" [Mishra] investigates handoff latencies obtained with three mobile STA implementations communicating with two APs. The study found that there is a large variation in handoff latency among STA and AP implementations and that implementations utilize different message sequences. For example, one STA sends a Reassociation Request prior
“IEEE 802.11 MAC层切换过程的实证分析”[Mishra]调查了三个移动STA实现与两个AP通信时获得的切换延迟。该研究发现,STA和AP实现之间的切换延迟差异很大,并且实现使用不同的消息序列。例如,一个STA在之前发送重新关联请求
to authentication, which results in receipt of a Deauthenticate message. The study divided handoff latency into discovery, authentication, and reassociation exchanges, concluding that the discovery phase was the dominant component of handoff delay. Latency in the detection phase was not investigated.
到身份验证,这将导致收到取消身份验证消息。该研究将切换延迟分为发现、身份验证和重新关联交换,得出的结论是发现阶段是切换延迟的主要组成部分。未调查检测阶段的延迟。
"SyncScan: Practical Fast Handoff for 802.11 Infrastructure Networks" [Ramani] weighs the pros and cons of active versus passive scanning. The authors point out the advantages of timed Beacon reception, which had previously been incorporated into [IEEE-802.11k]. Timed Beacon reception allows the station to continually keep up to date on the signal to noise ratio of neighboring APs, allowing handoff to occur earlier. Since the station does not need to wait for initial and subsequent responses to a broadcast Probe Response (MinChannelTime and MaxChannelTime, respectively), performance is comparable to what is achievable with 802.11k Neighbor Reports and unicast Probe Requests.
“SyncScan:802.11基础设施网络的实用快速切换”[Ramani]权衡了主动扫描和被动扫描的优缺点。作者指出了定时信标接收的优点,该技术先前已被纳入[IEEE-802.11k]中。定时信标接收允许站点持续更新相邻AP的信噪比,允许更早发生切换。由于站点不需要等待对广播探测响应的初始和后续响应(分别为MinChannelTime和MaxChannelTime),因此性能可与802.11k邻居报告和单播探测请求实现的性能相媲美。
The authors measured the channel switching delay, the time it takes to switch to a new frequency and begin receiving frames. Measurements ranged from 5 ms to 19 ms per channel; where timed Beacon reception or interleaved active scanning is used, switching time contributes significantly to overall handoff latency. The authors propose deployment of APs with Beacons synchronized via Network Time Protocol (NTP) [RFC1305], enabling a driver implementing SyncScan to work with legacy APs without requiring implementation of new protocols. The authors measured the distribution of inter-arrival times for stations implementing SyncScan, with excellent results.
作者测量了信道切换延迟,即切换到新频率并开始接收帧所需的时间。每个通道的测量范围为5 ms到19 ms;在使用定时信标接收或交织主动扫描的情况下,切换时间对总体切换延迟有显著影响。作者建议使用通过网络时间协议(NTP)[RFC1305]同步的信标部署AP,使实现SyncScan的驱动程序能够在不需要实施新协议的情况下与传统AP一起工作。作者测量了实施SyncScan的站点间到达时间的分布,获得了良好的结果。
"Roaming Interval Measurements" [Alimian] presents data on the behavior of stationary STAs after the AP signal has been shut off. This study highlighted implementation differences in rate adaptation as well as detection, scanning, and handoff. As in [Velayos], performance varied widely between implementations, from half an order of magnitude variation in rate adaptation to an order of magnitude difference in detection times, two orders of magnitude in scanning, and one and a half orders of magnitude in handoff times.
“漫游间隔测量”[Alimian]提供AP信号关闭后静止STA行为的数据。这项研究强调了速率适应以及检测、扫描和切换方面的实现差异。与[Velayos]一样,不同实现的性能差异很大,从速率自适应的半个数量级变化到检测时间的一个数量级差异、扫描的两个数量级以及切换时间的一个半数量级。
"An experimental study of IEEE 802.11b handoff performance and its effect on voice traffic" [Vatn] describes handover behavior observed when the signal from the AP is gradually attenuated, which is more representative of field experience than the shutoff techniques used in [Velayos]. Stations were configured to initiate handover when signal strength dipped below a threshold, rather than purely based on frame loss, so that they could begin handover while still connected to the current AP. It was noted that stations continued to receive data frames during the search phase. Station-initiated
“IEEE 802.11b切换性能及其对语音流量影响的实验研究”[Vatn]描述了当来自AP的信号逐渐衰减时观察到的切换行为,这比[Velayos]中使用的关闭技术更能代表现场经验。站点被配置为在信号强度下降到阈值以下时启动切换,而不是纯粹基于帧丢失,以便它们可以在仍然连接到当前AP的情况下开始切换。据指出,各台站在搜索阶段继续接收数据帧。电台发起
Disassociation and pre-authentication were not observed in this study.
在本研究中未观察到分离和预认证。
Within a link layer, the definition of "Link Up" and "Link Down" may vary according to the deployment scenario. For example, within PPP [RFC1661], either peer may send an LCP-Terminate frame in order to terminate the PPP link layer, and a link may only be assumed to be usable for sending network protocol packets once Network Control Protocol (NCP) negotiation has completed for that protocol.
在链接层中,“链接向上”和“链接向下”的定义可能会根据部署场景而有所不同。例如,在PPP[RFC1661]内,任一对等方可以发送LCP终止帧以终止PPP链路层,并且可以假设链路仅在网络控制协议(NCP)针对该协议的协商完成后才可用于发送网络协议分组。
Unlike PPP, IEEE 802 does not include facilities for network layer configuration, and the definition of "Link Up" and "Link Down" varies by implementation. Empirical evidence suggests that the definition of "Link Up" and "Link Down" may depend on whether the station is mobile or stationary, whether infrastructure or ad-hoc mode is in use, and whether security and Inter-Access Point Protocol (IAPP) is implemented.
与PPP不同,IEEE 802不包括用于网络层配置的设施,“链路上行”和“链路下行”的定义因实现而异。经验证据表明,“链路接通”和“链路断开”的定义可能取决于站点是移动的还是静止的,是否使用基础设施或自组织模式,以及是否实施了安全和接入点间协议(IAPP)。
Where a STA encounters a series of consecutive non-acknowledged frames while having missed one or more Beacons, the most likely cause is that the station has moved out of range of the AP. As a result, [Velayos] recommends that the station begin the search phase after collisions can be ruled out; since this approach does not take rate adaptation into account, it may be somewhat aggressive. Only when no alternative workable rate or point of attachment is found is a "Link Down" indication returned.
当STA在错过一个或多个信标时遇到一系列连续的未确认帧时,最有可能的原因是该站已移出AP的范围。因此,[Velayos]建议该站在排除碰撞后开始搜索阶段;由于这种方法不考虑速率自适应,因此可能有点激进。只有在找不到可替代的可用速率或连接点时,才会返回“链接断开”指示。
In a stationary point-to-point installation, the most likely cause of an outage is that the link has become impaired, and alternative points of attachment may not be available. As a result, implementations configured to operate in this mode tend to be more persistent. For example, within 802.11 the short interframe space (SIFS) interval may be increased and MIB variables relating to timeouts (such as dot11AuthenticationResponseTimeout, dot11AssociationResponseTimeout, dot11ShortRetryLimit, and dot11LongRetryLimit) may be set to larger values. In addition, a "Link Down" indication may be returned later.
在固定的点对点安装中,最有可能导致中断的原因是链路受损,并且替代连接点可能不可用。因此,配置为在此模式下运行的实现往往更持久。例如,在802.11内,短帧间空间(SIFS)间隔可以增加,并且与超时相关的MIB变量(例如dot11AuthenticationResponseTimeout、dot11AssociationResponseTimeout、dot11ShortRetryLimit和dot11LongRetryLimit)可以设置为更大的值。此外,稍后可能会返回“链路断开”指示。
In IEEE 802.11 ad-hoc mode with no security, reception of data frames is enabled in State 1 ("Unauthenticated" and "Unassociated"). As a result, reception of data frames is enabled at any time, and no explicit "Link Up" indication exists.
在没有安全性的IEEE 802.11自组织模式中,数据帧的接收在状态1(“未经验证”和“未关联”)下启用。结果,数据帧的接收在任何时候都被启用,并且不存在明确的“链接”指示。
In Infrastructure mode, IEEE 802.11-2003 enables reception of data frames only in State 3 ("Authenticated" and "Associated"). As a result, a transition to State 3 (e.g., completion of a successful
在基础设施模式下,IEEE 802.11-2003仅允许在状态3(“已验证”和“关联”)下接收数据帧。因此,向状态3的过渡(例如,成功完成
Association or Reassociation exchange) enables sending and receiving of network protocol packets and a transition from State 3 to State 2 (reception of a "Disassociate" frame) or State 1 (reception of a "Deauthenticate" frame) disables sending and receiving of network protocol packets. As a result, IEEE 802.11 stations typically signal "Link Up" on receipt of a successful Association/Reassociation Response.
关联或重新关联交换)启用网络协议数据包的发送和接收,并且从状态3转换到状态2(接收“解除关联”帧)或状态1(接收“取消验证”帧)禁用网络协议数据包的发送和接收。因此,IEEE 802.11站点通常在收到成功的关联/重新关联响应时发出“连接”信号。
As described within [IEEE-802.11F], after sending a Reassociation Response, an Access Point will send a frame with the station's source address to a multicast destination. This causes switches within the Distribution System (DS) to update their learning tables, readying the DS to forward frames to the station at its new point of attachment. Were the AP to not send this "spoofed" frame, the station's location would not be updated within the distribution system until it sends its first frame at the new location. Thus, the purpose of spoofing is to equalize uplink and downlink handover times. This enables an attacker to deny service to authenticated and associated stations by spoofing a Reassociation Request using the victim's MAC address, from anywhere within the ESS. Without spoofing, such an attack would only be able to disassociate stations on the AP to which the Reassociation Request was sent.
如[IEEE-802.11F]中所述,在发送重新关联响应后,接入点将向多播目的地发送带有站点源地址的帧。这会导致配电系统(DS)内的交换机更新其学习表,使DS准备在其新连接点将帧转发给站点。如果AP不发送此“伪造”帧,则在其在新位置发送第一帧之前,该站在分发系统中的位置不会更新。因此,欺骗的目的是均衡上行链路和下行链路切换时间。这使得攻击者能够通过使用受害者的MAC地址从ESS中的任何位置欺骗重新关联请求,从而拒绝向经过身份验证和关联的站点提供服务。在没有欺骗的情况下,这种攻击只能解除AP上发送重新关联请求的站点的关联。
The signaling of "Link Down" is considerably more complex. Even though a transition to State 2 or State 1 results in the station being unable to send or receive IP packets, this does not necessarily imply that such a transition should be considered a "Link Down" indication. In an infrastructure network, a station may have a choice of multiple Access Points offering connection to the same network. In such an environment, a station that is unable to reach State 3 with one Access Point may instead choose to attach to another Access Point. Rather than registering a "Link Down" indication with each move, the station may instead register a series of "Link Up" indications.
“链路断开”的信号要复杂得多。即使到状态2或状态1的转换导致站点无法发送或接收IP分组,这并不一定意味着这种转换应被视为“链路断开”指示。在基础设施网络中,一个站点可以选择多个接入点,提供到同一网络的连接。在这种环境中,无法通过一个接入点达到状态3的站点可以选择连接到另一个接入点。站点可以注册一系列“连接”指示,而不是在每次移动中注册“连接下降”指示。
In [IEEE-802.11i], forwarding of frames from the station to the distribution system is only feasible after the completion of the 4-way handshake and group-key handshake, so that entering State 3 is no longer sufficient. This has resulted in several observed problems. For example, where a "Link Up" indication is triggered on the station by receipt of an Association/Reassociation Response, DHCP [RFC2131] or Router Solicitation/Router Advertisement (RS/RA) may be triggered prior to when the link is usable by the Internet layer, resulting in configuration delays or failures. Similarly, transport layer connections will encounter packet loss, resulting in back-off of retransmission timers.
在[IEEE-802.11i]中,只有在完成4路握手和组密钥握手后,才能将帧从站点转发到配电系统,因此进入状态3不再足够。这导致了几个观察到的问题。例如,在通过接收关联/重新关联响应在站点上触发“链接”指示的情况下,DHCP[RFC2131]或路由器请求/路由器公告(RS/RA)可在链路可由因特网层使用之前触发,从而导致配置延迟或故障。类似地,传输层连接将遇到数据包丢失,从而导致重新传输计时器的后退。
In order to improve link layer performance, several studies have investigated "smart link layer" proposals.
为了提高链路层性能,一些研究已经调查了“智能链路层”方案。
"Advice to link designers on link Automatic Repeat reQuest (ARQ)" [RFC3366] provides advice to the designers of digital communication equipment and link-layer protocols employing link-layer Automatic Repeat reQuest (ARQ) techniques for IP. It discusses the use of ARQ, timers, persistency in retransmission, and the challenges that arise from sharing links between multiple flows and from different transport requirements.
“关于链路自动重复请求(ARQ)的链路设计者建议”[RFC3366]为采用IP链路层自动重复请求(ARQ)技术的数字通信设备和链路层协议的设计者提供建议。它讨论了ARQ的使用、定时器、重传的持久性,以及多个流之间共享链路和不同传输需求带来的挑战。
In "Link-layer Enhancements for TCP/IP over GSM" [Ludwig], the authors describe how the Global System for Mobile Communications (GSM)-reliable and unreliable link layer modes can be simultaneously utilized without higher layer control. Where a reliable link layer protocol is required (where reliable transports such TCP and Stream Control Transmission Protocol (SCTP) [RFC2960] are used), the Radio Link Protocol (RLP) can be engaged; with delay-sensitive applications such as those based on UDP, the transparent mode (no RLP) can be used. The authors also describe how PPP negotiation can be optimized over high-latency GSM links using "Quickstart-PPP".
在“GSM上TCP/IP的链路层增强”[Ludwig]中,作者描述了全球移动通信系统(GSM)-可靠和不可靠链路层模式如何在没有更高层控制的情况下同时使用。在需要可靠链路层协议的情况下(在使用诸如TCP和流控制传输协议(SCTP)[RFC2960]的可靠传输的情况下),可以使用无线链路协议(RLP);对于基于UDP的延迟敏感应用程序,可以使用透明模式(无RLP)。作者还描述了如何使用“快速启动PPP”在高延迟GSM链路上优化PPP协商。
In "Link Layer Based TCP Optimisation for Disconnecting Networks" [Scott], the authors describe performance problems that occur with reliable transport protocols facing periodic network disconnections, such as those due to signal fading or handoff. The authors define a disconnection as a period of connectivity loss that exceeds a retransmission timeout, but is shorter than the connection lifetime. One issue is that link-unaware senders continue to back off during periods of disconnection. The authors suggest that a link-aware reliable transport implementation halt retransmission after receiving a "Link Down" indication. Another issue is that on reconnection the lengthened retransmission times cause delays in utilizing the link.
在“断开网络的基于链路层的TCP优化”[Scott]中,作者描述了可靠传输协议面临周期性网络断开时出现的性能问题,如信号衰落或切换引起的性能问题。作者将断开定义为超过重新传输超时但短于连接生存期的连接丢失时间。一个问题是,在断开连接期间,不知道链接的发送者继续后退。作者建议,链路感知可靠传输实现在收到“链路断开”指示后停止重传。另一个问题是,在重新连接时,延长的重新传输时间会导致链路利用延迟。
To improve performance, a "smart link layer" is proposed, which stores the first packet that was not successfully transmitted on a connection, then retransmits it upon receipt of a "Link Up" indication. Since a disconnection can result in hosts experiencing different network conditions upon reconnection, the authors do not advocate bypassing slow start or attempting to raise the congestion window. Where IPsec is used and connections cannot be differentiated because transport headers are not visible, the first untransmitted packet for a given sender and destination IP address can be retransmitted. In addition to looking at retransmission of a single packet per connection, the authors also examined other schemes such
为了提高性能,提出了一种“智能链路层”,它存储未在连接上成功传输的第一个数据包,然后在收到“链接”指示后重新传输。由于断开连接可能会导致主机在重新连接时遇到不同的网络状况,因此作者不主张绕过慢速启动或尝试提高拥塞窗口。在使用IPsec且由于传输头不可见而无法区分连接的情况下,可以重新传输给定发送方和目标IP地址的第一个未传输数据包。除了研究每个连接中单个数据包的重传之外,作者还研究了其他方案,如
as retransmission of multiple packets and simulated duplicate reception of single or multiple packets (known as rereception).
作为多个数据包的重传和单个或多个数据包的模拟重复接收(称为重接收)。
In general, retransmission schemes were superior to rereception schemes, since rereception cannot stimulate fast retransmit after a timeout. Retransmission of multiple packets did not appreciably improve performance over retransmission of a single packet. Since the focus of the research was on disconnection rather than just lossy channels, a two-state Markov model was used, with the "up" state representing no loss, and the "down" state representing 100 percent loss.
一般来说,重传方案优于重接收方案,因为重接收不能刺激超时后的快速重传。多个数据包的重传并没有明显地比单个数据包的重传提高性能。由于研究的重点是断开连接,而不仅仅是有损信道,因此使用了两状态马尔可夫模型,“向上”状态表示无损耗,“向下”状态表示100%损耗。
In "Multi Service Link Layers: An Approach to Enhancing Internet Performance over Wireless Links" [Xylomenos], the authors use ns-2 to simulate the performance of various link layer recovery schemes (raw link without retransmission, go back N, XOR-based FEC, selective repeat, Karn's RLP, out-of-sequence RLP, and Berkeley Snoop) in stand-alone file transfer, Web browsing, and continuous media distribution. While selective repeat and Karn's RLP provide the highest throughput for file transfer and Web browsing scenarios, continuous media distribution requires a combination of low delay and low loss and the out-of-sequence RLP performed best in this scenario. Since the results indicate that no single link layer recovery scheme is optimal for all applications, the authors propose that the link layer implement multiple recovery schemes. Simulations of the multi-service architecture showed that the combination of a low-error rate recovery scheme for TCP (such as Karn's RLP) and a low-delay scheme for UDP traffic (such as out-of-sequence RLP) provides for good performance in all scenarios. The authors then describe how a multi-service link layer can be integrated with Differentiated Services.
在“多服务链路层:通过无线链路增强互联网性能的方法”[Xylomenos]中,作者使用ns-2模拟各种链路层恢复方案的性能(未重传的原始链路、返回N、基于XOR的FEC、选择性重复、Karn的RLP、无序RLP和Berkeley Snoop)在独立文件传输、Web浏览和连续媒体分发中。虽然选择性重复和Karn的RLP为文件传输和Web浏览场景提供了最高的吞吐量,但连续媒体分发需要低延迟和低丢失的组合,而无序RLP在这种场景中表现最好。由于结果表明,没有任何单个链路层恢复方案适合所有应用,因此作者建议链路层实现多个恢复方案。对多服务体系结构的模拟表明,TCP的低错误率恢复方案(如Karn的RLP)和UDP流量的低延迟方案(如无序RLP)的组合在所有场景中都提供了良好的性能。然后,作者描述了如何将多服务链路层与区分服务集成。
In "WaveLAN-II: A High-Performance Wireless LAN for the Unlicensed Band" [Kamerman], the authors propose an open-loop rate adaptation algorithm known as Automatic Rate Fallback (ARF). In ARF, the sender adjusts the rate upwards after a fixed number of successful transmissions, and adjusts the rate downwards after one or two consecutive failures. If after an upwards rate adjustment the transmission fails, the rate is immediately readjusted downwards.
在“WaveLAN II:用于无许可频段的高性能无线LAN”[Kamerman]中,作者提出了一种称为自动速率回退(ARF)的开环速率自适应算法。在ARF中,发送方在固定数量的成功传输后向上调整速率,在一次或两次连续失败后向下调整速率。如果在向上调整变速器后变速器出现故障,则变速器会立即向下调整。
In "A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks" [RBAR], the authors propose a closed-loop rate adaptation approach that requires incompatible changes to the IEEE 802.11 MAC. In order to enable the sender to better determine the transmission rate, the receiver determines the packet length and signal to noise ratio (SNR) of a received RTS frame and calculates the corresponding rate based on a theoretical channel model, rather than channel usage statistics. The recommended rate is sent back in the CTS frame. This allows the
在“用于多跳无线网络的速率自适应MAC协议[RBAR]中,作者提出了一种闭环速率自适应方法,该方法要求对IEEE 802.11 MAC进行不兼容的更改。为了使发送方能够更好地确定传输速率,接收方确定接收到的RTS帧的分组长度和信噪比(SNR),并基于理论信道模型而不是信道使用统计来计算相应的速率。建议的速率在CTS帧中发回。这允许
rate (and potentially the transmit power) to be optimized on each transmission, albeit at the cost of requiring RTS/CTS for every frame transmission.
要在每次传输上优化的速率(以及潜在的传输功率),尽管代价是每个帧传输都需要RTS/CTS。
In "MiSer: An Optimal Low-Energy Transmission Strategy for IEEE 802.11 a/h" [Qiao], the authors propose a scheme for optimizing transmit power. The proposal mandates the use of RTS/CTS in order to deal with hidden nodes, requiring that CTS and ACK frames be sent at full power. The authors utilize a theoretical channel model rather than one based on channel usage statistics.
在“MiSer:IEEE 802.11 a/h的最佳低能传输策略”一文中,作者提出了一种优化传输功率的方案。该提案要求使用RTS/CTS来处理隐藏节点,要求以满功率发送CTS和ACK帧。作者使用的是理论渠道模型,而不是基于渠道使用统计的模型。
In "IEEE 802.11 Rate Adaptation: A Practical Approach" [Lacage], the authors distinguish between low-latency implementations, which enable per-packet rate decisions, and high-latency implementations, which do not. The former implementations typically include dedicated CPUs in their design, enabling them to meet real-time requirements. The latter implementations are typically based on highly integrated designs in which the upper MAC is implemented on the host. As a result, due to operating system latencies the information required to make per-packet rate decisions may not be available in time.
在“IEEE 802.11速率自适应:一种实用方法”[Lacage]中,作者区分了低延迟实现(支持每包速率决策)和高延迟实现(不支持)。以前的实现通常在其设计中包含专用CPU,使其能够满足实时需求。后一种实现通常基于高度集成的设计,其中上层MAC在主机上实现。因此,由于操作系统延迟,做出每包速率决策所需的信息可能无法及时获得。
The authors propose an Adaptive ARF (AARF) algorithm for use with low-latency implementations. This enables rapid downward rate negotiation on failure to receive an ACK, while increasing the number of successful transmissions required for upward rate negotiation. The AARF algorithm is therefore highly stable in situations where channel properties are changing slowly, but slow to adapt upwards when channel conditions improve. In order to test the algorithm, the authors utilized ns-2 simulations as well as implementing a version of AARF adapted to a high-latency implementation, the AR 5212 chipset. The Multiband Atheros Driver for WiFi (MadWiFi) driver enables a fixed schedule of rates and retries to be provided when a frame is queued for transmission. The adapted algorithm, known as the Adaptive Multi Rate Retry (AMRR), requests only one transmission at each of three rates, the last of which is the minimum available rate. This enables adaptation to short-term fluctuations in the channel with minimal latency. The AMRR algorithm provides performance considerably better than the existing MadWifi driver.
作者提出了一种用于低延迟实现的自适应ARF(AARF)算法。这使得在接收到ACK失败时能够快速进行下行速率协商,同时增加上行速率协商所需的成功传输次数。因此,AARF算法在信道特性变化缓慢的情况下非常稳定,但在信道条件改善时向上适应的速度较慢。为了测试该算法,作者利用了ns-2模拟,并实现了适用于高延迟实现的AARF版本,即AR 5212芯片组。多频段Atheros WiFi驱动程序(MadWiFi)可以在帧排队等待传输时提供固定的速率和重试计划。自适应算法称为自适应多速率重试(AMRR),在三个速率中的每一个速率下仅请求一次传输,最后一个速率是最小可用速率。这使得能够以最小的延迟适应通道中的短期波动。AMRR算法提供的性能远远优于现有的MADWI驱动程序。
In "Link Adaptation Strategy for IEEE 802.11 WLAN via Received Signal Strength Measurement" [Pavon], the authors propose an algorithm by which a STA adjusts the transmission rate based on a comparison of the received signal strength (RSS) from the AP with dynamically estimated threshold values for each transmission rate. Upon reception of a frame, the STA updates the average RSS, and on transmission the STA selects a rate and adjusts the RSS threshold values based on whether or not the transmission is successful. In order to validate the algorithm, the authors utilized an OPNET
在“通过接收信号强度测量的IEEE 802.11 WLAN链路自适应策略[Pavon]中,作者提出了一种算法,通过该算法,STA根据AP的接收信号强度(RSS)与每个传输速率的动态估计阈值的比较来调整传输速率。在接收到帧时,STA更新平均RSS,并且在传输时,STA基于传输是否成功选择速率并调整RSS阈值。为了验证该算法,作者使用了OPNET
simulation without interference, and an ideal curve of bit error rate (BER) vs. signal to noise ratio (SNR) was assumed. Not surprisingly, the simulation results closely matched the maximum throughput achievable for a given signal to noise ratio, based on the ideal BER vs. SNR curve.
在无干扰的情况下进行了仿真,并假设了误码率(BER)与信噪比(SNR)的理想曲线。毫不奇怪,根据理想的误码率与信噪比曲线,模拟结果与给定信噪比下可实现的最大吞吐量非常吻合。
In "Hybrid Rate Control for IEEE 802.11" [Haratcherev], the authors describe a hybrid technique utilizing Signal Strength Indication (SSI) data to constrain the potential rates selected by statistics-based automatic rate control. Statistics-based rate control techniques include:
在“IEEE 802.11的混合速率控制”[Haratcherev]中,作者描述了一种利用信号强度指示(SSI)数据约束基于统计的自动速率控制选择的潜在速率的混合技术。基于统计的速率控制技术包括:
Maximum Throughput
最大吞吐量
This technique, which was chosen as the statistics-based technique in the hybrid scheme, sends a fraction of data at adjacent rates in order to estimate which rate provides the maximum throughput. Since accurate estimation of throughput requires a minimum number of frames to be sent at each rate, and only a fraction of frames are utilized for this purpose, this technique adapts more slowly at lower rates; with 802.11b rates, the adaptation time scale is typically on the order of a second. Depending on how many rates are tested, this technique can enable adaptation beyond adjacent rates. However, where maximum rate and low frame loss are already being encountered, this technique results in lower throughput.
该技术被选为混合方案中基于统计的技术,以相邻速率发送一部分数据,以估计哪个速率提供最大吞吐量。由于准确估计吞吐量需要以每种速率发送最少数量的帧,并且只有一小部分帧用于此目的,因此该技术在较低速率下适应得更慢;对于802.11b速率,自适应时间尺度通常为一秒钟。根据测试的速率数量,此技术可以实现超出相邻速率的自适应。然而,在已经遇到最大速率和低帧丢失的情况下,这种技术会导致较低的吞吐量。
Frame Error Rate (FER) Control
帧错误率(FER)控制
This technique estimates the FER, attempting to keep it between a lower limit (if FER moves below, increase rate) and upper limit (if FER moves above, decrease rate). Since this technique can utilize all the transmitted data, it can respond faster than maximum throughput techniques. However, there is a tradeoff of reaction time versus FER estimation accuracy; at lower rates either reaction times slow or FER estimation accuracy will suffer. Since this technique only measures the FER at the current rate, it can only enable adaptation to adjacent rates.
这项技术估计外汇储备,试图将其保持在下限(如果外汇储备低于上限,则增加汇率)和上限(如果外汇储备高于上限,则减少汇率)之间。由于该技术可以利用所有传输的数据,因此其响应速度比最大吞吐量技术更快。然而,反应时间与FER估计精度之间存在权衡;在较低的速率下,反应时间缓慢或FER估计精度将受到影响。由于该技术仅在当前速率下测量FER,因此它只能适应相邻速率。
Retry-based
基于重试的
This technique modifies FER control techniques by enabling rapid downward rate adaptation after a number (5-10) of unsuccessful retransmissions. Since fewer packets are required, the sensitivity of reaction time to rate is reduced. However, upward rate adaptation proceeds more slowly since it is based on a collection of FER data. This technique is limited to adaptation to adjacent rates, and it has the disadvantage of potentially worsening frame loss due to contention.
该技术通过在多次(5-10次)不成功的重传之后启用快速下行速率自适应来修改FER控制技术。由于需要更少的数据包,因此反应时间对速率的敏感性降低。然而,向上速率自适应进行得更慢,因为它基于FER数据的收集。该技术仅限于适应相邻速率,并且其缺点是由于争用而可能恶化帧丢失。
While statistics-based techniques are robust against short-lived link quality changes, they do not respond quickly to long-lived changes. By constraining the rate selected by statistics-based techniques based on ACK SSI versus rate data (not theoretical curves), more rapid link adaptation was enabled. In order to ensure rapid adaptation during rapidly varying conditions, the rate constraints are tightened when the SSI values are changing rapidly, encouraging rate transitions. The authors validated their algorithms by implementing a driver for the Atheros AR5000 chipset, and then testing its response to insertion and removal from a microwave oven acting as a Faraday cage. The hybrid algorithm dropped many fewer packets than the maximum throughput technique by itself.
虽然基于统计的技术对短时间的链路质量变化具有很强的鲁棒性,但它们不能快速响应长时间的变化。通过限制基于ACK SSI和速率数据(非理论曲线)的统计技术选择的速率,可以实现更快速的链路自适应。为了确保在快速变化的条件下快速适应,当SSI值快速变化时,会收紧速率约束,从而鼓励速率转换。作者通过为Atheros AR5000芯片组实现一个驱动程序,然后测试其对作为法拉第笼的微波炉插入和取出的响应,验证了他们的算法。混合算法丢弃的数据包比最大吞吐量技术本身少很多。
In order to estimate the SSI of data at the receiver, the ACK SSI was used. This approach does not require the receiver to provide the sender with the received power, so that it can be implemented without changing the IEEE 802.11 MAC. Calibration of the rate versus ACK SSI curves does not require a symmetric channel, but it does require that channel properties in both directions vary in a proportional way and that the ACK transmit power remains constant. The authors checked the proportionality assumption and found that the SSI of received data correlated highly (74%) with the SSI of received ACKs. Low pass filtering and monotonicity constraints were applied to remove noise in the rate versus SSI curves. The resulting hybrid rate adaptation algorithm demonstrated the ability to respond to rapid deterioration (and improvement) in channel properties, since it is not restricted to moving to adjacent rates.
为了估计接收器处数据的SSI,使用ACK SSI。这种方法不需要接收机向发送方提供接收到的功率,因此可以在不改变IEEE 802.11 MAC的情况下实现。速率与ACK SSI曲线的校准不需要对称信道,但需要两个方向上的信道特性以成比例的方式变化,并且ACK发射功率保持恒定。作者检查了比例假设,发现接收数据的SSI与接收ACK的SSI高度相关(74%)。低通滤波和单调性约束用于去除速率与SSI曲线中的噪声。由此产生的混合速率自适应算法证明了对信道特性的快速恶化(和改善)作出响应的能力,因为它不限于移动到相邻速率。
In "CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs" [CARA], the authors propose Collision-Aware Rate Adaptation (CARA). This involves utilization of Clear Channel Assessment (CCA) along with adaptation of the Request-to-Send/Clear-to-Send (RTS/CTS) mechanism to differentiate losses caused by frame collisions from losses caused by channel conditions. Rather than decreasing rate as the result of frame loss due to collisions, which leads to increased contention, CARA selectively enables RTS/CTS (e.g., after a frame loss), reducing the likelihood of frame loss due to hidden stations. CARA can also utilize CCA to determine whether a collision has occurred after a transmission; however, since CCA may not detect a significant fraction of all collisions (particularly when transmitting at low rate), its use is optional. As compared with ARF, in simulations the authors show large improvements in aggregate throughput due to addition of adaptive RTS/CTS, and additional modest improvements with the additional help of CCA.
在“CARA:IEEE 802.11无线局域网的冲突感知速率自适应”[CARA]中,作者提出了冲突感知速率自适应(CARA)。这涉及到利用清除信道评估(CCA)以及发送请求/清除发送(RTS/CTS)机制的自适应,以区分帧冲突造成的损失和信道条件造成的损失。由于冲突导致的帧丢失导致争用增加,而不是降低速率,CARA有选择地启用RTS/CTS(例如,在帧丢失之后),从而降低由于隐藏站导致的帧丢失的可能性。CARA还可以利用CCA来确定传输后是否发生了碰撞;然而,由于CCA可能检测不到所有碰撞的很大一部分(特别是在低速率传输时),因此其使用是可选的。与ARF相比,在仿真中,作者显示,由于添加了自适应RTS/CT,聚合吞吐量有了很大的提高,而在CCA的帮助下,聚合吞吐量也有了适度的提高。
In "Robust Rate Adaptation for 802.11 Wireless Networks" [Robust], the authors implemented the ARF, AARF, and SampleRate [SampleRate] algorithms on a programmable Access Point platform, and
在“802.11无线网络的鲁棒速率适配”[Robust]中,作者在可编程接入点平台上实现了ARF、AARF和SampleRate[SampleRate]算法,以及
experimentally examined the performance of these algorithms as well as the ONOE [ONOE] algorithm implemented in MadWiFi. Based on their experiments, the authors critically examine the assumptions underlying existing rate negotiation algorithms:
实验检查了这些算法的性能以及在MADWWI中实现的ONOE[ONOE]算法。根据他们的实验,作者批判性地检查了现有利率协商算法的基本假设:
Decrease transmission rate upon severe frame loss Where severe frame loss is due to channel conditions, rate reduction can improve throughput. However, where frame loss is due to contention (such as from hidden stations), reducing transmission rate increases congestion, lowering throughput and potentially leading to congestive collapse. Instead, the authors propose adaptive enabling of RTS/CTS so as to reduce contention due to hidden stations. Once RTS/CTS is enabled, remaining losses are more likely to be due to channel conditions, providing more reliable guidance on increasing or decreasing transmission rate.
严重帧丢失时降低传输速率如果严重帧丢失是由于信道条件造成的,则降低速率可以提高吞吐量。然而,当帧丢失是由于争用(例如来自隐藏站)造成时,降低传输速率会增加拥塞,降低吞吐量,并可能导致拥塞崩溃。相反,作者提出了RTS/CTS的自适应启用,以减少由于隐藏站引起的争用。一旦启用RTS/CTS,剩余损耗更有可能是由于信道条件造成的,从而为提高或降低传输速率提供更可靠的指导。
Use probe frames to assess possible new rates Probe frames reliably estimate frame loss at a given rate unless the sample size is sufficient and the probe frames are of comparable length to data frames. The authors argue that rate adaptation schemes such as SampleRate are too sensitive to loss of probe packets. In order to satisfy sample size constraints, a significant number of probe frames are required. This can increase frame loss if the probed rate is too high, and can lower throughput if the probed rate is too low. Instead, the authors propose assessment of the channel condition by tracking the frame loss ratio within a window of 5 to 40 frames.
使用探测帧评估可能的新速率探测帧可靠地估计给定速率下的帧丢失,除非样本量足够且探测帧的长度与数据帧相当。作者认为诸如SampleRate之类的速率自适应方案对探测数据包的丢失过于敏感。为了满足样本大小的限制,需要大量的探针框架。如果探测速率过高,这会增加帧丢失,如果探测速率过低,则会降低吞吐量。相反,作者建议通过跟踪5到40帧窗口内的帧丢失率来评估信道状况。
Use consecutive transmission successes/losses to increase/decrease rate The authors argue that consecutive successes or losses are not a reliable basis for rate increases or decreases; greater sample size is needed.
使用连续传输成功/损失来增加/减少速率作者认为,连续成功或损失不是速率增加或减少的可靠依据;需要更大的样本量。
Use PHY metrics like SNR to infer new transmission rate The authors argue that received signal to noise ratio (SNR) routinely varies 5 dB per packet and that variations of 10-14 dB are common. As a result, rate decisions based on SNR or signal strength can cause transmission rate to vary rapidly. The authors question the value of such rapid variation, since studies such as [Aguayo] show little correlation between SNR and frame loss probability. As a result, the authors argue that neither received signal strength indication (RSSI) nor background energy level can be used to distinguish losses due to contention from those due to channel conditions. While multi-path interference can simultaneously result in high signal strength and frame loss, the relationship between low signal
使用诸如SNR之类的PHY指标来推断新的传输速率。作者认为,接收信噪比(SNR)通常每包变化5 dB,10-14 dB的变化是常见的。因此,基于SNR或信号强度的速率决定可能导致传输速率快速变化。作者质疑这种快速变化的价值,因为像[Aguayo]这样的研究表明,信噪比和帧丢失概率之间几乎没有相关性。因此,作者认为,无论是接收信号强度指示(RSSI)还是背景能量水平都不能用来区分竞争造成的损失和信道条件造成的损失。虽然多径干扰可同时导致高信号强度和帧丢失,但低信号之间的关系
strength and high frame loss is stronger. Therefore, transmission rate decreases due to low received signal strength probably do reflect sudden worsening in channel conditions, although sudden increases may not necessarily indicate that channel conditions have improved.
强度和高帧损耗更强。因此,由于低接收信号强度而导致的传输速率降低可能确实反映了信道条件的突然恶化,尽管突然增加不一定表明信道条件已经改善。
Long-term smoothened operation produces best average performance The authors present evidence that frame losses more than 150 ms apart are uncorrelated. Therefore, collection of statistical data over intervals of 1 second or greater reduces responsiveness, but does not improve the quality of transmission rate decisions. Rather, the authors argue that a sampling period of 100 ms provides the best average performance. Such small sampling periods also argue against use of probes, since probe packets can only represent a fraction of all data frames and probes collected more than 150 ms apart may not provide reliable information on channel conditions.
长期平滑操作产生最佳平均性能。作者提出证据表明,相隔150毫秒以上的帧丢失是不相关的。因此,在1秒或更长时间间隔内收集统计数据会降低响应性,但不会提高传输速率决策的质量。相反,作者认为100ms的采样周期提供了最佳的平均性能。这种小的采样周期也反对使用探头,因为探头数据包只能代表所有数据帧的一小部分,而相隔150 ms以上采集的探头可能无法提供有关信道条件的可靠信息。
Based on these flaws, the authors propose the Robust Rate Adaptation Algorithm (RRAA). RRAA utilizes only the frame loss ratio at the current transmission rate to determine whether to increase or decrease the transmission rate; PHY layer information or probe packets are not used. Each transmission rate is associated with an estimation window, a maximum tolerable loss threshold (MTL) and an opportunistic rate increase threshold (ORI). If the loss ratio is larger than the MTL, the transmission rate is decreased, and if it is smaller than the ORI, transmission rate is increased; otherwise transmission rate remains the same. The thresholds are selected in order to maximize throughput. Although RRAA only allows movement between adjacent transmission rates, the algorithm does not require collection of an entire estimation window prior to increasing or decreasing transmission rates; if additional data collection would not change the decision, the change is made immediately.
基于这些缺陷,作者提出了鲁棒速率自适应算法(RRAA)。RRAA仅利用当前传输速率下的帧丢失率来确定是增加还是减少传输速率;未使用物理层信息或探测数据包。每个传输速率与估计窗口、最大容许损失阈值(MTL)和机会速率增加阈值(ORI)相关联。如果损耗比大于MTL,则传输速率降低,如果损耗比小于ORI,则传输速率增加;否则,传输速率保持不变。选择阈值是为了最大化吞吐量。尽管RRAA仅允许相邻传输速率之间的移动,但该算法不需要在增加或减少传输速率之前收集整个估计窗口;如果额外的数据收集不会改变决策,则立即进行更改。
The authors validate the RRAA algorithm using experiments and field trials; the results indicate that RRAA without adaptive RTS/CTS outperforms the ARF, AARF, and Sample Rate algorithms. This occurs because RRAA is not as sensitive to transient frame loss and does not use probing, enabling it to more frequently utilize higher transmission rates. Where there are no hidden stations, turning on adaptive RTS/CTS reduces performance by at most a few percent. However, where there is substantial contention from hidden stations, adaptive RTS/CTS provides large performance gains, due to reduction in frame loss that enables selection of a higher transmission rate.
作者通过实验和现场试验验证了RRAA算法;结果表明,无自适应RTS/CTS的RRAA算法优于ARF、AARF和采样率算法。发生这种情况是因为RRAA对瞬态帧丢失不太敏感,并且不使用探测,从而使其能够更频繁地利用更高的传输速率。在没有隐藏电台的情况下,启用自适应RTS/CTS最多会降低几%的性能。然而,在存在来自隐藏站的大量争用的情况下,自适应RTS/CTS由于能够选择更高传输速率的帧丢失的减少而提供了较大的性能增益。
In "Efficient Mobility Management for Vertical Handoff between WWAN and WLAN" [Vertical], the authors propose use of signal strength and link utilization in order to optimize vertical handoff. WLAN to WWAN
在“WWAN和WLAN之间垂直切换的高效移动性管理”【垂直】中,作者建议使用信号强度和链路利用率来优化垂直切换。无线局域网到WWAN
handoff is driven by SSI decay. When IEEE 802.11 SSI falls below a threshold (S1), Fast Fourier Transform (FFT)-based decay detection is undertaken to determine if the signal is likely to continue to decay. If so, then handoff to the WWAN is initiated when the signal falls below the minimum acceptable level (S2). WWAN to WLAN handoff is driven by both PHY and MAC characteristics of the IEEE 802.11 target network. At the PHY layer, characteristics such as SSI are examined to determine if the signal strength is greater than a minimum value (S3). At the MAC layer, the IEEE 802.11 Network Allocation Vector (NAV) occupation is examined in order to estimate the maximum available bandwidth and mean access delay. Note that depending on the value of S3, it is possible for the negotiated rate to be less than the available bandwidth. In order to prevent premature handoff between WLAN and WWAN, S1 and S2 are separated by 6 dB; in order to prevent oscillation between WLAN and WWAN media, S3 needs to be greater than S1 by an appropriate margin.
切换由SSI衰减驱动。当IEEE 802.11 SSI低于阈值(S1)时,进行基于快速傅立叶变换(FFT)的衰减检测,以确定信号是否可能继续衰减。如果是,则当信号低于最低可接受电平(S2)时,开始向WWAN的切换。WWAN到WLAN的切换由IEEE 802.11目标网络的PHY和MAC特性驱动。在PHY层,检查诸如SSI之类的特性以确定信号强度是否大于最小值(S3)。在MAC层,检查IEEE 802.11网络分配向量(NAV)占用情况,以估计最大可用带宽和平均访问延迟。注意,根据S3的值,协商速率可能小于可用带宽。为了防止WLAN和WWAN之间过早切换,S1和S2之间的间隔为6dB;为了防止WLAN和WWAN介质之间的振荡,S3需要比S1大一个适当的余量。
Within the Internet layer, proposals have been made for utilizing link indications to optimize IP configuration, to improve the usefulness of routing metrics, and to optimize aspects of Mobile IP handoff.
在因特网层内,已经提出了利用链路指示来优化IP配置、提高路由度量的有用性以及优化移动IP切换方面的建议。
In "Analysis of link failures in an IP backbone" [Iannaccone], the authors investigate link failures in Sprint's IP backbone. They identify the causes of convergence delay, including delays in detection of whether an interface is down or up. While it is fastest for a router to utilize link indications if available, there are situations in which it is necessary to depend on loss of routing packets to determine the state of the link. Once the link state has been determined, a delay may occur within the routing protocol in order to dampen link flaps. Finally, another delay may be introduced in propagating the link state change, in order to rate limit link state advertisements, and guard against instability.
在“IP主干中的链路故障分析”[IANNACONE]中,作者调查了Sprint的IP主干中的链路故障。它们确定了收敛延迟的原因,包括检测接口是关闭还是打开的延迟。虽然路由器利用链路指示(如果可用)是最快的,但在某些情况下,必须依靠路由数据包的丢失来确定链路的状态。一旦确定了链路状态,路由协议中可能会出现延迟,以抑制链路抖动。最后,可以在传播链路状态变化时引入另一延迟,以便对链路状态广告进行速率限制,并防止不稳定性。
"Bidirectional Forwarding Detection" [BFD] notes that link layers may provide only limited failure indications, and that relatively slow "Hello" mechanisms are used in routing protocols to detect failures when no link layer indications are available. This results in failure detection times of the order of a second, which is too long for some applications. The authors describe a mechanism that can be used for liveness detection over any media, enabling rapid detection of failures in the path between adjacent forwarding engines. A path is declared operational when bidirectional reachability has been confirmed.
“双向转发检测”[BFD]注意到链路层可能只提供有限的故障指示,并且在路由协议中使用相对较慢的“Hello”机制,在没有可用的链路层指示时检测故障。这会导致故障检测时间长达一秒钟,对于某些应用程序来说,这太长了。作者描述了一种可用于任何媒体上的活动性检测的机制,能够快速检测相邻转发引擎之间路径中的故障。当双向可达性得到确认时,路径被声明为可操作的。
In "Detecting Network Attachment (DNA) in IPv4" [RFC4436], a host that has moved to a new point of attachment utilizes a bidirectional reachability test in parallel with DHCP [RFC2131] to rapidly reconfirm an operable configuration.
在“检测IPv4中的网络连接(DNA)”[RFC4436]中,移动到新连接点的主机利用双向可达性测试与DHCP[RFC2131]并行,以快速重新确认可操作的配置。
In "L2 Triggers Optimized Mobile IPv6 Vertical Handover: The 802.11/GPRS Example" [Park], the authors propose that the mobile node send a router solicitation on receipt of a "Link Up" indication in order to provide lower handoff latency than would be possible using generic movement detection [RFC3775]. The authors also suggest immediate invalidation of the Care-of Address (CoA) on receipt of a "Link Down" indication. However, this is problematic where a "Link Down" indication can be followed by a "Link Up" indication without a resulting change in IP configuration, as described in [RFC4436].
在“L2触发优化移动IPv6垂直切换:802.11/GPRS示例”[Park]中,作者建议移动节点在收到“链接”指示时发送路由器请求,以便提供比使用通用移动检测可能更低的切换延迟[RFC3775]。作者还建议在收到“链接断开”指示后,立即宣布转交地址(CoA)无效。然而,如[RFC4436]中所述,在“链路断开”指示之后可以出现“链路断开”指示,而不会导致IP配置的变化,这是有问题的。
In "Layer 2 Handoff for Mobile-IPv4 with 802.11" [Mun], the authors suggest that MIPv4 Registration messages be carried within Information Elements of IEEE 802.11 Association/Reassociation frames, in order to minimize handoff delays. This requires modification to the mobile node as well as 802.11 APs. However, prior to detecting network attachment, it is difficult for the mobile node to determine whether or not the new point of attachment represents a change of network. For example, even where a station remains within the same ESS, it is possible that the network will change. Where no change of network results, sending a MIPv4 Registration message with each Association/Reassociation is unnecessary. Where a change of network results, it is typically not possible for the mobile node to anticipate its new CoA at Association/Reassociation; for example, a DHCP server may assign a CoA not previously given to the mobile node. When dynamic VLAN assignment is used, the VLAN assignment is not even determined until IEEE 802.1X authentication has completed, which is after Association/Reassociation in [IEEE-802.11i].
在“802.11移动IPv4的第2层切换[Mun]中,作者建议在IEEE 802.11关联/重新关联帧的信息元素中携带MIPv4注册消息,以最小化切换延迟。这需要对移动节点以及802.11 AP进行修改。然而,在检测网络连接之前,移动节点难以确定新的连接点是否表示网络的变化。例如,即使站点仍在同一ESS内,网络也可能发生变化。如果网络结果没有变化,则无需在每次关联/重新关联时发送MIPv4注册消息。在导致网络变化的情况下,移动节点通常不可能在关联/重新关联时预期其新CoA;例如,DHCP服务器可将先前未给予移动节点的CoA分配给移动节点。当使用动态VLAN分配时,在[IEEE-802.11i]中的关联/重新关联之后,直到IEEE 802.1X身份验证完成,才确定VLAN分配。
In "Link Characteristics Information for Mobile IP" [Lee], link characteristics are included in registration/Binding Update messages sent by the mobile node to the home agent and correspondent node. Where the mobile node is acting as a receiver, this allows the correspondent node to adjust its transport parameters window more rapidly than might otherwise be possible. Link characteristics that may be communicated include the link type (e.g., 802.11b, CDMA (Code Division Multiple Access), GPRS (General Packet Radio Service), etc.) and link bandwidth. While the document suggests that the correspondent node should adjust its sending rate based on the advertised link bandwidth, this may not be wise in some circumstances. For example, where the mobile node link is not the bottleneck, adjusting the sending rate based on the link bandwidth could cause congestion. Also, where the transmission rate changes frequently, sending registration messages on each transmission rate
在“移动IP的链路特征信息”[Lee]中,链路特征包括在移动节点发送给归属代理和对应节点的注册/绑定更新消息中。在移动节点充当接收器的情况下,这允许对应节点比可能的其他方式更快地调整其传输参数窗口。可通信的链路特性包括链路类型(例如,802.11b、CDMA(码分多址)、GPRS(通用分组无线业务)等)和链路带宽。虽然文档建议通信节点应根据公布的链路带宽调整其发送速率,但在某些情况下,这可能并不明智。例如,在移动节点链路不是瓶颈的情况下,根据链路带宽调整发送速率可能会导致拥塞。此外,在传输速率频繁变化的情况下,在每个传输速率上发送注册消息
change could by itself consume significant bandwidth. Even where the advertised link characteristics indicate the need for a smaller congestion window, it may be non-trivial to adjust the sending rates of individual connections where there are multiple connections open between a mobile node and correspondent node. A more conservative approach would be to trigger parameter re-estimation and slow start based on the receipt of a registration message or Binding Update.
改变本身可能会消耗大量带宽。即使在广告的链路特性指示需要更小的拥塞窗口的情况下,在移动节点和对应节点之间存在多个打开的连接的情况下,调整单个连接的发送速率也可能是非常重要的。一种更保守的方法是触发参数重新估计,并根据收到的注册消息或绑定更新缓慢启动。
In "Hotspot Mitigation Protocol (HMP)" [HMP], it is noted that Mobile Ad-hoc NETwork (MANET) routing protocols have a tendency to concentrate traffic since they utilize shortest-path metrics and allow nodes to respond to route queries with cached routes. The authors propose that nodes participating in an ad-hoc wireless mesh monitor local conditions such as MAC delay, buffer consumption, and packet loss. Where congestion is detected, this is communicated to neighboring nodes via an IP option. In response to moderate congestion, nodes suppress route requests; where major congestion is detected, nodes rate control transport connections flowing through them. The authors argue that for ad-hoc networks, throttling by intermediate nodes is more effective than end-to-end congestion control mechanisms.
在“热点缓解协议(HMP)”[HMP]中,注意到移动自组织网络(MANET)路由协议具有集中流量的趋势,因为它们利用最短路径度量并允许节点使用缓存的路由响应路由查询。作者建议参与adhoc无线mesh的节点监视本地条件,例如MAC延迟、缓冲区消耗和分组丢失。在检测到拥塞的情况下,将通过IP选项与相邻节点通信。为了响应适度的拥塞,节点抑制路由请求;在检测到严重拥塞的情况下,节点对流经它们的传输连接进行速率控制。作者认为,对于adhoc网络,中间节点的节流比端到端的拥塞控制机制更有效。
Within the transport layer, proposals have focused on countering the effects of handoff-induced packet loss and non-congestive loss caused by lossy wireless links.
在传输层内,提案的重点是对抗切换引起的分组丢失和有损无线链路造成的非拥塞性丢失的影响。
Where a mobile host moves to a new network, the transport parameters (including the RTT, RTO, and congestion window) may no longer be valid. Where the path change occurs on the sender (e.g., change in outgoing or incoming interface), the sender can reset its congestion window and parameter estimates. However, where it occurs on the receiver, the sender may not be aware of the path change.
当移动主机移动到新网络时,传输参数(包括RTT、RTO和拥塞窗口)可能不再有效。如果发送方发生路径更改(例如,传出或传入接口的更改),发送方可以重置其拥塞窗口和参数估计。然而,当它发生在接收器上时,发送者可能不知道路径改变。
In "The BU-trigger method for improving TCP performance over Mobile IPv6" [Kim], the authors note that handoff-related packet loss is interpreted as congestion by the transport layer. In the case where the correspondent node is sending to the mobile node, it is proposed that receipt of a Binding Update by the correspondent node be used as a signal to the transport layer to adjust cwnd and ssthresh values, which may have been reduced due to handoff-induced packet loss. The authors recommend that cwnd and ssthresh be recovered to pre-timeout values, regardless of whether the link parameters have changed. The paper does not discuss the behavior of a mobile node sending a Binding Update, in the case where the mobile node is sending to the correspondent node.
在“移动IPv6上改进TCP性能的BU触发方法[Kim]中,作者指出,与切换相关的数据包丢失被传输层解释为拥塞。在对应节点向移动节点发送的情况下,建议将对应节点对绑定更新的接收用作发送给传输层的信号,以调整cwnd和ssthresh值,这可能由于切换诱导的分组丢失而降低。作者建议,无论链路参数是否已更改,cwnd和ssthresh都应恢复到超时前的值。本文不讨论移动节点向对应节点发送绑定更新的情况下,移动节点发送绑定更新的行为。
In "Effect of Vertical Handovers on Performance of TCP-Friendly Rate Control" [Gurtov], the authors examine the effect of explicit handover notifications on TCP-friendly rate control (TFRC). Where explicit handover notification includes information on the loss rate and throughput of the new link, this can be used to instantaneously change the transmission rate of the sender. The authors also found that resetting the TFRC receiver state after handover enabled parameter estimates to adjust more quickly.
在“垂直切换对TCP友好速率控制性能的影响”[Gurtov]中,作者研究了显式切换通知对TCP友好速率控制(TFRC)的影响。当显式切换通知包括关于新链路的丢失率和吞吐量的信息时,这可用于瞬时改变发送方的传输速率。作者还发现,在切换后重置TFRC接收器状态可以使参数估计更快地调整。
In "Adapting End Host Congestion Control for Mobility" [Eddy], the authors note that while MIPv6 with route optimization allows a receiver to communicate a subnet change to the sender via a Binding Update, this is not available within MIPv4. To provide a communication vehicle that can be universally employed, the authors propose a TCP option that allows a connection endpoint to inform a peer of a subnet change. The document does not advocate utilization of "Link Up" or "Link Down" events since these events are not necessarily indicative of subnet change. On detection of subnet change, it is advocated that the congestion window be reset to INIT_WINDOW and that transport parameters be re-estimated. The authors argue that recovery from slow start results in higher throughput both when the subnet change results in lower bottleneck bandwidth as well as when bottleneck bandwidth increases.
在“为移动性调整终端主机拥塞控制”[Eddy]一文中,作者指出,尽管带有路由优化的MIPv6允许接收方通过绑定更新将子网更改传达给发送方,但这在MIPv4中不可用。为了提供一种可以普遍使用的通信工具,作者提出了一种TCP选项,允许连接端点通知对等方子网的更改。本文件不提倡使用“链接打开”或“链接关闭”事件,因为这些事件不一定表示子网更改。在检测子网变化时,建议将拥塞窗口重置为INIT_窗口,并重新估计传输参数。作者认为,当子网变化导致较低的瓶颈带宽时,以及当瓶颈带宽增加时,从慢启动恢复会导致较高的吞吐量。
In "Efficient Mobility Management for Vertical Handoff between WWAN and WLAN" [Vertical], the authors propose a "Virtual Connectivity Manager", which utilizes local connection translation (LCT) and a subscription/notification service supporting simultaneous movement in order to enable end-to-end mobility and maintain TCP throughput during vertical handovers.
在“WWAN和WLAN之间垂直切换的高效移动性管理”[Vertical]中,作者提出了一种“虚拟连接管理器”,它利用本地连接转换(LCT)以及支持同时移动的订阅/通知服务,以实现端到端移动并在垂直切换期间保持TCP吞吐量。
In an early version of "Datagram Congestion Control Protocol (DCCP)" [RFC4340], a "Reset Congestion State" option was proposed in Section 11. This option was removed in part because the use conditions were not fully understood:
在早期版本的“数据报拥塞控制协议(DCCP)”[RFC4340]中,第11节提出了“重置拥塞状态”选项。删除此选项的部分原因是未完全了解使用条件:
An HC-Receiver sends the Reset Congestion State option to its sender to force the sender to reset its congestion state -- that is, to "slow start", as if the connection were beginning again. ... The Reset Congestion State option is reserved for the very few cases when an endpoint knows that the congestion properties of a path have changed. Currently, this reduces to mobility: a DCCP endpoint on a mobile host MUST send Reset Congestion State to its peer after the mobile host changes address or path.
HC接收方向其发送方发送重置拥塞状态选项,以强制发送方重置其拥塞状态,即“慢速启动”,就像连接再次开始一样。。。重置拥塞状态选项仅适用于端点知道路径的拥塞属性已更改的极少数情况。目前,这降低了移动性:移动主机上的DCCP端点必须在移动主机更改地址或路径后向其对等方发送重置拥塞状态。
"Framework and Requirements for TRIGTRAN" [TRIGTRAN] discusses optimizations to recover earlier from a retransmission timeout incurred during a period in which an interface or intervening link was down. "End-to-end, Implicit 'Link-Up' Notification" [E2ELinkup] describes methods by which a TCP implementation that has backed off its retransmission timer due to frame loss on a remote link can learn that the link has once again become operational. This enables retransmission to be attempted prior to expiration of the backed-off retransmission timer.
“TRIGTRAN的框架和要求”[TRIGTRAN]讨论了在接口或中间链路中断期间发生的重传超时中提前恢复的优化。“端到端隐式“链接”通知”[E2ELinkup]描述了一些方法,通过这些方法,由于远程链路上的帧丢失而退出其重传计时器的TCP实现可以了解到该链路再次开始工作。这使得可以在退出的重新传输计时器到期之前尝试重新传输。
"Link-layer Triggers Protocol" [Yegin] describes transport issues arising from lack of host awareness of link conditions on downstream Access Points and routers. Transport of link layer triggers is proposed to address the issue.
“链路层触发协议”[Yegin]描述了由于主机不了解下游接入点和路由器上的链路状况而产生的传输问题。为了解决这个问题,建议传输链路层触发器。
"TCP Extensions for Immediate Retransmissions" [Eggert] describes how a transport layer implementation may utilize existing "end-to-end connectivity restored" indications. It is proposed that in addition to regularly scheduled retransmissions that retransmission be attempted by the transport layer on receipt of an indication that connectivity to a peer node may have been restored. End-to-end connectivity restoration indications include "Link Up", confirmation of first-hop router reachability, confirmation of Internet layer configuration, and receipt of other traffic from the peer.
“用于立即重传的TCP扩展”[Eggert]描述了传输层实现如何利用现有的“端到端连接恢复”指示。建议除了定期调度的重传之外,传输层在接收到与对等节点的连接可能已经恢复的指示时尝试重传。端到端连接恢复指示包括“链接”,第一跳路由器可达性确认,互联网层配置确认,以及从对等方接收其他流量。
In "Discriminating Congestion Losses from Wireless Losses Using Interarrival Times at the Receiver" [Biaz], the authors propose a scheme for differentiating congestive losses from wireless transmission losses based on inter-arrival times. Where the loss is due to wireless transmission rather than congestion, congestive backoff and cwnd adjustment is omitted. However, the scheme appears to assume equal spacing between packets, which is not realistic in an environment exhibiting link layer frame loss. The scheme is shown to function well only when the wireless link is the bottleneck, which is often the case with cellular networks, but not with IEEE 802.11 deployment scenarios such as home or hotspot use.
在“利用接收机的到达间隔时间区分拥塞损耗和无线损耗”[Biaz]中,作者提出了一种基于到达间隔时间区分拥塞损耗和无线传输损耗的方案。如果损失是由于无线传输而不是拥塞造成的,则省略拥塞退避和cwnd调整。然而,该方案似乎假定分组之间的间隔相等,这在显示链路层帧丢失的环境中是不现实的。只有当无线链路成为瓶颈时,该方案才能很好地发挥作用,这在蜂窝网络中经常出现,但在家庭或热点使用等IEEE 802.11部署场景中则不然。
In "Improving Performance of TCP over Wireless Networks" [Bakshi], the authors focus on the performance of TCP over wireless networks with burst losses. The authors simulate performance of TCP Tahoe within ns-2, utilizing a two-state Markov model, representing "good" and "bad" states. Where the receiver is connected over a wireless link, the authors simulate the effect of an Explicit Bad State Notification (EBSN) sent by an Access Point unable to reach the receiver. In response to an EBSN, it is advocated that the existing retransmission timer be canceled and replaced by a new dynamically
在“改善无线网络上的TCP性能”[Bakshi]一文中,作者重点研究了具有突发丢失的无线网络上的TCP性能。作者利用两状态马尔可夫模型在ns-2中模拟了TCP Tahoe的性能,该模型表示“好”和“坏”状态。当接收器通过无线链路连接时,作者模拟了无法到达接收器的接入点发送的显式错误状态通知(EBSN)的效果。作为对EBSN的响应,建议取消现有的重传定时器并用新的重传定时器替换
estimated timeout, rather than being backed off. In the simulations, EBSN prevents unnecessary timeouts, decreasing RTT variance and improving throughput.
估计超时,而不是被退回。在仿真中,EBSN防止了不必要的超时,减少了RTT方差并提高了吞吐量。
In "A Feedback-Based Scheme for Improving TCP Performance in Ad-Hoc Wireless Networks" [Chandran], the authors proposed an explicit Route Failure Notification (RFN), allowing the sender to stop its retransmission timers when the receiver becomes unreachable. On route reestablishment, a Route Reestablishment Notification (RRN) is sent, unfreezing the timer. Simulations indicate that the scheme significantly improves throughput and reduces unnecessary retransmissions.
在“改进自组织无线网络中TCP性能的基于反馈的方案”[Chandran]中,作者提出了一种显式路由失败通知(RFN),允许发送方在无法到达接收方时停止其重传计时器。在重新建立路由时,发送路由重新建立通知(RRN),解冻计时器。仿真结果表明,该方案显著提高了吞吐量,减少了不必要的重传。
In "Analysis of TCP Performance over Mobile Ad Hoc Networks" [Holland], the authors explore how explicit link failure notification (ELFN) can improve the performance of TCP in mobile ad hoc networks. ELFN informs the TCP sender about link and route failures so that it need not treat the ensuing packet loss as due to congestion. Using an ns-2 simulation of TCP Reno over 802.11 with routing provided by the Dynamic Source Routing (DSR) protocol, it is demonstrated that TCP performance falls considerably short of expected throughput based on the percentage of the time that the network is partitioned. A portion of the problem was attributed to the inability of the routing protocol to quickly recognize and purge stale routes, leading to excessive link failures; performance improved dramatically when route caching was turned off. Interactions between the route request and transport retransmission timers were also noted. Where the route request timer is too large, new routes cannot be supplied in time to prevent the transport timer from expiring, and where the route request timer is too small, network congestion may result.
在“移动自组织网络上的TCP性能分析”[Holland]中,作者探讨了显式链路故障通知(ELFN)如何提高移动自组织网络中TCP的性能。ELFN将链路和路由故障通知TCP发送方,以便它不必将随后的数据包丢失视为拥塞所致。使用ns-2模拟TCP Reno over 802.11以及动态源路由(DSR)协议提供的路由,可以证明TCP性能远远低于基于网络分区时间百分比的预期吞吐量。部分问题归因于路由协议无法快速识别和清除陈旧路由,导致过度链路故障;关闭路由缓存后,性能显著提高。还注意到路由请求和传输重传计时器之间的交互作用。如果路由请求计时器太大,则无法及时提供新路由以防止传输计时器过期,如果路由请求计时器太小,则可能导致网络拥塞。
For their implementation of ELFN, the authors piggybacked additional information (sender and receiver addresses and ports, the TCP sequence number) on an existing "route failure" notice to enable the sender to identify the affected connection. Where a TCP receives an ELFN, it disables the retransmission timer and enters "stand-by" mode, where packets are sent at periodic intervals to determine if the route has been reestablished. If an acknowledgment is received, then the retransmission timers are restored. Simulations show that performance is sensitive to the probe interval, with intervals of 30 seconds or greater giving worse performance than TCP Reno. The effect of resetting the congestion window and RTO values was also investigated. In the study, resetting the congestion window to one did not have much of an effect on throughput, since the bandwidth/delay of the network was only a few packets. However, resetting the RTO to a high initial value (6 seconds) did have a substantial detrimental effect, particularly at high speed. In terms of the probe packet sent, the simulations showed little difference
为了实现ELFN,作者在现有的“路由失败”通知上附加了附加信息(发送方和接收方地址和端口、TCP序列号),以使发送方能够识别受影响的连接。当TCP接收到ELFN时,它将禁用重传计时器并进入“待机”模式,在该模式下,数据包以周期性间隔发送,以确定路由是否已重新建立。如果收到确认,则重传计时器将恢复。仿真结果表明,性能对探测间隔非常敏感,30秒或更大的间隔比TCP Reno的性能更差。还研究了重置拥塞窗口和RTO值的效果。在这项研究中,将拥塞窗口重置为1对吞吐量没有太大影响,因为网络的带宽/延迟只有几个数据包。然而,将RTO重置为高初始值(6秒)确实会产生严重的不利影响,尤其是在高速下。就发送的探测数据包而言,模拟结果显示差异不大
between sending the first packet in the congestion window, or retransmitting the packet with the lowest sequence number among those signaled as lost via the ELFNs.
在拥塞窗口中发送第一个数据包,或通过ELFNs重新传输序列号最低的数据包之间。
In "Improving TCP Performance over Wireless Links" [Goel], the authors propose use of an ICMP-DEFER message, sent by a wireless Access Point on failure of a transmission attempt. After exhaustion of retransmission attempts, an ICMP-RETRANSMIT message is sent. On receipt of an ICMP-DEFER message, the expiry of the retransmission timer is postponed by the current RTO estimate. On receipt of an ICMP-RETRANSMIT message, the segment is retransmitted. On retransmission, the congestion window is not reduced; when coming out of fast recovery, the congestion window is reset to its value prior to fast retransmission and fast recovery. Using a two-state Markov model, simulated using ns-2, the authors show that the scheme improves throughput.
在“改善无线链路上的TCP性能”[Goel]一文中,作者建议使用ICMP-DERE消息,该消息在传输尝试失败时由无线接入点发送。在重新传输尝试用尽后,发送ICMP-RETRANSMIT消息。在收到ICMP-DEBER消息时,重传计时器的到期时间将由当前RTO估计值延迟。在收到ICMP-RETRANSMIT消息时,将重新传输该段。在重传时,拥塞窗口不会减小;当退出快速恢复时,拥塞窗口将重置为其在快速重传和快速恢复之前的值。使用一个两状态马尔可夫模型,并用ns-2进行了仿真,结果表明该方案提高了吞吐量。
In "Explicit Transport Error Notification (ETEN) for Error-Prone Wireless and Satellite Networks" [Krishnan], the authors examine the use of explicit transport error notification (ETEN) to aid TCP in distinguishing congestive losses from those due to corruption. Both per-packet and cumulative ETEN mechanisms were simulated in ns-2, using both TCP Reno and TCP SACK over a wide range of bit error rates and traffic conditions. While per-packet ETEN mechanisms provided substantial gains in TCP goodput without congestion, where congestion was also present, the gains were not significant. Cumulative ETEN mechanisms did not perform as well in the study. The authors point out that ETEN faces significant deployment barriers since it can create new security vulnerabilities and requires implementations to obtain reliable information from the headers of corrupt packets.
在“易出错的无线和卫星网络的显式传输错误通知(ETEN)[Krishnan]中,作者研究了显式传输错误通知(ETEN)的使用,以帮助TCP区分拥塞损失和由于损坏造成的拥塞损失。在ns-2中,使用TCP Reno和TCP SACK在大范围的误码率和流量条件下模拟了每包和累积ETEN机制。虽然每包ETEN机制在没有拥塞的TCP goodput中提供了实质性的收益,但在同样存在拥塞的情况下,收益并不显著。累积ETEN机制在研究中表现不好。作者指出,ETEN面临着巨大的部署障碍,因为它会产生新的安全漏洞,并且需要实现从损坏数据包的头中获取可靠信息。
In "Towards More Expressive Transport-Layer Interfaces" [Eggert2], the authors propose extensions to existing network/transport and transport/application interfaces to improve the performance of the transport layer in the face of changes in path characteristics varying more quickly than the round-trip time.
在“朝向更具表现力的传输层接口”[Eggert2]中,作者提出了对现有网络/传输和传输/应用接口的扩展,以在路径特征变化快于往返时间的情况下提高传输层的性能。
In "Protocol Enhancements for Intermittently Connected Hosts" [Schuetz], the authors note that intermittent connectivity can lead to poor performance and connectivity failures. To address these problems, the authors combine the use of the Host Identity Protocol (HIP) [RFC4423] with a TCP User Timeout Option and TCP Retransmission trigger, demonstrating significant improvement.
在“间歇连接主机的协议增强”[Schuetz]中,作者指出间歇连接可能导致性能差和连接故障。为了解决这些问题,作者将主机标识协议(HIP)[RFC4423]的使用与TCP用户超时选项和TCP重传触发器相结合,展示了显著的改进。
In "Application-oriented Link Adaptation for IEEE 802.11" [Haratcherev2], rate information generated by a link layer utilizing improved rate adaptation algorithms is provided to a video application, and used for codec adaptation. Coupling the link and application layers results in major improvements in the Peak Signal to Noise Ratio (PSNR). Since this approach assumes that the link represents the path bottleneck bandwidth, it is not universally applicable to use over the Internet.
在“针对IEEE 802.11的面向应用的链路自适应”[Haratcherev2]中,利用改进的速率自适应算法由链路层生成的速率信息被提供给视频应用,并用于编解码器自适应。链路层和应用层的耦合导致峰值信噪比(PSNR)的重大改进。由于这种方法假设链路代表路径瓶颈带宽,因此并不普遍适用于在Internet上使用。
At the application layer, the usage of "Link Down" indications has been proposed to augment presence systems. In such systems, client devices periodically refresh their presence state using application layer protocols such as SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) [RFC3428] or Extensible Messaging and Presence Protocol (XMPP) [RFC3921]. If the client should become disconnected, their unavailability will not be detected until the presence status times out, which can take many minutes. However, if a link goes down, and a disconnect indication can be sent to the presence server (presumably by the Access Point, which remains connected), the status of the user's communication application can be updated nearly instantaneously.
在应用层,已建议使用“链路断开”指示来增强存在系统。在这样的系统中,客户端设备使用应用层协议定期刷新其存在状态,例如利用扩展(SIMPLE)[RFC3428]或可扩展消息和存在协议(XMPP)[RFC3921]的即时消息和存在SIP。如果客户端断开连接,则在状态超时(可能需要很多分钟)之前,不会检测到客户端不可用。然而,如果链路断开,并且可以向存在服务器发送断开连接指示(可能由保持连接的接入点发送),则用户的通信应用程序的状态几乎可以立即更新。
Bernard Aboba Loa Andersson Brian Carpenter Leslie Daigle Elwyn Davies Kevin Fall Olaf Kolkman Kurtis Lindqvist David Meyer David Oran Eric Rescorla Dave Thaler Lixia Zhang
Bernard Aboba Loa Andersson Brian Carpenter Leslie Daigle Elwyn Davies Kevin Fall Olaf Kolkman Kurtis Lindqvist David Meyer David Oran Eric Rescorla Dave Thaler Lixia Zhang
Author's Address
作者地址
Bernard Aboba, Ed. Microsoft Corporation One Microsoft Way Redmond, WA 98052
伯纳德·阿博巴,华盛顿州雷德蒙微软公司一号,邮编:98052
EMail: bernarda@microsoft.com Phone: +1 425 706 6605 Fax: +1 425 936 7329
EMail: bernarda@microsoft.com Phone: +1 425 706 6605 Fax: +1 425 936 7329
IAB
IAB
EMail: iab@iab.org URI: http://www.iab.org/
EMail: iab@iab.org URI: http://www.iab.org/
Full Copyright Statement
完整版权声明
Copyright (C) The IETF Trust (2007).
版权所有(C)IETF信托基金(2007年)。
This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.
本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。
This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件及其包含的信息以“原样”为基础提供,贡献者、他/她所代表或赞助的组织(如有)、互联网协会、IETF信托基金和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Intellectual Property
知识产权
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.
IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.
向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.
Acknowledgement
确认
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC编辑功能的资金目前由互联网协会提供。