Network Working Group                                           G. Feher
Request for Comments: 4883                                     K. Nemeth
Category: Informational                                          A. Korn
                                                                    BUTE
                                                             I. Cselenyi
                                                             TeliaSonera
                                                               July 2007
        
Network Working Group                                           G. Feher
Request for Comments: 4883                                     K. Nemeth
Category: Informational                                          A. Korn
                                                                    BUTE
                                                             I. Cselenyi
                                                             TeliaSonera
                                                               July 2007
        

Benchmarking Terminology for Resource Reservation Capable Routers

支持资源预留的路由器的基准术语

Status of This Memo

关于下段备忘

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The IETF Trust (2007).

版权所有(C)IETF信托基金(2007年)。

Abstract

摘要

The primary purpose of this document is to define terminology specific to the benchmarking of resource reservation signaling of Integrated Services (IntServ) IP routers. These terms can be used in additional documents that define benchmarking methodologies for routers that support resource reservation or reporting formats for the benchmarking measurements.

本文档的主要目的是定义特定于综合服务(IntServ)IP路由器的资源预留信令基准测试的术语。这些术语可以在其他文档中使用,这些文档定义了路由器的基准测试方法,这些路由器支持基准测试测量的资源保留或报告格式。

Table of Contents

目录

   1. Introduction ....................................................2
   2. Existing Definitions ............................................3
   3. Definition of Terms .............................................4
      3.1. Traffic Flow Types .........................................4
           3.1.1. Data Flow ...........................................4
           3.1.2. Distinguished Data Flow .............................4
           3.1.3. Best-Effort Data Flow ...............................5
      3.2. Resource Reservation Protocol Basics .......................5
           3.2.1. QoS Session .........................................5
           3.2.2. Resource Reservation Protocol .......................6
           3.2.3. Resource Reservation Capable Router .................7
           3.2.4. Reservation State ...................................7
           3.2.5. Resource Reservation Protocol Orientation ...........8
      3.3. Router Load Factors ........................................9
           3.3.1. Best-Effort Traffic Load Factor .....................9
           3.3.2. Distinguished Traffic Load Factor ..................10
           3.3.3. Session Load Factor ................................11
           3.3.4. Signaling Intensity Load Factor ....................11
           3.3.5. Signaling Burst Load Factor ........................12
      3.4. Performance Metrics .......................................13
           3.4.1. Signaling Message Handling Time ....................13
           3.4.2. Distinguished Traffic Delay ........................14
           3.4.3. Best-effort Traffic Delay ..........................15
           3.4.4. Signaling Message Deficit ..........................15
           3.4.5. Session Maintenance Capacity .......................16
      3.5. Router Load Conditions and Scalability Limit ..............17
           3.5.1. Loss-Free Condition ................................17
           3.5.2. Lossy Condition ....................................18
           3.5.3. QoS Compliant Condition ............................19
           3.5.4. Not QoS Compliant Condition ........................20
           3.5.5. Scalability Limit ..................................20
   4. Security Considerations ........................................21
   5. Acknowledgements ...............................................21
   6. References .....................................................21
      6.1. Normative References ......................................21
      6.2. Informative References ....................................21
        
   1. Introduction ....................................................2
   2. Existing Definitions ............................................3
   3. Definition of Terms .............................................4
      3.1. Traffic Flow Types .........................................4
           3.1.1. Data Flow ...........................................4
           3.1.2. Distinguished Data Flow .............................4
           3.1.3. Best-Effort Data Flow ...............................5
      3.2. Resource Reservation Protocol Basics .......................5
           3.2.1. QoS Session .........................................5
           3.2.2. Resource Reservation Protocol .......................6
           3.2.3. Resource Reservation Capable Router .................7
           3.2.4. Reservation State ...................................7
           3.2.5. Resource Reservation Protocol Orientation ...........8
      3.3. Router Load Factors ........................................9
           3.3.1. Best-Effort Traffic Load Factor .....................9
           3.3.2. Distinguished Traffic Load Factor ..................10
           3.3.3. Session Load Factor ................................11
           3.3.4. Signaling Intensity Load Factor ....................11
           3.3.5. Signaling Burst Load Factor ........................12
      3.4. Performance Metrics .......................................13
           3.4.1. Signaling Message Handling Time ....................13
           3.4.2. Distinguished Traffic Delay ........................14
           3.4.3. Best-effort Traffic Delay ..........................15
           3.4.4. Signaling Message Deficit ..........................15
           3.4.5. Session Maintenance Capacity .......................16
      3.5. Router Load Conditions and Scalability Limit ..............17
           3.5.1. Loss-Free Condition ................................17
           3.5.2. Lossy Condition ....................................18
           3.5.3. QoS Compliant Condition ............................19
           3.5.4. Not QoS Compliant Condition ........................20
           3.5.5. Scalability Limit ..................................20
   4. Security Considerations ........................................21
   5. Acknowledgements ...............................................21
   6. References .....................................................21
      6.1. Normative References ......................................21
      6.2. Informative References ....................................21
        
1. Introduction
1. 介绍

Signaling-based resource reservation using the IntServ paradigm [4] is an important part of the different Quality of Service (QoS) provisioning approaches. Therefore, network operators who are planning to deploy signaling-based resource reservation may want to examine the scalability limitations of reservation capable routers and the impact of signaling on their data forwarding performance.

使用IntServ范式的基于信令的资源预留[4]是不同服务质量(QoS)供应方法的重要组成部分。因此,计划部署基于信令的资源预留的网络运营商可能希望检查具有预留能力的路由器的可伸缩性限制以及信令对其数据转发性能的影响。

An objective way of quantifying the scalability constraints of QoS signaling is to perform measurements on routers that are capable of IntServ-based resource reservation. This document defines terminology for a specific set of tests that vendors or network operators can carry out to measure and report the signaling performance characteristics of router devices that support resource reservation protocols. The results of these tests provide comparable data for different products, and thus support the decision-making process before purchase. Moreover, these measurements provide input characteristics for the dimensioning of a network in which resources are provisioned dynamically by signaling. Finally, the tests are applicable for characterizing the impact of the resource reservation signaling on the forwarding performance of the routers.

量化QoS信令的可伸缩性约束的一种客观方法是在能够基于IntServ的资源预留的路由器上执行测量。本文档定义了一组特定测试的术语,供应商或网络运营商可以执行这些测试,以测量和报告支持资源预留协议的路由器设备的信令性能特征。这些测试的结果为不同的产品提供了可比较的数据,从而支持购买前的决策过程。此外,这些测量为通过信令动态提供资源的网络的尺寸标注提供了输入特性。最后,这些测试适用于描述资源预留信令对路由器转发性能的影响。

This benchmarking terminology document is based on the knowledge gained by examination of (and experimentation with) different resource reservation protocols: the IETF standard Resource ReSerVation Protocol (RSVP) [5], Next Steps in Signaling (NSIS) [6][7][8][9], and several experimental ones, such as YESSIR (Yet Another Sender Session Internet Reservation) [10], ST2+ [11], Session Description Protocol (SDP) [12], Boomerang [13], and Ticket [14]. Some of these protocols were also analyzed by the IETF NSIS working group [15]. Although at the moment the authors are only aware of resource reservation capable router products that interpret RSVP, this document defines terms that are valid in general and not restricted to any of the protocols listed above.

本基准术语文档基于对不同资源保留协议的检查(和实验)所获得的知识:IETF标准资源保留协议(RSVP)[5]、信令的下一步(NSIS)[6][7][8][9]和一些实验协议,如YESSIR(另一个发送方会话互联网保留)[10]、ST2+[11]、会话描述协议(SDP)[12]、回飞棒[13]和票证[14]。IETF NSIS工作组也对其中一些协议进行了分析[15].虽然目前作者只知道可用于解释RSVP的资源预留路由器产品,但本文档定义的术语一般有效,不限于上述任何协议。

In order to avoid any confusion, we would like to emphasize that this terminology considers only signaling protocols that provide IntServ resource reservation; for example, techniques in the DiffServ toolbox are predominantly beyond our scope.

为了避免任何混淆,我们想强调,这个术语只考虑提供IntServ资源预留的信令协议;例如,DiffServ工具箱中的技术主要超出了我们的范围。

2. Existing Definitions
2. 现有定义

RFC 1242 "Benchmarking Terminology for Network Interconnection Devices" [1] and RFC 2285 "Benchmarking Terminology for LAN Switching Devices" [3] contain discussions and definitions for a number of terms relevant to the benchmarking of signaling performance of reservation-capable routers and should be consulted before attempting to make use of this document.

RFC 1242“网络互连设备基准术语”[1]和RFC 2285“LAN交换设备基准术语”[3]包含与支持预约的路由器的信令性能基准相关的许多术语的讨论和定义,在尝试使用本文档之前,应参考这些术语。

Additionally, this document defines terminology in a way that is consistent with the terms used by the Next Steps in Signaling working group laid out in [6][7][8].

此外,本文件定义术语的方式与[6][7][8]中规定的信号工作组后续步骤使用的术语一致。

For the sake of clarity and continuity, this document adopts the template for definitions set out in Section 2 of RFC 1242.

为了清晰和连续性,本文件采用RFC 1242第2节规定的定义模板。

Definitions are indexed and grouped together into different sections for ease of reference.

为了便于参考,定义被编入索引并分组到不同的部分。

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [2].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[2]中所述进行解释。

3. Definition of Terms
3. 术语的定义
3.1. Traffic Flow Types
3.1. 交通流类型

This group of definitions describes traffic flow types forwarded by resource reservation capable routers.

这组定义描述了支持资源预留的路由器转发的流量类型。

3.1.1. Data Flow
3.1.1. 数据流

Definition: A data flow is a stream of data packets from one sender to one or more receivers, where each packet has a flow identifier unique to the flow.

定义:数据流是从一个发送方到一个或多个接收方的数据包流,其中每个数据包都有一个流唯一的流标识符。

Discussion: The flow identifier can be an arbitrary subset of the packet header fields that uniquely distinguishes the flow from others. For example, the 5-tuple "source address; source port; destination address; destination port; protocol number" is commonly used for this purpose (where port numbers are applicable). It is also possible to take advantage of the Flow Label field of IPv6 packets. For more comments on flow identification, refer to [6].

讨论:流标识符可以是包头字段的任意子集,它唯一地将流与其他流区分开来。例如,5元组“源地址;源端口;目标地址;目标端口;协议号”通常用于此目的(如果端口号适用)。还可以利用IPv6数据包的流标签字段。有关流量识别的更多意见,请参阅[6]。

3.1.2. Distinguished Data Flow
3.1.2. 区分数据流

Definition: Distinguished data flows are flows that resource reservation capable routers intentionally treat better or worse than best-effort data flows, according to a QoS agreement defined for the distinguished flow.

定义:区分数据流是指具有资源预留能力的路由器根据为区分数据流定义的QoS协议故意处理比尽力而为数据流更好或更差的数据流。

Discussion: Routers classify the packets of distinguished data flows and identify the data flow to which they belong.

讨论:路由器对不同数据流的数据包进行分类,并识别它们所属的数据流。

The most common usage of the distinguished data flow is to get higher-priority treatment than that of best-effort data flows (see the next definition). In these cases, a distinguished data flow is sometimes referred to as a "premium data flow". Nevertheless, theoretically it is possible to require worse treatment than that of best-effort flows.

区分数据流最常见的用法是获得比尽力而为数据流更高的优先级处理(见下一个定义)。在这些情况下,可分辨数据流有时被称为“高级数据流”。然而,理论上可能需要比尽力而为流程更糟糕的处理。

3.1.3. Best-Effort Data Flow
3.1.3. 尽力而为的数据流

Definition: Best-effort data flows are flows that are not treated in any special manner by resource reservation capable routers; thus, their packets are served (forwarded) in some default way.

定义:尽力而为数据流是指不被具有资源预留能力的路由器以任何特殊方式处理的数据流;因此,它们的数据包以某种默认方式被服务(转发)。

Discussion: "Best-effort" means that the router makes its best effort to forward the data packet quickly and safely, but does not guarantee anything (e.g., delay or loss probability). This type of traffic is the most common in today's Internet.

讨论:“尽力而为”是指路由器尽最大努力快速、安全地转发数据包,但不保证任何事情(例如延迟或丢失概率)。这种类型的流量是当今互联网中最常见的。

Packets that belong to best-effort data flows need not be classified by the routers; that is, the routers don't need to find a related reservation session in order to find out to which treatment the packet is entitled.

属于尽力而为数据流的分组不需要由路由器分类;也就是说,路由器不需要找到相关的预约会话来确定数据包有权接受哪种处理。

3.2. Resource Reservation Protocol Basics
3.2. 资源预留协议基础

This group of definitions applies to signaling-based resource reservation protocols implemented by IP router devices.

这组定义适用于由IP路由器设备实现的基于信令的资源预留协议。

3.2.1. QoS Session
3.2.1. QoS会话

Definition: A QoS session is an application layer concept, shared between a set of network nodes, that pertains to a specific set of data flows. The information associated with the session includes the data required to identify the set of data flows in addition to a specification of the QoS treatment they require.

定义:QoS会话是一个应用层概念,在一组网络节点之间共享,属于一组特定的数据流。与会话相关联的信息包括识别数据流集所需的数据,以及它们所需的QoS处理的规范。

Discussion: A QoS session is an end-to-end relationship. Whenever end-nodes decide to obtain special QoS treatment for their data communication, they set up a QoS session. As part of the process, they or their proxies make a QoS agreement with the network, specifying their data flows and the QoS treatment that the flows require.

讨论:QoS会话是一种端到端关系。每当终端节点决定为其数据通信获得特殊的QoS处理时,它们都会建立QoS会话。作为该过程的一部分,他们或他们的代理与网络签订QoS协议,指定他们的数据流和流所需的QoS处理。

It is possible for the same QoS session to span multiple network domains that have different resource provisioning architectures. In this document, however, we only deal with the case where the QoS session is realized over an IntServ architecture. It is assumed that sessions will be established using signaling messages of a resource reservation protocol.

同一QoS会话可以跨越具有不同资源供应体系结构的多个网络域。然而,在本文中,我们只处理通过IntServ体系结构实现QoS会话的情况。假定将使用资源预留协议的信令消息来建立会话。

QoS sessions must have unique identifiers; it must be possible to determine to which QoS session a given signaling message pertains. Therefore, each signaling message should include the identifier of its corresponding session. As an example, in the case of RSVP, the "session specification" identifies the QoS session plus refers to the data flow; the "flowspec" specifies the desired QoS treatment and the "filter spec" defines the subset of data packets in the data flow that receive the QoS defined by the flowspec.

QoS会话必须具有唯一标识符;必须能够确定给定信令消息所属的QoS会话。因此,每个信令消息应包括其相应会话的标识符。例如,在RSVP的情况下,“会话规范”标识QoS会话加上数据流;“flowspec”指定所需的QoS处理,“filter spec”定义数据流中接收由flowspec定义的QoS的数据包子集。

QoS sessions can be unicast or multicast depending on the number of participants. In a multicast group, there can be several data traffic sources and destinations. Here the QoS agreement does not have to be the same for each branch of the multicast tree forwarding the data flow of the group. Instead, a dedicated network resource in a router can be shared among many traffic sources from the same multicast group (cf. multicast reservation styles in the case of RSVP).

QoS会话可以是单播或多播,具体取决于参与者的数量。在多播组中,可以有多个数据通信源和目的地。这里,对于转发组数据流的多播树的每个分支,QoS协议不必相同。相反,路由器中的专用网络资源可以在来自同一多播组的多个流量源之间共享(参见RSVP情况下的多播保留样式)。

Issues: Even though QoS sessions are considered to be unique, resource reservation capable routers might aggregate them and allocate network resources to these aggregated sessions at once. The aggregation can be based on similar data flow attributes (e.g., similar destination addresses) or it can combine arbitrary sessions as well. While reservation aggregation significantly lightens the signaling processing task of a resource reservation capable router, it also requires the administration of the aggregated QoS sessions and might also lead to the violation of the quality guaranties referring to individual data flows within an aggregation [16].

问题:尽管QoS会话被认为是唯一的,但支持资源保留的路由器可能会将它们聚合起来,并立即将网络资源分配给这些聚合的会话。聚合可以基于相似的数据流属性(例如,相似的目标地址),也可以组合任意会话。虽然保留聚合显著减轻了具有资源保留能力的路由器的信令处理任务,但它还需要管理聚合的QoS会话,并且还可能导致违反涉及聚合内单个数据流的质量保证[16]。

3.2.2. Resource Reservation Protocol
3.2.2. 资源预留协议

Definition: Resource reservation protocols define signaling messages and message processing rules used to control resource allocation in IntServ architectures.

定义:资源预留协议定义用于控制IntServ体系结构中资源分配的信令消息和消息处理规则。

Discussion: It is the signaling messages of a resource reservation protocol that carry the information related to QoS sessions. This information includes a session identifier, the actual QoS parameters, and possibly flow descriptors.

讨论:资源预留协议的信令消息承载与QoS会话相关的信息。该信息包括会话标识符、实际的QoS参数以及可能的流描述符。

The message processing rules of the signaling protocols ensure that signaling messages reach all network nodes concerned. Some resource reservation protocols (e.g., RSVP, NSIS QoS NSLP [8]) are only concerned with this, i.e., carrying the QoS-related

信令协议的消息处理规则确保信令消息到达所有相关网络节点。一些资源预留协议(例如,RSVP、NSIS-QoS-NSLP[8])仅与此相关,即承载与QoS相关的服务

information to all the appropriate network nodes, without being aware of its content. This latter approach allows changing the way the QoS parameters are described, and different kinds of provisioning can be realized without the need to change the protocol itself.

将信息发送到所有适当的网络节点,而不知道其内容。后一种方法允许更改QoS参数的描述方式,并且无需更改协议本身即可实现不同种类的供应。

3.2.3. Resource Reservation Capable Router
3.2.3. 支持资源预留的路由器

Definition: A router is resource reservation capable (it supports resource reservation) if it is able to interpret signaling messages of a resource reservation protocol, and based on these messages is able to adjust the management of its flow classifiers and network resources so as to conform to the content of the signaling messages.

定义:如果路由器能够解释资源预留协议的信令消息,并且基于这些消息能够调整其流分类器和网络资源的管理,以符合信令消息的内容,则路由器具有资源预留能力(它支持资源预留)。

Discussion: Routers capture signaling messages and manipulate reservation states and/or reserved network resources according to the content of the messages. This ensures that the flows are treated as their specified QoS requirements indicate.

讨论:路由器捕获信令消息,并根据消息内容操作保留状态和/或保留网络资源。这可确保流按照其指定的QoS要求进行处理。

3.2.4. Reservation State
3.2.4. 保留国

Definition: A reservation state is the set of entries in the router's memory that contain all relevant information about a given QoS session registered with the router.

定义:保留状态是路由器内存中的一组条目,其中包含有关向路由器注册的给定QoS会话的所有相关信息。

Discussion: States are needed because IntServ-related resource reservation protocols require the routers to keep track of QoS session and data-flow-related metadata. The reservation state includes the parameters of the QoS treatment, the description of how and where to forward the incoming signaling messages, refresh timing information, etc.

讨论:之所以需要状态,是因为与IntServ相关的资源保留协议要求路由器跟踪QoS会话和数据流相关的元数据。保留状态包括QoS处理的参数、如何转发传入信令消息以及在何处转发传入信令消息的描述、刷新定时信息等。

Based on how reservation states are stored in a reservation capable router, the routers can be categorized into two classes:

根据保留状态在具有保留功能的路由器中的存储方式,路由器可分为两类:

Hard-state resource reservation protocols (e.g., ST2 [11]) require routers to store the reservation states permanently, established by a setup signaling primitive, until the router is explicitly informed that the QoS session is canceled.

硬状态资源预留协议(例如,ST2[11])要求路由器永久存储由设置信令原语建立的预留状态,直到路由器被明确通知QoS会话被取消。

There are also soft-state resource reservation capable routers, where there are no permanent reservation states, and each state has to be regularly refreshed by appropriate refresh signaling

也有支持软状态资源保留的路由器,其中没有永久保留状态,并且每个状态必须通过适当的刷新信令定期刷新

messages. If no refresh signaling message arrives during a certain period, then the router stops the maintenance of the QoS session assuming that the end-points do not intend to keep the session up any longer or the communication lines are broken somewhere along the data path. This feature makes soft-state resource reservation capable routers more robust than hard-state routers, since no failures can cause resources to stay permanently stuck in the routers. (Note that it is still possible to have an explicit teardown message in soft-state protocols for quicker resource release.)

信息。如果在特定时间段内没有刷新信令消息到达,则路由器停止QoS会话的维护,假设端点不打算继续会话,或者通信线路在数据路径的某个位置断开。此功能使软状态资源预留路由器比硬状态路由器更健壮,因为没有任何故障会导致资源永久停留在路由器中。(注意,在软状态协议中仍然可以有一个明确的拆卸消息,以便更快地释放资源。)

Issues: Based on the initiating point of the refresh messages, soft-state resource reservation protocols can be divided into two groups. First, there are protocols where it is the responsibility of the end-points or their proxies to initiate refresh messages. These messages are forwarded along the path of the data flow refreshing the corresponding reservation states in each router affected by the flow. Second, there are other protocols, where routers and end-points have their own schedule for the reservation state refreshes and they signal these refreshes to the neighboring routers.

问题:根据刷新消息的起始点,软状态资源预留协议可分为两组。首先,存在由端点或其代理负责启动刷新消息的协议。这些消息沿着数据流的路径转发,刷新受数据流影响的每个路由器中的相应保留状态。第二,还有其他协议,其中路由器和端点有自己的保留状态刷新时间表,并将这些刷新发送给相邻路由器。

3.2.5. Resource Reservation Protocol Orientation
3.2.5. 面向资源预留协议

Definition: The orientation of a resource reservation protocol tells which end of the protocol communication initiates the allocation of the network resources. Thus, the protocol can be sender- or receiver-oriented, depending on the location of the data flow source (sender) and destination (receiver) compared to the reservation initiator.

定义:资源预留协议的方向告诉协议通信的哪一端开始分配网络资源。因此,协议可以是面向发送方或接收方的,这取决于数据流源(发送方)和目的地(接收方)相对于保留发起方的位置。

Discussion: In the case of sender-oriented protocols (in some sources referred to as sender-initiated protocols), the resource reservation propagates in the same direction(s) as of the data flow(s). Consequently, in the case of receiver-oriented protocols, the signaling messages reserving resources are forwarded backward on the path of the data flow. Due to the asymmetric routing nature of the Internet, in this latter case, the path of the desired data flow should be known before the reservation initiator would be able to send the resource allocation messages. For example, in the case of RSVP, the RSVP PATH message, traveling from the data flow sources towards the destinations, first marks the path of the data flow on which the resource allocation messages will travel backward.

讨论:对于面向发送方的协议(在某些源中称为发送方发起的协议),资源保留的传播方向与数据流的传播方向相同。因此,在面向接收器的协议的情况下,保留资源的信令消息在数据流的路径上向后转发。由于互联网的非对称路由性质,在后一种情况下,在预订发起人能够发送资源分配消息之前,应该知道所需数据流的路径。例如,在RSVP的情况下,从数据流源向目的地移动的RSVP PATH消息首先标记资源分配消息将在其上向后移动的数据流路径。

This definition considers only protocols that reserve resources for just one data flow between the end-nodes. The reservation orientation of protocols that reserve more than one data flow is not defined here.

此定义仅考虑为终端节点之间的一个数据流保留资源的协议。此处未定义保留多个数据流的协议的保留方向。

Issues: The location of the reservation initiator affects the basics of the resource reservation protocols and therefore is an important aspect of characterization. Most importantly, in the case of multicast QoS sessions, the sender-oriented protocols require the traffic sources to maintain a list of receivers and send their allocation messages considering the different requirements of the receivers. Using multicast QoS sessions, the receiver-oriented protocols enable the receivers to manage their own resource allocation requests and thus ease the task of the sources.

问题:保留启动器的位置影响资源保留协议的基础,因此是表征的一个重要方面。最重要的是,在多播QoS会话的情况下,面向发送方的协议要求业务源维护接收方列表,并根据接收方的不同需求发送其分配消息。使用多播QoS会话,面向接收方的协议使接收方能够管理自己的资源分配请求,从而简化源的任务。

3.3. Router Load Factors
3.3. 路由器负载系数

When a router is under "load", it means that there are tasks its CPU(s) must attend to, and/or that its memory contains data it must keep track of, and/or that its interface buffers are utilized to some extent, etc. Unfortunately, we cannot assume that the full internal state of a router can be monitored during a benchmark; rather, we must consider the router to be a black box.

当路由器处于“负载”状态时,这意味着它的CPU必须处理一些任务,和/或它的内存包含它必须跟踪的数据,和/或它的接口缓冲区在某种程度上被利用,等等。不幸的是,我们不能假设路由器的完整内部状态可以在基准测试期间被监控;相反,我们必须考虑路由器是一个黑匣子。

We need to look at router "load" in a way that makes this "load" measurable and controllable. Instead of focusing on the internal processes of a router, we will consider the external, and therefore observable, measurable and controllable processes that result in "load".

我们需要以一种可以测量和控制这种“负载”的方式来看待路由器“负载”。我们不考虑路由器的内部过程,而是考虑外部的、因此可观察的、可测量的和可控的过程,从而导致“负载”。

In this section we introduce several ways of creating "load" on a router; we will refer to these as "load factors" henceforth. These load factors are defined so that they each impact the performance of the router in a different way (or by different means), by utilizing different components of a resource reservation capable router as separately as possible.

在本节中,我们将介绍几种在路由器上创建“负载”的方法;此后,我们将这些称为“荷载系数”。通过尽可能单独地利用具有资源预留能力的路由器的不同组件,定义这些负载因子,以便它们各自以不同的方式(或通过不同的方式)影响路由器的性能。

During a benchmark, the performance of the device under test will have to be measured under different controlled load conditions, that is, with different values of these load factors.

在基准测试期间,必须在不同的受控负载条件下(即这些负载系数的不同值)测量被测设备的性能。

3.3.1. Best-Effort Traffic Load Factor
3.3.1. 尽力而为的交通负荷系数

Definition: The best-effort traffic load factor is defined as the number and length of equal-sized best-effort data packets that traverse the router in a second.

定义:best effort流量负载因子定义为在一秒钟内通过路由器的大小相等的best effort数据包的数量和长度。

Discussion: Forwarding the best-effort data packets, which requires obtaining the routing information and transferring the data packet between network interfaces, requires processing power. This load factor creates load on the CPU(s) and buffers of the router.

讨论:转发尽力而为的数据包需要获得路由信息并在网络接口之间传输数据包,这需要处理能力。此负载系数在路由器的CPU和缓冲区上创建负载。

For the purpose of benchmarking, we define a traffic flow as a stream of equal-sized packets with even interpacket delay. It is possible to specify traffic with varying packet sizes as a superposition of multiple best-effort traffic flows as they are defined here.

为了进行基准测试,我们将业务流定义为具有均匀分组间延迟的大小相等的分组流。可以将具有不同数据包大小的流量指定为此处定义的多个尽力而为流量流的叠加。

Issues: The same amount of data segmented into differently sized packets causes different amounts of load on the router, which has to be considered during benchmarking measurements. The measurement unit of this load factor reflects this as well.

问题:分割成不同大小数据包的相同数据量会导致路由器上的负载量不同,在基准测试测量期间必须考虑这一点。该负载系数的测量单位也反映了这一点。

Measurement unit: This load factor has a composite unit of [packets per second (pps); bytes]. For example, [5 pps; 100 bytes] means five pieces of one-hundred-byte packets per second.

测量单位:此负载系数的合成单位为[每秒包数(pps);字节]。例如,[5 pps;100字节]表示每秒有五个100字节的数据包。

3.3.2. Distinguished Traffic Load Factor
3.3.2. 区分交通负荷系数

Definition: The distinguished traffic load factor is defined as the number and length of the distinguished data packets that traverse the router in a second.

定义:可分辨流量负载因子定义为每秒通过路由器的可分辨数据包的数量和长度。

Discussion: Similarly to the best-effort data, forwarding the distinguished data packets requires obtaining the routing information and transferring the data packet between network interfaces. However, in this case packets have to be classified as well, which requires additional processing capacity.

讨论:与尽力而为数据类似,转发区分数据包需要获取路由信息并在网络接口之间传输数据包。然而,在这种情况下,数据包也必须被分类,这需要额外的处理能力。

For the purpose of benchmarking, we define a traffic flow as a stream of equal-sized packets with even interpacket delay. It is possible to specify traffic with varying packet sizes as a superposition of multiple distinguished traffic flows as they are defined here.

为了进行基准测试,我们将业务流定义为具有均匀分组间延迟的大小相等的分组流。可以将具有不同数据包大小的流量指定为此处定义的多个可分辨流量流的叠加。

Issues: Just as in the best-effort case, the same amount of data segmented into differently sized packets causes different amounts of load on the router, which has to be considered during the benchmarking

问题:就像在尽力而为的情况下一样,分割成不同大小数据包的相同数据量会导致路由器上的负载量不同,这必须在基准测试期间加以考虑

measurements. The measurement unit of this load factor reflects this as well.

测量。该负载系数的测量单位也反映了这一点。

Measurement unit: This load factor has a composite unit of [packets per second (pps); bytes]. For example, [5 pps; 100 bytes] means five pieces of one-hundred-byte packets per second.

测量单位:此负载系数的合成单位为[每秒包数(pps);字节]。例如,[5 pps;100字节]表示每秒有五个100字节的数据包。

3.3.3. Session Load Factor
3.3.3. 会话负载系数

Definition: The session load factor is the number of QoS sessions the router is keeping track of.

定义:会话负载系数是路由器跟踪的QoS会话数。

Discussion: Resource reservation capable routers maintain reservation states to keep track of QoS sessions. Obviously, the more reservation states are registered with the router, the more complex the traffic classification becomes, and the more time it takes to look up the corresponding resource reservation state. Moreover, not only the traffic flows, but also the signaling messages that control the reservation states have to be identified first, before taking any other action, and this kind of classification also means extra work for the router.

讨论:支持资源预留的路由器维护预留状态以跟踪QoS会话。显然,向路由器注册的保留状态越多,流量分类就越复杂,查找相应的资源保留状态所需的时间也就越多。此外,在采取任何其他行动之前,不仅必须首先识别业务流,而且还必须识别控制保留状态的信令消息,并且这种分类还意味着路由器需要额外的工作。

In the case of soft-state resource reservation protocols, the session load also affects reservation state maintenance. For example, the supervision of timers that watchdog the reservation state refreshes may cause further load on the router.

在软状态资源保留协议的情况下,会话负载也会影响保留状态的维护。例如,监视保留状态刷新的计时器的监督可能会导致路由器上的进一步负载。

This load factor utilizes the CPU(s), the main memory, and the session management logic (e.g., content addressable memory), if any, of the resource reservation capable router.

该负载系数利用具有资源预留能力的路由器的CPU、主内存和会话管理逻辑(例如,内容可寻址内存,如果有的话)。

Measurement unit: This load component is measured by the number of QoS sessions that impact the router.

度量单位:此负载组件通过影响路由器的QoS会话数来度量。

3.3.4. Signaling Intensity Load Factor
3.3.4. 信号强度负荷系数

Definition: The signaling intensity load factor is the number of signaling messages that are presented at the input interfaces of the router during one second.

定义:信令强度负载因子是指在一秒钟内路由器输入接口上显示的信令消息数。

Discussion: The processing of signaling messages requires processor power that raises the load on the control plane of the router.

讨论:信令消息的处理需要处理器功率,这会增加路由器控制平面上的负载。

In routers where the control plane and the data plane are not totally independent (e.g., certain parts of the tasks are served by the same processor; or the architecture has common memory buffers, transfer buses or any other resources) the signaling load can have an impact on the router's packet forwarding performance as well.

在控制平面和数据平面并非完全独立的路由器中(例如,任务的某些部分由同一处理器提供服务;或者体系结构具有公共内存缓冲区、传输总线或任何其他资源),信令负载也会对路由器的包转发性能产生影响。

Naturally, just as everywhere else in this document, the term "signaling messages" refer only to the resource reservation protocol related primitives.

当然,与本文档中的其他地方一样,术语“信令消息”仅指与资源预留协议相关的原语。

Issues: Most resource reservation protocols have several protocol primitives realized by different signaling message types. Each of these message types may require a different amount of processing power from the router. This fact has to be considered during the benchmarking measurements.

问题:大多数资源预留协议都有几个由不同信令消息类型实现的协议原语。每种消息类型都可能需要路由器提供不同的处理能力。在基准测量期间必须考虑这一事实。

Measurement unit: The unit of this factor is signaling messages/second.

测量单位:该因素的单位为信令消息/秒。

3.3.5. Signaling Burst Load Factor
3.3.5. 信令突发负载因子

Definition: The signaling burst load factor is defined as the number of signaling messages that arrive to one input port of the router back-to-back ([1]), causing persistent load on the signaling message handler.

定义:信令突发负载因子定义为背对背([1])到达路由器一个输入端口的信令消息数量,导致信令消息处理程序上的持续负载。

Discussion: The definition focuses on one input port only and does not consider the traffic arriving at the other input ports. As a consequence, a set of messages arriving at different ports, but with such a timing that would be a burst if the messages arrived at the same port, is not considered to be a burst. The reason for this is that it is not guaranteed in a black-box test that this would have the same effect on the router as a burst (incoming at the same interface) has.

讨论:该定义只关注一个输入端口,不考虑到达其他输入端口的流量。因此,到达不同端口的一组消息(如果消息到达同一端口,则具有突发的定时)不被视为突发。其原因是,在黑盒测试中不能保证这对路由器的影响与突发(在同一接口传入)的影响相同。

This definition conforms to the burst definition given in [3].

该定义符合[3]中给出的突发定义。

Issues: Most of the resource reservation protocols have several protocol primitives realized by different signaling message types. Bursts built up of different messages may have a different effect on the router. Consequently, during measurements the content of the burst has to be considered as well.

问题:大多数资源预留协议都有几个由不同信令消息类型实现的协议原语。由不同消息组成的突发可能对路由器产生不同的影响。因此,在测量期间,也必须考虑爆破的内容。

Likewise, the first one of multiple idempotent signaling messages that each accomplish exactly the same end will probably not take the same amount of time to be processed as subsequent ones. Benchmarking methodology will have to consider the intended effect of the signaling messages, as well as the state of the router at the time of their arrival.

同样,多个幂等信令消息中的第一个消息(每个消息完成完全相同的目的)可能不会花费与后续消息相同的处理时间。基准测试方法必须考虑信令消息的预期效果,以及路由器到达时的状态。

Measurement unit: This load factor is characterized by the number of messages in the burst.

以突发消息数为特征的度量单位是突发消息数。

3.4. Performance Metrics
3.4. 性能指标

This group of definitions is a collection of measurable quantities that describe the performance impact the different load components have on the router.

这组定义是描述不同负载组件对路由器性能影响的可测量量的集合。

During a benchmark, the values of these metrics will have to be measured under different load conditions.

在基准测试期间,必须在不同的负载条件下测量这些指标的值。

3.4.1. Signaling Message Handling Time
3.4.1. 信令消息处理时间

Definition: The signaling message handling time (or, in short, signal handling time) is the latency ([1], for store-and-forward devices) of a signaling message passing through the router.

定义:信令消息处理时间(或简而言之,信号处理时间)是通过路由器的信令消息的延迟([1])。

Discussion: The router interprets the signaling messages, acts based on their content and usually forwards them in an unmodified or modified form. Thus the message handling time is usually longer than the forwarding time of data packets of the same size.

讨论:路由器解释信令消息,根据其内容采取行动,通常以未修改或修改的形式转发它们。因此,消息处理时间通常比相同大小的数据包的转发时间长。

There might be signaling message primitives, however, that are drained or generated by the router, like certain refresh messages. In this case, the signal handling time is not necessarily measureable, therefore it is not defined for such messages.

然而,可能存在由路由器耗尽或生成的信令消息原语,如某些刷新消息。在这种情况下,信号处理时间不一定是可测量的,因此不为此类消息定义。

In the case of signaling messages that carry information pertaining to multicast flows, the router might issue multiple signaling messages after processing them. In this case, by definition, the signal handling time is the latency between the incoming signaling message and the last outgoing signaling message related to the received one.

在承载与多播流有关的信息的信令消息的情况下,路由器可能在处理它们之后发出多个信令消息。在这种情况下,根据定义,信号处理时间是传入信令消息和与接收到的信令消息相关的最后一个传出信令消息之间的延迟。

The signal handling time is an important characteristic as it directly affects the setup time of a QoS session.

信号处理时间是一个重要的特性,因为它直接影响QoS会话的设置时间。

Issues: The signal handling time may be dependent on the type of the signaling message. For example, it usually takes a shorter time for the router to remove a reservation state than to set it up. This fact has to be considered during the benchmarking process.

问题:信号处理时间可能取决于信令消息的类型。例如,路由器删除保留状态所需的时间通常比设置保留状态所需的时间更短。在基准测试过程中必须考虑这一事实。

As noted above, the first one of multiple idempotent signaling messages that each accomplish exactly the same end will probably not take the same amount of time to be processed as subsequent ones. Benchmarking methodology will have to consider the intended effect of the signaling messages, as well as the state of the router at the time of their arrival.

如上所述,每个完成完全相同目的的多个幂等信令消息中的第一个消息可能不会花费与后续消息相同的处理时间。基准测试方法必须考虑信令消息的预期效果,以及路由器到达时的状态。

Measurement unit: The dimension of the signaling message handling time is the second, reported with a resolution sufficient to distinguish between different events/DUTs (e.g., milliseconds). Reported results MUST clearly indicate the time unit used.

测量单位:信令消息处理时间的维度为秒,报告的分辨率足以区分不同的事件/DUT(例如毫秒)。报告的结果必须清楚地表明使用的时间单位。

3.4.2. Distinguished Traffic Delay
3.4.2. 显著交通延误

Definition: Distinguished traffic delay is the latency ([1], for store-and-forward devices) of a distinguished data packet passing through the tested router device.

定义:可分辨流量延迟是指通过测试路由器设备的可分辨数据包的延迟([1],对于存储和转发设备)。

Discussion: Distinguished traffic packets must be classified first in order to assign the network resources dedicated to the flow. The time of the classification is added to the usual forwarding time (including the queuing) that a router would spend on the packet without any resource reservation capability. This classification procedure might be quite time consuming in routers with vast amounts of reservation states.

讨论:为了分配专用于流的网络资源,必须首先对区分的流量数据包进行分类。分类时间被添加到路由器在没有任何资源预留能力的情况下花费在数据包上的通常转发时间(包括排队)中。在具有大量保留状态的路由器中,此分类过程可能相当耗时。

There are routers where the processing power is shared between the control plane and the data plane. This means that the processing of signaling messages may have an impact on the data forwarding performance of the router. In this case, the distinguished traffic delay metric also indicates the influence the two planes have on each other.

有些路由器的处理能力在控制平面和数据平面之间共享。这意味着信令消息的处理可能会对路由器的数据转发性能产生影响。在这种情况下,可分辨业务延迟度量还指示两个平面对彼此的影响。

Issues: Queuing of the incoming data packets in routers can bias this metric, so the measurement procedures have to consider this effect.

问题:路由器中传入数据包的排队可能会影响这个度量,因此测量程序必须考虑这种影响。

Measurement unit: The dimension of the distinguished traffic delay time is the second, reported with resolution sufficient to distinguish between different events/DUTs (e.g., millisecond units). Reported results MUST clearly indicate the time unit used.

测量单位:可分辨流量延迟时间的维度为秒,报告分辨率足以区分不同事件/DUT(例如毫秒单位)。报告的结果必须清楚地表明使用的时间单位。

3.4.3. Best-effort Traffic Delay
3.4.3. 尽力而为的交通延误

Definition: Best-effort traffic delay is the latency of a best-effort data packet traversing the tested router device.

定义:Best effort traffic delay是一个Best effort数据包通过被测路由器设备的延迟。

Discussion: If the processing power of the router is shared between the control and data plane, then the processing of signaling messages may have an impact on the data forwarding performance of the router. In this case, the best-effort traffic delay metric is an indicator of the influence the two planes have on each other.

讨论:如果路由器的处理能力在控制平面和数据平面之间共享,那么信令消息的处理可能会对路由器的数据转发性能产生影响。在这种情况下,尽力而为的业务延迟度量是两个平面相互影响的指标。

Issues: Queuing of the incoming data packets in routers can bias this metric as well, so measurement procedures have to consider this effect.

问题:路由器中传入数据包的排队也会对这个度量产生偏差,因此测量程序必须考虑这种影响。

Measurement unit: The dimension of the best-effort traffic delay is the second, reported with resolution sufficient to distinguish between different events/DUTs (e.g., millisecond units). Reported results MUST clearly indicate the time unit used.

测量单位:尽力而为流量延迟的维度为秒,报告的分辨率足以区分不同的事件/DUT(例如毫秒单位)。报告的结果必须清楚地表明使用的时间单位。

3.4.4. Signaling Message Deficit
3.4.4. 信令消息赤字

Definition: Signaling message deficit is one minus the ratio of the actual and the expected number of signaling messages leaving a resource reservation capable router.

定义:信令消息赤字是一减去离开具有资源预留能力的路由器的实际和预期信令消息数量的比率。

Discussion: This definition gives the same value as the ratio of the lost (that is, not forwarded or not generated) and the expected messages. The above calculation must be used because the number of lost messages cannot be measured directly.

讨论:此定义给出的值与丢失(即未转发或未生成)和预期消息的比率相同。必须使用上述计算,因为无法直接测量丢失消息的数量。

There are certain types of signaling messages that reservation capable routers are required to forward as soon as their processing is finished. However, due to lack of resources or other reasons, the forwarding or even the processing of these signaling messages might not take place.

有某些类型的信令消息,具有保留功能的路由器需要在处理完成后立即转发这些消息。然而,由于缺乏资源或其他原因,这些信令消息的转发甚至处理可能不会发生。

Certain other kinds of signaling messages must be generated by the router in the absence of any corresponding incoming message. It is possible that an overloaded router does not have the resources necessary to generate such a message.

在没有任何相应的传入消息的情况下,路由器必须生成某些其他类型的信令消息。过载的路由器可能没有生成此类消息所需的资源。

To characterize these situations we introduce the signaling message deficit metric that expresses the ratio of the signaling messages that have actually left the router and those ones that were expected to leave the router. We subtract this ratio from one in order to obtain a loss-type metric instead of a "message survival metric".

为了描述这些情况,我们引入了信令消息赤字度量,它表示实际离开路由器的信令消息与预期离开路由器的信令消息的比率。我们从1中减去该比率,以获得损失类型度量,而不是“消息生存度量”。

Since the most frequent reason for signaling message deficit is high router load, this metric is suitable for sounding out the scalability limits of resource reservation capable routers.

由于信令消息不足的最常见原因是高路由器负载,因此该度量适合探明具有资源预留能力的路由器的可伸缩性限制。

During the measurements one must be able to determine whether a signaling message is still in the queues of the router or if it has already been dropped. For this reason we define a signaling message as lost if no forwarded signaling message is emitted within a reasonably long time period. This period is defined along with the benchmarking methodology.

在测量过程中,必须能够确定信令消息是否仍在路由器队列中,或者它是否已被丢弃。因此,如果在相当长的时间内没有发送转发的信令消息,我们将信令消息定义为丢失。这一时期与基准测试方法一起定义。

Measurement unit: This measure has no unit; it is expressed as a real number, which is between zero and one, including the limits.

计量单位:该计量单位没有单位;它表示为实数,介于0和1之间,包括极限。

3.4.5. Session Maintenance Capacity
3.4.5. 会话维护能力

Definition: The session maintenance capacity metric is used in the case of soft-state resource reservation protocols only. It is defined as the ratio of the number of QoS sessions actually being maintained and the number of QoS sessions that should have been maintained.

定义:会话维护容量度量仅用于软状态资源保留协议。它定义为实际维护的QoS会话数与应维护的QoS会话数的比率。

Discussion: For soft-state protocols maintaining a QoS session means refreshing the reservation states associated with it.

讨论:对于软状态协议,维护QoS会话意味着刷新与其关联的保留状态。

When a soft-state resource reservation capable router is overloaded, it may happen that the router is not able to refresh all the registered reservation states, because it does not have the time to run the state refresh task. In this case, sooner or later some QoS sessions will be lost even if the endpoints still require their maintenance.

当具有软状态资源保留功能的路由器过载时,可能会发生路由器无法刷新所有已注册的保留状态的情况,因为它没有时间运行状态刷新任务。在这种情况下,即使端点仍然需要维护,某些QoS会话迟早会丢失。

The session maintenance capacity sounds out the maximal number of QoS sessions that the router is capable of maintaining.

会话维护能力确定路由器能够维护的QoS会话的最大数量。

Issues: The actual process of session maintenance is protocol and implementation dependent, thus so is the method to examine whether a session is maintained or not.

问题:会话维护的实际过程取决于协议和实现,因此检查会话是否维护的方法也是如此。

In the case of soft-state resource reservation protocols, where the network nodes are responsible for generating the refresh messages, a router that fails to maintain a QoS session may not emit refresh signaling messages either. This has direct consequences on the signaling message deficit metric.

在软状态资源预留协议的情况下,其中网络节点负责生成刷新消息,未能维持QoS会话的路由器也可能不发射刷新信令消息。这对信令消息赤字度量有直接影响。

Measurement unit: This measure has no unit; it is expressed as a real number, which is between zero and one (including the limits).

计量单位:该计量单位没有单位;它表示为实数,介于0和1之间(包括极限)。

3.5. Router Load Conditions and Scalability Limit
3.5. 路由器负载条件和可扩展性限制

Depending mainly, but not exclusively, on the overall load of a router, it can be in exactly one of the following four conditions at a time: loss-free and QoS compliant; lossy and QoS compliant; loss-free but not QoS compliant; and neither loss-free nor QoS compliant. These conditions are defined below, along with the scalability limit.

主要取决于(但不完全取决于)路由器的总体负载,它一次可以恰好处于以下四种条件之一:无损耗且符合QoS;有损和QoS兼容;无损耗但不符合QoS;而且既不是无损耗的,也不是符合QoS的。下面定义了这些条件以及可伸缩性限制。

3.5.1. Loss-Free Condition
3.5.1. 无损失条件

Definition: A router is in loss-free condition, or loss-free state, if and only if it is able to perform its tasks correctly and in a timely fashion.

定义:当且仅当路由器能够正确且及时地执行其任务时,路由器处于无丢失状态或无丢失状态。

Discussion: All existing routers have finite buffer memory and finite processing power. If a router is in loss-free state, the buffers of the router still contain enough free space to accommodate the next incoming packet when it arrives. Also, the router has enough processing power to cope with all its tasks, thus all required operations are carried out within the time the protocol specification allows; or, if this time is not specified by the protocol, then in "reasonable time" (which is then defined in the benchmarks). Similar considerations can be applied to other resources a router may have, if any; in loss-free states, the utilization of these resources still allows the router to carry out its tasks in accordance with applicable protocol specifications and in "reasonable time".

讨论:所有现有路由器都有有限的缓冲内存和有限的处理能力。如果路由器处于无丢失状态,路由器的缓冲区仍然包含足够的可用空间,以便在下一个传入数据包到达时容纳它。此外,路由器有足够的处理能力来处理其所有任务,因此所有要求的操作都在协议规范允许的时间内执行;或者,如果协议未规定该时间,则为“合理时间”(随后在基准中定义)。类似的考虑可以应用于路由器可能拥有的其他资源(如果有的话);在无丢失状态下,这些资源的利用仍然允许路由器根据适用的协议规范在“合理时间”内执行其任务。

Note that loss-free states as defined above are not related to the reservation states of resource reservation protocols. The word "state" is used to mean "condition".

请注意,上面定义的无丢失状态与资源保留协议的保留状态无关。“状态”一词用来表示“条件”。

Also note that it is irrelevant what internal reason causes a router to fail to perform in accordance with protocol specifications or in "reasonable time"; if it is not high load but -- for example -- an implementation error that causes the device to perform inadequately, it still cannot be said to be in a loss-free state. The same applies to the random early dropping of packets in order to prevent congestion. In a black-box measurement it is impossible to determine whether a packet was dropped as part of a congestion control mechanism or because the router was unable to forward it; therefore, if packet loss is observed except as noted below, the router is by definition in lossy state (lossy condition).

还请注意,是什么内部原因导致路由器无法按照协议规范或在“合理时间”内执行是不相关的;如果不是高负载,而是(例如)一个导致设备执行不充分的实现错误,那么仍然不能说它处于无损耗状态。这同样适用于数据包的随机提前丢弃,以防止拥塞。在黑盒测量中,不可能确定数据包是作为拥塞控制机制的一部分被丢弃,还是因为路由器无法转发它;因此,除非如下所述,否则如果观察到分组丢失,则路由器根据定义处于有损状态(有损条件)。

If a distinguished data flow exceeds its allotted bandwidth, it is acceptable for routers to drop excess packets. Thus, a router that is QoS Compliant (see below) is also loss-free provided that it only drops packets from distinguished data flows.

如果可分辨数据流超过其分配的带宽,路由器可以丢弃多余的数据包。因此,符合QoS的路由器(见下文)也不会丢失,只要它只从可分辨的数据流中丢弃数据包。

If a device is not in a loss-free state, it is in a lossy condition/state.

如果设备未处于无损耗状态,则它处于有损状态/状态。

Related definitions: Lossy Condition QoS Compliant Condition Not QoS Compliant Condition Scalability Limit

相关定义:有损条件QoS兼容条件非QoS兼容条件可扩展性限制

3.5.2. Lossy Condition
3.5.2. 有损条件

Definition: A router is in a lossy condition, or lossy state, if it cannot perform its duties adequately for some reason; that is, if it does not meet protocol specifications (except QoS guarantees, which are treated separately), or -- if time-related specifications are missing -- doesn't complete some operations in "reasonable time" (which is then defined in the benchmarks).

定义:路由器处于有损状态或有损状态,如果它由于某种原因不能充分履行其职责;也就是说,如果它不符合协议规范(QoS保证除外,单独处理),或者——如果缺少与时间相关的规范——没有在“合理时间”内完成某些操作(然后在基准测试中定义)。

Discussion: A router may be in a lossy state for several reasons, including but not necessarily limited to the following:

讨论:路由器处于有损状态可能有以下几种原因,包括但不限于:

a) Buffer memory has run out, so either an incoming or a buffered packet has to be dropped.

a) 缓冲区内存已用完,因此必须丢弃传入或缓冲的数据包。

b) The router doesn't have enough processing power to cope with all its duties. Some required operations are skipped, aborted or suffer unacceptable delays.

b) 路由器没有足够的处理能力来处理所有任务。某些必需的操作被跳过、中止或遭受不可接受的延迟。

c) Some other finite internal resource is exhausted.

c) 其他一些有限的内部资源已经耗尽。

d) The router runs a defective (non-conforming) protocol implementation.

d) 路由器运行有缺陷(不一致)的协议实现。

e) Hardware malfunction.

e) 硬件故障。

f) A congestion control mechanism is active.

f) 拥塞控制机制处于活动状态。

Loss can mean the loss of data packets as well as signaling message deficit.

丢失可能意味着数据包的丢失以及信令消息的缺失。

A router that does not lose data packets and does not experience signaling message deficit but fails to meet required QoS parameters is in the loss-free, but not in the QoS compliant state.

不丢失数据包、不经历信令消息赤字但未能满足所需QoS参数的路由器处于无丢失状态,但不处于QoS兼容状态。

If a device is not in a lossy state, it is in a loss-free condition/state.

如果设备未处于有损状态,则它处于无损状态/状态。

Related definitions: Loss-Free Condition (especially the discussion of congestion control mechanisms that cause packet loss) Scalability Limit Signaling Message Deficit QoS Compliant Condition Not QoS Compliant Condition

相关定义:无丢失条件(特别是讨论导致数据包丢失的拥塞控制机制)可扩展性限制信令消息赤字QoS兼容条件非QoS兼容条件

3.5.3. QoS Compliant Condition
3.5.3. QoS兼容条件

Definition: A router is in the QoS compliant state if and only if all distinguished data flows receive the QoS treatment they are entitled to.

定义:路由器处于QoS兼容状态,当且仅当所有可分辨数据流接收到其有权获得的QoS处理时。

Discussion: Defining what specific QoS guarantees must be upheld is beyond the scope of this document because every reservation model may specify a different set of such parameters.

讨论:定义必须支持的特定QoS保证超出了本文档的范围,因为每个预订模型可能指定一组不同的此类参数。

Loss, delay, jitter etc. of best-effort data flows are irrelevant when considering whether a router is in the QoS compliant state.

当考虑路由器是否处于QoS兼容状态时,尽力而为的数据流的丢失、延迟、抖动等是无关的。

Related definitions: Loss-Free Condition Lossy Condition Not QoS Compliant Condition Scalability Limit

相关定义:无损耗条件有损条件不符合QoS条件可扩展性限制

3.5.4. Not QoS Compliant Condition
3.5.4. 不符合QoS的条件

Definition: A router is in the not QoS compliant state if and only if it is not in the QoS compliant condition.

定义:路由器处于非QoS兼容状态当且仅当其不处于QoS兼容状态时。

Related definitions: Loss-Free Condition Lossy Condition QoS Compliant Condition Scalability Limit

相关定义:无损耗条件有损条件QoS兼容条件可扩展性限制

3.5.5. Scalability Limit
3.5.5. 可扩展性限制

Definition: The scalability limits of a router are the boundary load conditions where the router is still in the loss-free and QoS compliant state, but the smallest amount of additional load would drive it to a state that is either QoS compliant but not loss-free, or not QoS compliant but loss-free, or neither loss-free nor QoS compliant.

定义:路由器的可扩展性限制是边界负载条件,其中路由器仍处于无损耗和符合QoS的状态,但最小的额外负载量将使其处于符合QoS但不无损耗、不符合QoS但无损耗、或既不符合损耗也不符合QoS的状态。

Discussion: An unloaded router that operates correctly is in a loss-free and QoS compliant state. As load increases, the resources of the router are becoming more and more utilized. At a certain point, the router enters a state that is either not QoS compliant, or not loss-free, or neither QoS compliant nor loss-free. Note that such a point may be impossible to reach in some cases (for example if the bandwidth of the physical medium prevents increasing the traffic load any further).

讨论:正常运行的未加载路由器处于无丢失和符合QoS的状态。随着负载的增加,路由器的资源得到越来越多的利用。在某一点上,路由器进入一种状态,该状态要么不符合QoS,要么不无损耗,要么既不符合QoS,也不无损耗。注意,在某些情况下(例如,如果物理介质的带宽阻止进一步增加业务负载),可能无法达到该点。

A particular load condition can be identified by the corresponding values of the load factors (as defined in 3.3 Router Load Factors) impacting the router. These values can be represented as a 7- tuple of numbers (there are only five load factors, but the traffic load factors have composite units and thus require two numbers each to express). We can think of these tuples as vectors that correspond to a state that is either both loss free and QoS compliant, or not loss-free (but QoS compliant), or not QoS compliant (but loss-free), or neither loss-free nor QoS compliant. The scalability limit of the router is, then, the boundary between

特定的负载条件可以通过影响路由器的负载系数(如3.3路由器负载系数中所定义)的相应值来确定。这些值可以表示为一个7元组的数字(只有5个负载因子,但交通负载因子具有复合单元,因此每个都需要两个数字来表示)。我们可以将这些元组视为向量,它们对应于一个状态,该状态要么无损耗且符合QoS,要么无损耗(但符合QoS),要么不符合QoS(但无损耗),要么既无损耗也不符合QoS。因此,路由器的可伸缩性限制是

the sets of vectors corresponding to the loss-free and QoS compliant states and all other states. Finding these boundary points is one of the objectives of benchmarking.

对应于无丢失和QoS兼容状态以及所有其他状态的向量集。找到这些边界点是基准测试的目标之一。

Benchmarks may try to separately identify the boundaries of the loss-free and of the QoS compliant conditions in the (seven-dimensional) space defined by the load-vectors.

基准可以尝试在由负载向量定义的(七维)空间中分别识别无损耗和QoS兼容条件的边界。

Related definitions: Lossy Condition Loss-Free Condition QoS Compliant Condition Non QoS Compliant Condition

相关定义:有损条件无损条件QoS兼容条件非QoS兼容条件

4. Security Considerations
4. 安全考虑

As this document only provides terminology and does not describe a protocol, an implementation, or a procedure, there are no security considerations associated with it.

由于本文档仅提供术语,未描述协议、实现或过程,因此没有与之相关的安全注意事项。

5. Acknowledgements
5. 致谢

We would like to thank Telia Research AB, Sweden and the High Speed Networks Laboratory at the Department of Telecommunication and Media Informatics of the Budapest University of Technology and Economics, Hungary for their support in the research and development work, which contributed to the creation of this document.

我们要感谢TeliaRealEngab AB,瑞典和匈牙利布达佩斯技术与经济大学电信和媒体信息学系的高速网络实验室,支持他们在研究和开发工作中的支持,这有助于创建这份文件。

6. References
6. 工具书类
6.1. Normative References
6.1. 规范性引用文件

[1] Bradner, S., "Benchmarking Terminology for Network Interconnection Devices", RFC 1242, July 1991.

[1] Bradner,S.,“网络互连设备的基准术语”,RFC 1242,1991年7月。

[2] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[2] Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[3] Mandeville, R., "Benchmarking Terminology for LAN Switching Devices", RFC 2285, February 1998.

[3] Mandeville,R.,“局域网交换设备的基准术语”,RFC 2285,1998年2月。

6.2. Informative References
6.2. 资料性引用

[4] Braden, R., Clark, D., and S. Shenker, "Integrated Services in the Internet Architecture: an Overview", RFC 1633, June 1994.

[4] Braden,R.,Clark,D.,和S.Shenker,“互联网体系结构中的综合服务:概述”,RFC16331994年6月。

[5] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, September 1997.

[5] Braden,R.,Ed.,Zhang,L.,Berson,S.,Herzog,S.,和S.Jamin,“资源预留协议(RSVP)——第1版功能规范”,RFC 22052997年9月。

[6] Hancock, R., Karagiannis, G., Loughney, J., and S. Van den Bosch, "Next Steps in Signaling (NSIS): Framework", RFC 4080, June 2005.

[6] Hancock,R.,Karagiannis,G.,Loughney,J.,和S.Van den Bosch,“信号的下一步(NSIS):框架”,RFC 40802005年6月。

[7] Schulzrinne, H. and R. Hancock, "GIST: General Internet Signaling Transport", Work in Progress, April 2007.

[7] Schulzrinne,H.和R.Hancock,“要点:通用互联网信号传输”,正在进行的工作,2007年4月。

[8] Manner, J., Ed., Karagiannis, G., and A. McDonald, "NSLP for Quality-of-Service Signaling", Work in Progress, June 2007.

[8] Way,J.Ed.,Karagiannis,G.和A.McDonald,“服务质量信号NSLP”,在建工程,2007年6月。

[9] Ash, J., Bader, A., Kappler, C., and D. Oran, "QoS NSLP QSPEC Template", Work in Progress, March 2007.

[9] Ash,J.,Bader,A.,Kappler,C.,和D.Oran,“QoS NSLP QSPEC模板”,正在进行的工作,2007年3月。

[10] P. Pan, H. Schulzrinne, "YESSIR: A Simple Reservation Mechanism for the Internet", Computer Communication Review, on-line version, volume 29, number 2, April 1999

[10] P.Pan,H.Schulzrinne,“YESSIR:互联网的简单预约机制”,《计算机通信评论》,在线版,第29卷,第2期,1999年4月

[11] Delgrossi, L. and L. Berger, "Internet Stream Protocol Version 2 (ST2) Protocol Specification - Version ST2+", RFC 1819, August 1995.

[11] Delgrossi,L.和L.Berger,“互联网流协议版本2(ST2)协议规范-版本ST2+”,RFC 1819,1995年8月。

[12] P. White, J. Crowcroft, "A Case for Dynamic Sender-Initiated Reservation in the Internet", Journal on High Speed Networks, Special Issue on QoS Routing and Signaling, Vol. 7 No. 2, 1998

[12] P.White,J.Crowcroft,“互联网中动态发送方发起预约的案例”,《高速网络杂志》,QoS路由和信令特刊,第7卷,第2期,1998年

[13] J. Bergkvist, D. Ahlard, T. Engborg, K. Nemeth, G. Feher, I. Cselenyi, M. Maliosz, "Boomerang : A Simple Protocol for Resource Reservation in IP Networks", Vancouver, IEEE Real-Time Technology and Applications Symposium, June 1999

[13] J.Bergkvist,D.Ahlard,T.Engborg,K.Nemeth,G.Feher,I.Cselenyi,M.Maliosz,“回力棒:IP网络中资源保留的简单协议”,温哥华,IEEE实时技术和应用研讨会,1999年6月

[14] A. Eriksson, C. Gehrmann, "Robust and Secure Light-weight Resource Reservation for Unicast IP Traffic", International WS on QoS'98, IWQoS'98, May 18-20, 1998

[14] A.Eriksson,C.Gehrmann,“针对单播IP流量的稳健安全轻型资源预留”,国际WS-on QoS'98,IWQoS'98,1998年5月18-20日

[15] Manner, J. and X. Fu, "Analysis of Existing Quality-of-Service Signaling Protocols", RFC 4094, May 2005.

[15] 《现有服务质量信令协议分析》,RFC4094,2005年5月。

[16] Baker, F., Iturralde, C., Le Faucheur, F., and B. Davie, "Aggregation of RSVP for IPv4 and IPv6 Reservations", RFC 3175, September 2001.

[16] Baker,F.,Iturralde,C.,Le Faucheur,F.,和B.Davie,“IPv4和IPv6保留的RSVP聚合”,RFC 31752001年9月。

Authors' Addresses

作者地址

Gabor Feher Budapest University of Technology and Economics Department of Telecommunications and Media Informatics Magyar Tudosok krt. 2, H-1117, Budapest, Hungary

Gabor Feh布达佩斯技术与经济大学电信和媒体信息学系Mayyar TdoSok-KRT。匈牙利布达佩斯H-1117号2楼

   Phone: +36 1 463-1538
   EMail: Gabor.Feher@tmit.bme.hu
        
   Phone: +36 1 463-1538
   EMail: Gabor.Feher@tmit.bme.hu
        

Krisztian Nemeth Budapest University of Technology and Economics Department of Telecommunications and Media Informatics Magyar Tudosok krt. 2, H-1117, Budapest, Hungary

内梅特,布达佩斯技术与经济大学电信与媒体信息学系。匈牙利布达佩斯H-1117号2楼

   Phone: +36 1 463-1565
   EMail: Krisztian.Nemeth@tmit.bme.hu
        
   Phone: +36 1 463-1565
   EMail: Krisztian.Nemeth@tmit.bme.hu
        

Andras Korn Budapest University of Technology and Economics Department of Telecommunication and Media Informatics Magyar Tudosok krt. 2, H-1117, Budapest, Hungary

安德拉斯.科恩布达佩斯技术与经济大学电信与媒体信息学系。匈牙利布达佩斯H-1117号2楼

   Phone: +36 1 463-2664
   EMail: Andras.Korn@tmit.bme.hu
        
   Phone: +36 1 463-2664
   EMail: Andras.Korn@tmit.bme.hu
        

Istvan Cselenyi TeliaSonera International Carrier Vaci ut 22-24, H-1132 Budapest, Hungary

匈牙利布达佩斯H-1132号国际航空公司Vaci ut 22-24 Istvan Cselenyi TeliaSonera

   Phone: +36 1 412-2705
   EMail: Istvan.Cselenyi@teliasonera.com
        
   Phone: +36 1 412-2705
   EMail: Istvan.Cselenyi@teliasonera.com
        

Full Copyright Statement

完整版权声明

Copyright (C) The IETF Trust (2007).

版权所有(C)IETF信托基金(2007年)。

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息以“原样”为基础提供,贡献者、他/她所代表或赞助的组织(如有)、互联网协会、IETF信托基金和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。